
UTILITIES

TERMS

SORT

The SORT program is used to sort data into a certain sequence or to
merge from 2 to 100 previously sorted input data sets into 1 output
data set.

//STEP10 EXEC PGM=SORT
//SYSOUT DD SYSOUT=*

MERGE IDCAMS COMPAREX

GVEXPORT & GVRESTORE

IEFBR14 IEBGENER IEHPROGM IEBCOPY

CONTROL-BREAKS

CLASSCOMP-3 & COMP

ABBREVIATIONS

TIPS

DATE WINDOWING
USEFUL TIPSUSEFUL TIPS

COBOL VSAM EASYTRIEVEJCL

http://EX0008-RC01.doc/

//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SORTIN DD DISP=SHR,DSN=<< INPUT FILE NAME >>
//SORTOUT DD DISP=(MOD,CATLG,DELETE),SPACE=(CYL,(5,5),RLSE),
// UNIT=SYSDA,DCB=*.SORTIN,
// DSN=<< OUTPUT FILE NAME >>
//SYSIN DD *
//************** INCLUDE SORT STEPS HERE

1) TO SORT ON POSITIONS say for eg. 1 to 7

 SORT FIELDS=(1,7,CH,A)

Where

Sort fields = (position ,length ,format ,sequence) or
Sort fields = (position ,length , sequence..),format =
CH/BI/PD/ZD.d
PD=packed Decimal(COMP-3), ZD=zone decimal.

NOTE :-

Instead of using JCL to perform SORT operation , there's
one simple alternative,
For eg:- Open a Flat file in edit mode. On the command line
type (say) SORT 1,7 and press ENTER, the file will be
sorted on positions 1 to 7 bytes.

2) TO COPY ALL THE RECORDS FROM INPUT FILE TO OUTPUT FILE

 SORT FIELDS=COPY

3) TO COPY THOSE RECORDS WHICH SATISFY A PARTICULAR CONDITION.

INCLUDE COND=(38,10,CH,EQ,C'57071509',OR,36,10,CH,EQ,C'
57105779')

4) TO OMIT THOSE RECORDS WHICH SATISFY A PARTICULAR CONDITION.

OMIT COND=(19,1,CH,EQ,C'S',OR,19,1,CH,EQ,C'S')

5) TO SKIP CERTAIN NO OF RECORDS

SORT FIELDS=COPY,SKIPREC=1000

6) TO STOP AFTER COPYING CERTAIN NO OF RECORDS

SORT FIELDS=COPY,STOPAFT=5000

7) SKIPREC AND STOPREC CAN BE USED IN COMBINATION

SORT FIELDS=COPY,SKIPREC=1000,STOPAFT=5000

8) TO REMOVE DUPLICATES FROM THE FILE USING SORT

SORT FIELDS=(1,7,A),FORMAT=CH
SUM FIELDS=NONE

BACK
__

MERGE

The MERGE control statement defines the application as a MERGE
application.

 MERGE FIELDS=...
 {,FILES=n}
 {,EQUALS | NOEQUALS}
 {,CKPT | CHKPT}
 {,CENTWIN={0 | s | f}}

 where
 FIELDS=(pos1,len1,opt1,pos2,len2,opt2,...),FORMAT=type
Keyword explanations:

The FIELDS= keyword is used to identify the fields to use as merge
keys. Each field is described using 4 values:

 'pos', its position in the record, relative to 1;
 'len', the field's length;
 'type', the type of data stored in the field; and

 'opt', the sort order for the field which can be
 A for ascending, D for descending, or
 E as modified by an E61 exit.
Up to 128 fields can be sorted or merged using one
MERGE control statement.

BACK
__

IDCAMS
__

IDCAMS Return Codes
0 Command executed with no errors
4 Warning - execution may go successful
8 Serious error - execution may fail.
12 Serious error - execution impossible.
16 Fatal error - job step terminates

Defining ESDS cluster:(entry sequenced dataset)
 DEFINE CLUSTER (NAME(PUFAP.VSAM.APFT100) -
 CYL(50 50) -
 RECORDSIZE(814 814) -
 VOLUME(* * * * *) -
 REUSE -
 NONINDEXED -
 DATA (NAME(PUFAP.VSAM.APFT100.DATA) -
 CISZ(4096))

Defining KSDS cluster:(KEY sequenced dataset)

DELETE PUFAP.VSAM.APFT100 -
 CLUSTER -
 PURGE

 DEFINE CLUSTER (NAME(PUFAP.VSAM.APFT100) -
 CYL(50 50) -
 KEYS(48 0) -
 RECORDSIZE(814 814) -
 VOLUME(* * * * *) -
 SHAREOPTIONS(2 3) -

 SPEED -
 REUSE -
 INDEXED -
 FREESPACE(5 5)) -
 INDEX (NAME(PUFAP.VSAM.APFT100.INDEX) -
 CISZ(512)) -
 DATA (NAME(PUFAP.VSAM.APFT100.DATA) -
 CISZ(4096))

SOME DEFINITIONS.
keys :
keys(length offset)
 e.g. key(8 1) starting from 2nd byte to 9th byte

spanned
it allows record to span more than one control interval

Dataset type

indexed(for ksds) key sequenced dataset
nonindexed (for esds) entry sequenced dataset
numbered (for rrds) relative record dataset

freespace
it applies to ksds.it can be used for adding new records or expanding existing variable records.

space parameter:
cylinders(primary secondary)
tracks (primary secondary)
records (primary secondary)
kilobytes(primary secondary)
megabytes(primary secondary)

reuse
reuse specifies that cluster can be opened next time as a reusable
cluster.if it is opened in output mode it is treated as empty dataset.

share options (cr-value cs-value)
values: 1 multiple read or single write
 2 multiple read and single write
 3 multiple read and multiple write

cr value: specifies value for cross region sharing.
cross region sharing is defined as different jobs
running on the same system using global resource
serialization,a resource control facility.

cs value: specifies the value for cross system sharing
means different jobs running on different system in
a nongrs environment.

Listcat:
 helps to view password and security information, usage statistics, space allocation info, creation
and expiration dates etc

NOTE:-The following attributes are unalterable. You have to DELETE the cluster and redefine it
with new attributes.

- CISZ
- Cluster type,
- IMBED/REPLICATE
- REUSE | NOREUSE

BACK
__

GVEXPORT AND GVRESTORE

Using these utilities multiple files before updation are backed up.
Faver compresses all the input files. Using GVRESTOR the files are
again uncompressed.

