
;-_=_Scrolldown to the Underground_=_-;

COBOL in 21 days

http://kickme.to/tiger/

http://kickme.to/tiger/

Teach Yourself COBOL in 21 days,
Second Edition

Next chapter

Table of Contents:

Introduction●

Week 1 at a Glance

Day 1 - Your First COBOL Program●

Day 2 - Using Variables and Constants●

Day 3 - A First Look at Structured COBOL●

Day 4 - Decision Making●

Day 5 - Using PERFORM, GO TO, and IF to Control Programs●

Day 6 - Using Data and COBOL Operators●

Day 7 - Basics of Design●

Week 1 in Review

Week 2 at a Glance

Day 8 - Structured Data●

Day 9 - File I/O●

Day 10 - Printing●

Day 11 - Indexed File I/O●

Day 12 - More on Indexed Files●

Day 13 - Deleting Records and Other Indexed File Operations●

Day 14 - A Review of Indexed Files●

Week 2 in Review

Week 3 at a Glance

Day 15 - Data Integrity●

Day 16 - Using Look Up and Arrays●

Day 17 - Alternate Keys●

Day 18 - Calling Other Programs●

Day 19 - Complex Data Entry Problems●

Day 20 - More Complex Data Entry●

Day 21 - Selecting, Sorting, and Reporting●

Week 3 in Review

Bonus Day 1 - Control Breaks●

Bonus Day 2 - Miscellaneous COBOL Syntax●

Bonus Day 3 - Full-Screen I/O●

Bonus Day 4 - Using a Symbolic Debugger●

Bonus Day 5 - Intrinsic Functions and the Year 2000●

Bonus Day 6 - Dates and the Year 2000●

Appendix A - Answers●

Appendix B - ASCII●

Appendix C - Editing, Compiling, and Linking●

Appendix D - Handling Compiler Errors●

Appendix E - Summary of COBOL Syntax●

Appendix F - Transaction Processing●

Appendix G - Glossary●

Next chapter

© Copyright, Macmillan Computer Publishing. All rights reserved.

Next chapter Contents

Teach Yourself COBOL in 21 days,
Second Edition

By Mo Budlong

Dedication
I want to dedicate this book to the army of programmers and computer professionals who are already
sweating or will shortly be sweating with the rest of us over the year 2000 problem.

Acknowledgments
In this second edition of Teach Yourself COBOL in 21 Days, I have had a chance to correct errors from
the first edition, expand on areas that needed elaboration, and write about many of the new and exciting
things that are happening in the COBOL world. But most important to me, I have been able to act on the
feedback that I have had from readers of the first edition. All of it was good, and all of it was helpful.
There are way too many of you to thank. There were lots of little suggestions and a couple of major ones,
and they all have been incorporated. I want to thank you all.

This is my third project for Sams and Macmillan, and I want to thank Chris Denny for noticing that the
first edition was climbing the sales charts and for realizing that it was time for a new edition.

I want to thank Heather Mlodinow, an accomplished COBOL programmer who reviewed the technical
end of the first edition, and Lee Ann Phillips who reviewed the second edition. Lee Ann was a tough
editor, but she was usually right, and I am particularly indebted to her for additional material on dates
and calendars. Greg Adams, president of International Digital Scientific, Inc., also reviewed the dates
chapters and provided helpful suggestions. All the Sams and Macmillan editors and crew have been
terrific. Ryan Rader, Rich Alvey, Drew Cupp, Heather Butler, Mary Ann Abramson, Fran Hatton, and
Gayle Johnson all gave excellent advice and encouragement.

Mostly, I want to thank my wife Helen, who was not only my first line editor, but the first guinea pig to
take the course. In fact, all three of the trial students--Helen, Victoria St. James, and Colleen
Lerian--were patient and capable and made it very easy to adjust the book to get it right for a newcomer
to COBOL. The book is much better because of their efforts.

In order to do this job properly, I needed to get my hands on a great deal of software and hardware, and I
want to thank Micro Focus Inc. for providing Micro Focus Personal COBOL and Micro Focus
Professional COBOL, as well as a lot of encouragement.

Acucobol Inc. graciously made its ACUCOBOL-85 package available.

A huge team is involved in taking a manuscript from the author's pen (or word processor) to final print. A
lot of help, advice, and changes are contributed by this team. But ultimately the book is the author's
work, and therefore I want to stress that I have made every effort to provide useful and accurate
information, but any errors you find are mine alone.

About the Author
Mo Budlong has been a programmer and hardware engineer for 25 years. He has written several
computer books, including COBOL Dates and the Year 2000, Moving from COBOL to C, COBOL
Cookbooks Volumes 1, 2, and 3, and the C100 Manual. He currently writes regular columns for UNIX
magazines in the U.S. and England, including the monthly "UNIX 101" column for SunWorld Online, a
Web-based magazine. As a software consultant, he programs in multiple languages, including C/C++,
Visual Basic, SQL, and numerous Assembly languages, and he has several software packages currently
on the market.

Tell Us What You Think!
As a reader, you are the most important critic and commentator of our books. We value your opinion and
want to know what we're doing right, what we could do better, what areas you'd like to see us publish in,
and any other words of wisdom you're willing to pass our way. You can help us make strong books that
meet your needs and give you the computer guidance you require.

Do you have access to the World Wide Web? Then check out our site at http://www.mcp.com.

NOTE: If you have a technical question about this book, call the technical support line at
317-581-3833 or send e-mail to support@mcp.com.

As the team leader of the group that created this book, I welcome your comments. You can fax, e-mail,
or write me directly to let me know what you did or didn't like about this book--as well as what we can
do to make our books stronger. Here's the information:

Fax: 317-581-4669

E-mail: programming_mgr@sams.mcp.com

Mail: Christopher Denny
Comments Department
Sams Publishing
201 W. 103rd Street

http://www.mcp.com/
mailto:support@mcp.com
mailto:programming_mgr@sams.mcp.com

Indianapolis, IN 46290

Introduction
COBOL is a language that was developed specifically for business programming. It actually can be used
for a wide range of programs and programming problems, but it is most popular for handling traditional
business activities. COBOL excels in accounting systems and related activities such as inventory control,
retail sales tracking, contact management, commissions, payroll--the list is almost endless.

It is the most widespread commercial programming language in use today. It is English-like and easy to
read. This makes it very popular with nonprogrammers. Financial officers frequently can read a section
of a COBOL program and understand what it is doing with figures, without having to rely on
programmers to interpret the program for them.

There is no doubt that COBOL is the most successful programming language ever. With an estimated 80
million lines of COBOL code in use just in the United States, it remains a key language of choice for
business applications.

Four years ago, the popular computer media were chanting a funeral dirge for COBOL. Today, the tune
has changed remarkably. Nearly every major software and information systems magazine has carried
recent articles about the year 2000 problem and the need for COBOL programmers to handle the
problem.

Major software companies are backing this resurgence with research and development dollars. A wide
range of new COBOL-based products has been announced by Micro Focus Inc., Acucobol Inc.,
Computer Associates International Inc., Fujitsu Inc., and many more.

Programming work is available in COBOL for entry-level, intermediate, and advanced programmers.
This cannot be said of other languages, which usually require high intermediate-to-expert experience
before you can market that skill.

An additional factor has spurred the demand for COBOL programmers--the approach of the year 2000.
Over the years, thousands of programs have been written using only a 4 digit date. When the computer
has to calculate into and beyond the year 2000, all kinds of problems arise. Millions of lines of code have
to be corrected before the year 2000, and there are just not enough COBOL programmers available. The
situation is not limited to COBOL programs, but because COBOL has been the language of preference
for business applications for so long, there are vastly more COBOL programs in existence. The
magnitude of the year 2000 crisis has caused experienced software experts to predict dire consequences.
It is estimated that the cost of fixing the problem will run into the billions of dollars. The demand for
COBOL programmers increases almost weekly, as more and more companies realize the scope of the
year 2000 problem and begin to allocate resources for its solution.

Although planning, supervision, and management of a year 2000 project requires highly skilled,
experienced technicians, there is lots of work that entry-level programmers can do. In fact, a
ComputerWorld article on the need for training COBOL programmers quotes Sheldon Glasser, a veteran
consultant, as recommending that entry-level personnel be used for maintenance work to free up more
highly skilled programmers for the more difficult year 2000 work. Teach Yourself COBOL in 21 Days
has been revised to include more information on dates and the year 2000 problem.

Other magazines such as Information Technology Training Association and Unisphere have stressed the
importance of getting novices trained and productive fast. With fewer than 1,000 days until the year
2000, there's no time to waste on academic or theoretical exercises. I wanted to create a way for students
to be able to quickly and easily learn the language, and the feedback in calls and letters as well as media
response has been encouraging in this regard. This book is being used in college and other courses across
the country as well as in businesses and as a home study course.

Although the enormous demand for programmers to fix year 2000 problems probably will not continue
far into the new millennium, undoubtedly the demand for COBOL programmers will continue. Many
companies are putting off other maintenance and development that is not crucial in favor of completing
their year 2000 projects. Given the amount of money that is being invested in updating and correcting
existing COBOL code and the date problems in it, no one will want to throw away that investment in the
near future--which means COBOL is here to stay for another round.

Additionally, recent developments in COBOL include a graphical user interface that works for COBOL
programs running on PCs and UNIX-based systems. This has created a trend in downsizing--taking
existing COBOL programs from mainframes and minicomputers and moving them to PCs as COBOL
applications.

COBOL is also a good general-purpose language and can be used for creating simple or very complex
programs. It has been standardized since 1968, and learning it on any computer enables you to use it on
other computers.

COBOL has invaded UNIX, an area that was dominated by the C language. A friend of mine recently
called who was desperately looking for COBOL programmers. He is a systems administrator for a large
network of UNIX computers at a major oil company. He has been a C purist for years, but the company
has decided to buy a business package in COBOL, and he needed help immediately. COBOL obviously
has a long and healthy life ahead of it.

About This Book

Teach Yourself COBOL in 21 Days went through many versions before it was right for the job. Several
adventurous volunteers agreed to learn COBOL from scratch by doing each lesson as I completed it, and
I installed revisions based on their feedback. For the second edition, each day's text incorporated
suggestions from the first edition users and then underwent multiple revisions to ensure that it could be
easily understood and that the correct gradient approach was used. Concepts are introduced slowly and
repeated many times. The first edition included four Bonus Day lessons. This new edition has been
extended to include two additional Bonus Day lessons, with emphasis on the year 2000 problem.

In many cases, it is difficult to illustrate a programming point by using a full program. The point being
highlighted gets lost against the background of all the other things going on in the program.

The answer to this is to write short programs just to show how something works. The problem with this
approach is that some examples are silly or trivial programs. One of my more determined volunteers
frequently showed up at my desk looking perplexed and asking, "I understand what the program is doing,
but why would anyone ever want a program like this?"

The answer always is, "No one would; the example is only to illustrate how that part of the language

works." I have revised each chapter and added specific comments indicating which examples aren't "real"
programs. If I've missed any of these, and you see a program that seems to do something silly, irrelevant,
or useless, be tolerant. Review the program as an example of how the language works and not as a
program that you might use for some purpose.

Lots of code is used. COBOL experience comes from writing, reading, and understanding lots of code.
Sometimes one point is illustrated by repeating a whole program with only that one point changed.

Programming Style

It is impossible to write a book about a programming language without spilling over into programming
style. I have tried to balance teaching you good programming habits and teaching you the language.

It also is one of the realities of COBOL that a great deal of COBOL programming consists of
maintaining existing programs written by other people. Some of these existing programs are just plain
awful. You have to know a little about the "dark side" of programming to be able to deal with these.
Techniques are described that you should never use, but you do need to know what is going on in a
program when you see it.

Which is the best programming style is debated almost as hotly as which is the best programming
language. You probably will run into some criticism of the programming styles used in this book. Don't
get tangled up by it; you always can improve your style.

How to Use This Book

This book starts at the beginning, taking people who know nothing about COBOL and stepping them
through 21 lessons and on to programming proficiency.

Within this book, you'll find hands-on tutorials, timely tips, and easy-to-understand technical information
to help you get your footing with COBOL. You begin by writing simple programs, and progress to
complex, useful programs that you can apply to your day-to-day situations. This book also addresses the
year 2000 problem and offers useful solutions to apply.

Who Should Read This Book

Whether you are a complete novice to programming or a programmer ready to take the plunge into
COBOL, this book is for you. The book walks you day by day through the process of learning COBOL.
In addition, if you're feeling really ambitious, you can plunge into the six Bonus Day chapters at the end
of the book, which give you even more information about programming with COBOL. You can go
chapter by chapter through the lessons, or just choose those lessons that most interest you. Either way,
this book is the perfect companion for anyone ready to learn programming in COBOL.

Conventions

This book uses several different typefaces to help you differentiate between COBOL code and regular
text. COBOL code appears in the book in a special typeface. Placeholders within the code--words to
represent the type of infomation you need to enter in the code--appear in a special italic typeface.

New Term: In addition, when new terms are introduced in the text, a New Term icon appears to the left
of the text to indicate that term is being defined.

TYPE: The type icon denotes a new program for you to enter into your editor.

OUTPUT: The output icon highlights the results of compiling and executing the program.

ANALYSIS: Analysis of the programs reveals insights and information about several key lines of the
listing.

Throughout this book, the emphasis has been on providing useful information in a way that is fast, easy,
and fun.

Who Should Use This Book?

Teach Yourself COBOL in 21 Days, Second Edition is aimed at beginners. It also is suitable for anyone
who needs a refresher in COBOL, and for entry-level programmers who want to take their next step in
COBOL. This book also can be used by experienced programmers who do not know COBOL.

What I Expect from You

You are expected to have some familiarity with the computer that you will use with this book. I would
not expect people who have no experience with computers to be interested in learning COBOL as their
first step with computers.

This is not an academic book. I expect that a person wanting to learn COBOL programming will actually
do the exercises, write the code, compile it, and run it. You will not learn to program by just reading
about it. You have to learn to use the tools by practicing their use. Therefore, you must either own a
COBOL compiler or have access to one in order to get the most out of your study.

You should have good English and computer dictionaries available in order to look up words you do not
fully understand. It is impossible to understand what you are studying if you do not know the meaning of
the words used.

Two things are important if you are new or relatively new to programming. Don't skip anything. The
course is organized to be a gradual accumulation of skills. Skipping a section will cause problems in later
sections. Also, be sure to do all the exercises. Frequently, the explanations and examples in a chapter are
based on an assumption that you completed the exercises at the end of a preceding chapter.

The other important point is to use good study habits. Study with a schedule and with a definite intention
to get through some portion of the course. You must also read and understand questions and exercises
before you begin doing them.

Working with Your Computer

You must know how to do four things in order to work with this book. These are covered in the first
chapters of the book, and you must master these skills. You will be using them again and again as you
progress through the book. If you skimp on any of them, you will hit a wall somewhere in this course.

You must learn how to do the following:

Edit a text file. An editor is somewhat similar to a word processor but does not have all the
formatting features. The editor is used to write the programs in the book.

●

Compile. A compiler converts the file that you have just edited into something that will run on
your computer as a program.

●

Link. This might not be necessary on your system, but you must find out whether it is needed, and
you must learn how to do it. Linking takes the executable program created by the compiler and
links it with any programs that your computer needs in order to be able to operate.

●

Run. You must know how to execute a program when it is ready to run.●

These four steps are covered in some detail in the manual for your compiler, and in Appendix C,
"Editing, Compiling, and Linking." If you aren't familiar with these by the time you finish Day 1, "Your
First COBOL Program," you will be in trouble for the rest of the course.

Target Compiler and Computers

Teach Yourself COBOL in 21 Days, Second Edition was written in such a way that it can be used with
most computers and most versions of COBOL. There is a great deal of difference in the way different
computers behave and the way versions of COBOL interact with the user.

The programs are written to work with Micro Focus COBOL, Micro Focus Personal COBOL, LPI
COBOL, ACUCOBOL on UNIX or MS-DOS computers, and VAX COBOL on VAX VMS computers.
The programs also should work with IBM COBOL for the AIX computer, RM COBOL, Realia COBOL,
and Microsoft COBOL. There probably are many others.

All the volunteers worked with Micro Focus Personal COBOL, and the book tends to favor that compiler
because it is a full compiler at a reasonable price. This makes it a good tool for self-teaching.

You must have a COBOL compiler in your computer system in order to be able to master the basic
COBOL programming skills. If you do not have a compiler, an order form for one is included at the back
of the book.

Supporting Material

Teach Yourself COBOL in 21 Days, Second Edition includes several appendixes designed to supplement
points touched on in the text:

Appendix A, "Answers," contains the answers to all the quiz questions and exercises posed at the
end of each chapter.

●

Appendix B, "ASCII," contains the ASCII character chart.●

Appendix C, "Editing, Compiling, and Linking," describes how to edit, compile, link, and run●

using various computers and versions of COBOL.

Appendix D, "Handling Compiler Errors," covers some of the trickier compiler errors produced by
COBOL compilers and how to track them down.

●

Appendix E, "Summary of COBOL Syntax," is a brief listing of the syntax of the COBOL
language used in this book.

●

Appendix F, "Transaction Processing," describes methods of updating groups of files
simultaneously to prevent data corruption.

●

Appendix G, "Glossary," includes definitions of unusual terms used in the book.●

The Companion Disk

A low-cost companion disk is available from the author, Mo Budlong, for $15.00 through King
Computer Services, Inc., PO Box 728, Tujunga, CA 91043-0728. (See the King Computer Services order
form at the back of the book.) This disk offer is made by the author and not by Sams Publishing. The
disk will save you a lot of typing. It contains all the programs in the book, including sample programs for
the exercises. If you choose to order the disk, it will be sent to you quickly so that you can begin work as
soon as possible.

Teach Yourself COBOL in 21 Days, Second Edition will enable you to take the bold step into the world
of COBOL programming. It is an exciting world. Happy programming!

Next chapter Contents

Macmillan Computer Publishing USA

© Copyright, Macmillan Computer Publishing. All rights reserved.

Teach Yourself COBOL in 21 days,
Second Edition

Previous chapter Next chapter Contents

Week 1 At a Glance
As you begin your first week of learning to become a COBOL programmer, you will start to see why
COBOL is one of the most commonly used programming languages, despite being one of the oldest.
Aside from familiarity with an editor and the structure of the language, you'll find that the most
important tool is experience. Experience is gained only by doing things. Learning by doing is regarded
by many as the most effective form of learning. This book is designed to encourage you to perform many
real-world tasks at a pace designed for the beginner.

This book is set up around a series of concepts that build on each other. Each day ends with a workshop
containing a quiz and exercises that focus on specific concepts. Appendix A lists possible answers for the
quiz questions and programs for the exercises. Don't be discouraged if your programs don't look exactly
like those found in Appendix A. More than one answer is always possible. Because learning by doing is
so effective, take advantage of the quizzes and exercises. They let you know whether you're on course or
whether you need to return to a day and review a certain concept.

Where You're Going
The first week covers the fundamentals of the COBOL programming language. Don't underestimate the
power of this material! COBOL is much like English, so you don't need to focus on cryptic symbols and
meanings. Instead, you can focus on the lessons and underlying principles.

On Day 1, "Your First COBOL Program," you'll write your first program and immediately focus on why
COBOL is so easy to learn. Day 2, "Using Variables and Constants," helps you focus on how to use
variables to store and manipulate information in your program. Day 3, "A First Look at Structured
COBOL," focuses on the overall structure of the COBOL program and lays the groundwork for many
important concepts. Day 4, "Decision Making," and Day 5, "Using PERFORM, GO TO, and IF to
Control Programs," focus on the mechanisms used to control which statements are executed, when they
should execute, and how many times they should execute. Day 6, "Using Data and COBOL Operators,"
contributes significantly to your understanding of how to manipulate information stored within variables
and reinforces the information covered on Day 1. Day 7, "Basics of Design," teaches you how to break

down a task, identify processing loops, and work your way through the steps of program design.

Previous chapter Next chapter Contents

Macmillan Computer Publishing USA

© Copyright, Macmillan Computer Publishing. All rights reserved.

Teach Yourself COBOL in 21 days, Second
Edition

Previous chapter Next chapter Contents

- Day 1 -
Your First COBOL Program

Let's start with some basics. You might find that some of this revisits material you know, particularly if you
already are a programmer. COBOL sets somewhat rigid requirements for the layout, contents, and order of a
program. You must be familiar with these in order to program in COBOL.

Today's lesson covers the following topics:

What is a computer?●

What is a program?●

What is a programming language?●

What is COBOL?●

The "Hello World" program.●

The parts of a COBOL program.●

The elements of code layout.●

Commenting a COBOL program.●

What is a shell program?●

Today, you'll write your first program and learn the basic parts of a COBOL program.

What Is a Computer?
A computer is a machine that can add, subtract, multiply, divide, and perform other mathematical and logical
functions on numbers. A computer recognizes some numbers as numbers, and it also can recognize words by
translating the words into numbers. At one time, you could talk to a computer only in numbers, but modern
computers can accept words on-screen, translate them into command numbers, and then execute them.

The heart of a computer is the machine that does the addition, subtraction, multiplication, and division, and also
moves data from one location to another. This is called the central processing unit (CPU), because it processes
the data. In personal computing, the computer itself frequently is named after the CPU. A computer that uses a
CPU called the 80286 is sometimes called a 286. Machines that use the 80386 usually are sold as 386 machines,
and those that use the 80486 CPU are called 486 machines. The arrival of 80586 chips heralded a name change.
These are called Pentiums. Will 80686 chips be called Hexiums?

To be useful, the computer also must have a way to be given the numbers to process (the input) and a method of
presenting results to the user (the output). The input to a computer usually is entered with a keyboard. Other
input devices include bar code readers, optical character readers (OCR), scanners, and mice. The output from a
computer usually is displayed on a monitor (or screen) or printed on paper or can be written out to a file on a
disk.

To perform large calculations, the computer needs some place to store temporary or intermediate results. This
temporary storage for the computer frequently is called main memory, primary memory, or primary storage and
usually is stored inside the main box of the computer. Think of the memory storage area inside the computer as
a giant scratch pad for programs. Early personal computers had as little as 4 kilobytes (4KB) of memory. (A
kilobyte is a bit more than 1,000 bytes; a byte can store one character of data, such as A, X, or @.) The personal
computer boom brought the price of memory down to the point that computers now commonly sell with a
starting memory of 4 or 8 megabytes (8MB) and can be upgraded to 32MB or more. (A megabyte is about a
million bytes.)

To save results so that they can be reused, the computer needs some place to store information on a permanent
or long-term basis. The problem with main memory is that it needs to have power all the time. When a
computer is switched off, the contents of main memory are lost. The computer needs something that will retain
information even when power is switched off. This is the task of secondary storage. Secondary storage is
permanent and continues to function even after power is gone. Secondary storage comes most commonly in the
form of diskettes (or floppies), hard disks, and tapes. Data is recorded on diskettes, hard drives, and tapes in a
manner similar to the way that music is stored on a music tape cassette. A CD-ROM (compact disc-read-only
memory) is another type of secondary storage. It is most commonly used as a permanent storage device and
contains data that cannot be modified; such as the text of encyclopedias and dictionaries, or a complete listing
of businesses in a country. There are more expensive devices available that can write to a CD-ROM that can be
used for the initial storage of the dictionary, encyclopedia, or whatever.

The central processing unit requires that any program to be run and any data to be processed must be in main
memory. Whenever you run a program, it is loaded from the secondary storage device (disk) into main or
primary memory before it is executed. Whenever you work on data, such as editing a file, the file is first loaded
into main memory from the disk drive (secondary storage). The editing is done directly in main memory and
then must be saved back to disk. The central processing unit can neither execute a program directly from disk
nor manipulate data directly on the disk.

Figures 1.1 through 1.4 illustrate the relationship between the CPU, main memory, and disk storage.

Figure 1.1.
When the user starts a word processing program, the CPU loads the program from a hard disk into memory.

In Figure 1.1, the user has typed a command or clicked a button to start a word processing program. The CPU
locates the program on the disk, loads it into main memory, and then begins executing the instructions in the
word processing program.

In Figure 1.2, the word processing program is running and the user types a command or clicks a button to load a
document for editing. The CPU locates the document on the disk and loads it, ready to be edited, into main
memory.

Figure 1.2.
When the user asks for a document to be edited, the CPU loads the document from a hard disk into memory.

In Figure 1.3, the word processing program is running and the user types a letter "A" to be added to the
document. The CPU collects the letter typed at the keyboard and places it in the document in memory.

Figure 1.3.
When the user types the letter "A," the CPU collects the character from the keyboard and inserts it into main
memory.

In Figure 1.4, the user has requested that the document be saved. The CPU collects all the memory containing
the document and writes it to the hard disk.

Figure 1.4.
When the user asks for the document to be saved, it is pulled from memory and written back to the hard disk.

The CPU, input, output, main memory, and secondary storage all work together to form a computer.

What Is a Program?
A computer is an incredibly stupid device. It doesn't do anything unless and until it is told to do so.

When a computer is first switched on, the CPU starts looking through main memory for an instruction. You can
think of it as being in a perpetual state of readiness.

The computer is designed so that a small portion of main memory is permanent; it retains its contents even
when the power is switched off. This permanent memory is placed at the location where the CPU begins
searching for its first instruction after powering up. Consequently, it finds this permanent instruction
immediately. This permanent area of memory contains a sequence of instructions that the computer executes on
power-up. The instructions look something like this:

Test the monitor.●

Test the keyboard.●

Test all of the main memory and display the results on the monitor.●

Test any other devices that need to be tested, including disk drives.●

Load the operating system program from secondary storage (the disk) into main memory. The operating●

file:///D|/Cool Stuff/old/ftp/Sams.Teach.Yourself.Cobol.In.21.Days/Teach Yourself Cobol in 21 Days/ch01/01.htm
file:///D|/Cool Stuff/old/ftp/Sams.Teach.Yourself.Cobol.In.21.Days/Teach Yourself Cobol in 21 Days/ch01/02.htm
file:///D|/Cool Stuff/old/ftp/Sams.Teach.Yourself.Cobol.In.21.Days/Teach Yourself Cobol in 21 Days/ch01/03.htm
file:///D|/Cool Stuff/old/ftp/Sams.Teach.Yourself.Cobol.In.21.Days/Teach Yourself Cobol in 21 Days/ch01/04.htm

system is a master program that controls a computer's basic functions and allows other programs to
access the computer's resources, such as the disk drives, printer, keyboard, and screen. (In practice, this
step is a little more complicated, but the principle is correct.) For an MS-DOS-compatible computer, the
operating system is MS-DOS (Microsoft Disk Operating System).

Jump to the first, previously loaded instruction at the beginning of the MS-DOS operating system.●

From this point on, the CPU is executing instructions within the MS-DOS operating system.

If you could read the first few instructions of the MS-DOS operating system in English, they might look
something like what you see in Table 1.1.

Table 1.1. The first few instructions of the MS-DOS operating system as they might appear in
English.

Instruction Number Instruction Comment

001 Display the prompt Put the > prompt on the screen.

002 Wait for a keypress

003 Was a key pressed?

004 If not, GO TO 002 If no key was pressed, go back and try again.

005 Get the key value

006 Save the key value Store the value in main memory.

007 Display the key value

008 Was the value (ENTER)? Determine whether the Enter key was pressed,
signaling the end of command input.

009 If not, GO TO 002 The user is still typing, so keep getting keypresses.

010 GO TO do the command The user pressed Enter, so jump to the instruction that
will try to execute the command. This part of the
program is not shown.

The set of instructions is written in English to represent the steps of a program. The program is executed so
quickly that you see no visible delay between typing the key and seeing it appear on-screen, even though the
action of saving the key value occurs between the keystroke and the display.

What Is a Programming Language?
The CPU expects instructions to arrive as numeric codes. These numeric codes are not easily read by human
beings. A programming language is a set of English-like instructions that includes a set of rules (syntax) for
putting the instructions together to create commands.

A translator changes the English-like commands into numeric codes that the computer can understand. The
most common type of translator is a compiler. The compiler is a program that reads the English-like commands
in a file and then creates another file containing computer-readable numeric codes or commands.

In the previous example, the CPU cannot understand the English-like instruction WAS A KEY PRESSED?,
but a programming language might accept this as a valid command and translate it into codes that the CPU can

recognize.

The term program is used loosely to refer to the actual application that is executed by the CPU, as well as the
file of English-like commands originally written by the programmer before it was translated into the program
that the CPU executes.

In strict terms, the English-like commands in a file are called source code, and the translated numeric codes
placed in the output file are a runable program called executable code. The computer cannot directly execute
source code as if it were a program. However, even experienced programmers will say, "I wrote a program to
calculate the month-end balance." What they really mean is, "I wrote a source code file containing English-like
commands that, when compiled, will produce an executable program file that, when run, will calculate the
month-end balance." It is definitely easier to say, "I wrote a program."

What Is COBOL?
COBOL is a programming language especially aimed at solving business problems. You will see as you work
through this book that COBOL solves a lot more than just business problems and can be used as a solution to
many data processing problems.

New Term: COBOL is an acronym for Common Business Oriented Language.

NOTE: COBOL was developed by the Conference on Data Systems Languages (CODASYL),
convened in 1959 by the Department of Defense. COBOL compilers became available in 1960, but
they were not standardized. The American National Standards Institute (ANSI) standardized a
version of COBOL in 1968. The language was revised and updated by ANSI in 1974 and again in
1985. These standards sometimes are called COBOL or COBOL-68, COBOL-74, or COBOL-85.
Most compilers are now COBOL-85 standard, but there still are a few COBOL-74 versions out
there. This book is written against the COBOL-85 standard, but you will have no trouble using a
COBOL-74 compiler for any of the examples.

Because the year 2000 problem might be one of the reasons that you are studying this book, it is
worth noting that legacy code could be written in any of the earlier COBOL standards. If you are
taking this course to bring yourself up to speed for an update effort, you will need to learn the
quirks and differences of the particular COBOL version that you will be working on. This book
covers the core of COBOL-85 and will give you about 95% of any version of COBOL that you
might work with. Throughout the book there are tips on differences that you might find in other
versions of COBOL.

The future of COBOL is fairly bright. A new COBOL standard is being drafted even as I write this.
This standard is intended to take COBOL into the future and certainly well beyond the year 2000.
The amount of money that is being invested in correcting date problems in existing COBOL code
is a sure indicator that no one is planning to dispose of COBOL in the near future.

Approximately 90% of all COBOL code runs in a character-based environment, which means that
most COBOL screens are 80 columns wide by 24 or 25 characters high and do not contain
graphics. Although there are versions of COBOL on the market that act in a Windows-like
environment, this book is not intended to be a course in COBOL for Windows. This means that
throughout the book, you will be running or executing your programs on an MS-DOS computer or
in an MS-DOS window that has been opened on a Windows computer. The MS-DOS window is an
80 x 24 character window and represents the kind of display that you might see when coding

COBOL on a mainframe or minicomputer.

The "Hello World" Program
The "Hello world" program has become almost trite. Writing a program that prints "Hello world"
on-screen usually is the first program you learn in any language. Listing 1.1 is a basic COBOL program that
will display "Hello world". The format of a COBOL program is covered in the following sections.

TYPE: Listing 1.1. "Hello world" in COBOL.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. HELLO.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.
000500 PROCEDURE DIVISION.
000600
000700 PROGRAM-BEGIN.
000800 DISPLAY "Hello world".
000900
001000 PROGRAM-DONE.
001100 STOP RUN.

ANALYSIS: A COBOL program always contains four divisions. These four divisions always have the same
names:

IDENTIFICATION DIVISION●

ENVIRONMENT DIVISION●

DATA DIVISION●

PROCEDURE DIVISION●

In Listing 1.1, lines 000100 and 000200 are the IDENTIFICATION DIVISION. This division is used to
identify basic information about the program. In this example, the IDENTIFICATION DIVISION contains
only the PROGRAM-ID, HELLO.

Line 000300 is the ENVIRONMENT DIVISION, which is used to identify the environment in which the
program is running. Remember that COBOL is intended to run on many different types of machines, and this
section is used to handle the differences between various computers. In this case, the program has no
specialized machine requirements, so the ENVIRONMENT DIVISION is empty.

Line 000400 is the DATA DIVISION, which will contain any data that the program operates on. This
program has no data, so the DATA DIVISION is empty.

Lines 000500 through 001100 are the PROCEDURE DIVISION. This is the meat of the program--the part
that does the work intended by the programmer. The PROCEDURE DIVISION contains two paragraphs at line
000700 (PROGRAM-BEGIN) and line 001000 (PROGRAM-DONE). The term paragraph has a special
definition in COBOL that will be covered a bit later in today's lesson. All the actual work in this program is
done by line 000800.

If you have not yet installed your software, review Appendix C, "Editing, Compiling, and Linking," and the
installation instructions in your software documentation; then complete the installation procedure. Make sure

that you end up with a C> prompt under MS-DOS, and create your working directories as described in
Appendix C. Change to your working directory before you begin editing hello.cbl.

It is extremely important that you type (edit), compile, and, if necessary, link this program to produce a running
program. If you can't get this program to run, the remainder of this book will be an exercise in theory with no
practical application. If you are using some other editor and COBOL combination, consult your local
documentation or someone who is experienced with the system. Don't pass over this exercise without getting it
to run. It is the simplest program to edit, compile, link, and run.

Before you start typing, you should note a couple of things. The first six character positions of each line are
used for line numbering. The seventh character position is always blank. The commands at lines 000800 and
001100 begin at position 12. Everything else starts at position 8.

The editor that comes with Micro Focus Personal COBOL actually skips positions 1 through 7 and leaves the
cursor positioned at column 8. If you are using this editor, use the left arrow key to move to column 1 to type
the line numbers and the lines. Columns 1 through 7 are traditionally used for line numbering in COBOL. Most
larger systems will use line numbers. The practice of skipping or not requiring line numbers is common with PC
COBOL compilers and very modern compilers, but at the moment it is the exception rather than the rule. This
book uses line numbers in keeping with the practice of most larger systems, and to provide a convenient way to
refer to lines of code when a program is being analyzed in the text.

It's preferable to use spaces instead of the Tab key while editing, and you should break the habit of using the
Tab key. Many personal computer-based COBOL compilers can handle tab characters, but the language was not
designed originally to allow tabs in the source code file, and their presence can cause trouble on larger
machines.

If you are using Micro Focus Personal COBOL, start your editor by typing the following line and pressing
Enter:

pcobol hello.cbl

The extension .cbl is the default extension for many MS-DOS based COBOL compilers. On the VAX
minicomputer manufactured by Digital Equipment Corporation, the default extension is .COB, and you would
use a command such as:

EDIT HELLO.COB

DO/DON'T:
DO type each line exactly as it appears in Listing 1.1. Review your work carefully.

DON'T make typing errors. Some of the typing errors that can cause serious problems when you
are compiling include misspelling the name of a DIVISION (for example, INDENTIFICATION
DIVISION), adding an unnecessary hyphen (for example, DATA-DIVISION), or omitting any of
the periods. Note that everything ends with a period (.); in fact, line 000200 has two periods in it.

New Term: Checking source code created with an editor for typographical and other errors before compiling it
is referred to as desk-checking.

New Term: COBOL compilers are prone to produce cascading errors. A cascading error is one or more errors
(sometimes hundreds) generated by the compiler when the problem really is one simple error earlier in the
program. Code containing a missing period can produce a stream of apparent errors on some compilers that can
be traced back in the program to that single error. The missing period itself might not even be mentioned as an
error by the compiler, but it causes later problems that do show up.

When you have completed your check, close and save the file. Under Micro Focus Personal COBOL, hold
down the Alt key while pressing F4, and then release both keys and press Enter.

Now you are ready to compile your program. Under Micro Focus Personal COBOL, press F2 until check is
displayed on the status line (the fifth line from the bottom of the screen) and press Enter.

New Term: Under Micro Focus Personal COBOL, the process of compiling is called checking. The Micro
Focus Personal COBOL compiler actually is called the checker.

The program should compile with no errors or warnings. If there are errors or warnings, re-edit your source
code file, hello.cbl, desk-check it (compare it to the example in the book), and locate the error. The
compiler might tell you the line number at which the error occurred, and you can go straight to that line.

COBOL compilers are dependent on correct punctuation, so bad punctuation can sometimes confuse the
compiler. If the compiler says you have an error on a particular line, but you can't seem to find it, look one or
two lines earlier to check whether you left out a period or started a line in an incorrect column. You also might
want to check Appendix D, "Handling Compiler Errors," to help you track down errors.

After the program compiles cleanly, you are ready to run it. Exit from the COBOL development environment, if
you are in one. For Micro Focus Personal COBOL, press Esc. The bottom row of the screen will display the
message "Exit from Personal COBOL." Press the Y key to exit.

To run the program, type cls and press Enter to clear the screen. Then type the following and press Enter:

pcobrun hello

The program runs and displays your "Hello World" text, along with some Micro Focus copyright information,
as shown in the output that follows.

OUTPUT:
Personal COBOL version 2.0 from Micro Focus
PCOBRUN V2.0.02 Copyright (C) 1983-1993 Micro Focus Ltd.
Hello world
C:>

Congratulations, you've completed your first program. If you are not excited about this, try exclaiming "Wow!
My first COBOL program!" a couple of times.

The output display is approximately what you should see on your screen under Microfocus Personal COBOL.
Other versions of COBOL will produce different display arrangements and may or may not include copyright
notices. The key point is that the message Hello world will be displayed on-screen.

If you did not get the expected results, do not despair. Go back to the beginning of this section and review all
the work. Particularly review Appendix C and the installation instructions in your software documentation, and
run the tests to make sure that your editor is installed correctly. Check all the spelling in the program and run it
through the compiler (checker) again until there are no error messages.

The Parts of a COBOL Program
Recall that a COBOL program is made up of four mandatory divisions. They always appear in the program in
the order shown in Listing 1.2.

TYPE: Listing 1.2. COBOL's four divisions.

000100 IDENTIFICATION DIVISION.
000200 ENVIRONMENT DIVISION.
000300 DATA DIVISION.
000400 PROCEDURE DIVISION.

The IDENTIFICATION DIVISION marks the beginning of a COBOL program. The name of the program,
which you assign, will be entered as a statement in the IDENTIFICATION DIVISION (more on this in a
moment).

The ENVIRONMENT DIVISION contains statements or commands to describe the physical environment in
which the program is running. The main use of the ENVIRONMENT DIVISION is to describe the physical
structure of files that will be used in the program. You won't be working with files in these early lessons, so for
now this DIVISION will be little used.

The DATA DIVISION contains statements describing the data used by the program. The DATA DIVISION
and the PROCEDURE DIVISION are the most important divisions in a COBOL program; they do 95 percent
of the work. You will start working in the DATA DIVISION in Day 2, "Using Variables and Constants."

The PROCEDURE DIVISION contains the COBOL statements that the program will execute after the program
starts running. The PROCEDURE DIVISION is the real workhorse of a COBOL program. Without a
PROCEDURE DIVISION, you wouldn't have a program, because all the other divisions are used to create the
environment and data that are used by the PROCEDURE DIVISION to actually do something.

You already have seen hello.cbl (in Listing 1.1). It contains no data, no environment, and only one
significant statement, which is in the PROCEDURE DIVISION. However, without the DISPLAY "Hello"
command, the program would do nothing at all.

Each DIVISION in a COBOL program is broken down into smaller units, like an outline. Briefly, a
DIVISION can contain SECTIONs, a SECTION can contain paragraphs, and paragraphs can contain
sentences. For the moment, you can ignore SECTIONs, which are introduced in Day 2. Think of a COBOL
program as DIVISIONs containing paragraphs containing sentences.

The requirements for the contents of each different DIVISION can vary, but most compilers require that only
two things be present in a COBOL program--other than the four divisions--in order to compile it:

PROGRAM-ID●

STOP RUN●

The PROGRAM-ID is a paragraph that must appear in the IDENTIFICATION DIVISION and is used to give
the program a name.

There must also be one paragraph in the PROCEDURE DIVISION that contains the STOP RUN statement.

Listing 1.3 is an example of the smallest possible COBOL program that will compile and run on any COBOL
compiler. It contains the PROGRAM-ID paragraph and only one paragraph in the PROCEDURE DIVISION.

The paragraph PROGRAM-DONE contains only one sentence, STOP RUN. This sentence causes the program to
stop running when the sentence is executed. Most versions of COBOL require this explicit command as a way
of identifying the point in the program where the program terminates.

TYPE: Listing 1.3. minimum.cbl, the irreducible minimum COBOL program.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. MINIMUM.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.
000500 PROCEDURE DIVISION.
000600
000700 PROGRAM-DONE.
000800 STOP RUN.

OUTPUT:

Nothing!

ANALYSIS: Clearly, minimum.cbl does even less than hello.cbl. In fact, minimum.cbl does nothing
except stop running as soon as it starts. Its only function is to illustrate the minimum syntax that the COBOL
compiler will accept.

Of all the errors that you can make in typing a COBOL program, an incorrect DIVISION name is one of the
hardest errors to locate. In one compiler that I tested, misspelling the name of the IDENTIFICATION
DIVISION as INDENTIFICATION DIVISION caused the compiler to report that the PROCEDURE
DIVISION was missing. This is a difficult error to spot because the real problem was three divisions away, and
everything about the PROCEDURE DIVISION was fine. It is important that the DIVISIONs be typed
correctly.

Listing 1.4 is more useful than minimum.cbl. You will recognize some similarities to hello.cbl, but I
have divided a couple of the lines to illustrate a few more things about COBOL.

TYPE: Listing 1.4. Three levels of COBOL grammar.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. SENTNCES.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.
000500 PROCEDURE DIVISION.
000600
000700 PROGRAM-BEGIN.
000800 DISPLAY "This program contains four DIVISIONS,".
000900 DISPLAY "three PARAGRAPHS".
001000 DISPLAY "and four SENTENCES".
001100 PROGRAM-DONE.
001200 STOP RUN.
OUTPUT:
C>pcobrun comment
Personal COBOL version 2.0 from Micro Focus
PCOBRUN V2.0.02 Copyright (C) 1983-1993 Micro Focus Ltd.
This program contains four DIVISIONS,
three PARAGRAPHS
and four SENTENCES

ANALYSIS: Strictly speaking, the PROGRAM-ID, SENTNCES, is a sentence, but it has such a specialized role
in a COBOL program (identifying the program) that it is not usually considered to be a sentence. The program

is named sentnces.cbl (with the word sentnces deliberately shortened) because some operating systems
(especially MS-DOS) limit filenames to eight characters plus an extension, and many compilers limit program
names to eight characters.

DO/DON'T:
DO match the filename and program name; for example, sentnces.cbl is the file name and
SENTNCES is the PROGRAM-ID.

DON'T add confusion by using a PROGRAM-ID that is different from the filename.

I will stick with the use of eight or fewer characters for the names of programs and files throughout the text.

The sentnces.cbl program contains all four DIVISIONs, three paragraphs (PROGRAM-ID,
PROGRAM-BEGIN, and PROGRAM-DONE), and four sentences (the three DISPLAY statements in
PROGRAM-BEGIN and STOP RUN at line 001200).

The paragraph name, PROGRAM-ID, is a required paragraph name and must be typed exactly as
PROGRAM-ID. The paragraph names PROGRAM-BEGIN and PROGRAM-DONE are names I assigned when I
wrote the program. Any of the paragraphs in the PROCEDURE DIVISION are given names you assign. The
two paragraphs could have been named DISPLAY-THE-INFORMATION and PROGRAM-ENDS-HERE.

All the special words in COBOL (such as PROGRAM-ID, DATA, DIVISION, STOP, and RUN), as well as the
paragraph names and program name (such as SENTNCES, PROGRAM-BEGIN, and PROGRAM-DONE), are
created using the uppercase letters of the alphabet A through Z, the digits 0 through 9, and the hyphen (-). The
designers of COBOL chose to allow a hyphen as a way of improving the readability of COBOL words.
PROGRAM-BEGIN is easier to read than PROGRAMBEGIN.

The designers of COBOL also allowed for blank lines, such as line 000600 in Listing 1.4. Blank lines mean
nothing in COBOL and can be used to spread things out to make them more readable.

You should type, compile (and, if necessary, link), and run Listing 1.4. See Appendix C for details. You might
need to review this appendix a couple of times before you are completely comfortable with each of the steps
involved in editing, compiling, and running.

Listing 1.4 illustrates the line-by-line organization of a COBOL program. There also is a left-to-right
organization that determines what can be placed in certain columns.

A COBOL source code file has five areas, extending from left to right across the page. The first six characters
or columns of a line are called the sequence number area. This area is not processed by the compiler, or if it is
processed, it provides you only with warnings that numbers are out of sequence (if they are).

Character position 7 is called the indicator area. This seventh position is usually blank. If an asterisk is placed
in this column, everything else on that line is ignored by the compiler. This is used as a method to include
comments in your source code file.

The four character positions 8 through 11 are called Area A. DIVISIONs and paragraphs (and SECTIONs)
must start in Area A. It is good coding practice to start DIVISIONs, SECTIONs, and paragraph names at
column 8 rather than some random place in Area A.

Character positions 12 through 72 are called Area B. Sentences must start and end within Area B. It is good
coding practice to start sentences at column 12 rather than some random place in Area B.

COBOL was designed as an 80-column language, but there is no formal definition of character positions 73

through 80. This is called the identification area (which has nothing to do with the IDENTIFICATION
DIVISION).

The identification area is left to the designer of the COBOL compiler to use as needed. COBOL editors on large
computers usually allow you to define an eight-character modification code that is inserted into the
identification area whenever a line is changed or a new line is added. If you add lines to an existing program or
change existing lines, it could be useful to know which lines were changed. Modification codes can be used to
track down where a particular change was made. Modification codes are especially useful in companies where
many programmers can work on many files. It helps keep track of changes, when they occurred, and who made
them.

Some special COBOL editors place a modification code automatically in positions 73 through 80. This method
of marking lines as modified usually depends on a special editor set up for COBOL that inserts these codes
automatically. You probably will never see modification codes using COBOL on a PC.

Listing 1.5 is comment.cbl, which really is sentnces.cbl with a comment included and some lines that
have been tagged with modification codes. I have deliberately left some of the sequence numbers out, or put
them in incorrect order. The compiler will compile this without an error, but it might generate a warning that
lines are out of order or sequence numbers are not consecutive. The compiler doesn't really care what is in the
first six positions, but it might provide some warning information. Because of the width limits in a book, the
example modification codes in Listing 1.5 do not actually start in column 73 as they must in a real COBOL
example.

TYPE: Listing 1.5. The areas of a COBOL program.

Indicator area Area A Area B Identification area

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. COMMENT.
000300 ENVIRONMENT DIVISION.
 DATA DIVISION. MB072197
000500 PROCEDURE DIVISION.
000600
000700* This is a comment. MB072197
000800* This paragraph displays information about the program. MB072197
000900 PROGRAM-BEGIN.
003700 DISPLAY "This program contains four DIVISIONS,". MB072197
003800 DISPLAY "three PARAGRAPHS". MB072197
001000 DISPLAY "and four SENTENCES".
001100 PROGRAM-DONE.
001200 STOP RUN.

Note that the output is the same as sentnces.cbl:

OUTPUT:
C>pcobrun comment
Personal COBOL version 2.0 from Micro Focus
PCOBRUN V2.0.02 Copyright (C) 1983-1993 Micro Focus Ltd.
This program contains four DIVISIONS,
three PARAGRAPHS
and four SENTENCES

C>

ANALYSIS: As a historical note, the very first COBOL programs were written using punch cards. Each card
carried one line of code that had been carefully entered using a keypunch machine (a kind of typewriter that
punches holes in cards). The stack of punched cards was carried to the computer and fed into it using a card
reader. An "out of sequence" warning was used to let you know that you probably had dropped the punch card
deck and hadn't put them back together in the correct sequence. Compiler error messages also referred to line
numbers, and locating an error was difficult without line numbers on the cards. PC COBOL compilers rarely
give warnings about sequence.

Lines 000700 and 000800 contain an asterisk in column 7, the indicator area. Everything beyond the asterisk
is ignored and can be used as a comment, as in the example.

DIVISIONs and paragraphs start in Area A but can extend into Area B.

Sentences begin and end in Area B. In Listing 1.5, sentences appear at lines 003700, 003800, 001000, and
001200.

What Is a Shell Program?
Because COBOL has a certain minimum amount of code that is required for all programs, it is a good practice
to maintain a COBOL program that contains the minimum requirements.

New Term: A COBOL program that contains the minimum requirements usually is called a shell program, a
skeleton program, or a boilerplate program.

If you copy this shell program to a new file before you start editing the new program, you can save yourself
extra typing. Listing 1.6, cobshl01.cbl, is your first version of the COBOL shell program. As you progress
through the days, you'll gradually add more and more pieces to the shell; eventually, you'll have a complete
shell to use in all projects.

TYPE: Listing 1.6. Your first version of a COBOL shell.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. COBSHL01.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.
000500 PROCEDURE DIVISION.
000600 PROGRAM-BEGIN.
000700
000800 PROGRAM-DONE.
000900 STOP RUN.

Type Listing 1.6 and compile it to ensure that everything in it is correct. You will use this shell, and versions of
it, many times before you are through with these lessons.

As you will see in the next few days, PC-based COBOL compilers are much less stringent about following the
rules described in today's lesson. However, COBOL is intended to be a portable language that allows code to be
moved to other computers. Another computer probably will be using another COBOL compiler that might
require compliance to all the strict rules of COBOL. When you start breaking the rules, you limit your code to a

compiler that can handle the loose syntax, and this might make it extremely difficult to move your code to
another machine or compiler.

Summary
Today's lesson introduced you to some computer and programming basics, including the following:

A computer processes numbers and is made up of a central processing unit, input devices, output devices,
main memory, and secondary storage.

●

A computer can't do anything without a program.●

A program is a series of instructions that the central processing unit executes to process data, usually
using some input data and providing some sort of output.

●

A programming language is a method of writing a source code file in an English-like language that a
human being can understand.

●

A compiler translates the source code file into instructions that the central processing unit can understand
and execute.

●

A COBOL program contains four DIVISIONs: the IDENTIFICATION DIVISION, the
ENVIRONMENT DIVISION, the DATA DIVISION, and the PROCEDURE DIVISION.

●

A DIVISION can be broken down into paragraphs. Some divisions have required paragraphs, such as
the PROGRAM-ID paragraph in the IDENTIFICATION DIVISION.

●

The names of the paragraphs in the PROCEDURE DIVISION are assigned by the programmer.●

The work of a COBOL program is done in sentences that contain the commands of a program and appear
within a paragraph.

●

A COBOL program is written in 80-column format. The columns are divided into the following areas:

Columns 1 through 6 are the sequence area and can be used by the programmer for line numbering.
Line numbering is optional.

❍

Column 7 is the indicator area. An asterisk (*) in column 7 causes everything to the right of the
asterisk to be treated as a comment.

❍

Columns 8 through 11 are Area A, and columns 12 through 72 are Area B. DIVISION names,
SECTION names, and paragraph names must begin in Area A, but they can extend into Area B.
Sentences begin and end in Area B.

❍

Columns 73 through 80 are undefined and are not processed by the COBOL compiler, but some❍

●

COBOL editors use these columns to tag lines with modification codes.

Today, you also learned how to type, compile, and run several simple COBOL programs.

Q&A
Q Why is so much of COBOL in uppercase?

A COBOL was developed in the days when computer terminals and keypunch machines used only
uppercase letters. The entire language was defined in terms of this all-uppercase state of affairs. You can
display uppercase and lowercase messages, such as Hello world, because terminals now have
uppercase and lowercase capability. However, the actual elements of COBOL--the DIVISIONs, the
paragraph names such as PROGRAM-BEGIN, and the verbs such as DISPLAY--originally were designed
in uppercase only.

Q What does a blank line in a program do?

A Nothing. The compiler skips blank lines. You can put blank lines anywhere you want in the program to
improve readability.

Q Does COBOL use line numbers?

A Yes, but they are optional. Most compilers ignore them or can be set to ignore them. Some compilers
on larger computers will process the line numbers and provide a warning if the line numbers are out of
sequence, but this is not an error.

Q Can I put anything in a comment?

A Yes. As long as the asterisk appears at column 7, everything after the asterisk is ignored and has no
effect on the compiler. You can write English sentences or gobbledygook, although the usual practice is
to provide some information that describes what the program is doing, or why it is doing it.

You can do this on as many lines as necessary to complete the comment.

Q Will my comments appear in the program when it runs?

A No. Comments appear only in the source code file, and they will not be included in the compiled
program. Comments are intended to document the source code. The computer can read only the compiled
code, and the comments wouldn't mean anything to the computer, so they are not included in the resulting
program.

Q Why do paragraph names have hyphens in them?

A Paragraph names in COBOL are limited to 30 characters and may only contain uppercase letters (A
through Z), digits (0 through 9), and the hyphen (-). The hyphen is used to improve the readability of
paragraphs and the names of data (which is covered in Day 2). Some modern compilers allow paragraph
names, division names, and other elements of COBOL to be typed in lowercase.

Workshop

Quiz

1. What is the output of the following program?

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. BYEBYE.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.
000500 PROCEDURE DIVISION.
000600
000700 PROGRAM-BEGIN.
000800 DISPLAY "Bye bye birdie".
000900 PROGRAM-DONE.
001000 STOP RUN.

2. How many DIVISIONs are in the following program, byebye.cbl?

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. BYEBYE.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.
000500 PROCEDURE DIVISION.
000600
000700 PROGRAM-BEGIN.
000800 DISPLAY "Bye bye birdie".
000900 PROGRAM-DONE.
001000 STOP RUN.

3. How many paragraphs?

4. How many sentences?

5. What is wrong with the following, bad01.cbl?

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. BAD01.
000300 ENVIRONMENT DIVISION.
000400
000500 PROCEDURE DIVISION.
000600
000700 PROGRAM-BEGIN.
000800 DISPLAY "I'm bad!".
000900 PROGRAM-DONE.
001000 STOP RUN.

6. What is wrong with the following, bad02.cbl?

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. BAD02.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.
000500 PROCEDURE DIVISION.

000600
000700 PROGRAM-BEGIN.
000800 DISPLAY "I'm bad!".
000900 PROGRAM-DONE.
001000 STOP RUN.

Hint: Where are sentences supposed to begin?

Note: Some compilers might not give an error on compiling BAD02, but might only provide a warning.

7. What is wrong with the following, bad03.cbl?

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. BAD03.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.
000500 PROCEDURE DIVISION.
000600 This program displays a message.
000700 PROGRAM-BEGIN.
000800 DISPLAY "I'm really bad!".
000900 PROGRAM-DONE.
001000 STOP RUN.

Exercises

1. Modify the hello.cbl program to display I am a COBOL programmer.

Hint: Copy the hello.cbl program to iam.cbl:

copy hello.cbl iam.cbl

Then use your editor or pcobol to change the PROGRAM-ID and DISPLAY statements.

2. Use the computer to compile each of the bad examples (bad01.cbl, bad02.cbl, and
bad03.cbl) to get a feel for the types of error messages that your compiler produces.

COBOL-85 compilers are much more relaxed than earlier standards. The ENVIRONMENT, DATA, and
PROCEDURE DIVISIONs are optional under ANSI 85, although what a program would do without a
PROCEDURE DIVISION is a bit of a mystery. The results of compiling these programs are interesting.

Both Micro Focus Personal COBOL and ACUCOBOL found nothing wrong with bad01.cbl.
Apparently, if a program contains no data, it doesn't need to have a DATA DIVISION.

Micro Focus Personal COBOL handled bad02.cbl without a hiccup.

ACUCOBOL produced a warning that a sentence was starting in Area A.

Both Micro Focus Personal COBOL and ACUCOBOL generated errors on bad03.cbl and would not
compile it.

3. Modify bad01.cbl so that it compiles without errors or warnings.

4. Modify bad02.cbl so that it compiles without errors or warnings.

5. Modify bad03.cbl so that it compiles without errors or warnings.

Previous chapter Next chapter Contents

Macmillan Computer Publishing USA

© Copyright, Macmillan Computer Publishing. All rights reserved.

Teach Yourself COBOL in 21 days, Second
Edition

Previous chapter Next chapter Contents

- Day 2 -
Using Variables and Constants

The DATA DIVISION is a critical subject to understand in COBOL. Today's lesson covers the basics, but you will be
returning to the DATA DIVISION again and again throughout this book.

Today, you learn about the following topics:

What is a constant?●

What is a variable?●

Defining numeric variables in COBOL.●

Naming variables in COBOL.●

More on using DISPLAY.●

Defining and using variables.●

Defining pictures.●

Using the MOVE verb.●

Formatting output.●

Tips on layout and punctuation.●

Continuation characters.●

What Is a Constant?
The data in COBOL programs falls into two broad categories: constants and variables.

New Term: A constant is a value that cannot be modified while the program is running.

You already have used constants in the hello.cbl program and examples in Day 1, "Your First COBOL Program."
In Listing 1.1, the string "Hello world" is a constant.

In hello.cbl, there is no way to modify the display of "Hello world" without editing the program and
recompiling it, as shown in Listing 2.1. This effectively creates a new program.

TYPE: Listing 2.1. Modifying a constant by editing and recompiling.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. HELLO.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.
000500 PROCEDURE DIVISION.
000600
000700 PROGRAM-BEGIN.
000800 DISPLAY "I said, Hello world".
000900
001000 PROGRAM-DONE.
001100 STOP RUN.

If you want to display both messages, you have to use code similar to what you see in Listing 2.2; however, this merely
uses two different constants in one program.

TYPE: Listing 2.2. Adding another constant.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. HELOHELO.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.
000500 PROCEDURE DIVISION.
000600
000700 PROGRAM-BEGIN.
000800 DISPLAY "Hello world".
000900 DISPLAY "I said, Hello world".
001000 PROGRAM-DONE.
001100 STOP RUN.

Numeric constants can be used in a similar way. Listing 2.3 includes examples of numeric constants (55 and 12.607).
Note the difference between character constants, such as "Hello world", and numeric constants, such as 12.607.
Character constants are enclosed in quotation marks. Numeric constants are not.

New Term: Character constants also are called string constants.

TYPE: Listing 2.3. String and numeric constants.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. CONST.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.
000500 PROCEDURE DIVISION.
000600
000700 PROGRAM-BEGIN.
000800 DISPLAY "Hello world".
000900 DISPLAY 55.

001000 DISPLAY 12.607.
001100 PROGRAM-DONE.
001200 STOP RUN.

Character constants can contain spaces, such as the space between the words in "Hello world". Without the double
quotation marks at each end, the compiler would have trouble recognizing all of the character constant; it would not
know where the constant ended. The following is a classic example of this problem:

DISPLAY THIS IS THE DISPLAY.

DISPLAY is a COBOL verb. In this example, the first occurrence of the word DISPLAY is the COBOL verb for
displaying information. The compiler could become confused as to whether the second occurrence of the word
DISPLAY is part of the message to be displayed or is another DISPLAY verb. To keep the compiler from having a
nervous breakdown, the programmer is required to write the following:

DISPLAY "THIS IS THE DISPLAY".

Every popular programming language includes a requirement that character constants be enclosed in some sort of
quotation marks or other signaling characters to indicate the exact beginning and end of the character constant. COBOL
uses double quotation marks at the beginning and end of the characters.

Numeric constants such as the following do not contain white space, and it is much easier for the compiler to recognize
them as numbers:

DISPLAY 12.607.

Most popular languages do not require any special characters to signal a numeric constant.

New Term: White space is a general term to cover any blank characters. A space is white space, as is a tab, though you
won't use tabs in COBOL programs. They are called white space because they print as white spaces on white paper
when sent to a printer.

What Is a Variable?
Computers are capable of dealing with a large amount of data, and the data should be able to change while the
computer is running. So, how do you change data? You use something called a variable.

New Term: A variable is a value that can be changed while the program is running.

When a variable is created in a program, an area of memory is set aside to hold values. In most programming
languages, including COBOL, a variable is given a name. The name can be used in the program to refer to the value.

The value stored in memory can be modified while the program is running by using the variable name. You'll see some
examples of using variables later in today's lesson; but you first must understand how to define a variable.

Defining Numeric Variables in COBOL
The following is an example of a COBOL numeric variable. Variable names use the same characters as paragraph
names: A through Z, 0 through 9, and the hyphen (-). This is described more fully in the section "Naming Variables in
COBOL," later in today's lesson.

001400 01 THE-NUMBER PICTURE IS 9999.

A COBOL variable definition contains at least three parts:

The level number●

The name●

The PICTURE●

In the syntax, the level number is 01. For now, every variable you will be using will have a level number of 01. The
level number 01 must be in Area A, columns 8 through 11. In the previous code fragment, the 01 starts in column 8.

The second part of the variable definition is the name of the variable and, in this case, is THE-NUMBER. This is the
data name used to identify the variable. The data name is assigned by the programmer. The variable will be referred to
by its data name, THE-NUMBER, anywhere in the program that the variable must be set or modified. The name of the
variable must start in Area B, columns 12 through 72. In this example, THE-NUMBER starts in column 12.

The PICTURE defines two things about a variable: the size of the variable (the number of bytes used in memory for the
value) and the type of data that can be stored in the variable. In this example, the picture 9999 indicates that four
numeric characters can be stored in the variable named THE-NUMBER. Similarly, a variable with a PICTURE IS 99
could hold two numeric characters. The PICTURE IS clause and the actual picture 9999 must start somewhere in
Area B, columns 12 through 72.

The PICTURE IS clause in the definition of a variable is the COBOL syntax for introducing the size of a variable and
the type of data that a variable holds.

The 9999 in the picture does not indicate that the variable contains the value 9999. It indicates that the variable can be
used for numeric values in the range 0 through 9,999. The 9999 picture indicates that four numeric digits can be stored
in this variable. The picture 9999 will hold any of the values from 0 through 9,999. The values 17 and 6,489 will both
fit in THE-NUMBER, but the value 65,413 is too large.

Look at Listing 2.4, add01.cbl, for the general format of the program now that it contains variables. Three variables
are created in this program: FIRST-NUMBER, SECOND-NUMBER, and THE-RESULT. Each variable has the level
number 01. The first two have pictures of 99 and will hold values ranging from 0 through 99. The third variable,
THE-RESULT, has a picture of 999 and will hold a value of 0 through 999. Once again, the PICTURE IS clause
does not set the value of the variable; it sets only the largest and smallest values that a variable can hold and the fact
that the variable will hold numeric data.

TYPE: Listing 2.4. Using variables.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. ADD01.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.
000500
000600 WORKING-STORAGE SECTION.
000700
000800 01 FIRST-NUMBER PICTURE IS 99.
000900 01 SECOND-NUMBER PICTURE IS 99.
001000 01 THE-RESULT PICTURE IS 999.
001100
001200 PROCEDURE DIVISION.
001300
001400 PROGRAM-BEGIN.
001500
001600 DISPLAY "Enter the first number.".
001700
001800 ACCEPT FIRST-NUMBER.
001900
002000 DISPLAY "Enter the second number.".
002100
002200 ACCEPT SECOND-NUMBER.

002300
002400 COMPUTE THE-RESULT = FIRST-NUMBER + SECOND-NUMBER.
002500
002600 DISPLAY "The result is:".
002700 DISPLAY THE-RESULT.
002800
002900 PROGRAM-DONE.
003000 STOP RUN.
003100

Load and compile or type in with your editor and compile Listing 2.4, add01.CBL. When you run the program, you
will be asked to enter the first number, as shown in the following output. Note that the final blank line 003100 in the
listing has no effect on the program. You can leave it out if you wish.

OUTPUT:
C>pcobrun add01

Enter the first number.

First, type 97 and then press Enter. You will be asked for a second number, in a screen looking something like this:

C>pcobrun add01

Enter the first number.
97
Enter the second number.

Now type 33 and press Enter. The two numbers are added together and displayed:

C>pcobrun add01

Enter the first number.
97
Enter the second number.
33
The result is:
130

C>

ANALYSIS: Take a look at the DATA DIVISION. Here is your first example of a section, the WORKING-STORAGE
SECTION. A SECTION in COBOL is created by typing a name, similar to a paragraph name, followed by one or more
spaces, followed by the word SECTION and a period. SECTIONs in COBOL can be required or optional, depending
on which DIVISION they are in. WORKING-STORAGE SECTION is a reserved name and a required section in the
DATA DIVISION if your program uses any variables--and most programs do.

DO/DON'T:
DO precede the word SECTION with at least one space (WORKING-STORAGE SECTION).

DON'T precede SECTION with an extra hyphen (WORKING-STORAGE-SECTION).

Each of the variables is defined with a 01, a variable name, and a PICTURE. The PICTURE IS clauses are lined up
on the right. There is no reason for this other than tidiness. As long as the PICTURE clause starts and ends in Area B,
there are no other restrictions on alignment or position.

Now look at Listing 2.4 again, but this time from the perspective of a running program. In the DATA DIVISION,
space is created for two variables with pictures of 99 and one variable with a picture of 999.

In the PROCEDURE DIVISION, a message is displayed for the user at line 001600, asking the user to enter the first
variable. At line 001800, this value is accepted from the keyboard, using the ACCEPT verb. ACCEPT is a verb that
causes the program to wait for input from the keyboard. Digits can be typed until the user presses Enter. When the user
presses Enter, the value of the digits entered is moved to the variable named immediately after the ACCEPT verb.

When the program is running and encounters the sentence

ACCEPT FIRST-NUMBER

the computer stops and waits for the user to type. Whatever value is typed is stored in the two bytes of
FIRST-NUMBER.

At line 002000, the user is asked for another number. This is accepted at line 002200 using the ACCEPT verb and
stored in SECOND-NUMBER.

At line 002400, the COBOL COMPUTE verb is used to add the two values together. In the following statement, the
values that have been stored at FIRST-NUMBER and SECOND-NUMBER are retrieved and added together, using + to
perform the addition:

COMPUTE THE-RESULT = FIRST-NUMBER + SECOND-NUMBER.

The result of this addition is stored at THE-RESULT.

Finally, in lines 002600 and 002700, the result of the addition is displayed.

In this example, two of the variables--FIRST-NUMBER and SECOND-NUMBER--have been modified or "varied" by
the user entering values at the keyboard. The third variable, THE-RESULT, was modified by the program. The
program uses the COMPUTE statement to calculate a new value and store it in THE-RESULT. This is what variables are
all about: the ability to vary their values while the program is running.

Some versions of COBOL (ACUCOBOL, for example) are picky about accepting data from the keyboard. If a field is
defined with a PICTURE IS 99, you must enter two digits in response to an ACCEPT. To enter the number 3, you
must enter 03. To enter 7 into a PICTURE 99999 field, you must enter 00007. ACUCOBOL includes an option to
change this behavior, and I am informed that, as of their version 3.0 compiler, the ACCEPT verb behaves in a more
relaxed manner, allowing numeric entry without the preceding zeroes. Other versions of COBOL, such as Micro Focus
Personal COBOL, use this more relaxed approach to ACCEPT. If you want to enter a 3 into a PICTURE 999, just
enter a 3 and press Enter. The COBOL language will correctly store 003 in the PICTURE 999.

For the time being, enter all the digits to avoid any problems. If a program complains of non-numeric data in
a numeric field, you probably have not entered enough leading zeroes.

Type the program from Listing 2.4 into your computer and compile it. Run it several times, entering different values
each time. You will see that the three variables truly are variable, because their values are determined while the
program is running. You do not have to edit and recompile the program each time that you want to get a new result.

Take one more look at Listing 2.4, add01.cbl, for a quick review. Line numbers appear in columns 1 through 6, the
sequence area. Comments start in the indicator area, and they start with an asterisk in that column. DIVISIONs,
SECTIONs, paragraphs, and the 01 level number of a variable start in columns 8, Area A. Everything else starts and
ends in Area B, usually at column 12.

Naming Variables in COBOL
COBOL variable names are similar to paragraph and section names because they can use any of the uppercase alphabet
characters, the digits 0 through 9, and the hyphen (but not as a starting character). COBOL variable and paragraph
names are limited to 30 characters. Table 2.1 provides some examples of valid and invalid variable names.

Table 2.1. Valid and invalid variable names.

Valid Name Invalid Name Explanation of Invalid Name

TOTAL-DOLLARS TOTAL-$ Uses an invalid $ in the name

SUM-OF-COLUMNS sum-of-columns Uses lowercase letters

7-BY-5 7_BY_5 Uses the invalid _ character in the
name

MINUS-RESULT -RESULT Starts with a hyphen

BOEING-707-SEATS BOEING-707-MAXIMUM- SEATING-CAPACITY Exceeds 30 characters

Some modern compilers have disposed of the uppercase requirement and will accept variable names such as
sum-of-columns and 7-by-5, but it is a good practice to use uppercase because it makes your code more portable
between COBOL compilers.

More on Using DISPLAY
The DISPLAY verb can be used to display more than one value at a time, like so:

DISPLAY "The result is " THE-RESULT.

It is used this way in Listing 2.5, add02.cbl. The only change in this program is that lines 002600 and 002700
have been combined into a single DISPLAY line, and the colon (:) in the message has been replaced with a space.

TYPE: Listing 2.5. Combining values in one DISPLAY statement.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. ADD02.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.
000500
000600 WORKING-STORAGE SECTION.
000700
000800 01 FIRST-NUMBER PICTURE IS 99.
000900 01 SECOND-NUMBER PICTURE IS 99.
001000 01 THE-RESULT PICTURE IS 999.
001100
001200 PROCEDURE DIVISION.
001300
001400 PROGRAM-BEGIN.
001500
001600 DISPLAY "Enter the first number.".
001700
001800 ACCEPT FIRST-NUMBER.
001900

002000 DISPLAY "Enter the second number.".
002100
002200 ACCEPT SECOND-NUMBER.
002300
002400 COMPUTE THE-RESULT = FIRST-NUMBER + SECOND-NUMBER.
002500
002600 DISPLAY "The result is " THE-RESULT.
002700
002800
002900 PROGRAM-DONE.
003000 STOP RUN.
003100

This is the output from a sample session with add02.cbl. The result line is combined into one line of display:

OUTPUT:
C>pcobrun add02

Enter the first number.
16
Enter the second number.
93
The result is 109

C>

Defining and Using Variables
When you define a variable in the WORKING-STORAGE SECTION of the DATA DIVISION, you are providing
information for the compiler about the size of the variable and the type of data that can be stored in it.

A numeric variable is used to store numbers. The picture character used to represent a digit in a numeric variable is a 9,
as in this example:

01 THE-NUMBER PICTURE IS 99.

This description defines a variable named THE-NUMBER that can be used to hold a numeric variable that is two digits
long; in other words, any value in the range of 0 through 99.

New Term: Variables that can hold character data are called alphanumeric variables.

Alphanumeric data contains one or more printable characters. Some examples of alphanumeric values are Hello,
??506^%$A, and 123-B707. An alphanumeric variable is defined in the same way as a numeric variable, except that
the picture character used to represent one alphanumeric character is an X. The following syntax example defines an
alphanumeric variable that can hold a word or message of no more than 10 characters:

001200 01 THE-MESSAGE PICTURE IS XXXXXXXXXX.

An alphanumeric variable can also be used to hold numbers (such as storing 123 in a PICTURE IS XXX variable),
but you will not be able to use the values as numbers. For example, you could display the PICTURE IS XXX variable
containing 123, but you couldn't use the COMPUTE verb to add 1 to it.

In Listing 2.6, a modified version of hello.cbl named hello02.cbl illustrates the use of alphanumeric variables.

TYPE: Listing 2.6. Using an alphanumeric variable.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. HELLO02.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.
000500
000600 WORKING-STORAGE SECTION.
000700
000800 01 THE-NAME PICTURE IS XXXXXXXXXX.
000900
001000 PROCEDURE DIVISION.
001100
001200 PROGRAM-BEGIN.
001300
001400 DISPLAY "Enter someone's name.".
001500
001600 ACCEPT THE-NAME.
001700
001800 DISPLAY "Hello " THE-NAME.
001900
002000 PROGRAM-DONE.
002100 STOP RUN.

The following is an example of the output from hello02.cbl, using Erica as the name entered at the keyboard:

OUTPUT:
C>pcobrun hello02

Enter someone's name.
Erica
Hello Erica

C>

ANALYSIS: At line 001400, the user is asked to enter a name. At line 001600, the ACCEPT verb will cause the
computer to accept input from the keyboard until the user presses Enter. Whatever is typed (up to 10 characters) will be
stored in THE-NAME. THE-NAME then is displayed in a hello message.

Defining Pictures
So far, you've defined small variables, but you also can define longer ones in COBOL. Numeric variables can be as
large as 18 digits:

01 THE-NUMBER PICTURE IS 999999999999999999.

Numeric variables are limited to 18 digits, but the length of alphanumeric variables is limited by the version of COBOL
that you have. LPI COBOL has a limit of 32,767 characters. ACUCOBOL has a limit of 65,520 characters. The
Professional Micro Focus COBOL compiler (big brother to Micro Focus Personal COBOL) has a limit of a whopping
256 million characters.

Defining long variables could become a tedious task if every X and 9 had to be spelled out explicitly; and typing in
long strings of X or 9 could result in errors. In addition, having to type PICTURE IS for every variable can get tiring
in large programs. Fortunately, COBOL allows some abbreviations that make the task less cumbersome.

The word IS in PICTURE IS is optional, and the word PICTURE can be abbreviated as PIC. This abbreviation is

used so commonly that it is rare to see a program containing PICTURE IS:

01 THE-MESSAGE PIC XXXXXX.

The second abbreviation is even more useful. The picture itself can be abbreviated by typing one picture character
followed by the number of repetitions of that character in parentheses. Thus, PIC XXXXXX becomes PIC X(6), and
PIC 99999 becomes PIC 9(5). The 18-digit number shown earlier becomes the following:

01 THE-NUMBER PIC 9(18).

This works even when the repetition is one, so it is possible to describe PIC X as PIC X(1). When you are reading a
listing, it sometimes is easier to determine the size of a variable quickly by scanning the values in parentheses. Some
programmers make it a practice always to include the size in parentheses.

If you want to use the abbreviations to cut down on keystrokes, abbreviate anything exceeding a length of four. PIC
XXXX and PIC X(4) require the same number of keystrokes, so for the sake of typing speed, it doesn't matter which
you use. PIC X is faster to type than PIC X(1), but PIC X(5) is faster to type than PIC XXXXX.

You might find the use of parentheses is dictated by the style manual of the company that is using the program. If it is
for your own use, pick the one that is more comfortable for you.

Introducing the MOVE Verb
The MOVE verb in COBOL is a general-purpose verb, used to store a value in a variable. The general syntax for MOVE
is the following:

MOVE value TO variable.

In this syntax, variable must be a variable defined in the DATA DIVISION, and value can be another variable or
a constant.

Here are some examples:

MOVE 12 TO THE-NUMBER.
MOVE ONE-NUMBER TO ANOTHER-NUMBER.
MOVE "XYZ" TO THE-MESSAGE.

MOVE is used to set a variable to a specific value. For example, if you're going to use the variable THE-COUNTER as a
counter and you need the count to start at 1, you might use the following as one method of setting up the variable with a
starting value:

MOVE 1 TO THE-COUNTER.

MOVE in COBOL does not move memory physically from one place to another. It copies values from the source
variable and stores them in the target variable. Table 2.2 describes the effect of some different MOVE examples that
move constants and variables into variables. All variables are assumed to be defined in the WORKING-STORAGE
SECTION.

Table 2.2. Examples of the MOVE verb.

Command Effect

MOVE 19 TO THE-NUMBER Stores 19 in the variable THE-NUMBER, or sets THE-NUMBER to a
value of 19

MOVE "Hello" TO THE-MESSAGE Stores Hello in the variable THE-MESSAGE, or sets
THE-MESSAGE to contain Hello

MOVE A-NUMBER TO THE-NUMBER Locates the variable named A-NUMBER, gets the value stored there,
and copies it or moves it to the variable named THE-NUMBER

MOVE THE-OLD-NAME TO THE-NEW-NAME Locates the variable named THE-OLD-NAME, gets the value stored
there, and copies it or moves it to the variable named
THE-NEW-NAME

Listing 2.7 is a program designed solely to provide examples of the MOVE verb. It combines PICTURE abbreviations,
multiple DISPLAY statements, and MOVE statements to display two messages, with message numbers, on the screen.
This will give you a further idea of the uses and effects of MOVE.

TYPE: Listing 2.7. Using MOVE.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. HELLO03.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.
000500
000600 WORKING-STORAGE SECTION.
000700
000800 01 THE-MESSAGE PIC X(20).
000900 01 THE-NAME PIC X(10).
001000 01 THE-NUMBER PIC 99.
001100
001200 PROCEDURE DIVISION.
001300
001400 PROGRAM-BEGIN.
001500
001600 DISPLAY "Enter someone's name.".
001700
001800 ACCEPT THE-NAME.
001900
002000 MOVE "Hello" TO THE-MESSAGE.
002100
002200 MOVE 1 TO THE-NUMBER.
002300
002400 DISPLAY "Message "
002500 THE-NUMBER
002600 ": "
002700 THE-MESSAGE
002800 THE-NAME.
002900
003000 MOVE "Say Goodnight," TO THE-MESSAGE.
003100
003200 MOVE 2 TO THE-NUMBER.
003300
003400 DISPLAY "Message "
003500 THE-NUMBER
003600 ": "
003700 THE-MESSAGE
003800 THE-NAME.
003900
004000
004100 PROGRAM-DONE.
004200 STOP RUN.

004300

OUTPUT:
C>pcobrun hello03

Enter someone's name.
Gracie
Message 01: Hello Gracie
Message 02: Say Goodnight, Gracie

C>

ANALYSIS: Lines 000800, 000900, and 001000 contain abbreviated PICTURES. THE-MESSAGE is a
20-character alphanumeric field, and THE-NAME is a 10-character alphanumeric field. The user is asked to enter a
name, and this is accepted from the keyboard into THE-NAME at line 001800.

In lines 002000 and 002200, MOVE is used to move values to THE-MESSAGE and the THE-NUMBER. Lines
002400 through 002800 contain one long DISPLAY statement. Notice that this long statement ends with only one
period, on line 002800. COBOL sentences can spread over more than one line as in this example, as long as they
remain within Area B, which is columns 12 through 72. This DISPLAY creates one line of display information
containing the values Message, THE-NUMBER, :, THE-MESSAGE, and THE-NAME, one after the other on a single
line:

Message 01: Hello Charlie

Similar logic is repeated at lines 003000 through 003800, and a second line is displayed. See if you can guess how
the output will appear before taking a look.

Note that the output from hello03.cbl is shown for an input name of Gracie. Listing 2.7 is a good program for
practice. First type, edit, and compile hello03.cbl, and try it a couple of times. Then copy the program to
hello04.cbl and edit it. Try different constants and display orders for the DISPLAY statements. Here are a couple
of alternatives for the first DISPLAY statement:

DISPLAY "Line "
THE-NUMBER
"> "
THE-MESSAGE
THE-NAME.

DISPLAY THE-MESSAGE
THE-NAME
" was Number "
THE-NUMBER.

The following are sample output lines from these two formats:

Line 01> Hello Charlie
Hello Charlie was Number 01

One of the features of the MOVE verb is that it will pad a variable with spaces to the end if the value that is being moved
into an alphanumeric field is too short to fill the field. This is convenient; it's almost always what you want. In the line
MOVE "Hello" TO THE-MESSAGE, the first five characters of THE-MESSAGE are filled with Hello, and the
remaining character positions are filled with spaces. (In Bonus Day 2, "Miscellaneous COBOL Syntax," you learn how
to move a field while dropping the trailing space used for padding.)

MOVE pads numeric variables by filling them with zeroes to the left. Notice that a numeric value with a PIC 99
containing a value of 1 will display as 01 in Listing 2.7. This is because of the padding action of the MOVE verb.

Values that are too long are truncated. If THE-MESSAGE is defined as a PIC X(7), the line

MOVE "Hello world" to THE-MESSAGE

results in THE-MESSAGE containing Hello w and the rest of the value falling off the end.

Moving a value that is too large to a numeric variable results in a similar truncation, but on the left side. If
THE-NUMBER is defined as a PIC 9999, the following line results in THE-NUMBER containing 1784:

MOVE 61784 TO THE-NUMBER

There isn't room for all five digits, so only the four digits on the right are picked up on the move.

Formatting Output
Listing 2.8 is another example of some of the principles you have learned. It displays three lines of a nursery rhyme
involving some work that Jack had to do. The ADD verb (which is new in this listing) increments the value of
THE-NUMBER as each line is displayed. In the DISPLAY statements, a space is used to separate the line number from
the statement. Remember that the asterisk in column 7 is used to place a comment in the code.

TYPE: Listing 2.8. Using the ADD verb.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. JACK01.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.
000500
000600 WORKING-STORAGE SECTION.
000700
000800 01 THE-MESSAGE PIC X(50).
000900 01 THE-NUMBER PIC 9(2).
001000
001100 PROCEDURE DIVISION.
001200 PROGRAM-BEGIN.
001300
001400* Set up and display line 1
001500 MOVE 1 TO THE-NUMBER.
001600 MOVE "Jack be nimble," TO THE-MESSAGE.
001700 DISPLAY THE-NUMBER " " THE-MESSAGE.
001800
001900* Set up and Display line 2
002000 ADD 1 TO THE-NUMBER.
002100 MOVE "Jack be quick," TO THE-MESSAGE.
002200 DISPLAY THE-NUMBER " " THE-MESSAGE.
002300
002400* Set up and display line 3
002500 ADD 1 TO THE-NUMBER.
002600 MOVE "Jack jump over the candlestick." TO THE-MESSAGE.
002700 DISPLAY THE-NUMBER " " THE-MESSAGE.
002800
002900 PROGRAM-DONE.
003000 STOP RUN.
003100

OUTPUT:
01 Jack be nimble,
02 Jack be quick,
03 Jack jump over the candlestick.
C>
C>

ANALYSIS: It is possible to use a variable as though it were a constant. In Listing 2.9, an additional variable,
A-SPACE, is created. This variable is set to a value at the start of the program and then used in each message. The
output of jack02.cbl should be identical to that of jack02.cbl.

New Term: Setting a variable to a starting value is called initializing.

TYPE: Listing 2.9. Another method of formatting.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. JACK02.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.
000500
000600 WORKING-STORAGE SECTION.
000700
000800 01 THE-MESSAGE PIC X(50).
000900 01 THE-NUMBER PIC 9(2).
001000 01 A-SPACE PIC X.
001100
001200 PROCEDURE DIVISION.
001300 PROGRAM-BEGIN.
001400
001500* Initialize the space variable
001600 MOVE " " TO A-SPACE.
001700
001800* Set up and display line 1
001900 MOVE 1 TO THE-NUMBER.
002000 MOVE "Jack be nimble," TO THE-MESSAGE.
002100 DISPLAY THE-NUMBER A-SPACE THE-MESSAGE.
002200
002300* Set up and Display line 2
002400 ADD 1 TO THE-NUMBER.
002500 MOVE "Jack be quick," TO THE-MESSAGE.
002600 DISPLAY THE-NUMBER A-SPACE THE-MESSAGE.
002700
002800* Set up and display line 3
002900 ADD 1 TO THE-NUMBER.
003000 MOVE "Jack jump over the candlestick." TO THE-MESSAGE.
003100 DISPLAY THE-NUMBER A-SPACE THE-MESSAGE.
003200
003300 PROGRAM-DONE.
003400 STOP RUN.
003500

Layout and Punctuation
As the programs you are working on get larger, it is a good idea to start paying attention to layout and other features of
COBOL that can help make your code more readable.

Commas can be used in COBOL to separate items in a list:

DISPLAY THE-NUMBER, " ", THE-MESSAGE.

There are arguments for and against the use of commas. As far as the COBOL compiler is concerned, commas are
optional; the compiler ignores them completely. The only use, therefore, is to improve readability. In a list of variables,
the commas help to separate the elements when you are reading the code.

Serious problems result from mistyping a period for a comma. If the screen does not provide a clear display or the
printer is printing the source code with a feeble ribbon, it is possible to mistake a comma for a period. A period is not
optional and is a critical piece of COBOL syntax used to end sentences. The confusion of a comma for a period has
caused some serious problems in programs, and it might be better to leave commas out unless there is a compelling
reason to use them.

A sentence does not have to begin and end on one line. As long as it stays out of Area A (columns 8 through 11), a
sentence can spread over multiple lines. Listing 2.7, hello03.cbl, uses this technique to clearly separate each value
that is being displayed. Listing 2.10 is a version of jack02.cbl that spreads the DISPLAY sentence out in order to
clarify what is being displayed. This will compile and run identically to jack02.cbl, but it is a little easier to read.

TYPE: Listing 2.10. Spreading out a sentence.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. JACK03.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.
000500
000600 WORKING-STORAGE SECTION.
000700
000800 01 THE-MESSAGE PIC X(50).
000900 01 THE-NUMBER PIC 9(2).
001000 01 A-SPACE PIC X.
001100
001200 PROCEDURE DIVISION.
001300 PROGRAM-BEGIN.
001400
001500* Initialize the space variable
001600 MOVE " " TO A-SPACE.
001700
001800* Set up and display line 1
001900 MOVE 1 TO THE-NUMBER.
002000 MOVE "Jack be nimble," TO THE-MESSAGE.
002100 DISPLAY
002200 THE-NUMBER
002300 A-SPACE
002400 THE-MESSAGE.
002500
002600* Set up and Display line 2
002700 ADD 1 TO THE-NUMBER.
002800 MOVE "Jack be quick," TO THE-MESSAGE.

002900 DISPLAY
003000 THE-NUMBER
003100 A-SPACE
003200 THE-MESSAGE.
003300
003400* Set up and display line 3
003500 ADD 1 TO THE-NUMBER.
003600 MOVE "Jack jump over the candlestick." TO THE-MESSAGE.
003700 DISPLAY
003800 THE-NUMBER
003900 A-SPACE
004000 THE-MESSAGE.
004100
004200 PROGRAM-DONE.
004300 STOP RUN.
004400

Remember that, when you are reading COBOL programs, a sentence continues until a period is encountered, no matter
how many lines it takes.

Continuation Characters
When an alphanumeric value is too long to fit on a single line, it can be continued on the next line by using a
continuation character. In Listing 2.11, the columns have been included. The message must be continued to the end of
Area B (column 72) and ends without a closing quote. The next line begins with a hyphen (-) in column 7 to indicate
that the previous quoted string is being continued. The rest of the message starts with a quote and continues as long as
is necessary to complete the message. Lines can be continued over more than one line if necessary.

Listing 2.11. The continuation character.

 1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890
000500 01 LONG-MESSAGE PIC X(80) VALUE "This is an incredibly long m
000600- "essage that will take more than one line to define".

Summary
Today, you learned the basics about COBOL's DATA DIVISION, including the following:

The WORKING-STORAGE SECTION of the DATA DIVISION is used to create space for the variables of a
program.

●

Variables in WORKING-STORAGE are given names. The names are assigned by the programmer.●

Variables can be named using the uppercase characters A through Z, the digits 0 through 9, and the hyphen (-).
The hyphen cannot be the first character of a variable name.

●

Variables are divided into two broad classes: alphanumeric and numeric.●

Alphanumeric variables can hold printable characters: A through Z, a through z, 0 through 9, spaces, symbols,
and punctuation characters.

●

Numeric variables can hold numbers.●

Alphanumeric values must be enclosed in double quotation marks when being moved to variables.●

Numeric values being moved to numeric variables do not require quotation marks.●

The MOVE verb moves an alphanumeric value to an alphanumeric variable and pads the variable with spaces on
the right if the value is too short to fill the variable.

●

The MOVE verb moves a numeric value to a numeric variable and pads the value on the left with zeroes if the
value is too small to fill the variable.

●

The DISPLAY verb can display more than one value or variable at a time.●

A COBOL sentence can contain commas for punctuation. They do not affect the behavior of the final program,
but they can be included to improve readability.

●

A COBOL sentence ends with a period. It can spread over several lines of the source code file, as long as it stays
within Area B, columns 12 through 72.

●

A continuation character can be used to continue a literal on one or more subsequent lines.●

Q&A
Q Are there other limits on variable names?

A For now, you should ensure that each variable name is different. You have up to 30 characters to use for a
variable name, so you should have no trouble coming up with different names.

Q When should you use a variable, and when should you use a constant?

A Most of the work in programming is done with variables. You can use a constant inside the PROCEDURE
DIVISION when it will never need to be changed.

Even when a constant will never change, it sometimes is clearer to use a variable, because it explains what is
happening. In the following example, the first line indicates that the sales amount is being multiplied by the
constant .10 (10 percent), but gives no information on why. The value .10 is a constant because it cannot be
changed without first editing the program and recompiling it. The second version indicates that some logic is
being executed to calculate a sales commission:

MULTIPLY SALES-AMOUNT BY .10.
MULTIPLY SALES-AMOUNT BY COMMISSION-RATE.

Workshop

Quiz

1. How many bytes of memory are used by the following variable?

01 CUSTOMER-NAME PIC X(30).

2. What type of data can be stored in CUSTOMER-NAME?

3. If you move a value to CUSTOMER-NAME, such as

MOVE "ABC Company" TO CUSTOMER-NAME.

only the first 11 characters of the variable are filled with the value. What is placed in the remaining 19 character
positions?

4. What is the largest number that can be moved using MOVE to the following variable?

01 UNITS-SOLD PIC 9(4).

5. What is the smallest value that can be moved using MOVE to UNITS-SOLD?

6. If 12 is moved to UNITS-SOLD, as in

MOVE 12 to UNITS-SOLD.

what values are stored in the four numeric positions of UNITS-SOLD?

Exercises

1. Modify add02.cbl from Listing 2.5 to display a message that tells the user what the program will do.

Hint: Add a message at line 001500.

2. Pick a poem or phrase of your own choosing that has four or more lines (but no more than 10 lines) and
display it on the screen with line numbers.

3. Repeat this poem but have the line numbers start at 05 and increment by 5.

Hint: You can start by moving 5 to THE-NUMBER, and then increment the value by using ADD 5 TO
THE-NUMBER for each line that is being printed.

Previous chapter Next chapter Contents

Macmillan Computer Publishing USA

© Copyright, Macmillan Computer Publishing. All rights reserved.

Teach Yourself COBOL in 21 days,
Second Edition

Previous chapter Next chapter Contents

- Day 3 -
A First Look at Structured COBOL

COBOL is a structured language. You already have seen some of the rules for layout, but structure goes
deeper than just physical layout. Structuring applies to the DATA and the PROCEDURE DIVISIONs of a
COBOL program. Today, you learn the structure of the PROCEDURE DIVISION and explore the
following topics:

A new COBOL shell.●

Program flow.●

Paragraph names.●

What is STOP RUN?●

What is the PERFORM verb?●

When to use PERFORM.●

SECTIONs in the PROCEDURE DIVISION.●

A New COBOL Shell
From now on, all programs will have some sort of data in them, so it is a good idea to modify
cobshl01.cbl, created in Day 1, "Your First COBOL Program." Listing 3.1, cobshl02.cbl, now
includes WORKING-STORAGE.

TYPE: Listing 3.1. A new COBOL shell including data.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. COBSHL02.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.
000500 WORKING-STORAGE SECTION.
000600
000700 PROCEDURE DIVISION.
000800 PROGRAM-BEGIN.
000900
001000 PROGRAM-DONE.
001100 STOP RUN.

Program Flow
The normal course of execution of a COBOL program is from the first statement in the PROCEDURE
DIVISION to the last. Let's look at Listing 3.2, add01.cbl, line by line.

TYPE: Listing 3.2. Top-to-bottom execution.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. ADD03.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.
000500
000600 WORKING-STORAGE SECTION.
000700
000800 01 FIRST-NUMBER PICTURE IS 99.
000900 01 SECOND-NUMBER PICTURE IS 99.
001000 01 THE-RESULT PICTURE IS 999.
001100
001200 PROCEDURE DIVISION.
001300
001400 PROGRAM-BEGIN.
001500 DISPLAY "This program will add 2 numbers.".
001600 DISPLAY "Enter the first number.".
001700
001800 ACCEPT FIRST-NUMBER.
001900
002000 DISPLAY "Enter the second number.".
002100
002200 ACCEPT SECOND-NUMBER.
002300
002400 COMPUTE THE-RESULT = FIRST-NUMBER + SECOND-NUMBER.
002500

002600 DISPLAY "The result is " THE-RESULT.
002700
002800
002900 PROGRAM-DONE.
003000 STOP RUN.
003100

ANALYSIS: The program starts executing at line 001300 in the PROCEDURE DIVISION. Blank
lines are skipped, so nothing happens on that line. Line 001400 is a paragraph name. Paragraphs in
COBOL are used as bookmarks. The program doesn't do anything for line 001400 except to note
internally that it has started a paragraph named PROGRAM-BEGIN.

At line 001500, the program displays a message on-screen. At line 001600, another is displayed. Line
001700 is blank, so it is skipped. At line 001800, the program stops, waits for keyboard input, and
places the results in the variable FIRST-NUMBER.

This type of step-by-step action occurs until line 002900, when the program notes that it has begun
executing a paragraph named PROGRAM-DONE. At line 003000, the statement STOP RUN is executed,
and this halts the execution of the program.

Paragraph Names
Because paragraph names are used only as bookmarks, it is possible to insert more paragraph names into
this program. Remember that you can assign your own paragraph names. The rules for naming
paragraphs are similar to the rules for naming variables:

A paragraph name can contain 30 characters. In fact, a paragraph name can be longer than 30
characters, but the compiler will warn you that it will use only the first 30 characters of the name.
The remaining characters can be included in the name but the compiler will ignore them.

●

The characters can be A through Z, 0 through 9, and the hyphen (-). Some compilers also allow
the lowercase characters a through z.

●

The paragraph name must not start with the hyphen.●

Paragraph names must start in Area A, columns 8 through 11, and must end with a period.●

DO/DON'T:
DO use uppercase paragraph names if you want your code to be portable.

DON'T use lowercase paragraph names. Even the simplest COBOL programs have a
tendency to survive and grow. One day, you might find yourself porting the program to a
new computer, and you will curse yourself for having used lowercase. Listing 3.3 is
sprinkled with some extra paragraph names. If you compare Listing 3.2 and Listing 3.3, you
will see that the sentences are identical. Because a paragraph name does not cause any
command to be executed, these two programs behave identically. Enter them both into the

computer and compile them. Run them one after the other and you will see no difference.

TYPE: Listing 3.3. Adding extra paragraph names.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. ADD04.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.
000500
000600 WORKING-STORAGE SECTION.
000700
000800 01 FIRST-NUMBER PIC 99.
000900 01 SECOND-NUMBER PIC 99.
001000 01 THE-RESULT PIC 999.
001100
001200 PROCEDURE DIVISION.
001300
001400 PROGRAM-BEGIN.
001500
001600 DISPLAY "This program will add 2 numbers.".
001700
001800 GET-FIRST-NUMBER.
001900
002000 DISPLAY "Enter the first number.".
002100
002200 ACCEPT FIRST-NUMBER.
002300
002400 GET-SECOND-NUMBER.
002500
002600 DISPLAY "Enter the second number.".
002700
002800 ACCEPT SECOND-NUMBER.
002900
003000 COMPUTE-AND-DISPLAY.
003100 COMPUTE THE-RESULT = FIRST-NUMBER + SECOND-NUMBER.
003200
003300 DISPLAY "The result is " THE-RESULT.
003400
003500
003600 PROGRAM-DONE.
003700 STOP RUN.
003800

ANALYSIS: Listing 3.4 includes an empty paragraph at line 001400. At lines 001500, 001800,
002400, and 003000, the paragraph names have been changed to STEP-01, STEP-02, and so on. If

you inspect the code, you will notice that, because of the placement of the paragraph names, the
paragraph PROGRAM-BEGIN contains no statements. Some compilers allow this, and others complain of
an empty paragraph with either a warning or an error. Personal COBOL and ACUCOBOL both allow it.
If you want to test your compiler, you can type this and compile it.

TYPE: Listing 3.4. An empty paragraph.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. ADD05.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.
000500
000600 WORKING-STORAGE SECTION.
000700
000800 01 FIRST-NUMBER PIC 99.
000900 01 SECOND-NUMBER PIC 99.
001000 01 THE-RESULT PIC 999.
001100
001200 PROCEDURE DIVISION.
001300
001400 PROGRAM-BEGIN.
001500 STEP-01.
001600 DISPLAY "This program will add 2 numbers.".
001700
001800 STEP-02.
001900
002000 DISPLAY "Enter the first number.".
002100
002200 ACCEPT FIRST-NUMBER.
002300
002400 STEP-03.
002500
002600 DISPLAY "Enter the second number.".
002700
002800 ACCEPT SECOND-NUMBER.
002900
003000 STEP-04.
003100 COMPUTE THE-RESULT = FIRST-NUMBER + SECOND-NUMBER.
003200
003300 DISPLAY "The result is " THE-RESULT.
003400
003500
003600 PROGRAM-DONE.
003700 STOP RUN.
003800

What Is STOP RUN?
In any programming language, certain words have special meanings in the language. In COBOL,
DISPLAY "Hello" causes the word Hello to be displayed on-screen. DISPLAY has a special
meaning in COBOL. It means "put the next thing on the screen."

New Term: Reserved words are reserved in the language to have a special meaning, and the programmer
cannot use these words for some other purpose.

The words DATA and DIVISION appearing together mean that the section of the program where data is
defined is beginning. DATA, DIVISION, and DISPLAY are reserved words. Therefore, if you create a
program that displays something, it would be incorrect to name the program DISPLAY as in the
following:

PROGRAM-ID. DISPLAY.

The compiler probably would complain of an invalid program name, because DISPLAY is reserved for a
special meaning in COBOL. You already have learned several reserved words: COMPUTE, ACCEPT,
ADD, PROCEDURE, DIVISION, and others. You learn about most of them as you move through this
book.

DO/DON'T:
DO name programs, variables, and paragraphs with descriptive names that make their use
obvious.

DON'T name programs, variables, or paragraphs with reserved words.

You also have seen that WORKING-STORAGE is a reserved word for the name of the SECTION in the
DATA DIVISION that contains the data. The compiler will complain if you try to name a variable
WORKING-STORAGE. That combination of words is reserved for use by COBOL.

STOP RUN has appeared in every program so far. STOP RUN is a sentence in COBOL, just as
DISPLAY "Hello" is. STOP and RUN are both reserved words, and the sentence STOP RUN does
exactly what it says; it stops the execution of the program.

Some COBOL implementations do not require a STOP RUN; for example, Personal COBOL does not.
Most compilers will compile a program that does not include a STOP RUN, and the problem, if there is
one, occurs while the program is running. A program will come to the end and appear to start over again,
or it will come to the end and crash with some sort of ABORT message. If you want to check out your
COBOL compiler, take any of the examples already covered and remove the PROGRAM-DONE
paragraph and the STOP RUN sentence. Compile the program and then try to run it. See what happens
when the program reaches the end.

STOP RUN can occur anywhere in the program, and it will stop execution. In all the examples so far, the
STOP RUN is placed in its own separate paragraph to make it stand out as the end of the program, but
Listing 3.2 could have been written without the PROGRAM-DONE paragraph name, as long as it included
STOP RUN. It would have worked as well. In Listing 3.5, the STOP RUN at line 002400 causes the
program to terminate at that spot.

TYPE: Listing 3.5. A forced STOP RUN.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. ADD06.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.
000500
000600 WORKING-STORAGE SECTION.
000700
000800 01 FIRST-NUMBER PIC 99.
000900 01 SECOND-NUMBER PIC 99.
001000 01 THE-RESULT PIC 999.
001100
001200 PROCEDURE DIVISION.
001300
001400 PROGRAM-BEGIN.
001500 DISPLAY "This program will add 2 numbers.".
001600
001700
001800 DISPLAY "Enter the first number.".
001900
002000 ACCEPT FIRST-NUMBER.
002100
002200 DISPLAY "Fooled you.".
002300
002400 STOP RUN.
002500
002600 DISPLAY "Enter the second number.".
002700
002800 ACCEPT SECOND-NUMBER.
002900
003000 COMPUTE THE-RESULT = FIRST-NUMBER + SECOND-NUMBER.
003100
003200 DISPLAY "The result is " THE-RESULT.
003300
003400
003500 PROGRAM-DONE.
003600 STOP RUN.
003700

Obviously, the PROGRAM-DONE paragraph at line 003500 is misleading in this example because the
program stops before this point.

What Is the PERFORM Verb?
A program that executes from beginning to end and then stops might be useful for something, but it
wouldn't do much more than the examples already covered. Suppose you had one action that you
performed several times in a program. In top-to-bottom execution, you would have to code that same
logic over and over.

The PERFORM verb avoids this problem of coding repetitive actions. In order to illustrate the effect of a
PERFORM, Listing 3.6 uses another version of the "Hello world" program. A PERFORM is a kind of
"jump" with a "bounce back."

TYPE: Listing 3.6. Using PERFORM.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. HELLO04.
000300
000400* This program illustrates the use of a PERFORM
000500
000600 ENVIRONMENT DIVISION.
000700 DATA DIVISION.
000800 PROCEDURE DIVISION.
000900
001000 PROGRAM-BEGIN.
001100 DISPLAY "Today's message is:".
001200 PERFORM SAY-HELLO.
001300
001400 PROGRAM-DONE.
001500 STOP RUN.
001600
001700 SAY-HELLO.
001800 DISPLAY "Hello world".
001900

OUTPUT:
Today's message is:
Hello world
C>
C>

ANALYSIS: At line 001200, PERFORM SAY-HELLO indicates the following:

1. Locate the paragraph named SAY-HELLO.

2. Jump to that paragraph and start executing there.

3. When that paragraph ends, return to the end of this sentence (PERFORM SAY-HELLO).

A paragraph ends in two ways. Either another paragraph begins or the end of the source code file is
reached. In Listing 3.6, the paragraph PROGRAM-BEGIN ends at line 001400 when PROGRAM-DONE
begins. The paragraph PROGRAM-DONE ends at line 001700 when SAY-HELLO begins, and
SAY-HELLO ends just after line 001900 at the end of the source code file.

Ignoring blank lines (because they will not execute), the sequence of execution in Listing 3.6 is the
following: Line 001000. Internally note that the paragraph PROGRAM-BEGIN has started.

Line 001100. DISPLAY "Today's message is:" on-screen.

Line 001200. Locate the paragraph SAY-HELLO at line 001700. Jump to line 001700, the beginning
of SAY-HELLO.

Line 001700. Internally note that the paragraph SAY-HELLO has started.

Line 001800. DISPLAY "Hello world" on-screen.

End of file. COBOL recognizes that it has hit the end of the SAY-HELLO paragraph, but it also knows
that it is in the middle of a PERFORM requested at line 001200. Whenever a paragraph ends because of
an end-of-file or because a new paragraph starts, COBOL checks whether it is in the middle of a
PERFORM. If it is, it returns to the line that requested the PERFORM. In this example, the SAY-HELLO
paragraph ends, and execution resumes at the end of line 001200. There are no further instructions on
that line, so execution continues at line 001400.

Line 001400. Internally note that the paragraph PROGRAM-DONE has started. Line 001500. Stop
execution of the program. The top-to-bottom course of a COBOL program continues unless it is
interrupted by a PERFORM. The paragraph being performed is also executed top to bottom. When the
PERFORM is complete, the program returns to the point just after the PERFORM was requested, and it
continues from there to the bottom.

It is important to recognize this "keep-on-trucking" flow of a COBOL program, because it is critical to
place your PERFORMed paragraphs below the STOP RUN statement. Listing 3.7 has the SAY-HELLO
paragraph placed differently.

TYPE: Listing 3.7. An incorrectly placed paragraph.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. HELLO05.
000300
000400* This program illustrates the incorrect placement of a
000500* Paragraph that is the target of a perform
000600
000700 ENVIRONMENT DIVISION.
000800 DATA DIVISION.
000900 PROCEDURE DIVISION.
001000
001100 PROGRAM-BEGIN.
001200 DISPLAY "Today's message is:".
001300 PERFORM SAY-HELLO.

001400
001500 SAY-HELLO.
001600 DISPLAY "Hello world".
001700
001800 PROGRAM-DONE.
001900 STOP RUN.
002000

If you followed the steps describing the flow of hello05.cbl, it should come as no surprise that the
program displays Hello world twice:

OUTPUT:
Today's message is:
Hello world
Hello world
C>
C>

ANALYSIS: Ignoring blank lines, the sequence of execution in Listing 3.7 is as follows: Line 001100.
Internally note that the paragraph PROGRAM-BEGIN has started.

Line 001200. DISPLAY "Today's message is:" on-screen.

Line 001300. Jump to line 001500, the beginning of SAY-HELLO.

Line 001500. Internally note that the paragraph SAY-HELLO has started.

Line 001600. DISPLAY "Hello world" on-screen.

Line 001800. COBOL recognizes that it has hit the end of the SAY-HELLO paragraph, but it also
knows that it is in the middle of a PERFORM requested at line 001300. The SAY-HELLO paragraph
ends, and execution resumes at the end of line 001300. There are no further instructions on that line, so
execution continues at line 001500.

Line 001500. Internally note that the paragraph SAY-HELLO has started.

Line 001600. DISPLAY "Hello world" on-screen.

Line 001800. COBOL recognizes that it has hit the end of the SAY-HELLO paragraph, but in this case
it is not in the middle of a PERFORM.

Line 001800. Internally note that the paragraph PROGRAM-DONE has started. Line 001900. Stop
execution of the program.

When to Use PERFORM
A PERFORM has several uses in COBOL. First, it is used to section off a repetitive action that is
performed in several places or several times in a program to prevent writing the same code over and
over.(I hinted at this use when I introduced PERFORM earlier in today's lesson.) This creates two

advantages: It not only cuts down on the amount of typing, but it cuts down on the number of potential
errors. Less typing means fewer opportunities to copy it incorrectly.

Imagine typing the following retail profit formula five or six times in different places in a program, and
you begin to see the sense of putting this in a paragraph called COMPUTE-RETAIL-PROFIT and using
the PERFORM verb every time you want it done:

COMPUTE MARGIN-PERCENT =
 ((GOODS-PRICE - GOODS-COST) /
 GOODS-PRICE) * 100 .

The second use of PERFORM might not be so obvious, because the programs used so far in this book
have been relatively small. A PERFORM serves to break up a program into smaller, more manageable
pieces. If you're changing the sales commission from 10 percent to 11 percent, it's much easier to search
through a long program looking for a paragraph named CALCULATE-COMMISSION than to plow
through a long list of code not broken into paragraphs. It is very common for programs to perform more
than one major task. A payroll system might have a program in it used both to calculate pay totals and to
print checks after the hours for each employee are entered into the computer.

A program that carries out these actions might have one area of the program to deal with the calculations,
while further down in the program another area of code deals with the printing activity. Above these two
areas is the main logic of the program that performs both pieces of the program:

MAIN-LOGIC.
 PERFORM CALC-PAYROLL-TOTALS.
 PERFORM PRINT-PAYROLL-CHECKS.

The third reason to use a PERFORM is that the program is easier to read and understand if the paragraphs
are named sensibly. In the following code fragment, it is fairly easy to figure out what the paragraph
PAY-THE-SALESPERSON is doing, even though the whole paragraph is made up of PERFORMs:

PAY-THE-SALESPERSON
 PERFORM GET-SALES-TOTAL.
 PERFORM CALCULATE-COMMISSION.
 PERFORM PRINT-THE-CHECK.

A fourth reason to use PERFORM would be to conserve memory. Look back at the retail profit formula
and imagine that piece of code repeated five or six times in a single program. Each time the formula
appears in the program it takes up several bytes of memory. Coding it once in a single paragraph and
performing that paragraph five or six times uses far less memory.

Let's take a closer look at the first reason for a PERFORM, which is to handle repetitive code. Listing 3.8,
"The Lady from Eiger," is similar to jack03.cbl, used in Day 2, "Using Variables and Constants."
At line 001800, THE-NUMBER is initialized to 0, and then (instead of moving 1 to THE-NUMBER at
line 002300) 1 is added to THE-NUMBER.

TYPE: Listing 3.8. Repetitive actions.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. EIGER03.

000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.
000500
000600 WORKING-STORAGE SECTION.
000700
000800 01 THE-MESSAGE PIC X(50).
000900 01 THE-NUMBER PIC 9(2).
001000 01 A-SPACE PIC X.
001100
001200 PROCEDURE DIVISION.
001300 PROGRAM-BEGIN.
001400
001500* Initialize the space variable
001600 MOVE " " TO A-SPACE.
001700* Start THE-NUMBER at 0
001800 MOVE 0 TO THE-NUMBER.
001900
002000* Set up and display line 1
002100 MOVE "There once was a lady from Eiger,"
002200 TO THE-MESSAGE.
002300 ADD 1 TO THE-NUMBER.
002400 DISPLAY
002500 THE-NUMBER
002600 A-SPACE
002700 THE-MESSAGE.
002800
002900* Set up and Display line 2
003000 MOVE "Who smiled and rode forth on a tiger."
003100 TO THE-MESSAGE.
003200 ADD 1 TO THE-NUMBER.
003300 DISPLAY
003400 THE-NUMBER
003500 A-SPACE
003600 THE-MESSAGE.
003700
003800* Set up and display line 3
003900 MOVE "They returned from the ride" TO THE-MESSAGE.
004000 ADD 1 TO THE-NUMBER.
004100 DISPLAY
004200 THE-NUMBER
004300 A-SPACE
004400 THE-MESSAGE.
004500
004600* Set up and display line 4
004700 MOVE "With the lady inside," TO THE-MESSAGE.
004800 ADD 1 TO THE-NUMBER.

004900 DISPLAY
005000 THE-NUMBER
005100 A-SPACE
005200 THE-MESSAGE.
005300
005400* Set up and display line 5
005500 MOVE "And the smile on the face of the tiger."
005600 TO THE-MESSAGE.
005700 ADD 1 TO THE-NUMBER.
005800 DISPLAY
005900 THE-NUMBER
006000 A-SPACE
006100 THE-MESSAGE.
006200
006300
006400 PROGRAM-DONE.
006500 STOP RUN.
006600

OUTPUT:
01 There once was a lady from Eiger,
02 Who smiled and rode forth on a tiger.
03 They returned from the ride
04 With the lady inside,
05 And the smile on the face of the tiger.
C>
C>

ANALYSIS: If you inspect lines 002300 through 002700 and lines 003200 through 003600, you'll
find that the actions are identical. These appear again in lines 004000 through 004400. In fact, these
two sentences are repeated five times in the program, appearing again in lines 004800 through 005200
and 005700 through 006100.

The DISPLAY command (lines 002400 through 002700, 003300 through 003600, and so on) is
rather long because it is a DISPLAY of three variables. The odds of typing incorrectly are reasonably
high. A typographical error wouldn't be so bad (because the compiler would complain if something were
spelled incorrectly), but suppose that in one of the five instances you left out A-SPACE in the list of
variables to display. It wouldn't be a disaster. It would show up the first time you ran the program; one of
the lines would look odd, and you would be able to track it down quickly. Unfortunately, not all errors of
this sort are so easy to spot. If this were a series of calculations, you might be able to spot an error in the
final result, but you wouldn't know where it had originated.

There are two repetitive actions in Listing 3.8:

ADD 1 TO THE-NUMBER

and

DISPLAY THE-NUMBER A-SPACE THE-MESSAGE.

It is simple to extract these two lines and create a paragraph that performs both of these actions:

ADD-NUMBER-AND-DISPLAY.
ADD 1 TO THE-NUMBER
DISPLAY THE-NUMBER A-SPACE THE-MESSAGE.

Listing 3.9 is an example of using this paragraph, with PERFORMs inserted at the appropriate points.

TYPE: Listing 3.9. Using a PERFORMed paragraph.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. EIGER04.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.
000500
000600 WORKING-STORAGE SECTION.
000700
000800 01 THE-MESSAGE PIC X(50).
000900 01 THE-NUMBER PIC 9(2).
001000 01 A-SPACE PIC X.
001100
001200 PROCEDURE DIVISION.
001300 PROGRAM-BEGIN.
001400
001500* Initialize the space variable
001600 MOVE " " TO A-SPACE.
001700* Start THE-NUMBER at 0
001800 MOVE 0 TO THE-NUMBER.
001900
002000* Set up and display line 1
002100 MOVE "There once was a lady from Eiger,"
002200 TO THE-MESSAGE.
002300 PERFORM ADD-NUMBER-AND-DISPLAY.
002400
002500* Set up and Display line 2
002600 MOVE "Who smiled and rode forth on a tiger."
002700 TO THE-MESSAGE.
002800 PERFORM ADD-NUMBER-AND-DISPLAY.
002900
003000* Set up and display line 3
003100 MOVE "They returned from the ride" TO THE-MESSAGE.
003200 PERFORM ADD-NUMBER-AND-DISPLAY.
003300
003400* Set up and display line 4
003500 MOVE "With the lady inside," TO THE-MESSAGE.
003600 PERFORM ADD-NUMBER-AND-DISPLAY.

003700
003800* Set up and display line 5
003900 MOVE "And the smile on the face of the tiger."
004000 TO THE-MESSAGE.
004100 PERFORM ADD-NUMBER-AND-DISPLAY.
004200
004300 PROGRAM-DONE.
004400 STOP RUN.
004500
004600 ADD-NUMBER-AND-DISPLAY.
004700 ADD 1 TO THE-NUMBER.
004800 DISPLAY
004900 THE-NUMBER
005000 A-SPACE
005100 THE-MESSAGE.
005200

Code eiger04.cbl, compile it, and run it. Work out the flow of each PERFORM and how the program
returns to the main stream of the logic. Here is the output of eiger04.cbl:

OUTPUT:
01 There once was a lady from Eiger,
02 Who smiled and rode forth on a tiger.
03 They returned from the ride
04 With the lady inside,
05 And the smile on the face of the tiger.
C>
C>

ANALYSIS: At line 002300, the computer locates ADD-NUMBER-AND-DISPLAY at line 004600
and jumps to that line. This paragraph is PERFORMed, and when complete, execution resumes at the end
of line 002300. Execution continues on line 002600. Then at line 002800, another jump is made to
line 004600, and the program returns to the end of line 002800. This process continues until all five
PERFORM requests have been executed and ADD-NUMBER-AND-DISPLAY has been performed five
times.

It is possible to request a PERFORM when you already are within a PERFORM, by nesting them together.
If a paragraph that is being PERFORMed itself requests a PERFORM of another paragraph, COBOL keeps
track of the layers of PERFORMed paragraphs and returns to the correct level.

In general, when a PERFORMed paragraph ends, the program returns to the line that requested the
PERFORM, at a position in the line just after the PERFORM was requested. In Listing 3.10, the
ADD-NUMBER-AND-DISPLAY paragraph at line 005100 has been broken down into two sentences
that each PERFORM smaller paragraphs. These PERFORM sentences refer to paragraphs at lines 005800
and 006100--ADD-THE-NUMBER and DISPLAY-THE-MESSAGE. Each of these paragraphs does
only one thing. In practice, you rarely would create a paragraph to execute a single statement, but this
example serves to illustrate nested PERFORMs.

TYPE: Listing 3.10. Nested PERFORMs.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. EIGER05.
000300
000400* This program illustrates nested PERFORMS
000500 ENVIRONMENT DIVISION.
000600 DATA DIVISION.
000700
000800 WORKING-STORAGE SECTION.
000900
001000 01 THE-MESSAGE PIC X(50).
001100 01 THE-NUMBER PIC 9(2).
001200 01 A-SPACE PIC X.
001300
001400 PROCEDURE DIVISION.
001500 PROGRAM-BEGIN.
001600
001700* Initialize the space variable
001800 MOVE " " TO A-SPACE.
001900* Start THE-NUMBER at 0
002000 MOVE 0 TO THE-NUMBER.
002100
002200* Set up and display line 1
002300 MOVE "There once was a lady from Eiger,"
002400 TO THE-MESSAGE.
002500 PERFORM ADD-NUMBER-AND-DISPLAY.
002600
002700* Set up and Display line 2
002800 MOVE "Who smiled and rode forth on a tiger."
002900 TO THE-MESSAGE.
003000 PERFORM ADD-NUMBER-AND-DISPLAY.
003100
003200* Set up and display line 3
003300 MOVE "They returned from the ride" TO THE-MESSAGE.
003400 PERFORM ADD-NUMBER-AND-DISPLAY.
003500
003600* Set up and display line 4
003700 MOVE "With the lady inside," TO THE-MESSAGE.
003800 PERFORM ADD-NUMBER-AND-DISPLAY.
003900
004000* Set up and display line 5
004100 MOVE "And the smile on the face of the tiger."
004200 TO THE-MESSAGE.
004300 PERFORM ADD-NUMBER-AND-DISPLAY.

004400
004500 PROGRAM-DONE.
004600 STOP RUN.
004700
004800* This paragraph is PERFORMED 5 times from within
004900* PROGRAM-BEGIN. This paragraph in turn PERFORMS
005000* Two other paragraphs
005100 ADD-NUMBER-AND-DISPLAY.
005200 PERFORM ADD-THE-NUMBER.
005300 PERFORM DISPLAY-THE-MESSAGE.
005400
005500* These two paragraphs will each be performed 5 times as
005600* they are each performed every time ADD-NUMBER-AND-DISPLAY
005700* is performed.
005800 ADD-THE-NUMBER.
005900 ADD 1 TO THE-NUMBER.
006000
006100 DISPLAY-THE-MESSAGE.
006200 DISPLAY
006300 THE-NUMBER
006400 A-SPACE
006500 THE-MESSAGE.
006600

ANALYSIS: The flow of the program at line 005100 is executed every time PERFORM
ADD-NUMBER-AND-DISPLAY is requested: Line 005100. Internally note that the paragraph
ADD-NUMBER-AND-DISPLAY has started.

Line 005200. Locate the paragraph called ADD-THE-NUMBER and jump to it at line 005800.

Line 005800. Internally note that the paragraph ADD-THE-NUMBER has started.

Line 005900. ADD 1 TO THE-NUMBER.

Line 006100. COBOL notes that ADD-THE-NUMBER has ended and returns to line 005200, where
there are no further instructions.

Line 005300. Locate the paragraph named DISPLAY-THE-MESSAGE and jump to it at line 006100.

Line 006100. Internally note that the paragraph DISPLAY-THE-MESSAGE has started.

Lines 006200 through 006500. These lines are executed as one long sentence, displaying all the
variables.

End of file (the last line of the source code). COBOL notes the end of DISPLAY-THE-MESSAGE and
knows it is in the middle of a PERFORM. It returns to line 005300, where there are no further
instructions. Line 005800. (Remember that blank lines and comment lines have no effect on the
program, so the next active line is 005800.) COBOL notes that ADD-THE-NUMBER starts here;
therefore, the current paragraph, ADD-NUMBER-AND-DISPLAY, must have ended. Execution returns to

whatever line originally requested the PERFORM of ADD-NUMBER-AND-DISPLAY.

DO/DON'T:
DO locate repetitive actions in your programs, and create separate paragraphs containing
those actions. Then PERFORM the paragraph wherever those actions are needed.

DON'T keep typing the same code over and over in one program.

It is common for PERFORMs to be nested in COBOL programs. In fact, Listing 3.11 shows how an
experienced programmer actually might organize "The Lady from Eiger." The callouts down the right
side show you the sequence of execution.

TYPE: Listing 3.11. A structured program.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. EIGER06.
000300
000400* This program illustrates nested PERFORMS in a
000500* structured program.
000600 ENVIRONMENT DIVISION.
000700 DATA DIVISION.
000800
000900 WORKING-STORAGE SECTION.
001000
001100 01 THE-MESSAGE PIC X(50).
001200 01 THE-NUMBER PIC 9(2).
001300 01 A-SPACE PIC X.
001400
001500 PROCEDURE DIVISION.
001600
001700* LEVEL 1 ROUTINES
001800 PROGRAM-BEGIN.
001900
002000 PERFORM PROGRAM-INITIALIZATION.
002100 PERFORM MAIN-LOGIC.
002200
002300 PROGRAM-DONE.
002400 STOP RUN.
002500
002600*LEVEL 2 ROUTINES
002700 PROGRAM-INITIALIZATION.
002800* Initialize the space variable
002900 MOVE " " TO A-SPACE.
003000* Start THE-NUMBER at 0
003100 MOVE 0 TO THE-NUMBER.
003200

003300 MAIN-LOGIC.
003400* Set up and display line 1
003500 MOVE "There once was a lady from Eiger,"
003600 TO THE-MESSAGE.
003700 PERFORM ADD-NUMBER-AND-DISPLAY.
003800
003900* Set up and Display line 2
004000 MOVE "Who smiled and rode forth on a tiger."
004100 TO THE-MESSAGE.
004200 PERFORM ADD-NUMBER-AND-DISPLAY.
004300
004400* Set up and display line 3
004500 MOVE "They returned from the ride" TO THE-MESSAGE.
004600 PERFORM ADD-NUMBER-AND-DISPLAY.
004700
004800* Set up and display line 4
004900 MOVE "With the lady inside," TO THE-MESSAGE.
005000 PERFORM ADD-NUMBER-AND-DISPLAY.
005100
005200* Set up and display line 5
005300 MOVE "And the smile on the face of the tiger."
005400 TO THE-MESSAGE.
005500 PERFORM ADD-NUMBER-AND-DISPLAY.
005600
005700* LEVEL 3 ROUTINES
005800* This paragraph is PERFORMED 5 times from within
005900* MAIN-LOGIC.
006000
006100 ADD-NUMBER-AND-DISPLAY.
006200 ADD 1 TO THE-NUMBER.
006300 DISPLAY
006400 THE-NUMBER
006500 A-SPACE
006600 THE-MESSAGE.
006700

ANALYSIS: The "main" stream of the program runs from line 001800 to line 002400 and is quite
short. All the work of the program is accomplished by requesting PERFORMs of other paragraphs. Some
of these in turn request other PERFORMs. You should look over this listing and compare it carefully to
Listing 3.9. You will see that the effect of the two programs is identical, and both of them use paragraphs
to isolate repetitive logic. The version in eiger06.cbl additionally uses paragraphs to break out and
document which parts of the code are for initializing (or setting up variables) before the main logic and
which parts are the main logic of the code.

Summary
Today, you learned about the structure of the PROCEDURE DIVISION, including the following basics:

COBOL programs execute from top to bottom unless that flow is interrupted by a PERFORM.●

The statements in a PERFORMed paragraph are executed from top to bottom.●

When a PERFORMed paragraph is completed, flow resumes at the jumping-off point (the point
where the PERFORM was requested) and continues down through the statements.

●

COBOL paragraph names can contain up to 30 significant characters. The characters can be A
through Z, 0 through 9, and the hyphen (-). Some compilers allow the lowercase characters a
through z. The paragraph name must not start with the hyphen. Additionally, paragraph names
must start in Area A, columns 8 through 11, and must end with a period.

●

PERFORMed paragraphs must be placed after the STOP RUN statement.●

PERFORM is used to eliminate repetitive coding and break a program into more manageable
pieces. It also can be used to document the program if done correctly.

●

PERFORMs can be nested so that a PERFORMed paragraph can itself request a PERFORM of
another paragraph.

●

COBOL programs frequently are arranged so that a small amount of code is written between the
start of the program and STOP RUN. This code usually consists of PERFORM requests on
paragraphs that are written after the STOP RUN.

●

Q&A
Q Are there other limits on COBOL paragraph names?

A Paragraphs (and variables) each should have a unique name. There actually is a way around this
limit, but its explanation is beyond the scope of this book. With 30 characters for a paragraph
name, you should have no problem coming up with different names for each paragraph.

There is another limit that you should place on yourself for practical purposes. Paragraph names
should be descriptive of what is done in the paragraph.

Q How many paragraphs can be included in the PROCEDURE DIVISION?

A This is limited only by the COBOL compiler that you are using. The number always is large
enough to support large and fairly complex programs because COBOL is a language designed to

handle such problems.

Q How many PERFORMs can be included in a program?

A There is no limit on PERFORMs other than the limits imposed by your compiler on the overall
size of programs. See the next question.

Q If one paragraph can PERFORM another paragraph, which in turn can PERFORM another
paragraph, how many levels of this nesting (PERFORMs within PERFORMs) are possible?

A This again depends entirely on your COBOL compiler. The number usually is large. Levels of
250 are not uncommon. You would have to write something very complex to nest PERFORMs 250
levels deep.

Q Can a paragraph PERFORM itself as in the following example?
DO-SOMETHING.
 PERFORM DO-SOMETHING.

A No. This is allowed in some languages, but not in COBOL.

Workshop

Quiz

1. If the code in a paragraph is designed to locate overdue customers, which of the following
would be the best name for the paragraph?

a. LOCATE-CUSTOMERS.

b. FIND-SOME-STUFF.

c. LOCATE-OVERDUE-CUSTOMERS.

2. Number the lines of msg01.cbl to show the sequence in which the lines would be executed:

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. MSG01.
000300
000400 ENVIRONMENT DIVISION.
000500 DATA DIVISION.
000600
000700 WORKING-STORAGE SECTION.
000800
000900 PROCEDURE DIVISION.
001000
001100 PROGRAM-BEGIN.
001200

001300 PERFORM MAIN-LOGIC.
001400
001500 PROGRAM-DONE.
001600 STOP RUN.
001700
001800 MAIN-LOGIC.
001900 PERFORM DISPLAY-MSG-1.
002000 PERFORM DISPLAY-MSG-2.
002100
002200 DISPLAY-MSG-1.
002300 DISPLAY "This is message 1.".
002400
002500 DISPLAY-MSG-2.
002600 DISPLAY "This is message 2.".
002700

Exercises

1. What would be the effect of omitting the PROGRAM-DONE paragraph and STOP RUN sentence
from hello04.cbl in Listing 3.6? Copy hello04.cbl to hello06.cbl and edit it to
remove lines 001400 and 001500. Compile and run the program. What does the display look
like? The display effect should be the same as the output of Listing 3.7, hello05.cbl.

2. Trace the flow of hello06.cbl step by step and work out what is happening. What must
appear before any paragraphs that are PERFORMed?

3. Work out where to place a STOP RUN in hello06.cbl to prevent the situation in Exercise 2.

4. Study the following listing, add07.cbl:

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. ADD07.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.
000500
000600 WORKING-STORAGE SECTION.
000700
000800 01 FIRST-NUMBER PIC 99.
000900 01 SECOND-NUMBER PIC 99.
001000 01 THE-RESULT PIC 999.
001100
001200 PROCEDURE DIVISION.
001300
001400 PROGRAM-BEGIN.
001500
001600 PERFORM ADVISE-THE-USER.

001700 PERFORM GET-FIRST-NUMBER.
001800 PERFORM GET-SECOND-NUMBER.
001900 PERFORM COMPUTE-AND-DISPLAY.
002000
002100 PROGRAM-DONE.
002200 STOP RUN.
002300
002400 ADVISE-THE-USER.
002500 DISPLAY "This program will add 2 numbers.".
002600
002700 GET-FIRST-NUMBER.
002800
002900 DISPLAY "Enter the first number.".
003000 ACCEPT FIRST-NUMBER.
003100
003200 GET-SECOND-NUMBER.
003300
003400 DISPLAY "Enter the second number.".
003500 ACCEPT SECOND-NUMBER.
003600
003700 COMPUTE-AND-DISPLAY.
003800
003900 COMPUTE THE-RESULT = FIRST-NUMBER + SECOND-NUMBER.
004000 DISPLAY "The result is " THE-RESULT.
004100

Copy this to add08.cbl and modify the program so that it adds three numbers instead of two.

Hint: You can add three numbers just by continuing the COMPUTE statement:

004600 COMPUTE THE-RESULT = FIRST-NUMBER +
004700 SECOND-NUMBER +
004800 THIRD-NUMBER.

5. Using add02.cbl (Listing 2.6 from Day 2), redesign the program to use a logic flow similar
to eiger06.cbl, with the main stream of the program being a series of PERFORMs.

Hint: Listing 3.3 provides some clues about the natural paragraphs in the program.

Previous chapter Next chapter Contents

Macmillan Computer Publishing USA

© Copyright, Macmillan Computer Publishing. All rights reserved.

Teach Yourself COBOL in 21 days,
Second Edition

Previous chapter Next chapter Contents

- Day 4 -
Decision Making

A program must be able to make decisions about data and to execute different sections of code based on
those decisions. Controlling the flow of programs by testing conditions with the IF statement lies at the
heart of every program.

This lesson deals almost exclusively with the IF statement and the many options available with
it--information critical to understanding programming in COBOL. Today, you learn about the following
topics:

What is IF?●

Using IF to control multiple statements.●

What can you test with an IF?●

Testing multiple conditions.●

Using IF-ELSE.●

IF

The primary method of changing the flow of a program is by making decisions using the IF verb. The
following example demonstrates the IF verb:

IF condition
 PERFORM DO-SOMETHING.

When COBOL sees an IF, it makes a decision about the condition, and then either requests a PERFORM
of DO-SOMETHING or skips that line of the program.

The example in Listing 4.1 uses an IF to decide which message to display. In GET-THE-ANSWER, at
line 002300, this program prompts the user to enter Y or N (Yes or No) and accepts a single character
from the keyboard and places it in the variable YES-OR-NO. This is not a particularly good program
because if the user enters a lowercase y or n, the program does nothing at all. The problem of handling
the lowercase entry is addressed later in this chapter. The general problem of handling lowercase versus
uppercase data entry is covered in Day 15, "Data Integrity." For now, just press the Caps Lock key on the
left of your keyboard to force all data entry into uppercase.

TYPE: Listing 4.1. Testing values using IF.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. YESNO01.
000300*--
000400* This program asks for a Y or N answer, and then
000500* displays whether the user chose yes or no.
000600*--
000700 ENVIRONMENT DIVISION.
000800 DATA DIVISION.
000900 WORKING-STORAGE SECTION.
001000
001100 01 YES-OR-NO PIC X.
001200
001300 PROCEDURE DIVISION.
001400 PROGRAM-BEGIN.
001500
001600 PERFORM GET-THE-ANSWER.
001700
001800 PERFORM DISPLAY-THE-ANSWER.
001900
002000 PROGRAM-DONE.
002100 STOP RUN.
002200
002300 GET-THE-ANSWER.
002400
002500 DISPLAY "Is the answer Yes or No? (Y/N)".
002600 ACCEPT YES-OR-NO.
002700
002800 DISPLAY-THE-ANSWER.
002900 IF YES-OR-NO IS EQUAL "Y"
003000 DISPLAY "You answered Yes.".
003100
003200 IF YES-OR-NO IS EQUAL "N"
003300 DISPLAY "You answered No.".
003400

This is the output of yesno01.cbl if you enter a Y:

OUTPUT:
Is the answer Yes or No? (Y/N)
Y
You answered Yes.

C>
C>

ANALYSIS: Edit, compile, and run this program; then try it, entering a few different answers. You will
notice that it displays a message only if the entry is an uppercase Y or N. When you are comparing
alphanumeric variables, the values are case-dependent, so y is not the same as Y, and n is not the same as
N.

DO/DON'T:
DO test for both uppercase and lowercase versions of an alphanumeric field, if either
uppercase or lowercase values are valid.

DON'T ignore case differences in a variable if they are important in a program.

In DISPLAY-THE-ANSWER, at lines 002800 through 003300, one of two possible messages is
displayed, based on whether the user entered a Y or an N.

At line 002900, the condition being tested is YES-OR-NO IS EQUAL "Y". IS EQUAL are COBOL
reserved words used for testing whether two values are equal. The IF sentences in
DISPLAY-THE-ANSWER at lines 002900 and 003200 are each two lines long; there is no period
until the end of the second line.

When the criteria of a tested condition are met, the condition is considered to be true. When the criteria
of a tested condition are not met, the condition is considered to be false. The DISPLAY statement at line
003000 is executed only when the condition being tested by the IF at line 002900 (YES-OR-NO IS
EQUAL "Y") is true. When the IF at line 002900 is not true (any character but Y is entered), line
003000 is skipped. The DISPLAY statement at line 003300 is executed only when the condition being
tested by the IF at line 003200 (YES-OR-NO IS EQUAL "N") is true. When the IF at line
003200 is not true (any character but N is entered), line 003300 is skipped. When a condition tested
by an IF statement is not true, any statements controlled by the IF are not executed.

Depending on the user's input, there are three possible output results from this program:

If YES-OR-NO contains an N when DISPLAY-THE-ANSWER is performed, the IF test at line
002900 is not true, and line 003000 is not executed. However, the IF test at line 003200 is
true, and line 003300 is executed.

●

If YES-OR-NO contains a Y when DISPLAY-THE-ANSWER is performed, the IF test at line
002900 is true, and line 003000 is executed. However, the IF test at line 003200 is false, and
line 003300 is not executed.

●

If YES-OR-NO does not contain a Y or an N when DISPLAY-THE-ANSWER is performed, the
IF test at line 002900 is false, and line 003000 is not executed. The IF test at line 003200
also is false, and line 003300 is not executed. In this case, neither message is displayed.

●

Listing 4.2 adds the extra step of editing the user's answer to adjust for a lowercase y or n.

TYPE: Listing 4.2. Editing the answer.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. YESNO02.
000300*--
000400* This program asks for a Y or N answer, and then
000500* displays whether the user chose yes or no.
000600* The edit logic allows for entry of Y, y, N, or n.
000700*--
000800 ENVIRONMENT DIVISION.
000900 DATA DIVISION.
001000 WORKING-STORAGE SECTION.
001100
001200 01 YES-OR-NO PIC X.
001300
001400 PROCEDURE DIVISION.
001500 PROGRAM-BEGIN.
001600
001700 PERFORM GET-THE-ANSWER.
001800
001900 PERFORM EDIT-THE-ANSWER.
002000
002100 PERFORM DISPLAY-THE-ANSWER.
002200
002300 PROGRAM-DONE.
002400 STOP RUN.
002500
002600 GET-THE-ANSWER.
002700
002800 DISPLAY "Is the answer Yes or No? (Y/N)".
002900 ACCEPT YES-OR-NO.
003000
003100 EDIT-THE-ANSWER.
003200
003300 IF YES-OR-NO IS EQUAL "y"
003400 MOVE "Y" TO YES-OR-NO.
003500
003600 IF YES-OR-NO IS EQUAL "n"
003700 MOVE "N" TO YES-OR-NO.
003800

003900 DISPLAY-THE-ANSWER.
004000 IF YES-OR-NO IS EQUAL "Y"
004100 DISPLAY "You answered Yes.".
004200
004300 IF YES-OR-NO IS EQUAL "N"
004400 DISPLAY "You answered No.".
004500

ANALYSIS: In EDIT-THE-ANSWER at line 003300, the program checks to see whether the user
entered a y. If true, at line 003400 the program forces this to become a Y. In the same paragraph at lines
003600 and 003700, an n will be changed to an N.

The tests in DISPLAY-THE-ANSWER work correctly now, because the answer has been forced to
uppercase Y or N by the EDIT-THE-ANSWER paragraph.

If you edit, compile, and run yesno02.cbl, you will find that uppercase and lowercase versions of y
and n are now all valid entries. The program still displays no message if anything else is entered. (I will
address this problem later in this chapter, in the section entitled IF-ELSE.)

Using IF to Control Multiple Statements
Listing 4.3 executes multiple statements under the control of the IF tests at lines 004000 and 004400.
In each sequence, a PERFORM is requested to display an additional message before the main message is
displayed. More than one statement can be executed when an IF tests true:

IF condition
 PERFORM DO-SOMETHING
 PERFORM DO-SOMETHING-ELSE.

An IF controls all statements under it until the sentence ends. When an IF tests true, all statements up to
the next period are executed. When an IF tests false, all statements up to the next period are skipped.

TYPE: Listing 4.3. Controlling multiple statements with IF.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. YESNO03.
000300*--
000400* This program asks for a Y or N answer, and then
000500* displays whether the user chose yes or no.
000600* The edit logic allows for entry of Y, y, N, or n.
000700*--
000800 ENVIRONMENT DIVISION.
000900 DATA DIVISION.
001000 WORKING-STORAGE SECTION.
001100
001200 01 YES-OR-NO PIC X.
001300

001400 PROCEDURE DIVISION.
001500 PROGRAM-BEGIN.
001600
001700 PERFORM GET-THE-ANSWER.
001800
001900 PERFORM EDIT-THE-ANSWER.
002000
002100 PERFORM DISPLAY-THE-ANSWER.
002200
002300 PROGRAM-DONE.
002400 STOP RUN.
002500
002600 GET-THE-ANSWER.
002700
002800 DISPLAY "Is the answer Yes or No? (Y/N)".
002900 ACCEPT YES-OR-NO.
003000
003100 EDIT-THE-ANSWER.
003200
003300 IF YES-OR-NO IS EQUAL "y"
003400 MOVE "Y" TO YES-OR-NO.
003500
003600 IF YES-OR-NO IS EQUAL "n"
003700 MOVE "N" TO YES-OR-NO.
003800
003900 DISPLAY-THE-ANSWER.
004000 IF YES-OR-NO IS EQUAL "Y"
004100 PERFORM IT-IS-VALID
004200 DISPLAY "You answered Yes.".
004300
004400 IF YES-OR-NO IS EQUAL "N"
004500 PERFORM IT-IS-VALID
004600 DISPLAY "You answered No.".
004700
004800 IT-IS-VALID.
004900 DISPLAY "Your answer is valid and".
005000

OUTPUT:
Is the answer Yes or No? (Y/N)
y
Your answer is valid and
You answered Yes.

C>
C>

ANALYSIS: When the IF at line 004400 tests true, lines 004100 and 004200 are executed, one
after the other. Line 004100 is a PERFORM request that causes a message to be displayed at line
004900. A similar action happens when the IF at line 004000 tests true and lines 004500 and
004600 are executed.

What Can You Test with IF?
The condition in an IF verb is a test of one value against another for equality or inequality.

New Term: The symbols used to compare two values are called comparison operators. The short and
long versions of these comparisons are all comparison operators. IS NOT EQUAL, NOT =, =, IS
EQUAL, NOT <, >, GREATER THAN, and NOT GREATER THAN are all examples of comparison
operators. Tables 4.1 and 4.2 list all of the comparison operators.

Table 4.1 lists the comparisons that can be made and describes their effects.

Table 4.1. COBOL comparison operators.

Comparison Operator Description

IF x IS EQUAL y True if x equals y

IF x IS LESS THAN y True if x is less than y

IF x IS GREATER THAN y True if x is greater than y

IF x IS NOT EQUAL y True if x does not equal y

IF x IS NOT LESS THAN y True if x is not less than y (or is equal to or greater than y)

IF x IS NOT GREATER THAN y True if x is not greater than y (or is equal to or less than y)

The word IS in a comparison is optional, and EQUAL, GREATER THAN, and LESS THAN can be
shortened to =, >, and <, respectively. Table 4.2 compares the possible versions of comparisons.

Table 4.2. More COBOL comparison operators.

Optional Operator Shortest Version

IF x EQUAL y IF x = y

IF x LESS THAN y IF x < y

IF x GREATER THAN y IF x > y

IF x NOT EQUAL y IF x NOT = y

IF x NOT LESS THAN y IF x NOT < y

IF x NOT GREATER THAN y IF x NOT > y

Listing 4.4 repeats yesno03.cbl, using the shortened comparisons.

TYPE: Listing 4.4. yesno03.cbl with shorter comparisons.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. YESNO04.
000300*--
000400* This program asks for a Y or N answer, and then
000500* displays whether the user chose yes or no.
000600* The edit logic allows for entry of Y, y, N, or n.
000700*--
000800 ENVIRONMENT DIVISION.
000900 DATA DIVISION.
001000 WORKING-STORAGE SECTION.
001100
001200 01 YES-OR-NO PIC X.
001300
001400 PROCEDURE DIVISION.
001500 PROGRAM-BEGIN.
001600
001700 PERFORM GET-THE-ANSWER.
001800
001900 PERFORM EDIT-THE-ANSWER.
002000
002100 PERFORM DISPLAY-THE-ANSWER.
002200
002300 PROGRAM-DONE.
002400 STOP RUN.
002500
002600 GET-THE-ANSWER.
002700
002800 DISPLAY "Is the answer Yes or No? (Y/N)".
002900 ACCEPT YES-OR-NO.
003000
003100 EDIT-THE-ANSWER.
003200
003300 IF YES-OR-NO = "y"
003400 MOVE "Y" TO YES-OR-NO.
003500
003600 IF YES-OR-NO = "n"
003700 MOVE "N" TO YES-OR-NO.
003800
003900 DISPLAY-THE-ANSWER.
004000 IF YES-OR-NO = "Y"
004100 PERFORM IT-IS-VALID
004200 DISPLAY "You answered Yes.".
004300
004400 IF YES-OR-NO = "N"
004500 PERFORM IT-IS-VALID

004600 DISPLAY "You answered No.".
004700
004800 IT-IS-VALID.
004900 DISPLAY "Your answer is valid and".
005000

For numeric values, all these tests make sense. Less than and greater than are both conditions that easily
can be established when you are testing two numbers. But what are you testing when you compare two
alphanumeric variables?

When a condition test is performed on alphanumeric variables, the tests usually compare the characters in
the two alphanumeric values on the left and right sides of the comparison operator, in ASCII order. (See
Appendix B, "ASCII.")

New Term: The sequence in which the characters appear in the ASCII chart is known as the ASCII
collating sequence. Collate means to assemble in some sort of order--in this case, ASCII order.

ASCII is not the only collating sequence. IBM mainframes use a collating sequence called EBCDIC. In
the ASCII collating sequence, numbers appear before uppercase letters, and uppercase letters appear
before lowercase letters. In the EBCDIC collating sequence, lowercase letters appear before uppercase
letters and numbers appear last. Punctuation characters vary quite a bit in the EBCDIC and ASCII
collating sequences. Collating sequences also vary for different spoken languages. Castillian Spanish
treats the letter combinations ch and ll as single letters so that llanero sorts after luna and chico sorts after
corazon. The examples in this book are based on the English ASCII collating sequence.

In ASCII order, A is less than B, AB is less than ABC, and the uppercase letters are less than the
lowercase letters; so, ABC is less than abc. When an alphanumeric variable contains the digits 0 through
9, the digits are less than the characters, so 1BC is less than ABC. Spaces are the lowest of all, so three
spaces are less than 00A. Refer to Appendix B for the complete set and sequence of ASCII characters.

Listing 4.5 will accept two words from a user and then display them in ASCII order. You can use this
program any time you want to find out the actual ASCII order for two values. The testing is done in the
paragraph DISPLAY-THE-WORDS, which starts at line 004100. The actual tests, at lines 004500 and
004900, use a greater than (>) and a not greater than (NOT >) comparison to decide which word to
display first.

TYPE: Listing 4.5. Displaying two words in ASCII order.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. WRDSRT01.
000300*--
000400* Accepts 2 words from the user and then displays
000500* them in ASCII order.
000600*--
000700 ENVIRONMENT DIVISION.
000800 DATA DIVISION.
000900 WORKING-STORAGE SECTION.
001000

001100 01 WORD-1 PIC X(50).
001200 01 WORD-2 PIC X(50).
001300
001400 PROCEDURE DIVISION.
001500 PROGRAM-BEGIN.
001600
001700 PERFORM INITIALIZE-PROGRAM.
001800 PERFORM ENTER-THE-WORDS.
001900 PERFORM DISPLAY-THE-WORDS.
002000
002100 PROGRAM-DONE.
002200 STOP RUN.
002300
002400* Level 2 Routines
002500
002600 INITIALIZE-PROGRAM.
002700 MOVE " " TO WORD-1.
002800 MOVE " " TO WORD-2.
002900
003000 ENTER-THE-WORDS.
003100 DISPLAY "This program will accept 2 words,".
003200 DISPLAY "and then display them".
003300 DISPLAY "in ASCII order.".
003400
003500 DISPLAY "Please enter the first word.".
003600 ACCEPT WORD-1.
003700
003800 DISPLAY "Please enter the second word.".
003900 ACCEPT WORD-2.
004000
004100 DISPLAY-THE-WORDS.
004200
004300 DISPLAY "The words in ASCII order are:".
004400
004500 IF WORD-1 > WORD-2
004600 DISPLAY WORD-2
004700 DISPLAY WORD-1.
004800
004900 IF WORD-1 NOT > WORD-2
005000 DISPLAY WORD-1
005100 DISPLAY WORD-2.
005200

Here is the sample output of wrdsrt01.cbl when the words entered are beta and alpha:

OUTPUT:

This program will accept 2 words,
and then display them
in ASCII order.
Please enter the first word.
beta
Please enter the second word.
alpha
The words in ASCII order are:
alpha
beta

C>

ANALYSIS: Multiple statements are executed within the IF tests at lines 004500 and 004900. There
are two DISPLAY statements under each of the IF tests. If WORD-1 is greater than WORD-2, or if
WORD-1 occurs after WORD-2 in the ASCII sorting sequence, WORD-2 is displayed first.

You should edit, compile, and run wrdsrt01.cbl; then try it with various pairs of "words," such as
ABC and abc, (space)ABC and ABC, or ABCD and ABC, to see how these are arranged in ASCII order.

Please note that many people, including experienced programmers, assume that the opposite of
GREATER THAN is LESS THAN. However, testing for only these two conditions misses the case where
the two entered words are identical. The complement of GREATER THAN is LESS THAN OR EQUAL
which is correctly stated as NOT GREATER THAN.

You also can try a version of wrdsrt01.cbl that reverses the test in DISPLAY-THE-WORDS, as in
Listing 4.6, which is just a listing of the DISPLAY-THE-WORDS paragraph. Try coding this one as
wrdsrt02.cbl and satisfy yourself that the results are identical. Note that the test and display order
are reversed.

TYPE: Listing 4.6. Reversing the test and display.

004100 DISPLAY-THE-WORDS.
004200
004300 DISPLAY "The words sorted in ASCII order are:".
004400 IF WORD-1 < WORD-2
004500 DISPLAY WORD-1
004600 DISPLAY WORD-2.
004700 IF WORD-1 NOT < WORD-2
004800 DISPLAY WORD-2
004900 DISPLAY WORD-1.

You should also try a version of wrdsrt01.cbl that tests incorrectly in DISPLAY-THE-WORDS, as
in Listing 4.7. This version tests for LESS THAN and GREATER THAN. Try coding this one as
badsrt.cbl and satisfy yourself that the results are identical unless you enter the exact string for
WORD-1 and WORD-2, such as ABC and ABC. Note that the test fails to display anything for this
condition.

TYPE: Listing 4.7. An incorrect version of the test.

004100 DISPLAY-THE-WORDS.
004200
004300 DISPLAY "The words sorted in ASCII order are:".
004400 IF WORD-1 < WORD-2
004500 DISPLAY WORD-1
004600 DISPLAY WORD-2.
004700 IF WORD-1 > WORD-2
004800 DISPLAY WORD-2
004900 DISPLAY WORD-1.

The indentation chosen for the IF is completely arbitrary. As long as the IF starts in and stays within
Area B, the arrangement is up to you. Listing 4.8 and Listing 4.9 are equally valid, but in Listing 4.9 it is
difficult to tell what is going on, and Listing 4.8 looks a bit sloppy.

DO/DON'T:
DO indent IF conditions carefully. An IF controls all statements up to the period at the end
of the sentence.

DON'T use sloppy indenting on an IF. Correct indentation gives a good visual clue of
which parts of the program are controlled by the IF.

TYPE: Listing 4.8. Sloppy indenting of an IF.

004100 DISPLAY-THE-WORDS.
004200
004300 DISPLAY "The words sorted in ASCII order are:".
004400 IF WORD-1 < WORD-2
004500 DISPLAY WORD-1
004600 DISPLAY WORD-2.
004700 IF WORD-1 NOT < WORD-2
004800 DISPLAY WORD-2
004900 DISPLAY WORD-1.

TYPE: Listing 4.9. Failing to indent an IF.

004100 DISPLAY-THE-WORDS.
004200
004300 DISPLAY "The words sorted in ASCII order are:".
004400 IF WORD-1 < WORD-2
004500 DISPLAY WORD-1
004600 DISPLAY WORD-2.
004700 IF WORD-1 NOT < WORD-2
004800 DISPLAY WORD-2
004900 DISPLAY WORD-1.

Testing Multiple Conditions
An IF test also can be used to test more than one condition. Conditions can be combined by using AND,
OR, or combinations of both. Listing 4.10 is a short menu program. A menu program is designed to
display a series of options on the screen and let the user pick one option to execute. In this menu
program, the user has a choice of displaying one of three possible messages.

TYPE: Listing 4.10. Combining tests using OR.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. MENU01.
000300*--
000400* THIS PROGRAM DISPLAYS A THREE CHOICE MENU OF
000500* MESSAGES THAT CAN BE DISPLAYED.
000600* THE USER ENTERS THE CHOICE, 1, 2 OR 3, AND
000700* THE APPROPRIATE MESSAGE IS DISPLAYED.
000800* AN ERROR MESSAGE IS DISPLAYED IF AN INVALID
000900* CHOICE IS MADE.
001000*--
001100 ENVIRONMENT DIVISION.
001200 DATA DIVISION.
001300 WORKING-STORAGE SECTION.
001400
001500 01 MENU-PICK PIC 9.
001600
001700 PROCEDURE DIVISION.
001800 PROGRAM-BEGIN.
001900
002000 PERFORM GET-THE-MENU-PICK.
002100
002200 PERFORM DO-THE-MENU-PICK.
002300
002400 PROGRAM-DONE.
002500 STOP RUN.
002600
002700* LEVEL 2 ROUTINES
002800 GET-THE-MENU-PICK.
002900
003000 PERFORM DISPLAY-THE-MENU.
003100 PERFORM GET-THE-PICK.
003200
003300 DO-THE-MENU-PICK.
003400 IF MENU-PICK < 1 OR
003500 MENU-PICK > 3
003600 DISPLAY "Invalid selection".

003700
003800 IF MENU-PICK = 1
003900 DISPLAY "One for the money.".
004000
004100 IF MENU-PICK = 2
004200 DISPLAY "Two for the show.".
004300
004400 IF MENU-PICK = 3
004500 DISPLAY "Three to get ready.".
004600
004700* LEVEL 3 ROUTINES
004800 DISPLAY-THE-MENU.
004900 DISPLAY "Please enter the number of the message".
005000 DISPLAY "that you wish to display.".
005100* Display a blank line
005200 DISPLAY " ".
005300 DISPLAY "1. First Message".
005400 DISPLAY "2. Second Message".
005500 DISPLAY "3. Third Message".
005600* Display a blank line
005700 DISPLAY " ".
005800 DISPLAY "Your selection (1-3)?".
005900
006000 GET-THE-PICK.
006100 ACCEPT MENU-PICK.
006200

Here are sample output results from menu01.cbl for a valid and an invalid response:

OUTPUT:
Please enter the number of the message
that you wish to display.

1. First Message
2. Second Message
3. Third Message

Your selection (1-3)?
2
Two for the show.

C>
C>

Please enter the number of the message
that you wish to display.

1. First Message
2. Second Message
3. Third Message

Your selection (1-3)?
5
Invalid selection

C>
C>

ANALYSIS: The valid menu selections are 1, 2, and 3. The test that the value entered is in a range at
lines 003400 through 003500, ending with a display of an invalid entry message at line 003600. If
the entered MENU-PICK is less than 1 or greater than 3, it is invalid. Note that the OR on line 003400
combines the two tests within one IF. An OR test is true if either of the tests is true.

Read the comments in the program, because they explain some of the options used to improve the look of
the displayed menu. The levels in the comments relate to the level of PERFORM. Routines in level 2 are
being performed from the top level of the program, PROGRAM-BEGIN. Routines in level 3 are
performed from within routines at level 2.

An AND test is true only if both conditions being tested are true. Listing 4.11 asks the user to enter a
number between 10 and 100, excluding 10 and 100. Therefore, the valid range of entries for this program
is 011 through 099. Remember that ACUCOBOL will require that you enter the leading zero.

TYPE: Listing 4.11. Combining tests with AND.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. RANGE01.
000300*--
000400* ASKS USER FOR A NUMBER BETWEEN 10 AND 100
000500* EXCLUSIVE AND PRINTS A MESSAGE IF THE ENTRY
000600* IS IN RANGE.
000700*--
000800 ENVIRONMENT DIVISION.
000900 DATA DIVISION.
001000 WORKING-STORAGE SECTION.
001100
001200 01 THE-NUMBER PIC 999.
001300
001400 PROCEDURE DIVISION.
001500 PROGRAM-BEGIN.
001600
001700 PERFORM GET-THE-NUMBER.
001800
001900 PERFORM CHECK-THE-NUMBER.

002000
002100 PROGRAM-DONE.
002200 STOP RUN.
002300
002400 GET-THE-NUMBER.
002500 DISPLAY "Enter a number greater than 10".
002600 DISPLAY "and less than 100. (011-099)".
002700 ACCEPT THE-NUMBER.
002800
002900 CHECK-THE-NUMBER.
003000 IF THE-NUMBER > 10 AND
003100 THE-NUMBER < 100
003200 DISPLAY "The number is in range.".
003300

ANALYSIS: At lines 003000 and 003100, THE-NUMBER must be greater than 10 and less than 100
to be valid.

IF-ELSE

When an IF test fails, none of the statements controlled by the IF test are executed. The program
continues to the next sentence and skips all the logic. In Listing 4.5 (wrdsrt0103.cbl), at lines
004500 through 005100, two IF tests are done to check the correct order for displaying WORD-1 and
WORD-2. In these two comparisons, the second IF test is the exact opposite of the first IF test:

WORD-1 > WORD-2
WORD-1 NOT > WORD-2.

If you refer to Listing 4.7, you will recall that I had you deliberately create an error in the two tests by
testing LESS THAN followed by GREATER THAN. It is entirely possible to make this exact error by
accident. Rather than worrying about testing the complementary condition, you can use the ELSE clause
of an IF to do it for you. If you are testing a condition and you want to do one set of commands if the
condition or conditions are true and another set if they are false, it is easier to use ELSE than to try to
word an IF with the opposite condition.

An ELSE has the following form:

IF condition
 statement
 statement
ELSE
 statement
 statement.

The following is an example of an ELSE statement:

IF A < B
 PERFORM ACTION-A

 PERFORM ACTION-B
ELSE
 PERFORM ACTION-C
 PERFORM ACTION-D.

ELSE can be used in an IF test to specify what to do when the IF condition does not test as true. An
ELSE also can execute multiple statements. In an IF-ELSE statement, when the IF condition is true, all
statements up to the ELSE are executed. Otherwise, all statements from the ELSE to the closing period
are executed. The period is placed at the end of the last statement in the ELSE.

Listing 4.12 is a slightly improved version of wrdsrt01.cbl. The two IF tests have been replaced by
an IF-ELSE. You should be able to copy wrdsrt01.cbl to wrdsrt03.cbl and make the two
changes needed easily. Remove the period at the end of line 004700, and change the second IF test to
an ELSE.

TYPE: Listing 4.12. Using IF-ELSE.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. WRDSRT03.
000300*--
000400* Accepts 2 words from the user and then displays
000500* them in ASCII order.
000600*--
000700 ENVIRONMENT DIVISION.
000800 DATA DIVISION.
000900 WORKING-STORAGE SECTION.
001000
001100 01 WORD-1 PIC X(50).
001200 01 WORD-2 PIC X(50).
001300
001400 PROCEDURE DIVISION.
001500 PROGRAM-BEGIN.
001600
001700 PERFORM INITIALIZE-PROGRAM.
001800 PERFORM ENTER-THE-WORDS.
001900 PERFORM DISPLAY-THE-WORDS.
002000
002100 PROGRAM-DONE.
002200 STOP RUN.
002300
002400* Level 2 Routines
002500
002600 INITIALIZE-PROGRAM.
002700 MOVE " " TO WORD-1.
002800 MOVE " " TO WORD-2.
002900

003000 ENTER-THE-WORDS.
003100 DISPLAY "This program will accept 2 words,".
003200 DISPLAY "and then display them".
003300 DISPLAY "in ASCII order.".
003400
003500 DISPLAY "Please enter the first word.".
003600 ACCEPT WORD-1.
003700
003800 DISPLAY "Please enter the second word.".
003900 ACCEPT WORD-2.
004000
004100 DISPLAY-THE-WORDS.
004200
004300 DISPLAY "The words in ASCII order are:".
004400
004500 IF WORD-1 > WORD-2
004600 DISPLAY WORD-2
004700 DISPLAY WORD-1
004800 ELSE
004900 DISPLAY WORD-1
005000 DISPLAY WORD-2.
005100

The IF-ELSE construction is useful when you are working with combined tests.

Look at Listing 4.11 again and try to work out the opposite test to the test at lines 003000 and 003100.
It should be something like the lines in Listing 4.13.

TYPE: Listing 4.13. The original test and its opposite.

003000 IF THE-NUMBER > 10 AND
003100 THE-NUMBER < 100
003200 DISPLAY "The number is in range.".
003300
003400 IF THE-NUMBER NOT > 10 OR
003500 THE-NUMBER NOT < 100
000000 DISPLAY "The number is not in range.".

Listing 4.14 handles the problem by using ELSE, and it is simpler to code and easier to understand.

TYPE: Listing 4.14. Using ELSE.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. RANGE02.
000300*--
000400* ASKS USER FOR A NUMBER BETWEEN 10 AND 100
000500* EXCLUSIVE AND PRINTS A MESSAGE IF THE ENTRY

000600* IS IN RANGE.
000700*--
000800 ENVIRONMENT DIVISION.
000900 DATA DIVISION.
001000 WORKING-STORAGE SECTION.
001100
001200 01 THE-NUMBER PIC 999.
001300
001400 PROCEDURE DIVISION.
001500 PROGRAM-BEGIN.
001600
001700 PERFORM GET-THE-NUMBER.
001800
001900 PERFORM CHECK-THE-NUMBER.
002000
002100 PROGRAM-DONE.
002200 STOP RUN.
002300
002400 GET-THE-NUMBER.
002500 DISPLAY "Enter a number greater than 10".
002600 DISPLAY "and less than 100. (011-099)".
002700 ACCEPT THE-NUMBER.
002800
002900 CHECK-THE-NUMBER.
003000 IF THE-NUMBER > 10 AND
003100 THE-NUMBER < 100
003200 DISPLAY "The number is in range."
003300 ELSE
003400 DISPLAY "The number is out of range.".
003500

Listing 4.15 is another version of the yes/no problem. In this listing, the answer is tested for Y or N, and a
separate paragraph is performed if the answer is valid. Otherwise (ELSE), an invalid entry message is
displayed. The code in the paragraph DISPLAY-YES-OR-NO can be written differently. See whether
you can figure out what to change, and then look at the analysis after the listing.

TYPE: Listing 4.15. Using IF-ELSE.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. YESNO05.
000300*--
000400* This program asks for a Y or N answer, and then
000500* displays whether the user chose yes or no
000600* or an invalid entry.
000700* The edit logic allows for entry of Y, y, N, or n.
000800*--

000900 ENVIRONMENT DIVISION.
001000 DATA DIVISION.
001100 WORKING-STORAGE SECTION.
001200
001300 01 YES-OR-NO PIC X.
001400
001500 PROCEDURE DIVISION.
001600 PROGRAM-BEGIN.
001700
001800 PERFORM GET-THE-ANSWER.
001900
002000 PERFORM EDIT-THE-ANSWER.
002100
002200 PERFORM DISPLAY-THE-ANSWER.
002300
002400 PROGRAM-DONE.
002500 STOP RUN.
002600
002700 GET-THE-ANSWER.
002800
002900 DISPLAY "Is the answer Yes or No? (Y/N)".
003000 ACCEPT YES-OR-NO.
003100
003200 EDIT-THE-ANSWER.
003300
003400 IF YES-OR-NO = "y"
003500 MOVE "Y" TO YES-OR-NO.
003600
003700 IF YES-OR-NO = "n"
003800 MOVE "N" TO YES-OR-NO.
003900
004000 DISPLAY-THE-ANSWER.
004100
004200 IF YES-OR-NO = "Y" OR
004300 YES-OR-NO = "N"
004400 PERFORM DISPLAY-YES-OR-NO
004500 ELSE
004600 DISPLAY "Your entry was invalid.".
004700
004800 DISPLAY-YES-OR-NO.
004900
005000 IF YES-OR-NO = "Y"
005100 DISPLAY "You answered Yes.".
005200
005300 IF YES-OR-NO = "N"
005400 DISPLAY "You answered No.".

005500

ANALYSIS: The paragraph DISPLAY-YES-OR-NO is performed only if YES-OR-NO is Y or N, so
this paragraph could be simplified by using an ELSE:

DISPLAY-YES-OR-NO.

 IF YES-OR-NO = "Y"
 DISPLAY "You answered Yes."
 ELSE
 DISPLAY "You answered No.".

DO/DON'T:
DO type IF and IF-ELSE constructions carefully. An IF controls all statements up to the
next ELSE, or to the period at the end of the sentence if there is no ELSE. An ELSE
controls all statements up to the period at the end of the sentence.

DON'T use sloppy indenting on IF and IF-ELSE verbs. Correct indentation gives a good
visual clue of which parts of the program are controlled by the IF and which are controlled
by the ELSE.

A final note in IF-ELSE indentation is that COBOL unfortunately uses the period as a
sentence terminator. The period is almost invisible and can even get lost in a listing printed
with a poor ribbon. This is another reason that source code should be kept as standardized as
possible. Proper IF-ELSE indentations are one way of keeping your code easy to read.

Summary
Today's lesson explored controlling the flow of programs by testing conditions with the IF statement.
You learned these basics:

The primary method of changing the flow of a program is to use an IF or an IF-ELSE to make a
decision, based on the values of variables.

●

Multiple statements can be executed within an IF.●

The conditional operators used with an IF test are as follows:

Conditional operator Alternative operator

IS EQUAL =

IS GREATER THAN >

IS LESS THAN <

IS NOT EQUAL NOT =

IS NOT GREATER THAN NOT >

IS NOT LESS THAN NOT <

●

When numeric values are compared, they are compared as numbers.●

When alphanumeric values are compared, they are compared based on the ASCII collating
sequence.

●

Multiple conditions can be tested in an IF by using AND and OR to connect two or more
comparisons.

●

An ELSE can be used to control statements to be executed when the IF test evaluates as false.●

Multiple statements can be executed within an ELSE.●

The statements controlled by an IF are executed if the condition being tested by an IF is true.●

The statements controlled by an ELSE are executed if the condition being tested by the
corresponding IF is false.

●

Q&A
Q Can a numeric variable be tested against an alphanumeric variable?

A Some compilers let you get away with this, but it is a very bad habit. If THE-MESSAGE is a
PIC X containing the character "2", and THE-NUMBER is a PIC 9 containing 2, the statement

IF THE-MESSAGE = THE-NUMBER

could produce the following different results:

The compiler might refuse to compile it and return an error that you cannot compare--unlike
data types.

❍

It might compile, run, and test correctly.❍

It might compile, but the program might crash while running when the test is performed.❍

It might compile and run, but return random results that test true sometimes and test false
other times.

❍

Because only one of these possibilities is what you want, it isn't worth trying to work with a
particular compiler's idiosyncrasies. It is also makes it hard to figure out what the program is doing
when unlike data types are compared.

Workshop

Quiz

1. In the following paragraph DECIDE-WHAT-TO-DO, which lines are executed when
THE-NUMBER equals 7?

005200 DECIDE-WHAT-TO-DO.
005300 IF THE-NUMBER = 7 OR
005400 THE-NUMBER < 4
005500 PERFORM ACTION-1
005600 PERFORM ACTION-2
005700 ELSE
005800 PERFORM ACTION-3.
005900

2. Which lines are executed when THE-NUMBER equals 6?

3. Which lines are executed when THE-NUMBER equals 2?

4. Which lines are executed when THE-NUMBER equals 4?

Exercises

1. Modify Listing 4.2 to allow Maybe as a third possible answer.

2. Modify Listing 4.4 to allow Maybe as a third possible answer.

Hint: You can test more than two conditions using AND or OR, as in the following example:

004400 IF YES-OR-NO = "Y" OR
004500 YES-OR-NO = "N" OR
004600 YES-OR-NO = "M"
004700 PERFORM DISPLAY-YES-NO-OR-MAYBE

Previous chapter Next chapter Contents

Macmillan Computer Publishing USA

© Copyright, Macmillan Computer Publishing. All rights reserved.

Teach Yourself COBOL in 21 days,
Second Edition

Previous chapter Next chapter Contents

- Day 5 -
Using PERFORM, GO TO, and IF to

Control Programs
In COBOL, the flow of a program is controlled almost entirely by IF-ELSE statements, the PERFORM
verb, and GO TO, which is a new verb you will look at today. There are some additional versions of the
PERFORM verb and the IF-ELSE statement, allowing even more control, and these are covered as well.
Today, you learn about the following topics:

Using GO TO to control a program.●

Using PERFORM repetitively.●

What is a processing loop?●

Using PERFORM to control a processing loop.●

Using GO TO to Control a Program
You can force the program to jump to the beginning of any paragraph with a GO TO. Here is an
example:

GO TO paragraph-name.

A GO TO is like a PERFORM in that the program jumps to a new paragraph. However, when that
paragraph is completed, the PERFORM returns to the line at which the PERFORM was requested, but the
GO TO does not. When a GO TO reaches the end of the paragraph to which it has jumped, it moves into
the next paragraph.

GO TO is written as two words, but it is used as one. The words always appear together. Listing 5.1 uses

GO TO to bail out of a program.

TYPE: Listing 5.1. Using GO TO.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. QUIT01.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.
000500 WORKING-STORAGE SECTION.
000600
000700 01 YES-OR-NO PIC X.
000800
000900 PROCEDURE DIVISION.
001000 PROGRAM-BEGIN.
001100
001200 PERFORM SHALL-WE-CONTINUE.
001300 IF YES-OR-NO = "N"
001400 GO TO PROGRAM-DONE.
001500
001600 PERFORM MAIN-LOGIC.
001700
001800 PROGRAM-DONE.
001900 STOP RUN.
002000
002100 SHALL-WE-CONTINUE.
002200 DISPLAY "Continue (Y/N)?".
002300 ACCEPT YES-OR-NO.
002400 IF YES-OR-NO = "n"
002500 MOVE "N" TO YES-OR-NO.
002600
002700 MAIN-LOGIC.
002800 DISPLAY "This is the main logic.".
002900

ANALYSIS: At line 001200, a PERFORM is requested of SHALL-WE-CONTINUE. In this paragraph,
at lines 002100 and 002200, the user is asked whether he wants to continue. When the user enters a
response, a possible "n" is converted to "N" and the logic at line 001300 checks whether the user
entered N, and, if so, the program flow at line 001400 jumps straight to PROGRAM-DONE.
PROGRAM-DONE contains the now familiar STOP RUN, and execution of the program is terminated.

The alternative is that the user enters something other than N (or n), and line 001300 is skipped. The
next executed line is 001600, where the program requests a PERFORM of MAIN-LOGIC. (In this
example, the content of MAIN-LOGIC isn't important.)

GO TO is the only four-letter verb in COBOL. (That's a joke.) The use of GO TO in programs is a hotly
debated issue, and academics will tell you, "You never use a GO TO," or "One more GO TO out of you,
and I'm going to wash your mouth out with soap!" One professor of computer science was so incensed by

GO TO that he designed a whole new programming language with no GO TO in it.

If you plan to work with COBOL in the real world, rather than behind closed university doors, you must
know what a GO TO does and how to work with and around it. Any working program that you have to
modify will be littered with GO TO verbs, and you ignore them at your own peril. Just remember that
mentioning a GO TO around some people will make their faces red and cause steam to come out of their
ears.

You shouldn't use GO TO in programs that you write, but you will have to deal with GO TO in programs
that you modify. Listing 5.2 is an example of a GO TO that would be considered a minor sin by some
people. The program, mult01.cbl, displays multiplication tables (such as the ones you had to
memorize in school) based on which table the user selects to display.