 GVEXPORT
//JS01 EXEC PGM=GVEXPORT
//SYSPRINT DD SYSOUT=*
//SNAPDD DD SYSOUT=*
//DD01 DD DSN=OUFAP.PROD.CC9601.CCFM100,DISP=OLD
//DD02 DD DSN=OUFAP.PROD.CC9601.CCFM200,DISP=OLD
//FVROUT0 DD DSN=&LVL.UFAP.FAVER.BKUP(+1),
// DISP=(,CATLG,DELETE),
// UNIT=ACART,
// DCB=SYS2.DSCB
//SYSIN DD DSN=PAEPC.Y2K.SYSIN(APUF8201),
// DISP=SHR
 EXPORT
 CLUSTER
 CL=OUFAP.PROD.CC9601.CCFM100
 CL=OUFAP.PROD.CC9601.CCFM200

 GVRESTOR
//JS02 EXEC PGM=GVRESTOR
//SYSPRINT DD SYSOUT=*
//*
//SNAPDD DD SYSOUT=*
//*
//FVRIN0 DD DSN=&LVL.UFAP.FAVER.BKUP(+1),
// DISP=OLD
//SYSIN DD DSN=PAEPC.Y2K.SYSIN(APUF8101),
// DISP=SHR

 RESTORE PURGE
 CLUSTER
 CL=OUFAP.PROD.CC9601.CCFM100
 CL=OUFAP.PROD.CC9601.CCFM200

Note: It delete defines the cluster and then restores it from back up.

BACK
__

REPRO

• Loads empty VSAM cluster with records.
• Creates backup of datasets
• Merges data from two VSAM datasets
• Can operate on Non-Vsam datasets
• Can copy from KSDS to ESDS
• In case of KSDS ,data & index component are build automatically

//STEP10 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//DD1 DD DSN=PCEX.D300P010.VASW208.G0026V00,
// DISP=SHR
//DD2 DD DSN=CPI206.CEX.D300P010.VASW208.G0026,
// DISP=(MOD,CATLG,DELETE),
// SPACE=(CYL,(10,20),RLSE),
// RECFM=VB,LRECL=32604,BLKSIZE=32608
//SYSIN DD *
 REPRO INFILE(DD1) OUTFILE(DD2)
//

LIMITING INPUT AND OUTPUT RECORDS

Using FROMKEY AND TOKEY

REPRO -
INFILE(DD1) -
OUTFILE(DD2) -
FROMKEY(A001) -
TOKEY(A045)

Using SKIP AND COUNT

REPRO -
INFILE(DD1) -
OUTFILE(DD2) -
SKIP(50) -
COUNT(1000)

This example SKIPS 50 Records and copies next 1000 records.

BACK
__

COMPAREX

Similar to option 3.13 , i.e. compares two files.

 COMPAREX allows you to restrict the compare to certain fields within each
 record, or to ignore certain fields.
FIELDs are used to specify which fields are to be compared.
MASKS,are used to specify which fields are NOT to be compared.
 For example:

F=FIELD --------FIELD ONE--------- ----FIELD TWO---------
M=MASK DISPLACEMENT LENGTH FORMAT DISP LEN FORMAT
 f 5 106
 f 111 4 p 112 3 b
 m 33 7 z

 Generates: FIELD=(5,106,C)
 FIELD1=(111,4,P) FIELD2=(112,3,B)
 MASK=(33,7,Z)

For example:

//JS30 EXEC PGM=COMPAREX
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DISP=SHR,
// DSN=TCEX.Q133P020.F02A.PREMOUT
//SYSUT2 DD DISP=SHR,
// DSN=TCEX.Q133P020.F02A.PREMOUT.TEST
//SYSIN DD *
 FORMAT=13
/*

COMPAREX USING MASK COMMAND
i.e.

//SYSIN DD *
 FORMAT=13
 MASK=(271,20,C)

where
MASK=(Position, Length and Type)
For example MASK=(271,20,C) means, Do NOT compare the data from position 271 + 20
Characters (C stands for characters).

And where Format equals :-

FORMAT - xy specifies DATA formatting characteristics in
how differences are displayed.
Two numerics x and y

where x equals

X Equals
0 0-dump format
1 alphanumeric line
2 DITTO format (vertical hex)

 & where y equals

Y Equals
1 full display of SYSUT1

followed by full SYSUT2
2 full display of SYSUT1

followed by differing lines
of SYSUT2

3 differing lines of SYSUT1
followed by differing lines
of SYSUT2

4 full display of SYSUT1
interleaved with full display
of SYSUT2

5 full display of SYSUT1
interleaved with differing
lines of SYSUT2

6 differing lines of SYSUT1
interleaved with differing
lines of SYSUT2

Note :See that I have used Format = 13 in the above example.
BACK
__

IEFBR14

 Every time during Testing we encounter errors due to which we have to make
modifications and rerun the job. It has been a regular practice that we always tend to do
TSO DEL 'File name' and never include a simple IEFBR14 step.
Now all you have to do is just Copy and Paste the code into your JCL and proceed ahead
without any warnings like "FILE IS ALREADY CALALOGED"

//***//
* IEFBR14
//***//
DD1 EXEC PGM=IEFBR14
//DELDD DD DSN=<< input file name >>,
// DISP=(MOD,DELETE,DELETE),UNIT=SYSDA,
// SPACE=(TRK,(1,1))
//***

IEFBR14 is also used to delete Temporary Work files
//***
//* IEFBR14 - DELETE WORK FILES
//***
//PS160 EXEC PGM=IEFBR14
//DD1 DD DSN=TCEX.WORK.A186P010.VALPTEMP,
// DISP=(OLD,DELETE)
//DD2 DD DSN=TCEX.WORK.A186P020.SRT,
// DISP=(OLD,DELETE)
//DD3 DD DSN=TCEX.WORK.A186P040.VALPTEMP,
// DISP=(OLD,DELETE)
**

IEFBR14 is also used to delete Files that are on TAPE

//**
//* IEFBR14 - *DELETE GDG BASED FILES *
//**
//PS500 EXEC PGM=IEFBR14

//DD1 DD DSN=TCEX.Q213P110.F03A.G0003V00,
// DISP=(OLD,DELETE)
//DD2 DD DSN=TCEX.Q213P110.F03A.G0004V00,
// DISP=(OLD,DELETE)
//DD3 DD DSN=TCEX.Q213P110.F03A.G0005V00,
// DISP=(OLD,DELETE)
//DD4 DD DSN=TCEX.Q213P110.F03A.G0006V00,
// DISP=(OLD,DELETE)

BACK
__

IEBCOPY

IEBCOPY is used to copy all or part of a Partitioned Data Set (PDS) . Selected members
of a PDS can be copied to another or the same PDS and/or renamed. A sequential
backup copy of a PDS can be made. IEBCOPY is used to "compress" a PDS when all of
its unused internal space has been exhausted. The compress operation reorganizes a
PDS so that all previously unused space inside the PDS is reclaimed.

Sample IEBCOPY JCL:

//JS10 EXEC PGM=IEBCOPY,REGION=1024K,
// PARM='SIZE=nnnnnnnnK' Optional PARM
//SYSPRINT DD SYSOUT=* IEBCOPY Messages
//ddname1 DD DSN=...,DISP=... Input File
//ddname2 DD DSN=...,DISP=... Output File
//SYSUT3 DD UNIT=SYSDA,SPACE=(TRK,(30,30),RLSE) Work file 1
//SYSUT4 DD UNIT=SYSDA,SPACE=(TRK,(30,30),RLSE) Work file 2
//SYSIN DD * Control Statements
 control statements...
/*

Valid control statements are
1) COPY
2) SELECT
3) EXCLUDE

COPY:- COPY:
 This statement indicates the beginning of a copy operation and
 Identifies the DD statements to be used during the copy. The
 format of the COPY control statement is:

 Format:

 {label} COPY OUTDD=ddname, (OUTPUT FILENAME)

 INDD=(ddname1,ddname2,(ddname3,R),...)
 (INPUT FILENAME)

 {,LIST=NO}
 -

The LIST=NO keyword is optional and tells IEBCOPY that you don't want a list of the
members in the PDS.

 COPY can be abbreviated as 'C', OUTDD as 'O', and INDD as 'I'.

Note : When copying from a sequential file or a PDS to another PDS, specify the 'R'
parameter after the input DD name if you want ALL identically named members replaced
on the output file.

Examples.

Identically named members are only replaced on a copy operation
if you request the REPLACE option on the COPY statement, or on
the SELECT statement, described later.
COPY Statement EXAMPLES follow:

Example 1 - Copy all with replace.

 {label} COPY OUTDD=O,INDD=((I,R))
 -

 Example 2 - Copy without replace.

 {label} C O=TAPE,I=DASD
 -

 Example 3 - Compress-in-place!

 {label} COPY OUTDD=SYSUT1,I=SYSUT1
 -

SELECT:
 The SELECT statement is used to name members to be included in a copy operation.
The SELECT statement must be preceded by a COPY or COPYMOD statement, or the
INDD= portion of a COPY statement. A SELECT statement may not appear in the same
COPY operation as an EXCLUDE statement, neither can SELECT be used in a compress
operation. A SELECT member is only replaced in the output data set if the REPLACE
option ('R') is set on the SELECT statement or on the INDD portion of the COPY
statement. Possible formats of the SELECT control statement are:

 Format 1 - Copy selected members.

 {label} SELECT MEMBER=name

- -
Format 2 - Copy a list of members.

{label} SELECT MEMBER=(name1,name2,name3...)
- -

Format 3 - Copy a list of members and rename them.

{label} SELECT
MEMBER=((name1,newname1),(name2,newname2),...)
- -

Format 4 - Copy a list of members and replace them if they
 are already in the output data set.

{label} SELECT MEMBER=((name1,,R),(name2,,R),...)
- -

EXCLUDE:
 The EXCLUDE statement is used to name members to be excluded
 from A copy operation. The EXCLUDE statement must be preceded
 by a COPY or COPYMOD statement, or the INDD= portion of a COPY
 statement. An EXCLUDE statement may not appear in the same COPY
 operation as a SELECT statement, neither can EXCLUDE be used in
 a compress operation. The format of the SELECT control statement
 is:

 Format -

 {label} EXCLUDE MEMBER=(name1,name2,name3,...)

IEBCOPY Usage Examples:

JCL to compress a PDS:

//JS10 EXEC PGM=IEBCOPY,REGION=1M
//SYSPRINT DD SYSOUT=*
//I1 DD DSN=my.pds, same PDS for I1 & O1
// DISP=OLD
//*
//O1 DD DSN=my.pds,
// DISP=OLD
//SYSIN DD *
COMP1 C O=O1,I=((I1,R))

OR

//COMPRESS EXEC PGM=IEBCOPY,REGION=0K
//SYSPRINT DD SYSOUT=*
//PDSIN DD DSN=PUFAP.PARMLIB.CYCLE,DISP=SHR
//PDSOUT DD DSN=PUFAP.PARMLIB.CYCLE,DISP=OLD
//SYSIN DD DSN=PAEPC.Y2K.SYSIN(APUF00D1),DISP=SHR
 COPY INDD=PDSIN,OUTDD=PDSOUT
__

JCL to unload a PDS to a tape:

//STEP1 EXEC PGM=IEBCOPY,REGION=1024K
//SYSPRINT DD SYSOUT=*
//I1 DD DSN=my.pds, PDS to unload
// DISP=OLD
//*
//O1 DD DSN=my.pds.tape.copy, tape to unload PDS
// DISP=(,CATLG),
// UNIT=TAPE,
// VOL=SER=
//SYSIN DD *
COPY1 C O=O1,I=((I1,R))
__
JCL to load a PDS to DASD from a sequential unloaded copy:

 //PDSLOAD EXEC PGM=IEBCOPY,REGION=1M
 //SYSPRINT DD SYSOUT=*
 //I1 DD DSN=my.pds.seq.copy,DISP=OLD
 //* previously unloaded copy
 //*
 //O1 DD DSN=my.pds,
 //* PDS being created on DASD
 // DISP=(,CATLG),
 // UNIT=SYSDA,
 // SPACE=(TRK,(30,30,10),RLSE)
 //SYSIN DD *
 COPY1 C O=O1,I=((I1,R))
__
JCL to copy 4 members from one PDS to another:

//PDSCOPY EXEC PGM=IEBCOPY,REGION=1024K
//SYSPRINT DD SYSOUT=*
//I1 DD DSN=my.pds.input, copy from here
// DISP=SHR
//*
//O1 DD DSN=my.pds.output, to here
// DISP=SHR
//SYSIN DD *
COPY1 C O=O1,I=((I1,R))
SELC1 S M=MEMBER1,MEMBER2
SELC2 S M=((MEMBER3,NEWMEM3),MEMBER4) rename MEMBER3 to NEWMEM3

BACK
__

IEBGENER

This utility is to copy, concatenate and to empty sequential datasets:-

Example for Copy:

//*---
//step01 EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DSN=&LEVL1.CCL.NN1.CCLC120(+1),
// DISP=SHR
//SYSUT2 DD DSN=&LEVL1.CCL.NN1.CCLC120.FTP,
// DISP=MOD
//SYSIN DD DUMMY
//*---

Example for Concatenation:

//*---
//step01 EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DSN=&LEVL1.CCL.NN1.CCLC120(+1),
// DISP=SHR
// DD DSN=&LEVL1.CCL.NN1.CCLC121(+1),
// DISP=SHR
//SYSUT2 DD DSN=&LEVL1.CCL.NN1.CCLC120.FTP,
// DISP=(NEW,CATLG,DELETE),UNIT=SYSDA,
// SPACE=(CYL,(10,5),RLSE)
//*---

Example to Empty Existing Data.
//*---
//step01 EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DUMMY,DCB=(LRECL=80,RECFM=FB,BLKSIZE=800)
//SYSUT2 DD DSN=&LEVL1.CCL.NN1.CCLC120.FTP, //
DISP=SHR
//SYSIN DD DUMMY
//*---

BACK

__

IEHPROGM

IEHPROGM is used to maintain data sets and system control data.
The IEHPROGM utility can be used to:

1) Either scratch a data set or PDS/PDSE members
2) Either rename a data set or PDS/PDSE members
3) Change the OS CVOL for a non-VSAM data set
 through cataloging or uncataloging entries, building
 or deleting indexes or aliases, or creating and
 manipulating GDG indexes
4) Two OS CVOLs can be connected or released
5) Data set passwords maintenance

Please refer QW for getting Detail Information, Syntax
about IEHPROGM

BACK

__

FILE-AID

//*UIDFAID JOB (UFLI-UFLPROD,S062,AAESPX00),SRINI,
// USER=*UID,PASSWORD=*PSW, MSGCLASS=X,
// CLASS=B,TIME=4,
// NOTIFY=*UID
//*
//*==//* THIS IS A
SHELL FOR FILEAID //*
//*==//STEP01
EXEC PGM=FILEAID <==FAID STEP
//*--//* FOR VB
//* IF ACCESSING DASD USE EXACT POSITION PLUS 4
//* IF ACCESSING TAPE USE EXACT POSITION PLUS 4
//*--//SYSPRINT DD
SYSOUT=* <==SYSPRINT
//SYSUDUMP DD SYSOUT=* <==SYSUDUMP
//SYSLIST DD SYSOUT=* <==SYSLIST
//SYSTOTAL DD SYSOUT=* <==SYSTOTAL
//DD01 DD DSN=XXXXXXXXXXX <==INPUT FILE
//*
//DD01O DD DSN=XXXXXXXXXXX, <==OUTPUT FILE
// DISP=(,CATLG,DELETE),
// UNIT=SYSDA,SPACE=(TRK,(30,10),RLSE),
// DCB=(LRECL=XXXXX,RECFM=XB,BLKSIZE=XXXXX)
//SYSIN DD * <==PARMS

 $$DD01 COPY IF=(1,EQ,C'XXXXXX')
/*
//
//*==
FUNCTIONS
COPY
DROP
DUMP
LIST
PRINT
SPACE
TALLY
UPDATE
USER
//*==MODIFIERS
ALL - PROCESSES ENTIRE FILE - REGARDLESS OF SELECTION CRITERIA
BACK- PROCESSES FILE BACKWARDS
MEM - PROCESSES PDS
//*== PARM LIST
EXAMPLES

CLICK HERE TO VIEW FILE-AID EXAMPLES

BACK
__

USEFUL TIPS

1) Different ways for coding DCB parameter:-
(a) DCB=*.ddname e.g. :- (DCB=*.DD1)

While performing operations like SORT, REPRO, FILE-AID, (wherein
records are to be copied from an input file to an output file.)
The DCB parameter for the output file for SORT can be coded as
For eg:-

DCB=*.SORTIN (where SORTIN is the DD name for the input file for SORT)

(b) DCB=*.stepname.ddname
Requests that the DCB parameter be copied from the DD statement
"ddname" found in the same step "stepname"
DCB=*.STEP2.DD1

(c) DCB=*.procexec.stepname.ddname

http://FILEAID-HELP.dat/

Requests that the DCB parameter be copied from DD statement "ddname"
found in the previous step "stepname" found within a procedure
"procexec"
(name of EXEC statement invoking the procedure.)

DCB=*.PR1.STEP2.DD1

2) Always use RLSE parameter, while specifying the SPACE
Parameter. This parameter releases the unwanted space .
For eg:
SPACE=(CYL,(10,10),RLSE)

3) To know the properties of a GDG version residing on
TAPE, like

1) Creation Date:-the day on which the particular GDG
version was created.

2) Birth Date:- the day on which the base cluster was
created.

3) LRECL :- Record Length.
4) BLKSIZE :- Block Size.
5) RECFM :- Record Format.
6) CJOB:- Name of the job which created this version.
7) CDDNAME:- Name of the DD statement where this file was

created
8) USERID:- The UserID that submitted the job

NOTE :- CA1 can only be used for GDG versions which are on
TAPE.

 To get the information regarding Sequential Datasets
(FLATFILE's), USE 3.4 and Type 'S' corresponding to the
file for which you want to know the properties.
To get inormation regarding VSAM file use File-Aid.

PASSWORD FOR CA1 FOR SYSA - USERINQ AND TYPE 1 AT
COMMAND OPTION
PASSWORD FOR CA1 FOR SYS7 - LOOK AND TYPE 1 AT
COMMAND OPTION

4) To Block Purge Jobs in Q:ST :

Use // at the beginning of the block and put
 //P at the end of the block.

The jobs within the block will be purged.

5) To get information about the JOBS which are in EXECUTION

Go to Q;ST, type DA at Command Line.

The Display Active Users (DA) panel allows authorized
users to display information about jobs, users,
started tasks, and initiators that are active
on the system.
It also shows system-wide data,such as CPU usage, paging
rate, and start I/O rate.

6) Display user information :- Command is 'WHO'
Purpose:, Displays the following information about the
User: User ID, TSO logon procedure, terminal
identification, and index number and name of the group
in ISFPARMS. Also shows the levels of MVS, JES, ISPF,
RMF and SDSF; the JES name, the SDSF server name and
whether the server is in use.

7) OWNER : Limit jobs displayed by owning user ID.

Format: OWNER (ownerid|?)

Examples: OWNER CPI377 (with no other filtering in
effect)

 Displays only jobs for that owner.

 OWNER * (with no other filtering in effect)
 Displays all jobs for all owner IDs.

 OWNER with no parameters displays all jobs.

If you know the JOB name then you can use the
following command

 PRE (JobName) ; owner (OwnerID)
 Wildcards are also supported. i.e.

For e.g. PRE TCEX* ; owner CPI377
 This command will display all the jobs
starting with TCEX for the owner CPI377.

8) To Delete the job from Q;ST. we can use the 'P' (Purge)
or 'C' (Cancel) command.

The Purge command will delete the job completely from
Q;st
The Cancel command will retain the job information ie.
The JESMSGLOG,SYSMSG,JCL,SYSOUT etc are retained.

9) Very often we copy jobs from Production Region to Test
Region. If you want to know how much time the job takes
to complete or execute, you can find out in JESMSGLG of
the particular job. It gives you the StartTime and
EndTime for the job.

10) In JCL, we encounter statement like DSN=&&name;
A simple name preceded by two ampersands identifies a
temporary dataset. Temporary datasets are not retained
beyond JOB termination. If the DSN name is omitted from
a DD statement(except DD *, SYSOUT and DUMMY) also
indicates a temporary dataset.

11) A VSAM cluster cannot be deleted by coding
DISP= (OLD,DELETE) as it defaults to DISP=(OLD,KEEP)

12) If you don’t want the source listing in the SYSPRINT
(i.e. in the output) when an EASYTRIEVE program is
executed, then just include the below mentioned lines in
the Environment Section of the program. i.e. at the
beginning of the program.
PARM LIST (NOPARM) +
DEBUG (NOXREF)
LIST OFF

13) Use

HRECALL :- To recall files which are migrated.