TYPE: Listing 5.2. Using GO TO to execute a paragraph several times.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. MULT01.
000300*--
000400* This program asks the user for a number for a
000500* multiplication table,
000600* and then displays a table for that number times
000700* the values 1 through 12.
000800*--
000900 ENVIRONMENT DIVISION.
001000 DATA DIVISION.
001100 WORKING-STORAGE SECTION.
001200
001300 01 THE-NUMBER PIC 99.
001400 01 THE-MULTIPLIER PIC 999.
001500 01 THE-PRODUCT PIC 9999.
001600
001700 PROCEDURE DIVISION.
001800* LEVEL 1 ROUTINES
001900 PROGRAM-BEGIN.
002000 PERFORM PROGRAM-INITIALIZATION.
002100 PERFORM GET-TABLE-NUMBER.
002200 PERFORM DISPLAY-THE-TABLE.
002300
002400 PROGRAM-DONE.
002500 STOP RUN.
002600
002700* LEVEL 2 ROUTINES
002800 PROGRAM-INITIALIZATION.
002900 MOVE 0 TO THE-MULTIPLIER.
003000
003100 GET-TABLE-NUMBER.

003200 DISPLAY
003300 "Which multiplication table (01-99)?".
003400 ACCEPT THE-NUMBER.
003500
003600 DISPLAY-THE-TABLE.
003700 DISPLAY "The " THE-NUMBER `s table is:".
003800 PERFORM CALCULATE-AND-DISPLAY.
003900
004000* LEVEL 3 ROUTINES.
004100 CALCULATE-AND-DISPLAY.
004200 ADD 1 TO THE-MULTIPLIER.
004300 COMPUTE THE-PRODUCT = THE-NUMBER * THE-MULTIPLIER.
004400 DISPLAY
004500 THE-NUMBER " * " THE-MULTIPLIER " = " THE-PRODUCT.
004600 IF THE-MULTIPLIER < 12
004700 GO TO CALCULATE-AND-DISPLAY.
004800

This is the output of mult01.cbl for the 7's table (which I had a great deal of trouble memorizing in
school):

OUTPUT:
Which multiplication table (01-99)?
07
The 07's table is:
07 * 001 = 0007
07 * 002 = 0014
07 * 003 = 0021
07 * 004 = 0028
07 * 005 = 0035
07 * 006 = 0042
07 * 007 = 0049
07 * 008 = 0056
07 * 009 = 0063
07 * 010 = 0070
07 * 011 = 0077
07 * 012 = 0084
C>
C>

ANALYSIS: In PROGRAM-INITIALIZATION, the variable THE-MULTIPLIER is set to 0. In
GET-TABLE-NUMBER, the user is asked to select the multiplication table and is prompted for a number
between 01 and 99. Remember that some versions of COBOL require that you enter a number with a
leading zero, here--03, for example, if you want 3.

These two paragraphs, when performed, set things up for the main activity of the program, which is to
display a table of the entered number times 1, times 2, times 3, and so on to 12.

Now look at the paragraph CALCULATE-AND-DISPLAY. THE-MULTIPLIER is initialized to 0 by
PROGRAM-INITIALIZATION, so the action of this paragraph is to add 1 to THE-MULTIPLIER,
calculate THE-PRODUCT by multiplying THE-MULTIPLIER by THE-NUMBER, and then display this
information.

In the COBOL COMPUTE statement, the asterisk (*) is the multiplication symbol.

The DISPLAY statement is organized to display the results as follows:

03 * 01 = 0003
03 * 02 = 0006

The basic repetitive task of the program to is add 1 to THE-MULTIPLIER, calculate the new product,
and display the result. It is necessary to do this 12 times. At line 004600, an IF tests whether
THE-MULTIPLIER is less than 12. As long as it is, the program will jump back to the beginning of
CALCULATE-AND-DISPLAY. Each time, the program adds 1 to THE-MULTIPLIER and calculates
and displays the new product. When THE-MULTIPLIER reaches 12, the IF condition is no longer true.
The GO TO CALCULATE-AND-DISPLAY at line 004700 is not executed and the
CALCULATE-AND-DISPLAY paragraph ends. The program returns to the end of line 003800 looking
for more commands. There are none. No further commands are in DISPLAY-THE-TABLE, so that
paragraph ends and the program returns to line 002200, where there also are no further commands. The
program proceeds to lines 002400 and 002500 and ends.

It is certainly legitimate to use a GO TO at the bottom of a paragraph to jump back to the top of the
paragraph in order to execute the paragraph again under some condition, although some would dispute
even that use.

After you've worked with modifying real code, you will find out why GO TO should be discouraged. It is
very confusing to be following a paragraph of logic, and find a GO TO to another paragraph somewhere
else in the program. Because a GO TO does not bounce back, you have no way of knowing whether the
rest of the current paragraph is ever executed or the programmer just skipped everything else for some
reason.

One danger of GO TO verbs is the likelihood that the programmer skipped some code for no reason at all
(other than carelessness), instead of having some reason to skip the code.

Understand GO TO, because you will find it in various programs. You can avoid GO TO completely, as
you will see a little later in today's lesson. So, if you ever work in a shop that has banned the use of GO
TO, you can work your way around the stricture.

Using PERFORM Repetitively
Now that you have been warned about the evils of GO TO, how could you write the previous program
without one? The PERFORM verb is available for that purpose--in a variety of flavors. One of them
allows you to perform a paragraph several times:

PERFORM A-PARAGRAPH 10 TIMES.

Listing 5.3, mult02.cbl, uses this version of the PERFORM verb to present the same multiplication

tables based on the user's selection. Edit, compile, and run this program. It will accept factors up to 99.

ANALYSIS: Listing 5.3. Using PERFORM multiple TIMES.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. MULT02.
000300*--
000400* This program asks the user for a number for a
000500* multiplication table,
000600* and then displays a table for that number times
000700* the values 1 through 12.
000800*--
000900 ENVIRONMENT DIVISION.
001000 DATA DIVISION.
001100 WORKING-STORAGE SECTION.
001200
001300 01 THE-NUMBER PIC 99.
001400 01 THE-MULTIPLIER PIC 999.
001500 01 THE-PRODUCT PIC 9999.
001600
001700 PROCEDURE DIVISION.
001800* LEVEL 1 ROUTINES
001900 PROGRAM-BEGIN.
002000 PERFORM PROGRAM-INITIALIZATION.
002100 PERFORM GET-TABLE-NUMBER.
002200 PERFORM DISPLAY-THE-TABLE.
002300
002400 PROGRAM-DONE.
002500 STOP RUN.
002600
002700* LEVEL 2 ROUTINES
002800 PROGRAM-INITIALIZATION.
002900 MOVE 0 TO THE-MULTIPLIER.
003000
003100 GET-TABLE-NUMBER.
003200 DISPLAY
003300 "Which multiplication table (01-99)?".
003400 ACCEPT THE-NUMBER.
003500
003600 DISPLAY-THE-TABLE.
003700 DISPLAY "The " THE-NUMBER "`s table is:".
003800 PERFORM CALCULATE-AND-DISPLAY 12 TIMES.
003900
004000* LEVEL 3 ROUTINES.
004100 CALCULATE-AND-DISPLAY.
004200 ADD 1 TO THE-MULTIPLIER.

004300 COMPUTE THE-PRODUCT = THE-NUMBER * THE-MULTIPLIER.
004400 DISPLAY
004500 THE-NUMBER " * " THE-MULTIPLIER " = " THE-PRODUCT.

ANALYSIS: The program is identical to mult01.cbl except that the IF and GO TO at lines 004600
and 004700 are removed, and the PERFORM at line 003800 has been replaced with PERFORM
CALCULATE-AND-DISPLAY 12 TIMES.

Again, the basic repetitive task of the program is to add 1, calculate, and display the result. It is necessary
to do this 12 times, and this job is taken care of at line 003800.

When the PERFORM verb is used to perform something a number of times, the COBOL compiler takes
care of setting things so that a PERFORM is requested over and over until the number of times is
exhausted. When the program is running, it actually jumps down to line 004100 and then back to line
003800 12 times.

The PERFORM...TIMES verb is flexible, and the number of times to perform something can be a
variable itself. Here is an example:

PERFORM A-PARAGRAPH HOW-MANY TIMES.

Listing 5.4 takes the multiplication table program one step further by allowing the user to specify the
number of entries to be displayed.

TYPE: Listing 5.4. Varying the number of entries.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. MULT03.
000300*--
000400* This program asks the user for a number for a
000500* multiplication table, and a table size
000600* and then displays a table for that number times
000700* the values 1 through HOW-MANY.
000800*
000900*
001000*--
001100 ENVIRONMENT DIVISION.
001200 DATA DIVISION.
001300 WORKING-STORAGE SECTION.
001400
001500 01 THE-NUMBER PIC 99.
001600 01 THE-MULTIPLIER PIC 999.
001700 01 THE-PRODUCT PIC 9999.
001800 01 HOW-MANY PIC 99.
001900
002000
002100
002200

002300 PROCEDURE DIVISION.
002400* LEVEL 1 ROUTINES
002500 PROGRAM-BEGIN.
002600 PERFORM PROGRAM-INITIALIZATION.
002700 PERFORM GET-TABLE-DATA.
002800 PERFORM DISPLAY-THE-TABLE.
002900
003000 PROGRAM-DONE.
003100 STOP RUN.
003200
003300* LEVEL 2 ROUTINES
003400 PROGRAM-INITIALIZATION.
003500 MOVE 0 TO THE-MULTIPLIER.
003600
003700
003800 GET-TABLE-DATA.
003900 DISPLAY
004000 "Which multiplication table(01-99)?".
004100 ACCEPT THE-NUMBER.
004200
004300 DISPLAY "How many entries would you like (01-99)?".
004400 ACCEPT HOW-MANY.
004500
004600 DISPLAY-THE-TABLE.
004700 DISPLAY "The " THE-NUMBER "`s table is:".
004800 PERFORM CALCULATE-AND-DISPLAY HOW-MANY TIMES.
004900
005000* LEVEL 3 ROUTINES.
005100 CALCULATE-AND-DISPLAY.
005200 ADD 1 TO THE-MULTIPLIER.
005300 COMPUTE THE-PRODUCT = THE-NUMBER * THE-MULTIPLIER.
005400 DISPLAY
005500 THE-NUMBER " * " THE-MULTIPLIER " = " THE-PRODUCT.
005600

The following is the output from mult03.cbl for 15 entries of the 15's table:

OUTPUT:
Which multiplication table(01-99)?
15
How many entries would you like (01-99)?
15
The 15's table is:
15 * 001 = 0015
15 * 002 = 0030
15 * 003 = 0045

15 * 004 = 0060
15 * 005 = 0075
15 * 006 = 0090
15 * 007 = 0105
15 * 008 = 0120
15 * 009 = 0135
15 * 010 = 0150
15 * 011 = 0165
15 * 012 = 0180
15 * 013 = 0195
15 * 014 = 0210
15 * 015 = 0225
C>
C>

ANALYSIS: In Listing 5.4, mult03.cbl, the GET-TABLE-NUMBER paragraph has been changed to
GET-TABLE-DATA and additionally asks the user for the number of entries to be displayed. This value
is stored in the variable HOW-MANY. Instead of performing CALCULATE-AND-DISPLAY 12 TIMES,
the program performs it HOW-MANY TIMES.

If you edit, compile, and run this program, you can display the 15's table with 24 or 25 entries. If you
enter more than 25 for the number of entries, the first entries in the table will scroll off the top of the
screen.

Certain terminals known as block mode terminals do not display all lines. Instead they display one line,
wait for you to press Enter, then display the next line, and so on. If this happens to you, consult with your
system administrator for verification that you are using block mode terminals. If this is the case, you
should consider acquiring the Micro Focus Personal COBOL Compiler to continue these lessons.

The program mult03.cbl contains a few extra blank lines because you will be modifying it shortly.
Spend some time going over Listing 5.4 to make sure that you really understand what is happening in the
program. Run it several times with different values (with the program in front of you) and work out
where you are in the code at each point in the running program.

In mult03.cbl, the flaw, as mentioned before, is that early entries in the table scroll off the screen if
more than 20 entries are requested.

You have all the tools you need to correct this problem; it is just a matter of using them. To tidy up the
display in the next example, the program halts the display after every 15 lines.

The traditional way of doing this would be to display 15 lines, display Press ENTER to continue
. . ., and wait for the user to press the Enter key.

Remember that using the ACCEPT verb causes the computer to wait for input from the keyboard until the
user presses Enter. In this case, you want the user to press Enter, but you don't care about any values
entered. The simple solution is to ACCEPT a dummy variable.

Edit, compile, and run Listing 5.5, trying numbers of entries greater than 15. The display will pause after
15 lines and wait for you to press Enter; then it will continue the display.

TYPE: Listing 5.5. Pausing after 15 lines.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. MULT04.
000300*--
000400* This program asks the user for a number for a
000500* multiplication table, and a table size
000600* and then displays a table for that number
000700* times the values 1 through HOW-MANY.
000800*
000900* The display is paused after each 15 lines.
001000*--
001100 ENVIRONMENT DIVISION.
001200 DATA DIVISION.
001300 WORKING-STORAGE SECTION.
001400
001500 01 THE-NUMBER PIC 99.
001600 01 THE-MULTIPLIER PIC 999.
001700 01 THE-PRODUCT PIC 9999.
001800 01 HOW-MANY PIC 99.
001900 01 SCREEN-LINES PIC 99.
002000
002100 01 A-DUMMY PIC X.
002200
002300 PROCEDURE DIVISION.
002400* LEVEL 1 ROUTINES
002500 PROGRAM-BEGIN.
002600 PERFORM PROGRAM-INITIALIZATION.
002700 PERFORM GET-TABLE-DATA.
002800 PERFORM DISPLAY-THE-TABLE.
002900
003000 PROGRAM-DONE.
003100 STOP RUN.
003200
003300* LEVEL 2 ROUTINES
003400 PROGRAM-INITIALIZATION.
003500 MOVE 0 TO THE-MULTIPLIER.
003600 MOVE 0 TO SCREEN-LINES.
003700
003800 GET-TABLE-DATA.
003900 DISPLAY
004000 "Which multiplication table (01-99)?".
004100 ACCEPT THE-NUMBER.
004200
004300 DISPLAY "How many entries would you like (01-99)?".

004400 ACCEPT HOW-MANY.
004500
004600 DISPLAY-THE-TABLE.
004700 DISPLAY "The " THE-NUMBER "`s table is:".
004800 PERFORM CALCULATE-AND-DISPLAY HOW-MANY TIMES.
004900
005000* LEVEL 3 ROUTINES.
005100 CALCULATE-AND-DISPLAY.
005200 ADD 1 TO THE-MULTIPLIER.
005300 COMPUTE THE-PRODUCT = THE-NUMBER * THE-MULTIPLIER.
005400 DISPLAY
005500 THE-NUMBER " * " THE-MULTIPLIER " = " THE-PRODUCT.
005600
005700 ADD 1 TO SCREEN-LINES.
005800 IF SCREEN-LINES = 15
005900 DISPLAY "Press ENTER to continue . . ."
006000 ACCEPT A-DUMMY
006100 MOVE 0 TO SCREEN-LINES.
006200

Three screens of output occur when mult04.cbl is used to display 31 entries of the 14's table. Here is
the first screen:

OUTPUT:
Which multiplication table (01-99)?
14
How many entries would you like (01-99)?
31
The 14's table is:
14 * 001 = 0014
14 * 002 = 0028
14 * 003 = 0042
14 * 004 = 0056
14 * 005 = 0070
14 * 006 = 0084
14 * 007 = 0098
14 * 008 = 0112
14 * 009 = 0126
14 * 010 = 0140
14 * 011 = 0154
14 * 012 = 0168
14 * 013 = 0182
14 * 014 = 0196
14 * 015 = 0210
Press ENTER to continue . . .

After you press Enter, the current display scrolls upward, making room for 15 more lines of tables and
another Press ENTER message. The tail end of the first 15 lines still appears at the top of the screen.
Here is the output after you press Enter:

OUTPUT:
14 * 010 = 0140
14 * 011 = 0154
14 * 012 = 0168
14 * 013 = 0182
14 * 014 = 0196
14 * 015 = 0210
Press ENTER to continue . . .

14 * 016 = 0224
14 * 017 = 0238
14 * 018 = 0252
14 * 019 = 0266
14 * 020 = 0280
14 * 021 = 0294
14 * 022 = 0308
14 * 023 = 0322
14 * 024 = 0336
14 * 025 = 0350
14 * 026 = 0364
14 * 027 = 0378
14 * 028 = 0392
14 * 029 = 0406
14 * 030 = 0420
Press ENTER to continue . . .

After you press Enter a second time, one more line of information is displayed at the bottom of the
screen, leaving the remains of the first two displays of 15 lines at the top:

OUTPUT:
14 * 015 = 0210
Press ENTER to continue . . .

14 * 016 = 0224
14 * 017 = 0238
14 * 018 = 0252
14 * 019 = 0266
14 * 020 = 0280
14 * 021 = 0294
14 * 022 = 0308
14 * 023 = 0322
14 * 024 = 0336

14 * 025 = 0350
14 * 026 = 0364
14 * 027 = 0378
14 * 028 = 0392
14 * 029 = 0406
14 * 030 = 0420
Press ENTER to continue . . .

14 * 031 = 0434
C>
C>

ANALYSIS: Listing 5.5 adds two additional variables: SCREEN-LINES to count the number of lines
that have been displayed on the screen, and A-DUMMY, which is a dummy variable to be used with
ACCEPT. The SCREEN-LINES variable is set to an initial value of 0 in
PROGRAM-INITIALIZATION.

All the other changes are in the CALCULATE-AND-DISPLAY paragraph at line 005100. The first part
of the paragraph is identical to Listing 5.4, mult03.cbl, up to line 005600. Note that the line
numbers have stayed the same for Listing 5.4 and 5.5 because of the extra blank lines in Listing 5.4. The
blanks are there to keep the line numbers the same, but this is not a standard programming practice.

At line 005700, 1 is added to the variable. At line 005800, a test is made to determine whether
SCREEN-LINES has reached 15 (that is, 15 lines have been displayed). When 15 lines have been
displayed, the logic at lines 005900 through 006100 is executed. At line 005900, a message is
displayed. At line 006000, A-DUMMY is accepted. Remember that you don't care what value is placed in
A-DUMMY; you just want some method of waiting for the user to press Enter. At line 006100, the
SCREEN-LINES variable is reset to 0.

If SCREEN-LINES were not reset to 0, it would continue counting up from 15 to 16, 17, and so on. It
never again would equal 15, and the IF at line 005800 would never test true. The result would be that
the screen would stop after the first 15 entries were displayed, but it wouldn't stop after the next 15.

Listing 5.5 has a minor bug (a logic error) in it. To see the result of the bug, do the following: Run
mult04.cbl and enter any multiplication table that you want. For the number of entries, enter an even
multiple of 15, such as 15, 30, or 45. After the program has displayed the number of entries, it asks you
to press Enter to continue. When you press Enter, nothing else is displayed and the program ends. The
Press ENTER message implies to the user that there is more to see when, in fact, there is not. Try
following the logic and work out why this happens. You will deal with this bug later in today's lesson,
but first you have a few more things to learn about the PERFORM verb.

What Is a Processing Loop?
A computer is designed to do things over and over, but if it does the same thing endlessly, the computer
is limited to a single job. In practice, a processing loop is brought to an end by some condition. The
condition is set up to be tested at the beginning of each pass through the processing loop or at the last
step in the loop. The condition is used to determine whether the processing loop should end or continue.

The processing loop is the logic that is performed over and over.

New Term: You have just written a couple programs containing examples of a processing loop. A
processing loop is one or more paragraphs that are executed over and over. Processing loops (which are
almost always controlled by some condition and should be called controlled processing loops) are
sometimes simply called loops.

New Term: The condition that controls the processing loop usually is called the processing loop control,
or simply the loop control.

Sometimes it is difficult to separate completely the processing loop from the control of the loop, and the
two areas are referred to jointly as a loop or a processing loop. You should train yourself to spot the
processing loop and the control of the processing loop.

Listing 5.6 is a portion of mult02.cbl from Listing 5.3.

TYPE: Listing 5.6. A controlled processing loop.

003800 PERFORM CALCULATE-AND-DISPLAY 12 TIMES.
003900
004000
004100 CALCULATE-AND-DISPLAY.
004200 ADD 1 TO THE-MULTIPLIER.
004300 COMPUTE THE-PRODUCT = THE-NUMBER * THE-MULTIPLIER.
004400 DISPLAY
004500 THE-NUMBER " * " THE-MULTIPLIER " = " THE-PRODUCT.

ANALYSIS: The processing loop portion is the CALCULATE-AND-DISPLAY paragraph at lines
004100 through 004500. This paragraph is performed over and over.

The control for the processing loop is the PERFORM 12 TIMES statement at line 003800. The
condition that controls or ends the loop occurs when the paragraph has been performed 12 times.

Listing 5.7 shows a portion of Listing 5.2, mult01.cbl.

TYPE: Listing 5.7. Another control loop.

003800 PERFORM CALCULATE-AND-DISPLAY.
003900
004000
004100 CALCULATE-AND-DISPLAY.
004200 ADD 1 TO THE-MULTIPLIER.
004300 COMPUTE THE-PRODUCT = THE-NUMBER * THE-MULTIPLIER.
004400 DISPLAY
004500 THE-NUMBER " * " THE-MULTIPLIER " = " THE-PRODUCT.
004600 IF THE-MULTIPLIER < 12
004700 GO TO CALCULATE-AND-DISPLAY.

ANALYSIS: In this example, the processing loop is also the CALCULATE-AND-DISPLAY paragraph.

The control for the loop is at lines 004600 and 004700. The loop ends when THE-MULTIPLIER is
no longer less than 12.

A controlled processing loop is one of the key elements of every working program. Remember that one
of the main functions of a computer is to perform repetitive tasks. Unless you want the computer to
perform the same task forever, you must use some condition to stop the repetition. This is where the
control loop comes in.

The control loop is such a key part of any computer program that every programming language includes
some specialized verb or statement that can be used to create a controlled processing loop. COBOL is no
exception.

Using PERFORM to Control a Processing Loop
The PERFORM verb has some other formats that allow control over a loop. The first of these formats, as
you have seen, is using the PERFORM verb with a number of TIMES. The next is PERFORM UNTIL.
Use this syntax:

PERFORM a paragraph
 UNTIL a condition.

The following is an example:

PERFORM CALCULATE-AND-DISPLAY
 UNTIL THE-MULTIPLIER > 12.

The PERFORM UNTIL sentence is a repetitive request to perform a paragraph, with a built-in IF test in
the UNTIL. The PERFORM verb is requested over and over until the condition tests true.

Listing 5.8 illustrates a PERFORM UNTIL.

TYPE: Listing 5.8. Using PERFORM UNTIL.

003800 PERFORM CALCULATE-AND-DISPLAY
003900 UNTIL THE-MULTIPLIER > 12.
004000
004100 CALCULATE-AND-DISPLAY.
004200 ADD 1 TO THE-MULTIPLIER.
004300 COMPUTE THE-PRODUCT = THE-NUMBER * THE-MULTIPLIER.
004400 DISPLAY
004500 THE-NUMBER " * " THE-MULTIPLIER " = " THE-PRODUCT.

ANALYSIS: At lines 003800 and 003900, the paragraph CALCULATE-AND-DISPLAY is
performed repetitively. This repetition stops when THE-MULTIPLIER is greater than 12 (as specified in
line 003900). PERFORM UNTIL is one long sentence with the period at the end of line 003900. There
is a bug in this example that we will be fixing before the end of the chapter.

A PERFORM UNTIL sentence tests the condition before the perform is executed. COBOL does not
allow you to go to a line number, but if it did, a PERFORM UNTIL sentence could be thought of as

executing the following logic, which is not proper COBOL code:

003800 IF THE-MULTIPLIER > 12 GO TO line 004100.
003900 PERFORM CALCULATE-AND-DISPLAY
004000 GO TO line 003800.
004100* PROGRAM continues here

Previous examples started by setting THE-MULTIPLIER to 0. The CALCULATE-AND-DISPLAY
paragraph always began by adding 1 to the multiplier, as in Listing 5.8.

If you follow the path of the logic in Listing 5.8, starting at the top of CALCULATE-AND-DISPLAY
when THE-MULTIPLIER equals 11, you'll notice an error in the logic (a bug). The paragraph adds 1 to
THE-MULTIPLIER, making it 12, and displays the results for 12. The program then returns to line
003900, falls through to line 004000, where it jumps back up to line 003800, and checks the
condition again. THE-MULTIPLIER equals 12 (so it is not greater than 12), however, and the
paragraph CALCULATE-AND-DISPLAY is performed one more time. The first action in
CALCULATE-AND-DISPLAY is to add 1 to THE-MULTIPLIER, so the results will be displayed when
THE-MULTIPLIER equals 13.

The quickest fix for this is to change the test at line 003900 to test for greater than 11, but it looks a
little confusing when you are reading the code. It takes a moment to realize that the loop executes 12
times, because you have to look back through the code to establish that THE-MULTIPLIER originally
was set to 0:

003800 PERFORM CALCULATE-AND-DISPLAY
003900 UNTIL THE-MULTIPLIER > 11.

A solution that works just as well is illustrated in Listing 5.9. This has the advantage of keeping all the
key pieces of the loop together in one section of the code.

TYPE: Listing 5.9. Structured loop control.

003700 MOVE 1 TO THE-MULTIPLIER.
003800 PERFORM CALCULATE-AND-DISPLAY
003900 UNTIL THE-MULTIPLIER > 12.
004000
004100 CALCULATE-AND-DISPLAY.
004200 COMPUTE THE-PRODUCT = THE-NUMBER * THE-MULTIPLIER.
004300 DISPLAY
004400 THE-NUMBER " * " THE-MULTIPLIER " = " THE-PRODUCT.
004500 ADD 1 TO THE-MULTIPLIER.

ANALYSIS: The variable THE-MULTIPLIER first is set to a value of 1. The paragraph
CALCULATE-AND-DISPLAY is performed until THE-MULTIPLIER is greater than 12. Because
THE-MULTIPLIER starts with an initially correct value of 1, the ADD 1 TO THE-MULTIPLIER
logic is moved to the end of CALCULATE-AND-DISPLAY.

It is much quicker to figure out that the loop is performed with THE-MULTIPLIER ranging in value
from 1 through 12.

Listing 5.9 also illustrates a very common method of constructing and controlling a processing loop.
These are the three steps of this construction:

1. Set up a variable with the value that it must have when the loop is entered for the first time. This
variable is called the loop control variable. In this case, THE-MULTIPLIER must start off with a
value of 1 at line 003700.

2. Request a PERFORM of the loop until the variable is out of range--in this case, PERFORM
CALCULATE-AND-DISPLAY (at line 003800) UNTIL THE-MULTIPLIER > 12 (at line
003900).

3. In the loop, do whatever processing is called for. At the end of the loop or after each pass
through the loop, increment the loop control variable. In this case, the loop control variable is
increased by 1 at line 004500.

Look again at Listing 5.9 for these three steps. Based on the first step, the value in THE-MULTIPLIER
must be set to 1. This is the first value that THE-MULTIPLIER must have on entry to the loop
(CALCULATE-AND-DISPLAY). This is taken care of at line 003700.

In the second step, CALCULATE-AND-DISPLAY is performed until the MULTIPLIER is greater than
12, at lines 003800 and 003900.

In the final step, the variable that controls the loop, THE-MULTIPLIER, is modified as the last step in
the loop. The ADD 1 logic is moved and now occurs at the end of CALCULATE-AND-DISPLAY at line
004500. The requested paragraph is performed over and over until the condition tests true.

Using PERFORM VARYING UNTIL
The three steps of process loop control are so common in programs that the PERFORM verb has been
extended even further, to allow the first and last steps to be incorporated directly into the PERFORM verb:

PERFORM a paragraph
VARYING a variable
FROM a value BY a value
UNTIL a condition.

The following is an example:

PERFORM CALCULATE-AND-DISPLAY
VARYING THE-MULTIPLIER
FROM 1 BY 1
UNTIL THE-MULTIPLIER > 12.

This is an extension of PERFORM UNTIL.

Compare the partial programs in Listings 5.10 and 5.11. They produce the same results using different
versions of the PERFORM verb. (I've inserted the blank line in Listing 5.10 in the middle of the
PERFORM UNTIL logic to keep the line numbers the same in the two listings. Remember that the blank
line means nothing; even if it appears in the middle of a sentence, it is ignored.)

TYPE: Listing 5.10. Using PERFORM UNTIL in a loop.

003700 MOVE 1 TO THE-MULTIPLIER.
003800 PERFORM CALCULATE-AND-DISPLAY
003900
004000 UNTIL THE-MULTIPLIER > 12.
004100
004200 CALCULATE-AND-DISPLAY.
004300 COMPUTE THE-PRODUCT = THE-NUMBER * THE-MULTIPLIER.
004400 DISPLAY
004500 THE-NUMBER " * " THE-MULTIPLIER " = " THE-PRODUCT.
004600 ADD 1 TO THE-MULTIPLIER.

TYPE: Listing 5.11. Using PERFORM VARYING UNTIL.

003700
003800 PERFORM CALCULATE-AND-DISPLAY
003900 VARYING THE-MULTIPLIER FROM 1 BY 1
004000 UNTIL THE-MULTIPLIER > 12.
004100
004200 CALCULATE-AND-DISPLAY.
004300 COMPUTE THE-PRODUCT = THE-NUMBER * THE-MULTIPLIER.
004400 DISPLAY
004500 THE-NUMBER " * " THE-MULTIPLIER " = " THE-PRODUCT.
004600

ANALYSIS: In Listing 5.10, initializing THE-MULTIPLIER at line 003700 and adding 1 to
THE-MULTIPLIER at line 004600 have been replaced by a single line at 003900 in Listing 5.11.

A PERFORM VARYING UNTIL can be broken down into the following steps (again assuming that
COBOL allows you to go to a line number, which it doesn't):

003700 MOVE 1 TO THE-MULTIPLIER.
003800 IF THE-MULTIPLIER > 12 GO TO line 004200.
003900 PERFORM CALCULATE-AND-DISPLAY.
004000 ADD 1 TO THE-MULTIPLIER.
004100 GO TO line 003800.
004200* Program continues here

Listing 5.12 shows the multiplication tables program again, using PERFORM VARYING UNTIL to
control the processing loop.

TYPE: Listing 5.12. Using PERFORM VARYING UNTIL.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. MULT05.
000300*--
000400* This program asks the user for a number for a

000500* multiplication table, and a table size and then
000600* displays a table for that number times the values
000700* 1 through HOW-MANY using PERFORM VARYING UNTIL.
000800*--
000900 ENVIRONMENT DIVISION.
001000 DATA DIVISION.
001100 WORKING-STORAGE SECTION.
001200
001300 01 THE-NUMBER PIC 99.
001400 01 THE-MULTIPLIER PIC 999.
001500 01 THE-PRODUCT PIC 9999.
001600 01 HOW-MANY PIC 99.
001700
001800 PROCEDURE DIVISION.
001900* LEVEL 1 ROUTINES
002000 PROGRAM-BEGIN.
002100 PERFORM PROGRAM-INITIALIZATION.
002200 PERFORM GET-TABLE-DATA.
002300 PERFORM DISPLAY-THE-TABLE.
002400
002500 PROGRAM-DONE.
002600 STOP RUN.
002700
002800* LEVEL 2 ROUTINES
002900 PROGRAM-INITIALIZATION.
003000* MOVE 0 TO THE-MULTIPLIER.
003100* is no longer needed
003200
003300 GET-TABLE-DATA.
003400 DISPLAY
003500 "Which multiplication table(01-99)?".
003600 ACCEPT THE-NUMBER.
003700
003800 DISPLAY "How many entries would you like (01-99)?".
003900 ACCEPT HOW-MANY.
004000
004100 DISPLAY-THE-TABLE.
004200 DISPLAY "The " THE-NUMBER "`s table is:".
004300 PERFORM CALCULATE-AND-DISPLAY
004400 VARYING THE-MULTIPLIER
004500 FROM 1 BY 1
004600 UNTIL THE-MULTIPLIER > HOW-MANY.
004700
004800* LEVEL 3 ROUTINES.
004900 CALCULATE-AND-DISPLAY.
005000

005100 COMPUTE THE-PRODUCT = THE-NUMBER * THE-MULTIPLIER.
005200 DISPLAY
005300 THE-NUMBER " * " THE-MULTIPLIER " = " THE-PRODUCT.
005400

Solving the Press ENTER Problem

Remember the bug in Listing 5.5, mult04.cbl? It displays a Press ENTER message, even when
there is nothing else to display. Now we're going to solve this problem; you'll find the solution in
mult05.cbl. The processing loop from mult05.cbl is shown in Listing 5.13.

TYPE: Listing 5.13. The processing loop from mult05.cbl.

004900 CALCULATE-AND-DISPLAY.
005000
005100 COMPUTE THE-PRODUCT = THE-NUMBER * THE-MULTIPLIER.
005200 DISPLAY
005300 THE-NUMBER " * " THE-MULTIPLIER " = " THE-PRODUCT.
005400

The two important points in any processing loop are the top of the loop and the bottom of the loop. These
might seem obvious at first glance, but you must understand two things about these points. If the
processing loop is constructed correctly, you know at the top of the loop that the rest of the loop is going
to be executed. At the bottom of the loop, you know that the loop has been executed. Now you can try to
use these two points in the loop to solve the Press ENTER problem.

There really are two problems. One is to count the number of lines that have been displayed, which is
fairly simple to do. The other is to display a Press ENTER message (and wait for the user) when only
15 lines have been displayed and there is more data to display.

The obvious place to count the lines is at the end of the loop where it is obvious that one line has been
displayed (the loop has been executed). Listing 5.14 adds the instruction to count the lines at line 5400.

TYPE: Listing 5.14. Counting the lines.

004900 CALCULATE-AND-DISPLAY.
005000
005100 COMPUTE THE-PRODUCT = THE-NUMBER * THE-MULTIPLIER.
005200 DISPLAY
005300 THE-NUMBER " * " THE-MULTIPLIER " = " THE-PRODUCT.
005400 ADD 1 TO SCREEN-LINES.

The second problem (displaying a Press ENTER message at the correct point) seems to fit at the top of
the loop. There you know that a line is about to be displayed. If you make the program stop the user at
this point and the user presses Enter, you can be certain that at least one more line will be displayed.
Listing 5.15 is a complete listing, using a test for SCREEN-LINES at the top of the loop and adding to
SCREEN-LINES at the bottom of the loop. Code, compile, and run this listing; try any number of

entries, including multiples of 15. You will see that the minor bug in mult04.cbl has been eliminated.

TYPE: Listing 5.15. Eliminating the Press ENTER bug.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. MULT06.
000300*--
000400* This program asks the user for a number for a
000500* multiplication table, and a table size
000600* and then displays a table for that number
000700* times the values 1 through HOW-MANY.
000800*
000900* The display is paused after each 15 lines.
001000*--
001100 ENVIRONMENT DIVISION.
001200 DATA DIVISION.
001300 WORKING-STORAGE SECTION.
001400
001500 01 THE-NUMBER PIC 99.
001600 01 THE-MULTIPLIER PIC 999.
001700 01 THE-PRODUCT PIC 9999.
001800 01 HOW-MANY PIC 99.
001900 01 SCREEN-LINES PIC 99.
002000
002100 01 A-DUMMY PIC X.
002200
002300 PROCEDURE DIVISION.
002400* LEVEL 1 ROUTINES
002500 PROGRAM-BEGIN.
002600 PERFORM PROGRAM-INITIALIZATION.
002700 PERFORM GET-TABLE-DATA.
002800 PERFORM DISPLAY-THE-TABLE.
002900
003000 PROGRAM-DONE.
003100 STOP RUN.
003200
003300* LEVEL 2 ROUTINES
003400 PROGRAM-INITIALIZATION.
003500
003600 MOVE 0 TO SCREEN-LINES.
003700
003800 GET-TABLE-DATA.
003900 DISPLAY
004000 "Which multiplication table(01-99)?".
004100 ACCEPT THE-NUMBER.
004200

004300 DISPLAY "How many entries would you like (01-99)?".
004400 ACCEPT HOW-MANY.
004500
004600 DISPLAY-THE-TABLE.
004700 DISPLAY "The " THE-NUMBER "`s table is:".
004800 PERFORM CALCULATE-AND-DISPLAY
004900 VARYING THE-MULTIPLIER
005000 FROM 1 BY 1
005100 UNTIL THE-MULTIPLIER > HOW-MANY.
005200
005300* LEVEL 3 ROUTINES.
005400 CALCULATE-AND-DISPLAY.
005500
005600 IF SCREEN-LINES = 15
005700 DISPLAY "Press ENTER to continue . . ."
005800 ACCEPT A-DUMMY
005900 MOVE 0 TO SCREEN-LINES.
006000
006100 COMPUTE THE-PRODUCT = THE-NUMBER * THE-MULTIPLIER.
006200 DISPLAY
006300 THE-NUMBER " * " THE-MULTIPLIER " = " THE-PRODUCT.
006400
006500 ADD 1 TO SCREEN-LINES.
006600

You now have seen several ways of avoiding a GO TO. You can use PERFORM to control a processing
loop in different ways, and it should be possible to set up the control in such a way that GO TO can be
avoided.

DO/DON'T:
DO understand GO TO so that you know what it is doing when you see it in a program.

DON'T use a GO TO in a program that you write.

DO use PERFORM, PERFORM UNTIL, PERFORM VARYING, and PERFORM nn TIMES
to control loops. If a problem seems to require GO TO to solve it, it can be solved better
using one of the versions of PERFORM.

Summary
Today, you learned how to use PERFORM, GO TO, and IF to control programs. The following are the
basic truths about those three statements:

A GO TO verb can be used to make the program jump to the beginning of another paragraph or
back to the beginning of the current paragraph.

●

Using a GO TO verb to jump out of one paragraph to the start of another paragraph is bad
programming practice. Don't do it.

●

The PERFORM verb can be used to perform a paragraph a number of times. The number of times
can be a constant, as in this example:

●

PERFORM DO-SOMETHING 10 TIMES

The number of times can also be a variable, as in this example:●

PERFORM DO-SOMETHING THE-NUMBER TIMES

A processing loop is one paragraph (or more) performed over and over in a program.●

A processing loop must be controlled by some condition that will cause the loop to stop, or the
loop will go on forever.

●

Controlled processing loops in COBOL can be executed by using the following three variations of
the PERFORM verb:

●

PERFORM a paragraph number TIMES.
PERFORM a paragraph
 UNTIL condition.
PERFORM a paragraph
 VARYING a variable
 FROM starting value BY increment value
 UNTIL condition.

The key steps in setting up a loop are as follows:

1. Initialize a value for the first pass through the loop.

2. Perform the processing loop until a condition is met.

3. Increment the control variable at the end of the loop or after each pass through the loop.

●

The top of the loop can be used to insert code that will be executed only if the loop will be
executed.

●

The bottom of the loop can be used to insert code that will be executed each time the loop is
completed.

●

Q&A
Q Can I perform something zero times?

A Yes, you should be able to. I have tested several COBOL compilers, and they all allow this--in
effect not performing at all. If the user enters 00 for HOW-MANY in mult02.cbl, the result is
the following:

Which multiplication table(01-99)?
15
How many entries would you like (01-99)?
00
The 15's table is:
C>
C>

Q Why is THE-MULTIPLIER defined as a PIC 999 in all the sample programs when a PIC
99 should be large enough for a value from 1 to 99?

A The answer lies in the extremes. In most of the examples, CALCULATE-AND-DISPLAY is
performed until THE-MULTIPLIER is greater than HOW-MANY. This test is performed in various
ways in the examples but is essentially the same test.

If the user enters 99 for HOW-MANY, an interesting problem shows up when THE-MULTIPLIER
is defined as a PIC 99. On each pass through CALCULATE-AND-DISPLAY, 1 is added to
THE-MULTIPLIER. What happens when THE-MULTIPLIER equals 99 and you add 1 to it?
THE-MULTIPLIER should go to 100, but a PIC 99 is too small to hold that value. The 100 is
truncated on the left to 00, and THE-MULTIPLIER can never reach a value where it is greater
than HOW-MANY if HOW-MANY equals 99. Adding the extra digit to the picture of
THE-MULTIPLIER allows it to go to 100 as a value.

Whenever you write a program, it is practically mandatory that you test it at the extremes of the
data. If the user is allowed to enter 00 through 99, what happens if the user enters 99? What
happens if the user enters 0?

Workshop
Quiz

1. How many times will DISPLAY-HELLO be performed in the following example?

003600 PERFORM DISPLAY-HELLO 10 TIMES.
003700
003800 DISPLAY-HELLO.
003900 DISPLAY "hello".
004000

2. If THE-COUNT is defined as a numeric variable, how many times will DISPLAY-HELLO be
performed in the following example?

003600 PERFORM DISPLAY-HELLO
003700 VARYING THE-COUNT FROM 1 BY 1
003800 UNTIL THE-COUNT > 5.
003900
004000 DISPLAY-HELLO.
004100 DISPLAY "hello".

004200

3. In each of the previous examples, which lines contain the processing loop and which lines
contain the control for the processing loop?

Exercise

Code two different ways to perform a paragraph named A-PARAGRAPH eight times.

Previous chapter Next chapter Contents

Macmillan Computer Publishing USA

© Copyright, Macmillan Computer Publishing. All rights reserved.

Teach Yourself COBOL in 21 days,
Second Edition

Previous chapter Next chapter Contents

- Day 6 -
Using Data and COBOL Operators

One truth about COBOL is that you will never learn everything about the data used by a program and the
DATA DIVISION. Each day's lesson gives you enough of a grasp of the DATA DIVISION that you
can work comfortably with data. Today, you dive back into the DATA DIVISION and learn about the
following topics:

Initializing variables●

SPACES and ZEROES●

Experimenting with truncated variables●

Multiple moves●

Decimal data●

Positive and negative numbers●

Displaying decimals and signs●

Suppressing leading zeroes●

Adding commas●

COBOL numeric operators●

Initializing Variables
When you define a variable in WORKING-STORAGE, you also can assign it an initial value. This is a
convenient method of setting variables to start with a known value.

Variables are initialized with a VALUE IS clause, as shown in lines 000900 and 001000 of Listing
6.1. Note that the period closing the variable definition is at the end of the initializer, so the sequence is
the level number, the variable name, PICTURE IS (or PIC), the picture, VALUE IS, the initializer,
and finally the period.

TYPE: Listing 6.1. Initializing a variable in WORKING-STORAGE.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. JACK04.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.
000500
000600 WORKING-STORAGE SECTION.
000700
000800 01 THE-MESSAGE PIC X(50).
000900 01 THE-NUMBER PIC 9(2) VALUE IS 1.
001000 01 A-SPACE PIC X VALUE IS " ".
001100
001200 PROCEDURE DIVISION.
001300 PROGRAM-BEGIN.
001400
001500* Set up and display line 1
001600 MOVE "Jack be nimble," TO THE-MESSAGE.
001700 DISPLAY
001800 THE-NUMBER
001900 A-SPACE
002000 THE-MESSAGE.
002100
002200* Set up and Display line 2
002300 ADD 1 TO THE-NUMBER.
002400 MOVE "Jack be quick," TO THE-MESSAGE.
002500 DISPLAY
002600 THE-NUMBER
002700 A-SPACE
002800 THE-MESSAGE.
002900
003000* Set up and display line 3
003100 ADD 1 TO THE-NUMBER.
003200 MOVE "Jack jump over the candlestick." TO THE-MESSAGE.
003300 DISPLAY

003400 THE-NUMBER
003500 A-SPACE
003600 THE-MESSAGE.
003700
003800 PROGRAM-DONE.
003900 STOP RUN.
004000
004100

The word IS in a value clause is optional; the initialization could be written as the following:

01 THE-NUMBER PIC 9(2) VALUE 1.

Compare Listing 6.1 to Listing 2.10 in Day 2, "Using Variables and Constants." Notice that using the
initializers in WORKING-STORAGE has eliminated the need for two of the MOVE statements, at lines
001600 and 001900, in the PROCEDURE DIVISION.

If you want a variable to have a default value that will be used in the program, you must initialize it in
WORKING-STORAGE. A variable that is not initialized has an undefined value until something is moved
to it.

An undefined value is one that can contain any value.

For numeric variables, this can become a problem. If you attempt to use the DISPLAY (ADD 1)
statement with a numeric variable that contains an undefined value, you probably will produce an error.
This does not cause a compiler error, but usually causes an error while the program is running. The
program usually aborts with a message such as this:

ATTEMPT TO PERFORM ARITHMETIC WITH NON-NUMERIC DATA

or

VARIABLE THE-NUMBER DOES NOT CONTAIN NUMERIC DATA

Initializing a variable in WORKING-STORAGE has the same effect as a MOVE to the variable. If the
initializing value is shorter than the PICTURE of an alphanumeric field, the field is padded on the right
with spaces. If the initializing value is too small for a numeric variable, the variable is padded on the left
with zeroes.

Listing 6.2, jack05.cbl, takes initialization one step further by initializing all the variables ready to
print the first line of the poem.

TYPE: Listing 6.2. Short initializers.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. JACK05.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.
000500
000600 WORKING-STORAGE SECTION.
000700

000800 01 THE-MESSAGE PIC X(50)
000900 VALUE "Jack be nimble,".
001000
001100 01 THE-NUMBER PIC 9(2) VALUE IS 1.
001200 01 A-SPACE PIC X VALUE IS " ".
001300
001400 PROCEDURE DIVISION.
001500 PROGRAM-BEGIN.
001600
001700* Line 1 is set up, so just display it
001800 DISPLAY
001900 THE-NUMBER
002000 A-SPACE
002100 THE-MESSAGE.
002200
002300* Set up and Display line 2
002400 ADD 1 TO THE-NUMBER.
002500 MOVE "Jack be quick," TO THE-MESSAGE.
002600 DISPLAY
002700 THE-NUMBER
002800 A-SPACE
002900 THE-MESSAGE.
003000
003100* Set up and display line 3
003200 ADD 1 TO THE-NUMBER.
003300 MOVE "Jack jump over the candlestick." TO THE-MESSAGE.
003400 DISPLAY
003500 THE-NUMBER
003600 A-SPACE
003700 THE-MESSAGE.
003800
003900 PROGRAM-DONE.
004000 STOP RUN.
004100

The output from all three versions of JACK is identical.

OUTPUT:
C>

01 Jack be nimble,
02 Jack be quick,
03 Jack jump over the candlestick.

C>

ANALYSIS: The definition for the variable, THE-MESSAGE, is at lines 000800 and 000900. The
definition is broken up into two lines. The 01 level starts in Area A, but only the level number of the
variable is required to start in Area A. The remainder of the definition (the variable name, picture, and
value) falls within Area B (columns 12 through 72).

The initializer for THE-MESSAGE--in this case, "Jack be nimble"--is clearly too short for the
PICTURE, and the remainder of THE-MESSAGE is filled with spaces by the compiler when it
encounters the VALUE clause. Similarly, THE-NUMBER is initialized with a 1, and the compiler fills the
variable space with 01 when it encounters the VALUE IS clause.

Note that initializing a variable with a VALUE in WORKING-STORAGE is the same as using MOVE to
give it a value. Thereafter, you can use MOVE to assign values to the variable later in the program.
THE-MESSAGE, initialized at lines 000800 and 000900, is modified by a MOVE at line 002500 and
again later at line 003300.

SPACES and ZEROES
Variables that are not initialized contain undefined values until a MOVE moves something to them. It is a
good practice to initialize variables in WORKING-STORAGE. The usual practice is to initialize numeric
variables to zero and alphanumeric variables to spaces. COBOL has provided reserved words for this,
primarily to make clearer what is happening.

Both of the following initializations do the job. Remember that an initializer works like a MOVE, padding
the remainder of the variable with spaces or zeroes. Therefore, moving a single space to an alphanumeric
variable is the same as filling it with spaces, as you see here:

01 THE-MESSAGE PIC X(50) VALUE " ".
01 THE-NUMBER PIC 9(4) VALUE 0.

Instead of a quoted space (which isn't clear), or a 0 (zero) that can be confused with the letter O, COBOL
has reserved the words SPACE, SPACES, ZERO, ZEROS, and ZEROES to represent these values. This
initialization is clearer:

01 THE-MESSAGE PIC X(50) VALUE SPACES.
01 THE-NUMBER PIC 9(4) VALUE ZEROES.

SPACE and SPACES both mean "fill with spaces." ZERO, ZEROS, and ZEROES all mean "fill with
zeroes." The singular and plural versions produce the identical effect. SPACE is the same as SPACES,
and ZERO is the same as ZEROS and ZEROES.

SPACES and ZEROES also can be used in MOVE commands, like this:

MOVE SPACES TO THE-MESSAGE.
MOVE ZERO TO THE-NUMBER.

DO/DON'T:
DO initialize variables in the DATA DIVISION when they are defined, or in the
PROCEDURE DIVISION before they are used.

DON'T perform any arithmetic functions on an uninitialized numeric variable.

Truncated Values
A truncated value occurs when a value that is too large for a numeric variable is moved to the numeric
variable, or when a value that is too long for an alphanumeric variable is moved to the alphanumeric
variable.

The compiler conveniently fills variables with blanks or zeroes when short or small values are moved to
them, or when short or small values are used to initialize them. What happens when a value that is too
large or too long is moved to a variable or is used to initialize a variable?

The short answer is that you lose some data. What you lose depends on the type of variable that is the
target of the MOVE. An alphanumeric variable truncates the right end of the value until the value fits in
the variable. A numeric variable truncates the left end of the value until the value fits. (There is an
exception to this for decimal values, which you will learn about in "Decimal Data," later in this chapter.)

Listing 6.3 illustrates the effect of truncation on variables. It moves a message to successively smaller
alphanumeric variables, and a numeric value to successively smaller numeric variables. All the resulting
values are displayed.

TYPE: Listing 6.3. Truncating variables.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. TRUNC01.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.
000500 WORKING-STORAGE SECTION.
000600
000700 01 6-BYTES PIC X(6).
000800 01 5-BYTES PIC X(5).
000900 01 4-BYTES PIC X(4).
001000 01 3-BYTES PIC X(3).
001100 01 2-BYTES PIC X(2).
001200 01 1-BYTE PIC X(1).
001300
001400 01 5-DIGITS PIC 9(5).
001500 01 4-DIGITS PIC 9(4).
001600 01 3-DIGITS PIC 9(3).
001700 01 2-DIGITS PIC 9(2).
001800 01 1-DIGIT PIC 9(1).
001900
002000 PROCEDURE DIVISION.
002100 PROGRAM-BEGIN.
002200
002300 MOVE "Hello" TO 6-BYTES.
002400 MOVE "Hello" TO 5-BYTES.

002500 MOVE "Hello" TO 4-BYTES.
002600 MOVE "Hello" TO 3-BYTES.
002700 MOVE "Hello" TO 2-BYTES.
002800 MOVE "Hello" TO 1-BYTE.
002900
003000 MOVE 2397 TO 5-DIGITS.
003100 MOVE 2397 TO 4-DIGITS.
003200 MOVE 2397 TO 3-DIGITS.
003300 MOVE 2397 TO 2-DIGITS.
003400 MOVE 2397 TO 1-DIGIT.
003500
003600 DISPLAY 6-BYTES.
003700 DISPLAY 5-BYTES.
003800 DISPLAY 4-BYTES.
003900 DISPLAY 3-BYTES.
004000 DISPLAY 2-BYTES.
004100 DISPLAY 1-BYTE.
004200
004300 DISPLAY 5-DIGITS.
004400 DISPLAY 4-DIGITS.
004500 DISPLAY 3-DIGITS.
004600 DISPLAY 2-DIGITS.
004700 DISPLAY 1-DIGIT.
004800
004900
005000 PROGRAM-DONE.
005100 STOP RUN.
005200

The output of trunc01.cbl shows characters being lopped off the right side of Hello and digits
being lopped off the left side of 2397:

OUTPUT:
Hello
Hello
Hell
Hel
He
H
02397
2397
397
97
7

C>
C>

You might find when you compile trunc01.cbl that the compiler will return warnings about
truncation. Many compilers will provide warnings on the numeric moves to 3-DIGITS, 2-DIGITS,
and 1-DIGIT. This usually is something like the following:

HIGH ORDER DIGIT TRUNCATION MAY OCCUR IN MOVE AT LINE 003200

A few compilers give warnings on the alphanumeric truncation in the moves to 4-BYTES, 3-BYTES,
2-BYTES, and 1-BYTE:

VALUE MAY BE TRUNCATED IN MOVE AT LINE 002500

It is more common to warn about numeric truncation because it usually has more serious effects on the
outcome of a program. Numeric values in a program are usually used somewhere in a calculation, and a
truncation can produce errors that are not easily visible.

Listing 6.4, trunc02.cbl, demonstrates the truncation of values by initializing the variables with
values that are too large or too long. You might find that trunc02.cbl will not even compile with
your compiler. Truncation in initializers in WORKING-STORAGE is treated more severely than a
truncation in a MOVE statement, and this listing might produce one or more errors and fail to compile.
This program will not compile with the Microfocus Personal COBOL compiler and generates the error
"VALUE literal too large. Literal truncated." for lines 000900 through 001200.
It also generates the error "VALUE too long for data item or has too many decimal
positions." for lines 001600 through 001800. The ACUCOBOL compiler provides the more
general error "VALUE size error" for the same lines.

TYPE: Listing 6.4. Truncation in initializers.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. TRUNC02.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.
000500 WORKING-STORAGE SECTION.
000600
000700 01 6-BYTES PIC X(6) VALUE "Hello".
000800 01 5-BYTES PIC X(5) VALUE "Hello".
000900 01 4-BYTES PIC X(4) VALUE "Hello".
001000 01 3-BYTES PIC X(3) VALUE "Hello".
001100 01 2-BYTES PIC X(2) VALUE "Hello".
001200 01 1-BYTE PIC X(1) VALUE "Hello".
001300
001400 01 5-DIGITS PIC 9(5) VALUE 2397.
001500 01 4-DIGITS PIC 9(4) VALUE 2397.
001600 01 3-DIGITS PIC 9(3) VALUE 2397.
001700 01 2-DIGITS PIC 9(2) VALUE 2397.
001800 01 1-DIGIT PIC 9(1) VALUE 2397.
001900

002000 PROCEDURE DIVISION.
002100 PROGRAM-BEGIN.
002200
002300
002400 DISPLAY 6-BYTES.
002500 DISPLAY 5-BYTES.
002600 DISPLAY 4-BYTES.
002700 DISPLAY 3-BYTES.
002800 DISPLAY 2-BYTES.
002900 DISPLAY 1-BYTE.
003000
003100 DISPLAY 5-DIGITS.
003200 DISPLAY 4-DIGITS.
003300 DISPLAY 3-DIGITS.
003400 DISPLAY 2-DIGITS.
003500 DISPLAY 1-DIGIT.
003600
003700
003800 PROGRAM-DONE.
003900 STOP RUN.
004000

If trunc02.cbl does compile, its output is the same as the output of trunc01.cbl.

Multiple MOVE Statements
A MOVE verb can be used to move the same value to multiple targets. Here is the syntax:

MOVE source TO destination destination destination

Listing 6.5, trunc03.cbl, uses multiple moves to achieve the same result as trunc01.cbl. (Listing
6.5 only illustrates the convenience of using a multiple MOVE. It isn't a useful program.)

TYPE: Listing 6.5. Using multiple MOVE statements.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. TRUNC03.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.
000500 WORKING-STORAGE SECTION.
000600
000700 01 6-BYTES PIC X(6).
000800 01 5-BYTES PIC X(5).
000900 01 4-BYTES PIC X(4).
001000 01 3-BYTES PIC X(3).
001100 01 2-BYTES PIC X(2).
001200 01 1-BYTE PIC X(1).

001300
001400 01 5-DIGITS PIC 9(5).
001500 01 4-DIGITS PIC 9(4).
001600 01 3-DIGITS PIC 9(3).
001700 01 2-DIGITS PIC 9(2).
001800 01 1-DIGIT PIC 9(1).
001900
002000 PROCEDURE DIVISION.
002100 PROGRAM-BEGIN.
002200
002300 MOVE "Hello" TO 6-BYTES 5-BYTES
002400 4-BYTES 3-BYTES
002500 2-BYTES 1-BYTE.
002600
002700 MOVE 2397 TO 5-DIGITS
002800 4-DIGITS
002900 3-DIGITS
003000 2-DIGITS
003100 1-DIGIT.
003200
003300 DISPLAY 6-BYTES.
003400 DISPLAY 5-BYTES.
003500 DISPLAY 4-BYTES.
003600 DISPLAY 3-BYTES.
003700 DISPLAY 2-BYTES.
003800 DISPLAY 1-BYTE.
003900
004000 DISPLAY 5-DIGITS.
004100 DISPLAY 4-DIGITS.
004200 DISPLAY 3-DIGITS.
004300 DISPLAY 2-DIGITS.
004400 DISPLAY 1-DIGIT.
004500
004600
004700 PROGRAM-DONE.
004800 STOP RUN.
004900

Decimal Data
So far, all the numbers you've worked with have been positive whole numbers (integers), but COBOL is
a business language, which should be able to deal with decimal numbers, dollars and cents, and
percentages.

In order to put a decimal point in a number, you must put a decimal point in the PICTURE of a variable.

The character in a numeric PICTURE that represents a decimal point is an uppercase V.

The following variable holds values ranging from 000.00 to 999.99.

01 THE-VALUE PIC 999V99.

Any constant values that you move to a decimal variable or use to initialize a decimal variable are written
in conventional format, as in these examples:

01 THE-VALUE PIC 999V99 VALUE 19.24.
01 THE-VALUE PIC 999V99 VALUE ZERO.
MOVE 26.15 TO THE-VALUE.

If you attempt to move a value containing too many decimals, the number is truncated on the right, and
some of the decimal information will be lost. In this example, THE-VALUE ends up containing 467.23:

MOVE 467.237 TO THE-VALUE.

Truncation still takes place from the high end as well. In this example, THE-VALUE ends up containing
923.46 because the number is truncated on both the left and the right:

MOVE 6923.468 TO THE-VALUE.

WARNING: I have stressed truncation in numbers because of the effect it can have on
calculations. It is important to plan the size of numeric variables so that they are large
enough to hold the largest possible values that may occur during the program.

Positive and Negative Numbers
COBOL numbers can also contain a positive or negative sign. The PICTURE character for a sign is an
initial S. The S must be the first character in the picture.

The following variable holds values ranging from -999.99 to +999.99.

01 THE-VALUE PIC S999V99.

The following variable holds values ranging from -9999 to +9999.

01 THE-VALUE PIC S9999.

The abbreviations used in a picture still can be used in a numeric picture containing a sign or a decimal.
For example, the following two variable definitions will produce the same size and type of variable.

01 THE-VALUE PIC S999999V9999.
01 THE-VALUE PIC S9(6)V9(4).

It looks like some sort of strange code, but it is simple to decipher if you remember that any number in
parentheses in a PICTURE is a signal to repeat the preceding character the number of times in
parentheses. So 9(6) expands to 999999 and 9(4) expands to 9999.

Displaying Decimals and Signs
In COBOL, numbers that will be displayed are treated differently from numbers that are used for
calculations. COBOL was designed to do a lot of number calculating (addition, subtraction,
multiplication, and division). Numbers that contain an S for a sign (positive or negative) or a V for a
decimal are stored in memory in a special format that speeds up calculations. However, this format does
not display correctly.

The designers of COBOL recognized the need to include in the design of the language a way to display
numeric values. After all, the output of a program isn't much good if a user can't understand it.

The idea behind the design is that all calculations are performed with numeric variables (variables whose
pictures contain only numbers, an S for a sign, and a V for a decimal). After the calculations are
complete, the resulting value is moved to a display variable, and the display variable is put on-screen
through a DISPLAY statement.

A numeric variable stipulated by a DISPLAY statement uses different PICTURE characters for the sign
and the decimal.

The PICTURE character for a sign in a numeric variable that will be used for a DISPLAY is the minus
sign (-). The PICTURE character for a decimal in a numeric variable that will be used for DISPLAY is
the decimal point or period.

The following variable holds the values -999.99 through 999.99 for display purposes:

01 DISPLAY-VALUE PIC -999.99.

The display sign (-) displays only when the value is negative. If DISPLAY-VALUE contains -46.17, it
displays as the following:

-046.17

However, the number 55.03 displays as follows:

055.03

A program performing calculation and display might contain WORKING-STORAGE and code as in
Listing 6.6. In practice, a sales commission usually would not be negative (unless the salesperson
generated a pile of refunds), but the example does show the difference between the PICTURE of a signed
value used for calculation at line 000800 and the PICTURE of a signed value used for display at line
001300.

TYPE: Listing 6.6. Using numeric and display variables.

000700 WORKING-STORAGE SECTION.
000800 01 SALES-TOTAL PIC S9(5)V99 VALUE 44707.66.
000900 01 COMMISSION-PERCENT PIC 99 VALUE 11.
001000 01 PERCENT-AS-DECIMAL PIC V99.
001100 01 THE-COMMISSION PIC S9(5)V99 VALUE ZERO.
001200

001300 01 DISPLAY-COMMISSION PIC -9(5).99.
......
002500* Divide commission by 100 to convert to decimal
002600 COMPUTE PERCENT-AS-DECIMAL =
002700 COMMISSION-PERCENT / 100.
002800
002900 COMPUTE THE-COMMISSION =
003000 PERCENT-AS-DECIMAL * SALES-TOTAL.
003100
003200 MOVE THE-COMMISSION TO DISPLAY-COMMISSION.
003300
003400 DISPLAY "The Commission is "
003500 DISPLAY-COMMISSION.

The - also can be placed at the end of the picture rather than at the beginning. It is fairly common in
business programs to see display values specified as follows:

01 THE-DISPLAY-VALUE PIC 999999.99-.

Suppressing Leading Zeroes
You can suppress leading zeroes to improve the display of a number. In the previous example, if
-55.17 is moved to THE-DISPLAY-VALUE and then displayed, it appears on the screen as the
following:

000055.17-

In a display variable, you can suppress the display of leading zeroes, using Z to replace 9 in the picture
of the variable. Here is an example:

01 THE-DISPLAY-VALUE PIC ZZZZZ9.99-.

When entered like this, a value of -54.27 moved to THE-DISPLAY-VALUE displays as the following:

54.27-

Leading zeroes are suppressed by the Z in the PICTURE statement.

Using a PICTURE of ZZZZZ9.99- enables the value 0 to display as this:

0.00

If you suppress all zeroes with a PICTURE of ZZZZZZ.ZZ-, a value of 0 displays as a blank because
all zeroes are suppressed.

Commas can be inserted in the picture to provide commas in the final display, like this:

01 DISPLAY-COMMISSION PIC ZZ,ZZ9.99-.

A value of 12345.67 moved to DISPLAY-COMMISSION displays as the following:

12,345.67

New Term: The minus sign (-), decimal point (.), comma (,) and the character Z are called editing
characters. A numeric variable that contains an editing character is called an edited numeric variable.
Edited numeric variables should be used only to display values and should not be used in calculations.
There are other editing characters, but these are the main ones.

WARNING: Editing characters should never be mixed with S or V in a PICTURE. PIC
S99.99 and PIC -ZZV99 are illegal PICTUREs, and your compiler will generate an
error if you try to create a PICTURE that mixes the two types.

Before you leap into writing a program that uses decimal or signed data, you need to know how to enter
signed and decimal data using ACCEPT. Numeric data that is entered into a computer probably will be
entered by the user with editing characters, such as a plus sign or a minus sign, a decimal point, and
commas.

If you ACCEPT values into a numeric field, such as a PIC 9(6)V99, characters such as signs and
commas entered by the user will be invalid. In order to allow the user to enter digits and editing
characters, it is necessary to use ACCEPT to accept values into an edited numeric variable.

The easiest way to create a PICTURE for a field into which this type of numeric data will be accepted is
to make it as large as possible by including all possible editing characters. If you want to allow the user
to enter a number as large as 999,999.99 with a sign, the picture for the field should be PIC
-ZZZ,ZZZ.ZZ. This PICTURE allows the user to enter all possible editing characters including
commas, a sign, and a decimal point. You also could use the following:

01 ENTRY-FIELD PIC ZZZ,ZZZ.ZZ-.

When a display variable is used as a data entry field with ACCEPT, the PICTURE of the variable does
not control what the user can enter. For example, it doesn't matter whether the minus sign (-) is placed at
the beginning or the end of the PICTURE statement. The user still can enter a minus in a leading or
trailing position. When an ACCEPT of ENTRY-FIELD is used in a program, the ACCEPT verb uses the
size of the PICTURE, 11 characters (eight characters, a comma, a minus sign, and a decimal point), to
determine how many characters the user is allowed to enter and assumes that the user will be entering
digits, and possibly a sign, commas and/or a decimal point as the input.

After the user enters data and presses Enter, the ACCEPT verb looks at the 11 (or fewer) characters and
tries to sort out the digits, minus signs, commas, or decimal points. It turns the result into a number that
can be moved to a true numeric variable.

Unfortunately, the following three different versions of ACCEPT can be used for numeric entry:

ACCEPT ENTRY-FIELD.
ACCEPT ENTRY-FIELD WITH CONVERSION.
ACCEPT ENTRY-FIELD CONVERT.

Micro Focus Personal COBOL uses the first version. ACUCOBOL uses the second and third versions;
VAX COBOL use the second; and LPI COBOL uses the third. You have to consult your COBOL manual
to check which one your version uses.

NOTE: The listings in today's lesson use ACCEPT ENTRY-FIELD because this code was

compiled and tested using a Micro Focus compiler. The other versions are commented out in
the code. You can change the one you use to fit your compiler.

Code, compile, and run Listing 6.7, entering various values to get an idea how the formatting works. You
might want to try editing the program to add additional formats or to try out longer fields.

TYPE: Listing 6.7. Edited formats.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. NUMS01.
000300*--
000400* Illustrates how decimal data is displayed
000500* when edited.
000600*--
000700 ENVIRONMENT DIVISION.
000800 DATA DIVISION.
000900 WORKING-STORAGE SECTION.
001000
001100 01 ENTRY-FIELD PIC -ZZZ,ZZZ.ZZ.
001200 01 THE-VALUE PIC S999999V99.
001300
001400 01 EDITED-DISPLAY-1 PIC -999999.99.
001500 01 EDITED-DISPLAY-2 PIC ZZZZZ9.99-.
001600 01 EDITED-DISPLAY-3 PIC ZZZZZZ.ZZ-.
001700 01 EDITED-DISPLAY-4 PIC ZZZ,ZZZ.ZZ-.
001800
001900 PROCEDURE DIVISION.
002000 PROGRAM-BEGIN.
002100
002200 DISPLAY "PLEASE ENTER A VALUE".
002300 ACCEPT ENTRY-FIELD.
002400*or ACCEPT ENTRY-FIELD CONVERT.
002500*or ACCEPT ENTRY-FIELD WITH CONVERSION.
002600 MOVE ENTRY-FIELD TO THE-VALUE.
002700
002800 MOVE THE-VALUE TO EDITED-DISPLAY-1
002900 EDITED-DISPLAY-2
003000 EDITED-DISPLAY-3
003100 EDITED-DISPLAY-4.
003200
003300 DISPLAY ENTRY-FIELD "|"
003400 EDITED-DISPLAY-1 "|"
003500 EDITED-DISPLAY-2 "|"
003600 EDITED-DISPLAY-3 "|"
003700 EDITED-DISPLAY-4 "|".
003800

003900 IF THE-VALUE NOT = ZERO
004000 GO TO PROGRAM-BEGIN.
004100
004200 PROGRAM-DONE.
004300 STOP RUN.
004400

The output of nums01.cbl shows the results of various numeric entry values. The user input is shown
in boldface type. Entry stops when you enter zero.

OUTPUT:
PLEASE ENTER A VALUE
-1
- 1.00|-000001.00| 1.00-| 1.00-| 1.00-|
PLEASE ENTER A VALUE
234,56
23,456.00| 023456.00| 23456.00 | 23456.00 | 23,456.00 |
PLEASE ENTER A VALUE
10606-
- 10,606.00|-010606.00| 10606.00-| 10606.00-| 10,606.00-|
PLEASE ENTER A VALUE
123.45
123.45| 000123.45| 123.45 | 123.45 | 123.45 |
PLEASE ENTER A VALUE
1234.5
1,234.50| 001234.50| 1234.50 | 1234.50 | 1,234.50 |
PLEASE ENTER A VALUE
-1678.98
- 1,678.98|-001678.98| 1678.98-| 1678.98-| 1,678.98-|
PLEASE ENTER A VALUE

ANALYSIS: The code in Listing 6.7 allows data entry to be accepted into a display variable field at line
002300 and then moves it to a calculation field. From there, it is moved to several different edited
numeric fields. The original entry and the different versions of the edited numeric fields are displayed.

COBOL Numeric Operations
You already have worked with several COBOL numeric operators; now it is time to round them up in
one section.

The COBOL COMPUTE verb is a general-purpose verb that can be used to calculate results. Arithmetic
expressions in the COMPUTE verb use the arithmetic operators: + (addition), - (subtraction), *
(multiplication), and / (division). You can use parentheses to affect the order in which operations are
performed.

When parentheses appear in an expression, the value within the innermost parentheses is evaluated first.

Assuming that THE-VALUE contains 100 and THE-PERCENT contains .25, these are the steps for
evaluating the sample compute statement:

1. COMPUTE THE-RESULT = ((THE-VALUE * THE-PERCENT) + 14) / 6

2. COMPUTE THE-RESULT = ((25) + 14) /6

3. COMPUTE THE-RESULT = (39) / 6

4. COMPUTE THE-RESULT = 6.5

The COMPUTE verb has two optional clauses: ROUNDED and ON SIZE ERROR. ROUNDED rounds the
result up or down as necessary, based on the results of the calculation. The ON SIZE ERROR logic is
performed if the result is larger than the variable that is used to store the result.

The statement that follows ON SIZE ERROR also is executed if a COMPUTE statement attempts to do
something impossible, such as divide by zero. Dividing by zero causes a lot of problems for a computer.
It is an error that can occur in a COMPUTE statement that uses division (/), or one that uses the DIVIDE
verb (which is covered later in today's lesson).

In the following syntax, clauses in brackets ([]) are optional. In a COMPUTE statement, the result is
stored in the variable on the left of the equals (=) sign, like this:

COMPUTE numeric variable
 [ROUNDED] =
 arithmetic expression
 [ON SIZE ERROR
 do something else]

In the following examples, the first COMPUTE statement uses all of the options.

COMPUTE THE-RESULT
 ROUNDED =
 (BASE-VALUE * 10) +
 (A-VALUE / 50)
 ON SIZE ERROR
 DISPLAY "Warning Size error."

COMPUTE THE-RESULT = 12 * 15.
COMPUTE THE-RESULT
 ROUNDED =
 (BASE-VALUE * 10) / 1.5.

A divide-by-zero error might occur in a program that calculated the sales dollars generated per day per
salesperson by dividing a salesperson's monthly total sales revenue by the number of days worked that
month. If one of the sales staff were off all month because of a serious illness, but some income came in
that month from a previous month's sale, trying to compute the dollars per day would cause a
divide-by-zero error.

COMPUTE DOLLARS-PER-DAY = MONTH-DOLLARS / DAYS-WORKED.

A program containing this COMPUTE statement would crash if DAYS-WORKED equals 0. An ON SIZE
ERROR traps this condition and displays an error, so that the program can continue:

002600 COMPUTE DOLLARS-PER-DAY =
002700 MONTH-DOLLARS / DAYS-WORKED
002800 ON SIZE ERROR
002900 DISPLAY "Division by zero error".

The ADD verb is available in two versions. Both versions have options similar to the COMPUTE verb. In
the first, a value (which can be a constant or a variable) is added to second value (which must be a
variable). The result is stored in the variable, like this:

ADD value TO variable
 [ROUNDED]
 [ON SIZE ERROR
 do something]

In each of the following examples, the result of the addition is stored in THE-VALUE:

ADD 1.17 TO THE-VALUE.

ADD A-VALUE TO THE-VALUE
 ROUNDED.
ADD 1.17 TO THE-VALUE
 ROUNDED
 ON SIZE ERROR
 DISPLAY "Add - overflow"

In the second version, two values are added together and the reserved word GIVING is used to indicate a
variable into which the result is stored. The values can be constants or variables.

ADD value TO value
 GIVING variable [ROUNDED]
 [ON SIZE ERROR
 do something]

In each example, the result of the addition is stored in THE-SUM, as shown here:

ADD 17.5 TO THE-VALUE
 GIVING THE-SUM ROUNDED
 ON SIZE ERROR
 DISPLAY "Add - overflow"
ADD 17.5 TO 22.7
 GIVING THE-SUM
ADD A-VALUE TO THE-VALUE
 GIVING THE-SUM
 ON SIZE ERROR
 DISPLAY "Add - overflow"

Subtraction is handled by the SUBTRACT verb, and it comes in the following two versions that are
similar to ADD. The second version of SUBTRACT also uses GIVING.

SUBTRACT value

 FROM variable [ROUNDED]
 [ON SIZE ERROR
 do something]
SUBTRACT value FROM value
 GIVING variable [ROUNDED]
 [ON SIZE ERROR
 do something]

The following are examples of subtraction with the SUBTRACT verb:

SUBTRACT 1.17
 FROM THE-VALUE ROUNDED
 ON SIZE ERROR
 DISPLAY "Subtract - overflow
SUBTRACT 17.5 FROM THE-VALUE
 GIVING THE-DIFFERENCE ROUNDED
 ON SIZE ERROR
 DISPLAY "Subtract-overflow"

Multiplication is handled by the MULTIPLY verb, and the following syntax for both versions of
MULTIPLY is similar to ADD and SUBTRACT:

MULTIPLY value
 BY variable [ROUNDED]
 [ON SIZE ERROR
 do something]
MULTIPLY value BY value
 GIVING variable [ROUNDED]
 [ON SIZE ERROR
 do something]

The result is stored in the second value (for example, THE-VALUE) for the first version, and the second
version uses GIVING to name a variable--in this case, THE-PRODUCT--to store the result:

MULTIPLY 1.17
 BY THE-VALUE ROUNDED
 ON SIZE ERROR
 DISPLAY "Multiply-overflow"
MULTIPLY 17.5 BY THE-VALUE
 GIVING THE-PRODUCT ROUNDED
 ON SIZE ERROR
 DISPLAY "Multiply-overflow"

Division with the DIVIDE verb comes in several versions, which follow. It has versions with and
without the GIVING clause, and it also includes the capability of storing the remainder of a division in a
separate variable. There also are versions that allow you to divide BY or divide INTO.

DIVIDE value
 INTO variable [ROUNDED]
 [ON SIZE ERROR

 do something]
DIVIDE value INTO value
 GIVING variable [ROUNDED]
 [ON SIZE ERROR
 do something]
DIVIDE value INTO value
 GIVING variable [ROUNDED]
 REMAINDER variable
 [ON SIZE ERROR
 do something]
DIVIDE value BY value
 GIVING variable [ROUNDED]
 [ON SIZE ERROR
 do something]
DIVIDE value BY value
 GIVING variable [ROUNDED]
 REMAINDER variable
 [ON SIZE ERROR
 do something]

The following are examples of division with the DIVIDE verb:

DIVIDE 56.2
 INTO THE-VALUE ROUNDED
 ON SIZE ERROR
 DISPLAY "Divide-error"
DIVIDE 56.2 INTO THE-VALUE
 GIVING THE-QUOTIENT ROUNDED
 ON SIZE ERROR
 DISPLAY "Divide-error"
DIVIDE 15 INTO THE-VALUE
 GIVING THE-QUOTIENT ROUNDED
 REMAINDER THE RE-REMAINDER
 ON SIZE ERRROR
 DISPLAY "Divide-error"
DIVIDE 56.2 BY THE-VALUE
 GIVING THE-QUOTINT ROUNDED
 ON SIZE ERROR
 DISPLAY "Divide-error"
DIVIDE 15 BY 7
 GIVING THE-QUOTIENT ROUNDED
 REMAINDER THE-REMAINDER
 ON SIZE ERROR
 DISPLAY "Divide-error"

Summary
Today, you learned more about COBOL's DATA DIVISION, including the following basics:

When a variable is declared in WORKING-STORAGE, it also can be given an initial value with a
VALUE or VALUE IS clause.

●

A variable that is not initialized in WORKING-STORAGE contains undefined values and must be
initialized if it is expected to have a default value.

●

Initializing a variable in WORKING-STORAGE has the same effect as a MOVE to the variable. If
the initializing value is too small for an alphanumeric field, the field is padded on the right with
spaces. If the initializing value is too small for a numeric variable, the variable is padded on the
left with zeroes.

●

SPACE and SPACES are reserved COBOL words that mean "fill with spaces." ZERO, ZEROS, and
ZEROES are reserved COBOL words that mean "fill with zeroes."

●

If a value is too large or too long when moved to a target variable, you will lose some data. An
alphanumeric variable truncates characters from the right of the value until the value will fit in the
variable. A numeric variable truncates digits from the left of the value until the value will fit. The
compiler might warn you or return errors when initializing with or moving values that are too large
or too long.

●

A MOVE verb can be used to move the same value to multiple targets.●

The decimal in a numeric PICTURE is a V, and the sign in a numeric picture is a leading S. The
following variable will hold values ranging from -99.9 through 99.9.

●

01 THE-VALUE PIC S99V9.

Variables whose pictures contain only the characters 9, S, and V are numeric variables and can be
used in calculations.

●

Variables whose pictures contain Z, -, ., and , are edited numeric variables intended to be used
for displaying or printing variables. You have seen the effect of some of these editing characters
on the display of a number.

●

How to use the COMPUTE, ADD, SUBTRACT, MULTIPLY and DIVIDE verbs.●

Q&A
Q If I can use ZEROES and SPACES to initialize a variable, can I also move ZEROES and
SPACES to a variable?

A Yes. Both of the following statements behave as you would expect them to by moving spaces or
zeroes to variables:

MOVE SPACES TO THE-MESSAGE.
MOVE ZEROES TO THE-NUMBER.

Q Does truncation happen in signed (positive and negative) numbers?

A Yes. If you move -2371.16 to a PIC S999V99, the result is stored as -371.16. If you
move a number with a negative sign to a picture that does not have a sign, the sign is truncated. If
you move -456.78 to a PIC 999V99, the result is stored as 456.78.

Workshop

Quiz

1. What is the value in BIG-NUMBER after the MOVE?

01 BIG-NUMBER PIC 9(5).
 MOVE 4976 TO BIG-NUMBER

2. What is the value in SMALL-NUMBER after the MOVE?

01 SMALL-NUMBER PIC 9(2).
 MOVE 4976 TO SMALL-NUMBER.

Hint: Numbers are truncated from the left.

3. After the following move, THE-VALUE contains 000.00. Why?

01 THE-VALUE PIC 999V99.
 MOVE 1000.001 TO THE-VALUE.

Exercises

1. If you haven't done so, compile trunc01.cbl and make a note of any warnings provided by
your compiler. If your compiler has a manual that lists the meanings of warnings, look them up in
the manual and become familiar with them.

2. Compile trunc02.cbl and look up any errors generated by the compiler.

Previous chapter Next chapter Contents

Macmillan Computer Publishing USA

© Copyright, Macmillan Computer Publishing. All rights reserved.

Teach Yourself COBOL in 21 days,
Second Edition

Previous chapter Next chapter Contents

- Day 7 -
Basics of Design

You now have enough tools to begin designing your own programs. A simple approach to design will
make your efforts worthwhile. Today, you learn about the following topics:

Why write a program?●

Defining the job.●

Breaking down the task.●

Identifying the processing loops.●

What is pseudocode and how do you use it?●

Identifying the main processing loop.●

The steps to program design.●

A compound interest program.●

Why Write a Program?
A program's primary goal is to take a repetitive task that would be mind-numbingly dull for a person to
perform, and reduce it to a set of rote steps performed over and over by the machine.

A task is suitable for a program if the task involves doing one thing over and over. For example, going
through the list of all books loaned out by a library, checking the return dates, determining which books

are overdue, and printing an overdue notice to send to the offending cardholder is an ideal task for a
computer program. This task is repetitive because it processes each book with the same steps:

1. Look up the loan date.

2. Check whether it is overdue.

3. If it is overdue, print a notice.

A task also is suitable for a program if it does only one thing once, but the program is run several times.
For example, a program would be helpful to design and print signs for a retail store. Someone will design
a sign and print it each time there is a sale. Unless you are keen on that individual artistic look, a
sign-printing program will do this task repeatedly with a uniform quality of result.

If you are planning to move and need to put up a sign offering a garage sale, this is probably an
unsuitable candidate for a program, unless you hold a garage sale every weekend and need to print signs
that often.

In the early lessons of this book, several programs were presented that were not true candidates for
programs. The "Hello world" program and the programs to display poems really didn't qualify as
necessary programs, but they were coded simply to introduce you to the language.

The multiplication tables programs were good candidates. They executed an action repeatedly by
multiplying two numbers, displaying the result, and moving on to the next number.

Some repetitive tasks make lousy programs because of the limitations of computers. Although you might
make yourself a cup of coffee the same way each morning, it really wouldn't work as a program. Very
few computers have a coffee maker as a standard output device.

If the job involves processing data, it is a good bet that a program will help expedite the task. (This is not
always true. How about the repetitive task of going through all the people you know and selecting 50
people to invite to a party? Unless the computer knows who is on your A list, it will not be able to do this
job even though it is repetitive and is data processing.)

Defining the Job
When you have decided that a job is suitable for a computer, you need to come up with a job description
for the program. This doesn't have to be detailed, but it does have to be precise. Some job descriptions of
computer programs that have been discussed or have appeared in previous lessons include the following:

Review all books out on loan and send overdue notices to the holders of all overdue books.●

Accept a sign text from the user, format a sign under user control, and print one or more copies of
it.

●

Display a multiplication table for any value from 1 to 99, displaying any number of entries from 1
to 99.

●

Display multiplication tables for any value from 1 to 99, displaying any number of entries from 1
to 99.

●

Notice the difference between the last two. This is an example of precision without detail. The job
descriptions are of two similar but slightly different programs.

Breaking Down the Task
When you have a job description, you can start breaking the job into smaller jobs. This is the point at
which you need to have some knowledge of what the programming language is capable of doing.

Let's try breaking down the fourth job description in the previous list, because you're familiar with a
version of this program. This will be a version of the multiplication tables that lets the user enter more
than one table and display it. The job description is to display multiplication tables for any value from 1
to 99, displaying any number of entries from 1 to 99. Without worrying about the order of things, start by
breaking the job description into component tasks, with a brief description of what the computer will
have to do to execute this part of the task.

Original Job Description Computer Task

Display multiplication tables Display multiplication tables over and over.

For any value from 1 to 99 Ask the user for the table to display (1-99).

Display any number of entries from 1 to 99 1. Ask the user for the number of entries (1-99).

2. Display each entry from 1 through the number specified
by the user.

The smaller tasks themselves might have to be broken down again. This process might have to be
performed over and over until the tasks are small enough to be described in terms the computer can
process.

Identifying the Processing Loops
Processing loops begin to stand out when the job is broken into smaller tasks. Recall from Day 5, "Using
PERFORM, GO TO, and IF to Control Programs," that a processing loop is any task that is done over and
over based on the detailed task descriptions.

You should be able to identify two loops now. The first displays a selected table repeatedly. The second
displays an entry repeatedly until the number of entries specified by the user is reached.

After you have identified a loop, it is helpful to think of the loop as doing one thing over and over instead
of doing all the things once. Table 7.1 illustrates the difference between the normal way of thinking
about doing things repeatedly, and the computer-oriented way of thinking about processing loops.

Table 7.1. Normal thinking versus computer thinking.

Normal Thinking Computer Thinking

Display several tables. Display one table over and over, changing some value each time.

Display all the entries. Display one entry over and over, changing some value each time.

New Term: Pseudocode is a convenient way to write code without having to labor over the syntax of
every line. It also allows you to leave gaps when you don't know the answer yet. Good pseudocode
should be written in something that approximates the target language. There are no real rules for
pseudocode, except that it should be helpful when designing a program.

Now that you have the program job, tasks, and processing loops identified, the next step is to start putting
it together with pseudocode. The first task is identifying the whole program. What does it do? The
program displays a bunch of tables. In computer "loopthink" it displays one table over and over, with
something changed during each display. Listing 7.1 is a pseudocode statement for this.

Note that the first example of pseudocode violates two COBOL syntax rules. All words are not in
uppercase, and the sentence does not end with a period. This is typical of pseudocode. It is like COBOL
but does not have to honor all syntax rules.

TYPE: Listing 7.1. The first pseudocode.

THE-PROGRAM
 DISPLAY-ONE-TABLE over and over

"Over and over" is good enough for the programmer, but a computer program needs to be more precise
so that the computer knows when to stop. This translates into an UNTIL condition. For the moment, I
will leave things open-ended and change the pseudocode to that of Listing 7.2.

TYPE: Listing 7.2. The main action of the program in pseudocode.

THE-PROGRAM
 DISPLAY-ONE-TABLE
 UNTIL something???

The next step is to look at DISPLAY-ONE-TABLE. What actions do you have to do to display one
table? Basically, there are only two actions, which are to get the table and display it. Listing 7.3 expands
the pseudocode with these steps.

TYPE: Listing 7.3. Expanding the code.

THE-PROGRAM
 DISPLAY-ONE-TABLE
 UNTIL something???

DISPLAY-ONE-TABLE
 GET-WHICH-TABLE
 DISPLAY-THE-TABLE

GET-WHICH-TABLE resolves into simple COBOL commands to display a message and accept an
answer. Now, what do you have to do to display the table? There are also two steps to this. First, get the
number of entries. Next, display one entry until that number of entries is exhausted. Listing 7.4 includes
the actions for GET-WHICH-TABLE and DISPLAY-THE-TABLE.

TYPE: Listing 7.4. Expanding on DISPLAY-THE-TABLE.

THE-PROGRAM
 DISPLAY-ONE-TABLE
 UNTIL something???

DISPLAY-ONE-TABLE
 GET-WHICH-TABLE
 DISPLAY-THE-TABLE

GET-WHICH-TABLE
 DISPLAY "Which table? (01-99)"
 ACCEPT THE-TABLE

DISPLAY-THE-TABLE
 GET-HOW-MANY-ENTRIES
 DISPLAY-ONE-ENTRY
 UNTIL all entries are displayed

Now you can apply your knowledge of COBOL to the problem. The entries to be displayed range from 1
to the number entered by the user. This seems a good place to use a VARYING option. Listing 7.5
expands on this in DISPLAY-THE-TABLE and also tackles the problem of getting the number of
entries.

TYPE: Listing 7.5. The program takes shape.

THE-PROGRAM
 DISPLAY-ONE-TABLE
 UNTIL something???

DISPLAY-ONE-TABLE
 GET-WHICH-TABLE
 DISPLAY-THE-TABLE

GET-WHICH-TABLE
 DISPLAY "Which table? (01-99)"
 ACCEPT THE-TABLE

DISPLAY-THE-TABLE
 GET-HOW-MANY-ENTRIES
 DISPLAY-ONE-ENTRY

 VARYING THE-ENTRY FROM 1 BY 1
 UNTIL THE-ENTRY > HOW-MANY-ENTRIES

GET-HOW-MANY-ENTRIES
 DISPLAY "How many entries (01-99)?"
 ACCEPT HOW-MANY-ENTRIES

The last piece of the program is the task of displaying one entry. Listing 7.6 puts the final piece of the
pseudocode together.

TYPE: Listing 7.6. The core of the program in pseudocode.

THE-PROGRAM
 DISPLAY-ONE-TABLE
 UNTIL something???

DISPLAY-ONE-TABLE
 GET-WHICH-TABLE
 DISPLAY-THE-TABLE

GET-WHICH-TABLE
 DISPLAY "Which table? (01-99)"
 ACCEPT THE-TABLE

DISPLAY-THE-TABLE
 GET-HOW-MANY-ENTRIES
 DISPLAY-ONE-ENTRY
 VARYING THE-ENTRY FROM 1 BY 1
 UNTIL THE-ENTRY > HOW-MANY-ENTRIES

GET-HOW-MANY-ENTRIES
 DISPLAY "How many entries (01-99)?"
 ACCEPT HOW-MANY-ENTRIES

DISPLAY-ONE-ENTRY
 COMPUTE THE-PRODUCT = THE-TABLE * THE-ENTRY
 DISPLAY THE-TABLE " * "
 THE-ENTRY " = "
 THE-PRODUCT

You don't want the program to turn into a runaway train, so you still have an UNTIL to resolve in
THE-PROGRAM. This is where the user wants the process to stop. You could establish this by asking
users whether they want to continue or to see another table.

When should the user be asked? After each table is displayed. Remember the two key parts of a
processing loop are the top and the bottom. The question could be asked at the bottom of
DISPLAY-ONE-TABLE. Listing 7.7 covers the sections that have been added in

DISPLAY-ONE-TABLE and the new section GO-AGAIN. In GO-AGAIN, I made a design choice about
the user's answer. I could have checked for y, Y, n, or N and provided an invalid entry message for
anything else, but this felt like overkill for such a simple program. Instead, I chose to test only for y and
convert it to Y. Then, anything other than Y is changed to N, forcing any entry other than Y or y to be
treated as no.

TYPE: Listing 7.7. The pseudocode is almost complete.

THE-PROGRAM
 DISPLAY-ONE-TABLE
 UNTIL YES-NO = "N"

DISPLAY-ONE-TABLE
 GET-WHICH-TABLE
 DISPLAY-THE-TABLE
 GO-AGAIN

GET-WHICH-TABLE
 DISPLAY "Which table? (01-99)"
 ACCEPT THE-TABLE

DISPLAY-THE-TABLE
 GET-HOW-MANY-ENTRIES
 DISPLAY-ONE-ENTRY
 VARYING THE-ENTRY FROM 1 BY 1
 UNTIL THE-ENTRY > HOW-MANY-ENTRIES

GO-AGAIN
 DISPLAY "Go Again (Y/N)?"
 ACCEPT YES-NO
 IF YES-NO = "y"
 MOVE "Y" TO YES-NO
 IF YES-NO NOT = "Y"
 MOVE "N" TO YES-NO

GET-HOW-MANY-ENTRIES
 DISPLAY "How many entries (01-99)?"
 ACCEPT HOW-MANY-ENTRIES

DISPLAY-ONE-ENTRY
 COMPUTE THE-PRODUCT = THE-TABLE * THE-ENTRY
 DISPLAY THE-TABLE " * "
 THE-ENTRY " = "
 THE-PRODUCT

Now comes the tidying up. First, look at the loops. There is a potential problem in the control of the first

loop in THE-PROGRAM. Recall the following loop steps:

1. Initialize for the first pass through the loop.

2. Do the loop.

3. Modify the variable that controls the loop as the last step of the loop, or after each pass through
the loop.

There is no loop step 1 for DISPLAY-ONE-TABLE. This can be fixed by forcing YES-NO to an initial
value of "Y". This ensures that DISPLAY-ONE-TABLE is executed when the loop is entered for the
first time.

THE-PROGRAM
 MOVE "Y" TO YES-NO
 DISPLAY-ONE-TABLE
 UNTIL YES-NO = "N"

The second area to clean up has been dealt with once before--the problem of displaying 15 lines at a
time. You can use the top of the DISPLAY-ONE-ENTRY loop for a Press ENTER message, and use
the bottom of the loop to add 1 to SCREEN-LINES.

Because this program will display more than one table, it is necessary to start SCREEN-LINES at zero
before each table is displayed. Listing 7.8 is the final version of the pseudocode.

TYPE: Listing 7.8. The final pseudocode.

THE-PROGRAM
 MOVE "Y" TO YES-NO
 DISPLAY-ONE-TABLE
 UNTIL YES-NO = "N"

DISPLAY-ONE-TABLE
 GET-WHICH-TABLE
 DISPLAY-THE-TABLE
 GO-AGAIN

GET-WHICH-TABLE
 DISPLAY "Which table? (01-99)"
 ACCEPT THE-TABLE

DISPLAY-THE-TABLE
 GET-HOW-MANY-ENTRIES
 MOVE 0 TO SCREEN-LINES
 DISPLAY-ONE-ENTRY
 VARYING THE-ENTRY FROM 1 BY 1
 UNTIL THE-ENTRY > HOW-MANY-ENTRIES

GO-AGAIN
 DISPLAY "Go Again (Y/N)?"
 ACCEPT YES-NO
 IF YES-NO = "y"
 MOVE "Y" TO YES-NO
 IF YES-NO NOT = "Y"
 MOVE "N" TO YES-NO

GET-HOW-MANY-ENTRIES
 DISPLAY "How many entries (01-99)?"
 ACCEPT HOW-MANY-ENTRIES

DISPLAY-ONE-ENTRY
 IF SCREEN-LINES = 15
 PRESS-ENTER
 COMPUTE THE-PRODUCT = THE-TABLE * THE-ENTRY
 DISPLAY THE-TABLE " * "
 THE-ENTRY " = "
 THE-PRODUCT
 ADD 1 TO SCREEN-LINES

PRESS-ENTER
 DISPLAY "Press ENTER to continue"
 ACCEPT A-DUMMY

What's left? I deliberately chose a pseudocode that translated readily into COBOL code. Remember that
pseudocode is supposed to help with the design. In fact, the pseudocode is now very close to a COBOL
program.

Basically, you need to clean up the punctuation by adding some periods, add some PERFORM statements,
create variables in WORKING-STORAGE, compile, and test. The result is shown in Listing 7.9. The
pseudocode is almost identical to the PROCEDURE DIVISION.

TYPE: Listing 7.9. The final program.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. MULT07.
000300*--
000400* This program asks the user for a number for a
000500* multiplication table, and a table size
000600* and then displays a table for that number
000700* times the values 1 through HOW-MANY.
000800*
000900* The display is paused after each 15 lines.
001000*--
001100 ENVIRONMENT DIVISION.

001200 DATA DIVISION.
001300 WORKING-STORAGE SECTION.
001400
001500 01 THE-TABLE PIC 99.
001600 01 THE-ENTRY PIC 999.
001700 01 THE-PRODUCT PIC 9999.
001800 01 HOW-MANY-ENTRIES PIC 99.
001900 01 SCREEN-LINES PIC 99.
002000
002100 01 A-DUMMY PIC X.
002200
002300 01 YES-NO PIC X.
002400
002500 PROCEDURE DIVISION.
002600
002700 PROGRAM-BEGIN.
002800 MOVE "Y" TO YES-NO.
002900 PERFORM DISPLAY-ONE-TABLE
003000 UNTIL YES-NO = "N".
003100
003200 PROGRAM-DONE.
003300 STOP RUN.
003400
003500 DISPLAY-ONE-TABLE.
003600 PERFORM GET-WHICH-TABLE.
003700 PERFORM DISPLAY-THE-TABLE.
003800 PERFORM GO-AGAIN.
003900
004000 GET-WHICH-TABLE.
004100 DISPLAY
004200 "Which multiplication table(01-99)?".
004300 ACCEPT THE-TABLE.
004400
004500 DISPLAY-THE-TABLE.
004600 PERFORM GET-HOW-MANY-ENTRIES.
004700
004800 MOVE 0 TO SCREEN-LINES.
004900
005000 PERFORM DISPLAY-ONE-ENTRY
005100 VARYING THE-ENTRY
005200 FROM 1 BY 1
005300 UNTIL THE-ENTRY > HOW-MANY-ENTRIES.
005400
005500 GO-AGAIN.
005600 DISPLAY "Go Again (Y/N)?".
005700 ACCEPT YES-NO.

005800 IF YES-NO = "y"
005900 MOVE "Y" TO YES-NO.
006000 IF YES-NO NOT = "Y"
006100 MOVE "N" TO YES-NO.
006200
006300 GET-HOW-MANY-ENTRIES.
006400 DISPLAY
006500 "How many entries would you like (01-99)?".
006600 ACCEPT HOW-MANY-ENTRIES.
006700
006800 DISPLAY-ONE-ENTRY.
006900
007000 IF SCREEN-LINES = 15
007100 PERFORM PRESS-ENTER.
007200 COMPUTE THE-PRODUCT = THE-TABLE * THE-ENTRY.
007300 DISPLAY
007400 THE-TABLE " * " THE-ENTRY " = " THE-PRODUCT.
007500
007600 ADD 1 TO SCREEN-LINES.
007700
007800 PRESS-ENTER.
007900 DISPLAY "Press ENTER to continue . . .".
008000 ACCEPT A-DUMMY.
008100 MOVE 0 TO SCREEN-LINES.
008200

Identifying the Main Processing Loop
Although a processing loop is supposed to be a section of the program that is performed over and over, it
does not have to be. The main processing loop, the main action that the program does, is not always
performed repeatedly. You saw in earlier versions of the multiplication tables program in Day 5 that the
main processing loop need not be performed over and over. Yet the program is still a valid computer
program.

If the main processing loop doesn't have to be a true loop, how do you identify it? One way is to pretend
that whatever the program is going to do, it will be doing it over and over. If the original job description
had been to display only one multiplication table, you could add "do it over and over" while you are
designing it.

When you have used this trick in thinking to identify the main activity (and thereby the main processing
loop) of the program, the design can be completed, and the program can be converted easily to a single
loop version.

An interesting feature of processing loops is that they work for one occurrence in the loop just as well as
they do for all occurrences. Listing 7.10, mult08.cbl, is identical to mult07.cbl, but certain lines
have been commented out. Commenting out code is a common practice. Instead of deleting the whole

line, simply place an asterisk in column 7. This causes the line to be treated as a comment, and it is
therefore ignored by the compiler. It has the same effect as deleting the line, but it leaves the code there.
This practice is used when something is being changed and you need to refer to the original.

TYPE: Listing 7.10. Converting mult07.cbl to perform a single loop.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. MULT08.
000300*--
000400* This program asks the user for a number for a
000500* multiplication table, and a table size
000600* and then displays a table for that number
000700* times the values 1 through HOW-MANY.
000800*
000900* The display is paused after each 15 lines.
001000*--
001100 ENVIRONMENT DIVISION.
001200 DATA DIVISION.
001300 WORKING-STORAGE SECTION.
001400
001500 01 THE-TABLE PIC 99.
001600 01 THE-ENTRY PIC 999.
001700 01 THE-PRODUCT PIC 9999.
001800 01 HOW-MANY-ENTRIES PIC 99.
001900 01 SCREEN-LINES PIC 99.
002000
002100 01 A-DUMMY PIC X.
002200
002300*01 YES-NO PIC X VALUE "Y".
002400
002500 PROCEDURE DIVISION.
002600
002700 PROGRAM-BEGIN.
002800* MOVE "Y" TO YES-NO.
002900 PERFORM DISPLAY-ONE-TABLE.
003000* UNTIL YES-NO = "N".
003100
003200 PROGRAM-DONE.
003300 STOP RUN.
003400
003500 DISPLAY-ONE-TABLE.
003600 PERFORM GET-WHICH-TABLE.
003700 PERFORM DISPLAY-THE-TABLE.
003800* PERFORM GO-AGAIN.
003900
004000 GET-WHICH-TABLE.

004100 DISPLAY
004200 "Which multiplication table(01-99)?".
004300 ACCEPT THE-TABLE.
004400
004500 DISPLAY-THE-TABLE.
004600 PERFORM GET-HOW-MANY-ENTRIES.
004700
004800 MOVE 0 TO SCREEN-LINES.
004900
005000 PERFORM DISPLAY-ONE-ENTRY
005100 VARYING THE-ENTRY
005200 FROM 1 BY 1
005300 UNTIL THE-ENTRY > HOW-MANY-ENTRIES.
005400
005500*GO-AGAIN.
005600* DISPLAY "Go Again (Y/N)?".
005700* ACCEPT YES-NO.
005800* IF YES-NO = "y"
005900* MOVE "Y" TO YES-NO.
006000* IF YES-NO NOT = "Y"
006100* MOVE "N" TO YES-NO.
006200
006300 GET-HOW-MANY-ENTRIES.
006400 DISPLAY
006500 "How many entries would you like (01-99)?".
006600 ACCEPT HOW-MANY-ENTRIES.
006700
006800 DISPLAY-ONE-ENTRY.
006900
007000 IF SCREEN-LINES = 15
007100 PERFORM PRESS-ENTER.
007200 COMPUTE THE-PRODUCT = THE-TABLE * THE-ENTRY.
007300 DISPLAY
007400 THE-TABLE " * " THE-ENTRY " = " THE-PRODUCT.
007500
007600 ADD 1 TO SCREEN-LINES.
007700
007800 PRESS-ENTER.
007900 DISPLAY "Press ENTER to continue . . .".
008000 ACCEPT A-DUMMY.
008100 MOVE 0 TO SCREEN-LINES.
008200

ANALYSIS: Listing 7.10 has been modified to remove all the code pertaining to asking the user to
continue and to going again if the user answers yes.

Lines 002300, 002800, 003000, 003800, and 005500 through 006100 have been commented
out. The resulting program is a slightly different version of the original multiplication tables program that
displays only one table. The mult07.cbl program has been stripped back to a single pass by a few
well-placed asterisks, and you have completed an efficient design.

Processing loops are not always obvious. The original versions of the multiplication program,
mult01.cbl through mult06.cbl, in Day 5, made only one pass through the main processing loop.

If you are designing a program that performs only one pass of some process, you can imitate the process
shown in Listing 7.10, mult08.cbl. Pretend that you are making multiple passes, complete the design,
and then cut back to one pass through the loop. This is just a trick to help you think of the main action of
a program as a processing loop, even if it is executed only once.

A Summary of Design Steps
Before you tackle another design problem, a review of the design steps that you have learned is in order.
The following list includes both design and development:

1. Create a job description. This is a precise, but not necessarily detailed, description of what the
program will do.

2. Break the job description into tasks. This step adds detail to the precision. The tasks might need
to be further broken down until the task descriptions approximate what a computer can do.

3. Identify the processing loops.

4. Identify the main processing loop if it has not become apparent during step 3.

5. Write the program in pseudocode.

6. Convert the pseudocode into actual code.

7. Edit and compile the program.

8. Test the program.

9. Fix any bugs by rewriting the areas of the program that aren't working correctly.

10. Repeat steps 8 and 9 until the program works correctly.

It is not unusual for steps 1 through 5 to take longer than steps 6 through 10, especially if you do a
thorough job of design.

A Compound Interest Program
In this example you work through the design of a completely new program that calculates the value of an
initial investment after compound interest has accumulated over a period of time.

To calculate compound interest, you need to know the principal, the interest rate over a given period, and
the number of periods over which the interest will be compounded. Starting with the steps again, you
first create a job description for the program, which is as follows: Calculate the values of investments
based on user input of principals, interest rates, and number of periods. This can be broken into the
following tasks without regard to their order:

1. Calculate the value of an investment over and over.

2. Display the value.

3. Get user input of the principal.

4. Get user input of the interest.

5. Get user input of the number of periods.

The easiest way to calculate compound interest is to calculate the new value of the
investment over one period. Then make the new value the investment, and calculate another
new value on one period using the new investment value. (See Table 7.2.) This is repeated
until all periods are exhausted. Assuming an interest rate of 10 percent over four periods, the
value of the investment is calculated in the four steps shown in Table 7.2.

Table 7.2. Calculating compound interest.

Period 1 2 3 4

Principal 1000.00 1100.00 1210.00 1331.00

Rate (10%) x.10 x.10 x.10 x.10

Interest =100.00 =110.00 =121.00 =133.10

Plus the original principal +1000.00 +1100.00 +1210.00 +1331.00

Equals =1100.00 =1210.00 =1331.00 =1464.10

At the end of each step, the resulting value is moved to the top of the next period and the
steps are repeated.

There are more efficient formulas for compound interest, but this one illustrates that even
when you don't know the "most proper" formula, you can use a computer to tough it out for
you. This helps to add a sixth task to the list.

6. Calculate the new value of an investment for one period over and over.

From these tasks, it is possible to recognize two processing loops at tasks 1 and 6. The loop at task 1 is

the main loop for the program.

From your existing experience with pseudocode, put together a quick outline of the program. In Listing
7.11, I've used more formal pseudocode, which approximates COBOL even more closely. Now that you
have some experience with DISPLAY and ACCEPT, it's not necessary to spell all this out in pseudocode.
Remember that pseudocode is supposed to help during a design, not be extra work to do. The pseudocode
is clear enough to indicate that you will display some sort of message and get some user input.

TYPE: Listing 7.11. Pseudocode for compound interest.

THE-PROGRAM
 MOVE "Y" TO YES-NO
 PERFORM GET-AND-DISPLAY-RESULT
 UNTIL YES-NO = "N".

GET-AND-DISPLAY-RESULT.
 PERFORM GET-THE-PRINCIPAL
 PERFORM GET-THE-INTEREST
 PERFORM GET-THE-PERIODS.
 PERFORM CALCULATE-THE-RESULT.
 PERFORM DISPLAY-THE-RESULT.
 PERFORM GO-AGAIN.

GET-THE-PRINCIPAL.
 (between 0.01 and 999999.99)

GET-THE-INTEREST.
 (between 00.1 and 99.9%)

GET-THE-PERIODS.
 (between 001 and 999)

CALCULATE-THE-RESULT.
 PERFORM CALCULATE-ONE-PERIOD
 VARYING THE-PERIOD FROM 1 BY 1
 UNTIL THE-PERIOD > NO-OF-PERIODS.

CALCULATE-ONE-PERIOD.
 COMPUTE EARNED-INTEREST ROUNDED =
 THE-PRINCIPAL * INTEREST-AS-DECIMAL.
 COMPUTE THE-NEW-VALUE =
 THE-PRINCIPAL + EARNED-INTEREST.
 MOVE THE-NEW-VALUE TO THE-PRINCIPAL.

GO-AGAIN
 (YES OR NO)

DISPLAY-THE-RESULT
 (VALUE = THE-PRINCIPAL)

Listing 7.12 is the code that comes from the pseudocode. The paragraphs to get the principal, the interest,
and the number of periods have been designed to validate the input data, display an invalid entry message
if necessary, and go to the top of the paragraph if an entry error has occurred. Study this listing, code it,
compile it, and try it out.

NOTE: Remember that the ACCEPT data-name statements have to be adjusted to your
computer to ACCEPT data-name CONVERT or just ACCEPT data-name WITH
CONVERSION.

TYPE: Listing 7.12. Compound interest.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. CMPINT01.
000300*--
000400* Calculates compound interest
000500*--
000600 ENVIRONMENT DIVISION.
000700 DATA DIVISION.
000800 WORKING-STORAGE SECTION.
000900
001000 01 YES-NO PIC X.
001100 01 THE-INTEREST PIC 99V9.
001200 01 INTEREST-AS-DECIMAL PIC V999.
001300 01 THE-PRINCIPAL PIC 9(9)V99.
001400 01 THE-NEW-VALUE PIC 9(9)V99.
001500 01 EARNED-INTEREST PIC 9(9)V99.
001600 01 THE-PERIOD PIC 9999.
001700 01 NO-OF-PERIODS PIC 999.
001800
001900 01 ENTRY-FIELD PIC Z(9).ZZ.
002000 01 DISPLAY-VALUE PIC ZZZ,ZZZ,ZZ9.99.
002100
002200 PROCEDURE DIVISION.
002300 PROGRAM-BEGIN.
002400
002500 MOVE "Y" TO YES-NO.
002600 PERFORM GET-AND-DISPLAY-RESULT
002700 UNTIL YES-NO = "N".
002800
002900 PROGRAM-DONE.
003000 STOP RUN.

003100
003200 GET-AND-DISPLAY-RESULT.
003300 PERFORM GET-THE-PRINCIPAL.
003400 PERFORM GET-THE-INTEREST.
003500 PERFORM GET-THE-PERIODS.
003600 PERFORM CALCULATE-THE-RESULT.
003700 PERFORM DISPLAY-THE-RESULT.
003800 PERFORM GO-AGAIN.
003900
004000 GET-THE-PRINCIPAL.
004100 DISPLAY "Principal (.01 TO 999999.99)?".
004200 ACCEPT ENTRY-FIELD
004300 MOVE ENTRY-FIELD TO THE-PRINCIPAL.
004400 IF THE-PRINCIPAL < .01 OR
004500 THE-PRINCIPAL > 999999.99
004600 DISPLAY "INVALID ENTRY"
004700 GO TO GET-THE-PRINCIPAL.
004800
004900 GET-THE-INTEREST.
005000 DISPLAY "Interest (.1% TO 99.9%)?".
005100 ACCEPT ENTRY-FIELD.
005200 MOVE ENTRY-FIELD TO THE-INTEREST.
005300 IF THE-INTEREST < .1 OR
005400 THE-INTEREST > 99.9
005500 DISPLAY "INVALID ENTRY"
005600 GO TO GET-THE-INTEREST
005700 ELSE
005800 COMPUTE INTEREST-AS-DECIMAL =
005900 THE-INTEREST / 100.
006000
006100 GET-THE-PERIODS.
006200 DISPLAY "Number of periods (1 TO 999)?".
006300 ACCEPT ENTRY-FIELD.
006400 MOVE ENTRY-FIELD TO NO-OF-PERIODS.
006500 IF NO-OF-PERIODS < 1 OR
006600 NO-OF-PERIODS > 999
006700 DISPLAY "INVALID ENTRY"
006800 GO TO GET-THE-PERIODS.
006900
007000 CALCULATE-THE-RESULT.
007100 PERFORM CALCULATE-ONE-PERIOD
007200 VARYING THE-PERIOD FROM 1 BY 1
007300 UNTIL THE-PERIOD > NO-OF-PERIODS.
007400
007500 CALCULATE-ONE-PERIOD.
007600 COMPUTE EARNED-INTEREST ROUNDED =

007700 THE-PRINCIPAL * INTEREST-AS-DECIMAL.
007800 COMPUTE THE-NEW-VALUE =
007900 THE-PRINCIPAL + EARNED-INTEREST.
008000 MOVE THE-NEW-VALUE TO THE-PRINCIPAL.
008100
008200 GO-AGAIN.
008300 DISPLAY "GO AGAIN?".
008400 ACCEPT YES-NO.
008500 IF YES-NO = "y"
008600 MOVE "Y" TO YES-NO.
008700 IF YES-NO NOT = "Y"
008800 MOVE "N" TO YES-NO.
008900
009000 DISPLAY-THE-RESULT.
009100 MOVE THE-NEW-VALUE TO DISPLAY-VALUE.
009200 DISPLAY "RESULTING VALUE IS " DISPLAY-VALUE.
009300

Here is the output of cmpint01.cbl for $1,000.00 invested at 1.1 percent per month, and compounded
for 48 months:

OUTPUT:
Principal (.01 TO 999999.99)?
1000
Interest (.1% TO 99.9%)?
1.1
Number of periods (1 TO 999)?
48
RESULTING VALUE IS 1,690.65
GO AGAIN?

Before anyone complains about using GO TO in Listing 7.12, I have included Listing 7.13,
cmpint02.cbl, which avoids the GO TO logic by using an ENTRY-OK flag. Study the differences in
cmpint01.cbl and cmpint02.cbl. The second listing illustrates that you can avoid using a GO
TO even when a GO TO seems like a logical choice.

TYPE: Listing 7.13. Avoiding GO TO.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. CMPINT02.
000300*--
000400* Calculates compound interest
000500*--
000600 ENVIRONMENT DIVISION.
000700 DATA DIVISION.
000800 WORKING-STORAGE SECTION.
000900

001000 01 YES-NO PIC X.
001100 01 ENTRY-OK PIC X.
001200 01 THE-INTEREST PIC 99V9.
001300 01 INTEREST-AS-DECIMAL PIC V999.
001400 01 THE-PRINCIPAL PIC 9(9)V99.
001500 01 THE-NEW-VALUE PIC 9(9)V99.
001600 01 EARNED-INTEREST PIC 9(9)V99.
001700 01 THE-PERIOD PIC 9999.
001800 01 NO-OF-PERIODS PIC 999.
001900
002000 01 ENTRY-FIELD PIC Z(9).ZZ.
002100 01 DISPLAY-VALUE PIC ZZZ,ZZZ,ZZ9.99.
002200
002300 PROCEDURE DIVISION.
002400 PROGRAM-BEGIN.
002500
002600 MOVE "Y" TO YES-NO.
002700 PERFORM GET-AND-DISPLAY-RESULT
002800 UNTIL YES-NO = "N".
002900
003000 PROGRAM-DONE.
003100 STOP RUN.
003200
003300 GET-AND-DISPLAY-RESULT.
003400 PERFORM GET-THE-PRINCIPAL.
003500 PERFORM GET-THE-INTEREST.
003600 PERFORM GET-THE-PERIODS.
003700 PERFORM CALCULATE-THE-RESULT.
003800 PERFORM DISPLAY-THE-RESULT.
003900 PERFORM GO-AGAIN.
004000
004100 GET-THE-PRINCIPAL.
004200 MOVE "N" TO ENTRY-OK.
004300 PERFORM ENTER-THE-PRINCIPAL
004400 UNTIL ENTRY-OK = "Y".
004500
004600 ENTER-THE-PRINCIPAL.
004700 DISPLAY "Principal (.01 TO 999999.99)?".
004800 ACCEPT ENTRY-FIELD.
004900 MOVE ENTRY-FIELD TO THE-PRINCIPAL.
005000 IF THE-PRINCIPAL < .01 OR
005100 THE-PRINCIPAL > 999999.99
005200 DISPLAY "INVALID ENTRY"
005300 ELSE
005400 MOVE "Y" TO ENTRY-OK.

005500
005600 GET-THE-INTEREST.
005700 MOVE "N" TO ENTRY-OK.
005800 PERFORM ENTER-THE-INTEREST
005900 UNTIL ENTRY-OK = "Y".
006000
006100 ENTER-THE-INTEREST.
006200 DISPLAY "Interest (.1% TO 99.9%)?".
006300 ACCEPT ENTRY-FIELD.
006400 MOVE ENTRY-FIELD TO THE-INTEREST.
006500 IF THE-INTEREST < .1 OR
006600 THE-INTEREST > 99.9
006700 DISPLAY "INVALID ENTRY"
006800 ELSE
006900 MOVE "Y" TO ENTRY-OK
007000 COMPUTE INTEREST-AS-DECIMAL =
007100 THE-INTEREST / 100.
007200
007300 GET-THE-PERIODS.
007400 MOVE "N" TO ENTRY-OK.
007500 PERFORM ENTER-THE-PERIODS
007600 UNTIL ENTRY-OK = "Y".
007700
007800 ENTER-THE-PERIODS.
007900 DISPLAY "Number of periods (1 TO 999)?".
008000 ACCEPT ENTRY-FIELD.
008100 MOVE ENTRY-FIELD TO NO-OF-PERIODS.
008200 IF NO-OF-PERIODS < 1 OR
008300 NO-OF-PERIODS > 999
008400 DISPLAY "INVALID ENTRY"
008500 ELSE
008600 MOVE "Y" TO ENTRY-OK.
008700
008800 CALCULATE-THE-RESULT.
008900 PERFORM CALCULATE-ONE-PERIOD
009000 VARYING THE-PERIOD FROM 1 BY 1
009100 UNTIL THE-PERIOD > NO-OF-PERIODS.
009200
009300 CALCULATE-ONE-PERIOD.
009400 COMPUTE EARNED-INTEREST ROUNDED =
009500 THE-PRINCIPAL * INTEREST-AS-DECIMAL.
009600 COMPUTE THE-NEW-VALUE =
009700 THE-PRINCIPAL + EARNED-INTEREST.
009800 MOVE THE-NEW-VALUE TO THE-PRINCIPAL.
009900
010000 GO-AGAIN.

010100 DISPLAY "GO AGAIN?".
010200 ACCEPT YES-NO.
010300 IF YES-NO = "y"
010400 MOVE "Y" TO YES-NO.
010500 IF YES-NO NOT = "Y"
010600 MOVE "N" TO YES-NO.
010700
010800 DISPLAY-THE-RESULT.
010900 MOVE THE-NEW-VALUE TO DISPLAY-VALUE.
011000 DISPLAY "RESULTING VALUE IS " DISPLAY-VALUE.
011100

ANALYSIS: In Listing 7.13, the data entry is treated as a processing loop that is performed until the data
that is entered is correct.

For example, at line 004200, the ENTRY-OK flag is set to "N" (not okay) before the loop
ENTER-THE-PRINCIPAL is performed. Then ENTER-THE-PRINCIPAL is performed UNTIL
ENTRY-OK = "Y" (the data entry is okay). This forces ENTER-THE-PRINCIPAL to be performed at
least once. Because the code ENTER-THE-PRINCIPAL is used, the user is prompted for an entry, the
entry is accepted, and the entry is checked.

If the entry is okay, the ENTRY-OK flag is set to "Y". This ends the PERFORM UNTIL at lines
004300 and 004400.

If the entry is not okay, an INVALID ENTRY message is displayed, but the ENTRY-OK flag is not
changed. On exit, the PERFORM UNTIL at lines 004300 and 004400 finds that the ENTRY-OK flag
is not yet "Y" and ENTER-THE-PRINCIPAL is performed one more time. This continues until the user
gets it right and the ENTRY-OK flag is set to "Y".

Summary
Today, you learned the basics of program design. The following are the key steps of design and
development:

1. Create a job description for the program.

2. Break the job description into tasks until the tasks approximate what the computer will do.

3. Identify the processing loops.

4. Identify the main processing loop if it has not become apparent during step 3.

5. Write the program in pseudocode.

6. Convert the pseudocode into actual code.

7. Edit and compile the program.

8. Test the program.

9. Fix any bugs by rewriting the areas of the program that aren't working correctly.

10. Repeat steps 8 and 9 until the program works correctly.

Pseudocode is any convenient English-like method of describing what a program does. Pseudocode helps
with the design of a program and easily converts into the code for the program.

You can avoid GO TO using the PERFORM verb and its variations.

Q&A
Q Do I have to do all of the design steps before I start coding?

A When you are learning, it is good practice to do all steps. This helps you clarify what the
program eventually is supposed to do. Even so, you will notice that in the second example, I left
out some of the steps of the pseudocode.

You will reach a point when you can "think" in sections of code. For example, you probably
already have a rough idea of what the code would look like to ask the user whether to go again.
You will be able to shortcut some of the design steps because you will actually be doing them in
your head without having to write them all out on paper.

Workshop

Quiz

1. What is the first step in designing the program for the following job description?

Ask the user for sales amounts and sales tax rates, and use these values to calculate the sales tax on
the amount.

2. What are the six design steps?

Exercises

1. Perform all the design steps up to and including the coding of the job described in Quiz question
1. The steps for this are given in the back of the book. If you hit a snag on any step, go ahead and
look at the answer for that step. Designing is a skill that comes only with a vast amount of
experience. Occasionally, I have seen competent programmers freeze or produce a bad design
when they have been asked to design certain programs, and I still have plenty to learn about
design. There is no shame in getting help for this exercise.

Hint: You will be able to use quite a bit of the logic from cmpint02.cbl (shown in Listing
7.13) as the basic model for the program.

2. Complete the following last four steps of the development on the design you did in Exercise 1.

7. Edit and compile the program.

8. Test the program.

9. Fix any bugs by rewriting the areas of the program that aren't working correctly.

10. Repeat steps 8 and 9 until the program works correctly.

3. Modify the program that you created in Exercise 2 so that it asks for the sales tax percentage
only once as the first step of the program, and then asks for sales amounts repeatedly, calculating
the sales tax for each entry.

Hint: Use the answer to Exercise 2 from Appendix A, "Answers." You should be able to make this
change by moving only one line of code up to become the first line of code in PROGRAM-BEGIN.

Previous chapter Next chapter Contents

Macmillan Computer Publishing USA

© Copyright, Macmillan Computer Publishing. All rights reserved.

Teach Yourself COBOL in 21 days,
Second Edition

Previous chapter Next chapter Contents

Week 1 In Review
After the first week of teaching yourself COBOL, you should be familiar with the basic structure of a
COBOL program. Because COBOL is much like the English language in structure and readability, you
probably can follow programs containing unfamiliar material--something you might not be able to do
when learning other programming languages. By now you should be able to easily recognize and build
the four DIVISIONs, design your overall program structure, make decisions using the IF statement,
designate the flow of your program using PERFORM and GO TO, and use the various operators to
manipulate data stored within your program.

As you continue, focus on what is being accomplished and how it fits within the concepts you've learned
so far. The lessons are designed to build on each other and reduce the need to turn back and rehash
previous days, but don't feel bad if you need to do so. Although the design of COBOL is simple, this
book moves at a rapid pace in order to ensure that you have all the necessary information to quickly
become a competent COBOL programmer.

Previous chapter Next chapter Contents

Macmillan Computer Publishing USA

© Copyright, Macmillan Computer Publishing. All rights reserved.

Teach Yourself COBOL in 21 days,
Second Edition

Previous chapter Next chapter Contents

Week 2 At a Glance
You've made it through the first week. You can now define the information your program should store
and manipulate, and you know how to act on this information. You can be proud of what you've
accomplished so far.

Where You're Going
The second week focuses on reading information into your program and out to your users. COBOL
excels in this area, so don't underestimate the value of these chapters and their quizzes and exercises.
After all, the value of any software lies in how easily others can use it. Day 8, "Structured Data," will
help you take the information your program uses and organize it into a structured format. You can then
more easily model the real-world problems that you face daily. Day 9, "File I/O," and Day 10, "Printing,"
emphasize the need to effectively and efficiently read information into and out of files and print
formatted information on your printer. Day 11, "Indexed File I/O," and Day 12, "More on Indexed Files,"
provide important information that no COBOL programmer should be without. Day 13, "Deleting
Records and Other Indexed File Operations," adds to your growing understanding of indexed files by
teaching you to delete unwanted information--a skill as important as collecting necessary information.
You'll close the second week with still another day of indexed files on Day 14, "A Review of Indexed
Files."

After you finish this week, you should rank yourself as a strong intermediate user. You'll be two-thirds of
the way through your 21-day journey.

Previous chapter Next chapter Contents

Macmillan Computer Publishing USA

© Copyright, Macmillan Computer Publishing. All rights reserved.

Teach Yourself COBOL in 21 days,
Second Edition

Previous chapter Next chapter Contents

- Day 8 -
Structured Data

You can use the DATA DIVISION to organize your data and variables and improve the performance of
your program. You also can use it to reduce the amount of code that you have to write.

Today, you learn about the following topics:

What is a data structure?●

How to use a data structure.●

FILLER and how to use it.●

Calculating the length of data structures.●

What is structured data in memory?●

Nested structure variables.●

Misusing structures.●

What is level 77?●

What is level 88?●

What Is a Data Structure?
You might want to create a COBOL program that combines variables to improve the way they display.

New Term: A data structure, or record, in COBOL is a method of combining several variables into one
larger variable.

The program jack02.cbl in Day 2, "Using Variables and Constants," used variables to display a
poem with line numbers. Variables are defined and displayed as shown in List-ing 8.1.

TYPE: Listing 8.1. An extract from jack02.cbl.

000700
000800 01 THE-MESSAGE PIC X(50).
000900 01 THE-NUMBER PIC 9(2).
001000 01 A-SPACE PIC X.
001100
......
001700
001800* Set up and display line 1
001900 MOVE 1 TO THE-NUMBER.
002000 MOVE "Jack be nimble," TO THE-MESSAGE.
002100 DISPLAY THE-NUMBER A-SPACE THE-MESSAGE
002200

These three variables can be combined into one record (data structure) and used as a group for the
DISPLAY statement. The grouping is done by defining the data as shown in Listing 8.2.

TYPE: Listing 8.2. A structure or record.

000700
000800 01 THE-WHOLE-MESSAGE.
000900 05 THE-NUMBER PIC 9(2) VALUE ZEROES.
001000 05 A-SPACE PIC X(1) VALUE SPACE.
001100 05 THE-MESSAGE PIC X(50) VALUE SPACES.
001200

New Term: In Listing 8.2, THE-WHOLE-MESSAGE is a structure variable or simply a structure. It is
occasionally referred to as a compound variable or compound data.

In a structure variable, the highest-level variable (the one that includes all the individual variables) has
the level number 01. The 01 level must appear in Area A (columns 8 through 12). The structure variable
name appears in Area B (columns 12 through 72), and it does not have a PICTURE. The variables that
fall within the structure begin with numbers higher than 01, and start in Area B (columns 12 through 72).

You can use the individual variables within a structure in the program as though they still were level 01
variables. In addition, you can use the structure variable as a variable. For example, if all the variables
within a structure variable can be displayed, the structure variable itself can be displayed as a variable

(see Listing 8.3).

TYPE: Listing 8.3. Using a structure.

000700
000800 01 THE-WHOLE-MESSAGE.
000900 05 THE-NUMBER PIC 9(2) VALUE ZEROES.
001000 05 A-SPACE PIC X(1) VALUE SPACE.
001100 05 THE-MESSAGE PIC X(50) VALUE SPACES.
......
001700
001800* Set up and display line 1
001900 MOVE 1 TO THE-NUMBER.
002000 MOVE "Jack be nimble," TO THE-MESSAGE.
002100 DISPLAY THE-WHOLE-MESSAGE.
002200

ANALYSIS: The individual variables of the structure have higher level numbers than the structure
variable. In the following code fragment, the elementary variables have the level number 05. This level
number could have been 02, but it is a common practice to skip some numbers between levels.

Figure 8.1 illustrates the positioning of the parts of a structure variable within Area A and Area B.

Figure 8.1.
The layout of a structure in Area A and Area B.

How to Use a Data Structure
One of the primary uses of a structure is to format information for display or printing. One quick way of
seeing how structures work is to use one to format output data.

Listing 8.4, cmpint03.cbl, is similar to the compound interest programs in Day 7, "Basics of
Design," but it uses a structured variable (a structure) to produce a formatted output.

TYPE: Listing 8.4. Using a structure to format data.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. CMPINT03.
000300*--
000400* Calculates compound interest
000500*--
000600 ENVIRONMENT DIVISION.
000700 DATA DIVISION.
000800 WORKING-STORAGE SECTION.
000900
001000 01 YES-NO PIC X.
001100 01 ENTRY-OK PIC X.

file:///D|/Cool Stuff/old/ftp/Sams.Teach.Yourself.Cobol.In.21.Days/Teach Yourself Cobol in 21 Days/ch08/01.htm

001200 01 THE-INTEREST PIC 99V9.
001300 01 INTEREST-AS-DECIMAL PIC V999.
001400 01 THE-PRINCIPAL PIC 9(9)V99.
001500 01 WORKING-PRINCIPAL PIC 9(9)V99.
001600 01 THE-NEW-VALUE PIC 9(9)V99.
001700 01 EARNED-INTEREST PIC 9(9)V99.
001800 01 THE-PERIOD PIC 9999.
001900 01 NO-OF-PERIODS PIC 999.
002000
002100 01 ENTRY-FIELD PIC ZZZ,ZZZ,ZZZ.ZZ.
002200
002300 01 THE-WHOLE-MESSAGE.
002400 05 DISPLAY-PRINCIPAL PIC ZZZ,ZZZ,ZZ9.99.
002500 05 MESSAGE-PART-01 PIC X(4) VALUE " at ".
002600 05 DISPLAY-INTEREST PIC Z9.9.
002700 05 MESSAGE-PART-02 PIC X(6) VALUE "% for ".
002800 05 DISPLAY-PERIODS PIC ZZ9.
002900 05 MESSAGE-PART-03 PIC X(16)
003000 VALUE " periods yields ".
003100 05 DISPLAY-VALUE PIC ZZZ,ZZZ,ZZ9.99.
003200
003300 PROCEDURE DIVISION.
003400 PROGRAM-BEGIN.
003500
003600 MOVE "Y" TO YES-NO.
003700 PERFORM GET-AND-DISPLAY-RESULT
003800 UNTIL YES-NO = "N".
003900
004000 PROGRAM-DONE.
004100 STOP RUN.
004200
004300 GET-AND-DISPLAY-RESULT.
004400 PERFORM GET-THE-PRINCIPAL.
004500 PERFORM GET-THE-INTEREST.
004600 PERFORM GET-THE-PERIODS.
004700 PERFORM CALCULATE-THE-RESULT.
004800 PERFORM DISPLAY-THE-RESULT.
004900 PERFORM GO-AGAIN.
005000
005100 GET-THE-PRINCIPAL.
005200 MOVE "N" TO ENTRY-OK.
005300 PERFORM ENTER-THE-PRINCIPAL
005400 UNTIL ENTRY-OK = "Y".
005500
005600 ENTER-THE-PRINCIPAL.
005700 DISPLAY "Principal (.01 TO 999999.99)?".

005800 ACCEPT ENTRY-FIELD WITH CONVERSION.
005900 MOVE ENTRY-FIELD TO THE-PRINCIPAL.
006000 IF THE-PRINCIPAL < .01 OR
006100 THE-PRINCIPAL > 999999.99
006200 DISPLAY "INVALID ENTRY"
006300 ELSE
006400 MOVE "Y" TO ENTRY-OK.
006500
006600 GET-THE-INTEREST.
006700 MOVE "N" TO ENTRY-OK.
006800 PERFORM ENTER-THE-INTEREST
006900 UNTIL ENTRY-OK = "Y".
007000
007100 ENTER-THE-INTEREST.
007200 DISPLAY "Interest (.1% TO 99.9%)?".
007300 ACCEPT ENTRY-FIELD WITH CONVERSION.
007400 MOVE ENTRY-FIELD TO THE-INTEREST.
007500 IF THE-INTEREST < .1 OR
007600 THE-INTEREST > 99.9
007700 DISPLAY "INVALID ENTRY"
007800 ELSE
007900 MOVE "Y" TO ENTRY-OK
008000 COMPUTE INTEREST-AS-DECIMAL =
008100 THE-INTEREST / 100.
008200
008300 GET-THE-PERIODS.
008400 MOVE "N" TO ENTRY-OK.
008500 PERFORM ENTER-THE-PERIODS
008600 UNTIL ENTRY-OK = "Y".
008700
008800 ENTER-THE-PERIODS.
008900 DISPLAY "Number of periods (1 TO 999)?".
009000 ACCEPT ENTRY-FIELD WITH CONVERSION.
009100 MOVE ENTRY-FIELD TO NO-OF-PERIODS.
009200 IF NO-OF-PERIODS < 1 OR
009300 NO-OF-PERIODS > 999
009400 DISPLAY "INVALID ENTRY"
009500 ELSE
009600 MOVE "Y" TO ENTRY-OK.
009700
009800 CALCULATE-THE-RESULT.
009900 MOVE THE-PRINCIPAL TO WORKING-PRINCIPAL.
010000 PERFORM CALCULATE-ONE-PERIOD
010100 VARYING THE-PERIOD FROM 1 BY 1
010200 UNTIL THE-PERIOD > NO-OF-PERIODS.
010300

010400 CALCULATE-ONE-PERIOD.
010500 COMPUTE EARNED-INTEREST ROUNDED =
010600 WORKING-PRINCIPAL * INTEREST-AS-DECIMAL.
010700 COMPUTE THE-NEW-VALUE =
010800 WORKING-PRINCIPAL + EARNED-INTEREST.
010900 MOVE THE-NEW-VALUE TO WORKING-PRINCIPAL.
011000
011100 GO-AGAIN.
011200 DISPLAY "GO AGAIN?".
011300 ACCEPT YES-NO.
011400 IF YES-NO = "y"
011500 MOVE "Y" TO YES-NO.
011600 IF YES-NO NOT = "Y"
011700 MOVE "N" TO YES-NO.
011800
011900 DISPLAY-THE-RESULT.
012000 MOVE THE-PRINCIPAL TO DISPLAY-PRINCIPAL.
012100 MOVE THE-INTEREST TO DISPLAY-INTEREST.
012200 MOVE NO-OF-PERIODS TO DISPLAY-PERIODS.
012300 MOVE THE-NEW-VALUE TO DISPLAY-VALUE.
012400 DISPLAY THE-WHOLE-MESSAGE.
012500

OUTPUT:
Principal (.01 TO 999999.99)?
14000
Interest (.1% TO 99.9%)?
12.7
Number of periods (1 TO 999)?
14
14,000.00 at 12.7% for 14 periods yields 74,655.69
GO AGAIN?

ANALYSIS: The structure is defined at lines 002300 to 003100. In DISPLAY-THE-RESULT, at
lines 0011900 to 0012400, values are moved to each of the individual elements of the structure, and
the whole structure is displayed, rather than the separate parts.

The structure THE-WHOLE-MESSAGE is considered to be one long variable containing subparts. By
using it for the DISPLAY, you cut down on the amount of code you have to write to display the same
formatted data one piece at a time.

FILLER and How to Use It
Listing 8.5 is the message data structure extracted from cmpint03.cbl. All parts of the message
appear as variables with level 05 numbers within THE-WHOLE-MESSAGE. Even parts of the message
that do not vary, such as MESSAGE-PART-01, MESSAGE-PART-02, and MESSAGE-PART-03, have

been given data names.

TYPE: Listing 8.5. The structure definition.

002300 01 THE-WHOLE-MESSAGE.
002400 05 DISPLAY-PRINCIPAL PIC ZZZ,ZZZ,ZZ9.99.
002500 05 MESSAGE-PART-01 PIC X(4) VALUE " at ".
002600 05 DISPLAY-INTEREST PIC Z9.9.
002700 05 MESSAGE-PART-02 PIC X(6) VALUE "% for ".
002800 05 DISPLAY-PERIODS PIC ZZ9.
002900 05 MESSAGE-PART-03 PIC X(16)
003000 VALUE " periods yields ".
003100 05 DISPLAY-VALUE PIC ZZZ,ZZZ,ZZ9.99.
003200

ANALYSIS: Three of the variables within THE-WHOLE-MESSAGE are never used in the main
program. They are MESSAGE-PART-01, MESSAGE-PART-02, and MESSAGE-PART-03 at lines
002500, 002700, and 002900, respectively. They are used to format part of the display and are
assigned values in the definition, but nothing is ever moved to these values in the program.

MESSAGE-PART-01, MESSAGE-PART-02, and MESSAGE-PART-03 really do not need to exist as
variables with data names because they are never used in the PROCEDURE DIVISION. They exist only
to fill out THE-WHOLE-MESSAGE.

In COBOL, this type of value in a structure variable can be defined as a filler by using the COBOL
reserved word FILLER. Listing 8.6 uses FILLER in the definition of the same structure variable.

TYPE: Listing 8.6. How to use FILLER.

002300 01 THE-WHOLE-MESSAGE.
002400 05 DISPLAY-PRINCIPAL PIC ZZZ,ZZZ,ZZ9.99.
002500 05 FILLER PIC X(4) VALUE " at ".
002600 05 DISPLAY-INTEREST PIC Z9.9.
002700 05 FILLER PIC X(6) VALUE "% for ".
002800 05 DISPLAY-PERIODS PIC ZZ9.
002900 05 FILLER PIC X(16)
003000 VALUE " periods yields ".
003100 05 DISPLAY-VALUE PIC ZZZ,ZZZ,ZZ9.99.
003200

A FILLER cannot be treated as a variable. It is used to reserve space in a structure variable. You can
assign a PICTURE and a VALUE to a FILLER when it is defined, but you cannot use MOVE with
FILLER.

Calculating the Length of Data Structures
A data structure is actually a series of individual variables, laid end to end in memory. The length of a
simple data structure, such as this one used to create a displayable message, is the sum of all the lengths
of the individual parts.

Table 8.1 shows how to calculate the length of THE-WHOLE-MESSAGE by adding the lengths of the
parts. THE-WHOLE-MESSAGE is 61 bytes (characters) long.

Table 8.1. Calculating a structure length.

Variable Length

05 DISPLAY-PRINCIPAL PIC ZZZ,ZZZ,ZZ9.99. 14

05 FILLER PIC X(4) VALUE " at ". 4

05 DISPLAY-INTEREST PIC Z9.9. 4

05 FILLER PIC X(6) VALUE "% for ". 6

05 DISPLAY-PERIODS PIC ZZ9. 3

05 FILLER PIC X(16) VALUE " periods yields ". 16

05 DISPLAY-VALUE PIC ZZZ,ZZZ,ZZ9.99. 14

01 THE-WHOLE-MESSAGE 61

What Is Structured Data in Memory?
A structure variable is treated as an alphanumeric variable. It has an implied PICTURE of X(nn), where
nn is equal to the length of the structure variable. THE-WHOLE-MESSAGE has an implicit PICTURE of
X(61).

You can move a value to a structure variable, but the move will affect the entire length of the variable. A
structure variable and the variables that are the elements of a structure occupy the same memory area.
When a variable is created by the compiler, it sets aside a number of bytes in memory that can be used to
hold data.

Listing 8.7 shows a sample structure variable used to display an employee number and an hourly rate
earned.

TYPE: Listing 8.7. A sample structure.

000900 01 EMPLOYEE-DATA.
001000 05 FILLER PIC X(4)
001100 VALUE "Emp ".
001200 05 EMP-NUMBER PIC 9999.
001300 05 FILLER PIC X(7)
001400 VALUE " earns ".

001500 05 EMP-HOURLY PIC Z9.99.

The output of this structure, if you move 234 to EMP-NUMBER and 13.50 to EMP-HOURLY and then
DISPLAY EMPLOYEE-DATA, is the following:

OUTPUT:
Emp 0234 earns 13.50

Figure 8.2 represents how the bytes in this structure are filled in with these values (234 in
EMP-NUMBER and 13.50 in EMP-HOURLY). The top row numbers the bytes from 1 to 20, which is
the length of the entire structure. The second row contains the actual values in memory, where position 1
contains `E', position 2 contains `m', and so on.

Rows 3 and 4 are the variable names and the picture for each variable.

Figure 8.2.
The memory layout of a structure.

ANALYSIS: The two fillers, as well as EMP-NUMBER and EMP-HOURLY, occupy some bytes that are
in the same space in memory as the structure variable EMPLOYEE-DATA.

When you use a command in COBOL to modify a variable in memory, the command looks at variables
in memory as individual units. If you move a value to EMP-NUMBER, or use ADD 1 TO
EMP-NUMBER, COBOL acts on EMP-NUMBER as if it were a single variable and ignores the fact that
EMP-NUMBER is part of the structure EMPLOYEE-DATA.

Regarding a variable as an individual unit also applies to the complete structure. If you move a message
to EMPLOYEE-DATA, the command treats EMPLOYEE-DATA as if it were a PIC X(20) (the implied
picture) and ignores the fact that EMPLOYEE-DATA has smaller variables within it.

If the following command is executed in a COBOL program containing this same EMPLOYEE-DATA
structure, EMPLOYEE-DATA is treated as if it were a single variable and the elements within
EMPLOYEE-DATA are ignored (as shown in Figure 8.3):

004600 MOVE "No more employees." TO EMPLOYEE-DATA.
004700 DISPLAY EMPLOYEE-DATA.

Figure 8.3.
EMPLOYEE-DATA after moving a value to it.

The variables in EMPLOYEE-DATA do not disappear, but the MOVE affects all 20 bytes of memory, and
the individual variables might no longer contain data that is correct for that variable type. Figure 8.4 adds
back the variables in EMPLOYEE-DATA. EMP-NUMBER now contains ore, which certainly is not valid
numeric data. This isn't a problem as long as you don't use a command on EMP-NUMBER, such as ADD
1 TO EMP-NUMBER. I'll return to this issue in a moment.

Figure 8.4.
EMPLOYEE-DATA with the variables added.

This use of a structure variable is fairly common in display and print programs that might use a structure

file:///D|/Cool Stuff/old/ftp/Sams.Teach.Yourself.Cobol.In.21.Days/Teach Yourself Cobol in 21 Days/ch08/02.htm
file:///D|/Cool Stuff/old/ftp/Sams.Teach.Yourself.Cobol.In.21.Days/Teach Yourself Cobol in 21 Days/ch08/03.htm
file:///D|/Cool Stuff/old/ftp/Sams.Teach.Yourself.Cobol.In.21.Days/Teach Yourself Cobol in 21 Days/ch08/04.htm

to format and display information line by line, and then at the end of the program might move a message
to the entire structure and display it. It is not necessarily good programming practice, but you will
encounter this use of structure variables in many programs.

Nested Structure Variables
Any structure can contain another structure. In Listing 8.8, THE-MESSAGE is a structure that, in turn,
contains two alphanumeric variables--JACKS-NAME and JACKS-TASK. In addition, it uses a VALUE to
initialize JACKS-NAME to reduce the size of the message that must be moved for each line of the
display. Indenting JACKS-NAME and JACKS-TASK is a matter of style. The indention makes it clear
that these variables are subordinate to THE-MESSAGE.

TYPE: Listing 8.8. Structures within structures.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. JACK06.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.
000500
000600 WORKING-STORAGE SECTION.
000700
000800 01 THE-WHOLE-MESSAGE.
000900 05 THE-NUMBER PIC 9(2) VALUE 1.
001000 05 A-SPACE PIC X VALUE SPACE.
001100 05 THE-MESSAGE.
001200 10 JACKS-NAME PIC X(5) VALUE "Jack".
001300 10 JACKS-TASK PIC X(45).
001400
001500 PROCEDURE DIVISION.
001600 PROGRAM-BEGIN.
001700
001800* Set up and display line 1
001900 MOVE "be nimble," TO JACKS-TASK.
002000 DISPLAY THE-WHOLE-MESSAGE.
002100
002200* Set up and Display line 2
002300 MOVE "be quick," TO JACKS-TASK.
002400 ADD 1 TO THE-NUMBER.
002500 DISPLAY THE-WHOLE-MESSAGE.
002600
002700* Set up and display line 3
002800 MOVE "jump over the candlestick." TO JACKS-TASK.
002900 ADD 1 TO THE-NUMBER.
003000 DISPLAY THE-WHOLE-MESSAGE.
003100

003200* Display a closing message
003300 MOVE "That's all folks" TO THE-WHOLE-MESSAGE.
003400 DISPLAY THE-WHOLE-MESSAGE.
003500
003600 PROGRAM-DONE.
003700 STOP RUN.
003800

The following is the output of jack06.cbl.

OUTPUT:
01 Jack be nimble,
02 Jack be quick,
03 Jack jump over the candlestick.
That's all folks
C>
C>

ANALYSIS: The last action of the program, at line 003300, is to move a value to
THE-WHOLE-MESSAGE and then display it at line 003400. This wipes out the previous contents of
THE-WHOLE-MESSAGE and overwrites the whole variable structure as though it were a single
alphanumeric variable. This effect can be seen in the output of jack06.cbl.

To calculate the length of a structure variable containing one or more other structure variables, apply
what you already know about structure variables. Work out the length of the internal structure variables
and add them to the length of the level 01 structure. Table 8.2 calculates the size of the structure by
turning the structure upside down and calculating a sub- total for THE-MESSAGE and adding that result
to the lengths of the other variables in THE-WHOLE-MESSAGE.

Table 8.2. Calculating the length of a complex structure.

Variable Length

10 JACKS-TASK PIC X(45). 45

10 JACKS-NAME PIC X(5) VALUE "Jack". + 5

05 THE-MESSAGE. = 50 (subtotal)

05 A-SPACE PIC X VALUE SPACE. + 1

05 THE-NUMBER PIC 9(2) VALUE 1. + 2

01 THE-WHOLE-MESSAGE. = 53 (grand total)

The maximum level number for a variable within a structure is 49. In practice, it is unusual to find a
variable structure that uses all 49 levels. You'll rarely go beyond 25 even when you increment by 5.

The last steps of jack06.cbl are to move "That's all folks" to THE-WHOLE-MESSAGE and
then display it. This raises an interesting problem. By moving "That's all folks" to
THE-WHOLE-MESSAGE, you move values into the areas occupied by THE-NUMBER, A-SPACE, and

THE-MESSAGE. For A-SPACE and THE-MESSAGE, this is no problem because they are alphanumeric
variables. THE-NUMBER, however, is a numeric variable that occupies the first two bytes of
THE-WHOLE-MESSAGE. After the MOVE, it contains the value "Th", the first two characters of
"That's all folks", and the value moved to THE-MESSAGE. This is certainly not numeric data.

If you attempt to perform some sort of calculation with THE-NUMBER, your program usually fails with
an error because THE-NUMBER contains invalid data. Some versions of COBOL let you display the
variable using DISPLAY THE-NUMBER and it actually displays as "Th". Very few versions of
COBOL let you perform anything that resembles a mathematical operation with the variable. Listing 8.9
is a deliberate effort to cause the program to crash by attempting to use ADD 1 TO THE-NUMBER
when it contains "Th".

TYPE: Listing 8.9. Forcing a numeric error.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. JACK07.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.
000500
000600 WORKING-STORAGE SECTION.
000700
000800 01 THE-WHOLE-MESSAGE.
000900 05 THE-NUMBER PIC 9(2) VALUE 1.
001000 05 A-SPACE PIC X VALUE SPACE.
001100 05 THE-MESSAGE.
001200 10 JACKS-NAME PIC X(5) VALUE "Jack".
001300 10 JACKS-TASK PIC X(45).
001400
001500 PROCEDURE DIVISION.
001600 PROGRAM-BEGIN.
001700
001800* Set up and display line 1
001900 MOVE "be nimble," TO JACKS-TASK.
002000 DISPLAY THE-WHOLE-MESSAGE.
002100
002200* Set up and Display line 2
002300 MOVE "be quick," TO JACKS-TASK.
002400 ADD 1 TO THE-NUMBER.
002500 DISPLAY THE-WHOLE-MESSAGE.
002600
002700* Set up and display line 3
002800 MOVE "jump over the candlestick." TO JACKS-TASK.
002900 ADD 1 TO THE-NUMBER.
003000 DISPLAY THE-WHOLE-MESSAGE.
003100
003200* Display a closing message

003300 MOVE "That's all folks" TO THE-WHOLE-MESSAGE.
003400 DISPLAY THE-WHOLE-MESSAGE.
003500
003600* A deliberate attempt to blow up the program
003700 DISPLAY THE-NUMBER.
003800 ADD 1 TO THE-NUMBER.
003900 DISPLAY THE-NUMBER.
004000
004100 PROGRAM-DONE.
004200 STOP RUN.
004300

The following output and error message produced by Micro Focus Personal COBOL indicates that an
error occurred while trying to ADD 1 TO THE-NUMBER. Note that the first DISPLAY at line 003700
of the program worked and displayed "Th".

OUTPUT:
C>pcobrun jack07
Personal COBOL version 2.0 from Micro Focus
PCOBRUN V2.0.02 Copyright (C) 1983-1993 Micro Focus Ltd.
01 Jack be nimble,
02 Jack be quick,
03 Jack jump over the candlestick.
That's all folks
Th
JACK07 Segment RT : Error 163 at COBOL PC 009A
Description : Illegal Character in Numeric Field

C>
C>

The following output for the same program was compiled and run using ACUCOBOL. This produces no
error. The program displays "Th" and then adds 1 to THE-NUMBER and displays it again as "Tg". This
obviously nutty result is caused by the fact that THE-NUMBER doesn't contain valid data. If you
encounter errors such as non-numeric data in a numeric field, or illegal characters in a numeric field,
there are two possible causes that you could investigate. The variable might never have been correctly
initialized or the program might have used a MOVE statement to fill a structure variable with information
that is invalid for one or more numeric variables that are a part of the structure variable. You would never
code a program to take advantage of quirky behavior such as "Th" becoming "Tg" in the preceding
example. No one would be able to understand what your program was really trying to do because it relies
on possibly unpredictable behavior by some brand of compiler and the behavior might disappear when a
new version of the compiler was released by the manufacturer.

OUTPUT:
01 Jack be nimble,
02 Jack be quick,

03 Jack jump over the candlestick.
That's all folks
Th
Tg

C>
C>

If you have moved a value to the structure and need to use THE-NUMBER again as a numeric value, you
must reset the value in THE-NUMBER by moving a number to it, like this:

MOVE 1 TO THE-NUMBER.

Moving a number to reset the value is the only action you should attempt on a numeric variable that
contains invalid data.

DO/DON'T:
DO move values to numeric variables that have undefined or invalid contents before using
numeric variables in calculations.

DON'T perform calculations with numeric variables that have undefined values or that have
been modified because they are elements of a structure and some value has been moved to
the structure.

Misusing Structures
It is common to find programs that define data structures in WORKING-STORAGE that never are used as
structures. Variables of one type might be clumped together into a data structure as a form of
documentation. Perhaps this is an effort to be tidy.

Grouping variables together under a structure variable because they are similar or to keep things tidy isn't
a good practice. It is better to use comments in WORKING-STORAGE to separate groups of variables
used for different purposes. The existence of a structure variable implies that it is used somewhere in the
program as a variable. It can be misleading to see a structure in WORKING-STORAGE that is not really a
structure but is a grab bag of variables. (See Listing 8.10.) Only THE-WHOLE-MESSAGE is actually
used as a structure in the program. Be aware of this when you are trying to understand a program that
you are reading. The following example is one you are familiar with, and you will recognize immediately
what is going on; recognition is harder in an unfamiliar program.

TYPE: Listing 8.10. Clumping variables together.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. CMPINT04.
000300*--
000400* Calculates compound interest
000500*--
000600 ENVIRONMENT DIVISION.

000700 DATA DIVISION.
000800 WORKING-STORAGE SECTION.
000900
001000 01 SOME-FLAGS.
001100 05 YES-NO PIC X.
001200 05 ENTRY-OK PIC X.
001300
001400 01 CALCULATION-FIELDS.
001500 05 THE-INTEREST PIC 99V9.
001600 05 INTEREST-AS-DECIMAL PIC V999.
001700 05 THE-PRINCIPAL PIC 9(9)V99.
001800 05 WORKING-PRINCIPAL PIC 9(9)V99.
001900 05 THE-NEW-VALUE PIC 9(9)V99.
002000 05 EARNED-INTEREST PIC 9(9)V99.
002100 05 THE-PERIOD PIC 9999.
002200 05 NO-OF-PERIODS PIC 999.
002300
002400 01 ENTRY-FIELD PIC ZZZ,ZZZ,ZZZ.ZZ.
002500
002600 01 THE-WHOLE-MESSAGE.
002700 05 DISPLAY-PRINCIPAL PIC ZZZ,ZZZ,ZZ9.99.
002800 05 MESSAGE-PART-01 PIC X(4) VALUE " at ".
002900 05 DISPLAY-INTEREST PIC Z9.9.
003000 05 MESSAGE-PART-02 PIC X(6) VALUE "% for ".
003100 05 DISPLAY-PERIODS PIC ZZ9.
003200 05 MESSAGE-PART-03 PIC X(16)
003300 VALUE " periods yields ".
003400 05 DISPLAY-VALUE PIC ZZZ,ZZZ,ZZ9.99.
003500
003600 PROCEDURE DIVISION.
003700 PROGRAM-BEGIN.
003800
003900 MOVE "Y" TO YES-NO.
004000 PERFORM GET-AND-DISPLAY-RESULT
004100 UNTIL YES-NO = "N".
004200
004300 PROGRAM-DONE.
004400 STOP RUN.
004500
004600 GET-AND-DISPLAY-RESULT.
004700 PERFORM GET-THE-PRINCIPAL.
004800 PERFORM GET-THE-INTEREST.
004900 PERFORM GET-THE-PERIODS.
005000 PERFORM CALCULATE-THE-RESULT.
005100 PERFORM DISPLAY-THE-RESULT.

005200 PERFORM GO-AGAIN.
005300
005400 GET-THE-PRINCIPAL.
005500 MOVE "N" TO ENTRY-OK.
005600 PERFORM ENTER-THE-PRINCIPAL
005700 UNTIL ENTRY-OK = "Y".
005800
005900 ENTER-THE-PRINCIPAL.
006000 DISPLAY "Principal (.01 TO 999999.99)?".
006100 ACCEPT ENTRY-FIELD WITH CONVERSION.
006200 MOVE ENTRY-FIELD TO THE-PRINCIPAL.
006300 IF THE-PRINCIPAL < .01 OR
006400 THE-PRINCIPAL > 999999.99
006500 DISPLAY "INVALID ENTRY"
006600 ELSE
006700 MOVE "Y" TO ENTRY-OK.
006800
006900 GET-THE-INTEREST.
007000 MOVE "N" TO ENTRY-OK.
007100 PERFORM ENTER-THE-INTEREST
007200 UNTIL ENTRY-OK = "Y".
007300
007400 ENTER-THE-INTEREST.
007500 DISPLAY "Interest (.1% TO 99.9%)?".
007600 ACCEPT ENTRY-FIELD WITH CONVERSION.
007700 MOVE ENTRY-FIELD TO THE-INTEREST.
007800 IF THE-INTEREST < .1 OR
007900 THE-INTEREST > 99.9
008000 DISPLAY "INVALID ENTRY"
008100 ELSE
008200 MOVE "Y" TO ENTRY-OK
008300 COMPUTE INTEREST-AS-DECIMAL =
008400 THE-INTEREST / 100.
008500
008600 GET-THE-PERIODS.
008700 MOVE "N" TO ENTRY-OK.
008800 PERFORM ENTER-THE-PERIODS
008900 UNTIL ENTRY-OK = "Y".
009000
009100 ENTER-THE-PERIODS.
009200 DISPLAY "Number of periods (1 TO 999)?".
009300 ACCEPT ENTRY-FIELD WITH CONVERSION.
009400 MOVE ENTRY-FIELD TO NO-OF-PERIODS.
009500 IF NO-OF-PERIODS < 1 OR
009600 NO-OF-PERIODS > 999
009700 DISPLAY "INVALID ENTRY"

009800 ELSE
009900 MOVE "Y" TO ENTRY-OK.
010000
010100 CALCULATE-THE-RESULT.
010200 MOVE THE-PRINCIPAL TO WORKING-PRINCIPAL.
010300 PERFORM CALCULATE-ONE-PERIOD
010400 VARYING THE-PERIOD FROM 1 BY 1
010500 UNTIL THE-PERIOD > NO-OF-PERIODS.
010600
010700 CALCULATE-ONE-PERIOD.
010800 COMPUTE EARNED-INTEREST ROUNDED =
010900 WORKING-PRINCIPAL * INTEREST-AS-DECIMAL.
011000 COMPUTE THE-NEW-VALUE =
011100 WORKING-PRINCIPAL + EARNED-INTEREST.
011200 MOVE THE-NEW-VALUE TO WORKING-PRINCIPAL.
011300
011400 GO-AGAIN.
011500 DISPLAY "GO AGAIN?".
011600 ACCEPT YES-NO.
011700 IF YES-NO = "y"
011800 MOVE "Y" TO YES-NO.
011900 IF YES-NO NOT = "Y"
012000 MOVE "N" TO YES-NO.
012100
012200 DISPLAY-THE-RESULT.
012300 MOVE THE-PRINCIPAL TO DISPLAY-PRINCIPAL.
012400 MOVE THE-INTEREST TO DISPLAY-INTEREST.
012500 MOVE NO-OF-PERIODS TO DISPLAY-PERIODS.
012600 MOVE THE-NEW-VALUE TO DISPLAY-VALUE.
012700 DISPLAY THE-WHOLE-MESSAGE.
012800

There are some instances when grouping variables together might be useful. Some compilers make a
more efficient use of memory if numeric variables are grouped together under a structure variable.
Unfortunately, this is not true of all compilers.

What Is Level 77?
When you see data in a structure in a program, you assume that the structure is used somewhere in the
program as a structure, and you can be confused if it is not.

A variable that is not a structure can be given a level number of 77 instead of 01:

002600 77 YES-NO PIC X.

A level 77 variable uses the same syntax as a level 01 variable and must also begin in Area A, but a
level 77 may not be used for a structure variable.

A level number of 77 indicates to the compiler that the variable named after the 77 is a simple
elementary variable and not a structure. This change sometimes speeds up the compiler, and it might
improve the memory use of a program. You don't have to worry about using level 77, but you will see it
in some programs and you should know what it means when you see it.

Listing 8.11 shows an alternative way of defining the variables in cmpint04.cbl.

TYPE: Listing 8.11. Using level 77.

000800 WORKING-STORAGE SECTION.
000900
001000
001100 77 YES-NO PIC X.
001200 77 ENTRY-OK PIC X.
001300
001400
001500 77 THE-INTEREST PIC 99V9.
001600 77 INTEREST-AS-DECIMAL PIC V999.
001700 77 THE-PRINCIPAL PIC 9(9)V99.
001800 77 WORKING-PRINCIPAL PIC 9(9)V99.
001900 77 THE-NEW-VALUE PIC 9(9)V99.
002000 77 EARNED-INTEREST PIC 9(9)V99.
002100 77 THE-PERIOD PIC 9999.
002200 77 NO-OF-PERIODS PIC 999.
002300
002400 77 ENTRY-FIELD PIC ZZZ,ZZZ,ZZZ.ZZ.
002500
002600 01 THE-WHOLE-MESSAGE.
002700 05 DISPLAY-PRINCIPAL PIC ZZZ,ZZZ,ZZ9.99.
002800 05 MESSAGE-PART-01 PIC X(4) VALUE " at ".
002900 05 DISPLAY-INTEREST PIC Z9.9.
003000 05 MESSAGE-PART-02 PIC X(6) VALUE "% for ".
003100 05 DISPLAY-PERIODS PIC ZZ9.
003200 05 MESSAGE-PART-03 PIC X(16)
003300 VALUE " periods yields ".
003400 05 DISPLAY-VALUE PIC ZZZ,ZZZ,ZZ9.99.
003500

What Is Level 88?
Level 88 is a special level number used to improve the readability of COBOL programs and to improve
IF tests.

A level 88 looks like a level under another variable, but it's not. It does not have a PICTURE, but it does
have a value. A level 88 is always associated with another variable and is a condition name for that

variable. Here is an example:

002500
002600 01 YES-NO PIC X.
002700 88 ANSWER-IS-YES VALUE "Y".
002800

Both of the following conditions test whether YES-NO is equal to "Y":

003700 IF YES-NO = "Y"
003700 IF ANSWER-IS-YES

The condition name at line 002700 is another way of saying YES-NO = "Y" and can be used in IF
and UNTIL conditions. A level 88 condition name can be used for an alphanumeric or numeric variable.

Listing 8.12, menu02.cbl, is a menu program that displays a message based on a menu pick of 1, 2, or
3, and exits on a 0.

TYPE: Listing 8.12. Using a level 88 condition name.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. MENU02.
000300*--
000400* THIS PROGRAM DISPLAYS A THREE CHOICE MENU OF
000500* MESSAGES THAT CAN BE DISPLAYED.
000600* THE USER ENTERS THE CHOICE, 1, 2 OR 3, AND
000700* THE APPROPRIATE MESSAGE IS DISPLAYED.
000800* AN ERROR MESSAGE IS DISPLAYED IF AN INVALID
000900* CHOICE IS MADE.
001000*--
001100 ENVIRONMENT DIVISION.
001200 DATA DIVISION.
001300 WORKING-STORAGE SECTION.
001400
001500 01 MENU-PICK PIC 9.
001600 88 PICK-IS-EXIT VALUE 0.
001700
001800 PROCEDURE DIVISION.
001900 PROGRAM-BEGIN.
002000
002100 MOVE 1 TO MENU-PICK.
002200 PERFORM GET-AND-DO-PICK
002300 UNTIL PICK-IS-EXIT.
002400
002500 DISPLAY "Thank you. Exiting".
002600
002700 PROGRAM-DONE.
002800 STOP RUN.

002900
003000 GET-AND-DO-PICK.
003100 PERFORM GET-THE-MENU-PICK.
003200
003300 PERFORM DO-THE-MENU-PICK.
003400
003500 GET-THE-MENU-PICK.
003600
003700 PERFORM DISPLAY-THE-MENU.
003800 PERFORM GET-THE-PICK.
003900
004000 DO-THE-MENU-PICK.
004100 IF MENU-PICK > 3
004200 DISPLAY "Invalid selection".
004300
004400 IF MENU-PICK = 1
004500 DISPLAY "One for the money.".
004600
004700 IF MENU-PICK = 2
004800 DISPLAY "Two for the show.".
004900
005000 IF MENU-PICK = 3
005100 DISPLAY "Three to get ready.".
005200
005400 DISPLAY-THE-MENU.
000000* Includes the display of some blank lines to
000000* improve the appearance
005500 DISPLAY "Please enter the number of the message".
005600 DISPLAY "that you wish to display.".
005800 DISPLAY " ".
005900 DISPLAY "1. First Message".
006000 DISPLAY "2. Second Message".
006100 DISPLAY "3. Third Message".
006300 DISPLAY " ".
006400 DISPLAY "0. EXIT".
006500 DISPLAY " ".
006600 DISPLAY "Your selection (1-3)?".
006700
006800 GET-THE-PICK.
006900 ACCEPT MENU-PICK.

Line 001600 defines a condition name of PICK-IS-EXIT when MENU-PICK = 0. At line
002100, MENU-PICK is set to 1 so that it does not have a value of 0. If you start MENU-PICK with a
value of 0, GET-AND-DO-PICK never will be performed. Instead, GET-AND-DO-PICK is performed
until the PICK-IS-EXIT. The UNTIL condition at line 002300 is exactly equivalent to the following:

002300 UNTIL MENU-PICK = 0.

You also can set up a level 88 condition to test more than one condition. Here's a situation that could use
an 88 to sort out a knotty IF test. In Listing 8.12, menu02.cbl, the menu selections are conveniently
arranged to be valid if they are 0 through 3. The test for a valid selection at line 004100 is fairly simple
because anything above 3 is invalid:

004000
004100 IF MENU-PICK > 3
004200 DISPLAY "Invalid selection".
004300

If you change your design so that 9 is used to exit, the test for a valid pick becomes complicated. Listing
8.13 and Listing 8.14 show two ways of performing this test. They are both awkward and a little
confusing to read.

TYPE: Listing 8.13. A complex IF.

004100 IF MENU-PICK < 1 OR
004200 (MENU-PICK < 9 AND MENU-PICK > 3)
004300 DISPLAY "Invalid selection".
004400

TYPE: Listing 8.14. Another complex IF.

004100 IF MENU-PICK NOT = 1 AND
004200 MENU-PICK NOT = 2 AND
004300 MENU-PICK NOT = 3 AND
004400 MENU-PICK NOT = 9
004500 DISPLAY "Invalid selection".
004600

You can set up a level 88 to test for more than one value. The values can be a list of individual values as
in Listing 8.15 (commas are optional), a range of values as in Listing 8.16, or a combination of list and
range values as in Listing 8.17. Each listing includes comments showing the equivalent tests that must be
used when not using an 88.

TYPE: Listing 8.15. Level 88 with a list of values.

002500
002600 01 MENU-PICK PIC 9.
002700 88 PICK-IS-VALID VALUES 1, 2, 3, 9.
002800* MENU-PICK = 1 OR
002900* MENU-PICK = 2 OR
003000* MENU-PICK = 3 OR
003100* MENU-PICK = 9
003200

TYPE: Listing 8.16. Level 88 with a range of values.

002500
002600 01 MENU-PICK PIC 9.
002700 88 PICK-IS-VALID VALUES 0 THROUGH 3.
002800* MENU-PICK = 0 OR
002900* MENU-PICK = 1 OR
003000* MENU-PICK = 2 OR
003100* MENU-PICK = 3
003200

TYPE: Listing 8.17. Level 88 with range and list values.

002500
002600 01 MENU-PICK PIC 9.
002700 88 PICK-IS-VALID VALUES 8, 9, 0 THROUGH 3
002800* MENU-PICK = 8 OR
002900* MENU-PICK = 9 OR
003000* MENU-PICK = 0 OR
003100* MENU-PICK = 1 OR
003200* MENU-PICK = 2 OR
003300* MENU-PICK = 3
003400

A variable also can have more than one level 88 condition name associated with it, as shown in Listing
8.18.

TYPE: Listing 8.18. More than one level 88.

002500
002600 01 MENU-PICK PIC 9.
002700 88 PICK-IS-VALID VALUES 8, 9, 0 THROUGH 3
002800 88 PICK-IS-EXIT VALUE 9.
002900

Listing 8.19 uses a level 88 to create a condition of PICK-IS-VALID when MENU-PICK equals 1, 2,
3, or 9. Then, another level 88 is used to set up a condition name of PICK-IS-EXIT when
MENU-PICK equals 9.

TYPE: Listing 8.19. More level 88.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. MENU03.
000300*--
000400* THIS PROGRAM DISPLAYS A THREE CHOICE MENU OF
000500* MESSAGES THAT CAN BE DISPLAYED.
000600* THE USER ENTERS THE CHOICE, 1, 2 OR 3, AND
000700* THE APPROPRIATE MESSAGE IS DISPLAYED.
000800* AN ERROR MESSAGE IS DISPLAYED IF AN INVALID

000900* CHOICE IS MADE.
001000*--
001100 ENVIRONMENT DIVISION.
001200 DATA DIVISION.
001300 WORKING-STORAGE SECTION.
001400
001500 01 MENU-PICK PIC 9.
001600 88 PICK-IS-EXIT VALUE 9.
001700 88 PICK-IS-VALID VALUES 1 THRU 3, 9.
001800
001900 PROCEDURE DIVISION.
002000 PROGRAM-BEGIN.
002100
002200 MOVE 1 TO MENU-PICK.
002300 PERFORM GET-AND-DO-PICK
002400 UNTIL PICK-IS-EXIT.
002500* MENU-PICK = 9
002600
002700 DISPLAY "Thank you. Exiting".
002800
002900 PROGRAM-DONE.
003000 STOP RUN.
003100
003200 GET-AND-DO-PICK.
003300 PERFORM GET-THE-MENU-PICK.
003400
003500 PERFORM DO-THE-MENU-PICK.
003600
003700 GET-THE-MENU-PICK.
003800
003900 PERFORM DISPLAY-THE-MENU.
004000 PERFORM GET-THE-PICK.
004100
004200 DO-THE-MENU-PICK.
004300* NOT (MENU-PICK = 1 OR 2 OR 3 OR 9)
004400 IF NOT PICK-IS-VALID
004500 DISPLAY "Invalid selection".
004600
004700 IF MENU-PICK = 1
004800 DISPLAY "One for the money.".
004900
005000 IF MENU-PICK = 2
005100 DISPLAY "Two for the show.".
005200
005300 IF MENU-PICK = 3

005400 DISPLAY "Three to get ready.".
005500
005600* LEVEL 3 ROUTINES
005700 DISPLAY-THE-MENU.
005800 DISPLAY "Please enter the number of the message".
005900 DISPLAY "that you wish to display.".
006000* Display a blank line
006100 DISPLAY " ".
006200 DISPLAY "1. First Message".
006300 DISPLAY "2. Second Message".
006400 DISPLAY "3. Third Message".
006500* Display a blank line
006600 DISPLAY " ".
006700 DISPLAY "9. EXIT".
006800 DISPLAY " ".
006900 DISPLAY "Your selection (1-3)?".
007000
007100 GET-THE-PICK.
007200 ACCEPT MENU-PICK.
007300

The conditions are set up at lines 001600 and 001700. The condition name PICK-IS-VALID is set
up when MENU-PICK equals 1, 2, 3, or 9. At lines 002300 and 002400, GET-AND-DO-PICK is
performed UNTIL PICK-IS-EXIT (MENU-PICK = 9).

At lines 004300 and 004400, NOT is used to test for an invalid menu pick IF NOT
PICK-IS-VALID (if MENU-PICK is not one of the values in the condition name list). You can see how
much tidier, and easier to understand, the logic is at line 004400.