HDELETE :-. The HDELETE command is used to delete one or
more migrated data sets from migration volumes. DFSMShsm
deletes the data set without recalling it to a primary
volume. When DFSMShsm deletes the data set, it maintains any backup versions of the data
set.

HRECOVER :-

Recover a data set from a backup version or restore a data set from a dump copy

 Note: Your data set may be restored from a dump copy rather than recovered from a
backup version. This will happen if the data set was on a volume that was dumped by
DFSMShsm more recently than it was backed up by DFSMShsm, and if the class(es) to which
the volume was dumped allow the restore of a data set from a dump copy, and if you do not
specify GENERATION or VERSION.

 Specifying GENERATION or VERSION will cause the recover to be done from a backup
version, not a dump copy. Specifying GENERATION(0) will insure that the recovery is done
from the most recent available backup version.

Note: You cannot recover the backup versions of a cataloged data set that is currently
migrated, as specified in the computing system catalog or the MCDS, until DFSMShsm
recalls or deletes the migrated data set.

Syntax

 HRECOVER (dsname/password...)
 EXTENDRC
 FROMVOLUME(volid)

 GENERATION(gennum) or DATE(date) or
 VERSION(vernum)

 NEWNAME(newdsname/password)
 REPLACE
 TOVOLUME(volid) UNIT(unittype)
 WAIT or NOWAIT

 ALIAS - HRECOV
 REQUIRED - dsname, FROMVOLUME if data set was
 uncataloged at the time of backup.
 DEFAULTS - NOWAIT

 Example 1
 HRECOVER CL.TEXT/WRITE FROMVOLUME(VOL003) +
 DATE(1984/01/05) NEWNAME(VER1TEXT.TEXT) +
 TOVOLUME(VOL001) UNIT(3330-1) WAIT

 Example 2
 HRECOVER PARTSTST.CNTL TOVOLUME(VOL007) UNIT(3350)
 REPLACE

 Example 3
 HRECOVER OUTTESTS.TESTLIST GENERATION(2) WAIT EXTENDRC

14) Always take into consideration 4 additional bytes while dealing
with Variable Block Records.

BACK

__

Computational Items

 A computational item is defined with one of the USAGE clause phrases
 described below. A computational item is a value used in arithmetic
 operations. It must be numeric.

 If the USAGE of a group item is described with any of these items, the
 elementary items within the group have this usage.

 The maximum length of a computational item is 18 decimal digits.

 The PICTURE of a computational item can contain only:

 9 One or more numeric character positions
 S One operational sign
 V One implied decimal point
 P One or more decimal scaling positions

 COMPUTATIONAL-1 and COMPUTATIONAL-2 items (internal floating-point) cannot have
PICTURE strings.

 BINARY
 Specified for binary data items. Such items have a decimal equivalent
 consisting of the decimal digits 0 through 9, plus a sign. Negative
 numbers are represented as the two's complement of the positive number
 with the same absolute value.

 The amount of storage occupied by a binary item depends on the number
 of decimal digits defined in its PICTURE clause:
Digits in PICTURE Clause Storage Occupied
1 through 4 2 bytes (halfword)
5 through 9 4 bytes (fullword)
10 through 18 8 bytes (doubleword)

 The operational sign for binary data is contained in the left most
 bit of the binary data.

 PACKED-DECIMAL
 Specified for internal decimal items. Such an item appears in storage
 in packed decimal format. There are 2 digits for each character
 position, except for the trailing character position, which is
 occupied by the low-order digit and the sign. Such an item can
 contain any of the digits 0 through 9, plus a sign, representing a
 value not exceeding 18 decimal digits.

 The sign representation uses the same bit configuration as the 4-bit
 sign representation in zoned decimal fields.

 COMPUTATIONAL or COMP (Binary)
 This is the equivalent of BINARY. The COMPUTATIONAL phrase is
 synonymous with BINARY.

 COMPUTATIONAL-1 or COMP-1 (Floating-Point)
 Specified for internal floating-point items (single precision).
 COMP-1 items are 4 bytes long.

 COMPUTATIONAL-2 or COMP-2 (Long Floating-Point)
 Specified for internal floating-point items (double precision).
 COMP-2 items are 8 bytes long.

 COMPUTATIONAL-3 or COMP-3 (Internal Decimal)
 This is the equivalent of PACKED-DECIMAL.

 COMPUTATIONAL-4 or COMP-4 (Binary)
 This is the equivalent of BINARY.

Conversion

(A) COMP-3 (Packed Decimal) formula - (n / 2) +1

for e.g. PIC S9(09) Comp-3

will take (9 / 2) + 1 = 5 bytes of storage

 PIC S9(08) Comp-3

will take (8 / 2) + 1 = 5 bytes of storage

(B) COMP (Binary) formula - n / 2

for e.g. PIC S9(09) Comp

will take 9 / 2 = 4 bytes of storage

 PIC S9(08) Comp

will take 8 / 2 = 4 bytes of storage

BACK

__

IMPORTANT TERMS IN COBOL

EJECT :-

The EJECT statement is a compiler-directing statement which causes the compiler to
perform a page eject operation on the source listing. The next source statement line (i.e.,
the line following the EJECT statement) is then printed at the top of the next page.

 Format

 EJECT

EJECT may appear in either Area A or Area B but must be the only
statement on the line. It may be followed by an optional period.

The EJECT statement may be used in order to force the placement of the
beginning of the next section of a source program (i.e., the next
record description, the next processing routine or paragraph, etc.) at

the top of a new page within the source listing. This makes the source
program more "readable".
The EJECT statement itself is never printed. It has no effect on the
object code generated by the compiler.

 SKIP:-

The SKIP statement is a compiler-directing statement, provided as an
IBM extension, which causes blank lines to be inserted in the source
program listing.

 Format

 SKIP1/SKIP2/SKIP3

SKIP1 causes a single blank line to be inserted in the source program listing.

SKIP2 causes two blank lines to be inserted in the source program listing.

SKIP3 causes three blank lines to be inserted in the source program listing.

The SKIP statement may appear anywhere in Area A or Area B but must be
the only statement on the line. It may be terminated by a separator
period.

The SKIP statement itself is never printed. It has no effect on the object code generated by the
compiler.

BACK

__

IMPORTANT TERMS IN VSAM.

VSAM stands for VIRTUAL STORAGE ACCESS METHOD. It is a IBM high
performance access method which allows you to access files of different
organization such as sequential, indexed, relative record and linear
datasets.

CLUSTERS

ESDS:
These are sequential datasets that can be read in the sequence in which
they were created.

A VSAM file whose records are loaded without respect to their contents,
and whose relative byte addresses (RBAs) cannot change.
Records are retrieved and stored by addressed access, and new records
are added at the end of the file.

KSDS:
These datasets are stored in sequence of some key field in the record.
Locating the record is a two stage process.
1) first search for the key in the index
2) use the information in the index to locate the record.

BACK
__

JCL

JOBCAT

The JOBCAT DD statement is used to identify an ICF or VSAM catalog to search first
when attempting to locate cataloged data sets during the job's execution.
The JOBCAT must be placed after the JOB statement and before the first EXEC
statement in the job.
More than one catalog can be concatenated after the first one on a JOBCAT.

If a STEPCAT DD is specified in a job that also has a JOBCAT, the
STEPCAT takes precedence.

If you use a JOBLIB DD statement, in goes in front of the JOBCAT.

Do not use the JOBCAT DD statement in a job that references an
SMS-managed data set. SMS only accesses SMS-managed data sets that are
cataloged in a system catalog.

Syntax:

 //JOBCAT DD DISP=SHR, DSN=catalog-name

Example:

 //EXAMPLE JOB WILLIAMS,MSGLEVEL=1
 //JOBLIB DD DSNAME=USER.LIB,DISP=SHR
 //JOBCAT DD DSNAME=LYLE,DISP=SHR
 // EXEC PGM=SCAN

In this example, the JOBCAT DD statement specifies a private
catalog.
The JOBCAT DD statement follows the JOBLIB DD statement.

STEPCAT

The STEPCAT DD statement is used to identify an ICF or VSAM catalog to search first
when attempting to locate cataloged data sets while the step is executing. The STEPCAT
can be placed anywhere after the EXEC statement in the job step's JCL. More than one
catalog can be concatenated after the first one on a STEPCAT.
If a STEPCAT DD is specified in a job that also has a JOBCAT, the STEPCAT takes
precedence.
If you also use a STEPLIB DD statement in the job step, in goes in front of the
STEPCAT.
Syntax:

 //STEPCAT DD DISP=SHR, DSN=catalog-name

JCLLIB

JCLLIB is used to identify a private library or a system library from which INCLUDE
groups and JCL procedures are to be retrieved. The order in which the library names
appear on the JCLLIB statement is the order in which they are searched for any JCL
procedures (PROCs) and INCLUDE groups referenced by this job. Only one JCLLIB
statement is permitted in a job, and it must appear after the JOB statement and before the
first EXEC statement in the job. The JCLLIB statement must not appear within an
INCLUDE group. You can continue the JCLLIB statement by ending it with a comma
followed by at least one blank, then starting the next libary name somewhere between
columns 4 and 16 on the next statement.
The private libraries that you specify on the JCLLIB statement must comply with the
following rules:

o The private library must be cataloged. However, the library
 cannot be cataloged in a catalog specified via a JOBCAT or
 STEPCAT DD statement.

o The private library must be accessible to the job. The library
 must be permanently resident and online.

o The JCLLIB data set cannot be a password-protected data set.

o The job must have read access to any system or private libraries
 specified on JCLLIB.

o The private library must have the same data set attributes as a
 system library, which are:

 - Logical record length of 80 bytes (LRECL=80)
 - Fixed length records (RECFM=F or RECFM=FB). If the JCLLIB
 data set is a PDSE, the record format can only be RECFM=FB.

 - When multiple libraries are specified on the JCLLIB
 statement, these libraries will be concatenated.

EXAMPLES:

My home Ids Example 1: The JCLLIB statement below will cause JES to search
 TEST.PROCLIB1, TEST.PROCLIB2, and then SYS2.PROCLIB
 for any JCL procedures or INCLUDE groups referenced
 by this job that contains this statement.

//PROCS JCLLIB ORDER=(TEST.PROCLIB1,TEST.PROBLIB2,
// SYS2.PROCLIB)

Example 2: The JCLLIB statement below causes a search of
 SYS1.PROCLIB, SYS3.USER.PROCLIB, then OPS420.JCLLIB
 for the ASMHCL procedure and the PRODINC3 INCLUDE
 group named by the job the JCLLIB statement appears in.

//PRODJOB1 JOB (S-1233),CLASS=A,TYPRUN=HOLD,MSGLEVEL=(1,1),
// MSGCLASS=T
// JCLLIB ORDER=(SYS1.PROCLIB,
// SYS3.USER.PROCLIB,
// OPS420.JCLLIB)
//JS10 EXEC ASMHCL,COND.L=(0,NE)
//JS20 EXEC PGM=IEBCOPY
//INC$ INCLUDE MEMBER=PRODINC3
//
FREE=CLOSE

When you specify FREE=CLOSE:

- If the job step abnormally terminates before the data set is closed,
 the system uses the abnormal termination disposition from the DISP
 parameter to process the data set. If a recovery routine, such as
 an ESTAE routine, gets control and closes the data set, however, it

 uses the normal termination disposition.

- If the job step abnormally terminates after the data set is closed,
 then the system has already processed the data set using the normal
 termination disposition.

Do not specify FREE=CLOSE on a DD statement with a ddname of JOBCAT,
JOBLIB, STEPCAT, or STEPLIB; CLOSE is ignored.

BACK

__

IMPORTANT TERMS IN EAZYTRIEVE.

Different section in Eazytrieve program

 +--
 Environment | PARM ...
 Section |--
 |
 Library | FILE ...
 Section | DEFINE ...
 | ...
 |--
 Activity | JOB
 Section | (statements)
 | (job procedures)
 | REPORT
 | (report procedures)
 | SORT
 | (sort procedures)
 | ...

 +---

TALLY

TALLY contains the number of detail records that comprise a control break.
You can use TALLY on a LINE statement or you can use it in calculations
within report procedures.
TALLY is commonly used to determine averages
for a control level.

TALLY is a ten-byte packed decimal field with zero decimal places. This

definition is used for calculations contained within report procedures.

TALLYSIZE

The TALLYSIZE parameter of the REPORT statement defines the number of
digits which are printed for TALLY.
A TALLY accumulator is created for each control break level.

PAGESIZE:
 Lines per page (default is 58).

LINESIZE
 Length of each line (default is 132 print positions). A linesize of 80 restricts report
output to 80 characters per printed
line.

SKIP:
 Number of blank lines to be inserted between line groups (default
is 0).

SPACE:
 Number of blanks inserted (horizontally) between field columns and
between fields and literals in title and detail lines (default is 3).

TITLESKIP:
 Number of blank lines inserted after last title line before
first heading or detail line (default is 3).

SPREAD:
 Requests that the columns of data be spread evenly over the
entire line, overrides the SPACE parameter (default is NOSPREAD).

NOADJUST:
 Requests that the title lines and report be left-justified on
the page. The default is centering the report on the page. SPREAD and
NOADJUST are mutually exclusive.

NODATE:
 Inhibits printing the system date in positions one through eight
of the first title line.

NOPAGE:
 Inhibits printing a page number.

NOHEADING:
 Inhibits printing column headings.

Spacing control parameters are all optional. When used, they can be coded
on the REPORT Statement in any order. The general format for these
parameters is:

 REPORT report-name +

 / [PAGESIZE nn] +
 | [LINESIZE nn] +
 | [SKIP nn] +
 | [SPACE nn] +
 | [TITLESKIP nn] +
 |
 Spacing | + +
 Control < | SPREAD |
 Parameters | | NOSPREAD | +
 | + +
 |
 | [NOADJUST] +
 |
 | [NODATE] +
 | [NOPAGE] +
 \ [NOHEADING] +

 SEQUENCE Statement

The SEQUENCE statement causes your report to be sorted on a specified key
in ascending or descending order.