Summary
Today, you used the DATA DIVISION to organize your data and variables, improve the performance of
your program, and reduce the amount of code that you have to write. You also learned the following
basics:

COBOL variables can be combined into a composite variable called a structure. The variables
within a structure variable still can be used as if they are not part of a structure variable.

●

Structure variables frequently are used to format data for display purposes. If the individual
variables within a structure can be displayed, the structure variable itself can be displayed.

●

Parts of a structure variable that are used to hold constant information and are not used in the
PROCEDURE DIVISION can be named FILLER.

●

The length of a data structure can be calculated by adding the lengths of the individual variables.●

The implicit picture of a structure is PIC X with a length equal to the length of the structure.●

A structure variable can, in turn, contain another structure variable.●

You can give a variable that is not a structure the level number 77.●

You can use a level 88 to set up condition names that can be used to simplify IF and UNTIL tests.●

Q&A
Q What happens if I move to a FILLER?

A You can't. The compiler does not recognize FILLER as a variable name; it is used only to
reserve space in a structure variable. If you include a command such as MOVE 1 TO FILLER in
a program, it will not compile and produces an error. You can move values to a structure variable
that contains a FILLER. The MOVE will affect the structure variable and all of the variables within
the structure, but you cannot directly move values to a FILLER.

Q Why do I need to know the lengths of structures?

A You don't yet, but you will need to know how to calculate this when you start creating printed
reports (in Day 10, "Printing").

Workshop

Quiz

1. What is the length of THE-WHOLE-MESSAGE in the following example?

000800 01 THE-WHOLE-MESSAGE.
000900 05 THE-NUMBER PIC 9(2) VALUE 1.
001000 05 A-SPACE PIC X VALUE SPACE.
001100 05 THE-MESSAGE.
001200 10 JACKS-NAME PIC X(5) VALUE "Jack".
001300 10 JACKS-TASK PIC X(45).
001400

2. What is the implied PICTURE of THE-WHOLE-MESSAGE in question 1?

3. What is a data structure?

4. If you move a value to a structure variable, what happens to the values in the individual
variables within the structure?

5. In the following code, what is another way of performing the test at line 004600?

001800 01 YES-NO PIC X.
001900 88 ANSWER-IS-YES VALUE "Y".

004600 IF YES-NO = "Y"
004700 PERFORM DO-SOMETHING.

6. In the following code, what is another way of performing the test at lines 004600 and
004700?

001800 01 YES-NO PIC X.
001900 88 ANSWER-IS-VALID VALUES "Y","N".

004600 IF YES-NO = "Y" OR
004700 YES-NO = "N"
004800 PERFORM DO-SOMETHING.

7. Devise a level 88 condition name for YES-NO that would simplify the tests at lines 004600
through 004900 in the following code:

001800 01 YES-NO PIC X.
004600 IF YES-NO = "Y" OR
004700 YES-NO = "y" OR
004800 YES-NO = "N" OR
004900 YES-NO = "n"
005000 PERFORM DO-SOMETHING.

Exercises

1. Copy mult07.cbl from Day 7, "Basics of Design," to mult09.cbl, and modify the
program to use a data structure to display the results of the multiplication table.

2. Design a structure similar to CUST-DATA that would hold a 5-digit CUST-NUMBER, a
30-character CUST-NAME, a 50-character CUST-ADDRESS, and a 5-digit CUST-ZIP-CODE:

001100 01 CUST-DATA.
001200 05 CUST-NUMBER PIC 9(3).
001300 05 CUST-NAME PIC X(10).

3. Code the CUST-DATA structure with all the fields initialized correctly to zeroes or spaces using
VALUE clauses.

Previous chapter Next chapter Contents

Macmillan Computer Publishing USA

© Copyright, Macmillan Computer Publishing. All rights reserved.

Teach Yourself COBOL in 21 days,
Second Edition

Previous chapter Next chapter Contents

- Day 9 -
File I/O

Welcome to the big time! Saving data to and retrieving data from a disk depends on you being able to
handle files. The primary activity of COBOL programs is storage, retrieval, sorting, and reporting on
files of information. Today, you learn about the following topics:

What is a file?●

What is a record?●

What is a field?●

Defining a file in COBOL.●

The logical description of a COBOL file.●

The physical description of a COBOL file.●

Opening and closing a file.●

Adding records to a file.●

Reading records from a file.●

The file processing loop.●

What Is a File?
Imagine a small company that keeps two card file boxes. One box contains a card for each vendor who
supplies raw material to the company. The other contains a card for each customer who has purchased
from the company. Close both boxes, label one Vendors and the other Customers, and bring a stranger in
to look at the boxes.

The stranger would see two labeled 3x5 inch boxes that take up space on the desk. The stranger might
assume that the boxes contain data on customers and vendors, but the boxes could contain half a tuna fish
sandwich and the boss's lucky golf ball.

On a computer disk, a file is similar to a card file box. It has a label (the filename on the disk) and takes
up space on the disk. The computer has no idea what kind of data is in a file; the file is just a chunk of
disk space set aside for data and given a name. The file could be a word processing document file named
james.doc containing a letter written to James, or it could be an Excel spreadsheet named bal.xls
containing account balances. These are sometimes called physical files.

Back in our hypothetical office, the stranger might open the boxes to check their contents, and he would
see that the physical card file box contains a collection of data.

New Term: In a COBOL program, a file is a collection of related units of information within a data
category. A file might contain all the information (related units of information) about customers (a data
category) for a company. This usually is called a data file or a logical file.

For the file to exist, there must be a physical file on the disk. When the bytes in this file are arranged
logically so that a COBOL program can access the information, it becomes a data file to a COBOL
program.

What Is a Record?
In terms of the Customer card file analogy, each card contains the information about a single customer,
and the card file box itself is the physical file.

New Term: Within a data file, the information about one unit is called a record. If a data file contains
the information pertaining to all customers, for example, the information about one customer is a record.

Figure 9.1 shows the relationship of a card file of phone numbers to a file record and fields. Each card
contains a last name, a first name, and a phone number.

Figure 9.1.
A card file as a file, records, and fields.

What Is a Field?
In the customer file, the customer name is one field and the customer phone number is another field. In
the card file analogy, you might place the customer's name on the first line of the card and the phone

file:///D|/Cool Stuff/old/ftp/Sams.Teach.Yourself.Cobol.In.21.Days/Teach Yourself Cobol in 21 Days/ch09/01.htm

number on the second line. The first line, then, is the name field and the second line is the phone number
field.

New Term: A field or data field is one piece of data contained in a record.

COBOL data files are organized as one or more records containing the same fields in each record. For
example, a record for a personal phone book might contain fields for a last name, a first name, and a
phone number. These fields would exist in each individual record.

If you displayed the phone file, it might look like the one in Figure 9.2.

Figure 9.2.
The contents of a phone file.

In fact, this collection of data is arranged in fields, similar to the card file system, but the layout is
slightly different (as shown in Figure 9.3).

Figure 9.3.
File, record, and fields in a data file.

If you could lay a column ruler down over the records as they are displayed, you would see the starting
and ending position of each of the fields (as shown in Figure 9.4).

Figure 9.4.
A column ruler against the records.

A record layout for the phone record would include a data name and the starting and ending positions in
the record for each field (as shown in Figure 9.5).

Figure 9.5.
A customer record layout.

An alternative method of creating a record specification is to list the field name, starting position, length,
and data type for each field, as shown in Table 9.1. If you are familiar with databases such as dBASE IV,
Oracle, Informix, or Access, you will recognize that this type of layout is similar to defining a database
file.

Table 9.1. Alternate record layout for a phone record.

Field Starting Position Length Type of Data

LAST NAME 1 20 Alphanumeric

FIRST NAME 21 20 Alphanumeric

PHONE 41 15 Alphanumeric

file:///D|/Cool Stuff/old/ftp/Sams.Teach.Yourself.Cobol.In.21.Days/Teach Yourself Cobol in 21 Days/ch09/02.htm
file:///D|/Cool Stuff/old/ftp/Sams.Teach.Yourself.Cobol.In.21.Days/Teach Yourself Cobol in 21 Days/ch09/03.htm
file:///D|/Cool Stuff/old/ftp/Sams.Teach.Yourself.Cobol.In.21.Days/Teach Yourself Cobol in 21 Days/ch09/04.htm
file:///D|/Cool Stuff/old/ftp/Sams.Teach.Yourself.Cobol.In.21.Days/Teach Yourself Cobol in 21 Days/ch09/05.htm

Defining a File in COBOL
In a COBOL program, the description of a data record is entered as a structure variable. Listing 9.1
shows a COBOL description for the PHONE-RECORD.

TYPE: Listing 9.1. The PHONE-RECORD structure.

002500
002600 01 PHONE-RECORD.
002700 05 PHONE-LAST-NAME PIC X(20).
002800 05 PHONE-FIRST-NAME PIC X(20).
002900 05 PHONE-NUMBER PIC X(15).
003000

ANALYSIS: When dealing with files, all the variables associated with a file, including the variables in
the record, start with an identical prefix. In Listing 9.1, I chose PHONE- as the prefix, although PH- or
PHNBK- could have been used as well. The prefix should not be too long because it will appear at the
beginning of all variables. PHONE-BOOK- would have been okay, but it is a little long. The prefix
convention is a good one, but it is not a requirement of the COBOL language.

In COBOL, a file is defined in two parts: the logical file, which includes the record layout, and the
physical file, which includes the name of the file on the disk and how the file will be organized.

The Logical Description of a COBOL File
A logical file is easy to define after you define the record. A logical file is defined in the DATA
DIVISION, in a new section called the FILE SECTION. Listing 9.2 shows an example of a logical file
definition, which is correctly placed in the FILE SECTION of the DATA DIVISION. FILE
SECTION is a reserved name for the section of the DATA DIVISION used to define logical files used
in a program.

TYPE: Listing 9.2. A logical COBOL file.

002000
002100 DATA DIVISION.
002200 FILE SECTION.
002300
002400 FD PHONE-FILE
002500 LABEL RECORDS ARE STANDARD.
002600 01 PHONE-RECORD.
002700 05 PHONE-LAST-NAME PIC X(20).
002800 05 PHONE-FIRST-NAME PIC X(20).
002900 05 PHONE-NUMBER PIC X(15).
003000
003100 WORKING-STORAGE SECTION.

003100

ANALYSIS: At line 002200, the FILE SECTION appears before the WORKING-STORAGE section
in the DATA DIVISION. Because it is a section name, it starts in Area A (columns 8 through 11).

New Term: A logical file definition is called a file descriptor, or FD.

The file descriptor starts at line 002400 and is given the special level number FD. This appears in Area
A, followed by a variable name for the logical file in Area B (columns 12 through 72). In this case, the
variable name is PHONE-FILE.

The variable name used for a file does not truly name a variable; it really is a file identifier. You cannot
move anything to PHONE-FILE, and if you tried to, the compiler probably would generate an error. You
do need to open and close a file in order to be able to read data from it and write data to it, and the
filename identifier is used with the OPEN and CLOSE commands to open and close the file. (See the
section "Opening and Closing a File," later in this chapter.)

A file descriptor frequently is called an FD because it uses the letters FD as a level number. The FD for
the PHONE-FILE continues on line 002500 with the statement LABEL RECORDS ARE STANDARD
and ends with a period on that line.

The LABEL RECORDS ARE STANDARD clause is a holdover from the days of processing files on
tape. Before disk drives became inexpensive, most large data files were written to and read from tape
drives. There were two ways to store a file on a tape: labeled and unlabeled. The FD indicated which type
of labeling was used on the tape.

All files are labeled so they have a name on the disk. Any file to be processed on a disk drive should
include LABEL RECORDS ARE STANDARD. Some recent COBOL compilers have recognized that
much more processing these days is done on disk, and the LABEL RECORDS clause is optional. You
should include the clause to keep your COBOL compatible across different machines and COBOL
compilers.

After the FD, filename, and LABEL clause, the variable structure that describes the record begins at line
002600. The variable structure that describes a record is often simply called a record and is a level 01
variable structure with the individual variables defined under it.

The Physical Description of a COBOL File
The physical description of the file fits in the ENVIRONMENT DIVISION.

New Term: The physical description of a COBOL file is a set of statements designed to identify the
physical name of the file on the disk drive, and how the file is organized.

The ENVIRONMENT DIVISION is reserved to provide information on the physical computer on which
COBOL is running. Different types of computers have different ways of naming files on a disk, so it
makes sense that this information is placed in the ENVIRONMENT DIVISION. A physical file
description is placed in the FILE-CONTROL paragraph in the INPUT-OUTPUT SECTION of the
ENVIRONMENT DIVISION.

The INPUT-OUTPUT SECTION is a reserved name for the section of the ENVIRONMENT DIVISION
that is used to define physical files used in a program and to define which areas of memory will be used
by the files while they are being processed.

The FILE-CONTROL paragraph is a reserved name for a paragraph in the INPUT-OUTPUT SECTION
of the ENVIRONMENT DIVISION, and it is used to define all the physical files used in a program.

Listing 9.3 shows an example of a physical file description. The INPUT-OUTPUT SECTION at line
000500 begins in Area A. The FILE-CONTROL paragraph at line 000600 also begins in Area A.

TYPE: Listing 9.3. The physical PHONE-FILE.

000400 ENVIRONMENT DIVISION.
000500 INPUT-OUTPUT SECTION.
000600 FILE-CONTROL.
000700 SELECT PHONE-FILE
000800 ASSIGN TO "phone.dat"
000900 ORGANIZATION IS SEQUENTIAL.
001000
001100 DATA DIVISION.

ANALYSIS: The SELECT statement that defines the physical file begins at line 000700. The SELECT
clause uses the logical filename (PHONE-FILE) and associates it with a physical filename on the disk by
using the ASSIGN TO "phone.dat" at line 000800.

The last line of the SELECT clause at line 000900 specifies that the file organization is SEQUENTIAL.
SEQUENTIAL organization indicates that records in the file are processed in sequence. When a record is
written to the file, it always is appended to the end of the file. When a file is opened and read, the first
read retrieves the first record and each subsequent read retrieves each next record.

If you think of this in terms of the card file of names and phone numbers, it means that every new card
file is added at the back end of the card file box, and you must find a card by reading from the first card
in the box to the last.

NOTE: The SELECT clause in Listing 9.3 is suitable for MS-DOS machines. On some
machines, it might be necessary to omit the extension and use ASSIGN TO "phone" or
force the filename to uppercase and use ASSIGN TO "PHONE".

Opening and Closing a File
Before you can do anything to the contents of a file, you must open the file. When you open a file, you
have to specify an OPEN mode. A mode indicates the type of processing that you intend to do on the file.
The following syntax is used:

OPEN mode file-name

These are examples of the four OPEN modes, and Table 9.2 describes what happens to the file in each

one:

OPEN OUTPUT PHONE-FILE
OPEN EXTEND PHONE-FILE
OPEN INPUT PHONE-FILE
OPEN I-O PHONE-FILE

Table 9.2. Effects of OPEN modes.

Open Mode Effect

OUTPUT If the file does not exist, it is created and records can be added to the file. If the file does
exist, the old file is destroyed, a new one is created, and any new records can be added to
it.

EXTEND If the file does not exist, it is created and records can be added to the file. If the file does
exist, it is opened and records can be appended to the end of it.

INPUT If the file exists, it is opened and records can be read from the file. If the file does not
exist, the OPEN fails and an error occurs.

I-O If the file exists, it is opened for reading and writing. If the file does not exist, the open
fails and an error occurs.

Notice that files opened for INPUT or I-O can cause an error if the file does not physically exist on the
disk.

Some versions of COBOL allow you to add the reserved word OPTIONAL to a SELECT clause to
prevent these errors. (See Listing 9.4.) The word OPTIONAL indicates that if the file is opened in
INPUT or I-O mode, the file is created automatically if it does not exist. If your version of COBOL
supports OPTIONAL, use it. Micro Focus Personal COBOL, ACUCOBOL, LPI COBOL, and VAX
COBOL all support it.

TYPE: Listing 9.4. SELECT OPTIONAL.

000300
000400 ENVIRONMENT DIVISION.
000500 INPUT-OUTPUT SECTION.
000600 FILE-CONTROL.
000700 SELECT OPTIONAL PHONE-FILE
000800 ASSIGN TO "phone.dat"
000900 ORGANIZATION IS SEQUENTIAL.
001000
001100 DATA DIVISION.

Closing a file is a lot less complicated; you simply use the reserved word CLOSE. It doesn't matter what
the original open mode was. Here is an example:

CLOSE filename

For the last listing, you would use the following:

CLOSE PHONE-FILE

Adding Records to a File
Adding a record to a file involves writing a record. The following syntax is simple:

WRITE file-record

To continue the phone number file example, use the following:

WRITE PHONE-RECORD

In Listing 9.5, phnadd01.cbl, all the elements of the program should be recognizable to you. The
user is repeatedly asked for a last name, a first name, and a phone number. Study phnadd01.cbl; then
code it, compile it, and run it to create your own phone file. All your entries are written to the file one
after the other. In this listing, you open a new file and only add records to it. Therefore, opening in
EXTEND mode is suitable.

TYPE: Listing 9.5. Creating a file and adding records.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. PHNADD01.
000300*--
000400* This program creates a new data file if necessary
000500* and adds records to the file from user entered
000600* data.
000700*--
000800 ENVIRONMENT DIVISION.
000900 INPUT-OUTPUT SECTION.
001000 FILE-CONTROL.
001100 SELECT OPTIONAL PHONE-FILE
001200*or SELECT PHONE-FILE
001300 ASSIGN TO "phone.dat"
001400*or ASSIGN TO "phone"
001500 ORGANIZATION IS SEQUENTIAL.
001600
001700 DATA DIVISION.
001800 FILE SECTION.
001900 FD PHONE-FILE
002000 LABEL RECORDS ARE STANDARD.
002100 01 PHONE-RECORD.
002200 05 PHONE-LAST-NAME PIC X(20).
002300 05 PHONE-FIRST-NAME PIC X(20).
002400 05 PHONE-NUMBER PIC X(15).
002500
002600 WORKING-STORAGE SECTION.
002700

002800* Variables for SCREEN ENTRY
002900 01 PROMPT-1 PIC X(9) VALUE "Last Name".
003000 01 PROMPT-2 PIC X(10) VALUE "First Name".
003100 01 PROMPT-3 PIC X(6) VALUE "Number".
003200
003300 01 YES-NO PIC X.
003400 01 ENTRY-OK PIC X.
003500
003600 PROCEDURE DIVISION.
003700 MAIN-LOGIC SECTION.
003800 PROGRAM-BEGIN.
003900
004000 PERFORM OPENING-PROCEDURE.
004100 MOVE "Y" TO YES-NO.
004200 PERFORM ADD-RECORDS
004300 UNTIL YES-NO = "N".
004400 PERFORM CLOSING-PROCEDURE.
004500
004600 PROGRAM-DONE.
004700 STOP RUN.
004800
004900* OPENING AND CLOSING
005000
005100 OPENING-PROCEDURE.
005200 OPEN EXTEND PHONE-FILE.
005300
005400 CLOSING-PROCEDURE.
005500 CLOSE PHONE-FILE.
005600
005700 ADD-RECORDS.
005800 MOVE "N" TO ENTRY-OK.
005900 PERFORM GET-FIELDS
006000 UNTIL ENTRY-OK = "Y".
006100 PERFORM ADD-THIS-RECORD.
006200 PERFORM GO-AGAIN.
006300
006400 GET-FIELDS.
006500 MOVE SPACE TO PHONE-RECORD.
006600 DISPLAY PROMPT-1 " ? ".
006700 ACCEPT PHONE-LAST-NAME.
006800 DISPLAY PROMPT-2 " ? ".
006900 ACCEPT PHONE-FIRST-NAME.
007000 DISPLAY PROMPT-3 " ? ".
007100 ACCEPT PHONE-NUMBER.
007200 PERFORM VALIDATE-FIELDS.
007300

007400 VALIDATE-FIELDS.
007500 MOVE "Y" TO ENTRY-OK.
007600 IF PHONE-LAST-NAME = SPACE
007700 DISPLAY "LAST NAME MUST BE ENTERED"
007800 MOVE "N" TO ENTRY-OK.
007900
008000 ADD-THIS-RECORD.
008100 WRITE PHONE-RECORD.
008200
008300 GO-AGAIN.
008400 DISPLAY "GO AGAIN?".
008500 ACCEPT YES-NO.
008600 IF YES-NO = "y"
008700 MOVE "Y" TO YES-NO.
008800 IF YES-NO NOT = "Y"
008900 MOVE "N" TO YES-NO.
009000

The following shows the output of phnadd01.cbl after two entries:

OUTPUT:
Last Name ?
KARENINA
First Name ?
ANA
Number ?
 (818) 555-4567
GO AGAIN?
Y
Last Name ?
PENCIL
First Name ?
ARTHUR
Number ?
 (515) 555-1234
GO AGAIN?

ANALYSIS: The listing includes some of the options for the SELECT statement at lines 001200 and
001400. The prompts used to ask the user for input are defined at lines 002900 through 003100.

At line 004000, OPENING-PROCEDURE is performed as the first step of the program. At line
004400, CLOSING-PROCEDURE is performed as the last step of the program. These two paragraphs at
lines 005100 and 005400 open and close the file. It is a fairly common arrangement for the first step
of a program to open all the files required by the program and for the last step of the program to close all
open files.

The ADD-RECORDS loop, at lines 005700 through 006200, asks the user for all the fields UNTIL

ENTRY-OK = "Y", and then writes the record to the file.

At line 006400, the GET-FIELDS paragraph initializes the PHONE-RECORD to spaces and then asks
the user for each of the three fields. The entries are validated (checked for correct entry) in
VALIDATE-FIELDS. The only validation is to check that the last name is entered.

Reading Records from a File
In order to open a file and read it successfully, the physical and logical file definition in the program (FD
and SELECT) must match the FD and SELECT used to create the file, at least as far as record length. If
they don't match, unpredictable results will occur. Physical files, logical files, and how they are described
in COBOL programs are covered in more detail in Day 17, "Alternate Keys."

DO/DON'T:
DO ensure that if more than one program accesses the same file, both programs use the
same SELECT, and an FD of the same length to describe the file.

DON'T try to open a file with a SELECT or FD that is different from the SELECT or FD
used to create the file. There are special cases where you can do this, but they are used in
data conversions.

DON'T change the record layout of a file by adding fields that change the length of the
record without also re-creating the data file.

A file to be opened for reading should be opened in INPUT mode with the following syntax:

READ filename NEXT RECORD.

Here is an example:

READ PHONE-FILE NEXT RECORD.

Because the SELECT clause for the file says that it is organized as a SEQUENTIAL file, every READ on
the file is a request to retrieve the next record. Each READ reads the next record in the file. There actually
are two types of read for a file: READ and READ NEXT. Because a SEQUENTIAL file is organized to be
accessed one record after another, a READ and READ NEXT have the same effect on a SEQUENTIAL
file. There are other types of file organization that you will begin to explore in Day 11, "Indexed File
I/O." For these other file organizations, READ and READ NEXT do not have the same effect.

Because the intention in a READ on a SEQUENTIAL file is to get the next record, it is a good idea to add
NEXT to the READ statement, as shown in the following syntax, because it makes the intention clear:

READ filename [NEXT RECORD]

The following is an example:

READ PHONE-FILE
READ PHONE-FILE NEXT RECORD

NOTE: For a SEQUENTIAL file, READ and READ NEXT RECORD are identical.

You need to know one other thing about READ NEXT. How do you know when all the records in a file
have been read? If you don't find out, your program will keep attempting to read the next record when
nothing is left in the file to read. The READ NEXT statement can include a clause that is executed if the
file has reached the end. The following is the syntax for handling an AT END condition:

READ filename [NEXT RECORD]
 AT END
 do something

For your phone number file, the following will work:

READ PHONE-FILE NEXT RECORD
 AT END
 MOVE "Y" TO END-OF-FILE

Listing 9.6, phnlst01.cbl, lists all the records in your data file. Before you start looking over the
code, take a look at the output of phnlst01.cbl.

TYPE: Listing 9.6. Displaying the phone file.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. PHNLST01.
000300*--
000400* This program displays the contents of the
000500* phone file.
000600*--
000700 ENVIRONMENT DIVISION.
000800 INPUT-OUTPUT SECTION.
000900 FILE-CONTROL.
001000 SELECT OPTIONAL PHONE-FILE
001100*or SELECT PHONE-FILE
001200 ASSIGN TO "phone.dat"
001300*or ASSIGN TO "phone"
001400 ORGANIZATION IS SEQUENTIAL.
001500
001600 DATA DIVISION.
001700 FILE SECTION.
001800 FD PHONE-FILE
001900 LABEL RECORDS ARE STANDARD.
002000 01 PHONE-RECORD.
002100 05 PHONE-LAST-NAME PIC X(20).
002200 05 PHONE-FIRST-NAME PIC X(20).
002300 05 PHONE-NUMBER PIC X(15).
002400
002500 WORKING-STORAGE SECTION.
002600
002700* Structure for SCREEN DISPLAY

002800 01 FIELDS-TO-DISPLAY.
002900 05 PROMPT-1 PIC X(10) VALUE "Last Name:".
003000 05 DISPLAY-LAST-NAME PIC X(20).
003100 05 PROMPT-2 PIC X(6) VALUE "First:".
003200 05 DISPLAY-FIRST-NAME PIC X(20).
003300 05 PROMPT-3 PIC X(3) VALUE "NO:".
003400 05 DISPLAY-NUMBER PIC X(15).
003500
003600 01 END-OF-FILE PIC X.
003700
003800 01 SCREEN-LINES PIC 99.
003900 01 A-DUMMY PIC X.
004000
004100 PROCEDURE DIVISION.
004200 MAIN-LOGIC SECTION.
004300 PROGRAM-BEGIN.
004400
004500 PERFORM OPENING-PROCEDURE.
004600 MOVE ZEROES TO SCREEN-LINES.
004700 MOVE "N" TO END-OF-FILE.
004800 PERFORM READ-NEXT-RECORD.
004900 PERFORM DISPLAY-RECORDS
005000 UNTIL END-OF-FILE = "Y".
005100 PERFORM CLOSING-PROCEDURE.
005200
005300 PROGRAM-DONE.
005400 STOP RUN.
005500
005600 OPENING-PROCEDURE.
005700 OPEN INPUT PHONE-FILE.
005800
005900 CLOSING-PROCEDURE.
006000 CLOSE PHONE-FILE.
006100
006200 DISPLAY-RECORDS.
006300 PERFORM DISPLAY-FIELDS.
006400 PERFORM READ-NEXT-RECORD.
006500
006600 DISPLAY-FIELDS.
006700 IF SCREEN-LINES = 15
006800 PERFORM PRESS-ENTER.
006900 MOVE PHONE-LAST-NAME TO DISPLAY-LAST-NAME.
007000 MOVE PHONE-FIRST-NAME TO DISPLAY-FIRST-NAME.
007100 MOVE PHONE-NUMBER TO DISPLAY-NUMBER.
007200 DISPLAY FIELDS-TO-DISPLAY.
007300

007400 ADD 1 TO SCREEN-LINES.
007500
007600 READ-NEXT-RECORD.
007700 READ PHONE-FILE NEXT RECORD
007800 AT END
007900 MOVE "Y" TO END-OF-FILE.
008000
008100 PRESS-ENTER.
008200 DISPLAY "Press ENTER to continue . . ".
008300 ACCEPT A-DUMMY.
008400 MOVE ZEROES TO SCREEN-LINES.
008500

OUTPUT:
C>pcobrun phnlst01
Personal COBOL version 2.0 from Micro Focus
PCOBRUN V2.0.02 Copyright (C) 1983-1993 Micro Focus Ltd.
Last Name:KARENINA First:ANITA NO:(818) 555-4567
Last Name:PENCIL First:ARTHUR NO:(515) 555-1234
Last Name:BUDLONG First:MO NO:(818) 555-4444
Last Name:ATREIDES First:JESSICA NO:606-555-7777
Last Name:CORTEZ First:HERNAN NO:555-4567
Last Name:WAYNE First:BOB NO:555-4332
Last Name:ADALE First:ALLEN NO:415-555-6666
Last Name:NOTTINGHAM First:MARY NO:415-555-6789
Last Name:TUCK First:FRANCINE NO:213-555-2345
Last Name:SCARLET First:BILL NO:202-555-6789
Last Name:PLUM First:PETRA NO:202-555-5678
Last Name:RED First:ERIC NO:424-555-3456
Last Name:ANGEL First:DESTINY NO:616-555-2345
Last Name:BACH First:JOHN NO:555-6789
Last Name:BAGGINS First:BILBO NO:555-9876
Press ENTER to continue . .

ANALYSIS: The OPEN at line 005700 is in INPUT mode. After the open, an END-OF-FILE is set up
and the first record is read at lines 004700 and 004800. The READ-NEXT-RECORD paragraph at line
007600 uses the AT END clause of a READ NEXT to set the END-OF-FILE flag to "Y" when the
records in the file are exhausted.

The DISPLAY-RECORDS paragraph at line 006200 displays the fields and then performs the
READ-NEXT-RECORD paragraph. The READ-NEXT-RECORD paragraph sets the END-OF-FILE flag,
so DISPLAY-RECORDS UNTIL END-OF-FILE ="Y" works correctly to control the loop.

The DISPLAY-FIELDS paragraph at line 006600 includes stopping for the user to press Enter after
every 15 lines of display.

COBOL programs frequently process a file from one end to the other. This is such a common processing

problem that it's worth looking at the techniques used in this example to control the processing loop.

Listing 9.7 shows the READ NEXT logic from phnlst01.cbl. In any program that reads a file from
one end to the other, it is important that the paragraph or command used to read the next record sets a
flag when the file reaches the end. This flag is used elsewhere in the program to determine that the
processing loop reading through the file must stop.

TYPE: Listing 9.7. READ-NEXT logic from phnlst01.cbl.

007600 READ-NEXT-RECORD.
007700 READ PHONE-FILE NEXT RECORD
007800 AT END
007900 MOVE "Y" TO END-OF-FILE.
008000

DO/DON'T:
DO ensure that whenever a file is read sequentially using READ NEXT, some flag is set to
indicate the end of a file.

DON'T ignore the possible end-of-file condition by leaving out a test for it in the main logic
of the program.

The File Processing Loop
The phnlst01.cbl program includes a piece of coding that is important to understand when you are
writing processing loops that involve reading through a file. Listing 9.8 repeats the two key parts of the
program, but you might also want to refer to Listing 9.6.

TYPE: Listing 9.8. The control of the processing loop from phnlst01.cbl.

004700 MOVE "N" TO END-OF-FILE.
004800 PERFORM READ-NEXT-RECORD.
004900 PERFORM DISPLAY-RECORDS
005000 UNTIL END-OF-FILE = "Y".
......
......* The processing loop
006200 DISPLAY-RECORDS.
006300 PERFORM DISPLAY-FIELDS.
006400 PERFORM READ-NEXT-RECORD.
006500
......
......
007600 READ-NEXT-RECORD.
007700 READ PHONE-FILE NEXT RECORD
007800 AT END

007900 MOVE "Y" TO END-OF-FILE.
008000

ANALYSIS: At lines 004700 and 004800, the first record in the file is read before the processing
loop starts. At lines 004900 and 005000, the processing loop is performed until the end of the file. At
line 006400, the next record is read at the end of the processing loop.

The style of processing loop for handling a file illustrated by these three pieces of code is very effective
and easy to code. You can think of it as three key pieces to use when processing a file from one end to
the other:

1. Set a flag that keeps track of whether the file is at the end to reflect a "not at end" condition and
read the first record.

2. Perform the processing loop until the file is at end.

3. Read the next record at the bottom of the processing loop.

Compare these three pieces of a file processing loop to the three parts of controlling any processing loop
from Day 5, "Using PERFORM, GO TO, and IF to Control Programs," as shown in Table 9.3. You will
see that a file processing loop is just a specialized version of a processing loop. The control variable is
the "at end" flag for the file.

Table 9.3. Comparing a processing loop to a file processing loop.

Processing Loop Action File Processing Loop Action

1. Initialize a value for the first pass through the
loop.

1. Set an "at end" flag to reflect a "not at end"
condition and read the first record.

2. Perform the processing loop until a condition is
met.

2. Perform the processing loop until the file ends.

3. Increment controlor modify the variable at the
end of the loop or after each pass through the loop.

3. Read the next record at the end of the processing
loop.

In fact, this comparison makes it possible to improve the description of the three parts of a processing
loop, as in Table 9.4.

Table 9.4. An improved statement of processing loop design.

Processing Loop Action Comments

1. Attempt to set up all variables and conditions
needed for the first pass through the loop.

This includes setting up one or more loop control
variables, and can include reading a record from a
file.

2. Perform the processing loop until one or more
conditions are met.

3. At the end of the loop, attempt to set up all
conditions for the next pass through the loop.

This includes modifying the loop control variables,
and can include reading the next record.

The general description of a processing loop now covers earlier control loops that you have studied as
well as the somewhat specialized control loop used to process a file one record at a time.

Summary
Saving data to and retrieving data from a disk depends on being able to handle files. Today, you learned
the following basics:

A physical file is a named area of a disk containing some sort of data.●

A logical file in COBOL is a physical file that is organized into fields and records.●

Accessing a file in COBOL requires both a logical and a physical definition of the file.●

The physical definition of the file is created with a SELECT statement in the I-O CONTROL
paragraph of the INPUT-OUTPUT SECTION of the ENVIRONMENT DIVISION.

●

The logical definition of a file is created with an FD in the FILE SECTION of the DATA
DIVISION and includes the record layout.

●

A file can be opened in four modes: EXTEND, OUTPUT, I-O, and INPUT. EXTEND creates a new
file, or opens an existing one, and allows records to be added to the end of the file. OUTPUT
creates a new file--or destroys an existing file and creates a new version of it--and allows records
to be added to the file. INPUT opens an existing file for reading only and returns an error if the file
does not exist. I-O mode opens a file for reading and writing and causes an error if the file does
not exist.

●

The errors caused by INPUT mode and I-O mode when you attempt to open a file that does not
exist can be changed by including the OPTIONAL clause in the SELECT statement for the file, if
your compiler allows it.

●

Use CLOSE with a filename to close an open file, regardless of the open mode.●

Use WRITE with a file-record to write a record to a file.●

Read the next record in a file by using READ filename NEXT RECORD. The READ NEXT
command includes syntax to allow you to set a flag when the file has reached the end or last
record.

●

These are the three parts to processing a file sequentially and organizing the logic:●

1. Set a flag to reflect a "not-at-end" condition and read the first record.

2. Perform the processing loop until the file is at end.

3. Read the next record at the bottom of the processing loop.

Q&A
Q Can I print the contents of phone.dat?

A Yes. Day 10, "Printing," covers printing data files. Printing is one of the most common instances
of processing a file by reading all the way through it one record at a time.

Q Is writing to a file the same as adding to a file?

A Yes. The WRITE command adds a new record to a file.

Q Why is the filename in PHNADD01.CBL (phone.dat) in lowercase?

A The physical filename you assign depends on the requirements of the computer on which the
program will be compiled. Under MS-DOS, filenames always are converted to uppercase no
matter what you use for the name. Using ASSIGN TO "phone.dat" or ASSIGN TO
"PHONE.DAT" creates a file named PHONE.DAT. Other computers have other requirements. In
UNIX, case is not converted, and phone.dat and PHONE.DAT are two different names for two
different files. The examples given in phnadd01.cbl, phnlst01.cbl, and other programs in
this chapter use lowercase because it is common to several different computers.

Workshop

Quiz

If you add a field to the PHONE-RECORD to include the extension and recompile the program, will the
original file phone.dat process correctly using the new program?

Exercises

1. Copy phnadd01.cbl to phnadd02.cbl. Add a field to PHONE-RECORD to include a
phone extension, and add all the logic needed to ask the user for this new field and store it in the
file. Remember that your original data file, phone.dat, will not be processed correctly by this
new file definition, and you will have to delete or rename the existing phone.dat file before you
run phnadd02.cbl.

Hint: The new record layout is the following:

002100 01 PHONE-RECORD.
002200 05 PHONE-LAST-NAME PIC X(20).
002300 05 PHONE-FIRST-NAME PIC X(20).
002400 05 PHONE-NUMBER PIC X(15).
002500 05 PHONE-EXTENSION PIC X(5).

2. Copy phnlst01.cbl to phnlst02.cbl and modify it to display the additional extension
field.

Hint: You will find that the result will not display correctly on an 80-column screen, and you will
need to shorten the prompts so that everything can be squeezed into 80 columns. If you use
prompts as suggested in the following, everything will fit:

002900 01 DISPLAY-FIELDS.
003000 05 PROMPT-1 PIC X(4) VALUE "Lst:".
003100 05 DISPLAY-LAST-NAME PIC X(20).
003200 05 PROMPT-2 PIC X(4) VALUE "1st:".
003300 05 DISPLAY-FIRST-NAME PIC X(20).
003400 05 PROMPT-3 PIC X(3) VALUE "NO:".
003500 05 DISPLAY-NUMBER PIC X(15).
003600 05 PROMPT-4 PIC X(4) VALUE "Xtn:".
003700 05 DISPLAY-EXTENSION PIC X(5).
003800
Smith Michael Valentine 818-555-1212
Trent Jack and Diane 555-9292
Kite Alonso (213)555-7777
Mae Maggie 506 555 1234
Karenina Ana (415) 555-3333

Previous chapter Next chapter Contents

Macmillan Computer Publishing USA

© Copyright, Macmillan Computer Publishing. All rights reserved.

Teach Yourself COBOL in 21 days, Second
Edition

Previous chapter Next chapter Contents

- Day 10 -
Printing

Reporting on the data in files by using the printing features of COBOL is one of the main activities of COBOL
programs. The reports are what end users see most often, and they are the area where users have the most
requests for changes. You'll probably spend more time coding (and modifying) report programs than any other
type of program. Acquiring good basics of printing reports on files will serve you throughout your COBOL
career.

In today's lesson, you learn about the following topics:

Printing basics●

Controlling the printer●

A simple printing program●

A simple report program●

Creating test data●

Laying out a report●

Printing Basics
You already have learned most of the steps for printing, because in COBOL you send data to the printer by
writing data to a file. In COBOL, the printer is defined as a file, and it is opened, closed, and written to as
though it were a file.

Like any file, the printer file requires both a logical and a physical definition. Listings 10.1 and 10.2 compare
the differences between a SELECT statement for a file and the SELECT statement for a print file.

TYPE: Listing 10.1. A SELECT statement for a file.

000400 ENVIRONMENT DIVISION.
000500 INPUT-OUTPUT SECTION.
000600 FILE-CONTROL.

000700 SELECT PHONE-FILE
000800 ASSIGN TO "phone.dat"
000900 ORGANIZATION IS SEQUENTIAL.
001000
001100 DATA DIVISION.

TYPE: Listing 10.2. A SELECT statement for a print file.

000400 ENVIRONMENT DIVISION.
000500 INPUT-OUTPUT SECTION.
000600 FILE-CONTROL.
000700 SELECT PHONE-FILE
000800 ASSIGN TO PRINTER
000900 ORGANIZATION IS LINE SEQUENTIAL.
001000
001100 DATA DIVISION.

The difference between the listings is the ASSIGN clause at line 00800. A normal disk file is assigned to a
filename on the disk. A printer file is assigned to the COBOL reserved word PRINTER.

At line 000900, the ORGANIZATION for the printer file is changed to LINE SEQUENTIAL.

A line sequential file is similar to a sequential file, but it usually has carriage return and line feed characters
added to the end of each record. These are added automatically every time a record is written. This format is
suitable for printing or displaying. The format also is suitable for a file that is to be edited using a text editor.
In fact, the source code files that you are editing whenever you write a program are line sequential files. In this
case, the printer file is organized as a line sequential file because a carriage return and line feed are "added" at
the end of each line and are sent to the printer to cause the print head to return to the left margin (carriage
return) and drop down one line (line feed).

ORGANIZATION IS LINE SEQUENTIAL is commonly used in many versions of COBOL for the
organization of the printer file, but it is not the only organization. I have also seen ORGANIZATION IS
SEQUENTIAL and ORGANIZATION IS PRINTER.

The ASSIGN statement you use varies slightly for different versions of COBOL, usually based on the device
name used on your system for the printer. Table 10.1 compares some different versions of COBOL.

Table 10.1. Versions of the ASSIGN clause.

COBOL Version How to ASSIGN to PRINTER

Micro Focus COBOL or Personal COBOL ASSIGN TO PRINTER

LPI COBOL ASSIGN TO PRINT
or
ASSIGN TO PRINTER

ACUCOBOL version 2.0 ASSIGN TO PRINTER

VS COBOL ASSIGN TO "PRINTER"

VAX COBOL ASSIGN TO SYS$PRINT?

New Term: Because the printer is a device that is treated like a file in COBOL programs, a file used for
printing is sometimes called a printer file or a printer device file.

On MS-DOS computers, writing a record "into" a printer file actually sends the record directly to the printer
attached to your computer. When you write from the printer file, you send characters directly to the printer.

New Term: On larger computers with many users and one or more printers, writing to the printer file actually
writes to a temporary file on the disk. When the printer file is closed, the temporary file is passed on to another
program that handles the scheduling of the printers. The scheduling program usually is called a spooler or a
print queue manager. This program sends the temporary file to the printer.

The second difference between data files and print files is shown in Listings 10.3 and 10.4. A data file uses
LABEL RECORDS ARE STANDARD, and a print file uses LABEL RECORDS ARE OMITTED. A printer is
a device and does not require labeling (filenames).

TYPE: Listing 10.3. The file definition for a data file.

002000 DATA DIVISION.
002100 FILE SECTION.
002200 FD PHONE-FILE
002300 LABEL RECORDS ARE STANDARD.
002400 01 PHONE-RECORD.
002500 05 PHONE-LAST-NAME PIC X(20).
002600 05 PHONE-FIRST-NAME PIC X(20).
002700 05 PHONE-NUMBER PIC X(15).
002800 05 PHONE-EXTENSION PIC X(5).
002900

TYPE: Listing 10.4. The file definition for a printer file.

003000 FD PRINTER-FILE
003100 LABEL RECORDS ARE OMITTED.
003200 01 PRINTER-RECORD PIC X(80).
003300

Controlling the Printer
In addition to printing a string of characters on paper, a COBOL program has to tell the printer when to
advance one line down the page. It also might have to tell the printer when to advance to the next page.

When a WRITE command is used on a printer file, the command can include instructions to force the printer to
advance one or more lines. The syntax for this is the following:

WRITE a-record BEFORE ADVANCING a-number.

The BEFORE ADVANCING phrase causes one or more carriage return and line feed characters to be sent to
the printer after the line is printed.

New Term: A carriage return is a command sent to a printer that causes the print head to return to the left
margin of the paper.

New Term: A line feed is a command sent to a printer that causes the print head to move down one line.

The carriage return and line feed combination is used to move the print head to the left edge of the paper
(carriage return) and down one line (line feed).

The advancing phrase also can be used to force the printer to eject the last page and prepare to start a new one.
The advancing command in the following example sends a form feed to the printer after printing a line:

WRITE a-record BEFORE ADVANCING PAGE.

New Term: A form feed is a command sent to a printer that causes the printer to eject the last sheet of paper
and prepare to start printing at the top of a new sheet.

You also might advance the paper before printing a line. Table 10.2 compares the effects of various versions
of BEFORE ADVANCING and AFTER ADVANCING.

Table 10.2. Controlling the printer with WRITE.

Code Effect

WRITE PRINTER-RECORD BEFORE
ADVANCING 1.

Sends the characters in PRINTER-RECORD to the
printer, then advances the printer one line

WRITE PRINTER-RECORD AFTER ADVANCING
1.

Advances the printer one line, then sends the
characters in PRINTER-RECORD to the printer

WRITE PRINTER-RECORD BEFORE
ADVANCING 5.

Sends the characters in PRINTER-RECORD to the
printer, then advances the printer five lines

WRITE PRINTER-RECORD AFTER ADVANCING
3.

Advances the printer three lines, then sends the
characters in PRINTER-RECORD to the printer

WRITE PRINTER-RECORD BEFORE
ADVANCING PAGE.

Sends the characters in PRINTER-RECORD to the
printer, then advances the printer to the next page

WRITE PRINTER-RECORD AFTER ADVANCING
PAGE.

Advances the printer to the next page, then sends the
characters in PRINTER-RECORD to the printer

New Term: The BEFORE ADVANCING and AFTER ADVANCING clauses of the WRITE verb are called
carriage control clauses or carriage control information. They control the positioning of the print head before
or after a line is printed.

Most earlier COBOL programs use AFTER ADVANCING for carriage control. In fact, if you omit carriage
control information when writing to a print file, each WRITE is treated as if you had included AFTER
ADVANCING 1.

Most of the examples in this book use BEFORE ADVANCING. BEFORE ADVANCING has advantages for
modern printers, particularly laser printers that expect to receive a form feed as the last command. This form
feed causes the laser printer to print all of the last data received and eject the last page of the report.

It is a good practice to use either BEFORE or AFTER consistently in all of your code. You will see in more
complex printing programs that it's easier to tell which line you are on when BEFORE or AFTER is used
consistently in a program.

A Simple Printing Program
The simplest way to illustrate printing is to modify phnadd02.cbl from Appendix A, "Answers," for Day
9, "File I/O," so that it echoes each record to the printer as you add it. Listing 10.5 shows phnadd03.cbl, a
modified version of phnadd02.cbl. Make sure that you have a printer attached to your computer, that the
printer is on, and that the printer is ready to receive characters to print. Usually the printer will have a READY
light that is on. If you run the program when the printer is not ready, it might lock up your computer.

TYPE: Listing 10.5. Echoing to the printer.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. PHNADD03.
000300*--
000400* This program creates a new data file if necessary
000500* and adds records to the file from user entered
000600* data. The records are written to the data file
000700* and echoed to the printer.
000800*--
000900 ENVIRONMENT DIVISION.
001000 INPUT-OUTPUT SECTION.
001100 FILE-CONTROL.
001200 SELECT PHONE-FILE
001300 ASSIGN TO "phone.dat"
001400 ORGANIZATION IS SEQUENTIAL.
001500
001600 SELECT PRINTER-FILE
001700 ASSIGN TO PRINTER
001800 ORGANIZATION IS LINE SEQUENTIAL.
001900
002000 DATA DIVISION.
002100 FILE SECTION.
002200 FD PHONE-FILE
002300 LABEL RECORDS ARE STANDARD.
002400 01 PHONE-RECORD.
002500 05 PHONE-LAST-NAME PIC X(20).
002600 05 PHONE-FIRST-NAME PIC X(20).
002700 05 PHONE-NUMBER PIC X(15).
002800 05 PHONE-EXTENSION PIC X(5).
002900
003000 FD PRINTER-FILE
003100 LABEL RECORDS ARE OMITTED.
003200 01 PRINTER-RECORD PIC X(80).
003300
003400 WORKING-STORAGE SECTION.
003500
003600* Variables for SCREEN ENTRY
003700 01 PROMPT-1 PIC X(9) VALUE "Last Name".
003800 01 PROMPT-2 PIC X(10) VALUE "First Name".

003900 01 PROMPT-3 PIC X(6) VALUE "Number".
004000 01 PROMPT-4 PIC X(9) VALUE "Extension".
004100
004200 01 YES-NO PIC X.
004300 01 ENTRY-OK PIC X.
004400
004500 PROCEDURE DIVISION.
004600 MAIN-LOGIC SECTION.
004700 PROGRAM-BEGIN.
004800
004900 PERFORM OPENING-PROCEDURE.
005000 MOVE "Y" TO YES-NO.
005100 PERFORM ADD-RECORDS
005200 UNTIL YES-NO = "N".
005300 PERFORM CLOSING-PROCEDURE.
005400
005500 PROGRAM-DONE.
005600 STOP RUN.
005700
005800* OPENING AND CLOSING
005900
006000 OPENING-PROCEDURE.
006100 OPEN EXTEND PHONE-FILE.
006200 OPEN OUTPUT PRINTER-FILE.
006300
006400 CLOSING-PROCEDURE.
006500 CLOSE PHONE-FILE.
006600 MOVE SPACE TO PRINTER-RECORD.
006700 WRITE PRINTER-RECORD BEFORE ADVANCING PAGE.
006800 CLOSE PRINTER-FILE.
006900
007000 ADD-RECORDS.
007100 MOVE "N" TO ENTRY-OK.
007200 PERFORM GET-FIELDS
007300 UNTIL ENTRY-OK = "Y".
007400 PERFORM ADD-THIS-RECORD.
007500 PERFORM GO-AGAIN.
007600
007700 GET-FIELDS.
007800 MOVE SPACE TO PHONE-RECORD.
007900 DISPLAY PROMPT-1 " ? ".
008000 ACCEPT PHONE-LAST-NAME.
008100 DISPLAY PROMPT-2 " ? ".
008200 ACCEPT PHONE-FIRST-NAME.
008300 DISPLAY PROMPT-3 " ? ".
008400 ACCEPT PHONE-NUMBER.
008500 DISPLAY PROMPT-4 " ? ".
008600 ACCEPT PHONE-EXTENSION.

008700 PERFORM VALIDATE-FIELDS.
008800
008900 VALIDATE-FIELDS.
009000 MOVE "Y" TO ENTRY-OK.
009100 IF PHONE-LAST-NAME = SPACE
009200 DISPLAY "LAST NAME MUST BE ENTERED"
009300 MOVE "N" TO ENTRY-OK.
009400
009500 ADD-THIS-RECORD.
009600 MOVE PHONE-RECORD TO PRINTER-RECORD.
009700 WRITE PHONE-RECORD.
009800 WRITE PRINTER-RECORD BEFORE ADVANCING 1.
009900
010000 GO-AGAIN.
010100 DISPLAY "GO AGAIN?".
010200 ACCEPT YES-NO.
010300 IF YES-NO = "y"
010400 MOVE "Y" TO YES-NO.
010500 IF YES-NO NOT = "Y"
010600 MOVE "N" TO YES-NO.
010700

The following is the on-screen output of phnadd03.cbl:

OUTPUT:
Last Name ?
MARTINSON
First Name ?
RICKY
Number ?
555-1234
Extension ?
405
GO AGAIN?
Y
Last Name ?
JONES
First Name ?
JOHN
Number ?
555-4321
Extension ?
1122
GO AGAIN?
N

C>
C>

This is the printed output of phnadd03.cbl:

OUTPUT:
MARTINSON RICKY 555-1234 405
JONES JOHN 555-4321 1122

ANALYSIS: The SELECT and FD for the PRINTER-FILE are at lines 001600 through 001800 and lines
002900 through 003100. No record for the PRINTER-FILE is created as a variable because there is no
need for fields within the PRINTER-RECORD, as you will learn later.

The OPENING-PROCEDURE is modified to open the PRINTER-FILE. Printer files can be opened only in
OUTPUT mode, as shown at line 006100.

Before you look at the closing procedure, check lines 009600 and 009800 in ADD-THIS-RECORD.
PRINTER-RECORD is filled in by moving the PHONE-RECORD to it at line 009600. Then the
PRINTER-RECORD is written at line 009800.

The closing procedure at line 006400 seems odd. Just before the printer file is closed, a record of spaces is
written, followed by a form feed (BEFORE ADVANCING PAGE). This forces the last page out of the printer.
It doesn't hurt to do this on a standard dot-matrix printer, and it's necessary for laser printers. As I mentioned
before, laser printers expect a form feed as the last command.

The only information put in the PRINTER-RECORD is either a complete copy of the PHONE-RECORD at line
009600 or SPACE at line 006400, so there is no need for the PRINTER-RECORD to be created as a
structure.

A Simple Report Program
The example printing program is a variation of phnadd02.cbl from Appendix A. It echoes records as they
are added to the file. Most COBOL printing programs (sometimes called report programs) are designed to read
the contents of an existing file and print the information.

Printing programs, which are also called report programs, are similar to display programs such as
phnlst01.cbl (see Appendix A).

You can derive the first version of a printing program that prints all records in a file, phnprt01.cbl, almost
directly from phnlst02.cbl. You might want to compare the report program in Listing 10.6 to
phnprt01.cbl.

TYPE: Listing 10.6. A report program.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. PHNPRT01.
000300*--
000400* This program prints the contents of the
000500* phone file.
000600*--
000700 ENVIRONMENT DIVISION.
000800 INPUT-OUTPUT SECTION.
000900 FILE-CONTROL.

001000 SELECT OPTIONAL PHONE-FILE
001100*or SELECT PHONE-FILE
001200 ASSIGN TO "phone.dat"
001300*or ASSIGN TO "phone"
001400 ORGANIZATION IS SEQUENTIAL.
001500
001600 SELECT PRINTER-FILE
001700 ASSIGN TO PRINTER
001800 ORGANIZATION IS LINE SEQUENTIAL.
001900
002000 DATA DIVISION.
002100 FILE SECTION.
002200 FD PHONE-FILE
002300 LABEL RECORDS ARE STANDARD.
002400 01 PHONE-RECORD.
002500 05 PHONE-LAST-NAME PIC X(20).
002600 05 PHONE-FIRST-NAME PIC X(20).
002700 05 PHONE-NUMBER PIC X(15).
002800 05 PHONE-EXTENSION PIC X(5).
002900
003000 FD PRINTER-FILE
003100 LABEL RECORDS ARE OMITTED.
003200 01 PRINTER-RECORD PIC X(80).
003300
003400 WORKING-STORAGE SECTION.
003500
003600* Structure for PRINTING
003700 01 FIELDS-TO-PRINT.
003800 05 PROMPT-1 PIC X(4) VALUE "Lst:".
003900 05 PRINT-LAST-NAME PIC X(20).
004000 05 PROMPT-2 PIC X(4) VALUE "1st:".
004100 05 PRINT-FIRST-NAME PIC X(20).
004200 05 PROMPT-3 PIC X(3) VALUE "NO:".
004300 05 PRINT-NUMBER PIC X(15).
004400 05 PROMPT-4 PIC X(4) VALUE "Xtn:".
004500 05 PRINT-EXTENSION PIC X(5).
004600
004700 01 END-OF-FILE PIC X.
004800
004900 01 PRINT-LINES PIC 99.
005000
005100 PROCEDURE DIVISION.
005200 MAIN-LOGIC SECTION.
005300 PROGRAM-BEGIN.
005400
005500 PERFORM OPENING-PROCEDURE.
005600 MOVE ZEROES TO PRINT-LINES.
005700 MOVE "N" TO END-OF-FILE.

005800 PERFORM READ-NEXT-RECORD.
005900 PERFORM PRINT-RECORDS
006000 UNTIL END-OF-FILE = "Y".
006100 PERFORM CLOSING-PROCEDURE.
006200
006300 PROGRAM-DONE.
006400 STOP RUN.
006500
006600 OPENING-PROCEDURE.
006700 OPEN INPUT PHONE-FILE.
006800 OPEN OUTPUT PRINTER-FILE.
006900
007000 CLOSING-PROCEDURE.
007100 CLOSE PHONE-FILE.
007200 MOVE SPACE TO PRINTER-RECORD.
007300 WRITE PRINTER-RECORD BEFORE ADVANCING PAGE.
007400 CLOSE PRINTER-FILE.
007500
007600 PRINT-RECORDS.
007700 PERFORM PRINT-FIELDS.
007800 PERFORM READ-NEXT-RECORD.
007900
008000 PRINT-FIELDS.
008100 IF PRINT-LINES = 55
008200 PERFORM NEW-PAGE.
008300 MOVE PHONE-LAST-NAME TO PRINT-LAST-NAME.
008400 MOVE PHONE-FIRST-NAME TO PRINT-FIRST-NAME.
008500 MOVE PHONE-NUMBER TO PRINT-NUMBER.
008600 MOVE PHONE-EXTENSION TO PRINT-EXTENSION.
008700 MOVE FIELDS-TO-PRINT TO PRINTER-RECORD.
008800 WRITE PRINTER-RECORD BEFORE ADVANCING 1.
008900
009000 ADD 1 TO PRINT-LINES.
009100
009200 READ-NEXT-RECORD.
009300 READ PHONE-FILE NEXT RECORD
009400 AT END
009500 MOVE "Y" TO END-OF-FILE.
009600
009700 NEW-PAGE.
009800 MOVE SPACE TO PRINTER-RECORD.
009900 WRITE PRINTER-RECORD BEFORE ADVANCING PAGE.
010000 MOVE ZEROES TO PRINT-LINES.
010100

The printer output of phnprt01.cbl looks something like the following:

OUTPUT:

Lst:MARTINSON 1st:RICKY NO:555-1234 Xtn:405
Lst:JONES 1st:JOHN NO:555-4321 Xtn:1122
Lst:Smith 1st:Michael NO:(213) 555-7075 Xtn:476
Lst:Fitzhugh 1st:Adrianne NO:(202) 555-7017 Xtn:23

ANALYSIS: A printer file has been added in FILE-CONTROL and in the FILE SECTION of the DATA
DIVISION. The OPENING-PROCEDURE and CLOSING-PROCEDURE paragraphs include an appropriate
OPEN and CLOSE for the PRINTER-FILE, including a closing form feed to eject the last page. The
DISPLAY-FIELDS paragraph in phnlst02.cbl has been changed to a PRINT-FIELDS paragraph,
which loads the fields and prints them.

One interesting area of change is at lines 008100 and 008200. Here is the original phnlst02.cbl
(ignoring line numbering differences):

007000 IF SCREEN-LINES = 15
007100 PERFORM PRESS-ENTER.

This is the phnprt01.cbl program:

008100 IF PRINT-LINES = 55
008200 PERFORM NEW-PAGE.

The SCREEN-LINES variable has been changed to a PRINT-LINES variable, and the size of a print page
has been set to 55. A print page usually has 66 (sometimes 68) lines on which you can print data. Laser
printers might have fewer lines. If you print from the top to the bottom of the page, the output might appear
cluttered, so it is common to allow a margin. I have chosen 55 lines as the breakpoint.

In the original phnlst02.cbl, the user is asked to press Enter to continue, as in the following:

008500 PRESS-ENTER.
008600 DISPLAY "Press ENTER to continue . . ".
008700 ACCEPT A-DUMMY.
008800 MOVE ZEROES TO SCREEN-LINES.

In a printing program, this pause between screens is changed into a page break (form feed):

009700 NEW-PAGE.
009800 MOVE SPACE TO PRINTER-RECORD.
009900 WRITE PRINTER-RECORD BEFORE ADVANCING PAGE.
010000 MOVE ZEROES TO PRINT-LINES.

Code and compile phnprt01.cbl. If you have not done so yet, code and compile phnadd02.cbl from
Appendix A. Delete the old data file, phone.dat, and use phnadd02.cbl to create a new file. Then add
several phone numbers to the phone.dat file, and run phnprt01.cbl to print these entries. If you have
more than 55 entries, phnprt01.cbl inserts a page break after printing 55 entries and starts a new page for
the remaining entries.

If you don't feel like entering this many phone numbers, you can use the information in the next section to
learn how to build test data to test your printing program.

Creating Test Data
Creating test data is one way of setting up proper conditions to test COBOL programs. The main thing to keep
in mind is that you want the test data to provide fields that will test all the necessary conditions in your
program. For phnprt01.cbl, you need to test these conditions:

Does the program print all the records in a file?●

Does the program print all the data in each field?●

Does the program stop correctly at the end of the file?●

Does the program insert a page break correctly?●

The test data doesn't have to make sense, as long as it tests those conditions.

The program phnbld01.cbl in Listing 10.7 creates a number of dummy records, based on a quantity
entered by the user.

TYPE: Listing 10.7. Creating test data for phnprt01.cbl.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. PHNBLD01.
000300*--
000400* This program creates a new data file and fills
000500* it with test data.
000600* The test records are written to the data file
000700* and echoed to the printer.
000800*--
000900 ENVIRONMENT DIVISION.
001000 INPUT-OUTPUT SECTION.
001100 FILE-CONTROL.
001200 SELECT PHONE-FILE
001300 ASSIGN TO "phone.dat"
001400 ORGANIZATION IS SEQUENTIAL.
001500
001600 SELECT PRINTER-FILE
001700 ASSIGN TO PRINTER
001800 ORGANIZATION IS LINE SEQUENTIAL.
001900
002000 DATA DIVISION.
002100 FILE SECTION.
002200 FD PHONE-FILE
002300 LABEL RECORDS ARE STANDARD.
002400 01 PHONE-RECORD.
002500 05 PHONE-LAST-NAME PIC X(20).
002600 05 PHONE-FIRST-NAME PIC X(20).
002700 05 PHONE-NUMBER PIC X(15).

002800 05 PHONE-EXTENSION PIC X(5).
002900
003000 FD PRINTER-FILE
003100 LABEL RECORDS ARE OMITTED.
003200 01 PRINTER-RECORD PIC X(80).
003300
003400 WORKING-STORAGE SECTION.
003500
003600 01 HOW-MANY PIC 999.
003700 01 ENTRY-FIELD PIC ZZZ.
003800
003900 01 PRINT-LINES PIC 99 VALUE ZEROES.
004000 01 FORMATTED-NUMBER.
004100 05 FILLER PIC X(6) VALUE "(404) ".
004200 05 FILLER PIC X(4) VALUE "555-".
004300 05 PHONE-COUNTER PIC 9(4) VALUE ZERO.
004400
004500 PROCEDURE DIVISION.
004600 MAIN-LOGIC SECTION.
004700 PROGRAM-BEGIN.
004800
004900 PERFORM OPENING-PROCEDURE.
005000 PERFORM GET-HOW-MANY.
005100 MOVE ZEROES TO PRINT-LINES.
005200 PERFORM ADD-RECORDS
005300 VARYING PHONE-COUNTER
005400 FROM 1 BY 1 UNTIL
005500 PHONE-COUNTER > HOW-MANY.
005600 PERFORM CLOSING-PROCEDURE.
005700
005800 PROGRAM-DONE.
005900 STOP RUN.
006000
006100* OPENING AND CLOSING
006200
006300 OPENING-PROCEDURE.
006400 OPEN OUTPUT PHONE-FILE.
006500 OPEN OUTPUT PRINTER-FILE.
006600
006700 CLOSING-PROCEDURE.
006800 CLOSE PHONE-FILE.
006900 MOVE SPACE TO PRINTER-RECORD.
007000 WRITE PRINTER-RECORD BEFORE ADVANCING PAGE.
007100 CLOSE PRINTER-FILE.
007200
007300 GET-HOW-MANY.
007400 DISPLAY "How many test entries (1-999)".
007500 ACCEPT ENTRY-FIELD.

007600*or ACCEPT ENTRY-FIELD WITH CONVERSION.
007700 MOVE ENTRY-FIELD TO HOW-MANY.
007800
007900 ADD-RECORDS.
008000 PERFORM FORMAT-THE-RECORD.
008100 PERFORM ADD-THIS-RECORD.
008200
008300 FORMAT-THE-RECORD.
008400 MOVE "Joshua------------X" TO PHONE-FIRST-NAME.
008500 MOVE "Johnson------------X" TO PHONE-LAST-NAME.
008600 MOVE "12345" TO PHONE-EXTENSION.
008700 MOVE FORMATTED-NUMBER TO PHONE-NUMBER.
008800
008900 ADD-THIS-RECORD.
009000 WRITE PHONE-RECORD.
009100 PERFORM PRINT-THIS-RECORD.
009200
009300 PRINT-THIS-RECORD.
009400 IF PRINT-LINES NOT < 55
009500 PERFORM NEW-PAGE.
009600 MOVE PHONE-RECORD TO PRINTER-RECORD.
009700 WRITE PRINTER-RECORD BEFORE ADVANCING 1.
009800 ADD 1 TO PRINT-LINES.
009900
010000 NEW-PAGE.
010100 MOVE SPACE TO PRINTER-RECORD.
010200 WRITE PRINTER-RECORD BEFORE ADVANCING PAGE.
010300 MOVE ZEROES TO PRINT-LINES.
010400

The following output of phnbld01.cbl prints when you request 77 entries:

OUTPUT:
Johnson------------XJoshua------------X(404) 555-0001 12345
Johnson------------XJoshua------------X(404) 555-0002 12345
Johnson------------XJoshua------------X(404) 555-0003 12345
Johnson------------XJoshua------------X(404) 555-0004 12345
Johnson------------XJoshua------------X(404) 555-0005 12345
Johnson------------XJoshua------------X(404) 555-0006 12345
Johnson------------XJoshua------------X(404) 555-0007 12345
Johnson------------XJoshua------------X(404) 555-0008 12345
Johnson------------XJoshua------------X(404) 555-0009 12345
Johnson------------XJoshua------------X(404) 555-0010 12345
Johnson------------XJoshua------------X(404) 555-0011 12345
Johnson------------XJoshua------------X(404) 555-0012 12345
Johnson------------XJoshua------------X(404) 555-0013 12345
Johnson------------XJoshua------------X(404) 555-0014 12345
Johnson------------XJoshua------------X(404) 555-0015 12345

Johnson------------XJoshua------------X(404) 555-0016 12345
Johnson------------XJoshua------------X(404) 555-0017 12345
Johnson------------XJoshua------------X(404) 555-0018 12345
Johnson------------XJoshua------------X(404) 555-0019 12345
Johnson------------XJoshua------------X(404) 555-0020 12345
Johnson------------XJoshua------------X(404) 555-0021 12345
Johnson------------XJoshua------------X(404) 555-0022 12345
Johnson------------XJoshua------------X(404) 555-0023 12345
Johnson------------XJoshua------------X(404) 555-0024 12345
Johnson------------XJoshua------------X(404) 555-0025 12345
Johnson------------XJoshua------------X(404) 555-0026 12345
Johnson------------XJoshua------------X(404) 555-0027 12345
Johnson------------XJoshua------------X(404) 555-0028 12345
Johnson------------XJoshua------------X(404) 555-0029 12345
Johnson------------XJoshua------------X(404) 555-0030 12345
Johnson------------XJoshua------------X(404) 555-0031 12345
Johnson------------XJoshua------------X(404) 555-0032 12345
Johnson------------XJoshua------------X(404) 555-0033 12345
Johnson------------XJoshua------------X(404) 555-0034 12345
Johnson------------XJoshua------------X(404) 555-0035 12345
Johnson------------XJoshua------------X(404) 555-0036 12345
Johnson------------XJoshua------------X(404) 555-0037 12345
Johnson------------XJoshua------------X(404) 555-0038 12345
Johnson------------XJoshua------------X(404) 555-0039 12345
Johnson------------XJoshua------------X(404) 555-0040 12345
Johnson------------XJoshua------------X(404) 555-0041 12345
Johnson------------XJoshua------------X(404) 555-0042 12345
Johnson------------XJoshua------------X(404) 555-0043 12345
Johnson------------XJoshua------------X(404) 555-0044 12345
Johnson------------XJoshua------------X(404) 555-0045 12345
Johnson------------XJoshua------------X(404) 555-0046 12345
Johnson------------XJoshua------------X(404) 555-0047 12345
Johnson------------XJoshua------------X(404) 555-0048 12345
Johnson------------XJoshua------------X(404) 555-0049 12345
Johnson------------XJoshua------------X(404) 555-0050 12345
Johnson------------XJoshua------------X(404) 555-0051 12345
Johnson------------XJoshua------------X(404) 555-0052 12345
Johnson------------XJoshua------------X(404) 555-0053 12345
Johnson------------XJoshua------------X(404) 555-0054 12345
Johnson------------XJoshua------------X(404) 555-0055 12345

(New page starts here.)

Johnson------------XJoshua------------X(404) 555-0056 12345
Johnson------------XJoshua------------X(404) 555-0057 12345
Johnson------------XJoshua------------X(404) 555-0058 12345
Johnson------------XJoshua------------X(404) 555-0059 12345
Johnson------------XJoshua------------X(404) 555-0060 12345
Johnson------------XJoshua------------X(404) 555-0061 12345

Johnson------------XJoshua------------X(404) 555-0062 12345
Johnson------------XJoshua------------X(404) 555-0063 12345
Johnson------------XJoshua------------X(404) 555-0064 12345
Johnson------------XJoshua------------X(404) 555-0065 12345
Johnson------------XJoshua------------X(404) 555-0066 12345
Johnson------------XJoshua------------X(404) 555-0067 12345
Johnson------------XJoshua------------X(404) 555-0068 12345
Johnson------------XJoshua------------X(404) 555-0069 12345
Johnson------------XJoshua------------X(404) 555-0070 12345
Johnson------------XJoshua------------X(404) 555-0071 12345
Johnson------------XJoshua------------X(404) 555-0072 12345
Johnson------------XJoshua------------X(404) 555-0073 12345
Johnson------------XJoshua------------X(404) 555-0074 12345
Johnson------------XJoshua------------X(404) 555-0075 12345
Johnson------------XJoshua------------X(404) 555-0076 12345
Johnson------------XJoshua------------X(404) 555-0077 12345

ANALYSIS: Each record is identical except for the last four digits of the phone number field. The
PHONE-FIRST-NAME field is filled in with Joshua------------X to test the full 20 characters of the
printed field. Similarly, the PHONE-LAST-NAME field is filled in with Johnson------------X to test
the printing of that field, and the PHONE-EXTENSION is filled in with 12345.

The trick of creating a different phone number is taken care of by the structure at lines 004000 through
004400. This sets up a structure containing (404) and 555-, followed by a PHONE-COUNTER. At line
005000, a routine is performed to ask the user how many test records to create. At lines 005200 through
005500, the routine to add records to the file is performed while varying the PHONE-COUNTER from 1
through HOW-MANY entries.

At lines 08300 through 008700, the record is filled in. When the record is added in the routine at 008900,
it also is printed, ensuring that you have an accurate record of what exactly was placed in the file.

Edit, compile, and run phnbld01.cbl to create a test file large enough to test the printing capabilities of
phnprt01.cbl. Then run phnprt01.cbl to see an output report with a page break in it.

By examining the output, you verify that phnprt01.cbl passes all these test criteria:

The program prints all the records in a file.●

The program prints all the data in each field.●

The program stops correctly at the end of the file.●

The program inserts a page break correctly.●

The following output of phnprt01.cbl using 77 entries was created by phnbld01.cbl:

OUTPUT:
Lst:Johnson------------X1st:Joshua------------XNO:(404) 555-0001 Xtn:12345
Lst:Johnson------------X1st:Joshua------------XNO:(404) 555-0002 Xtn:12345
Lst:Johnson------------X1st:Joshua------------XNO:(404) 555-0003 Xtn:12345

Lst:Johnson------------X1st:Joshua------------XNO:(404) 555-0004 Xtn:12345
Lst:Johnson------------X1st:Joshua------------XNO:(404) 555-0005 Xtn:12345
Lst:Johnson------------X1st:Joshua------------XNO:(404) 555-0006 Xtn:12345
Lst:Johnson------------X1st:Joshua------------XNO:(404) 555-0007 Xtn:12345
Lst:Johnson------------X1st:Joshua------------XNO:(404) 555-0008 Xtn:12345
Lst:Johnson------------X1st:Joshua------------XNO:(404) 555-0009 Xtn:12345
Lst:Johnson------------X1st:Joshua------------XNO:(404) 555-0010 Xtn:12345
Lst:Johnson------------X1st:Joshua------------XNO:(404) 555-0011 Xtn:12345
Lst:Johnson------------X1st:Joshua------------XNO:(404) 555-0012 Xtn:12345
Lst:Johnson------------X1st:Joshua------------XNO:(404) 555-0013 Xtn:12345
Lst:Johnson------------X1st:Joshua------------XNO:(404) 555-0014 Xtn:12345
Lst:Johnson------------X1st:Joshua------------XNO:(404) 555-0015 Xtn:12345
Lst:Johnson------------X1st:Joshua------------XNO:(404) 555-0016 Xtn:12345
Lst:Johnson------------X1st:Joshua------------XNO:(404) 555-0017 Xtn:12345
Lst:Johnson------------X1st:Joshua------------XNO:(404) 555-0018 Xtn:12345
Lst:Johnson------------X1st:Joshua------------XNO:(404) 555-0019 Xtn:12345
Lst:Johnson------------X1st:Joshua------------XNO:(404) 555-0020 Xtn:12345
Lst:Johnson------------X1st:Joshua------------XNO:(404) 555-0021 Xtn:12345
Lst:Johnson------------X1st:Joshua------------XNO:(404) 555-0022 Xtn:12345
Lst:Johnson------------X1st:Joshua------------XNO:(404) 555-0023 Xtn:12345
Lst:Johnson------------X1st:Joshua------------XNO:(404) 555-0024 Xtn:12345
Lst:Johnson------------X1st:Joshua------------XNO:(404) 555-0025 Xtn:12345
Lst:Johnson------------X1st:Joshua------------XNO:(404) 555-0026 Xtn:12345
Lst:Johnson------------X1st:Joshua------------XNO:(404) 555-0027 Xtn:12345
Lst:Johnson------------X1st:Joshua------------XNO:(404) 555-0028 Xtn:12345
Lst:Johnson------------X1st:Joshua------------XNO:(404) 555-0029 Xtn:12345
Lst:Johnson------------X1st:Joshua------------XNO:(404) 555-0030 Xtn:12345
Lst:Johnson------------X1st:Joshua------------XNO:(404) 555-0031 Xtn:12345
Lst:Johnson------------X1st:Joshua------------XNO:(404) 555-0032 Xtn:12345
Lst:Johnson------------X1st:Joshua------------XNO:(404) 555-0033 Xtn:12345
Lst:Johnson------------X1st:Joshua------------XNO:(404) 555-0034 Xtn:12345
Lst:Johnson------------X1st:Joshua------------XNO:(404) 555-0035 Xtn:12345
Lst:Johnson------------X1st:Joshua------------XNO:(404) 555-0036 Xtn:12345
Lst:Johnson------------X1st:Joshua------------XNO:(404) 555-0037 Xtn:12345
Lst:Johnson------------X1st:Joshua------------XNO:(404) 555-0038 Xtn:12345
Lst:Johnson------------X1st:Joshua------------XNO:(404) 555-0039 Xtn:12345
Lst:Johnson------------X1st:Joshua------------XNO:(404) 555-0040 Xtn:12345
Lst:Johnson------------X1st:Joshua------------XNO:(404) 555-0041 Xtn:12345
Lst:Johnson------------X1st:Joshua------------XNO:(404) 555-0042 Xtn:12345
Lst:Johnson------------X1st:Joshua------------XNO:(404) 555-0043 Xtn:12345
Lst:Johnson------------X1st:Joshua------------XNO:(404) 555-0044 Xtn:12345
Lst:Johnson------------X1st:Joshua------------XNO:(404) 555-0045 Xtn:12345
Lst:Johnson------------X1st:Joshua------------XNO:(404) 555-0046 Xtn:12345
Lst:Johnson------------X1st:Joshua------------XNO:(404) 555-0047 Xtn:12345
Lst:Johnson------------X1st:Joshua------------XNO:(404) 555-0048 Xtn:12345
Lst:Johnson------------X1st:Joshua------------XNO:(404) 555-0049 Xtn:12345
Lst:Johnson------------X1st:Joshua------------XNO:(404) 555-0050 Xtn:12345
Lst:Johnson------------X1st:Joshua------------XNO:(404) 555-0051 Xtn:12345

Lst:Johnson------------X1st:Joshua------------XNO:(404) 555-0052 Xtn:12345
Lst:Johnson------------X1st:Joshua------------XNO:(404) 555-0053 Xtn:12345
Lst:Johnson------------X1st:Joshua------------XNO:(404) 555-0054 Xtn:12345
Lst:Johnson------------X1st:Joshua------------XNO:(404) 555-0055 Xtn:12345

(New page starts here.)

Lst:Johnson------------X1st:Joshua------------XNO:(404) 555-0056 Xtn:12345
Lst:Johnson------------X1st:Joshua------------XNO:(404) 555-0057 Xtn:12345
Lst:Johnson------------X1st:Joshua------------XNO:(404) 555-0058 Xtn:12345
Lst:Johnson------------X1st:Joshua------------XNO:(404) 555-0059 Xtn:12345
Lst:Johnson------------X1st:Joshua------------XNO:(404) 555-0060 Xtn:12345
Lst:Johnson------------X1st:Joshua------------XNO:(404) 555-0061 Xtn:12345
Lst:Johnson------------X1st:Joshua------------XNO:(404) 555-0062 Xtn:12345
Lst:Johnson------------X1st:Joshua------------XNO:(404) 555-0063 Xtn:12345
Lst:Johnson------------X1st:Joshua------------XNO:(404) 555-0064 Xtn:12345
Lst:Johnson------------X1st:Joshua------------XNO:(404) 555-0065 Xtn:12345
Lst:Johnson------------X1st:Joshua------------XNO:(404) 555-0066 Xtn:12345
Lst:Johnson------------X1st:Joshua------------XNO:(404) 555-0067 Xtn:12345
Lst:Johnson------------X1st:Joshua------------XNO:(404) 555-0068 Xtn:12345
Lst:Johnson------------X1st:Joshua------------XNO:(404) 555-0069 Xtn:12345
Lst:Johnson------------X1st:Joshua------------XNO:(404) 555-0070 Xtn:12345
Lst:Johnson------------X1st:Joshua------------XNO:(404) 555-0071 Xtn:12345
Lst:Johnson------------X1st:Joshua------------XNO:(404) 555-0072 Xtn:12345
Lst:Johnson------------X1st:Joshua------------XNO:(404) 555-0073 Xtn:12345
Lst:Johnson------------X1st:Joshua------------XNO:(404) 555-0074 Xtn:12345
Lst:Johnson------------X1st:Joshua------------XNO:(404) 555-0075 Xtn:12345
Lst:Johnson------------X1st:Joshua------------XNO:(404) 555-0076 Xtn:12345
Lst:Johnson------------X1st:Joshua------------XNO:(404) 555-0077 Xtn:12345

Examination of the output does reveal a problem. The fields are all jammed end-to-end, with no space
between the end of one field and the beginning of the prompt for the next field.

Laying Out a Report
Usually, a COBOL report program looks more like the example lines in Figure 10.1.

Figure 10.1.
The layout of a COBOL report program.

COBOL report layouts usually are worked out on a printer spacing sheet. A blank printer spacing sheet is
shown in Figure 10.2. The printer spacing sheet uses 80 columns (or 132 for wide-carriage printers) to
represent printing positions. You can buy these at a stationery shop or simply adapt graph paper to do the same
job.

The spacing sheet for this sample report program is shown in Figure 10.3. The layout is done by hand and
helps to calculate the spacing of the output data in a report. When you have determined the spacing, you can
work out what the data should look like in the program.

Figure 10.2.

file:///D|/Cool Stuff/old/ftp/Sams.Teach.Yourself.Cobol.In.21.Days/Teach Yourself Cobol in 21 Days/ch10/01.htm
file:///D|/Cool Stuff/old/ftp/Sams.Teach.Yourself.Cobol.In.21.Days/Teach Yourself Cobol in 21 Days/ch10/02.htm

A printer spacing sheet.

Figure 10.3.
A COBOL printer layout sheet.

The main part of the report is detail lines holding enough space for each field, with a space between each field,
as shown in Listing 10.8.

TYPE: Listing 10.8. The structure for the report detail.

005400
005500 01 DETAIL-LINE.
005600 05 PRINT-LAST-NAME PIC X(20).
005700 05 FILLER PIC X(1) VALUE SPACE.
005800 05 PRINT-FIRST-NAME PIC X(20).
005900 05 FILLER PIC X(1) VALUE SPACE.
006000 05 PRINT-NUMBER PIC X(15).
006100 05 FILLER PIC X(1) VALUE SPACE.
006200 05 PRINT-EXTENSION PIC X(5).
006300

The top line of the report is a title line; the structure shown in Listing 10.9 holds the title for the report and an
incrementing page number.

TYPE: Listing 10.9. The structure for the title.

003700 01 TITLE-LINE.
003800 05 FILLER PIC X(21) VALUE SPACE.
003900 05 FILLER PIC X(17) VALUE
004000 "PHONE BOOK REPORT".
004100 05 FILLER PIC X(15) VALUE SPACE.
004200 05 FILLER PIC X(5) VALUE "Page:".
004300 05 PRINT-PAGE-NUMBER PIC ZZZZ9.
004400

The second line at the top of each page of the report is for column headings; the structure shown in Listing
10.10 is used to print the columns. The column headings do not change, so all the values in
COLUMN-HEADINGS are defined as FILLER.

TYPE: Listing 10.10. The column headings.

004600 01 COLUMN-HEADINGS.
004700 05 FILLER PIC X(9) VALUE "Last Name".
004800 05 FILLER PIC X(12) VALUE SPACE.
004900 05 FILLER PIC X(10) VALUE "First Name".
005000 05 FILLER PIC X(11) VALUE SPACE.
005100 05 FILLER PIC X(6) VALUE "Number".
005200 05 FILLER PIC X(10) VALUE SPACE.
005300 05 FILLER PIC X(4) VALUE "Ext.".

file:///D|/Cool Stuff/old/ftp/Sams.Teach.Yourself.Cobol.In.21.Days/Teach Yourself Cobol in 21 Days/ch10/03.htm

With the data structure defined, you now can consider the program. Printing the information differs only
slightly from phnprt01.cbl. The difference is that the logic to start another page must include ending the
last page by inserting a form feed, incrementing the page number, and then printing the title line and the
column heading line.

Starting a new page is really two separate problems, because first you must end the old page and then start the
new one. The new page logic has to be broken into two pieces because you need to be able to start a new page
at the beginning of the report (print the title and column headings) without ending an old page (insert a form
feed).

Listing 10.11 is the program that results from this modification to the layout and logic, and it also includes
some new features.

TYPE: Listing 10.11. The final report program.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. PHNPRT02.
000300*--
000400* This program prints the contents of the
000500* phone file.
000600*--
000700 ENVIRONMENT DIVISION.
000800 INPUT-OUTPUT SECTION.
000900 FILE-CONTROL.
001000 SELECT OPTIONAL PHONE-FILE
001100*or SELECT PHONE-FILE
001200 ASSIGN TO "phone.dat"
001300*or ASSIGN TO "phone"
001400 ORGANIZATION IS SEQUENTIAL.
001500
001600 SELECT PRINTER-FILE
001700 ASSIGN TO PRINTER
001800 ORGANIZATION IS LINE SEQUENTIAL.
001900
002000 DATA DIVISION.
002100 FILE SECTION.
002200 FD PHONE-FILE
002300 LABEL RECORDS ARE STANDARD.
002400 01 PHONE-RECORD.
002500 05 PHONE-LAST-NAME PIC X(20).
002600 05 PHONE-FIRST-NAME PIC X(20).
002700 05 PHONE-NUMBER PIC X(15).
002800 05 PHONE-EXTENSION PIC X(5).
002900
003000 FD PRINTER-FILE
003100 LABEL RECORDS ARE OMITTED.
003200 01 PRINTER-RECORD PIC X(80).
003300
003400 WORKING-STORAGE SECTION.