Ascending order is the default for the SEQUENCE statement. For descending
order, you just put a D after the field name separated by a space.

 CONTROL

A CONTROL statement specifies that a report should automatically
accumulate and print totals. A control break occurs whenever the value of
any control field changes or end-of-report is reached. Control fields can
be any non-quantitative field from any input file or any W working storage
field. At each control break, totals are printed for any quantitative
fields specified in the report.

a) You can specify an unlimited number of control fields.

b) Fields are coded on the CONTROL statement in a major to minor order.

Syntax: The format of the CONTROL statement is:

 + + + +
 CONTROL | field-name | | NEWPAGE | [NOPRINT] ...

 | FINAL | | RENUM |
 + + + +

CONTROL Statement Syntax

1. Final totals are automatically provided. You can alter the default by
 coding FINAL NOPRINT.

2. NOPRINT, following any field-name, supresses printing totals for that
 field (which are still accumulated) at the corresponding control
 break.

3. NEWPAGE, following any field or FINAL, causes a new page after
 printing the control break totals (or, in the case of FINAL, before
 printing the final totals). Page numbers continue.

4. RENUM, following any field or FINAL, causes a page break and restarts
 page numbers at 1 after printing the control break totals (or, in the
 case of FINAL, before printing the final totals).

Control Examples

 CONTROL CO RENUM DIV DEPT NOPRINT

 CONTROL FINAL NOPRINT CO NEWPAGE DIV

BACK

__

AN EASY APPROACH FOR PERFORMING CONTROL-BREAKS.

We can use the REDEFINES clause for performing any level Control-Breaks very
easily.
This Example demonstrates a 2-level-Control-Break.The first Break is on first 20
characters (WK-COMPANY) and the second break is on the next 60 characters.
Just go through the code given below, in case there is any doubt or confusion feel free to
come and ask me.
Also you can refer a program which performs a 3-level Control Break, first on Company,
second on Classlab and third on Territory. The program also prints the Total (similar to
Tally in Eazytrieve) for each Break that is performed.
The program is residing in " CPI213.PATNI.FINAL.SOURCE(CEXNY03B) ".

01 WK-CUR-KEY.
 05 WK-COMPANY PIC X(20) VALUE LOW-VALUES.

 05 WK-PLCY-NUMB PIC X(11) VALUE LOW-VALUES.
 05 WK-TRANS-TYPE PIC X(3) VALUE LOW-VALUES.
 05 WK-OPER-NAME PIC X(30) VALUE LOW-VALUES.
 05 WK-EFF-DATE PIC X(8) VALUE LOW-VALUES.
 05 WK-INF-DATE PIC X(8) VALUE LOW-VALUES.
01 WK-CUR-KEY-R1 REDEFINES WK-CUR-KEY.
 05 WK-CUR-KEY-1 PIC X(20).
 05 FILLER PIC X(60).
01 WK-CUR-KEY-R2 REDEFINES WK-CUR-KEY.
 05 FILLER PIC X(20).
 05 WK-CUR-KEY-2 PIC X(60).

Declare the old keys in the format described below for holding the read values.

01 WK-OLD-KEY PIC X(80) VALUE LOW-VALUES.
01 WK-OLD-KEY-R1 REDEFINES WK-OLD-KEY.
 05 WK-OLD-KEY-1 PIC X(20).
 05 FILLER PIC X(60).
01 WK-OLD-KEY-R2 REDEFINES WK-OLD-KEY.
 05 FILLER PIC X(20).
 05 WK-OLD-KEY-2 PIC X(60).

B-PROCESS SECTION.
B1-PARA.
 MOVE WK-CUR-KEY TO WK-OLD-KEY.
 MOVE ZERO TO WS-TOT-PLCY .

 PERFORM BA-PROCESS UNTIL WK-CUR-KEY-1 NOT EQUAL
 WK-OLD-KEY-1.
B9-PARA.
 EXIT.
BA-PROCESS SECTION.
BA1-PARA.
 MOVE WK-CUR-KEY TO WK-OLD-KEY.
 MOVE ZERO TO WS-VEH-SEQ.
 PERFORM BAA-PROCESS-REC UNTIL WK-CUR-KEY-2 NOT EQUAL
 WK-OLD-KEY-2.
 PERFORM YA-PRINT-LINE.
 BA9-PARA.
 EXIT.
 BAA-PROCESS-REC SECTION.
 BAA1-PARA.
 MOVE WK-CUR-KEY TO WK-OLD-KEY.
 MOVE AZDMV-COMPANY-CODE TO AZDMV-COMP-NUMB-OLD
 PERFORM YA-PRINT-LINE.
 BAA8-PARA.
 PERFORM XA-READ-AZDMV-FILE .
 BAA9-PARA.
 EXIT.

 XA-READ-AZDMV-FILE SECTION.
 XA1-READ.
 READ AZDMV-FILE INTO AZDMV-RECORD
 AT END MOVE HIGH-VALUES TO WK-CUR-KEY
 GO TO XA9-PARA.
 ADD 1 TO WS-REC-READ.
 XA9-PARA.
 EXIT.
 YA-PRINT-LINE SECTION.
 YA1-PARA.
 IF WS-HDR = 'Y'
 MOVE 'N' TO WS-HDR
 PERFORM YB-HEADER.
 WRITE FD-AZRPT-REC.
 ADD 1 TO WS-REC-WRITE.
 YA9-PARA.
 EXIT.

BACK

__

Date

When System DATE is Accepted, it comes in
 YYMMDD format.
Just consider the example listed below which captures System Date and
converts it to the format
MM/DD/YY

WORKING-STORAGE SECTION.
01 HDR-WS-DATE.
 05 HDR-WS-MM PIC X(02) VALUE ZEROS.
 05 FILLER PIC X(01) VALUE '/'.
 05 HDR-WS-DD PIC X(02) VALUE ZEROS.
 05 FILLER PIC X(01) VALUE '/'.
 05 HDR-WS-YY PIC X(02) VALUE SPACES.
 01 WS-DATE PIC X(06) VALUE SPACES.
 01 WK-DATE REDEFINES WS-DATE.
 05 WK-YEAR PIC X(02).
 05 WK-MONTH PIC X(02).
 05 WK-DAY PIC X(02).
 PROCEDURE DIVISION.
 0000-MAIN-PARA.
 ACCEPT WS-DATE FROM DATE.

MOVE WK-YEAR TO HDR-WS-YY.

 MOVE WK-MONTH TO HDR-WS-MM.
 MOVE WK-DAY TO HDR-WS-DD.
 DISPLAY 'DATE: ' HDR-WS-DATE.
 STOP RUN.