003500
003600* Structure for printing a title line
003700 01 TITLE-LINE.
003800 05 FILLER PIC X(21) VALUE SPACE.
003900 05 FILLER PIC X(17) VALUE
004000 "PHONE BOOK REPORT".
004100 05 FILLER PIC X(15) VALUE SPACE.
004200 05 FILLER PIC X(5) VALUE "Page:".
004300 05 PRINT-PAGE-NUMBER PIC ZZZZ9.
004400
004500* Structure for printing a column heading
004600 01 COLUMN-HEADINGS.
004700 05 FILLER PIC X(9) VALUE "Last Name".
004800 05 FILLER PIC X(12) VALUE SPACE.
004900 05 FILLER PIC X(10) VALUE "First Name".
005000 05 FILLER PIC X(11) VALUE SPACE.
005100 05 FILLER PIC X(6) VALUE "Number".
005200 05 FILLER PIC X(10) VALUE SPACE.
005300 05 FILLER PIC X(4) VALUE "Ext.".
005400
005500 01 DETAIL-LINE.
005600 05 PRINT-LAST-NAME PIC X(20).
005700 05 FILLER PIC X(1) VALUE SPACE.
005800 05 PRINT-FIRST-NAME PIC X(20).
005900 05 FILLER PIC X(1) VALUE SPACE.
006000 05 PRINT-NUMBER PIC X(15).
006100 05 FILLER PIC X(1) VALUE SPACE.
006200 05 PRINT-EXTENSION PIC X(5).
006300
006400 01 END-OF-FILE PIC X.
006500
006600 01 PRINT-LINES PIC 99.
006700 01 PAGE-NUMBER PIC 9(5).
006800
006900 PROCEDURE DIVISION.
007000 MAIN-LOGIC SECTION.
007100 PROGRAM-BEGIN.
007200
007300 PERFORM OPENING-PROCEDURE.
007400 MOVE ZEROES TO PRINT-LINES
007500 PAGE-NUMBER.
007600 PERFORM START-NEW-PAGE.
007700 MOVE "N" TO END-OF-FILE.
007800 PERFORM READ-NEXT-RECORD.
007900 IF END-OF-FILE = "Y"
008000 MOVE "No records found" TO PRINTER-RECORD
008100 WRITE PRINTER-RECORD BEFORE ADVANCING 1.
008200 PERFORM PRINT-RECORDS

008300 UNTIL END-OF-FILE = "Y".
008400 PERFORM CLOSING-PROCEDURE.
008500
008600 PROGRAM-DONE.
008700 STOP RUN.
008800
008900 OPENING-PROCEDURE.
009000 OPEN INPUT PHONE-FILE.
009100 OPEN OUTPUT PRINTER-FILE.
009200
009300 CLOSING-PROCEDURE.
009400 CLOSE PHONE-FILE.
009500 PERFORM END-LAST-PAGE.
009600 CLOSE PRINTER-FILE.
009700
009800 PRINT-RECORDS.
009900 PERFORM PRINT-FIELDS.
010000 PERFORM READ-NEXT-RECORD.
010100
010200 PRINT-FIELDS.
010300 IF PRINT-LINES NOT < 55
010400 PERFORM NEXT-PAGE.
010500 MOVE PHONE-LAST-NAME TO PRINT-LAST-NAME.
010600 MOVE PHONE-FIRST-NAME TO PRINT-FIRST-NAME.
010700 MOVE PHONE-NUMBER TO PRINT-NUMBER.
010800 MOVE PHONE-EXTENSION TO PRINT-EXTENSION.
010900 MOVE DETAIL-LINE TO PRINTER-RECORD.
011000 WRITE PRINTER-RECORD BEFORE ADVANCING 1.
011100
011200 ADD 1 TO PRINT-LINES.
011300
011400 READ-NEXT-RECORD.
011500 READ PHONE-FILE NEXT RECORD
011600 AT END
011700 MOVE "Y" TO END-OF-FILE.
011800
011900 NEXT-PAGE.
012000 PERFORM END-LAST-PAGE.
012100 PERFORM START-NEW-PAGE.
012200
012300 START-NEW-PAGE.
012400 ADD 1 TO PAGE-NUMBER.
012500 MOVE PAGE-NUMBER TO PRINT-PAGE-NUMBER.
012600 MOVE TITLE-LINE TO PRINTER-RECORD.
012700 WRITE PRINTER-RECORD BEFORE ADVANCING 2.
012800 MOVE COLUMN-HEADINGS TO PRINTER-RECORD.
012900 WRITE PRINTER-RECORD BEFORE ADVANCING 2.
013000 MOVE 4 TO PRINT-LINES.

013100
013200 END-LAST-PAGE.
013300 MOVE SPACE TO PRINTER-RECORD.
013400 WRITE PRINTER-RECORD BEFORE ADVANCING PAGE.
013500 MOVE ZEROES TO PRINT-LINES.
013600

The following is output from phnprt02.cbl when run against a test data file containing 77 entries created
with phnbld01.cbl:

OUTPUT:
 PHONE BOOK REPORT Page: 1

Last Name First Name Number Ext.
Johnson------------X Joshua------------X (404) 555-0001 12345
Johnson------------X Joshua------------X (404) 555-0002 12345
Johnson------------X Joshua------------X (404) 555-0003 12345
Johnson------------X Joshua------------X (404) 555-0004 12345
Johnson------------X Joshua------------X (404) 555-0005 12345
Johnson------------X Joshua------------X (404) 555-0006 12345
Johnson------------X Joshua------------X (404) 555-0007 12345
Johnson------------X Joshua------------X (404) 555-0008 12345
Johnson------------X Joshua------------X (404) 555-0009 12345
Johnson------------X Joshua------------X (404) 555-0010 12345
Johnson------------X Joshua------------X (404) 555-0011 12345
Johnson------------X Joshua------------X (404) 555-0012 12345
Johnson------------X Joshua------------X (404) 555-0013 12345
Johnson------------X Joshua------------X (404) 555-0014 12345
Johnson------------X Joshua------------X (404) 555-0015 12345
Johnson------------X Joshua------------X (404) 555-0016 12345
Johnson------------X Joshua------------X (404) 555-0017 12345
Johnson------------X Joshua------------X (404) 555-0018 12345
Johnson------------X Joshua------------X (404) 555-0019 12345
Johnson------------X Joshua------------X (404) 555-0020 12345
Johnson------------X Joshua------------X (404) 555-0021 12345
Johnson------------X Joshua------------X (404) 555-0022 12345
Johnson------------X Joshua------------X (404) 555-0023 12345
Johnson------------X Joshua------------X (404) 555-0024 12345
Johnson------------X Joshua------------X (404) 555-0025 12345
Johnson------------X Joshua------------X (404) 555-0026 12345
Johnson------------X Joshua------------X (404) 555-0027 12345
Johnson------------X Joshua------------X (404) 555-0028 12345
Johnson------------X Joshua------------X (404) 555-0029 12345
Johnson------------X Joshua------------X (404) 555-0030 12345
Johnson------------X Joshua------------X (404) 555-0031 12345
Johnson------------X Joshua------------X (404) 555-0032 12345
Johnson------------X Joshua------------X (404) 555-0033 12345
Johnson------------X Joshua------------X (404) 555-0034 12345

Johnson------------X Joshua------------X (404) 555-0035 12345
Johnson------------X Joshua------------X (404) 555-0036 12345
Johnson------------X Joshua------------X (404) 555-0037 12345
Johnson------------X Joshua------------X (404) 555-0038 12345
Johnson------------X Joshua------------X (404) 555-0039 12345
Johnson------------X Joshua------------X (404) 555-0040 12345
Johnson------------X Joshua------------X (404) 555-0041 12345
Johnson------------X Joshua------------X (404) 555-0042 12345
Johnson------------X Joshua------------X (404) 555-0043 12345
Johnson------------X Joshua------------X (404) 555-0044 12345
Johnson------------X Joshua------------X (404) 555-0045 12345
Johnson------------X Joshua------------X (404) 555-0046 12345
Johnson------------X Joshua------------X (404) 555-0047 12345
Johnson------------X Joshua------------X (404) 555-0048 12345
Johnson------------X Joshua------------X (404) 555-0049 12345
Johnson------------X Joshua------------X (404) 555-0050 12345
Johnson------------X Joshua------------X (404) 555-0051 12345

(New page starts here.)

 PHONE BOOK REPORT Page: 2

Last Name First Name Number Ext.

Johnson------------X Joshua------------X (404) 555-0052 12345
Johnson------------X Joshua------------X (404) 555-0053 12345
Johnson------------X Joshua------------X (404) 555-0054 12345
Johnson------------X Joshua------------X (404) 555-0055 12345
Johnson------------X Joshua------------X (404) 555-0056 12345
Johnson------------X Joshua------------X (404) 555-0057 12345
Johnson------------X Joshua------------X (404) 555-0058 12345
Johnson------------X Joshua------------X (404) 555-0059 12345
Johnson------------X Joshua------------X (404) 555-0060 12345
Johnson------------X Joshua------------X (404) 555-0061 12345
Johnson------------X Joshua------------X (404) 555-0062 12345
Johnson------------X Joshua------------X (404) 555-0063 12345
Johnson------------X Joshua------------X (404) 555-0064 12345
Johnson------------X Joshua------------X (404) 555-0065 12345
Johnson------------X Joshua------------X (404) 555-0066 12345
Johnson------------X Joshua------------X (404) 555-0067 12345
Johnson------------X Joshua------------X (404) 555-0068 12345
Johnson------------X Joshua------------X (404) 555-0069 12345
Johnson------------X Joshua------------X (404) 555-0070 12345
Johnson------------X Joshua------------X (404) 555-0071 12345
Johnson------------X Joshua------------X (404) 555-0072 12345
Johnson------------X Joshua------------X (404) 555-0073 12345
Johnson------------X Joshua------------X (404) 555-0074 12345
Johnson------------X Joshua------------X (404) 555-0075 12345
Johnson------------X Joshua------------X (404) 555-0076 12345

Johnson------------X Joshua------------X (404) 555-0077 12345

ANALYSIS: The logic called NEW-PAGE in phnprt01.cbl has been changed to NEXT-PAGE.
NEXT-PAGE at line 011900 has been broken into two separate actions: END-LAST-PAGE and
START-NEW-PAGE.

END-LAST-PAGE at lines 013200 through 013500 performs the familiar task of forcing a form feed.

The START-NEW-PAGE logic at lines 012300 through 013000 takes care of starting the top of a new page.
It adds 1 to the page number, moves the new page number to PRINT-PAGE-NUMBER in the TITLE-LINE,
writes TITLE-LINE, and advances two lines. The COLUMN-HEADINGS are written, also followed by two
lines, and the PRINT-LINES variable is set to 4 to indicate the number of lines used on the page so far.

The main logic of the program, at lines 007300 through 008400, opens the files, initializes the
PRINT-LINES and PAGE-NUMBER variables, starts a new page ready for printing, and reads the first record
in the file.

Before the main loop is entered, the logic tests for an immediate end-of-file at line 007900. It is a good
practice to have some handling for an empty file, and this program prints a "No records found"
message. Without this message, all you see on the report is a title and columns. The message makes it clear
that the data file contained no records.

Trace out the logic for this program until you feel comfortable with it, and then code, compile, and run it
against the test file created with phnbld01.cbl.

Summary
Reporting on the data in files is one of the main activities of COBOL programs. Today, you learned the
following basics about coding, modifying, and printing reports:

COBOL treats the printer as if it were a file, using open, close, and write.●

When you write to a printer file, you might be writing directly to the physical printer or to a temporary
disk file that is processed by a print queue manager or spooler.

●

You can control the line advancing and page advancing of a printer by using the BEFORE
ADVANCING clause in a WRITE command.

●

COBOL report programs usually are laid out using a printer spacing sheet that represents the columns
on a printed page. It helps to work out how space is needed for filler in a report.

●

You can break pages by ending the last page and starting the new page as two separate actions.●

Q&A
Q Can I use phnbld01.cbl to create some test data, and then manually add additional data to
the file?

A Yes. Run phnbld01.cbl to create the initial data; then run phnadd02.cbl from the answers in

Appendix A for Day 9, and you will be able to add data to the end of the file. If you then run
phnprt02.cbl, a report will be printed containing the test data, followed by the entries that you
created yourself.

Workshop

Quiz

In Listing 10.11, what would be the effect of changing line 007600 to read as follows?

007600 PERFORM NEXT-PAGE.

Exercises

1. Copy phnprt02.cbl to phnprt03.cbl and modify it so that two spaces appear between each
column of data.

2. Using graph paper or anything similar to a printer spacing chart, design a report layout for a customer
file containing the following record definition:

001100 01 CUSTOMER-RECORD.
001200 05 CUSTOMER-NUMBER PIC 9(4).
001300 05 CUSTOMER-NAME PIC X(20).
001400 05 CUSTOMER-PHONE PIC X(15).
001500 05 CUSTOMER-BALANCE PIC S9(5)V99.

Hint: The printed picture for the CUSTOMER-NUMBER would be ZZZ9, and for the
CUSTOMER-BALANCE it would be ZZ,ZZ9.99-.

Previous chapter Next chapter Contents

Macmillan Computer Publishing USA

© Copyright, Macmillan Computer Publishing. All rights reserved.

Teach Yourself COBOL in 21 days,
Second Edition

Previous chapter Next chapter Contents

- Day 11 -
Indexed File I/O

The real power of COBOL data processing lies in indexed files. They are the central repository of data
for virtually every COBOL system in use. Today, you learn about the following topics:

What is an indexed file?●

Indexed files in COBOL.●

Adding records to an indexed file.●

Handling file errors.●

Retrieving records in key order.●

Formatting long records for display.●

What Is an Indexed File?
From Day 9, "File I/O," and Day 10, "Printing," you learned that sequential files allow you to add
records to the end of the file and you learned how to do that. You also learned that sequential files only
allow you to process the file one record at a time, from beginning to end, and you learned some
techniques to execute that style of file processing. This method is acceptable for small files, but
businesses can process files containing thousands of customers and hundreds of thousands of parts.
Imagine how many records the customer file of a large bank or the inventory file of a car parts store
might have.

An indexed file can store the same information as a sequential file, but a separate index is created that

keeps the records sorted in alphabetical or numerical order. When you create an indexed file, you specify
which fields to use for the indexing. When you write records to an indexed file, the index in the file is
kept sorted in order by the index. You can use these index fields to retrieve records rapidly in a sequence
that is different from the actual order of the records in the file.

Listing 11.1 shows a customer record. This is a fairly straightforward record layout except that the phone
number has been broken down into area code, prefix, and number.

TYPE: Listing 11.1. A customer record.

001100 01 CUSTOMER-RECORD.
001200 05 CUSTOMER-NAME PIC X(20).
001300 05 CUSTOMER-ADDRESS-1 PIC X(20).
001400 05 CUSTOMER-ADDRESS-2 PIC X(20).
001500 05 CUSTOMER-ZIP PIC 9(5).
001600 05 CUSTOMER-PHONE.
001700 10 CUSTOMER-AREA-CODE PIC 9(3).
001800 10 CUSTOMER-PREFIX PIC 9(3).
001900 10 CUSTOMER-PHONE-NO PIC 9(4).

If you display the records in the order in which they were added to the file, the file might look like the
example shown in Figure 11.1.

Figure 11.1.
Sample records for the customer file.

A field can be named as an index; as each record is added to the file, information also is stored in the
index area of the file to indicate the correct order of records for that index.

For example, suppose you use the name field as an index and you want to see the records sorted by name.
The records would appear as shown in Figure 11.2.

Figure 11.2.
Records sorted on the name field.

If you also specify the zip code and area code as indexes, you then could sort the records by zip code (as
shown in Figure 11.3) or by area code (as shown in Figure 11.4).

Figure 11.3.
Records sorted on the zip code field.

Figure 11.4.
Records sorted on the area code field.

In these examples, the indexed fields are fields in which duplicates might occur, and in fact do occur.
Amphora Inc. and Malio Bros. both have the same zip code and area code. In a large customer base, it
also is possible that customer names would be duplicated.

The index allows you to retrieve records in sorted order, but if your record contains a field that is unique

file:///D|/Cool Stuff/old/ftp/Sams.Teach.Yourself.Cobol.In.21.Days/Teach Yourself Cobol in 21 Days/ch11/01.htm
file:///D|/Cool Stuff/old/ftp/Sams.Teach.Yourself.Cobol.In.21.Days/Teach Yourself Cobol in 21 Days/ch11/02.htm
file:///D|/Cool Stuff/old/ftp/Sams.Teach.Yourself.Cobol.In.21.Days/Teach Yourself Cobol in 21 Days/ch11/03.htm
file:///D|/Cool Stuff/old/ftp/Sams.Teach.Yourself.Cobol.In.21.Days/Teach Yourself Cobol in 21 Days/ch11/04.htm

from record to record, you might use that index to retrieve an individual record, rather than just retrieving
records in sorted order.

In business programming, it is common to add a customer number to the customer record that is used as
an index containing unique values (as shown in Listing 11.2).

TYPE: Listing 11.2. Adding a customer number.

001100 01 CUSTOMER-RECORD.
001200 05 CUSTOMER-NUMBER PIC 9(4).
001300 05 CUSTOMER-NAME PIC X(20).
001400 05 CUSTOMER-ADDRESS-1 PIC X(20).
001500 05 CUSTOMER-ADDRESS-2 PIC X(20).
001600 05 CUSTOMER-ZIP PIC 9(5).
001700 05 CUSTOMER-PHONE.
001800 10 CUSTOMER-AREA-CODE PIC 9(3).
001900 10 CUSTOMER-PREFIX PIC 9(3).
002000 10 CUSTOMER-PHONE-NO PIC 9(4).

In Figure 11.5, records appear in the order of the unique index, but you also can request a read on a file
to return a single record whose customer number is equal to a specific value.

Figure 11.5.
Records with a unique index.

Indexed Files in COBOL
If you have ever wondered why you are given an account number, customer number, or card number by
the companies you deal with, the answer lies in the need to create a unique value that can be used to
identify your individual record in a computer file.

New Term: In a COBOL indexed file, one field must be designed so that it will contain a unique value
for each record. This field is set up as the primary index for the file. This primary index is called the
primary key or sometimes simply the key.

Most companies and agencies opt for a numbering system to resolve the problem of creating a unique
(and unchanging) field to identify an individual record. This is a workable compromise, although in some
cases it creates an artificial piece of data (such as a customer number) associated with a record.

You establish a key (an index) in a file in the physical definition of the file (the SELECT statement).
Listing 11.3 is a full FD statement for the customer file we've been working on in this chapter. From the
file descriptor and record layout, there is no way to tell that the file is indexed or what the key is. All this
information is taken care of in the SELECT statement.

TYPE: Listing 11.3. FD for a keyed file.

000900 FD CUSTOMER-FILE

file:///D|/Cool Stuff/old/ftp/Sams.Teach.Yourself.Cobol.In.21.Days/Teach Yourself Cobol in 21 Days/ch11/05.htm
file:///D|/Cool Stuff/old/ftp/Sams.Teach.Yourself.Cobol.In.21.Days/Teach Yourself Cobol in 21 Days/ch11/05.htm
file:///D|/Cool Stuff/old/ftp/Sams.Teach.Yourself.Cobol.In.21.Days/Teach Yourself Cobol in 21 Days/ch11/05.htm

001000 LABEL RECORDS ARE STANDARD.
001100 01 CUSTOMER-RECORD.
001200 05 CUSTOMER-NUMBER PIC 9(4).
001300 05 CUSTOMER-NAME PIC X(20).
001400 05 CUSTOMER-ADDRESS-1 PIC X(20).
001500 05 CUSTOMER-ADDRESS-2 PIC X(20).
001600 05 CUSTOMER-ZIP PIC 9(5).
001700 05 CUSTOMER-PHONE.
001800 10 CUSTOMER-AREA-CODE PIC 9(3).
001900 10 CUSTOMER-PREFIX PIC 9(3).
002000 10 CUSTOMER-PHONE-NO PIC 9(4).

Listing 11.4 is a SELECT statement for the customer file as it would appear if the file were being treated
as a sequential file.

TYPE: Listing 11.4. A SELECT statement for a sequential file.

000300 SELECT CUSTOMER-FILE
000400 ASSIGN TO "customer.dat"
000500 ORGANIZATION IS SEQUENTIAL.

Compare this to the SELECT statement for the customer file as an indexed file, as shown in Listing 11.5.

TYPE: Listing 11.5. A SELECT statement for a keyed file.

000300 SELECT CUSTOMER-FILE
000400 ASSIGN TO "customer.dat"
000500 ORGANIZATION IS INDEXED
000600 RECORD KEY IS CUSTOMER-NUMBER
000700 ACCESS MODE IS DYNAMIC.

ANALYSIS: At line 000500, the organization of the file is specified as INDEXED. After you have
specified INDEXED for a file organization, you must name a field that appears in the file record as the
key (primary index) to the file. At line 000600, this field is identified with the clause RECORD KEY
IS CUSTOMER-NUMBER.

Line 000700 specifies the access mode DYNAMIC. You don't need to be too concerned about access
modes--you almost always will use DYNAMIC--but a brief explanation is in order. The following are the
three ways of accessing an indexed file:

SEQUENTIAL●

RANDOM●

DYNAMIC●

SEQUENTIAL access is the default and indicates that records will be accessed one after the other in the
order of the primary key. RANDOM access indicates that the file will be accessed one record at a time, and
for each access, an exact value for the primary key will be specified. DYNAMIC access combines
SEQUENTIAL and RANDOM, indicating that records can be accessed randomly, one at time, or one after

the other in sequence. You usually will use DYNAMIC because most programs need to access records
both ways.

The OPEN and CLOSE for an indexed file are identical to the OPEN and CLOSE that you already have
seen for a sequential file. Listing 11.6 opens a vendor file in output mode and then closes it.

TYPE: Listing 11.6. Creating an empty vendor file.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. VNDBLD01.
000300*--
000400* Create an Empty Vendor File.
000500*--
000600 ENVIRONMENT DIVISION.
000700 INPUT-OUTPUT SECTION.
000800 FILE-CONTROL.
000900
001000 SELECT VENDOR-FILE
001100 ASSIGN TO "vendor"
001200 ORGANIZATION IS INDEXED
001300 RECORD KEY IS VENDOR-NUMBER
001400 ACCESS MODE IS DYNAMIC.
001500
001600 DATA DIVISION.
001700 FILE SECTION.
001800
001900 FD VENDOR-FILE
002000 LABEL RECORDS ARE STANDARD.
002100 01 VENDOR-RECORD.
002200 05 VENDOR-NUMBER PIC 9(5).
002300 05 VENDOR-NAME PIC X(30).
002400 05 VENDOR-ADDRESS-1 PIC X(30).
002500 05 VENDOR-ADDRESS-2 PIC X(30).
002600 05 VENDOR-CITY PIC X(20).
002700 05 VENDOR-STATE PIC X(2).
002800 05 VENDOR-ZIP PIC X(10).
002900 05 VENDOR-CONTACT PIC X(30).
003000 05 VENDOR-PHONE PIC X(15).
003100
003200 WORKING-STORAGE SECTION.
003300
003400 PROCEDURE DIVISION.
003500 PROGRAM-BEGIN.
003600 OPEN OUTPUT VENDOR-FILE.
003700 CLOSE VENDOR-FILE.
003800

003900 PROGRAM-DONE.
004000 STOP RUN.
004100

ANALYSIS: The SELECT statement has some differences that you need to study. The ASSIGN TO
clause, at line 001100, assigns the physical filename as "vendor" with no extension. The extension is
omitted deliberately. Different versions of COBOL create indexed files in different ways:

Under ACUCOBOL, a new file is created using the assigned name exactly as given. After data is
placed in the file, this file includes all the data as well as the index information. The new version 4
of ACUCOBOL, which is in beta test as of this writing, will use a two-file approach similar to
those described for LPI COBOL and Microfocus COBOL.

●

Under LPI COBOL, ASSIGN TO "vendor" creates two files. One, named vendor.dat,
contains the data, and the other, named vendor.idx, contains the index information.

●

Under Micro Focus COBOL, ASSIGN TO "vendor" creates two files. One, named vendor,
contains the data, and the other, named vendor.idx, contains the index information.

●

For systems that create two files, such as LPI COBOL, Micro Focus COBOL, and the upcoming version
4.0 of ACUCOBOL, you don't need to worry about the two files within your COBOL program. When
you open the file, the COBOL version takes care of gathering together the data portion of the file and the
index portion of the file and opening them for you as though they were one file.

Because these different conventions exist (and there are others), it is best to give indexed files a physical
name that contains no extension and let the version of COBOL take care of adding whatever extensions it
needs for internal housekeeping.

The vendor record itself at lines 002100 through 003000 lays out a record for a file containing vendor
names and addresses, which will be used in an accounts payable system that you develop over this and
the following chapters. The vendor contact field can be used to place the name of a contact.

New Term: A vendor is someone who sells you goods or services and to whom you end up paying
money for those goods or services.

You use this file definition to create a bills tracking and payment system gradually.

New Term: An accounts payable system tracks the bills you have, their due dates, and what you've paid,
and it gives you information on future cash requirements needed to pay bills as they come due.

Although this program doesn't appear to do anything useful, it does have a purpose. In Day 9, you
learned that it is possible to create a new file where one did not exist previously by using the OPTIONAL
clause in a SELECT statement:

SELECT OPTIONAL PHONE-FILE

It also is possible to create a file by opening the file in EXTEND mode. This applies to SEQUENTIAL
files, but OPTIONAL and EXTEND modes, are sometimes unavailable for indexed files.

Because COBOL syntax varies in the use of OPTIONAL in the SELECT clause, and because OPEN

EXTEND is sometimes unavailable for indexed files, a program such as vndbld01.cbl is one way of
ensuring that the vendor file is created. It is not uncommon in COBOL systems to have a set of
programs, such as vndbld01.cbl, that are used only once to create a new set of empty files when the
system is first installed.

Code, compile, and run this program; then perform a directory display of files named vendor to see
which files were actually created in response to this command.

Under MS-DOS, enter the following:

DIR VENDOR*

You might see one of the following three displays, depending on your version of COBOL (or possibly
another naming convention):

Files Listed Under LPI COBOL Files Listed Under MF COBOL Files Listed Under ACUCOBOL

VENDOR.DAT VENDOR VENDOR

VENDOR.IDX VENDOR.IDX

Adding Records to an Indexed File
Adding records to an indexed file is mechanically identical to adding records to a sequential file; you fill
each of the fields of the record with a value and then write the record. Listing 11.7, vndnew01.cbl, is
a rudimentary program that accepts input for all fields and writes (adds) one record to the file.

TYPE: Listing 11.7. Adding indexed records.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. VNDNEW01.
000300*--
000400* Add a record to an indexed Vendor File.
000500*--
000600 ENVIRONMENT DIVISION.
000700 INPUT-OUTPUT SECTION.
000800 FILE-CONTROL.
000900
001000 SELECT VENDOR-FILE
001100 ASSIGN TO "vendor"
001200 ORGANIZATION IS INDEXED
001300 RECORD KEY IS VENDOR-NUMBER
001400 ACCESS MODE IS DYNAMIC.
001500
001600 DATA DIVISION.
001700 FILE SECTION.
001800
001900 FD VENDOR-FILE

002000 LABEL RECORDS ARE STANDARD.
002100 01 VENDOR-RECORD.
002200 05 VENDOR-NUMBER PIC 9(5).
002300 05 VENDOR-NAME PIC X(30).
002400 05 VENDOR-ADDRESS-1 PIC X(30).
002500 05 VENDOR-ADDRESS-2 PIC X(30).
002600 05 VENDOR-CITY PIC X(20).
002700 05 VENDOR-STATE PIC X(2).
002800 05 VENDOR-ZIP PIC X(10).
002900 05 VENDOR-CONTACT PIC X(30).
003000 05 VENDOR-PHONE PIC X(15).
003100
003200 WORKING-STORAGE SECTION.
003300
003400 PROCEDURE DIVISION.
003500 PROGRAM-BEGIN.
003600 OPEN I-O VENDOR-FILE.
003700 PERFORM MAIN-PROCESS.
003800 CLOSE VENDOR-FILE.
003900
004000 PROGRAM-DONE.
004100 STOP RUN.
004200
004300 MAIN-PROCESS.
004400 PERFORM INIT-VENDOR-RECORD.
004500 PERFORM ENTER-VENDOR-FIELDS.
004600 WRITE VENDOR-RECORD.
004700
004800 INIT-VENDOR-RECORD.
004900 MOVE SPACE TO VENDOR-RECORD.
005000 MOVE ZEROES TO VENDOR-NUMBER.
005100
005200 ENTER-VENDOR-FIELDS.
005300 PERFORM ENTER-VENDOR-NUMBER.
005400 PERFORM ENTER-VENDOR-NAME.
005500 PERFORM ENTER-VENDOR-ADDRESS-1.
005600 PERFORM ENTER-VENDOR-ADDRESS-2.
005700 PERFORM ENTER-VENDOR-CITY.
005800 PERFORM ENTER-VENDOR-STATE.
005900 PERFORM ENTER-VENDOR-ZIP.
006000 PERFORM ENTER-VENDOR-CONTACT.
006100 PERFORM ENTER-VENDOR-PHONE.
006200
006300 ENTER-VENDOR-NUMBER.
006400 DISPLAY "ENTER VENDOR NUMBER (00001-99999)".
006500 ACCEPT VENDOR-NUMBER.

006600
006700 ENTER-VENDOR-NAME.
006800 DISPLAY "ENTER VENDOR NAME".
006900 ACCEPT VENDOR-NAME.
007000
007100 ENTER-VENDOR-ADDRESS-1.
007200 DISPLAY "ENTER VENDOR ADDRESS-1".
007300 ACCEPT VENDOR-ADDRESS-1.
007400
007500 ENTER-VENDOR-ADDRESS-2.
007600 DISPLAY "ENTER VENDOR ADDRESS-2".
007700 ACCEPT VENDOR-ADDRESS-2.
007800
007900 ENTER-VENDOR-CITY.
008000 DISPLAY "ENTER VENDOR CITY".
008100 ACCEPT VENDOR-CITY.
008200
008300 ENTER-VENDOR-STATE.
008400 DISPLAY "ENTER VENDOR STATE".
008500 ACCEPT VENDOR-STATE.
008600
008700 ENTER-VENDOR-ZIP.
008800 DISPLAY "ENTER VENDOR ZIP".
008900 ACCEPT VENDOR-ZIP.
009000
009100 ENTER-VENDOR-CONTACT.
009200 DISPLAY "ENTER VENDOR CONTACT".
009300 ACCEPT VENDOR-CONTACT.
009400
009500 ENTER-VENDOR-PHONE.
009600 DISPLAY "ENTER VENDOR PHONE".
009700 ACCEPT VENDOR-PHONE.
009800

The following is the output for vndnew01.cbl after entering vendor number 00002, with user entries
highlighted:

OUTPUT:
ENTER VENDOR NUMBER (ALL 5 DIGITS) 00001-99999
00002
ENTER VENDOR NAME
ABC PRINTING
ENTER VENDOR ADDRESS-1
1624 FOOTHILL BLVD
ENTER VENDOR ADDRESS-2
SUITE 34

ENTER VENDOR CITY
LOS ANGELES
ENTER VENDOR STATE
CA
ENTER VENDOR ZIP
91042
ENTER VENDOR ATTENTION
CHARLES JOHANSSEN
ENTER VENDOR PHONE
(818) 555-4321

C>
C>

ANALYSIS: The MAIN-PROCESS at lines 004300 through 004600 initializes a vendor record,
enters all the vendor fields, and then writes the record. You should have no trouble following the logic.

Code, compile, and run this program three times, each time adding a record for vendor numbers 00001,
00002, and 00003 to the file. You can enter anything you want for the other fields, but the
VENDOR-NUMBER must be different for each entry. Before you go any further or experiment with this
program or file, study the next section, which covers a problem with indexed files that you might bump
into while trying to add these records.

Don't worry if you add some fields incorrectly. You tackle changing records in Day 12, "More on
Indexed Files," and you will be able to correct any errors you make.

Handling File Errors
After you have entered vendors 00001, 00002, and 00003, run the program again and try to enter
another vendor. Give this vendor one of the numbers that already has been used in the file.

The primary key must contain a value that is unique in each record, so attempting to add a record with a
primary key value that already exists in the file will cause some sort of error. Most versions of COBOL
end the program abruptly when a file error occurs, as in the following sample output for ACUCOBOL.
This output error message is caused by attempting to add a record with a duplicate primary key value of
00002.

OUTPUT:
ENTER VENDOR NUMBER (ALL 5 DIGITS) 00001-99999
00002
ENTER VENDOR NAME
ABC PRINTING
ENTER VENDOR ADDRESS-1
1624 FOOTHILL BLVD
ENTER VENDOR ADDRESS-2
SUITE 34

ENTER VENDOR CITY
LOS ANGELES
ENTER VENDOR STATE
CA
ENTER VENDOR ZIP
91042
ENTER VENDOR ATTENTION
CHARLES JOHANSSEN
ENTER VENDOR PHONE
(818) 555-4321

File error 22 on vendor
COBOL error at 000027 in vndnew01

C>
C>

No error message occurs under Micro Focus Personal COBOL, but the record is not written to the file.

To give you a better idea of file errors, Listing 11.8, vnderr01.cbl, uses READ NEXT to create a
different type of file error deliberately. (The program isn't particularly well designed; I'm only trying to
illustrate an error condition.)

TYPE: Listing 11.8. Creating an error at the end of the file.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. VNDERR01.
000300*--
000400* Forces an error by reading past the end of a file.
000500*--
000600 ENVIRONMENT DIVISION.
000700 INPUT-OUTPUT SECTION.
000800 FILE-CONTROL.
000900
001000 SELECT VENDOR-FILE
001100 ASSIGN TO "vendor"
001200 ORGANIZATION IS INDEXED
001300 RECORD KEY IS VENDOR-NUMBER
001400 ACCESS MODE IS DYNAMIC.
001500
001600 DATA DIVISION.
001700 FILE SECTION.
001800
001900 FD VENDOR-FILE
002000 LABEL RECORDS ARE STANDARD.
002100 01 VENDOR-RECORD.

002200 05 VENDOR-NUMBER PIC 9(5).
002300 05 VENDOR-NAME PIC X(30).
002400 05 VENDOR-ADDRESS-1 PIC X(30).
002500 05 VENDOR-ADDRESS-2 PIC X(30).
002600 05 VENDOR-CITY PIC X(20).
002700 05 VENDOR-STATE PIC X(2).
002800 05 VENDOR-ZIP PIC X(10).
002900 05 VENDOR-CONTACT PIC X(30).
003000 05 VENDOR-PHONE PIC X(15).
003100
003200
003300 WORKING-STORAGE SECTION.
003400
003500 77 FILE-AT-END PIC X.
003600
003700 PROCEDURE DIVISION.
003800 PROGRAM-BEGIN.
003900 PERFORM OPENING-PROCEDURE.
004000 PERFORM MAIN-PROCESS.
004100 PERFORM CLOSING-PROCEDURE.
004200
004300 PROGRAM-DONE.
004400 STOP RUN.
004500
004600 OPENING-PROCEDURE.
004700 OPEN I-O VENDOR-FILE.
004800
004900 CLOSING-PROCEDURE.
005000 CLOSE VENDOR-FILE.
005100
005200 MAIN-PROCESS.
005300
005400 MOVE "N" TO FILE-AT-END.
005500 PERFORM READ-NEXT-RECORD.
005600 PERFORM READ-AND-DISPLAY
005700 UNTIL FILE-AT-END = "Y".
005800
005900 READ-AND-DISPLAY.
006000 DISPLAY VENDOR-NUMBER.
006100 PERFORM READ-NEXT-RECORD.
006200
006300 READ-NEXT-RECORD.
006400 READ VENDOR-FILE NEXT RECORD.
006500* AT END MOVE "Y" TO FILE-AT-END.
006600

The output for two different versions of COBOL follows. Assume that the vendor file contains records
with the key values 00001, 00002, and 00003. The following output shows an at-end error in Micro
Focus Personal COBOL. The last vendor number is displayed twice before the actual error occurs:

OUTPUT:
C>pcobrun vnderr01
Personal COBOL version 2.0 from Micro Focus
PCOBRUN V2.0.02 Copyright (C) 1983-1993 Micro Focus Ltd.
00001
00002
00003
00003
Error accessing file : vendor
VNDERR01 Segment RT : Error 146 at COBOL PC 00AB
Description : No current record defined for sequential read

C>
 C>

The following output shows an at-end error in ACUCOBOL. The error occurs at the exact end of the file:

OUTPUT:
00001
00002
00003

File error 10 on vendor
COBOL error at 000048 in VNDERR01

C>
C>

ANALYSIS: At lines 005900 and 006000, the program reads through the vendor file, displaying the
vendor number for each record as it is read.

At line 006500, the statement that should have trapped the AT END condition has been commented out,
so the FILE-AT-END flag is never set to "Y" and the program just keeps trying to read records even
though it has reached the end of the file.

The program automatically aborts with an error message after the end of file is reached.

After you've entered three records using vndnew01.cbl, code, compile, and run vnderr01.cbl to
see the effects of the end-of-file condition for your particular version of COBOL.

Now copy vnderr01.cbl to vnderr02.cbl and rewrite vnderr02.cbl so that the final lines
read as in Listing 11.9. Remove the period at the end of line 006400, and remove the asterisk on line
006500.

TYPE: Listing 11.9. Fixing vnderr02.cbl.

006300 READ-NEXT-RECORD.
006400 READ VENDOR-FILE NEXT RECORD
006500 AT END MOVE "Y" TO FILE-AT-END.

The following is the output of the repaired vnderr01.cbl:

OUTPUT:
00001
00002
00003

The usual behavior of a COBOL program performing input and output to a file is to abort if a file error is
encountered. You can change this usual behavior if you provide some explicit step or steps to be taken in
the event of a file error. In the case of a READ NEXT command, the explicit steps to take in the event of
an error are given with the AT END clause.

The AT END clause in the READ NEXT statement actually does two things. First, it overrides the normal
COBOL behavior of aborting on a file error. This is done out of sight and is built in as part of the
behavior of the AT END clause. The second thing is explicitly stated by the commands that follow AT
END. In this case, "Y" is moved to END-OF-FILE.

New Term: The AT END clause is called a file error condition clause.

The WRITE command for an indexed file includes a file error condition clause that can be used to trap
duplicate key errors. This clause is INVALID KEY and has the following syntax:

WRITE file-record
 INVALID KEY
 do something

Here is an example of a file error condition clause:

WRITE VENDOR-RECORD
 INVALID KEY
 MOVE "Y" TO DUPLICATE-FLAG

DO/DON'T:
DO stay aware of file error conditions, and program so that you trap these conditions and
handle them correctly.

DON'T ever use a file error condition as the natural way to stop a program. It would be a
poor design to print records until the program crashed. Yes, all the records would be printed,
but the resulting error message would confuse the end user, and it is very sloppy style.

Now that you know how to handle duplicate key errors, look at Listing 11.10. It shows an improved
version of a program to add records to the vendor file. It allows records to be added one after the other by
asking for each field.

TYPE: Listing 11.10. Improving additions to the vendor file.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. VNDNEW02.
000300*--
000400* Add a record to an indexed Vendor File.
000500*--
000600 ENVIRONMENT DIVISION.
000700 INPUT-OUTPUT SECTION.
000800 FILE-CONTROL.
000900
001000 SELECT VENDOR-FILE
001100 ASSIGN TO "vendor"
001200 ORGANIZATION IS INDEXED
001300 RECORD KEY IS VENDOR-NUMBER
001400 ACCESS MODE IS DYNAMIC.
001500
001600 DATA DIVISION.
001700 FILE SECTION.
001800
001900 FD VENDOR-FILE
002000 LABEL RECORDS ARE STANDARD.
002100 01 VENDOR-RECORD.
002200 05 VENDOR-NUMBER PIC 9(5).
002300 05 VENDOR-NAME PIC X(30).
002400 05 VENDOR-ADDRESS-1 PIC X(30).
002500 05 VENDOR-ADDRESS-2 PIC X(30).
002600 05 VENDOR-CITY PIC X(20).
002700 05 VENDOR-STATE PIC X(2).
002800 05 VENDOR-ZIP PIC X(10).
002900 05 VENDOR-CONTACT PIC X(30).
003000 05 VENDOR-PHONE PIC X(15).
003100
003200 WORKING-STORAGE SECTION.
003300
003400 01 VENDOR-NUMBER-FIELD PIC Z(5).
003500
003600 PROCEDURE DIVISION.
003700 PROGRAM-BEGIN.
003800 OPEN I-O VENDOR-FILE.
003900 PERFORM GET-NEW-VENDOR-NUMBER.
004000 PERFORM ADD-RECORDS
004100 UNTIL VENDOR-NUMBER = ZEROES.
004200 CLOSE VENDOR-FILE.
004300
004400 PROGRAM-DONE.

004500 STOP RUN.
004600
004700 GET-NEW-VENDOR-NUMBER.
004800 PERFORM INIT-VENDOR-RECORD.
004900 PERFORM ENTER-VENDOR-NUMBER.
005000
005100 INIT-VENDOR-RECORD.
005200 MOVE SPACE TO VENDOR-RECORD.
005300 MOVE ZEROES TO VENDOR-NUMBER.
005400
005500 ENTER-VENDOR-NUMBER.
005600 DISPLAY "ENTER VENDOR NUMBER (1-99999)".
005700 DISPLAY "ENTER 0 TO STOP ENTRY".
005800 ACCEPT VENDOR-NUMBER-FIELD.
005900*OR ACCEPT VENDOR-NUMBER-FIELD WITH CONVERSION.
006000
006100 MOVE VENDOR-NUMBER-FIELD TO VENDOR-NUMBER.
006200*OR MOVE WITH CONVERSION VENDOR-NUMBER-FIELD
006300* TO VENDOR-NUMBER.
006400
006500 ADD-RECORDS.
006600 PERFORM ENTER-REMAINING-FIELDS.
006700 PERFORM WRITE-VENDOR-RECORD.
006800 PERFORM GET-NEW-VENDOR-NUMBER.
006900
007000 WRITE-VENDOR-RECORD.
007100 WRITE VENDOR-RECORD
007200 INVALID KEY
007300 DISPLAY "RECORD ALREADY ON FILE".
007400
007500 ENTER-REMAINING-FIELDS.
007600 PERFORM ENTER-VENDOR-NAME.
007700 PERFORM ENTER-VENDOR-ADDRESS-1.
007800 PERFORM ENTER-VENDOR-ADDRESS-2.
007900 PERFORM ENTER-VENDOR-CITY.
008000 PERFORM ENTER-VENDOR-STATE.
008100 PERFORM ENTER-VENDOR-ZIP.
008200 PERFORM ENTER-VENDOR-CONTACT.
008300 PERFORM ENTER-VENDOR-PHONE.
008400
008500 ENTER-VENDOR-NAME.
008600 DISPLAY "ENTER VENDOR NAME".
008700 ACCEPT VENDOR-NAME.
008800
008900 ENTER-VENDOR-ADDRESS-1.

009000 DISPLAY "ENTER VENDOR ADDRESS-1".
009100 ACCEPT VENDOR-ADDRESS-1.
009200
009300 ENTER-VENDOR-ADDRESS-2.
009400 DISPLAY "ENTER VENDOR ADDRESS-2".
009500 ACCEPT VENDOR-ADDRESS-2.
009600
009700 ENTER-VENDOR-CITY.
009800 DISPLAY "ENTER VENDOR CITY".
009900 ACCEPT VENDOR-CITY.
010000
010100 ENTER-VENDOR-STATE.
010200 DISPLAY "ENTER VENDOR STATE".
010300 ACCEPT VENDOR-STATE.
010400
010500 ENTER-VENDOR-ZIP.
010600 DISPLAY "ENTER VENDOR ZIP".
010700 ACCEPT VENDOR-ZIP.
010800
010900 ENTER-VENDOR-CONTACT.
011000 DISPLAY "ENTER VENDOR CONTACT".
011100 ACCEPT VENDOR-CONTACT.
011200
011300 ENTER-VENDOR-PHONE.
011400 DISPLAY "ENTER VENDOR PHONE".
011500 ACCEPT VENDOR-PHONE.
011600

The following is the output of vndnew02.cbl when a duplicate key value is entered:

OUTPUT:
ENTER VENDOR NUMBER (1-99999)
ENTER 0 TO STOP ENTRY
1
ENTER VENDOR NAME
JOE DOAKS
ENTER VENDOR ADDRESS-1
1212 FOURTH ST.
ENTER VENDOR ADDRESS-2

ENTER VENDOR CITY
LOS ANGELES
ENTER VENDOR STATE
CA
ENTER VENDOR ZIP
94321

ENTER VENDOR CONTACT
JOSEPH DOAKS
ENTER VENDOR PHONE
(213) 555-6543
RECORD ALREADY ON FILE
ENTER VENDOR NUMBER (1-99999)
ENTER 0 TO STOP ENTRY

ANALYSIS: The user first is asked for the VENDOR-NUMBER field; if the user enters a vendor number
of 00000, this signals the end of data entry. This approach was used instead of asking the user for all the
fields and then asking whether the user wants to go again. It works perfectly well, because you usually
wouldn't want to put a vendor with the number 00000 in the file.

The data entry for the VENDOR-NUMBER is handled by accepting data into an edited numeric field,
VENDOR-NUMBER-FIELD, and then moving the result to VENDOR-NUMBER. This saves the user from
having to enter all five digits. This field is defined at line 003400, and the data entry is taken care of at
lines 005500 through 006300 in the ENTER-VENDOR-NUMBER routine.

The program uses the VENDOR-NUMBER as the flag to stop the program. In this case, the
VENDOR-NUMBER is not only a piece of data for the file; it is the variable that controls the main
processing loop of the program. At line 003900, the user is asked to enter a new vendor
number--GET-NEW-VENDOR-NUMBER. The user can enter 0 at this point, causing the program to stop
immediately. If the user does not, the main processing loop, ADD-RECORDS, is performed at lines
004000 and 004100 until VENDOR-NUMBER = ZEROES.

The main processing loop, ADD-RECORDS (at lines 006500 through 006800) enters the remaining
fields, writes the vendor record, and asks the user for another vendor number to add by performing
GET-NEW-VENDOR-NUMBER. This sets up the loop control variable before going into the loop (line
003900) and then changes the loop control variable at the bottom of the loop (line 006800).

At line 005300, the VENDOR-NUMBER is initialized to a zero value. Then ADD-RECORDS is
performed until the user enters a value of zeroes for a vendor number.

At lines 004700 through 004900, the GET-NEW-VENDOR-NUMBER paragraph takes care of
initializing the vendor record--assuming that a new record will be added to the file--and then actually
getting the user input of the vendor number.

The writing of the record in WRITE-VENDOR-RECORD at line 007000 uses INVALID KEY to trap
the file error condition and displays "RECORD ALREADY ON FILE" at line 007300.

Retrieving Records in Key Order
Use vndnew02.cbl to add some additional records to the vendor file. In particular, add them out of
order. Add a vendor number 00022; then add vendor number 00006. You do not have to enter all the
missing numbers between the vendor number values. An indexed file is quite comfortable with gaps in it,
and a file could contain only vendor number 00001 and vendor number 08706 without causing any bad
effects.

After you have entered some records out of order, you need to be able to display them. Listing 11.11 is a
simple program. It is intended only to illustrate that regardless of the order you use to put records into the
file, when you start retrieving them, they are returned from the file in primary key order.

TYPE: Listing 11.11. Showing the records.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. VNDREC01.
000300*--
000400* Display vendor number and
000500* name in order.
000600*--
000700 ENVIRONMENT DIVISION.
000800 INPUT-OUTPUT SECTION.
000900 FILE-CONTROL.
001000
001100 SELECT VENDOR-FILE
001200 ASSIGN TO "vendor"
001300 ORGANIZATION IS INDEXED
001400 RECORD KEY IS VENDOR-NUMBER
001500 ACCESS MODE IS DYNAMIC.
001600
001700 DATA DIVISION.
001800 FILE SECTION.
001900
002000 FD VENDOR-FILE
002100 LABEL RECORDS ARE STANDARD.
002200 01 VENDOR-RECORD.
002300 05 VENDOR-NUMBER PIC 9(5).
002400 05 VENDOR-NAME PIC X(30).
002500 05 VENDOR-ADDRESS-1 PIC X(30).
002600 05 VENDOR-ADDRESS-2 PIC X(30).
002700 05 VENDOR-CITY PIC X(20).
002800 05 VENDOR-STATE PIC X(2).
002900 05 VENDOR-ZIP PIC X(10).
003000 05 VENDOR-CONTACT PIC X(30).
003100 05 VENDOR-PHONE PIC X(15).
003200
003300 WORKING-STORAGE SECTION.
003400
003500 77 FILE-AT-END PIC X.
003600
003700 PROCEDURE DIVISION.
003800 PROGRAM-BEGIN.
003900
004000 PERFORM OPENING-PROCEDURE.

004100
004200 MOVE "N" TO FILE-AT-END.
004300 PERFORM READ-NEXT-RECORD.
004400 IF FILE-AT-END = "Y"
004500 DISPLAY "NO RECORDS FOUND"
004600 ELSE
004700 PERFORM DISPLAY-VENDOR-FIELDS
004800 UNTIL FILE-AT-END = "Y".
004900
005000 PERFORM CLOSING-PROCEDURE.
005100
005200
005300 PROGRAM-DONE.
005400 STOP RUN.
005500
005600 OPENING-PROCEDURE.
005700 OPEN I-O VENDOR-FILE.
005800
005900 CLOSING-PROCEDURE.
006000 CLOSE VENDOR-FILE.
006100
006200 DISPLAY-VENDOR-FIELDS.
006300 DISPLAY "NO: " VENDOR-NUMBER
006400 " NAME: " VENDOR-NAME.
006500
006600 PERFORM READ-NEXT-RECORD.
006700
006800 READ-NEXT-RECORD.
006900 READ VENDOR-FILE NEXT RECORD
007000 AT END MOVE "Y" TO FILE-AT-END.
007100

OUTPUT:
NO: 00001 NAME: AERIAL SIGNS
NO: 00002 NAME: ABC PRINTING
NO: 00003 NAME: CHARLES SMITH AND SONS
NO: 00014 NAME: RANIER GRAPHICS
NO: 01176 NAME: ABERCROMBIE AND OTHERS
NO: 01440 NAME: ZINZINDORFF INC.

C>
C>

ANALYSIS: This program opens the vendor file and displays the vendor number and vendor name for
all the records.

Formatting Long Records for Display
The vendor record is too long to display on an 80-column screen. The next display program treats the
screen as though it were a scrolling printer, so you have to resort to a printer spacing chart to work out
the display. Some 80-column displays cause an extra line feed if a character is printed in position 80, so
you'll work with only 79 columns.

Figure 11.6 shows the pattern for the layout.

Figure 11.6.
Spacing chart for the display.

Listing 11.12, vnddsp01.cbl, is a program to display the vendor records. Code, compile, and run
vnddsp01.cbl. You will see that as the records are displayed, they are displayed in ascending
VENDOR-NUMBER order, regardless of the order in which they originally were entered.

TYPE: Listing 11.12. Displaying the vendor records.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. VNDDSP01.
000300*--
000400* Display records in the Vendor File.
000500*--
000600 ENVIRONMENT DIVISION.
000700 INPUT-OUTPUT SECTION.
000800 FILE-CONTROL.
000900
001000 SELECT VENDOR-FILE
001100 ASSIGN TO "vendor"
001200 ORGANIZATION IS INDEXED
001300 RECORD KEY IS VENDOR-NUMBER
001400 ACCESS MODE IS DYNAMIC.
001500
001600 DATA DIVISION.
001700 FILE SECTION.
001800
001900 FD VENDOR-FILE
002000 LABEL RECORDS ARE STANDARD.
002100 01 VENDOR-RECORD.
002200 05 VENDOR-NUMBER PIC 9(5).
002300 05 VENDOR-NAME PIC X(30).
002400 05 VENDOR-ADDRESS-1 PIC X(30).
002500 05 VENDOR-ADDRESS-2 PIC X(30).
002600 05 VENDOR-CITY PIC X(20).
002700 05 VENDOR-STATE PIC X(2).
002800 05 VENDOR-ZIP PIC X(10).

file:///D|/Cool Stuff/old/ftp/Sams.Teach.Yourself.Cobol.In.21.Days/Teach Yourself Cobol in 21 Days/ch11/06.htm

002900 05 VENDOR-CONTACT PIC X(30).
003000 05 VENDOR-PHONE PIC X(15).
003100
003200
003300
003400
003500 WORKING-STORAGE SECTION.
003600
003700
003800
003900 01 DETAIL-LINE.
004000 05 DISPLAY-NUMBER PIC 9(5).
004100 05 FILLER PIC X VALUE SPACE.
004200 05 DISPLAY-NAME PIC X(30).
004300 05 FILLER PIC X VALUE SPACE.
004400 05 DISPLAY-CONTACT PIC X(30).
004500
004600 01 CITY-STATE-DETAIL.
004700 05 DISPLAY-CITY PIC X(20).
004800 05 FILLER PIC X VALUE SPACE.
004900 05 DISPLAY-STATE PIC X(2).
005000
005100 01 COLUMN-LINE.
005200 05 FILLER PIC X(2) VALUE "NO".
005300 05 FILLER PIC X(4) VALUE SPACE.
005400 05 FILLER PIC X(12) VALUE "NAME-ADDRESS".
005500 05 FILLER PIC X(19) VALUE SPACE.
005600 05 FILLER PIC X(17) VALUE "CONTACT-PHONE-ZIP".
005700
005800 01 TITLE-LINE.
005900 05 FILLER PIC X(15) VALUE SPACE.
006000 05 FILLER PIC X(11)
006100 VALUE "VENDOR LIST".
006200 05 FILLER PIC X(15) VALUE SPACE.
006300 05 FILLER PIC X(5) VALUE "PAGE:".
006400 05 FILLER PIC X(1) VALUE SPACE.
006500 05 DISPLAY-PAGE-NUMBER PIC ZZZZ9.
006600
006700 77 FILE-AT-END PIC X.
006800 77 A-DUMMY PIC X.
006900 77 LINE-COUNT PIC 999 VALUE ZERO.
007000 77 PAGE-NUMBER PIC 99999 VALUE ZERO.
007100 77 MAXIMUM-LINES PIC 999 VALUE 15.
007200
007300 77 DISPLAY-RECORD PIC X(79).
007400

007500 PROCEDURE DIVISION.
007600 PROGRAM-BEGIN.
007700
007800 PERFORM OPENING-PROCEDURE.
007900 MOVE ZEROES TO LINE-COUNT
008000 PAGE-NUMBER.
008100
008200 PERFORM START-NEW-PAGE.
008300
008400 MOVE "N" TO FILE-AT-END.
008500 PERFORM READ-NEXT-RECORD.
008600 IF FILE-AT-END = "Y"
008700 MOVE "NO RECORDS FOUND" TO DISPLAY-RECORD
008800 PERFORM WRITE-DISPLAY-RECORD
008900 ELSE
009000 PERFORM DISPLAY-VENDOR-FIELDS
009100 UNTIL FILE-AT-END = "Y".
009200
009300 PERFORM CLOSING-PROCEDURE.
009400
009500
009600 PROGRAM-DONE.
009700 STOP RUN.
009800
009900 OPENING-PROCEDURE.
010000 OPEN I-O VENDOR-FILE.
010100
010200 CLOSING-PROCEDURE.
010300 CLOSE VENDOR-FILE.
010400
010500 DISPLAY-VENDOR-FIELDS.
010600 IF LINE-COUNT > MAXIMUM-LINES
010700 PERFORM START-NEXT-PAGE.
010800 PERFORM DISPLAY-THE-RECORD.
010900 PERFORM READ-NEXT-RECORD.
011000
011100 DISPLAY-THE-RECORD.
011200 PERFORM DISPLAY-LINE-1.
011300 PERFORM DISPLAY-LINE-2.
011400 PERFORM DISPLAY-LINE-3.
011500 PERFORM DISPLAY-LINE-4.
011600 PERFORM LINE-FEED.
011700
011800 DISPLAY-LINE-1.
011900 MOVE SPACE TO DETAIL-LINE.
012000 MOVE VENDOR-NUMBER TO DISPLAY-NUMBER.

012100 MOVE VENDOR-NAME TO DISPLAY-NAME.
012200 MOVE VENDOR-CONTACT TO DISPLAY-CONTACT.
012300 MOVE DETAIL-LINE TO DISPLAY-RECORD.
012400 PERFORM WRITE-DISPLAY-RECORD.
012500
012600 DISPLAY-LINE-2.
012700 MOVE SPACE TO DETAIL-LINE.
012800 MOVE VENDOR-ADDRESS-1 TO DISPLAY-NAME.
012900 MOVE VENDOR-PHONE TO DISPLAY-CONTACT.
013000 MOVE DETAIL-LINE TO DISPLAY-RECORD.
013100 PERFORM WRITE-DISPLAY-RECORD.
013200
013300 DISPLAY-LINE-3.
013400 MOVE SPACE TO DETAIL-LINE.
013500 MOVE VENDOR-ADDRESS-2 TO DISPLAY-NAME.
013600 IF VENDOR-ADDRESS-2 NOT = SPACE
013700 MOVE DETAIL-LINE TO DISPLAY-RECORD
013800 PERFORM WRITE-DISPLAY-RECORD.
013900
014000 DISPLAY-LINE-4.
014100 MOVE SPACE TO DETAIL-LINE.
014200 MOVE VENDOR-CITY TO DISPLAY-CITY.
014300 MOVE VENDOR-STATE TO DISPLAY-STATE.
014400 MOVE CITY-STATE-DETAIL TO DISPLAY-NAME.
014500 MOVE VENDOR-ZIP TO DISPLAY-CONTACT.
014600 MOVE DETAIL-LINE TO DISPLAY-RECORD.
014700 PERFORM WRITE-DISPLAY-RECORD.
014800
014900 READ-NEXT-RECORD.
015000 READ VENDOR-FILE NEXT RECORD
015100 AT END MOVE "Y" TO FILE-AT-END.
015200
015300 WRITE-DISPLAY-RECORD.
015400 DISPLAY DISPLAY-RECORD.
015500 ADD 1 TO LINE-COUNT.
015600
015700 LINE-FEED.
015800 MOVE SPACE TO DISPLAY-RECORD.
015900 PERFORM WRITE-DISPLAY-RECORD.
016000
016100 START-NEXT-PAGE.
016200
016300 PERFORM END-LAST-PAGE.
016400 PERFORM START-NEW-PAGE.
016500
016600 START-NEW-PAGE.

016700 ADD 1 TO PAGE-NUMBER.
016800 MOVE PAGE-NUMBER TO DISPLAY-PAGE-NUMBER.
016900 MOVE TITLE-LINE TO DISPLAY-RECORD.
017000 PERFORM WRITE-DISPLAY-RECORD.
017100 PERFORM LINE-FEED.
017200 MOVE COLUMN-LINE TO DISPLAY-RECORD.
017300 PERFORM WRITE-DISPLAY-RECORD.
017400 PERFORM LINE-FEED.
017500
017600 END-LAST-PAGE.
017700 PERFORM PRESS-ENTER.
017800 MOVE ZERO TO LINE-COUNT.
017900
018000 PRESS-ENTER.
018100 DISPLAY "PRESS ENTER TO CONTINUE. . .".
018200 ACCEPT A-DUMMY.
018300

OUTPUT:
 VENDOR LIST PAGE: 1

NO NAME-ADDRESS CONTACT-PHONE-ZIP

00001 CECILLE JOHNSON AND CO. CHARLES SMITH
 1212 MAIN ST (213) 555-1234
 LOS ANGELES CA 91042

00002 ABC PRINTING LINDA JOHANSSEN
 1624 FOOTHILL BLVD (818) 555-4321
 SUITE 34
 LOS ANGELES CA 91042

00003 CHARLES SMITH AND SONS CHARLES SMITH
 1453 SOUTH STREET (213) 555-4432
 LOS ANGELES CA 92345

PRESS ENTER TO CONTINUE. . .

NOTE: A few level-77 data items are thrown into WORKING-STORAGE so that you will
get accustomed to seeing them in programs. You could use 01 for these.

ANALYSIS: The organization of the program is similar to a report program. A DETAIL-LINE,
COLUMN-LINE, and TITLE-LINE are defined at lines 003900, 005100, and 005800, respectively.

A programmer might use DETAIL-LINE for multiple purposes. Even though it is defined to contain
DISPLAY-NUMBER, DISPLAY-NAME, and DISPLAY-CONTACT, the DISPLAY-NAME field will be

used to display VENDOR-NAME, but it also will be used to display VENDOR-ADDRESS-1,
VENDOR-ADDRESS-2, VENDOR-CITY, and VENDOR-STATE. The DISPLAY-CONTACT field will
be used to display VENDOR-PHONE and VENDOR-ZIP, as well as VENDOR-CONTACT.

A 79-byte DISPLAY-RECORD at line 007300 is used throughout the program. Information to be
displayed is moved to this field and then displayed by performing WRITE-DISPLAY-RECORD, a
routine at line 015300 that displays the DISPLAY-RECORD and adds 1 to the LINE-COUNT. By
forcing all displays to be performed using this same paragraph, it's possible to track accurately how many
lines are displayed.

The main processing loop at line 010500 is DISPLAY-VENDOR-FIELDS. This checks to see whether
a new page is needed, displays the record, and reads the next record.

DISPLAY-THE-RECORD at line 011100 has the task of displaying four separate lines in order to
display all the fields of a single record. This is followed by a line feed. Displaying lines 1 and 2 at lines
011800 and 012600 is fairly straightforward.

In DISPLAY-LINE-3 at line 013300, I realized that not all vendors have two lines of address
information, and that VENDOR-ADDRESS-2 could be blank. You can see examples of this in lines 7 and
17 of the output for Listing 11.12. Nothing else is formatted for this display line, so I decided to test the
field and print the line only if it is not blank, rather than waste space on the screen. This test is at line
013600.

Displaying the fourth line of information presented an unusual problem. Up to this point, all the
information to be displayed could fit very neatly within the single DETAIL-LINE defined at line
003900. Name, address 1, and address 2 all fit into the 30-character DISPLAY-NAME at line 004200.
Contact and phone both fit into the 30-character DISPLAY-CONTACT at line 004400. The city, state,
and zip code information didn't fit quite as neatly.

I could have added another detail line, as shown in Listing 11.13.

TYPE: Listing 11.13. A second detail line for vnddsp01.cbl.

004500 01 2ND-DETAIL-LINE.
004600 05 FILLER PIC X(6) VALUE SPACE.
004700 05 DISPLAY-CITY PIC X(20).
004800 05 FILLER PIC X VALUE SPACE.
004900 05 DISPLAY-STATE PIC XX.
005000 05 FILLER PIC X(8) VALUE SPACE.
005100 05 DISPLAY-ZIP PIC X(10).

Using the 2ND-DETAIL-LINE, DISPLAY-LINE-4 changes to look like Listing 11.14.

TYPE: Listing 11.14. Using 2ND-DETAIL-LINE.

014000 DISPLAY-LINE-4.
014100 MOVE SPACE TO 2ND-DETAIL-LINE.
014200 MOVE VENDOR-CITY TO DISPLAY-CITY.
014300 MOVE VENDOR-STATE TO DISPLAY-STATE.

014400
014500 MOVE VENDOR-ZIP TO DISPLAY-ZIP.
014600 MOVE 2ND-DETAIL-LINE TO DISPLAY-RECORD.
014700 PERFORM WRITE-DISPLAY-RECORD.

ANALYSIS: There was no need for a full second detail line, because VENDOR-ZIP still would fit
within DISPLAY-CONTACT. A small formatting field, CITY-STATE-DETAIL at lines 004600
through 004900, was created to be used to format the 20 characters of city and two characters of state.
At lines 014200 and 014300, values are moved into DISPLAY-CITY and DISPLAY-STATE, which
are both with the structure variable CITY-STATE-DETAIL. At line 014400, this entire structure, now
containing the values I have moved to it, is moved to DISPLAY-NAME.

Summary
COBOL data processing relies on indexed files. They are the central repository of data for virtually every
COBOL system in use. Today, you learned the following basics about indexed files:

An indexed file in COBOL is a file structure that allows you to create a file and add records to it so
that you can retrieve them in one of two ways. The records can be retrieved by a unique value in
the file, or they can be retrieved in a sorted order that is determined at the time the records are
written.

●

A record in an indexed file must contain at least one field that is unique to that record. That field is
used as the primary index or primary key of the file.

●

The primary key is frequently a number; that number then can be used as the unique identifier of a
particular record.

●

The logical description of an indexed file (the FD) is not different from any other file. The logical
description defines the record and fields in the record.

●

A file is identified as an indexed file by using ORGANIZATION IS INDEXED in the SELECT
statement and by naming the field that is to be used as the primary key for the file. The SELECT
statement also should include ACCESS MODE IS DYNAMIC.

●

In many larger systems, programmers write a simple program so that you can open an indexed file
in output mode to create an empty file as part of the initial setting up of the system.

●

Adding records to an indexed file is identical mechanically to adding records to a sequential file.
You fill each of the fields of the record with a value and then write the record.

●

If you attempt to add a record to a file with a value in the primary key that is identical to a record
already in the file, it will cause a file error condition.

●

File error conditions, such as reading past the end of a file or attempting to write a record with a
duplicate key value, usually cause a COBOL program to abort. Using AT END in a READ NEXT
command and INVALID KEY in a WRITE command overrides the abort condition and allows the
program to continue.

●

The natural order of records in an indexed file is in primary key order, and when the records are
retrieved sequentially, they are retrieved in primary key order.

●

Q&A
Q Does a primary key have to be numeric?

A No. An alphanumeric field can be used as a primary key.

Q If it doesn't have to be numeric, what order does it use?

A It usually uses the collating sequence of the machine on which the program was compiled. For
minicomputers and PCs, this is ASCII sequence, shown in Appendix B, "ASCII." Basically,
numbers appear before alphabetic characters, and uppercase alphabet characters appear before
lowercase ones.

Workshop

Quiz

1. A salesperson's contact file is organized with records using the FD in the following code:

000900 FD CONTACT-FILE
001000 LABEL RECORDS ARE STANDARD.
001100 01 CONTACT-RECORD.
001200 05 CONTACT-BIRTH-DATE PIC 9(6).
001300 05 CONTACT-NAME PIC X(20).
001400 05 CONTACT-ADDRESS-1 PIC X(20).
001500 05 CONTACT-ADDRESS-2 PIC X(20).
001600 05 CONTACT-ZIP PIC 9(5).
001700 05 CONTACT-PHONE.
001800 10 CONTACT-AREA-CODE PIC 9(3).
001900 10 CONTACT-PREFIX PIC 9(3).
002000 10 CONTACT-PHONE-NO PIC 9(4).

The contact file also is organized as an indexed file using a SELECT statement, as in the following
code:

000300 SELECT CONTACT-FILE
000400 ASSIGN TO "contact"
000500 ORGANIZATION IS INDEXED

000600 RECORD KEY IS CONTACT-BIRTH-DATE
000700 ACCESS MODE IS DYNAMIC.

If the file is expected to have hundreds of entries, what is wrong with CONTACT-BIRTH-DATE
as a primary key?

2. Of the existing fields in the CONTACT-RECORD, which one has a better chance than
CONTACT-BIRTH-DATE of being unique?

Exercises

1. Design a better way of defining the contact file so that you can create a unique key within the
record.

2. Another way of handling the city, state, and zip code lines in vnddsp01.cbl is to use a
DETAIL-LINE, as shown in the following code:

003900 01 DETAIL-LINE.
004000 05 DISPLAY-NUMBER PIC 9(5).
004100 05 FILLER PIC X VALUE SPACE.
004200 05 DISPLAY-NAME.
004300 10 DISPLAY-CITY PIC X(20).
004400 10 FILLER PIC X(1) VALUE SPACE.
004500 10 DISPLAY-STATE PIC X(2).
004600 10 FILLER PIC X(7) VALUE SPACE.
004700 05 FILLER PIC X VALUE SPACE.
004800 05 DISPLAY-CONTACT PIC X(30).

Also, you should change DISPLAY-LINE-4 by removing the code at line 014400, as in the
following code:

014000 DISPLAY-LINE-4.
014100 MOVE SPACE TO DETAIL-LINE.
014200 MOVE VENDOR-CITY TO DISPLAY-CITY.
014300 MOVE VENDOR-STATE TO DISPLAY-STATE.
014400
014500 MOVE VENDOR-ZIP TO DISPLAY-CONTACT.
014600 MOVE DETAIL-LINE TO DISPLAY-RECORD.
014700 PERFORM WRITE-DISPLAY-RECORD.

Can you explain why?

3. Print out copies of phnprt02.cbl from Day 10, "Printing," and vnddsp01.cbl. Mark out
sections of the two programs that behave in similar ways. Although one prints to a printer and the
other displays on-screen, the basic logical design of the two programs is similar. You can print
these most simply in MS-DOS by entering the following:

PRINT phnprt02.cbl
PRINT vnddsp01.cbl

If you are using another type of computer, consult your manual.

Previous chapter Next chapter Contents

Macmillan Computer Publishing USA

© Copyright, Macmillan Computer Publishing. All rights reserved.

Teach Yourself COBOL in 21 days, Second
Edition

Previous chapter Next chapter Contents

- Day 12 -
More on Indexed Files

Indexed files make it easy to change or delete the contents of a file while maintaining the order of records in the file.
Today, you learn about the following topics:

Using COPY files●

Programming with COPY files●

Using a listing file●

Changing records in an indexed file●

Using COPY Files
A COPY file is a convenient way of cutting down on the amount of typing you do and reducing the possibility for
errors in a program. How do you use them? In Day 11, "Indexed File I/O," you created six programs that accessed the
vendor file: vndbld01.cbl, vnderr01.cbl, vnderr02.cbl, vndnew01.cbl, vndnew02.cbl, and
vnddsp02.cbl. Regardless of whatever else was going on in the programs, all of them had identical SELECT
statements and file descriptors for the vendor file.

You have yet to write programs to change, delete, and print records; these also need to describe the vendor file. This
brings the total number of programs to at least nine, and there are probably more. It seems wasteful (and increases the
possibility of errors) to have to retype the SELECT and FD every time they are used. Is there a solution? The COPY
statement to the rescue!

Any part of a COBOL program can be written in a separate file. In the main file, you can include the separate
program file by using a COPY statement. When the main program is compiled, the compiler includes the text in the
COPY file, as though you had typed the text into the main file.

001200 COPY "FDVENDOR.CBL".

The COPY statement starts in Area B (columns 12 through 72) and is followed immediately by the name of the file to
COPY and a period. For most MS-DOS COBOL compilers, enclose the filename in double quotation marks and then
end the statement with a period. If you are working on another machine, check your manual.

The COPY statement can include comments, and it is organized like a standard COBOL source file with a sequence
area, indicator area, Area A, and Area B.

Listings 12.1 and 12.2 are each complete edited files containing the SELECT statement and FD for the vendor file.
Listing 12.3 is vndbld02.cbl, a revised version of vndbld01.cbl. It uses COPY statements to include
slvnd01.cbl and fdvnd01.cbl. Both of these listings are used in Listing 12.3 to create a vendor file. You
should create them now.

TYPE: Listing 12.1. slvnd01.cbl.

000100*--------------------------------
000200* SLVND01.CBL
000300*--------------------------------
000400 SELECT VENDOR-FILE
000500 ASSIGN TO "vendor"
000600 ORGANIZATION IS INDEXED
000700 RECORD KEY IS VENDOR-NUMBER
000800 ACCESS MODE IS DYNAMIC.
000900

TYPE: Listing 12.2. fdvnd01.cbl.

000100*--------------------------------
000200* FDVND01.CBL
000300*--------------------------------
000400 FD VENDOR-FILE
000500 LABEL RECORDS ARE STANDARD.
000600 01 VENDOR-RECORD.
000700 05 VENDOR-NUMBER PIC 9(5).
000800 05 VENDOR-NAME PIC X(30).
000900 05 VENDOR-ADDRESS-1 PIC X(30).
001000 05 VENDOR-ADDRESS-2 PIC X(30).
001100 05 VENDOR-CITY PIC X(20).
001200 05 VENDOR-STATE PIC X(2).
001300 05 VENDOR-ZIP PIC X(10).
001400 05 VENDOR-CONTACT PIC X(30).
001500 05 VENDOR-PHONE PIC X(15).
001600

Listing 12.3 is an example of a Vendor file creation program. If you run it, it will delete any existing vendor file. You
might want to copy your current vendor file to backup directory before running this program. After you have tested
that a vendor file is created, you can restore your originals.

TYPE: Listing 12.3. Using COPY files.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. VNDBLD02.
000300*--
000400* Create an Empty Vendor File.
000500*--
000600 ENVIRONMENT DIVISION.
000700 INPUT-OUTPUT SECTION.
000800 FILE-CONTROL.

000900
001000 COPY "SLVND01.CBL".
001100
001200 DATA DIVISION.
001300 FILE SECTION.
001400
001500 COPY "FDVND01.CBL".
001600
001700 WORKING-STORAGE SECTION.
001800
001900 PROCEDURE DIVISION.
002000 PROGRAM-BEGIN.
002100 OPEN OUTPUT VENDOR-FILE.
002200 CLOSE VENDOR-FILE.
002300
002400 PROGRAM-DONE.
002500 STOP RUN.
002600

ANALYSIS: The result of compiling vndbld02.cbl using the two COPY files is a program that is identical in
function to the original vndbld01.cbl.

New Term: The COPY command is not a programming command. It is a command to the compiler to tell it to pull
the pieces of different files together into one file and then compile the resulting file. A command that controls the
compiler's behavior is called a compiler directive, and the COPY command is sometimes called the COPY directive.

The COPY directive makes it possible to code the SELECT and FD for a file only once, and then to include it in all
programs that access that file.

Programming with COPY Files
If all programs use the COPY directive for files, how do you know the names of variables in a file description? Most
systems have many files. An accounts payable system has a vendor file, a bills-due file and possibly a historical
bills-paid file, and a check file used for check reconciliation. It also has some sort of control file that is used to store
the next check number to be used and the next vendor number to be used. These are enough for a small accounts
payable system.

The primary way of keeping track of all these is to print the FD for each of the files in the system and keep them in a
loose-leaf binder. Each member of the programming staff might have one of these binders, or binders can be placed
centrally so that everyone has access to them.

The FD should include helpful comments that can be used by the programmer, and the comments do not necessarily
need to relate only to the programming side of the computer system.

Listings 12.4, 12.5, and 12.6 are sample file descriptors that could be printed. The printed copy of the FD could be
kept on hand when coding a program as an aid to help with program design. If the FD is adequately commented, there
usually is no need to include a printout of the COPY file for the SELECT statement. You should code these files and
keep them on hand as you will be using them in this and subsequent chapters.

TYPE: Listing 12.4. fdvnd02.cbl.

000100*--------------------------------
000200* FDVND02.CBL

000300* Primary Key - VENDOR-NUMBER
000400* VENDOR-ADDRESS-2 not always used
000500* so may be SPACES
000600* VENDOR-PHONE is usually the
000700* number for VENDOR-CONTACT
000800* All fields should be entered in
000900* UPPER case.
001000*--------------------------------
001100 FD VENDOR-FILE
001200 LABEL RECORDS ARE STANDARD.
001300 01 VENDOR-RECORD.
001400 05 VENDOR-NUMBER PIC 9(5).
001500 05 VENDOR-NAME PIC X(30).
001600 05 VENDOR-ADDRESS-1 PIC X(30).
001700 05 VENDOR-ADDRESS-2 PIC X(30).
001800 05 VENDOR-CITY PIC X(20).
001900 05 VENDOR-STATE PIC X(2).
002000 05 VENDOR-ZIP PIC X(10).
002100 05 VENDOR-CONTACT PIC X(30).
002200 05 VENDOR-PHONE PIC X(15).
002300

TYPE: Listing 12.5. fdchk01.cbl.

000100*--------------------------------
000200* FDCHK01.CBL
000300* Primary Key - CHECK-KEY
000400* if you use more than 1 check
000500* account to pay bills, using
000600* check numbers only may
000700* cause duplicates.
000800* CHECK-INVOICE is the vendor's
000900* invoice that this check paid
001000* and can be blank.
001100* CHECK-CLEARED = "Y" once the
001200* the check is reported cashed
001300* on a bank statement. Setting
001400* this flag is done in the
001500* check clearance program
001600* chkclr.cbl.
001700* CHECK-REFERENCE for any notes
001800* about the check.
001900* CHECK-VENDOR can be zero for a
002000* general check to someone who
002100* is not a regular vendor, but
002200* CHECK-REFERENCE should be
002300* filled in with payee.
002400*--------------------------------
002500 FD CHECK-FILE
002600 LABEL RECORDS ARE STANDARD.
002700 01 CHECK-RECORD.
002800 05 CHECK-KEY.

002900 10 CHECK-ACCOUNT PIC 9(10).
003000 10 CHECK-NUMBER PIC 9(6).
003100 05 CHECK-AMOUNT PIC S9(6)V99.
003200 05 CHECK-INVOICE PIC X(15).
003300 05 CHECK-VENDOR PIC 9(5).
003400 05 CHECK-REFERENCE PIC X(30).
003500 05 CHECK-CLEARED PIC X.
003600

TYPE: Listing 12.6. fdbill01.cbl.

000100*--------------------------------
000200* FDBILL01.CBL
000300* Primary Key - BILL-NUMBER
000400* BILL-DATE, BILL-DUE and BILL-PAID
000500* are all dates in CCYYMMDD format.
000600*--------------------------------
000700 FD BILL-FILE
000800 LABEL RECORDS ARE STANDARD.
000900 01 CHECK-RECORD.
001000 05 BILL-NUMBER PIC 9(6).
001100 05 BILL-DATE PIC 9(8).
001200 05 BILL-DUE PIC 9(8).
001300 05 BILL-AMOUNT PIC S9(6)V99.
001400 05 BILL-INVOICE PIC X(15).
001500 05 BILL-VENDOR PIC 9(5).
001600 05 BILL-NOTES PIC X(30).
001700 05 BILL-PAID PIC 9(8).
001800

Using a Listing File
If pieces of the program are in other files, how do you ever get to see the whole program?

New Term: A listing file, source listing, or simply a listing is a report produced by the compiler on the program that
it has just compiled. This can be sent directly to the printer, or it can be created as a separate file that can be displayed
or sent to the printer.

A listing file contains the code of the original file being compiled and all COPY files included in their correct places in
the file. The listing file usually will include additional information about how the compile went, whether any
warnings or errors were given by the compiler, and sometimes information on how variables are used in the program.
It sometimes includes a list of all paragraph names in the program and what lines perform these paragraphs.

The method of producing a listing file varies enormously from compiler to compiler. Check your COBOL manual
index under listing, and you should find instructions for producing a listing file.

In Micro Focus Personal COBOL, you specify whether you want a listing file created and what information that you
want in your listing file just before compiling (checking) the program. The program vndnew03.cbl copies
slvnd01.cbl and fdvnd02.cbl. In Figure 12.1, the Micro Focus Personal COBOL compiler is set up and ready
to compile and produce a listing to the printer. To set this up, press F2 until check is ready to run, press F4 until the
list option is displayed as Print, and then press F7 until XRef+Ref is selected. See the highlighted entries.

Listing files are notorious for being poorly documented. I have never found in any manual or other reference material

a clear explanation of a listing file produced by a COBOL compiler. Listing files also differ from compiler to
compiler. You usually have to carefully analyze a listing file to learn how to extract the information you need from it
and to ignore the rest.

Figure 12.1.
Micro Focus Personal COBOL ready to generate a listing at the printer.

Listing 12.7 shows the listing file generated by Micro Focus Personal COBOL for vndnew03.cbl. The
vndnew03.cbl program is a minor revision on vndnew02.cbl that includes COPY files to illustrate the parts of
a listing file.

TYPE: Listing 12.7. A listing file.

* Micro Focus Personal COBOL v2.0.02 L2.0 revision 002 02-Jan-94 03:58 Page 1
* VNDNEW03.CBL
* Options: WB ERRQ EDITOR(MF) LIST() XREF REF ANIM ENSUITE(2) CONFIRM
1 IDENTIFICATION DIVISION. 0
2 PROGRAM-ID. VNDNEW03. 230
3*--
4* Add a record to an indexed Vendor File.
5*--
6 ENVIRONMENT DIVISION. 230
7 INPUT-OUTPUT SECTION. 230
8 FILE-CONTROL. 230
9 230
* 10 COPY "SLVND01.CBL". 230
11*--------------------------------
12* SLVND01.CBL
13*--------------------------------
14 SELECT VENDOR-FILE 230
15 ASSIGN TO "vendor" 230
16 ORGANIZATION IS INDEXED 230
17 RECORD KEY IS VENDOR-NUMBER 230
18 ACCESS MODE IS DYNAMIC. 2C3
19 2C3
20 2C3
21 DATA DIVISION. 2C3
22 FILE SECTION. 2C3
23 2C3
* 24 COPY "FDVND02.CBL". 2C3
25*--------------------------------
26* FDVND01.CBL
27* Primary Key - VENDOR-NUMBER
28* VENDOR-ADDRESS-2 not always used
29* so may be SPACES
30* VENDOR-PHONE is usually the
31* number for VENDOR-CONTACT
32* All fields should be entered in
33* UPPER case.
34*--------------------------------
35 FD VENDOR-FILE 2C3
36 LABEL RECORDS ARE STANDARD. 2C3

file:///D|/Cool Stuff/old/ftp/Sams.Teach.Yourself.Cobol.In.21.Days/Teach Yourself Cobol in 21 Days/ch12/01.htm

37 01 VENDOR-RECORD. 2C8
38 05 VENDOR-NUMBER PIC 9(5). 2C8
39 05 VENDOR-NAME PIC X(30). 2CD
40 05 VENDOR-ADDRESS-1 PIC X(30). 2EB
41 05 VENDOR-ADDRESS-2 PIC X(30). 309
42 05 VENDOR-CITY PIC X(20). 327
43 05 VENDOR-STATE PIC X(2). 33B
44 05 VENDOR-ZIP PIC X(10). 33D
45 05 VENDOR-CONTACT PIC X(30). 347
46 05 VENDOR-PHONE PIC X(15). 365
47 374
48 374
49 WORKING-STORAGE SECTION. 378
50 378
51 01 VENDOR-NUMBER-FIELD PIC Z(5). 378
52 378
53 PROCEDURE DIVISION. 0
54 PROGRAM-BEGIN. 39
55 OPEN I-O VENDOR-FILE. 3A
56 PERFORM GET-NEW-VENDOR-NUMBER. 56
57 PERFORM ADD-RECORDS 59
* Micro Focus Personal COBOL v2.0.02 L2.0 revision 002 02-Jan-94 03:58 Page 2
* VNDNEW03.CBL
58 UNTIL VENDOR-NUMBER = ZEROES. 67
59 CLOSE VENDOR-FILE. 67
60 7D
61 PROGRAM-DONE. 7D
62 STOP RUN. 7E
63 7F
64 GET-NEW-VENDOR-NUMBER. 7F
65 PERFORM INIT-VENDOR-RECORD. 80
66 PERFORM ENTER-VENDOR-NUMBER. 83
67 86
68 INIT-VENDOR-RECORD. 86
69 MOVE SPACE TO VENDOR-RECORD. 87
70 MOVE ZEROES TO VENDOR-NUMBER. 8E
71 94
72 ENTER-VENDOR-NUMBER. 94
73 DISPLAY "ENTER VENDOR NUMBER (1-99999)". 95
74 DISPLAY "ENTER 0 TO STOP ENTRY". B5
75 ACCEPT VENDOR-NUMBER-FIELD. CD
76*OR ACCEPT VENDOR-NUMBER-FIELD WITH CONVERSION.
77 D5
78 MOVE VENDOR-NUMBER-FIELD TO VENDOR-NUMBER. D5
79*OR MOVE WITH CONVERSION VENDOR-NUMBER-FIELD
80* TO VENDOR-NUMBER.
81 DC
82 ADD-RECORDS. DC
83 PERFORM ENTER-REMAINING-FIELDS. DD
84 PERFORM WRITE-VENDOR-RECORD. E0
85 PERFORM GET-NEW-VENDOR-NUMBER. E3

86 E6
87 WRITE-VENDOR-RECORD. E6
88 WRITE VENDOR-RECORD E7
89 INVALID KEY E7
90 DISPLAY "RECORD ALREADY ON FILE". 107
91 122
92 ENTER-REMAINING-FIELDS. 122
93 PERFORM ENTER-VENDOR-NAME. 123
94 PERFORM ENTER-VENDOR-ADDRESS-1. 126
95 PERFORM ENTER-VENDOR-ADDRESS-2. 129
96 PERFORM ENTER-VENDOR-CITY. 12C
97 PERFORM ENTER-VENDOR-STATE. 12F
98 PERFORM ENTER-VENDOR-ZIP. 132
99 PERFORM ENTER-VENDOR-CONTACT. 135
100 PERFORM ENTER-VENDOR-PHONE. 138
101 13B
102 ENTER-VENDOR-NAME. 13B
103 DISPLAY "ENTER VENDOR NAME". 13C
104 ACCEPT VENDOR-NAME. 150
105 155
106 ENTER-VENDOR-ADDRESS-1. 155
107 DISPLAY "ENTER VENDOR ADDRESS-1". 156
108 ACCEPT VENDOR-ADDRESS-1. 16F
109 174
110 ENTER-VENDOR-ADDRESS-2. 174
111 DISPLAY "ENTER VENDOR ADDRESS-2". 175
112 ACCEPT VENDOR-ADDRESS-2. 18E
113 193
114 ENTER-VENDOR-CITY. 193
115 DISPLAY "ENTER VENDOR CITY". 194
* Micro Focus Personal COBOL v2.0.02 L2.0 revision 002 02-Jan-94 03:58 Page 3
* VNDNEW03.CBL
116 ACCEPT VENDOR-CITY. 1A8
117 1AD
118 ENTER-VENDOR-STATE. 1AD
119 DISPLAY "ENTER VENDOR STATE". 1AE
120 ACCEPT VENDOR-STATE. 1C3
121 1C8
122 ENTER-VENDOR-ZIP. 1C8
123 DISPLAY "ENTER VENDOR ZIP". 1C9
124 ACCEPT VENDOR-ZIP. 1DC
125 1E1
126 ENTER-VENDOR-CONTACT. 1E1
127 DISPLAY "ENTER VENDOR CONTACT". 1E2
128 ACCEPT VENDOR-CONTACT. 1F9
129 1FE
130 ENTER-VENDOR-PHONE. 1FE
131 DISPLAY "ENTER VENDOR PHONE". 1FF
132 ACCEPT VENDOR-PHONE. 214
133 219
* Micro Focus Personal COBOL v2.0.02 L2.0 revision 002

*
* Total Messages: 0
* Data: 1012 Code: 563 Dictionary: 1515
* Micro Focus Personal COBOL v2.0.02 L2.0 revision 002 02-Jan-94 03:58 Page 4
* VNDNEW03.CBL (XREF) FILES
* VENDOR-FILE Indexed
* 14# 35 55 59 (X 4)
*
*
* 1 files
* Micro Focus Personal COBOL v2.0.02 L2.0 revision 002 02-Jan-94 03:58 Page 5
* VNDNEW03.CBL (XREF) DATA
* VENDOR-ADDRESS-1 Alphanumeric
* 40# 108* (X 2)
*
* VENDOR-ADDRESS-2 Alphanumeric
* 41# 112* (X 2)
*
* VENDOR-CITY Alphanumeric
* 42# 116* (X 2)
*
* VENDOR-CONTACT Alphanumeric
* 45# 128* (X 2)
*
* VENDOR-NAME Alphanumeric
* 39# 104* (X 2)
*
* VENDOR-NUMBER Numeric DISPLAY
* 17 38# 58? 70* 78* (X 5)
*
* VENDOR-NUMBER-FIELD Numeric edited
* 51# 75* 78 (X 3)
*
* VENDOR-PHONE Alphanumeric
* 46# 132* (X 2)
*
* VENDOR-RECORD Group length 172
* 37# 69* 88 (X 3)
*
* VENDOR-STATE Alphanumeric
* 43# 120* (X 2)
*
* VENDOR-ZIP Alphanumeric
* 44# 124* (X 2)
*
* VNDNEW03 Program name
* 2# (X 1)
*
*
* 12 data-names
* Micro Focus Personal COBOL v2.0.02 L2.0 revision 002 02-Jan-94 03:58 Page 6

* VNDNEW03.CBL (XREF) PROCS
* ADD-RECORDS Paragraph
* 57 82# (X 2)
*
* ENTER-REMAINING-FIELDS Paragraph
* 83 92# (X 2)
*
* ENTER-VENDOR-ADDRESS-1 Paragraph
* 94 106# (X 2)
*
* ENTER-VENDOR-ADDRESS-2 Paragraph
* 95 110# (X 2)
*
* ENTER-VENDOR-CITY Paragraph
* 96 114# (X 2)
*
* ENTER-VENDOR-CONTACT Paragraph
* 99 126# (X 2)
*
* ENTER-VENDOR-NAME Paragraph
* 93 102# (X 2)
*
* ENTER-VENDOR-NUMBER Paragraph
* 66 72# (X 2)
*
* ENTER-VENDOR-PHONE Paragraph
* 100 130# (X 2)
*
* ENTER-VENDOR-STATE Paragraph
* 97 118# (X 2)
*
* ENTER-VENDOR-ZIP Paragraph
* 98 122# (X 2)
*
* GET-NEW-VENDOR-NUMBER Paragraph
* 56 64# 85 (X 3)
*
* INIT-VENDOR-RECORD Paragraph
* 65 68# (X 2)
*
* PROGRAM-BEGIN Paragraph
* 54# (X 1)
*
* PROGRAM-DONE Paragraph
* 61# (X 1)
*
* WRITE-VENDOR-RECORD Paragraph
* 84 87# (X 2)
*
*
* 16 procedure-names

* End of cross reference listing

ANALYSIS: The first thing you need to notice is that all COBOL line numbers have been stripped away and
replaced with simple sequence numbers down the left side of the page. Every line not part of the original source code
file (vndnew03.cbl) starts with an asterisk.

The COPY files have been included in full at lines 10 through 18 and lines 24 through 46. The numbers down the right
side of the page represent addresses in memory where data or code is stored. The first few lines describe the options
that were set on the compiler when this listing was created. You essentially can ignore these.

At the end of the listing, after line 128, some statistics about the program are printed, giving the sizes of the data and
code created.

I requested a cross-reference (Xref+Ref), which begins on page 4 of the listing. The first page of the cross-reference
lists the files used in the program and every line number on which the file is referenced. To the right of this is the
number of times the file is referenced. Compare the line numbers listed under VENDOR-FILE (14, 35, 55, and 59)
with the actual lines in the listing and you will see that VENDOR-FILE does indeed appear on those lines.

The next page of the cross-reference, page 5 of the listing, is a cross-reference of DATA, the variables used in the
program, and the line numbers on which they are used.

Page 6 is a cross-reference of PROCS (paragraph names) in the PROCEDURE DIVISION used in the program. The
PROCS listing is very useful in large programs, because every paragraph except PROGRAM-BEGIN and
PROGRAM-DONE should appear at least twice in the cross-reference: once when the paragraph is defined, and at least
once when it is performed. This part of the listing can be used to spot paragraphs that are never used.

You can use cross-reference listings when you are working on a program away from a computer and also when you
are trying to fight your way through a complicated listing.

If a program includes some variable with an ambiguous name such as the OK-TO-DO-IT-FLAG, you have no way
of guessing how this flag is really used. A cross-reference listing lets you zero in on every place that the flag is used,
and it might help to isolate its purpose.

Changing Records in an Indexed File
Now that you know how to use COPY files, you can get back to the business at hand--indexed files.

In order to change a record in an indexed file, two conditions must be met: the record must exist in the file before it
can be changed, and the primary key field of a record cannot be changed in a file.

To change a record in an indexed file, you first must locate the record. To locate a record in an indexed file, use MOVE
to move a value to the field that is the primary key to the file and use READ to read the file record. If a record exists
with that key value, it is read from the disk. If a record does not exist with that key value, a file error condition occurs
that you must trap. The trap for a READ is also INVALID KEY. Use the following syntax:

READ file-name RECORD
 INVALID KEY
 do something

Here is an example:

PERFORM ENTER-VENDOR-NUMBER.
READ VENDOR-FILE RECORD
 INVALID KEY
 MOVE "N" TO RECORD-FOUND.

Changing a record involves moving new values to the fields of a record and using the REWRITE verb to rewrite the

record. You cannot change the value in the primary key field. You must read the record successfully in the first place
before you can execute a REWRITE. A REWRITE also uses INVALID KEY to trap any file error. This is the syntax:

REWRITE file-record
 INVALID KEY
 do something

The following is an example:

REWRITE VENDOR-RECORD
 INVALID KEY
 DISPLAY "ERROR ON REWRITE"

On some larger systems where files are shared with many users, there sometimes is an additional requirement that you
must be able to lock the record before you perform the REWRITE. This prevents two users from modifying the same
record at the same time.

The syntax for a lock varies for different versions of COBOL, but it usually is READ WITH LOCK or READ WITH
HOLD. You do not need to use WITH HOLD or WITH LOCK unless the program complains about being unable to
rewrite a record.

Record-locking is a fairly complex subject and beyond the scope of this book, but one of these two should be enough
syntax to get your programs to work correctly:

READ file-name RECORD
 WITH LOCK
 INVALID KEY
 do something
READ file-name RECORD
 WITH HOLD
 INVALID KEY
 do something

Here are two examples:

READ VENDOR-FILE RECORD
 WITH LOCK
 INVALID KEY
 MOVE "N" TO RECORD-FOUND
READ VENDOR-FILE RECORD
 WITH HOLD
 INVALID KEY
 MOVE "N" TO RECORD-FOUND

A program that allows changes to an indexed file can be broken into two simple tasks:

Get the user to identify a record to change, and ensure that the record is on file.●

Get the user to enter the changes to the fields of the record (other than the primary key field) and rewrite the
record.

●

Listing 12.8, vndchg01.cbl, asks the user to supply the vendor number for the record to be changed. It then
displays the values in the record fields and asks the user which one to change. The record must exist in the file before
it can be changed, and the primary key field of the record cannot be changed.

TYPE: Listing 12.8. Changing vendor records.

000100 IDENTIFICATION DIVISION.

000200 PROGRAM-ID. VNDCHG01.
000300*--------------------------------
000400* Change records in Vendor File.
000500*--------------------------------
000600 ENVIRONMENT DIVISION.
000700 INPUT-OUTPUT SECTION.
000800 FILE-CONTROL.
000900
001000 COPY "SLVND01.CBL".
001100
001200 DATA DIVISION.
001300 FILE SECTION.
001400
001500 COPY "FDVND02.CBL".
001600
001700 WORKING-STORAGE SECTION.
001800
001900 77 WHICH-FIELD PIC 9.
002000 77 RECORD-FOUND PIC X.
002100
002200 77 VENDOR-NUMBER-FIELD PIC Z(5).
002300
002400 PROCEDURE DIVISION.
002500 PROGRAM-BEGIN.
002600 OPEN I-O VENDOR-FILE.
002700 PERFORM GET-VENDOR-RECORD.
002800 PERFORM CHANGE-RECORDS
002900 UNTIL VENDOR-NUMBER = ZEROES.
003000 CLOSE VENDOR-FILE.
003100
003200 PROGRAM-DONE.
003300 STOP RUN.
003400
003500*--------------------------------
003600* TO GET A VENDOR RECORD, ASK FOR
003700* VENDOR NUMBER, AND THEN TRY TO
003800* READ THE RECORD.
003900*--------------------------------
004000 GET-VENDOR-RECORD.
004100 PERFORM INIT-VENDOR-RECORD.
004200 PERFORM ENTER-VENDOR-NUMBER.
004300 MOVE "N" TO RECORD-FOUND.
004400 PERFORM FIND-VENDOR-RECORD
004500 UNTIL RECORD-FOUND = "Y" OR
004600 VENDOR-NUMBER = ZEROES.
004700
004800 INIT-VENDOR-RECORD.
004900 MOVE SPACE TO VENDOR-RECORD.
005000 MOVE ZEROES TO VENDOR-NUMBER.
005100
005200 ENTER-VENDOR-NUMBER.

005300 DISPLAY " ".
005400 DISPLAY "ENTER VENDOR NUMBER OF THE VENDOR" .
005500 DISPLAY "TO CHANGE (1-99999)".
005600 DISPLAY "ENTER 0 TO STOP ENTRY".
005700 ACCEPT VENDOR-NUMBER-FIELD.
005800*OR ACCEPT VENDOR-NUMBER-FIELD WITH CONVERSION.
005900
006000 MOVE VENDOR-NUMBER-FIELD TO VENDOR-NUMBER.
006100
006200 FIND-VENDOR-RECORD.
006300 PERFORM READ-VENDOR-RECORD.
006400 IF RECORD-FOUND = "N"
006500 DISPLAY "RECORD NOT FOUND"
006600 PERFORM ENTER-VENDOR-NUMBER.
006700
006800 READ-VENDOR-RECORD.
006900 MOVE "Y" TO RECORD-FOUND.
007000 READ VENDOR-FILE RECORD
007100 INVALID KEY
007200 MOVE "N" TO RECORD-FOUND.
007300
007400*or READ VENDOR-FILE RECORD WITH LOCK
007500* INVALID KEY
007600* MOVE "N" TO RECORD-FOUND.
007700
007800*or READ VENDOR-FILE RECORD WITH HOLD
007900* INVALID KEY
008000* MOVE "N" TO RECORD-FOUND.
008100
008200 CHANGE-RECORDS.
008300 PERFORM GET-FIELD-TO-CHANGE.
008400 PERFORM CHANGE-ONE-FIELD
008500 UNTIL WHICH-FIELD = ZERO.
008600 PERFORM GET-VENDOR-RECORD.
008700
008800*--------------------------------
008900* DISPLAY ALL FIELDS, ASK THE USER
009000* WHICH TO CHANGE.
009100*--------------------------------
009200 GET-FIELD-TO-CHANGE.
009300 PERFORM DISPLAY-ALL-FIELDS.
009400 PERFORM ASK-WHICH-FIELD.
009500
009600*--------------------------------
009700* DISPLAY ALL FIELDS WITH BLANK
009800* LINES ABOVE AND BELOW.
009900*--------------------------------
010000 DISPLAY-ALL-FIELDS.
010100 DISPLAY " ".
010200 PERFORM DISPLAY-VENDOR-NUMBER.
010300 PERFORM DISPLAY-VENDOR-NAME.

010400 PERFORM DISPLAY-VENDOR-ADDRESS-1.
010500 PERFORM DISPLAY-VENDOR-ADDRESS-2.
010600 PERFORM DISPLAY-VENDOR-CITY.
010700 PERFORM DISPLAY-VENDOR-STATE.
010800 PERFORM DISPLAY-VENDOR-ZIP.
010900 PERFORM DISPLAY-VENDOR-CONTACT.
011000 PERFORM DISPLAY-VENDOR-PHONE.
011100 DISPLAY " ".
011200
011300 DISPLAY-VENDOR-NUMBER.
011400 DISPLAY " VENDOR NUMBER: " VENDOR-NUMBER.
011500
011600 DISPLAY-VENDOR-NAME.
011700 DISPLAY "1. VENDOR NAME: " VENDOR-NAME.
011800
011900 DISPLAY-VENDOR-ADDRESS-1.
012000 DISPLAY "2. VENDOR ADDRESS-1: " VENDOR-ADDRESS-1.
012100
012200 DISPLAY-VENDOR-ADDRESS-2.
012300 DISPLAY "3. VENDOR ADDRESS-2: " VENDOR-ADDRESS-2.
012400
012500 DISPLAY-VENDOR-CITY.
012600 DISPLAY "4. VENDOR CITY: " VENDOR-CITY.
012700
012800 DISPLAY-VENDOR-STATE.
012900 DISPLAY "5. VENDOR STATE: " VENDOR-STATE.
013000
013100 DISPLAY-VENDOR-ZIP.
013200 DISPLAY "6. VENDOR ZIP: " VENDOR-ZIP.
013300
013400 DISPLAY-VENDOR-CONTACT.
013500 DISPLAY "7. VENDOR CONTACT: " VENDOR-CONTACT.
013600
013700 DISPLAY-VENDOR-PHONE.
013800 DISPLAY "8. VENDOR PHONE: " VENDOR-PHONE.
013900
014000 ASK-WHICH-FIELD.
014100 DISPLAY "ENTER THE NUMBER OF THE FIELD".
014200 DISPLAY "TO CHANGE (1-8) OR 0 TO EXIT".
014300 ACCEPT WHICH-FIELD.
014400 IF WHICH-FIELD > 8
014500 DISPLAY "INVALID ENTRY".
014600
014700*--------------------------------
014800* GET DATA ENTRY FOR THE NEW FIELD.
014900* THEN ASK FOR THE NEXT FIELD
015000* TO CHANGE.
015100* CONTINUE UNTIL USER ENTERS 0.
015200*--------------------------------
015300 CHANGE-ONE-FIELD.
015400 PERFORM CHANGE-THIS-FIELD.

015500 PERFORM GET-FIELD-TO-CHANGE.
015600
015700*--------------------------------
015800* ACCEPT DATA ENTRY FOR THE FIELD
015900* SPECIFIED, AND THEN REWRITE THE
016000* RECORD.
016100*--------------------------------
016200 CHANGE-THIS-FIELD.
016300 IF WHICH-FIELD = 1
016400 PERFORM ENTER-VENDOR-NAME.
016500 IF WHICH-FIELD = 2
016600 PERFORM ENTER-VENDOR-ADDRESS-1.
016700 IF WHICH-FIELD = 3
016800 PERFORM ENTER-VENDOR-ADDRESS-2.
016900 IF WHICH-FIELD = 4
017000 PERFORM ENTER-VENDOR-CITY.
017100 IF WHICH-FIELD = 5
017200 PERFORM ENTER-VENDOR-STATE.
017300 IF WHICH-FIELD = 6
017400 PERFORM ENTER-VENDOR-ZIP.
017500 IF WHICH-FIELD = 7
017600 PERFORM ENTER-VENDOR-CONTACT.
017700 IF WHICH-FIELD = 8
017800 PERFORM ENTER-VENDOR-PHONE.
017900
018000 PERFORM REWRITE-VENDOR-RECORD.
018100
018200 ENTER-VENDOR-NAME.
018300 DISPLAY "ENTER VENDOR NAME".
018400 ACCEPT VENDOR-NAME.
018500
018600 ENTER-VENDOR-ADDRESS-1.
018700 DISPLAY "ENTER VENDOR ADDRESS-1".
018800 ACCEPT VENDOR-ADDRESS-1.
018900
019000 ENTER-VENDOR-ADDRESS-2.
019100 DISPLAY "ENTER VENDOR ADDRESS-2".
019200 ACCEPT VENDOR-ADDRESS-2.
019300
019400 ENTER-VENDOR-CITY.
019500 DISPLAY "ENTER VENDOR CITY".
019600 ACCEPT VENDOR-CITY.
019700
019800 ENTER-VENDOR-STATE.
019900 DISPLAY "ENTER VENDOR STATE".
020000 ACCEPT VENDOR-STATE.
020100
020200 ENTER-VENDOR-ZIP.
020300 DISPLAY "ENTER VENDOR ZIP".
020400 ACCEPT VENDOR-ZIP.
020500

020600 ENTER-VENDOR-CONTACT.
020700 DISPLAY "ENTER VENDOR CONTACT".
020800 ACCEPT VENDOR-CONTACT.
020900
021000 ENTER-VENDOR-PHONE.
021100 DISPLAY "ENTER VENDOR PHONE".
021200 ACCEPT VENDOR-PHONE.
021300
021400 REWRITE-VENDOR-RECORD.
021500 REWRITE VENDOR-RECORD
021600 INVALID KEY
021700 DISPLAY "ERROR REWRITING VENDOR RECORD".
021800

An example of the output from vndchg01.cbl follows. User entries are in bold type.

OUTPUT:
ENTER VENDOR NUMBER OF THE VENDOR
TO CHANGE (1-99999)
ENTER 0 TO STOP ENTRY
00003
VENDOR NUMBER: 00003
1. VENDOR NAME: CHARLES SMITH AND SONS
2. VENDOR ADDRESS-1: 1212 NORTH STREET
3. VENDOR ADDRESS-2:
4. VENDOR CITY: LOS ANGELES
5. VENDOR STATE: CA
6. VENDOR ZIP: 90064
7. VENDOR CONTACT: CHARLES SMITH
8. VENDOR PHONE: (213) 555-4432
ENTER THE NUMBER OF THE FIELD
TO CHANGE (1-8) OR 0 TO EXIT
2
ENTER VENDOR ADDRESS-1
1435 SOUTH STREET
VENDOR NUMBER: 00003
1. VENDOR NAME: CHARLES SMITH AND SONS
2. VENDOR ADDRESS-1: 1435 SOUTH STREET
3. VENDOR ADDRESS-2:
4. VENDOR CITY: LOS ANGELES
5. VENDOR STATE: CA
6. VENDOR ZIP: 90064
7. VENDOR CONTACT: CHARLES SMITH
8. VENDOR PHONE: (213) 555-4432
ENTER THE NUMBER OF THE FIELD
TO CHANGE (1-8) OR 0 TO EXIT
7
ENTER VENDOR CONTACT
MARTHA HARRISON
VENDOR NUMBER: 00003
1. VENDOR NAME: CHARLES SMITH AND SONS
2. VENDOR ADDRESS-1: 1435 SOUTH STREET

3. VENDOR ADDRESS-2:
4. VENDOR CITY: LOS ANGELES
5. VENDOR STATE: CA
6. VENDOR ZIP: 90064
7. VENDOR CONTACT: MARTHA HARRISON
8. VENDOR PHONE: (213) 555-4432
ENTER THE NUMBER OF THE FIELD
TO CHANGE (1-8) OR 0 TO EXIT
0
ENTER VENDOR NUMBER OF THE VENDOR
TO CHANGE (1-99999)
ENTER 0 TO STOP ENTRY
0
C>
C>

ANALYSIS: The control of the main processing loop is at lines 002700 through 002900. This logic starts at
002700 by performing GET-VENDOR-RECORD. Then CHANGE-RECORDS is performed until VENDOR-NUMBER
= ZEROES.

The CHANGE-RECORDS processing loop ends by performing GET-VENDOR-RECORD. Figure 12.2 illustrates the
relationship between the main processing loop and the loop control logic.

The loop body of CHANGE-RECORDS is itself just another set of loop controls for a lower-level loop at
CHANGE-ONE-FIELD, as shown in Figure 12.3.

The GET-VENDOR-RECORD and FIND-VENDOR-RECORD routines at lines 004000 and 006200 are an
interesting pair of paragraphs. At lines 004400 through 004600, a perform is requested until two conditions are
met. FIND-VENDOR-RECORD is a processing loop that has no body. All the work is done by changing the loop
control variables at line 006300. The perform of READ-VENDOR-RECORD changes the RECORD-FOUND variable,
and at line 006600, the perform of ENTER-VENDOR-NUMBER changes the VENDOR-NUMBER variable. This is
shown in Figure 12.4.

Figure 12.2.
The main processing loop and the loop control.

Figure 12.3.
A loop within a loop.

Figure 12.4.
A processing loop with no loop body.

If you haven't already coded Listing 12.1, slvnd01.cbl, and Listing 12.4, fdvnd02.cbl, do so now because
you need them for vndchg01.cbl.

This program is the longest one you've coded so far. You might find it easier to understand if you code it, compile it,
and print out the program (by entering PRINT vndchg01.cbl for MS-DOS). Then run the program while reading
the printed code, and follow where you are in the logic at each point of the program.

Summary
Indexed files make it easy to change or delete the contents of a file while maintaining the order of records in the file.
Today, you learned these basics about indexed files:

file:///D|/Cool Stuff/old/ftp/Sams.Teach.Yourself.Cobol.In.21.Days/Teach Yourself Cobol in 21 Days/ch12/02.htm
file:///D|/Cool Stuff/old/ftp/Sams.Teach.Yourself.Cobol.In.21.Days/Teach Yourself Cobol in 21 Days/ch12/03.htm
file:///D|/Cool Stuff/old/ftp/Sams.Teach.Yourself.Cobol.In.21.Days/Teach Yourself Cobol in 21 Days/ch12/04.htm

You can copy another file into your main source file at compile time by using the COPY directive.●

It is useful to create all the physical (SELECT) and logical (FD) descriptions of files in a system as separate
COPY files. This makes it unnecessary to code the same file description over and over, and helps prevent typing
errors.

●

The file descriptors used in creating a COBOL system should be printed and kept in a loose-leaf binder for
reference by programmers.

●

A listing file, which prints the entire program including COPY files, can be generated by the compiler.●

The listing file can include a cross-reference that can be helpful in trying to analyze large programs.●

A record can be rewritten by moving new values to the record fields and using the REWRITE command. The
field containing the primary key cannot be changed. The REWRITE command uses INVALID KEY to trap file
error conditions.

●

A record must have been read successfully before a REWRITE command will work.●

Some systems require that a record must have been read WITH LOCK or WITH HOLD successfully before a
REWRITE command will work.

●

The basic layout of a program that allows a user to change records in an indexed file is the following:

1. Identify the record to be changed.

2. Read (or hold) the record.

3. Get the user to enter the changes.

4. Use the REWRITE command to record the changes.

●

Q&A
Q If I change a COPY file containing an FD or SELECT statement, does it change the data file?

A No, it changes only the definition of the data file in your program.

Q If I do change the definition of a file--by adding an additional field, for example--and the file is
described in a COPY file, what do I have to do to make it work correctly with my data files?

A If you have to change a file by adding additional fields or increasing the width of the field, you must convert
the data file so that it matches the new definition in the COBOL programs that access the file. After you've
done this, all programs that use the COPY file definition of the data file must be recompiled so that the
programs now include the new definition of the file. Many systems have utility programs to assist in data file
conversions.

Workshop

Quiz

The following code fragment is supposed to read a record in a file. If the record is found, new values are moved in
and the record is rewritten. If the record is not found, the same values are used to create a brand-new record by
loading the record and writing it. At least, that is what it is supposed to do. Why does it not work that way?

003200 ADD-OR-UPDATE.
003300 MOVE "Y" TO RECORD-FOUND-FLAG.
003400 MOVE NEW-NUMBER TO VENDOR-NUMBER.
003500 READ VENDOR-RECORD
003600 INVALID KEY
003700 MOVE "N" TO RECORD-FOUND-FLAG.
003800 IF RECORD-FOUND-FLAG = "N"
003900 PERFORM CHANGE-THIS-RECORD
004000 ELSE
004100 PERFORM ADD-THIS-RECORD.
004200
004300 CHANGE-THIS-RECORD.
004400 PERFORM LOAD-RECORD-VALUES.
004500 REWRITE VENDOR-RECORD
004600 INVALID KEY
004700 DISPLAY "ERROR CHANGING THE RECORD".
004800
004900 ADD-THIS-RECORD.
005000 PERFORM LOAD-RECORD-VALUES.
005100 WRITE VENDOR-RECORD
005200 INVALID KEY
005300 DISPLAY "ERROR ADDING THE RECORD".
005400
005500 LOAD-RECORD-VALUES.
005600 MOVE NEW-NAME TO VENDOR-NAME.
005700 MOVE NEW-ADDRESS-1 TO VENDOR-ADDRESS-1.
005800 MOVE NEW-ADDRESS-2 TO VENDOR-ADDRESS-2.
005900 MOVE NEW-CITY TO VENDOR-CITY.
006000 MOVE NEW-STATE TO VENDOR-STATE.
006100 MOVE NEW-ZIP TO VENDOR-ZIP.
006200 MOVE NEW-CONTACT TO VENDOR-CONTACT.
006300 MOVE NEW-PHONE TO VENDOR-PHONE.
006400

Exercises

1. Describe the bug in the quiz question in English.

2. Rewrite the code in the quiz question to correct the error.

Previous chapter Next chapter Contents

Macmillan Computer Publishing USA

© Copyright, Macmillan Computer Publishing. All rights reserved.

Teach Yourself COBOL in 21 days,
Second Edition

Previous chapter Next chapter Contents

- Day 13 -
Deleting Records and Other Indexed File

Operations
Master a few more types of access to an indexed file and you have the basics of keeping indexed files
updated. Today, you learn about the following topics:

A new COBOL program shell●

Deleting records in an indexed file●

Displaying records in an indexed file●

A better way of adding files●

Printing records in an indexed file●

A New COBOL Shell
All the programs that you have worked with have used files. It is time for a new COBOL shell program
that makes room for physical and logical file descriptions. You can use this shell or template as the basic
starting point for any programs that use files, and it saves a lot of coding. Just copy it to the new COBOL
program name and start editing.

Code Listing 13.1 and keep it handy. You'll use this shell for several more days.

TYPE: Listing 13.1. A shell with space for files and comments.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. COBSHL03.
000300*--
000400* Comments go here.
000500*--

000600 ENVIRONMENT DIVISION.
000700 INPUT-OUTPUT SECTION.
000800 FILE-CONTROL.
000900
001000 DATA DIVISION.
001100 FILE SECTION.
001200
001300 WORKING-STORAGE SECTION.
001400
001500 PROCEDURE DIVISION.
001600 PROGRAM-BEGIN.
001700
001800 PROGRAM-DONE.
001900 STOP RUN.
002000

Deleting Records in an Indexed File
As time passes, you will need to delete records from a file. You might delete vendors with whom you no
longer do business. A bills file might retire records for paid bills from the active file by deleting the
records from the main file and writing them to a history file.

The command to delete a record is DELETE file-name, and it uses INVALID KEY to trap file-error
conditions. Here is the syntax:

DELETE file-name RECORD
INVALID KEY
do something

The following is an example of DELETE file-name:

DELETE VENDOR-FILE RECORD
INVALID KEY
DISPLAY "ERROR DURING DELETE"

You must read a record successfully before you can delete it. As with REWRITE, some large systems
require that the record is read WITH LOCK or WITH HOLD before the DELETE command will succeed.

Listing 13.2 is similar in organization to vndchg01.cbl. The problem with deleting a record is similar
to the problem with changing a record. Get the user to identify the record and then read it and delete it.

TYPE: Listing 13.2. Deleting vendor records.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. VNDDEL01.
000300*--------------------------------
000400* Delete records in Vendor File.
000500*--------------------------------

000600 ENVIRONMENT DIVISION.
000700 INPUT-OUTPUT SECTION.
000800 FILE-CONTROL.
000900
001000 COPY "SLVND01.CBL".
001100
001200 DATA DIVISION.
001300 FILE SECTION.
001400
001500 COPY "FDVND02.CBL".
001600
001700 WORKING-STORAGE SECTION.
001800
001900 77 OK-TO-DELETE PIC X.
002000 77 RECORD-FOUND PIC X.
002100
002200 77 VENDOR-NUMBER-FIELD PIC Z(5).
002300
002400 PROCEDURE DIVISION.
002500 PROGRAM-BEGIN.
002600 OPEN I-O VENDOR-FILE.
002700 PERFORM GET-VENDOR-RECORD.
002800 PERFORM DELETE-RECORDS
002900 UNTIL VENDOR-NUMBER = ZEROES.
003000 CLOSE VENDOR-FILE.
003100
003200 PROGRAM-DONE.
003300 STOP RUN.
003400
003500*--------------------------------
003600* TO GET A VENDOR RECORD, ASK FOR
003700* VENDOR NUMBER, AND THEN TRY TO
003800* READ THE RECORD.
003900*--------------------------------
004000 GET-VENDOR-RECORD.
004100 PERFORM INIT-VENDOR-RECORD.
004200 PERFORM ENTER-VENDOR-NUMBER.
004300 MOVE "N" TO RECORD-FOUND.
004400 PERFORM FIND-VENDOR-RECORD
004500 UNTIL RECORD-FOUND = "Y" OR
004600 VENDOR-NUMBER = ZEROES.
004700
004800 INIT-VENDOR-RECORD.
004900 MOVE SPACE TO VENDOR-RECORD.
005000 MOVE ZEROES TO VENDOR-NUMBER.
005100

005200 ENTER-VENDOR-NUMBER.
005300 DISPLAY " ".
005400 DISPLAY "ENTER VENDOR NUMBER OF THE VENDOR" .
005500 DISPLAY "TO DELETE (1-99999)".
005600 DISPLAY "ENTER 0 TO STOP ENTRY".
005700 ACCEPT VENDOR-NUMBER-FIELD.
005800*OR ACCEPT VENDOR-NUMBER-FIELD WITH CONVERSION.
005900
006000 MOVE VENDOR-NUMBER-FIELD TO VENDOR-NUMBER.
006100
006200 FIND-VENDOR-RECORD.
006300 PERFORM READ-VENDOR-RECORD.
006400 IF RECORD-FOUND = "N"
006500 DISPLAY "RECORD NOT FOUND"
006600 PERFORM ENTER-VENDOR-NUMBER.
006700
006800 READ-VENDOR-RECORD.
006900 MOVE "Y" TO RECORD-FOUND.
007000 READ VENDOR-FILE RECORD
007100 INVALID KEY
007200 MOVE "N" TO RECORD-FOUND.
007300
007400*or READ VENDOR-FILE RECORD WITH LOCK
007500* INVALID KEY
007600* MOVE "N" TO RECORD-FOUND.
007700
007800*or READ VENDOR-FILE RECORD WITH HOLD
007900* INVALID KEY
008000* MOVE "N" TO RECORD-FOUND.
008100
008200 DELETE-RECORDS.
008300 PERFORM DISPLAY-ALL-FIELDS.
008400 MOVE "X" TO OK-TO-DELETE.
008500
008600 PERFORM ASK-TO-DELETE
008700 UNTIL OK-TO-DELETE = "Y" OR "N".
008800
008900 IF OK-TO-DELETE = "Y"
009000 PERFORM DELETE-VENDOR-RECORD.
009100
009200 PERFORM GET-VENDOR-RECORD.
009300
009400*--------------------------------
009500* DISPLAY ALL FIELDS WITH BLANK
009600* LINES ABOVE AND BELOW.
009700*--------------------------------

009800 DISPLAY-ALL-FIELDS.
009900 DISPLAY " ".
010000 PERFORM DISPLAY-VENDOR-NUMBER.
010100 PERFORM DISPLAY-VENDOR-NAME.
010200 PERFORM DISPLAY-VENDOR-ADDRESS-1.
010300 PERFORM DISPLAY-VENDOR-ADDRESS-2.
010400 PERFORM DISPLAY-VENDOR-CITY.
010500 PERFORM DISPLAY-VENDOR-STATE.
010600 PERFORM DISPLAY-VENDOR-ZIP.
010700 PERFORM DISPLAY-VENDOR-CONTACT.
010800 PERFORM DISPLAY-VENDOR-PHONE.
010900 DISPLAY " ".
011000
011100 DISPLAY-VENDOR-NUMBER.
011200 DISPLAY " VENDOR NUMBER: " VENDOR-NUMBER.
011300
011400 DISPLAY-VENDOR-NAME.
011500 DISPLAY "1. VENDOR NAME: " VENDOR-NAME.
011600
011700 DISPLAY-VENDOR-ADDRESS-1.
011800 DISPLAY "2. VENDOR ADDRESS-1: " VENDOR-ADDRESS-1.
011900
012000 DISPLAY-VENDOR-ADDRESS-2.
012100 DISPLAY "3. VENDOR ADDRESS-2: " VENDOR-ADDRESS-2.
012200
012300 DISPLAY-VENDOR-CITY.
012400 DISPLAY "4. VENDOR CITY: " VENDOR-CITY.
012500
012600 DISPLAY-VENDOR-STATE.
012700 DISPLAY "5. VENDOR STATE: " VENDOR-STATE.
012800
012900 DISPLAY-VENDOR-ZIP.
013000 DISPLAY "6. VENDOR ZIP: " VENDOR-ZIP.
013100
013200 DISPLAY-VENDOR-CONTACT.
013300 DISPLAY "7. VENDOR CONTACT: " VENDOR-CONTACT.
013400
013500 DISPLAY-VENDOR-PHONE.
013600 DISPLAY "8. VENDOR PHONE: " VENDOR-PHONE.
013700
013800 ASK-TO-DELETE.
013900 DISPLAY "DELETE THIS RECORD (Y/N)?".
014000 ACCEPT OK-TO-DELETE.
014100 IF OK-TO-DELETE= "y"
014200 MOVE "Y" TO OK-TO-DELETE.
014300 IF OK-TO-DELETE= "n"

014400 MOVE "N" TO OK-TO-DELETE.
014500 IF OK-TO-DELETE NOT = "Y" AND
014600 OK-TO-DELETE NOT = "N"
014700 DISPLAY "YOU MUST ENTER YES OR NO".
014800
014900 DELETE-VENDOR-RECORD.
015000 DELETE VENDOR-FILE RECORD
015100 INVALID KEY
015200 DISPLAY "ERROR DELETING VENDOR RECORD".
015300

OUTPUT:
ENTER VENDOR NUMBER OF THE VENDOR
TO DELETE (1-99999)
ENTER 0 TO STOP ENTRY
1
VENDOR NUMBER: 00001
1. VENDOR NAME: JOHNSON AND SON
2. VENDOR ADDRESS-1: 1212 MAIN ST
3. VENDOR ADDRESS-2: # 455
4. VENDOR CITY: LOS ANGELES
5. VENDOR STATE: CA
6. VENDOR ZIP: 91042
7. VENDOR CONTACT: LINDA MARTIN
8. VENDOR PHONE: (213) 555-1234
DELETE THIS RECORD (Y/N)?
N
ENTER VENDOR NUMBER OF THE VENDOR
TO DELETE (1-99999)
ENTER 0 TO STOP ENTRY
1
VENDOR NUMBER: 00001
1. VENDOR NAME: JOHNSON AND SON
2. VENDOR ADDRESS-1: 1212 MAIN ST
3. VENDOR ADDRESS-2: # 455
4. VENDOR CITY: LOS ANGELES
5. VENDOR STATE: CA
6. VENDOR ZIP: 91042
7. VENDOR CONTACT: LINDA MARTIN
8. VENDOR PHONE: (213) 555-1234
DELETE THIS RECORD (Y/N)?
Y
ENTER VENDOR NUMBER OF THE VENDOR
TO DELETE (1-99999)
ENTER 0 TO STOP ENTRY
1

RECORD NOT FOUND
ENTER VENDOR NUMBER OF THE VENDOR
TO DELETE (1-99999)
ENTER 0 TO STOP ENTRY

ANALYSIS: The primary difference between vnddel01.cbl and vndchg01.cbl is in
DELETE-RECORDS at line 008200. At this point in vndchg01.cbl, the user is asked which field to
change and data entry is accepted for the changed field. In vnddel01.cbl, instead of asking the user
for a field, the program asks the user whether this record should be deleted and then deletes the record if
the user answers yes.

This gives the user a chance to see the record to make sure that it is the one to be deleted, rather than just
deleting it.

One piece of coding you have not seen before appears at line 008700 as a test: UNTIL
OK-TO-DELETE = "Y" OR "N". This is equivalent to OK-TO-DELETE = "Y" OR
OK-TO-DELETE ="N".

DO/DON'T:
DO give the user a chance to back out, in case the wrong record was chosen for deletion.

DON'T code programs that let the user find out too late that an irrevocable decision has
been made.

Code, compile, and test this program carefully. It is important in a deletion program to ensure that the
record is deleted only when the user answers yes. It can be disconcerting, to say the least, to have records
disappear for no apparent reason.

DO/DON'T:
DO test deletion programs carefully, and ensure that they delete records only when the user
explicitly gives permission for a delete.

DON'T let programs carry out unexpected deletions that destroy the integrity of the data in
a file.

To test this program, run it and specify a vendor number. When the record is displayed, enter N for no to
the OK TO DELETE question. Then request that record number again. If the record has been deleted
accidentally, you will receive a RECORD NOT FOUND message.

Enter a vendor number and specify Y for yes to the OK TO DELETE question. Then request that record
number again. This time you should receive the RECORD NOT FOUND message.

The output of vnddel01.cbl illustrates this series of tests.

Displaying Records in an Indexed File
The inquiry program, vndinq01.cbl (shown in Listing 13.3), is almost identical to vnddel01.cbl.
The step of asking the user whether to delete the record is dropped completely out of the logic, and the
user is prompted for another vendor number.

New Term: Displaying a single record in an indexed file usually is called an inquiry. The user asks for
the data on a specific vendor, and the information is displayed on the screen for reference. The program
does not allow any changes and is used only for lookup actions.

TYPE: Listing 13.3. Looking up records in a file.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. VNDINQ01.
000300*--------------------------------
000400* Look Up records in Vendor File.
000500*--------------------------------
000600 ENVIRONMENT DIVISION.
000700 INPUT-OUTPUT SECTION.
000800 FILE-CONTROL.
000900
001000 COPY "SLVND01.CBL".
001100
001200 DATA DIVISION.
001300 FILE SECTION.
001400
001500 COPY "FDVND02.CBL".
001600
001700 WORKING-STORAGE SECTION.
001800
001900 77 RECORD-FOUND PIC X.
002000
002100 77 VENDOR-NUMBER-FIELD PIC Z(5).
002200
002300 PROCEDURE DIVISION.
002400 PROGRAM-BEGIN.
002500 OPEN I-O VENDOR-FILE.
002600 PERFORM GET-VENDOR-RECORD.
002700 PERFORM INQUIRE-RECORDS
002800 UNTIL VENDOR-NUMBER = ZEROES.
002900 CLOSE VENDOR-FILE.
003000
003100 PROGRAM-DONE.
003200 STOP RUN.
003300

003400*--------------------------------
003500* TO GET A VENDOR RECORD, ASK FOR
003600* VENDOR NUMBER, AND THEN TRY TO
003700* READ THE RECORD.
003800*--------------------------------
003900 GET-VENDOR-RECORD.
004000 PERFORM INIT-VENDOR-RECORD.
004100 PERFORM ENTER-VENDOR-NUMBER.
004200 MOVE "N" TO RECORD-FOUND.
004300 PERFORM FIND-VENDOR-RECORD
004400 UNTIL RECORD-FOUND = "Y" OR
004500 VENDOR-NUMBER = ZEROES.
004600
004700 INIT-VENDOR-RECORD.
004800 MOVE SPACE TO VENDOR-RECORD.
004900 MOVE ZEROES TO VENDOR-NUMBER.
005000
005100 ENTER-VENDOR-NUMBER.
005200 DISPLAY " ".
005300 DISPLAY "ENTER VENDOR NUMBER OF THE VENDOR" .
005400 DISPLAY "TO DISPLAY (1-99999)".
005500 DISPLAY "ENTER 0 TO STOP ENTRY".
005600 ACCEPT VENDOR-NUMBER-FIELD.
005700*OR ACCEPT VENDOR-NUMBER-FIELD WITH CONVERSION.
005800
005900 MOVE VENDOR-NUMBER-FIELD TO VENDOR-NUMBER.
006000
006100 FIND-VENDOR-RECORD.
006200 PERFORM READ-VENDOR-RECORD.
006300 IF RECORD-FOUND = "N"
006400 DISPLAY "RECORD NOT FOUND"
006500 PERFORM ENTER-VENDOR-NUMBER.
006600
006700 READ-VENDOR-RECORD.
006800 MOVE "Y" TO RECORD-FOUND.
006900 READ VENDOR-FILE RECORD
007000 INVALID KEY
007100 MOVE "N" TO RECORD-FOUND.
007200
007300*or READ VENDOR-FILE RECORD WITH LOCK
007400* INVALID KEY
007500* MOVE "N" TO RECORD-FOUND.
007600
007700*or READ VENDOR-FILE RECORD WITH HOLD
007800* INVALID KEY
007900* MOVE "N" TO RECORD-FOUND.

008000
008100 INQUIRE-RECORDS.
008200 PERFORM DISPLAY-ALL-FIELDS.
008300
008400 PERFORM GET-VENDOR-RECORD.
008500
008600*--------------------------------
008700* DISPLAY ALL FIELDS WITH BLANK
008800* LINES ABOVE AND BELOW.
008900*--------------------------------
009000 DISPLAY-ALL-FIELDS.
009100 DISPLAY " ".
009200 PERFORM DISPLAY-VENDOR-NUMBER.
009300 PERFORM DISPLAY-VENDOR-NAME.
009400 PERFORM DISPLAY-VENDOR-ADDRESS-1.
009500 PERFORM DISPLAY-VENDOR-ADDRESS-2.
009600 PERFORM DISPLAY-VENDOR-CITY.
009700 PERFORM DISPLAY-VENDOR-STATE.
009800 PERFORM DISPLAY-VENDOR-ZIP.
009900 PERFORM DISPLAY-VENDOR-CONTACT.
010000 PERFORM DISPLAY-VENDOR-PHONE.
010100 DISPLAY " ".
010200
010300 DISPLAY-VENDOR-NUMBER.
010400 DISPLAY " VENDOR NUMBER: " VENDOR-NUMBER.
010500
010600 DISPLAY-VENDOR-NAME.
010700 DISPLAY "1. VENDOR NAME: " VENDOR-NAME.
010800
010900 DISPLAY-VENDOR-ADDRESS-1.
011000 DISPLAY "2. VENDOR ADDRESS-1: " VENDOR-ADDRESS-1.
011100
011200 DISPLAY-VENDOR-ADDRESS-2.
011300 DISPLAY "3. VENDOR ADDRESS-2: " VENDOR-ADDRESS-2.
011400
011500 DISPLAY-VENDOR-CITY.
011600 DISPLAY "4. VENDOR CITY: " VENDOR-CITY.
011700
011800 DISPLAY-VENDOR-STATE.
011900 DISPLAY "5. VENDOR STATE: " VENDOR-STATE.
012000
012100 DISPLAY-VENDOR-ZIP.
012200 DISPLAY "6. VENDOR ZIP: " VENDOR-ZIP.
012300
012400 DISPLAY-VENDOR-CONTACT.
012500 DISPLAY "7. VENDOR CONTACT: " VENDOR-CONTACT.

012600
012700 DISPLAY-VENDOR-PHONE.
012800 DISPLAY "8. VENDOR PHONE: " VENDOR-PHONE.
012900

The output of vndinq01.cbl follows. I asked for a display of vendor number 00001, but I had
deleted it in the previous example while testing vnddel01.cbl. The result was a RECORD NOT
FOUND message. Then I requested a display of vendor 00002.

OUTPUT:
ENTER VENDOR NUMBER OF THE VENDOR
TO DISPLAY (1-99999)
ENTER 0 TO STOP ENTRY
1
RECORD NOT FOUND
ENTER VENDOR NUMBER OF THE VENDOR
TO DISPLAY (1-99999)
ENTER 00000 TO STOP ENTRY
2
VENDOR NUMBER: 00002
1. VENDOR NAME: ABC PRINTING
2. VENDOR ADDRESS-1: 1624 FOOTHILL BLVD
3. VENDOR ADDRESS-2: SUITE 34
4. VENDOR CITY: LOS ANGELES
5. VENDOR STATE: CA
6. VENDOR ZIP: 91042
7. VENDOR CONTACT: CHARLES JOHANSSEN
8. VENDOR PHONE: (818) 555-4321
ENTER VENDOR NUMBER OF THE VENDOR
TO DISPLAY (1-99999)
ENTER 0 TO STOP ENTRY
0
C>
C>

Notice that the delete program, vnddel01.cbl, is very much like the change program,
vndchg01.cbl, only shorter. The inquiry program, vndinq01.cbl, is very much like the delete
program but is shorter still.

This is a common relationship. The change program displays all fields and allows changes to individual
fields, the delete program displays all fields and allows the whole record to be deleted, and the inquiry
program displays all fields and allows no changes.

New Term: The four types of programs covered in Day 11, "Indexed File I/O," Day 12, "More on
Indexed Files," and today usually are called maintenance programs. Programs that allow records to be
added, changed, deleted, and looked up in an indexed (or other) file make it possible to maintain the file.

New Term: The process of adding, changing, deleting or looking up a record in a data file by entering
the data at a terminal is called transaction processing. It is also sometimes called online processing or
real-time processing.

A Better Way of Adding Records
When you wrote the first versions of vndnew01.cbl through vndnew03.cbl, you hadn't yet used
the READ command to look up a record.

One of the failings of vndnew01, vndnew02, and vndnew03 is that these programs ask the user to
enter all the fields for the vendor before letting the user know that a record with that vendor number
exists. When a record with that number exists, the user has to select a new number and start entering all
over again.

It would be much better to check as soon as possible and let the user correct the VENDOR-NUMBER
before going on. Listing 13.4, vndadd01.cbl, uses this approach. The program name now is more in
keeping with the four types of maintenance programs: add, change, delete, and inquire (or look up).

TYPE: Listing 13.4. A better way of adding records by checking sooner if the vendor is
on file.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. VNDADD01.
000300*--
000400* Add a record to an indexed Vendor File.
000500*--
000600 ENVIRONMENT DIVISION.
000700 INPUT-OUTPUT SECTION.
000800 FILE-CONTROL.
000900
001000 COPY "SLVND01.CBL".
001100
001200 DATA DIVISION.
001300 FILE SECTION.
001400
001500 COPY "FDVND02.CBL".
001600
001700 WORKING-STORAGE SECTION.
001800
001900 77 RECORD-FOUND PIC X.
002000 77 VENDOR-NUMBER-FIELD PIC Z(5).
002100
002200 PROCEDURE DIVISION.
002300 PROGRAM-BEGIN.
002400 OPEN I-O VENDOR-FILE.
002500 PERFORM GET-NEW-VENDOR-NUMBER.

002600 PERFORM ADD-RECORDS
002700 UNTIL VENDOR-NUMBER = ZEROES.
002800 CLOSE VENDOR-FILE.
002900
003000 PROGRAM-DONE.
003100 STOP RUN.
003200
003300 GET-NEW-VENDOR-NUMBER.
003400 PERFORM INIT-VENDOR-RECORD.
003500 PERFORM ENTER-VENDOR-NUMBER.
003600 MOVE "Y" TO RECORD-FOUND.
003700 PERFORM FIND-NEW-VENDOR-RECORD
003800 UNTIL RECORD-FOUND = "N" OR
003900 VENDOR-NUMBER = ZEROES.
004000
004100 INIT-VENDOR-RECORD.
004200 MOVE SPACE TO VENDOR-RECORD.
004300 MOVE ZEROES TO VENDOR-NUMBER.
004400
004500 ENTER-VENDOR-NUMBER.
004600 DISPLAY " ".
004700 DISPLAY "ENTER VENDOR NUMBER OF THE VENDOR" .
004800 DISPLAY "TO ADD (1-99999)".
004900 DISPLAY "ENTER 0 TO STOP ENTRY".
005000 ACCEPT VENDOR-NUMBER-FIELD.
005100*OR ACCEPT VENDOR-NUMBER-FIELD WITH CONVERSION.
005200
005300 MOVE VENDOR-NUMBER-FIELD TO VENDOR-NUMBER.
005400
005500 FIND-NEW-VENDOR-RECORD.
005600 PERFORM READ-VENDOR-RECORD.
005700 IF RECORD-FOUND = "Y"
005800 DISPLAY "RECORD ALREADY ON FILE"
005900 PERFORM ENTER-VENDOR-NUMBER.
006000
006100 READ-VENDOR-RECORD.
006200 MOVE "Y" TO RECORD-FOUND.
006300 READ VENDOR-FILE RECORD
006400 INVALID KEY
006500 MOVE "N" TO RECORD-FOUND.
006600
006700
006800 ADD-RECORDS.
006900 PERFORM ENTER-REMAINING-FIELDS.
007000 PERFORM WRITE-VENDOR-RECORD.
007100 PERFORM GET-NEW-VENDOR-NUMBER.

007200
007300 WRITE-VENDOR-RECORD.
007400 WRITE VENDOR-RECORD
007500 INVALID KEY
007600 DISPLAY "RECORD ALREADY ON FILE".
007700
007800 ENTER-REMAINING-FIELDS.
007900 PERFORM ENTER-VENDOR-NAME.
008000 PERFORM ENTER-VENDOR-ADDRESS-1.
008100 PERFORM ENTER-VENDOR-ADDRESS-2.
008200 PERFORM ENTER-VENDOR-CITY.
008300 PERFORM ENTER-VENDOR-STATE.
008400 PERFORM ENTER-VENDOR-ZIP.
008500 PERFORM ENTER-VENDOR-CONTACT.
008600 PERFORM ENTER-VENDOR-PHONE.
008700
008800 ENTER-VENDOR-NAME.
008900 DISPLAY "ENTER VENDOR NAME".
009000 ACCEPT VENDOR-NAME.
009100
009200 ENTER-VENDOR-ADDRESS-1.
009300 DISPLAY "ENTER VENDOR ADDRESS-1".
009400 ACCEPT VENDOR-ADDRESS-1.
009500
009600 ENTER-VENDOR-ADDRESS-2.
009700 DISPLAY "ENTER VENDOR ADDRESS-2".
009800 ACCEPT VENDOR-ADDRESS-2.
009900
010000 ENTER-VENDOR-CITY.
010100 DISPLAY "ENTER VENDOR CITY".
010200 ACCEPT VENDOR-CITY.
010300
010400 ENTER-VENDOR-STATE.
010500 DISPLAY "ENTER VENDOR STATE".
010600 ACCEPT VENDOR-STATE.
010700
010800 ENTER-VENDOR-ZIP.
010900 DISPLAY "ENTER VENDOR ZIP".
011000 ACCEPT VENDOR-ZIP.
011100
011200 ENTER-VENDOR-CONTACT.
011300 DISPLAY "ENTER VENDOR CONTACT".
011400 ACCEPT VENDOR-CONTACT.
011500
011600 ENTER-VENDOR-PHONE.
011700 DISPLAY "ENTER VENDOR PHONE".

011800 ACCEPT VENDOR-PHONE.
011900

The following is the output:

OUTPUT:
ENTER VENDOR NUMBER OF THE
VENDOR TO ADD (1-99999)
ENTER 0 TO STOP ENTRY
00002
RECORD ALREADY ON FILE
ENTER VENDOR NUMBER OF THE
VENDOR TO ADD (1-99999)
ENTER 0 TO STOP ENTRY

ANALYSIS: At line 003300, the GET-NEW-VENDOR-NUMBER routine has been modified to include
testing for an existing record. The FIND-NEW-VENDOR-RECORD logic at lines 005500 through
005900 is the reverse of the FIND-VENDOR-RECORD logic used in vndchg01.cbl,
vnddel01.cbl, and vndinq01.cbl, and it produces an error message when a record is found,
rather than when a record is not found. Compare GET-NEW-VENDOR-NUMBER and
GET-NEW-VENDOR-RECORD in vndadd01.cbl with GET-VENDOR-RECORD and
FIND-VENDOR-RECORD in vnddel01.cbl or vndinq01.cbl.

Code, compile, and run vndadd01.cbl; then enter a vendor number that is already on file. You are
warned about the record-on-file condition immediately.

Printing Records in an Indexed File
The complete set of programs for a data file includes add, change, delete, inquire (or look up), possibly a
display program such as vnddsp01.cbl, and a printing program that allows you to report on the
contents of the file.

You have already written the printing program, but you might not know it yet. The display program,
vnddsp01.cbl, was designed as a program to print records to the screen, as if the screen were a
scrolling printer.

Perform a little minor surgery on vnddsp01.cbl and you have the printing program
vndrpt01.cbl, shown in Listing 13.5.

TYPE: Listing 13.5. A report program for the vendor file.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. VNDRPT01.
000300*--------------------------------
000400* Report on the Vendor File.
000500*--------------------------------
000600 ENVIRONMENT DIVISION.

000700 INPUT-OUTPUT SECTION.
000800 FILE-CONTROL.
000900
001000 COPY "SLVND01.CBL".
001100
001200 SELECT PRINTER-FILE
001300 ASSIGN TO PRINTER
001400 ORGANIZATION IS LINE SEQUENTIAL.
001500
001600 DATA DIVISION.
001700 FILE SECTION.
001800
001900 COPY "FDVND02.CBL".
002000
002100 FD PRINTER-FILE
002200 LABEL RECORDS ARE OMITTED.
002300 01 PRINTER-RECORD PIC X(80).
002400
002500 WORKING-STORAGE SECTION.
002600
002700 01 DETAIL-LINE.
002800 05 PRINT-NUMBER PIC 9(5).
002900 05 FILLER PIC X VALUE SPACE.
003000 05 PRINT-NAME PIC X(30).
003100 05 FILLER PIC X VALUE SPACE.
003200 05 PRINT-CONTACT PIC X(30).
003300
003400 01 CITY-STATE-DETAIL.
003500 05 PRINT-CITY PIC X(20).
003600 05 FILLER PIC X VALUE SPACE.
003700 05 PRINT-STATE PIC X(2).
003800
003900 01 COLUMN-LINE.
004000 05 FILLER PIC X(2) VALUE "NO".
004100 05 FILLER PIC X(4) VALUE SPACE.
004200 05 FILLER PIC X(12) VALUE "NAME-ADDRESS".
004300 05 FILLER PIC X(19) VALUE SPACE.
004400 05 FILLER PIC X(17) VALUE "CONTACT-PHONE-ZIP".
004500
004600 01 TITLE-LINE.
004700 05 FILLER PIC X(25) VALUE SPACE.
004800 05 FILLER PIC X(11)
004900 VALUE "VENDOR LIST".
005000 05 FILLER PIC X(15) VALUE SPACE.
005100 05 FILLER PIC X(5) VALUE "PAGE:".
005200 05 FILLER PIC X(1) VALUE SPACE.

005300 05 PRINT-PAGE-NUMBER PIC ZZZZ9.
005400
005500 77 FILE-AT-END PIC X.
005600 77 LINE-COUNT PIC 999 VALUE ZERO.
005700 77 PAGE-NUMBER PIC 99999 VALUE ZERO.
005800 77 MAXIMUM-LINES PIC 999 VALUE 55.
005900
006000 PROCEDURE DIVISION.
006100 PROGRAM-BEGIN.
006200
006300 PERFORM OPENING-PROCEDURE.
006400 MOVE ZEROES TO LINE-COUNT
006500 PAGE-NUMBER.
006600
006700 PERFORM START-NEW-PAGE.
006800
006900 MOVE "N" TO FILE-AT-END.
007000 PERFORM READ-NEXT-RECORD.
007100 IF FILE-AT-END = "Y"
007200 MOVE "NO RECORDS FOUND" TO PRINTER-RECORD
007300 PERFORM WRITE-TO-PRINTER
007400 ELSE
007500 PERFORM PRINT-VENDOR-FIELDS
007600 UNTIL FILE-AT-END = "Y".
007700
007800 PERFORM CLOSING-PROCEDURE.
007900
008000 PROGRAM-DONE.
008100 STOP RUN.
008200
008300 OPENING-PROCEDURE.
008400 OPEN I-O VENDOR-FILE.
008500 OPEN OUTPUT PRINTER-FILE.
008600
008700 CLOSING-PROCEDURE.
008800 CLOSE VENDOR-FILE.
008900 PERFORM END-LAST-PAGE.
009000 CLOSE PRINTER-FILE.
009100
009200 PRINT-VENDOR-FIELDS.
009300 IF LINE-COUNT > MAXIMUM-LINES
009400 PERFORM START-NEXT-PAGE.
009500 PERFORM PRINT-THE-RECORD.
009600 PERFORM READ-NEXT-RECORD.
009700
009800 PRINT-THE-RECORD.

009900 PERFORM PRINT-LINE-1.
010000 PERFORM PRINT-LINE-2.
010100 PERFORM PRINT-LINE-3.
010200 PERFORM PRINT-LINE-4.
010300 PERFORM LINE-FEED.
010400
010500 PRINT-LINE-1.
010600 MOVE SPACE TO DETAIL-LINE.
010700 MOVE VENDOR-NUMBER TO PRINT-NUMBER.
010800 MOVE VENDOR-NAME TO PRINT-NAME.
010900 MOVE VENDOR-CONTACT TO PRINT-CONTACT.
011000 MOVE DETAIL-LINE TO PRINTER-RECORD.
011100 PERFORM WRITE-TO-PRINTER.
011200
011300 PRINT-LINE-2.
011400 MOVE SPACE TO DETAIL-LINE.
011500 MOVE VENDOR-ADDRESS-1 TO PRINT-NAME.
011600 MOVE VENDOR-PHONE TO PRINT-CONTACT.
011700 MOVE DETAIL-LINE TO PRINTER-RECORD.
011800 PERFORM WRITE-TO-PRINTER.
011900
012000 PRINT-LINE-3.
012100 MOVE SPACE TO DETAIL-LINE.
012200 MOVE VENDOR-ADDRESS-2 TO PRINT-NAME.
012300 IF VENDOR-ADDRESS-2 NOT = SPACE
012400 MOVE DETAIL-LINE TO PRINTER-RECORD
012500 PERFORM WRITE-TO-PRINTER.
012600
012700 PRINT-LINE-4.
012800 MOVE SPACE TO DETAIL-LINE.
012900 MOVE VENDOR-CITY TO PRINT-CITY.
013000 MOVE VENDOR-STATE TO PRINT-STATE.
013100 MOVE CITY-STATE-DETAIL TO PRINT-NAME.
013200 MOVE VENDOR-ZIP TO PRINT-CONTACT.
013300 MOVE DETAIL-LINE TO PRINTER-RECORD.
013400 PERFORM WRITE-TO-PRINTER.
013500
013600 READ-NEXT-RECORD.
013700 READ VENDOR-FILE NEXT RECORD
013800 AT END MOVE "Y" TO FILE-AT-END.
013900
014000 WRITE-TO-PRINTER.
014100 WRITE PRINTER-RECORD BEFORE ADVANCING 1.
014200 ADD 1 TO LINE-COUNT.
014300
014400 LINE-FEED.

014500 MOVE SPACE TO PRINTER-RECORD.
014600 PERFORM WRITE-TO-PRINTER.
014700
014800 START-NEXT-PAGE.
014900
015000 PERFORM END-LAST-PAGE.
015100 PERFORM START-NEW-PAGE.
015200
015300 START-NEW-PAGE.
015400 ADD 1 TO PAGE-NUMBER.
015500 MOVE PAGE-NUMBER TO PRINT-PAGE-NUMBER.
015600 MOVE TITLE-LINE TO PRINTER-RECORD.
015700 PERFORM WRITE-TO-PRINTER.
015800 PERFORM LINE-FEED.
015900 MOVE COLUMN-LINE TO PRINTER-RECORD.
016000 PERFORM WRITE-TO-PRINTER.
016100 PERFORM LINE-FEED.
016200
016300 END-LAST-PAGE.
016400 PERFORM FORM-FEED.
016500 MOVE ZERO TO LINE-COUNT.
016600
016700 FORM-FEED.
016800 MOVE SPACE TO PRINTER-RECORD.
016900 WRITE PRINTER-RECORD BEFORE ADVANCING PAGE.
017000

This output illustrates a sample page of the report created by vndrpt01.cbl:

OUTPUT:
VENDOR LIST PAGE: 1
NO NAME-ADDRESS CONTACT-PHONE-ZIP
00001 AERIAL SIGNS HENRIETTA MARKSON
BURBANK AIRPORT (818) 555-6066
HANGAR 405
BURBANK CA 90046
00002 ABC PRINTING CHARLES JOHANSSEN
1624 FOOTHILL BLVD (818) 555-4321
SUITE 34
LOS ANGELES CA 91042
00003 CHARLES SMITH AND SONS MARTHA HARRISON
1435 SOUTH STREET (213) 555-4432
LOS ANGELES CA 90064
00014 RANIER GRAPHICS JULIA SIMPSON
4433 WASHINGTOn ST (213) 555-6789
LOS ANGELES CA 90032

01176 ABERCROMBIE AND OTHERS
1234 45TH ST. (213) 555-6543
SUITE 17
LOS ANGELES CA 92345

ANALYSIS: You can create this program by copying vnddsp01.cbl and then modifying it. Compare
this new program to vnddsp01.cbl:

At lines 001200 to 001400 and 002100 to 002300, the physical and logical descriptions,
respectively, are added for the printer file.

●

The routine WRITE-DISPLAY-RECORD is changed to WRITE-TO-PRINTER at line 014000.
This routine writes a printer record instead of displaying a DISPLAY-RECORD.

●

At line 016300, the END-LAST-PAGE routine is changed so that it performs a form feed, and
the PRESS-ENTER routine is replaced with FORM-FEED at line 016700.

●

At line 005800, the MAXIMUM-LINES value is set to 55 instead of 15, and the opening and
closing procedures (lines 008300 through 009000) open and close the printer file, as well as
performing a final form feed before closing the printer file.

●

Code, compile, and run this program to get a printed report of the information in your vendor file.

Summary
The basics of keeping indexed files updated include deleting, displaying, adding, and printing records.
Today, you learned the following:

Records are deleted by using the DELETE command. The DELETE command uses INVALID
KEY to trap file-error conditions.

●

You must have successfully read a record before you can delete it. Some larger systems might
require a READ WITH LOCK or a READ WITH HOLD.

●

Programs that allow you to add, change, look up, or delete records in a file usually are called
maintenance programs.

●

Change, inquire (look up), and delete programs are usually similar in logic layout.●

Q&A
Q In Listing 13.4, vndadd01.cbl, at lines 007300 through 007700, the
WRITE-VENDOR-RECORD paragraph includes a RECORD ALREADY ON FILE message if
an attempt is made to write a record that fails. Before this write occurs, the program already
has read the record and established that it is not there in READ-VENDOR-RECORD at lines

006100 through 006500. Why does this extra check exist?

A It is good practice when writing COBOL programs to assume that other users will be accessing
the same files. Most COBOL programs run on large multi-user systems. In the vndadd01.cbl
program, it is possible for a user to enter a vendor number, establish that the record is not on file,
start adding the new fields to the file, and then go on a coffee break before pressing Enter on the
final field, causing the new record to be written. If someone adds a record with that primary key in
the meantime, the user is in for a surprise upon returning. Rather than let the program crash at this
point, an effort is made to trap the file-error condition with a message.

Workshop

Quiz

1. Which modes in maintenance programs are usually similar?

a. Add and change.

b. Add and delete.

c. Change, inquire (look up), and delete.

d. Change, inquire (look up), and print.

2. Describe the similarities between change, inquire, and delete modes.

Exercise

Copy vnddsp01.cbl to vnddsp02.cbl; then modify it so that it uses COPY "SLVND01.CBL" and COPY
"FDVND02.CBL".

Previous chapter Next chapter Contents

Macmillan Computer Publishing USA

© Copyright, Macmillan Computer Publishing. All rights reserved.

Teach Yourself COBOL in 21 days,
Second Edition

Previous chapter Next chapter Contents

- Day 14 -
A Review of Indexed Files

You have studied indexed files rather intensively for the last three days, and it's important that you
review these concepts before you tackle anything new. Today, you take a look at a single program that
combines all the maintenance modes--Add, Change, Inquire (Look Up) and Delete--in one program. You
also learn more about the following topics:

Defining an indexed file●

Opening and closing indexed files●

Reading through a file●

Adding records to indexed files●

Looking up records in indexed files●

Changing records in indexed files●

Deleting records in indexed files●

Combined maintenance●

Defining an Indexed File
An indexed file is defined both logically and physically. The logical description is an FD in the FILE
SECTION of the DATA DIVISION, as shown in Listing 14.1.

TYPE: Listing 14.1. A logical file description.

001600 DATA DIVISION.
001700 FILE SECTION.
001800
001900 FD VENDOR-FILE
002000 LABEL RECORDS ARE STANDARD.
002100 01 VENDOR-RECORD.
002200 05 VENDOR-NUMBER PIC 9(5).
002300 05 VENDOR-NAME PIC X(30).
002400 05 VENDOR-ADDRESS-1 PIC X(30).
002500 05 VENDOR-ADDRESS-2 PIC X(30).
002600 05 VENDOR-CITY PIC X(20).
002700 05 VENDOR-STATE PIC X(2).
002800 05 VENDOR-ZIP PIC X(10).
002900 05 VENDOR-CONTACT PIC X(30).
003000 05 VENDOR-PHONE PIC X(15).

ANALYSIS: The physical description is the SELECT statement in the FILE-CONTROL paragraph of
the INPUT-OUTPUT SECTION of the ENVIRONMENT DIVISION, as shown in Listing 14.2. At lines
001000 and 001100, the logical VENDOR-FILE is associated with a physical file named "VENDOR"
on the computer hard disk or other storage device. This file will have the physical name "VENDOR",
"VENDOR.DAT", or something similar, on the disk or tape. At line 001200, the file organization is
specified to be indexed. At line 001300, a field in the logical description of the file (in Listing 14.1) is
named as the primary index or primary key to the file. The access mode is made dynamic at line
001400.

TYPE: Listing 14.2. Physical description of an indexed file.

000600 ENVIRONMENT DIVISION.
000700 INPUT-OUTPUT SECTION.
000800 FILE-CONTROL.
000900
001000 SELECT VENDOR-FILE
001100 ASSIGN TO "VENDOR"
001200 ORGANIZATION IS INDEXED
001300 RECORD KEY IS VENDOR-NUMBER
001400 ACCESS MODE IS DYNAMIC.
001500

Remember that any part of a COBOL program can be written in a separate file and included in the main
file by using a COPY statement in the main file. Although you can do this with any part of a program, it is
common to do it with the SELECT and FD of a file. By using a COPY statement in any program that uses
that file, you can ensure that each program has defined the file in the same way. An example is shown in
Listing 14.3.

TYPE: Listing 14.3. Using COPY files.

000600 ENVIRONMENT DIVISION.
000700 INPUT-OUTPUT SECTION.
000800 FILE-CONTROL.
000900
001000 COPY "SLVND01.CBL".
001100
001200 DATA DIVISION.
001300 FILE SECTION.
001400
001500 COPY "FDVND01.CBL".
001600

Opening and Closing Indexed Files
You open an indexed file by specifying the open mode and the filename. Output mode creates a new file;
I/O mode allows reading and writing access to an existing file. You close a file by naming the file after a
CLOSE command. Listings 14.4 and 14.5 show examples of opening and closing files.

TYPE: Listing 14.4. Opening output and closing it.

003500 PROGRAM-BEGIN.
003600 OPEN OUTPUT VENDOR-FILE.
003700 CLOSE VENDOR-FILE.

TYPE: Listing 14.5. Opening I/O and closing it.

003400 PROCEDURE DIVISION.
003500 PROGRAM-BEGIN.
003600 OPEN I-O VENDOR-FILE.
003700 PERFORM MAIN-PROCESS.
003800 CLOSE VENDOR-FILE.

Reading Through a File
When an indexed file is opened in I/O or input mode, the file is usually set up so that a READ NEXT on
the file retrieves the record with the lowest primary key value. In Listing 14.6, the READ NEXT action
either reads the record with the primary key of the lowest value, or it produces an error if no records are
in the file.

TYPE: Listing 14.6. Reading the record with the lowest primary key.

003600 OPEN I-O VENDOR-FILE.
003700 READ VENDOR-FILE NEXT RECORD.

A READ NEXT should use the AT END condition to trap a file error condition at the end of the file, as
shown in Listing 14.7.

TYPE: Listing 14.7. Trapping AT END.

003600 READ-NEXT-VENDOR-RECORD.
003700 READ VENDOR-FILE NEXT RECORD
003800 AT END MOVE "Y" TO END-OF-FILE.

Adding Records to Indexed Files
Records are added to the file by loading the values in the record and using a WRITE command followed
by the name of the record. The INVALID KEY condition should be used to trap write errors (as shown
in Listing 14.8). These can be caused by trying to write a record with a primary key value that is the
same as a record already in the file. Each record in an indexed file must have a unique primary key.

TYPE: Listing 14.8. Writing a new record.

005100 WRITE-VENDOR-RECORD.
005200 WRITE VENDOR-RECORD
005300 INVALID KEY
005400 DISPLAY "RECORD ALREADY ON FILE".

Looking Up Records in Indexed Files
A record can be read from an indexed file by moving a value to the field that is the primary key of the
file and using READ (as shown in Listing 14.9). The INVALID KEY condition should be used to trap
file error conditions that happen when a record does not exist that matches the value requested in the
primary key field.

TYPE: Listing 14.9. Using READ to retrieve vendor record.

019800 PERFORM ENTER-VENDOR-NUMBER.
019900 MOVE "Y" TO RECORD-FOUND.
020000 READ VENDOR-FILE RECORD
020100 INVALID KEY
020200 MOVE "N" TO RECORD-FOUND.
020300

Changing Records in Indexed Files
You can change a record in an indexed file by reading the original record, loading the new values into the
fields of the record, and then using a REWRITE command followed by the name of the record (as shown
in Listing 14.10). The primary key of the record cannot be changed using this method, but any other field

in the record can be changed.

TYPE: Listing 14.10. Using REWRITE to change a record.

019200 PERFORM ENTER-VENDOR-NUMBER.
019300 PERFORM READ-VENDOR-RECORD.
019400 IF RECORD-FOUND = "Y"
019500 PERFORM LOAD-NEW-VENDOR-DATA
019600 PERFORM REWRITE-VENDOR-RECORD.
019700
019800 READ-VENDOR-RECORD.
019900 MOVE "Y" TO RECORD-FOUND.
020000 READ VENDOR-FILE RECORD
020100 INVALID KEY
020200 MOVE "N" TO RECORD-FOUND.
020300
020400 REWRITE-VENDOR-RECORD.
020500 REWRITE VENDOR-RECORD
020600 INVALID KEY
020700 DISPLAY "ERROR REWRITING VENDOR RECORD".

Deleting Records in Indexed Files
You can delete a record from an indexed file by reading the original record and then using the DELETE
command, followed by the name of the file (as shown in Listing 14.11).

TYPE: Listing 14.11. Using DELETE to remove a record.

019300 PERFORM ENTER-VENDOR-NUMBER.
019400 PERFORM READ-VENDOR-RECORD.
019500 IF RECORD-FOUND = "Y"
019600 PERFORM DELETE-VENDOR-RECORD.
019700
019800 READ-VENDOR-RECORD.
019900 MOVE "Y" TO RECORD-FOUND.
020000 READ VENDOR-FILE RECORD
020100 INVALID KEY
020200 MOVE "N" TO RECORD-FOUND.
020300
020400 DELETE-VENDOR-RECORD.
020500 DELETE VENDOR-FILE RECORD
020600 INVALID KEY
020700 DISPLAY "ERROR DELETING VENDOR RECORD".

It is confusing that some file operations are performed using the filename and some are performed using
the record name. Two examples of these statements appear at lines 020000 and 020500 in Listing

14.10. Just remember that WRITE and REWRITE use the record name; all other file operations, including
those you have not yet learned, use the filename.

Some COBOL programmers try to remember this with the rule "Read a file, write a record." This rule is
a little short on detail because it doesn't mention OPEN, CLOSE, DELETE, and REWRITE. It is better to
remember, "Write and rewrite a record, do everything else to a file."

Combined Maintenance
All of the four maintenance programs share common elements, and it is possible to combine the four
modes into one program and take advantage of this common code.

Whether or not you do this is a matter for system design consideration. In some systems, all users have
access to Inquire (Look Up) mode, several might have access to Add or Change mode, and possibly only
a few have access to Delete mode. Security is much easier to control when the four modes are separate.
Less coding is involved when the four modes are combined. Listing 14.12 combines all four programs
into one maintenance program, with a menu for selecting the mode to be used while running the
program.

TYPE: Listing 14.12. All modes in one program.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. VNDMNT01.
000300*--------------------------------
000400* Add, Change, Inquire, and Delete
000500* for the Vendor File.
000600*--------------------------------
000700 ENVIRONMENT DIVISION.
000800 INPUT-OUTPUT SECTION.
000900 FILE-CONTROL.
001000
001100 COPY "SLVND01.CBL".
001200
001300 DATA DIVISION.
001400 FILE SECTION.
001500
001600 COPY "FDVND02.CBL".
001700
001800 WORKING-STORAGE SECTION.
001900
002000 77 MENU-PICK PIC 9.
002100 88 MENU-PICK-IS-VALID VALUES 0 THRU 4.
002200
002300 77 THE-MODE PIC X(7).
002400 77 WHICH-FIELD PIC 9.
002500 77 OK-TO-DELETE PIC X.

002600 77 RECORD-FOUND PIC X.
002700 77 VENDOR-NUMBER-FIELD PIC Z(5).
002800
002900 PROCEDURE DIVISION.
003000 PROGRAM-BEGIN.
003100 PERFORM OPENING-PROCEDURE.
003200 PERFORM MAIN-PROCESS.
003300 PERFORM CLOSING-PROCEDURE.
003400
003500 PROGRAM-DONE.
003600 STOP RUN.
003700
003800 OPENING-PROCEDURE.
003900 OPEN I-O VENDOR-FILE.
004000
004100 CLOSING-PROCEDURE.
004200 CLOSE VENDOR-FILE.
004300
004400
004500 MAIN-PROCESS.
004600 PERFORM GET-MENU-PICK.
004700 PERFORM MAINTAIN-THE-FILE
004800 UNTIL MENU-PICK = 0.
004900
005000*--------------------------------
005100* MENU
005200*--------------------------------
005300 GET-MENU-PICK.
005400 PERFORM DISPLAY-THE-MENU.
005500 PERFORM GET-THE-PICK.
005600 PERFORM MENU-RETRY
005700 UNTIL MENU-PICK-IS-VALID.
005800
005900 DISPLAY-THE-MENU.
006000 PERFORM CLEAR-SCREEN.
006100 DISPLAY " PLEASE SELECT:".
006200 DISPLAY " ".
006300 DISPLAY " 1. ADD RECORDS".
006400 DISPLAY " 2. CHANGE A RECORD".
006500 DISPLAY " 3. LOOK UP A RECORD".
006600 DISPLAY " 4. DELETE A RECORD".
006700 DISPLAY " ".
006800 DISPLAY " 0. EXIT".
006900 PERFORM SCROLL-LINE 8 TIMES.
007000
007100 GET-THE-PICK.

007200 DISPLAY "YOUR CHOICE (0-4)?".
007300 ACCEPT MENU-PICK.
007400 MENU-RETRY.
007500 DISPLAY "INVALID SELECTION - PLEASE RE-TRY.".
007600 PERFORM GET-THE-PICK.
007700 CLEAR-SCREEN.
007800 PERFORM SCROLL-LINE 25 TIMES.
007900
008000 SCROLL-LINE.
008100 DISPLAY " ".
008200
008300 MAINTAIN-THE-FILE.
008400 PERFORM DO-THE-PICK.
008500 PERFORM GET-MENU-PICK.
008600
008700 DO-THE-PICK.
008800 IF MENU-PICK = 1
008900 PERFORM ADD-MODE
009000 ELSE
009100 IF MENU-PICK = 2
009200 PERFORM CHANGE-MODE
009300 ELSE
009400 IF MENU-PICK = 3
009500 PERFORM INQUIRE-MODE
009600 ELSE
009700 IF MENU-PICK = 4
009800 PERFORM DELETE-MODE.
009900
010000*--------------------------------
010100* ADD
010200*--------------------------------
010300 ADD-MODE.
010400 MOVE "ADD" TO THE-MODE.
010500 PERFORM GET-NEW-VENDOR-NUMBER.
010600 PERFORM ADD-RECORDS
010700 UNTIL VENDOR-NUMBER = ZEROES.
010800
010900 GET-NEW-VENDOR-NUMBER.
011000 PERFORM INIT-VENDOR-RECORD.
011100 PERFORM ENTER-VENDOR-NUMBER.
011200 MOVE "Y" TO RECORD-FOUND.
011300 PERFORM FIND-NEW-VENDOR-RECORD
011400 UNTIL RECORD-FOUND = "N" OR
011500 VENDOR-NUMBER = ZEROES.
011600
011700 FIND-NEW-VENDOR-RECORD.