INPUT :- 010423
OUTPUT :- DATE: 04/23/01

The above example can be coded using a different logic as follows

WORKING-STORAGE SECTION.
01 HDR-WS-DATE.
 05 HDR-WS-MM PIC 9(02) VALUE ZEROS.
 05 FILLER PIC X(01) VALUE '/'.
 05 HDR-WS-DD PIC 9(02) VALUE ZEROS.
 05 FILLER PIC X(01) VALUE '/'.
 05 HDR-WS-YY PIC X(02) VALUE SPACES.
01 WS-DATE PIC X(06) VALUE SPACES.
01 WS-MM-TEMP PIC X(04) VALUE SPACES.
PROCEDURE DIVISION.
0000-MAIN-PARA.
 ACCEPT WS-DATE FROM DATE.
 MOVE WS-DATE TO HDR-WS-YY.
 MOVE WS-DATE TO WS-MM-TEMP.
 MOVE WS-MM-TEMP TO HDR-WS-MM.
 MOVE WS-DATE TO HDR-WS-DD.
 DISPLAY 'DATE: ' HDR-WS-DATE.
 STOP RUN.

INPUT :- 010423
OUTPUT :- DATE: 04/23/01

In this example if you notice that when a variable of PIC X(06) is moved to a variable of PIC X(02), the
first two characters are transferred . If you move PIC X(06) to PIC 9(02), then the last two characters get
transferred.

System Information Transfer:

System information contained in the specified conceptual data items DATE,
DAY, DAY-OF-WEEK, or TIME, can be transferred into the identifier using ACCEPT

That is,

ACCEPT { IDENTIFIER } FROM DATE.
 DAY.
 DAY-OF-WEEK
 TIME.

DATE
 Has the implicit PICTURE 9(6).

 The sequence of data elements (from left to right) is:

 2 digits for the year
 2 digits for the month
 2 digits for the day

 Thus, 27 April 1995 is expressed as: 950427
--
DAY
 Has the implicit PICTURE 9(5).

 The sequence of data elements (from left to right) is:

 2 digits for the year
 3 digits for the day

 Thus, 27 April 1995 is expressed as: 95117
--
DAY-OF-WEEK
 Has the implicit PICTURE 9(1).

 The single data element represents the day of the week according to
 the following values:

 1 represents Monday
 2 represents Tuesday
 3 represents Wednesday
 4 represents Thursday
 5 represents Friday
 6 represents Saturday
 7 represents Sunday

 Thus, Wednesday is expressed as: 3
--

TIME
 Has the implicit PICTURE 9(8).

 The sequence of data elements (from left to right) is:

 2 digits for hour of day
 2 digits for minute of hour
 2 digits for second of minute
 2 digits for hundredths of second

 Thus, 2:41 PM is expressed as: 14410000

BACK

__

Windowing
Windowing techinque is generally used for making the date Y2K Complaint.
For Windowing technique 50 is taken as the base year.
The structure of the date is as follows:-

01 WS-DATE.
 05 WS-CC PIC X(02).
 05 WS-YY PIC X(02).
 05 WS-MM PIC X(02).
 05 WS-DD PIC X(02).

It is done in the following manner:

IF WS-TERM-YY > '50'
 MOVE '19' TO WS-CC
ELSE
 MOVE '20' TO WS-CC
END-IF.
Where WS-TERM-YY is the year for which windowing has to be done.

For Date-Of-Birth cases '10' is taken as the base year.

BACK

__

JOB-CLASS-PARAMETER

 Job classes represent queues of work which exhibit similar processing
 characteristics. Once the JOB queues are specified, MVS initiators
 can then be assigned to take work out of these well defined queues
 based on the processing objectives of the center. Each initiator
 represents a unit of processing, and the total number of active
 initiators represents the maximum level of multi-programming to be
 achieved.

ADHOC (Risk, Marketing, Collections, etc.)
CLASS DEFINITION

R This class is for batch jobs requiring 4 or more tape drives. No time parameter is
required. DO NOT SUBMIT JOBS IN THIS CLASS UNLESS YOU REQUIRE 4 OR
more TAPE DRIVES.

S This class is for batch jobs requiring tape drives. No time parameter is required. This
class is for jobs that require 3 or LESS tape drives. DO NOT SUBMIT JOBS IN THIS
CLASS UNLESS YOU REQUIRE 3 OR LESS TAPE DRIVES.

T Only jobs requiring less than 30 seconds of CPU time and NO tape drives are permitted
in this class. TIME parameter is required on the job card. TIME=(,30).

U This class is for jobs using up to 3 tape drives, and 60 CPU seconds. Time parameter is
required. TIME=1.

W This is the overnight job class for delayed processing.
DEVELOPMENT (RFSIS Development Staff, Systems Software)

A This is the quick turnaround class. Only jobs requiring 5 Seconds or less of CPU time.
No tape drives are permitted. TIME=(,5) parameter on the JOB card is required.

Q Only jobs requiring less than 30 seconds of CPU time and no tape drives are permitted in
this class. TIME parameter is required on the job card. TIME=(,30).

1 This class is for jobs using up to 3 tape drives, and 60 CPU seconds. Time parameter is
required. TIME=1.

X This class is for jobs using more than 1 minute of CPU time and/or more than 3 tape
drives. Jobs in this class will be run at the operator's discretion depending upon system
load.

W This is the overnight job class for development processing
Z This class is for jobs using more than 1 minute of CPU time and no tape drives. Any

jobs executing in this class allocating tape drives will be cancelled by operations.
PRODUCTION (Production control, Computer Operations, System Software only)

B Reserved for production jobs. (Jobs submitted by CA7.)
D Reserved for production jobs. (Jobs submitted by CA7.)
C Reserved for special CICS/IDMS batch jobs.
7 Reserved for CA7.
8 Reserved for CICS and IDMS journals.
9 Reserved for APC.
P Reserved

BACK

Abbreviations

VSAM Virtual Storage Access Method.
ESDS Entry Sequenced Dataset.
KSDS Key Sequenced Dataset.
RRDS Relative Record Dataset.
LDS Linear Dataset.
ICF Integrated Catalog Facility.

RACF Resource Access Control Facility.
DASD Direct Access Storage Device.
CIDF Control Interval Descriptor Field
RDF Record Descriptor Field
RBA Relative Byte Address

HURBA High-Used-RBA
HARBA High-Alloc-RBA.

CISZ Control Interval Size.
GRS Global Resource Serialization.
GDG Generation Data Group.

VTOC Volume Table of Contents

JCL JOB Control Language
CISC Customer Information Control System.
MVS Multiple Virtual Storage
JES JOB Entry Subsystem

SPOOL Simultaneous Peripheral Operation On-line.

SYSTEMS
EXPR Experienced Reporting System
MSS Marketing and Sales System

CAMS Cash Application Management System
NAII National Association of Independent Insurers

STATS Statistical Reporting System
DMV Department of Motor Vehicle
ODS Operational Data Source.
SRS Sales Reporting System

BACK

__

	MERGE
	IDCAMS Return Codes

	 Example 2