011800 PERFORM READ-VENDOR-RECORD.
011900 IF RECORD-FOUND = "Y"
012000 DISPLAY "RECORD ALREADY ON FILE"
012100 PERFORM ENTER-VENDOR-NUMBER.
012200
012300 ADD-RECORDS.
012400 PERFORM ENTER-REMAINING-FIELDS.
012500 PERFORM WRITE-VENDOR-RECORD.
012600 PERFORM GET-NEW-VENDOR-NUMBER.
012700
012800 ENTER-REMAINING-FIELDS.
012900 PERFORM ENTER-VENDOR-NAME.
013000 PERFORM ENTER-VENDOR-ADDRESS-1.
013100 PERFORM ENTER-VENDOR-ADDRESS-2.
013200 PERFORM ENTER-VENDOR-CITY.
013300 PERFORM ENTER-VENDOR-STATE.
013400 PERFORM ENTER-VENDOR-ZIP.
013500 PERFORM ENTER-VENDOR-CONTACT.
013600 PERFORM ENTER-VENDOR-PHONE.
013700
013800*--------------------------------
013900* CHANGE
014000*--------------------------------
014100 CHANGE-MODE.
014200 MOVE "CHANGE" TO THE-MODE.
014300 PERFORM GET-VENDOR-RECORD.
014400 PERFORM CHANGE-RECORDS
014500 UNTIL VENDOR-NUMBER = ZEROES.
014600
014700 CHANGE-RECORDS.
014800 PERFORM GET-FIELD-TO-CHANGE.
014900 PERFORM CHANGE-ONE-FIELD
015000 UNTIL WHICH-FIELD = ZERO.
015100 PERFORM GET-VENDOR-RECORD.
015200
015300 GET-FIELD-TO-CHANGE.
015400 PERFORM DISPLAY-ALL-FIELDS.
015500 PERFORM ASK-WHICH-FIELD.
015600
015700 ASK-WHICH-FIELD.
015800 DISPLAY "ENTER THE NUMBER OF THE FIELD".
015900 DISPLAY "TO CHANGE (1-8) OR 0 TO EXIT".
016000 ACCEPT WHICH-FIELD.
016100 IF WHICH-FIELD > 8
016200 DISPLAY "INVALID ENTRY".
016300

016400 CHANGE-ONE-FIELD.
016500 PERFORM CHANGE-THIS-FIELD.
016600 PERFORM GET-FIELD-TO-CHANGE.
016700
016800 CHANGE-THIS-FIELD.
016900 IF WHICH-FIELD = 1
017000 PERFORM ENTER-VENDOR-NAME.
017100 IF WHICH-FIELD = 2
017200 PERFORM ENTER-VENDOR-ADDRESS-1.
017300 IF WHICH-FIELD = 3
017400 PERFORM ENTER-VENDOR-ADDRESS-2.
017500 IF WHICH-FIELD = 4
017600 PERFORM ENTER-VENDOR-CITY.
017700 IF WHICH-FIELD = 5
017800 PERFORM ENTER-VENDOR-STATE.
017900 IF WHICH-FIELD = 6
018000 PERFORM ENTER-VENDOR-ZIP.
018100 IF WHICH-FIELD = 7
018200 PERFORM ENTER-VENDOR-CONTACT.
018300 IF WHICH-FIELD = 8
018400 PERFORM ENTER-VENDOR-PHONE.
018500
018600 PERFORM REWRITE-VENDOR-RECORD.
018700
018800*--------------------------------
018900* INQUIRE
019000*--------------------------------
019100 INQUIRE-MODE.
019200 MOVE "DISPLAY" TO THE-MODE.
019300 PERFORM GET-VENDOR-RECORD.
019400 PERFORM INQUIRE-RECORDS
019500 UNTIL VENDOR-NUMBER = ZEROES.
019600
019700 INQUIRE-RECORDS.
019800 PERFORM DISPLAY-ALL-FIELDS.
019900 PERFORM GET-VENDOR-RECORD.
020000
020100*--------------------------------
020200* DELETE
020300*--------------------------------
020400 DELETE-MODE.
020500 MOVE "DELETE" TO THE-MODE.
020600 PERFORM GET-VENDOR-RECORD.
020700 PERFORM DELETE-RECORDS
020800 UNTIL VENDOR-NUMBER = ZEROES.
020900

021000 DELETE-RECORDS.
021100 PERFORM DISPLAY-ALL-FIELDS.
021200 MOVE "X" TO OK-TO-DELETE.
021300
021400 PERFORM ASK-TO-DELETE
021500 UNTIL OK-TO-DELETE = "Y" OR "N".
021600
021700 IF OK-TO-DELETE = "Y"
021800 PERFORM DELETE-VENDOR-RECORD.
021900
022000 PERFORM GET-VENDOR-RECORD.
022100
022200 ASK-TO-DELETE.
022300 DISPLAY "DELETE THIS RECORD (Y/N)?".
022400 ACCEPT OK-TO-DELETE.
022500 IF OK-TO-DELETE = "y"
022600 MOVE "Y" TO OK-TO-DELETE.
022700 IF OK-TO-DELETE = "n"
022800 MOVE "N" TO OK-TO-DELETE.
022900 IF OK-TO-DELETE NOT = "Y" AND
023000 OK-TO-DELETE NOT = "N"
023100 DISPLAY "YOU MUST ENTER YES OR NO".
023200
023300*--------------------------------
023400* Routines shared by all modes
023500*--------------------------------
023600 INIT-VENDOR-RECORD.
023700 MOVE SPACE TO VENDOR-RECORD.
023800 MOVE ZEROES TO VENDOR-NUMBER.
023900
024000 ENTER-VENDOR-NUMBER.
024100 DISPLAY " ".
024200 DISPLAY "ENTER VENDOR NUMBER OF THE VENDOR" .
024300 DISPLAY "TO " THE-MODE " (1-99999)".
024400 DISPLAY "ENTER 0 TO STOP ENTRY".
024500 ACCEPT VENDOR-NUMBER-FIELD.
024600*OR ACCEPT VENDOR-NUMBER-FIELD WITH CONVERSION.
024700
024800 MOVE VENDOR-NUMBER-FIELD TO VENDOR-NUMBER.
024900
025000 GET-VENDOR-RECORD.
025100 PERFORM INIT-VENDOR-RECORD.
025200 PERFORM ENTER-VENDOR-NUMBER.
025300 MOVE "N" TO RECORD-FOUND.
025400 PERFORM FIND-VENDOR-RECORD
025500 UNTIL RECORD-FOUND = "Y" OR

025600 VENDOR-NUMBER = ZEROES.
025700
025800*--------------------------------
025900* Routines shared Add and Change
026000*--------------------------------
026100 FIND-VENDOR-RECORD.
026200 PERFORM READ-VENDOR-RECORD.
026300 IF RECORD-FOUND = "N"
026400 DISPLAY "RECORD NOT FOUND"
026500 PERFORM ENTER-VENDOR-NUMBER.
026600
026700 ENTER-VENDOR-NAME.
026800 DISPLAY "ENTER VENDOR NAME".
026900 ACCEPT VENDOR-NAME.
027000
027100 ENTER-VENDOR-ADDRESS-1.
027200 DISPLAY "ENTER VENDOR ADDRESS-1".
027300 ACCEPT VENDOR-ADDRESS-1.
027400
027500 ENTER-VENDOR-ADDRESS-2.
027600 DISPLAY "ENTER VENDOR ADDRESS-2".
027700 ACCEPT VENDOR-ADDRESS-2.
027800
027900 ENTER-VENDOR-CITY.
028000 DISPLAY "ENTER VENDOR CITY".
028100 ACCEPT VENDOR-CITY.
028200
028300 ENTER-VENDOR-STATE.
028400 DISPLAY "ENTER VENDOR STATE".
028500 ACCEPT VENDOR-STATE.
028600
028700 ENTER-VENDOR-ZIP.
028800 DISPLAY "ENTER VENDOR ZIP".
028900 ACCEPT VENDOR-ZIP.
029000
029100 ENTER-VENDOR-CONTACT.
029200 DISPLAY "ENTER VENDOR CONTACT".
029300 ACCEPT VENDOR-CONTACT.
029400
029500 ENTER-VENDOR-PHONE.
029600 DISPLAY "ENTER VENDOR PHONE".
029700 ACCEPT VENDOR-PHONE.
029800
029900*--------------------------------
030000* Routines shared by Change,
030100* Inquire and Delete

030200*--------------------------------
030300 DISPLAY-ALL-FIELDS.
030400 DISPLAY " ".
030500 PERFORM DISPLAY-VENDOR-NUMBER.
030600 PERFORM DISPLAY-VENDOR-NAME.
030700 PERFORM DISPLAY-VENDOR-ADDRESS-1.
030800 PERFORM DISPLAY-VENDOR-ADDRESS-2.
030900 PERFORM DISPLAY-VENDOR-CITY.
031000 PERFORM DISPLAY-VENDOR-STATE.
031100 PERFORM DISPLAY-VENDOR-ZIP.
031200 PERFORM DISPLAY-VENDOR-CONTACT.
031300 PERFORM DISPLAY-VENDOR-PHONE.
031400 DISPLAY " ".
031500
031600 DISPLAY-VENDOR-NUMBER.
031700 DISPLAY " VENDOR NUMBER: " VENDOR-NUMBER.
031800
031900 DISPLAY-VENDOR-NAME.
032000 DISPLAY "1. VENDOR NAME: " VENDOR-NAME.
032100
032200 DISPLAY-VENDOR-ADDRESS-1.
032300 DISPLAY "2. VENDOR ADDRESS-1: " VENDOR-ADDRESS-1.
032400
032500 DISPLAY-VENDOR-ADDRESS-2.
032600 DISPLAY "3. VENDOR ADDRESS-2: " VENDOR-ADDRESS-2.
032700
032800 DISPLAY-VENDOR-CITY.
032900 DISPLAY "4. VENDOR CITY: " VENDOR-CITY.
033000
033100 DISPLAY-VENDOR-STATE.
033200 DISPLAY "5. VENDOR STATE: " VENDOR-STATE.
033300
033400 DISPLAY-VENDOR-ZIP.
033500 DISPLAY "6. VENDOR ZIP: " VENDOR-ZIP.
033600
033700 DISPLAY-VENDOR-CONTACT.
033800 DISPLAY "7. VENDOR CONTACT: " VENDOR-CONTACT.
033900
034000 DISPLAY-VENDOR-PHONE.
034100 DISPLAY "8. VENDOR PHONE: " VENDOR-PHONE.
034200
034300*--------------------------------
034400* File I-O Routines
034500*--------------------------------
034600 READ-VENDOR-RECORD.
034700 MOVE "Y" TO RECORD-FOUND.

034800 READ VENDOR-FILE RECORD
034900 INVALID KEY
035000 MOVE "N" TO RECORD-FOUND.
035100
035200*or READ VENDOR-FILE RECORD WITH LOCK
035300* INVALID KEY
035400* MOVE "N" TO RECORD-FOUND.
035500
035600*or READ VENDOR-FILE RECORD WITH HOLD
035700* INVALID KEY
035800* MOVE "N" TO RECORD-FOUND.
035900
036000 WRITE-VENDOR-RECORD.
036100 WRITE VENDOR-RECORD
036200 INVALID KEY
036300 DISPLAY "RECORD ALREADY ON FILE".
036400
036500 REWRITE-VENDOR-RECORD.
036600 REWRITE VENDOR-RECORD
036700 INVALID KEY
036800 DISPLAY "ERROR REWRITING VENDOR RECORD".
036900
037000 DELETE-VENDOR-RECORD.
037100 DELETE VENDOR-FILE RECORD
037200 INVALID KEY
037300 DISPLAY "ERROR DELETING VENDOR RECORD".
037400

The following menu output of vndmnt01.cbl asks the user to select an entry mode:

OUTPUT:
PLEASE SELECT:
1. ADD RECORDS
2. CHANGE A RECORD
3. LOOK UP A RECORD
4. DELETE A RECORD
0. EXIT
YOUR CHOICE (0-4)?

ANALYSIS: The sections of the program have been moved around to separate the routines that are
exclusive to the menu, or to Add, Change, Inquire, and Delete modes.

Other sections have been created to combine the routines that are shared by different modes. Each of
these groups of code is commented. Two deliberate errors are in this collection. Two paragraphs are
grouped under comments where they don't really belong. This is for the exercises at the end of the
chapter. If you happen to spot them, you've got a jump on the exercise.

Even though this program is nearly 400 lines long, it is possible to break it into sections and understand
these sections one piece at a time. A couple of changes have been made in Add mode, but overall, the
combined program is the same as the code used in the separate programs.

One trick was used in ENTER-VENDOR-NUMBER at line 024000. In the original add, change, delete,
and inquire programs, the prompt for the user to enter the vendor number is one of the following:

ENTER VENDOR NUMBER OF THE VENDOR
TO ADD (1-99999)
ENTER 0 TO STOP ENTRY
ENTER VENDOR NUMBER OF THE VENDOR
TO CHANGE (1-99999)
ENTER 0 TO STOP ENTRY
ENTER VENDOR NUMBER OF THE VENDOR
TO DISPLAY (1-99999)
ENTER 0 TO STOP ENTRY
ENTER VENDOR NUMBER OF THE VENDOR
TO DELETE (1-99999)
ENTER 0 TO STOP ENTRY

These prompts are identical except for the bold keyword.

In vndmnt01.cbl, the display logic has been changed to the code shown in Listing 14.13.

TYPE: Listing 14.13. A new approach to the vendor number prompt.

024200 DISPLAY "ENTER VENDOR NUMBER OF THE VENDOR" .
024300 DISPLAY "TO " THE-MODE " (1-99999)".
024400 DISPLAY "ENTER 0 TO STOP ENTRY".

ANALYSIS: THE-MODE is filled in at the beginning of each mode at lines 010400, 014200,
019200, and 020500 with "ADD", "CHANGE", "DISPLAY", or "DELETE".

The GET-MENU-PICK logic starting at line 005300 displays the menu, asks the user for an entry, and
then starts a processing loop if the user has entered an invalid entry. The processing loop consists of
displaying an invalid entry message and then asking for another entry. Figure 14.1 illustrates this
relationship.

Figure 14.1.
The menu pick loop.

One other new coding technique is used in DO-THE-PICK at line 008700. This is the use of a series of
IF ELSE combinations linked one to the other as shown in Listing 14.14 (extracted from
vndmnt01.cbl).

TYPE: Listing 14.14. Multiple IF ELSE statements.

008700 DO-THE-PICK.
008800 IF MENU-PICK = 1

file:///D|/Cool Stuff/old/ftp/Sams.Teach.Yourself.Cobol.In.21.Days/Teach Yourself Cobol in 21 Days/ch14/01.htm

008900 PERFORM ADD-MODE
009000 ELSE
009100 IF MENU-PICK = 2
009200 PERFORM CHANGE-MODE
009300 ELSE
009400 IF MENU-PICK = 3
009500 PERFORM INQUIRE-MODE
009600 ELSE
009700 IF MENU-PICK = 4
009800 PERFORM DELETE-MODE.

This is a series of IF ELSE tests nested inside one another and would be more properly represented
with something similar to the code shown in Listing 14.15.

TYPE: Listing 14.15. Indented IF ELSE statements.

008700 DO-THE-PICK.
008800 IF MENU-PICK = 1
008900 PERFORM ADD-RECORDS
009000 ELSE
009100 IF MENU-PICK = 2
009200 PERFORM CHANGE-RECORDS
009300 ELSE
009400 IF MENU-PICK = 3
009500 PERFORM LOOK-UP-RECORDS
009600 ELSE
009700 IF MENU-PICK = 4
009800 PERFORM DELETE-RECORDS.

ANALYSIS: The first IF tests for a MENU-PICK of 1. If the user picks 1, line 008900 is executed. If
1 is not picked, the code below the ELSE at line 009000 is executed. This section of code starts
immediately with another IF test at line 009100. If the MENU-PICK is 2, line 009200 is executed;
otherwise, everything below the ELSE at line 009300 is executed. Again, this section of code starts
with an IF at line 009400.

This particular method of testing for one of several possible values is very common in
programs--especially in menu programs. It usually is written as shown in Listing 14.14, because it is
slightly clearer that the paragraph is testing for one possible condition and then performing something
based on that one condition. The full analysis of this program is left to you at the end of this chapter as an
exercise.

Further information on IF ELSE is in order here. When an IF appears within an IF, it might not be
obvious how this works. The inner IF is tested only if the outer IF is true. IF and IF ELSE commands
can be nested inside one another. Use this construction to create nested IF statements:

IF condition
 do something
 IF condition

 do something

In the construction above, the first IF condition is tested. If it is false, none of the remaining statements
is performed. If it is true, all statements are performed, including the test at the second IF. Use the
following construction for a nested IF-ELSE.

 IF condition
 do something
 IF condition
 do something
 ELSE
 do something
ELSE
 do something

The first IF is tested. If it is false, the logic under the final ELSE is performed. If the first IF condition
tests true, then everything between the IF and the final ELSE is performed, including an inner IF
ELSE test.

The following are examples of nested IF statements:

IF VENDOR-NUMBER NOT = ZEROES
 PERFORM READ-VENDOR-RECORD
 IF RECORD-FOUND = "N"
 DISPLAY "RECORD NOT FOUND".
IF VENDOR-NUMBER NOT = ZEROES
 PERFORM READ-VENDOR-RECORD
 IF RECORD-FOUND = "N"
 DISPLAY "RECORD NOT FOUND"
 ELSE
 DISPLAY "RECORD WAS FOUND"
ELSE
 DISPLAY "YOU ENTERED ZEROES"

The indentation is a matter of style and is used only to indicate which IF matches which ELSE and to
make it easier to read.

Figures 14.2 and 14.3 show the relationships caused by nesting IF and IF ELSE commands.

Figure 14.2.
Nested IF commands.

Figure 14.3.
Nested IF ELSE commands.

DO/DON'T:
DO break up complex IF ELSE logic into smaller paragraphs, or rewrite that area of the
program to simplify the problem.

DON'T nest IF commands more than two or three levels. Nesting an IF within another IF

file:///D|/Cool Stuff/old/ftp/Sams.Teach.Yourself.Cobol.In.21.Days/Teach Yourself Cobol in 21 Days/ch14/02.htm
file:///D|/Cool Stuff/old/ftp/Sams.Teach.Yourself.Cobol.In.21.Days/Teach Yourself Cobol in 21 Days/ch14/03.htm

can lead to some confusion in the program, and if you find that you need to nest three levels
of IF, you might want to rethink the way you are writing the paragraph. You can nest IF
ELSE logic in such a way that it is difficult to understand what a program is doing. For an
exception to this general rule, see the Q&A section in the Workshop at the end of this
chapter.

Code, compile, and run this program; then add, change, delete, and look up records in the vendor file
using this one program.

Summary
Today, you reviewed how to define an indexed file in a COBOL program, and the syntax of each type of
file operation: OPEN, CLOSE, READ, READ NEXT, WRITE, REWRITE, and DELETE. You also learned
the following basics:

An open, input, or I/O on an indexed file usually sets the file up so that a READ NEXT will
retrieve the record with the lowest primary key value.

●

WRITE and REWRITE commands use the record name. All other file operations use the filename.●

When a variable has more than two possible values and different actions are executed based on
those possible values, an IF ELSE IF ELSE IF ELSE series of tests can be used to execute
the series of actions.

●

Q&A
Q The IF ELSE example in Listing 14.15 is nested more than three levels deep. Wasn't such
nesting of IF ELSE advised against?

A Yes. Usually you avoid using IF within an IF that is more than two or three levels deep.
However, nesting of IF ELSE when you are executing one of several possible options based on
the value of a variable is a special case. It is a common practice, especially for menu-type
activities, as shown in the example in Listing 14.12, vndmnt01.cbl. The use of this style of IF
ELSE is common in programs that perform this type of multiple-choice action because it remains
easy to understand (although it is usually written as in the example in Listing 14.14).

Workshop

Quiz

1. If you have created a program containing a CUSTOMER-FILE, and the record for the file is
named CUSTOMER-RECORD, what would be the correct command for reading a record in the file?

a. READ CUSTOMER-RECORD INVALID KEY MOVE "N" TO RECORD-FOUND.

b. READ CUSTOMER-FILE RECORD INVALID KEY MOVE "N" TO
RECORD-FOUND.

2. For the same file, what is the correct command for writing a new record to the file?

a. WRITE CUSTOMER-RECORD INVALID KEY DISPLAY "RECORD ALREADY ON
FILE".

b. READ CUSTOMER-FILE RECORD INVALID KEY DISPLAY "RECORD ALREADY
ON FILE".

Exercises

1. One of the most useful analysis tools is a plain highlighter or red pen. Print out
vndmnt01.cbl four times. Label the first print-out Add Mode. Trace through the program and
highlight each paragraph and variable that is used in Add mode. Label the second print-out Change
Mode, and highlight all variables and paragraphs used in change mode. Repeat this for Inquire
mode, and then again for Delete mode. When these steps are complete, answer the following
questions.

a. Two of the paragraphs are placed incorrectly. They appear in groups of routines that have
comments indicating in which modes the routines are used, but the routines actually are not
used in the modes indicated. Which routines are they?

b. Where should these routines be placed correctly?

c. Which modes use the READ-VENDOR-RECORD routine?

d. Which modes use the WRITE-VENDOR-RECORD routine?

e. Which modes use the REWRITE-VENDOR-RECORD routine?

f. Which modes use the DELETE-VENDOR-RECORD routine?

2. Print a fifth copy of the program, label it Menu, and highlight all the paragraphs and variables
used in the menu routines. Obviously, the entire program is run from the menu, so you could say
that all routines are part of the menu. Mark only routines up to DO-THE-PICK.

Previous chapter Next chapter Contents

Macmillan Computer Publishing USA

© Copyright, Macmillan Computer Publishing. All rights reserved.

Teach Yourself COBOL in 21 days,
Second Edition

Previous chapter Next chapter Contents

Week 2 In Review
Nearly the entire second week focused on the concept of reading information from files and writing
information to files. This is an inherent strength of the COBOL language. Day 8 laid the groundwork in
"Structured Data," the key to organizing your program so that it can properly interact with files. Most of
your COBOL programs in the real world will focus on obtaining information (either from the person
using the program or from a file), manipulating that information, and storing the information either on
disk or in printed form. Each of Week 2's programs is designed to focus on specific file functions.

Take a look at everything you've accomplished in two weeks. You've covered many concepts--some
easier than others. You'll find the third week much easier, because it focuses on enhancing concepts
you've already learned. Remember to focus on how new concepts dovetail with principles you've already
learned. Hang in there; you're almost finished!

Previous chapter Next chapter Contents

Macmillan Computer Publishing USA

© Copyright, Macmillan Computer Publishing. All rights reserved.

Teach Yourself COBOL in 21 days,
Second Edition

Previous chapter Next chapter Contents

Week 3 At a Glance
The third (and somewhat final) week gives you the knowledge you need to finish your 21-day journey.
You'll also have everything you need--except the experience--to be a power COBOL programmer.
Although it might be tempting right now to take what you've learned and run out to apply it, you should
finish this third week to ensure that you're ready for anything you might encounter.

Where You're Going
Day 15, "Data Integrity," focuses on the process of keeping intact (and trustworthy) the information your
program manages. Day 16, "Using Look Up and Arrays," instills one of the simplest methods of data
validation. Day 17, "Alternate Keys," provides advanced coverage of information provided on Day 11,
"Indexed File I/O." Day 18, "Calling Other Programs," covers a topic everyone needs to know in the real
world--how to use your program to interact with other programs by calling them. Day 19, "Complex
Data Entry Problems," and Day 20, "More Complex Data Entry," shed light on a real-world problem:
preparing your program for the way users expect to enter data. Day 19 also gives you your first look at
the year 2000 problem and some of the techniques used to handle it. Day 21, "Selecting, Sorting, and
Reporting," finishes the week by combining the concepts of selecting relevant information, sorting it into
the proper order, and preparing a report.

After finishing this week, you will have completed your 21-day journey. Several bonus days have been
included to ensure that you're ready to tackle the world.

Previous chapter Next chapter Contents

Macmillan Computer Publishing USA

© Copyright, Macmillan Computer Publishing. All rights reserved.

Teach Yourself COBOL in 21 days,
Second Edition

Previous chapter Next chapter Contents

- Day 15 -
Data Integrity

As computer systems become larger and larger, the amount of data stored on the computers increases. It
is important that this data be as correct as it can be. In today's lesson, you create a file containing state
codes, enter data into it using various levels of validation, and learn about the following topics:

What is data integrity?●

What is valid data?●

How to decide whether to validate data.●

When to validate data.●

Required entry validation.●

Standard field entry.●

Change mode for simple files.●

Printing a code file.●

Converting to uppercase.●

What Is Data Integrity?
You probably have heard the phrase, "Garbage in, garbage out." Recall from Day 1, "Your First COBOL
Program," that a computer is a stupid machine. It will do only what you tell it to do and cannot make
sensible decisions. If you put a silly program into the computer (garbage in), it will execute the silliness
without question (garbage out). If you put invalid data into the data files, a program will return that
invalid data to you every time you ask for it.

Creating data integrity is the process of ensuring that every field in every record of every file in a system
contains only valid data. It is most efficient to do this when the data first is added to a file in the
maintenance program.

What Is Valid Data?
Valid data can be broken down into two categories:

Program-level data●

Application-level data●

Program-level data must be valid to match the criteria of the specified computer or programming
language. A numeric variable must contain numeric data, even if it is only zeroes. A record in an indexed
file must contain a unique value for the primary key. Invalid data at the program level usually causes a
program to fail or crash, and therefore it is fairly easy to spot.

Application-level data must be valid to enable the user to use the system correctly. For example, a
program that is used to maintain a file of phone numbers that are critical to a business requires extra care
to ensure that phone numbers are entered correctly. How much validation is enough depends on the
application.

Listing 15.1 shows the now-familiar logical description of the vendor file.

TYPE: Listing 15.1. Vendor file FD.

000100*--------------------------------
000200* FDVND02.CBL
000300* Primary Key - VENDOR-NUMBER
000400* VENDOR-ADDRESS-2 not always used
000500* so may be SPACES
000600* VENDOR-PHONE is usually the
000700* number for VENDOR-CONTACT
000800* All fields should be entered in
000900* UPPER case.
001000*--------------------------------
001100 FD VENDOR-FILE
001200 LABEL RECORDS ARE STANDARD.
001300 01 VENDOR-RECORD.

001400 05 VENDOR-NUMBER PIC 9(5).
001500 05 VENDOR-NAME PIC X(30).
001600 05 VENDOR-ADDRESS-1 PIC X(30).
001700 05 VENDOR-ADDRESS-2 PIC X(30).
001800 05 VENDOR-CITY PIC X(20).
001900 05 VENDOR-STATE PIC X(2).
002000 05 VENDOR-ZIP PIC X(10).
002100 05 VENDOR-CONTACT PIC X(30).
002200 05 VENDOR-PHONE PIC X(15).
002300

ANALYSIS: The FD contains some notes at lines 000400 through 000900 about valid data, but this
could extend further. If the bill paying system prints envelopes for mailing checks to creditors, the
system should be designed so that every record in the vendor file has a valid address that can be printed
on the envelopes. If the company that uses this bill-paying system operates in such a way that it is
common to call creditors on the phone, the system design requires that VENDOR-CONTACT and
VENDOR-PHONE be filled in.

The design of any system probably requires that the VENDOR-NAME always must be filled in. The add
and change maintenance portions of the program should be set up to complain to the user if an attempt is
made to add a vendor but leave the name blank.

It would be ideal if application-level data validation could check not only that the VENDOR-NAME is
entered, but also that the VENDOR-NAME is correct. This is impractical because there is no way the
computer could contain a list of all known possible vendors to check against the name. In a case such as
VENDOR-NAME, a program usually is designed to enforce that something is entered into this field. Of
course, the user could enter XYZ or type ABC Corporashun, and the computer would have no way of
recognizing the error.

VENDOR-STATE could be validated by content. The 51 state abbreviations-- 50 states plus DC--could be
put in another file, and when the user entered the state abbreviation, it could be looked up in the state
code file. This style of validation is precise and prevents an error in the VENDOR-STATE field.

Other validations fall somewhere between these two. It might be possible to break down the
VENDOR-PHONE and check that it contains the correct number of digits. It might even be possible to
look up the area code in an area code file, but it is impractical for the computer to verify that the phone
number is correct for that vendor, unless the entire phone directory already exists in the computer for a
lookup.

A lot of validation of computer data is done by human inspection of the data. Phone numbers, addresses,
and names are some examples, but where the data can be validated by the computer, it should be. The
more important the data, the more effort should go into the validation.

Deciding Whether to Validate Data
All data to be put into a computer file should be validated, but only some of the validation can be done
by the computer. The rest must be left to a person who will read the report on a file and specify what
corrections to make.

Data should be validated by the computer if the validation is easy to perform, if the data is critical, or if
the volume of data is large. Easy validations usually can be coded into the program quickly. They should
not be overlooked. The fact that they are easy to do doesn't mean they are unimportant.

Suppose that in a bill-paying system, a design decision is made that vendor numbers will start at 10,000.
In the program, this validation becomes the following:

001100 IF VENDOR-NUMBER < 10000
001200 DISPLAY
001300 "VENDOR NUMBER MUST NOT BE LESS THAN 10000".

Critical data can become trickier to validate. A mailing-list company that advertises that it has the most
accurate mailing lists might go to the trouble of creating a zip-code file with all the zip codes in the
United States and the state for each zip code. When a data-entry operator enters a state and zip code in
the main file, the zip code might be looked up in the zip-code file and the state for that zip code would be
compared to the state that the operator entered. An error message would be provided if the state and zip
code did not match.

Large amounts of data are important to validate because it becomes harder for a human to read all the
information and check it. The same mailing-list company might go so far as to include a spelling check
on the address fields that would warn the operator that there might be a spelling error in the address, and
then ask the operator to double-check it.

DO/DON'T:
DO use the computer to validate data, and write validation routines into your program
wherever and whenever possible.

DON'T neglect to validate critical data in your program.

When to Validate Data
Every maintenance program (a program that enables you to add, change, and delete records) for a
file--especially add and change modes--must include the full validation for each field that requires
validation.

TIP: Always validate data before it is written to the file.

If you are working with a file that contains invalid data, you should track down the program or programs
that are putting invalid data in the file and correct the programs. Then correct the data in the file, either
by changing the records in change mode or by writing a program that tests all the fields for valid data and

reports on the faulty records. The faulty records then can be corrected, possibly with a separate program
to do the correction.

You make a serious mistake the first time you see a record or field containing invalid data if you then try
to modify a report or any other program to "work around" the invalid data. You have left the error in the
data file. The fix in your program has to be made to all other programs that access the file, and the
program causing the error in the first place will continue to generate errors.

DO/DON'T:
DO track down programs that are putting invalid data into files and correct them.

DON'T attempt to work around bad data.

DO correct bad data in a data file.

Required Entry Validation
Required entry validation is the simplest type of validation. It is used to ensure that a user fills in a field
that must be filled in. For this example, you are creating a new file of state codes. Listings 15.2 and 15.3
are the logical and physical descriptions of a state code file that contains the two-character codes for state
abbreviations and the names of the states.

TYPE: Listing 15.2. The FD for the state code file.

000100*--------------------------------
000200* FDSTATE.CBL
000300* Primary Key - STATE-CODE
000400* NAME is required
000500* NAME and CODE should be upper case
000600*--------------------------------
000700 FD STATE-FILE
000800 LABEL RECORDS ARE STANDARD.
000900 01 STATE-RECORD.
001000 05 STATE-CODE PIC X(2).
001100 05 STATE-NAME PIC X(20).
001200

TYPE: Listing 15.3. The SELECT statement for the state code file.

000100*--------------------------------
000200* SLSTATE.CBL
000300*--------------------------------
000400 SELECT STATE-FILE
000500 ASSIGN TO "STATE"
000600 ORGANIZATION IS INDEXED
000700 RECORD KEY IS STATE-CODE

000800 ACCESS MODE IS DYNAMIC.
000900

Listing 15.4 is similar to vndbld01.cbl. It simply opens output for a new state file. Code the
SELECT and FD for the state (shown in Listings 15.2 and 15.3), and then code, compile, and run Listing
15.4, stcbld01.cbl.

TYPE: Listing 15.4. Creating a new state code file.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. STCBLD01.
000300*--
000400* Create an Empty State Code File.
000500*--
000600 ENVIRONMENT DIVISION.
000700 INPUT-OUTPUT SECTION.
000800 FILE-CONTROL.
000900
001000 COPY "SLSTATE.CBL".
001100
001200 DATA DIVISION.
001300 FILE SECTION.
001400
001500 COPY "FDSTATE.CBL".
001600
001700 WORKING-STORAGE SECTION.
001800
001900 PROCEDURE DIVISION.
002000 PROGRAM-BEGIN.
002100 OPEN OUTPUT STATE-FILE.
002200 CLOSE STATE-FILE.
002300
002400 PROGRAM-DONE.
002500 STOP RUN.

Listing 15.5, stcmnt01.cbl, is a simple maintenance program that incorporates add, change, inquire,
and delete modes in one program, and it is similar to vndmnt01.cbl.

TYPE: Listing 15.5. Validating field entry.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. STCMNT01.
000300*--------------------------------
000400* Add, Change, Inquire and Delete
000500* for the State Code.
000600*--------------------------------
000700 ENVIRONMENT DIVISION.

000800 INPUT-OUTPUT SECTION.
000900 FILE-CONTROL.
001000
001100 COPY "SLSTATE.CBL".
001200
001300 DATA DIVISION.
001400 FILE SECTION.
001500
001600 COPY "FDSTATE.CBL".
001700
001800 WORKING-STORAGE SECTION.
001900
002000 77 MENU-PICK PIC 9.
002100 88 MENU-PICK-IS-VALID VALUES 0 THRU 4.
002200
002300 77 THE-MODE PIC X(7).
002400 77 OK-TO-DELETE PIC X.
002500 77 RECORD-FOUND PIC X.
002600 77 WHICH-FIELD PIC 9.
002700
002800
002900
003000
003100
003200
003300 PROCEDURE DIVISION.
003400 PROGRAM-BEGIN.
003500 PERFORM OPENING-PROCEDURE.
003600 PERFORM MAIN-PROCESS.
003700 PERFORM CLOSING-PROCEDURE.
003800
003900 PROGRAM-DONE.
004000 STOP RUN.
004100
004200 OPENING-PROCEDURE.
004300 OPEN I-O STATE-FILE.
004400
004500 CLOSING-PROCEDURE.
004600 CLOSE STATE-FILE.
004700
004800
004900 MAIN-PROCESS.
005000 PERFORM GET-MENU-PICK.
005100 PERFORM MAINTAIN-THE-FILE
005200 UNTIL MENU-PICK = 0.
005300

005400*--------------------------------
005500* MENU
005600*--------------------------------
005700 GET-MENU-PICK.
005800 PERFORM DISPLAY-THE-MENU.
005900 PERFORM ACCEPT-MENU-PICK.
006000 PERFORM RE-ACCEPT-MENU-PICK
006100 UNTIL MENU-PICK-IS-VALID.
006200
006300 DISPLAY-THE-MENU.
006400 PERFORM CLEAR-SCREEN.
006500 DISPLAY " PLEASE SELECT:".
006600 DISPLAY " ".
006700 DISPLAY " 1. ADD RECORDS".
006800 DISPLAY " 2. CHANGE A RECORD".
006900 DISPLAY " 3. LOOK UP A RECORD".
007000 DISPLAY " 4. DELETE A RECORD".
007100 DISPLAY " ".
007200 DISPLAY " 0. EXIT".
007300 PERFORM SCROLL-LINE 8 TIMES.
007400
007500 ACCEPT-MENU-PICK.
007600 DISPLAY "YOUR CHOICE (0-4)?".
007700 ACCEPT MENU-PICK.
007800
007900 RE-ACCEPT-MENU-PICK.
008000 DISPLAY "INVALID SELECTION - PLEASE RE-TRY.".
008100 PERFORM ACCEPT-MENU-PICK.
008200
008300 CLEAR-SCREEN.
008400 PERFORM SCROLL-LINE 25 TIMES.
008500
008600 SCROLL-LINE.
008700 DISPLAY " ".
008800
008900 MAINTAIN-THE-FILE.
009000 PERFORM DO-THE-PICK.
009100 PERFORM GET-MENU-PICK.
009200
009300 DO-THE-PICK.
009400 IF MENU-PICK = 1
009500 PERFORM ADD-MODE
009600 ELSE
009700 IF MENU-PICK = 2
009800 PERFORM CHANGE-MODE
009900 ELSE

010000 IF MENU-PICK = 3
010100 PERFORM INQUIRE-MODE
010200 ELSE
010300 IF MENU-PICK = 4
010400 PERFORM DELETE-MODE.
010500
010600*--------------------------------
010700* ADD
010800*--------------------------------
010900 ADD-MODE.
011000 MOVE "ADD" TO THE-MODE.
011100 PERFORM GET-NEW-STATE-CODE.
011200 PERFORM ADD-RECORDS
011300 UNTIL STATE-CODE = "ZZ".
011400
011500 GET-NEW-STATE-CODE.
011600 PERFORM INIT-STATE-RECORD.
011700 PERFORM ENTER-STATE-CODE.
011800 MOVE "Y" TO RECORD-FOUND.
011900 PERFORM FIND-NEW-STATE-RECORD
012000 UNTIL RECORD-FOUND = "N" OR
012100 STATE-CODE = "ZZ".
012200
012300 FIND-NEW-STATE-RECORD.
012400 PERFORM READ-STATE-RECORD.
012500 IF RECORD-FOUND = "Y"
012600 DISPLAY "RECORD ALREADY ON FILE"
012700 PERFORM ENTER-STATE-CODE.
012800
012900 ADD-RECORDS.
013000 PERFORM ENTER-REMAINING-FIELDS.
013100 PERFORM WRITE-STATE-RECORD.
013200 PERFORM GET-NEW-STATE-CODE.
013300
013400 ENTER-REMAINING-FIELDS.
013500 PERFORM ENTER-STATE-NAME.
013600
013700*--------------------------------
013800* CHANGE
013900*--------------------------------
014000 CHANGE-MODE.
014100 MOVE "CHANGE" TO THE-MODE.
014200 PERFORM GET-STATE-RECORD.
014300 PERFORM CHANGE-RECORDS
014400 UNTIL STATE-CODE = "ZZ".
014500

014600 CHANGE-RECORDS.
014700 PERFORM GET-FIELD-TO-CHANGE.
014800 PERFORM CHANGE-ONE-FIELD
014900 UNTIL WHICH-FIELD = ZERO.
015000
015100
015200 PERFORM GET-STATE-RECORD.
015300
015400 GET-FIELD-TO-CHANGE.
015500 PERFORM DISPLAY-ALL-FIELDS.
015600 PERFORM ASK-WHICH-FIELD.
015700
015800 ASK-WHICH-FIELD.
015900 PERFORM ACCEPT-WHICH-FIELD.
016000 PERFORM RE-ACCEPT-WHICH-FIELD
016100 UNTIL WHICH-FIELD NOT > 1.
016200
016300
016400 ACCEPT-WHICH-FIELD.
016500 DISPLAY "ENTER THE NUMBER OF THE FIELD".
016600 DISPLAY "TO CHANGE (1) OR 0 TO EXIT".
016700 ACCEPT WHICH-FIELD.
016800
016900 RE-ACCEPT-WHICH-FIELD.
017000 DISPLAY "INVALID ENTRY".
017100 PERFORM ACCEPT-WHICH-FIELD.
017200
017300 CHANGE-ONE-FIELD.
017400 PERFORM CHANGE-THIS-FIELD.
017500 PERFORM GET-FIELD-TO-CHANGE.
017600
017700 CHANGE-THIS-FIELD.
017800 IF WHICH-FIELD = 1
017900 PERFORM ENTER-STATE-NAME.
018000
018100 PERFORM REWRITE-STATE-RECORD.
018200
018300*--------------------------------
018400* INQUIRE
018500*--------------------------------
018600 INQUIRE-MODE.
018700 MOVE "DISPLAY" TO THE-MODE.
018800 PERFORM GET-STATE-RECORD.
018900 PERFORM INQUIRE-RECORDS
019000 UNTIL STATE-CODE = "ZZ".
019100

019200 INQUIRE-RECORDS.
019300 PERFORM DISPLAY-ALL-FIELDS.
019400 PERFORM GET-STATE-RECORD.
019500
019600*--------------------------------
019700* DELETE
019800*--------------------------------
019900 DELETE-MODE.
020000 MOVE "DELETE" TO THE-MODE.
020100 PERFORM GET-STATE-RECORD.
020200 PERFORM DELETE-RECORDS
020300 UNTIL STATE-CODE = "ZZ".
020400
020500 DELETE-RECORDS.
020600 PERFORM DISPLAY-ALL-FIELDS.
020700
020800 PERFORM ASK-OK-TO-DELETE
020900 IF OK-TO-DELETE = "Y"
021000 PERFORM DELETE-STATE-RECORD.
021100
021200 PERFORM GET-STATE-RECORD.
021300
021400 ASK-OK-TO-DELETE.
021500 PERFORM ACCEPT-OK-TO-DELETE.
021600 PERFORM RE-ACCEPT-OK-TO-DELETE
021700 UNTIL OK-TO-DELETE = "Y" OR "N".
021800
021900 ACCEPT-OK-TO-DELETE.
022000 DISPLAY "DELETE THIS RECORD (Y/N)?".
022100 ACCEPT OK-TO-DELETE.
022200 IF OK-TO-DELETE = "y"
022300 MOVE "Y" TO OK-TO-DELETE.
022400 IF OK-TO-DELETE = "n"
022500 MOVE "N" TO OK-TO-DELETE.
022600
022700 RE-ACCEPT-OK-TO-DELETE.
022800 DISPLAY "YOU MUST ENTER YES OR NO".
022900 PERFORM ACCEPT-OK-TO-DELETE.
023000
023100*--------------------------------
023200* Routines shared by all modes
023300*--------------------------------
023400 INIT-STATE-RECORD.
023500 MOVE SPACE TO STATE-RECORD.
023600
023700 ENTER-STATE-CODE.

023800 PERFORM ACCEPT-STATE-CODE.
023900 PERFORM RE-ACCEPT-STATE-CODE
024000 UNTIL STATE-CODE NOT = SPACE.
024100
024200 ACCEPT-STATE-CODE.
024300 DISPLAY " ".
024400 DISPLAY "ENTER STATE CODE OF THE STATE" .
024500 DISPLAY "TO " THE-MODE
024600 "(2 UPPER CASE CHARACTERS)".
024700 DISPLAY "ENTER ZZ TO STOP ENTRY".
024800 ACCEPT STATE-CODE.
024900
025000
025100
025200
025300
025400 RE-ACCEPT-STATE-CODE.
025500 DISPLAY "STATE CODE MUST BE ENTERED".
025600 PERFORM ACCEPT-STATE-CODE.
025700
025800 GET-STATE-RECORD.
025900 PERFORM INIT-STATE-RECORD.
026000 PERFORM ENTER-STATE-CODE.
026100 MOVE "N" TO RECORD-FOUND.
026200 PERFORM FIND-STATE-RECORD
026300 UNTIL RECORD-FOUND = "Y" OR
026400 STATE-CODE = "ZZ".
026500
026600*--------------------------------
026700* Routines shared Add and Change
026800*--------------------------------
026900 FIND-STATE-RECORD.
027000 PERFORM READ-STATE-RECORD.
027100 IF RECORD-FOUND = "N"
027200 DISPLAY "RECORD NOT FOUND"
027300 PERFORM ENTER-STATE-CODE.
027400
027500 ENTER-STATE-NAME.
027600 PERFORM ACCEPT-STATE-NAME.
027700 PERFORM RE-ACCEPT-STATE-NAME
027800 UNTIL STATE-NAME NOT = SPACES.
027900
028000 ACCEPT-STATE-NAME.
028100 DISPLAY "ENTER STATE NAME".
028200 ACCEPT STATE-NAME.
028300

028400
028500
028600
028700
028800 RE-ACCEPT-STATE-NAME.
028900 DISPLAY "STATE NAME MUST BE ENTERED".
029000 PERFORM ACCEPT-STATE-NAME.
029100
029200*--------------------------------
029300* Routines shared by Change,
029400* Inquire and Delete
029500*--------------------------------
029600 DISPLAY-ALL-FIELDS.
029700 DISPLAY " ".
029800 PERFORM DISPLAY-STATE-CODE.
029900 PERFORM DISPLAY-STATE-NAME.
030000 DISPLAY " ".
030100
030200 DISPLAY-STATE-CODE.
030300 DISPLAY " STATE CODE: " STATE-CODE.
030400
030500 DISPLAY-STATE-NAME.
030600 DISPLAY "1. STATE NAME: " STATE-NAME.
030700
030800*--------------------------------
030900* File I-O Routines
031000*--------------------------------
031100 READ-STATE-RECORD.
031200 MOVE "Y" TO RECORD-FOUND.
031300 READ STATE-FILE RECORD
031400 INVALID KEY
031500 MOVE "N" TO RECORD-FOUND.
031600
031700*or READ STATE-FILE RECORD WITH LOCK
031800* INVALID KEY
031900* MOVE "N" TO RECORD-FOUND.
032000
032100*or READ STATE-FILE RECORD WITH HOLD
032200* INVALID KEY
032300* MOVE "N" TO RECORD-FOUND.
032400
032500 WRITE-STATE-RECORD.
032600 WRITE STATE-RECORD
032700 INVALID KEY
032800 DISPLAY "RECORD ALREADY ON FILE".
032900

033000 REWRITE-STATE-RECORD.
033100 REWRITE STATE-RECORD
033200 INVALID KEY
033300 DISPLAY "ERROR REWRITING STATE RECORD".
033400
033500 DELETE-STATE-RECORD.
033600 DELETE STATE-FILE RECORD
033700 INVALID KEY
033800 DISPLAY "ERROR DELETING STATE RECORD".
033900

The following output examples of stcmnt01.cbl include the start-up menu, an example of entering a
blank state code, a correct state code, and a state code and state name in lowercase:

OUTPUT:
PLEASE SELECT:
1. ADD RECORDS
2. CHANGE A RECORD
3. LOOK UP A RECORD
4. DELETE A RECORD
0. EXIT
YOUR CHOICE (0-4)?

OUTPUT:
ENTER STATE CODE OF THE STATE
TO ADD (2 UPPER CASE CHARACTERS)
ENTER ZZ TO STOP ENTRY

(User pressed Enter here with no entry.)

STATE CODE MUST BE ENTERED
ENTER STATE CODE OF THE STATE
TO ADD (2 UPPER CASE CHARACTERS)
ENTER ZZ TO STOP ENTRY
LA
ENTER STATE NAME
LOUISIANA
ENTER STATE CODE OF THE STATE
TO ADD (2 UPPER CASE CHARACTERS)
ENTER ZZ TO STOP ENTRY

ANALYSIS: stcmnt01.cbl differs from vndmnt01.cbl in one main area: validation. In
vndmnt01.cbl, the user can enter any values, and even enter no values. At lines 023700 through
025700, the ENTER-STATE-CODE routine has been broken into two separate routines:
ACCEPT-STATE-CODE to enter the data, and RE-ACCEPT-STATE-CODE designed to force the user
to enter something. At lines 023900 and 024000, RE-ACCEPT-STATE-CODE is performed until
STATE-CODE NOT = SPACES. The reaccept logic is executed only if the user has entered spaces,
which are invalid for this field. The RE-ACCEPT-STATE-CODE routine at line 025400 displays an

error message and then performs the original routine to get the data--ACCEPT-STATE-CODE. The
RE-ACCEPT-STATE-CODE loop will continue until the user's entry is valid. The identical logic is used
at lines 027500 through 029100 for the state name.

The STATE-CODE is an alphanumeric field, so instead of entering zero to end data entry, the user is
asked to enter "ZZ" to end the entry. "ZZ" is not a valid state code, so it can be used.

Standard Field Entry
The style of entry and validation of fields used in stcmnt01.cbl can be reduced to a simple formula.
This formula is best expressed in the pseudocode shown in Listing 15.6. Note that I have chosen to
include periods in this example of pseudocode. Again, the style to use in pseudocode is your choice
unless your company has a standard specification on pseudocode style.

TYPE: Listing 15.6. The pseudocode for standard field entry.

enter-the-data.
 PERFORM accept-the-data.
 PERFORM re-accept-the-data.
 UNTIL the-data is valid.
accept-the-data.
 DISPLAY a-prompt.
 ACCEPT the-data.
re-accept-the-data.
 DISPLAY error-message.
 PERFORM accept-the-data.

Figure 15.1 compares the ENTER-STATE-NAME routine to the pseudocode for a standard field-entry
routine.

Figure 15.1.
ENTER-STATE-NAME as a standard field-entry routine.

Figure 15.2 compares the ENTER-STATE-CODE routine to the pseudocode for a standard field-entry
routine. In ACCEPT-STATE-CODE, the logic that corresponds to DISPLAY a-prompt extends over
several lines.

Figure 15.2.
ENTER-STATE-CODE as a standard field-entry routine.

This method of data entry does not have to be limited to fields for the file; it can be used for any field
that the user must enter or any question that the user is asked. Figure 15.3 shows that
ASK-WHICH-FIELD from stcmnt01.cbl also is based on the standard field-entry pattern.

Figure 15.3.
ASK-WHICH-FIELD as a standard field-entry routine.

Listing 15.6, the pseudocode for a standard field-entry routine, is missing one critical step that is

file:///D|/Cool Stuff/old/ftp/Sams.Teach.Yourself.Cobol.In.21.Days/Teach Yourself Cobol in 21 Days/ch15/01.htm
file:///D|/Cool Stuff/old/ftp/Sams.Teach.Yourself.Cobol.In.21.Days/Teach Yourself Cobol in 21 Days/ch15/02.htm
file:///D|/Cool Stuff/old/ftp/Sams.Teach.Yourself.Cobol.In.21.Days/Teach Yourself Cobol in 21 Days/ch15/03.htm

included in Listing 15.7.

TYPE: Listing 15.7. A standard field-entry routine including edit-check-the-data.

enter-the-data.
 PERFORM accept-the-data.
 PERFORM re-accept-the-data.
 UNTIL the-data is valid.
accept-the-data.
 DISPLAY a-prompt.
 ACCEPT the-data.
 edit-check-the-data.
re-accept-the-data.
 DISPLAY error-message.
 PERFORM accept-the-data.

ANALYSIS: Within accept-the-data, a line has been added to edit-check-the-data. This
line actually represents two separate actions:

Editing the data includes any forced changes that must be made to data, such as converting y to Y
or n to N, as is done with a yes-or-no entry field.

●

Checking the data includes any additional actions to validate the data, such as checking that the
entry is Y or N, as is done with a yes-or-no entry field.

●

Editing and checking are combined into the single line edit-check-the-data because of the ways
in which editing and checking can occur in a program. Some data is edited but not validated
(required)--for example, a field that is not required (no validation) but that must be edited (changed) to
convert it to uppercase. Some data is validated but not edited--for example, a required phone number
field where the data is required but is not changed by the program. Some data, such as WHICH-FIELD,
is neither edited nor validated.

Some data receives a bit of both editing and validation. A date field might be entered by the user as
"1/7/97", and this format is hard to validate. The first step might be to edit the data by converting it to
a standard format such as "19970107". This standard format can be validated as a date; then the field
might be edited again and converted to "01/07/97". Because there is no ironclad rule such as "first
you edit and then you check," edit-check-the-data is combined into a single line.

ASK-OK-TO-DELETE in Figure 15.4 also is a standard field-entry routine, but this is an example of a
routine that uses the edit-check-the-data section of the pseudocode to edit the data, by
converting y and n to their uppercase versions.

Figure 15.4.
ASK-OK-TO-DELETE as a standard field-entry routine.

The GET-MENU-PICK routine shown in Figure 15.5 is a standard field-entry routine with a slight
variation. The prompt for the menu field actually is the whole menu followed by "YOUR CHOICE
(0-4)?". This is a long and unnecessary prompt to repeat every time the user makes a mistake, so only

file:///D|/Cool Stuff/old/ftp/Sams.Teach.Yourself.Cobol.In.21.Days/Teach Yourself Cobol in 21 Days/ch15/04.htm

"YOUR CHOICE (0-4)?" is repeated. This is done by making part of the prompt a separate
paragraph, DISPLAY-THE-MENU, and then displaying it once at the beginning of GET-MENU-PICK.

Figure 15.5.
GET-MENU-PICK as a standard field-entry routine with a slight variation to handle the large prompt
for the field.

You can use this standard field-entry routine as a formula for entering and testing or editing any field.

It is important to understand that the standard field-entry routine in Listing 15.7 and other versions of it
elsewhere are just a design. It is not a language requirement, and each COBOL site will have different
requirements on how to formulate the steps of a standard field-entry routine.

Change Mode for Simple Files
One oddity develops from stcmnt01.cbl, shown in the following output example of changing the
record for CA (California):

OUTPUT:
PLEASE SELECT:
1. ADD RECORDS
2. CHANGE A RECORD
3. LOOK UP A RECORD
4. DELETE A RECORD
0. EXIT
YOUR CHOICE (0-4)?
2
ENTER STATE CODE OF THE STATE
TO CHANGE (2 UPPER CASE CHARACTERS)
ENTER ZZ TO STOP ENTRY
CA
STATE CODE: CA
1. STATE NAME: CALIFORNIA
ENTER THE NUMBER OF THE FIELD
TO CHANGE (1) OR 0 TO EXIT
1
ENTER STATE NAME
CALIFORNIA
STATE CODE: CA
1. STATE NAME: CALIFORNIA
ENTER THE NUMBER OF THE FIELD
TO CHANGE (1) OR 0 TO EXIT

ANALYSIS: Although there is only one modifiable field in the state code record, the user is asked to
enter the number of the field to change. In vndmnt01.cbl, the user had the option of up to eight
different fields to change. In stcmnt01.cbl, the STATE-CODE is the primary key that cannot be

file:///D|/Cool Stuff/old/ftp/Sams.Teach.Yourself.Cobol.In.21.Days/Teach Yourself Cobol in 21 Days/ch15/05.htm

changed, so the user is left with only one field, STATE-NAME, that can be changed.

You can avoid this problem in the data entry by using the changes shown in Listing 15.8, a fragment
from stcmnt02.cbl.

TYPE: Listing 15.8. Skip asking the user which field.

014600 CHANGE-RECORDS.
014700 PERFORM GET-FIELD-TO-CHANGE.
014800* PERFORM CHANGE-ONE-FIELD
014900* UNTIL WHICH-FIELD = ZERO.
015000 PERFORM CHANGE-ONE-FIELD.
015100
015200 PERFORM GET-STATE-RECORD.
015300
015400 GET-FIELD-TO-CHANGE.
015500 PERFORM DISPLAY-ALL-FIELDS.
015600 PERFORM ASK-WHICH-FIELD.
015700
015800 ASK-WHICH-FIELD.
015900* PERFORM ACCEPT-WHICH-FIELD.
016000* PERFORM RE-ACCEPT-WHICH-FIELD
016100* UNTIL WHICH-FIELD NOT > 1.
016200 MOVE 1 TO WHICH-FIELD.
016300
016400*ACCEPT-WHICH-FIELD.
016500* DISPLAY "ENTER THE NUMBER OF THE FIELD".
016600* DISPLAY "TO CHANGE (1) OR 0 TO EXIT".
016700* ACCEPT WHICH-FIELD.
016800*
016900*RE-ACCEPT-WHICH-FIELD.
017000* DISPLAY "INVALID ENTRY".
017100* PERFORM ACCEPT-WHICH-FIELD.
017200
017300 CHANGE-ONE-FIELD.
017400 PERFORM CHANGE-THIS-FIELD.
017500* PERFORM GET-FIELD-TO-CHANGE.
017600
017700 CHANGE-THIS-FIELD.
017800 IF WHICH-FIELD = 1
017900 PERFORM ENTER-STATE-NAME.
018000
018100 PERFORM REWRITE-STATE-RECORD.
018200

The modified output of stcmnt02.cbl skips asking the user for the field to enter and immediately

asks for the new state name. In this example, the user re-enters the state name because of an error in the
original data entry (CALIFORNIA is misspelled as CALIFORNIB).

OUTPUT:
PLEASE SELECT:
1. ADD RECORDS
2. CHANGE A RECORD
3. LOOK UP A RECORD
4. DELETE A RECORD
0. EXIT
YOUR CHOICE (0-4)?
2
ENTER STATE CODE OF THE STATE
TO CHANGE (2 UPPER CASE CHARACTERS)
ENTER ZZ TO STOP ENTRY
CA
STATE CODE: CA
1. STATE NAME: CALIFORNIB
ENTER STATE NAME
CALIFORNIA
ENTER STATE CODE OF THE STATE
TO CHANGE (2 UPPER CASE CHARACTERS)
ENTER ZZ TO STOP ENTRY

ANALYSIS: This is a modification to stcmnt01.cbl that changes the program so that
CHANGE-ONE-FIELD is executed only once, and ASK-WHICH-FIELD is no longer entered by the
user but is set to 1 by the computer. The original code is left in but commented out, and the new code
appears at lines 015000 and 016200.

Copy stcmnt01.cbl to stcmnt02.cbl and make the changes to this area of the program; then
compile and run the program.

Printing a Code File
Printing the state code is fairly simple. Figure 15.6 shows the layout chart for a simple state code report.

Figure 15.6.
Layout for the state codes report.

Listing 15.9, stcrpt01.cbl, is a simple report program based on the layout in Figure 15.6.

TYPE: Listing 15.9. Report on the state codes file.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. STCRPT01.
000300*--------------------------------
000400* Report on the STATE File.

file:///D|/Cool Stuff/old/ftp/Sams.Teach.Yourself.Cobol.In.21.Days/Teach Yourself Cobol in 21 Days/ch15/06.htm

000500*--------------------------------
000600 ENVIRONMENT DIVISION.
000700 INPUT-OUTPUT SECTION.
000800 FILE-CONTROL.
000900
001000 COPY "SLSTATE.CBL".
001100
001200 SELECT PRINTER-FILE
001300 ASSIGN TO PRINTER
001400 ORGANIZATION IS LINE SEQUENTIAL.
001500
001600 DATA DIVISION.
001700 FILE SECTION.
001800
001900 COPY "FDSTATE.CBL".
002000
002100 FD PRINTER-FILE
002200 LABEL RECORDS ARE OMITTED.
002300 01 PRINTER-RECORD PIC X(80).
002400
002500 WORKING-STORAGE SECTION.
002600
002700 01 DETAIL-LINE.
002800 05 PRINT-CODE PIC XX.
002900 05 FILLER PIC XXXX VALUE SPACE.
003000 05 PRINT-NAME PIC X(20).
003100
003200 01 COLUMN-LINE.
003300 05 FILLER PIC X(4) VALUE "CODE".
003400 05 FILLER PIC X(2) VALUE SPACE.
003500 05 FILLER PIC X(4) VALUE "NAME".
003600
003700 01 TITLE-LINE.
003800 05 FILLER PIC X(25) VALUE SPACE.
003900 05 FILLER PIC X(11)
004000 VALUE "STATE CODES".
004100 05 FILLER PIC X(15) VALUE SPACE.
004200 05 FILLER PIC X(5) VALUE "PAGE:".
004300 05 FILLER PIC X(1) VALUE SPACE.
004400 05 PRINT-PAGE-NUMBER PIC ZZZZ9.
004500
004600 77 FILE-AT-END PIC X.
004700 77 LINE-COUNT PIC 999 VALUE ZERO.
004800 77 PAGE-NUMBER PIC 99999 VALUE ZERO.
004900 77 MAXIMUM-LINES PIC 999 VALUE 55.

005000
005100 PROCEDURE DIVISION.
005200 PROGRAM-BEGIN.
005300
005400 PERFORM OPENING-PROCEDURE.
005500 MOVE ZEROES TO LINE-COUNT
005600 PAGE-NUMBER.
005700
005800 PERFORM START-NEW-PAGE.
005900
006000 MOVE "N" TO FILE-AT-END.
006100 PERFORM READ-NEXT-RECORD.
006200 IF FILE-AT-END = "Y"
006300 MOVE "NO RECORDS FOUND" TO PRINTER-RECORD
006400 PERFORM WRITE-TO-PRINTER
006500 ELSE
006600 PERFORM PRINT-STATE-FIELDS
006700 UNTIL FILE-AT-END = "Y".
006800
006900 PERFORM CLOSING-PROCEDURE.
007000
007100 PROGRAM-DONE.
007200 STOP RUN.
007300
007400 OPENING-PROCEDURE.
007500 OPEN I-O STATE-FILE.
007600 OPEN OUTPUT PRINTER-FILE.
007700
007800 CLOSING-PROCEDURE.
007900 CLOSE STATE-FILE.
008000 PERFORM END-LAST-PAGE.
008100 CLOSE PRINTER-FILE.
008200
008300 PRINT-STATE-FIELDS.
008400 IF LINE-COUNT > MAXIMUM-LINES
008500 PERFORM START-NEXT-PAGE.
008600 PERFORM PRINT-THE-RECORD.
008700 PERFORM READ-NEXT-RECORD.
008800
008900 PRINT-THE-RECORD.
009000 MOVE SPACE TO DETAIL-LINE.
009100 MOVE STATE-CODE TO PRINT-CODE.
009200 MOVE STATE-NAME TO PRINT-NAME.
009300 MOVE DETAIL-LINE TO PRINTER-RECORD.
009400 PERFORM WRITE-TO-PRINTER.
009500

009600 READ-NEXT-RECORD.
009700 READ STATE-FILE NEXT RECORD
009800 AT END MOVE "Y" TO FILE-AT-END.
009900
010000 WRITE-TO-PRINTER.
010100 WRITE PRINTER-RECORD BEFORE ADVANCING 1.
010200 ADD 1 TO LINE-COUNT.
010300
010400 LINE-FEED.
010500 MOVE SPACE TO PRINTER-RECORD.
010600 PERFORM WRITE-TO-PRINTER.
010700
010800 START-NEXT-PAGE.
010900
011000 PERFORM END-LAST-PAGE.
011100 PERFORM START-NEW-PAGE.
011200
011300 START-NEW-PAGE.
011400 ADD 1 TO PAGE-NUMBER.
011500 MOVE PAGE-NUMBER TO PRINT-PAGE-NUMBER.
011600 MOVE TITLE-LINE TO PRINTER-RECORD.
011700 PERFORM WRITE-TO-PRINTER.
011800 PERFORM LINE-FEED.
011900 MOVE COLUMN-LINE TO PRINTER-RECORD.
012000 PERFORM WRITE-TO-PRINTER.
012100 PERFORM LINE-FEED.
012200
012300 END-LAST-PAGE.
012400 PERFORM FORM-FEED.
012500 MOVE ZERO TO LINE-COUNT.
012600
012700 FORM-FEED.
012800 MOVE SPACE TO PRINTER-RECORD.
012900 WRITE PRINTER-RECORD BEFORE ADVANCING PAGE.

The example of the output from stcrpt01.cbl follows the organization designed in the printer layout
chart:

OUTPUT:
STATE CODES PAGE: 1
CODE NAME
AZ ARIZONA
CA CALIFORNIA
FL FLORIDA
LA LOUISIANA
NM NEW MEXICO

WA WASHINGTON
WI WISCONSIN

Converting to Uppercase
You still haven't done enough to validate the data in the state code file. Listing 15.2, the FD for the state
code file, contained comments indicating that the STATE-CODE and STATE-NAME should both be
entered in uppercase. When I described running stcmnt01.cbl, I said that you should enter the values
in uppercase, but just ordering you to do it isn't good enough to ensure that the information really is
entered in uppercase and stored in the file in uppercase.

It is possible to validate a field and check each character in the field to ensure that they are all uppercase,
but it does involve quite a bit of coding. Instead, it is easier to force everything to become uppercase.

Listing 15.10, upper01.cbl, is a short program to demonstrate how to convert data to uppercase.

TYPE: Listing 15.10. Converting data to uppercase.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. UPPER01.
000300*--
000400* Converts input to upper case.
000500*--
000600 ENVIRONMENT DIVISION.
000700 INPUT-OUTPUT SECTION.
000800 FILE-CONTROL.
000900
001000 DATA DIVISION.
001100 FILE SECTION.
001200
001300 WORKING-STORAGE SECTION.
001400
001500 77 UPPER-ALPHA PIC X(26) VALUE
001600 "ABCDEFGHIJKLMNOPQRSTUVWXYZ".
001700 77 LOWER-ALPHA PIC X(26) VALUE
001800 "abcdefghijklmnopqrstuvwxyz".
001900
002000 77 TEST-FIELD PIC X(30) VALUE SPACE.
002100 PROCEDURE DIVISION.
002200 PROGRAM-BEGIN.
002300 PERFORM ENTER-TEST-FIELD.
002400 PERFORM CONVERT-AND-ENTER
002500 UNTIL TEST-FIELD = SPACE.
002600
002700 PROGRAM-DONE.
002800 STOP RUN.

002900
003000 ENTER-TEST-FIELD.
003100 DISPLAY "Enter upper or lower case data".
003200 DISPLAY "Leave blank to end".
003300 ACCEPT TEST-FIELD.
003400 CONVERT-AND-ENTER.
003500 PERFORM CONVERT-TEST-FIELD.
003600 PERFORM ENTER-TEST-FIELD.
003700
003800 CONVERT-TEST-FIELD.
003900 INSPECT TEST-FIELD CONVERTING
004000 LOWER-ALPHA TO UPPER-ALPHA.
004100 DISPLAY TEST-FIELD.

ANALYSIS: This program accepts a 30-character field from the user, converts it to uppercase, and
redisplays the converted field below the original. This process continues until the user enters a blank
field.

This example uses a new COBOL command--INSPECT CONVERTING. At lines 003900 and
004000, each character in TEST-FIELD is compared to the list of 26 characters in LOWER-ALPHA. If
any character is found to match, the character in TEST-FIELD is converted to the corresponding
character in UPPER-ALPHA.

The INSPECT CONVERTING command treats all the variables as lists of individual characters. In
Listing 15.10, TEST-FIELD is treated as a list of 30 characters to be converted, LOWER-ALPHA is
treated as a list of 26 characters to search for in TEST-FIELD, and UPPER-ALPHA is a list of 26
characters to be used as replacements when a match occurs. Both LOWER-ALPHA and UPPER-ALPHA
must be the same length.

In this example, INSPECT CONVERTING is used to convert lowercase letters to uppercase letters, but it
could be used for any conversion. It happens that UPPER-ALPHA contains the uppercase equivalents of
LOWER-ALPHA, but the INSPECT CONVERTING command doesn't care about the content of
UPPER-ALPHA. It could contain any 26 characters, numbers, and punctuation marks.

The INSPECT CONVERTING command will perform a character-by-character translation of a field.
The syntax is the following:

INSPECT alphanumeric variable
CONVERTING compare value
TO replace value.

Here is an example:

CONVERT-TO-UPPER.
INSPECT DATA-FIELD
CONVERTING LOWER-ALPHA
TO UPPER-ALPHA

Listing 15.11, stcmnt03.cbl, includes the earlier changes put into stcmnt02.cbl and adds
uppercase conversion in the validation routines at lines 025000 through 025200 and 028400 through

028600.

TYPE: Listing 15.11. Validating by converting to uppercase.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. STCMNT03.
000300*--------------------------------
000400* Add, Change, Inquire and Deletes
000500* for the State Code.
000600*--------------------------------
000700 ENVIRONMENT DIVISION.
000800 INPUT-OUTPUT SECTION.
000900 FILE-CONTROL.
001000
001100 COPY "SLSTATE.CBL".
001200
001300 DATA DIVISION.
001400 FILE SECTION.
001500
001600 COPY "FDSTATE.CBL".
001700
001800 WORKING-STORAGE SECTION.
001900
002000 77 MENU-PICK PIC 9.
002100 88 MENU-PICK-IS-VALID VALUES 0 THRU 4.
002200
002300 77 THE-MODE PIC X(7).
002400 77 OK-TO-DELETE PIC X.
002500 77 RECORD-FOUND PIC X.
002600 77 WHICH-FIELD PIC 9.
002700
002800 77 UPPER-ALPHA PIC X(26) VALUE
002900 "ABCDEFGHIJKLMNOPQRSTUVWXYZ".
003000 77 LOWER-ALPHA PIC X(26) VALUE
003100 "abcdefghijklmnopqrstuvwxyz".
003200
003300 PROCEDURE DIVISION.
003400 PROGRAM-BEGIN.
003500 PERFORM OPENING-PROCEDURE.
003600 PERFORM MAIN-PROCESS.
003700 PERFORM CLOSING-PROCEDURE.
003800
003900 PROGRAM-DONE.
004000 STOP RUN.
004100
004200 OPENING-PROCEDURE.

004300 OPEN I-O STATE-FILE.
004400
004500 CLOSING-PROCEDURE.
004600 CLOSE STATE-FILE.
004700
004800
004900 MAIN-PROCESS.
005000 PERFORM GET-MENU-PICK.
005100 PERFORM MAINTAIN-THE-FILE
005200 UNTIL MENU-PICK = 0.
005300
005400*--------------------------------
005500* MENU
005600*--------------------------------
005700 GET-MENU-PICK.
005800 PERFORM DISPLAY-THE-MENU.
005900 PERFORM ACCEPT-MENU-PICK.
006000 PERFORM RE-ACCEPT-MENU-PICK
006100 UNTIL MENU-PICK-IS-VALID.
006200
006300 DISPLAY-THE-MENU.
006400 PERFORM CLEAR-SCREEN.
006500 DISPLAY " PLEASE SELECT:".
006600 DISPLAY " ".
006700 DISPLAY " 1. ADD RECORDS".
006800 DISPLAY " 2. CHANGE A RECORD".
006900 DISPLAY " 3. LOOK UP A RECORD".
007000 DISPLAY " 4. DELETE A RECORD".
007100 DISPLAY " ".
007200 DISPLAY " 0. EXIT".
007300 PERFORM SCROLL-LINE 8 TIMES.
007400
007500 ACCEPT-MENU-PICK.
007600 DISPLAY "YOUR CHOICE (0-4)?".
007700 ACCEPT MENU-PICK.
007800
007900 RE-ACCEPT-MENU-PICK.
008000 DISPLAY "INVALID SELECTION - PLEASE RE-TRY.".
008100 PERFORM ACCEPT-MENU-PICK.
008200
008300 CLEAR-SCREEN.
008400 PERFORM SCROLL-LINE 25 TIMES.
008500
008600 SCROLL-LINE.
008700 DISPLAY " ".
008800

008900 MAINTAIN-THE-FILE.
009000 PERFORM DO-THE-PICK.
009100 PERFORM GET-MENU-PICK.
009200
009300 DO-THE-PICK.
009400 IF MENU-PICK = 1
009500 PERFORM ADD-MODE
009600 ELSE
009700 IF MENU-PICK = 2
009800 PERFORM CHANGE-MODE
009900 ELSE
010000 IF MENU-PICK = 3
010100 PERFORM INQUIRE-MODE
010200 ELSE
010300 IF MENU-PICK = 4
010400 PERFORM DELETE-MODE.
010500
010600*--------------------------------
010700* ADD
010800*--------------------------------
010900 ADD-MODE.
011000 MOVE "ADD" TO THE-MODE.
011100 PERFORM GET-NEW-STATE-CODE.
011200 PERFORM ADD-RECORDS
011300 UNTIL STATE-CODE = "ZZ".
011400
011500 GET-NEW-STATE-CODE.
011600 PERFORM INIT-STATE-RECORD.
011700 PERFORM ENTER-STATE-CODE.
011800 MOVE "Y" TO RECORD-FOUND.
011900 PERFORM FIND-NEW-STATE-RECORD
012000 UNTIL RECORD-FOUND = "N" OR
012100 STATE-CODE = "ZZ".
012200
012300 FIND-NEW-STATE-RECORD.
012400 PERFORM READ-STATE-RECORD.
012500 IF RECORD-FOUND = "Y"
012600 DISPLAY "RECORD ALREADY ON FILE"
012700 PERFORM ENTER-STATE-CODE.
012800
012900 ADD-RECORDS.
013000 PERFORM ENTER-REMAINING-FIELDS.
013100 PERFORM WRITE-STATE-RECORD.
013200 PERFORM GET-NEW-STATE-CODE.
013300
013400 ENTER-REMAINING-FIELDS.

013500 PERFORM ENTER-STATE-NAME.
013600
013700*--------------------------------
013800* CHANGE
013900*--------------------------------
014000 CHANGE-MODE.
014100 MOVE "CHANGE" TO THE-MODE.
014200 PERFORM GET-STATE-RECORD.
014300 PERFORM CHANGE-RECORDS
014400 UNTIL STATE-CODE = "ZZ".
014500
014600 CHANGE-RECORDS.
014700 PERFORM GET-FIELD-TO-CHANGE.
014800* PERFORM CHANGE-ONE-FIELD
014900* UNTIL WHICH-FIELD = ZERO.
015000 PERFORM CHANGE-ONE-FIELD.
015100
015200 PERFORM GET-STATE-RECORD.
015300
015400 GET-FIELD-TO-CHANGE.
015500 PERFORM DISPLAY-ALL-FIELDS.
015600 PERFORM ASK-WHICH-FIELD.
015700
015800 ASK-WHICH-FIELD.
015900* PERFORM ACCEPT-WHICH-FIELD.
016000* PERFORM RE-ACCEPT-WHICH-FIELD
016100* UNTIL WHICH-FIELD NOT > 1.
016200 MOVE 1 TO WHICH-FIELD.
016300
016400*ACCEPT-WHICH-FIELD.
016500* DISPLAY "ENTER THE NUMBER OF THE FIELD".
016600* DISPLAY "TO CHANGE (1) OR 0 TO EXIT".
016700* ACCEPT WHICH-FIELD.
016800*
016900*RE-ACCEPT-WHICH-FIELD.
017000* DISPLAY "INVALID ENTRY".
017100* PERFORM ACCEPT-WHICH-FIELD.
017200
017300 CHANGE-ONE-FIELD.
017400 PERFORM CHANGE-THIS-FIELD.
017500* PERFORM GET-FIELD-TO-CHANGE.
017600
017700 CHANGE-THIS-FIELD.
017800 IF WHICH-FIELD = 1
017900 PERFORM ENTER-STATE-NAME.
018000

018100 PERFORM REWRITE-STATE-RECORD.
018200
018300*--------------------------------
018400* INQUIRE
018500*--------------------------------
018600 INQUIRE-MODE.
018700 MOVE "DISPLAY" TO THE-MODE.
018800 PERFORM GET-STATE-RECORD.
018900 PERFORM INQUIRE-RECORDS
019000 UNTIL STATE-CODE = "ZZ".
019100
019200 INQUIRE-RECORDS.
019300 PERFORM DISPLAY-ALL-FIELDS.
019400 PERFORM GET-STATE-RECORD.
019500
019600*--------------------------------
019700* DELETE
019800*--------------------------------
019900 DELETE-MODE.
020000 MOVE "DELETE" TO THE-MODE.
020100 PERFORM GET-STATE-RECORD.
020200 PERFORM DELETE-RECORDS
020300 UNTIL STATE-CODE = "ZZ".
020400
020500 DELETE-RECORDS.
020600 PERFORM DISPLAY-ALL-FIELDS.
020700
020800 PERFORM ASK-OK-TO-DELETE
020900 IF OK-TO-DELETE = "Y"
021000 PERFORM DELETE-STATE-RECORD.
021100
021200 PERFORM GET-STATE-RECORD.
021300
021400 ASK-OK-TO-DELETE.
021500 PERFORM ACCEPT-OK-TO-DELETE.
021600 PERFORM RE-ACCEPT-OK-TO-DELETE
021700 UNTIL OK-TO-DELETE = "Y" OR "N".
021800
021900 ACCEPT-OK-TO-DELETE.
022000 DISPLAY "DELETE THIS RECORD (Y/N)?".
022100 ACCEPT OK-TO-DELETE.
022200
022300 INSPECT OK-TO-DELETE
022400 CONVERTING LOWER-ALPHA
022500 TO UPPER-ALPHA.
022600

022700 RE-ACCEPT-OK-TO-DELETE.
022800 DISPLAY "YOU MUST ENTER YES OR NO".
022900 PERFORM ACCEPT-OK-TO-DELETE.
023000
023100*--------------------------------
023200* Routines shared by all modes
023300*--------------------------------
023400 INIT-STATE-RECORD.
023500 MOVE SPACE TO STATE-RECORD.
023600
023700 ENTER-STATE-CODE.
023800 PERFORM ACCEPT-STATE-CODE.
023900 PERFORM RE-ACCEPT-STATE-CODE
024000 UNTIL STATE-CODE NOT = SPACE.
024100
024200 ACCEPT-STATE-CODE.
024300 DISPLAY " ".
024400 DISPLAY "ENTER STATE CODE OF THE STATE" .
024500 DISPLAY "TO " THE-MODE
024600 "(2 UPPER CASE CHARACTERS)".
024700 DISPLAY "ENTER ZZ TO STOP ENTRY".
024800 ACCEPT STATE-CODE.
024900
025000 INSPECT STATE-CODE
025100 CONVERTING LOWER-ALPHA
025200 TO UPPER-ALPHA.
025300
025400 RE-ACCEPT-STATE-CODE.
025500 DISPLAY "STATE CODE MUST BE ENTERED".
025600 PERFORM ACCEPT-STATE-CODE.
025700
025800 GET-STATE-RECORD.
025900 PERFORM INIT-STATE-RECORD.
026000 PERFORM ENTER-STATE-CODE.
026100 MOVE "N" TO RECORD-FOUND.
026200 PERFORM FIND-STATE-RECORD
026300 UNTIL RECORD-FOUND = "Y" OR
026400 STATE-CODE = "ZZ".
026500
026600*--------------------------------
026700* Routines shared Add and Change
026800*--------------------------------
026900 FIND-STATE-RECORD.
027000 PERFORM READ-STATE-RECORD.
027100 IF RECORD-FOUND = "N"
027200 DISPLAY "RECORD NOT FOUND"

027300 PERFORM ENTER-STATE-CODE.
027400
027500 ENTER-STATE-NAME.
027600 PERFORM ACCEPT-STATE-NAME.
027700 PERFORM RE-ACCEPT-STATE-NAME
027800 UNTIL STATE-NAME NOT = SPACES.
027900
028000 ACCEPT-STATE-NAME.
028100 DISPLAY "ENTER STATE NAME".
028200 ACCEPT STATE-NAME.
028300
028400 INSPECT STATE-NAME
028500 CONVERTING LOWER-ALPHA
028600 TO UPPER-ALPHA.
028700
028800 RE-ACCEPT-STATE-NAME.
028900 DISPLAY "STATE NAME MUST BE ENTERED".
029000 PERFORM ACCEPT-STATE-NAME.
029100
029200*--------------------------------
029300* Routines shared by Change,
029400* Inquire and Delete
029500*--------------------------------
029600 DISPLAY-ALL-FIELDS.
029700 DISPLAY " ".
029800 PERFORM DISPLAY-STATE-CODE.
029900 PERFORM DISPLAY-STATE-NAME.
030000 DISPLAY " ".
030100
030200 DISPLAY-STATE-CODE.
030300 DISPLAY " STATE CODE: " STATE-CODE.
030400
030500 DISPLAY-STATE-NAME.
030600 DISPLAY "1. STATE NAME: " STATE-NAME.
030700
030800*--------------------------------
030900* File I-O Routines
031000*--------------------------------
031100 READ-STATE-RECORD.
031200 MOVE "Y" TO RECORD-FOUND.
031300 READ STATE-FILE RECORD
031400 INVALID KEY
031500 MOVE "N" TO RECORD-FOUND.
031600
031700*or READ STATE-FILE RECORD WITH LOCK
031800* INVALID KEY

031900* MOVE "N" TO RECORD-FOUND.
032000
032100*or READ STATE-FILE RECORD WITH HOLD
032200* INVALID KEY
032300* MOVE "N" TO RECORD-FOUND.
032400
032500 WRITE-STATE-RECORD.
032600 WRITE STATE-RECORD
032700 INVALID KEY
032800 DISPLAY "RECORD ALREADY ON FILE".
032900
033000 REWRITE-STATE-RECORD.
033100 REWRITE STATE-RECORD
033200 INVALID KEY
033300 DISPLAY "ERROR REWRITING STATE RECORD".
033400
033500 DELETE-STATE-RECORD.
033600 DELETE STATE-FILE RECORD
033700 INVALID KEY
033800 DISPLAY "ERROR DELETING STATE RECORD".
033900

The output of stcmnt03.cbl shows an example of adding fl florida in lowercase, but finding
that it is stored in uppercase:

OUTPUT:
PLEASE SELECT:
1. ADD RECORDS
2. CHANGE A RECORD
3. LOOK UP A RECORD
4. DELETE A RECORD
0. EXIT
YOUR CHOICE (0-4)?
1
ENTER STATE CODE OF THE STATE
TO ADD (2 UPPER CASE CHARACTERS)
ENTER ZZ TO STOP ENTRY
fl
ENTER STATE NAME
florida
ENTER STATE CODE OF THE STATE
TO ADD (2 UPPER CASE CHARACTERS)
ENTER ZZ TO STOP ENTRY
zz

OUTPUT:

PLEASE SELECT:
1. ADD RECORDS
2. CHANGE A RECORD
3. LOOK UP A RECORD
4. DELETE A RECORD
0. EXIT
YOUR CHOICE (0-4)?
3
ENTER STATE CODE OF THE STATE
TO DISPLAY(2 UPPER CASE CHARACTERS)
ENTER ZZ TO STOP ENTRY
fl
STATE CODE: FL
1. STATE NAME: FLORIDA
ENTER STATE CODE OF THE STATE
TO DISPLAY(2 UPPER CASE CHARACTERS)
ENTER ZZ TO STOP ENTRY

ANALYSIS: The uppercase conversion is added to the program at lines 002800 through 003100,
025000 though 025200, and 028400 through 028600.

This program also took advantage of the availability of uppercase conversion in the
ACCEPT-OK-TO-DELETE routine at line 021900. The tests are replaced with an INSPECT
CONVERTING at lines 022300 through 022500.

Code, compile, and run stcmnt03.cbl, and deliberately enter some lowercase values. Then look up
the record and you will see that they have been stored in uppercase.

The addition of the conversion to uppercase for the STATE-CODE and the STATE-NAME now takes
advantage of the edit-check-the-data section of the pseudocode for a standard field-entry
routine. Figures 15.7 and 15.8 compare the new routines to the standard field-entry routine.

Figure 15.7.
ENTER-STATE-CODE with uppercase editing.

Figure 15.8.
ENTER-STATE-NAME with uppercase editing.

There are other ways to convert values to uppercase or lowercase, and these are covered in Bonus Day 5,
"Intrinsic Functions and the Year 2000."

Summary
As computer systems become larger and larger, the amount of data stored on the computers increases. In
today's lesson, you created a file containing state codes, and you entered data into it using various levels
of validation. You also learned the following basics:

Data validation is important in any computer system. The program depends on the correct type of●

file:///D|/Cool Stuff/old/ftp/Sams.Teach.Yourself.Cobol.In.21.Days/Teach Yourself Cobol in 21 Days/ch15/07.htm
file:///D|/Cool Stuff/old/ftp/Sams.Teach.Yourself.Cobol.In.21.Days/Teach Yourself Cobol in 21 Days/ch15/08.htm

data being in various fields, and the user depends on correct content being in various fields.

Data should be validated whenever the validation is easy to perform, the data is critical, or the
volume of data is large.

●

Always validate data before it is written to the file.●

Every maintenance program for a file--especially add and change modes--must include the full
validation for each field that requires validation.

●

Do not try to work around invalid data in a file. Find the cause of the incorrect data and fix it; then
correct the incorrect data.

●

The simplest form of data validation is requiring that a field be entered and not left blank.●

Data can be forced to uppercase by using the INSPECT CONVERTING command.●

A standard field-entry routine can be described as the following:●

enter-the-data.
 PERFORM accept-the-data.
 PERFORM re-accept-the-data.
 UNTIL the-data is valid.
accept-the-data.
 DISPLAY a-prompt.
 ACCEPT the-data.
 edit-check-the-data.
re-accept-the-data.
 DISPLAY error-message.
 PERFORM accept-the-data.

Q&A
Q Is data validation part of the COBOL language?

A No. COBOL provides commands that make it possible to validate data, but the actual validation
is part of the design of the program. You can write a program that enables you to put any old junk
into a file and COBOL will not complain about it, although the users most certainly will.

Workshop

Quiz

1. When should data be validated?

Before it is put in the data file.❍

After it has been put in the data file.❍

Any time it is used.❍

After it has been used for a while.❍

2. What COBOL command can be used to convert a field to uppercase?

3. If the following listing converts DATA-FIELD to uppercase, how would you convert
DATA-FIELD to lowercase?

010300 INSPECT DATA FIELD
010400 CONVERTING LOWER-ALPHA
010500 TO UPPER-ALPHA.

Exercises

1. Design a standard data entry routine to accept entry for a field called VENDOR-NAME. Assume
that appropriate UPPER-ALPHA and LOWER-ALPHA conversion fields exist in
WORKING-STORAGE. The field must be entered by the user, and it must be converted to
uppercase after the entry is completed. Do this using pencil and paper.

Hint: You could use ENTER-STATE-NAME as a basis for the routine.

2. Next to the design you have written, write down the parts of the standard field-entry routine.

Previous chapter Next chapter Contents

Macmillan Computer Publishing USA

© Copyright, Macmillan Computer Publishing. All rights reserved.

Teach Yourself COBOL in 21 days,
Second Edition

Previous chapter Next chapter Contents

- Day 16 -
Using Look Up and Arrays

One of the main methods of validating entered data is to look up the information in another file that
contains correct information. In today's lesson, you learn about the following topics:

Using look up for validation.●

Locating invalid data in files.●

Fixing invalid data in files.●

What is a table?●

Looking up data in tables.●

Using a table in a program.●

Using Look Up for Validation
Today, you learn how to use the state code file created in Day 15, "Data Integrity," to check the
VENDOR-STATE for correctness when the user is entering data into the vendor file. Listing 16.1 shows a
new FD for the vendor file.

TYPE: Listing 16.1. A new FD for the vendor file, indicating which fields are required.

000100*--------------------------------
000200* FDVND03.CBL
000300* Primary Key - VENDOR-NUMBER

000400*
000500* NAME, ADDRESS-1, CITY, STATE,
000600* and PHONE are required fields.
000700*
000800* VENDOR-STATE must be looked up
000900* and must exist in the STATE-FILE
001000* to be valid.
001100* VENDOR-ADDRESS-2 not always used
001200* so may be SPACES
001300* VENDOR-PHONE is usually the
001400* number for VENDOR-CONTACT
001500* All fields should be entered in
001600* UPPER case.
001700*--------------------------------
001800 FD VENDOR-FILE
001900 LABEL RECORDS ARE STANDARD.
002000 01 VENDOR-RECORD.
002100 05 VENDOR-NUMBER PIC 9(5).
002200 05 VENDOR-NAME PIC X(30).
002300 05 VENDOR-ADDRESS-1 PIC X(30).
002400 05 VENDOR-ADDRESS-2 PIC X(30).
002500 05 VENDOR-CITY PIC X(20).
002600 05 VENDOR-STATE PIC X(2).
002700 05 VENDOR-ZIP PIC X(10).
002800 05 VENDOR-CONTACT PIC X(30).
002900 05 VENDOR-PHONE PIC X(15).
003000

ANALYSIS: There is no change in the file layout, but there is a change in the comments indicating
which fields are required. The comments indicate that all fields should be uppercase, and all fields are
required except for VENDOR-ADDRESS-2 and VENDOR-CONTACT. The VENDOR-STATE also must
be looked up in the state codes file.

The original version of vndmnt01.cbl does not include these validations, so today you add those
validations, including looking up the state code.

You already are familiar with the uppercase and required validations. Listing 16.2 shows an example of
the validation logic for the VENDOR-ADDRESS-1 field using the standard field-entry routine developed
on Day 15.

TYPE: Listing 16.2. Entering VENDOR-ADDRESS-1.

030100 ENTER-VENDOR-ADDRESS-1.
030200 PERFORM ACCEPT-VENDOR-ADDRESS-1.
030300 PERFORM RE-ACCEPT-VENDOR-ADDRESS-1
030400 UNTIL VENDOR-ADDRESS-1 NOT = SPACE.
030500

030600 ACCEPT-VENDOR-ADDRESS-1.
030700 DISPLAY "ENTER VENDOR ADDRESS-1".
030800 ACCEPT VENDOR-ADDRESS-1.
030900 INSPECT VENDOR-ADDRESS-1
031000 CONVERTING LOWER-ALPHA
031100 TO UPPER-ALPHA.
031200
031300 RE-ACCEPT-VENDOR-ADDRESS-1.
031400 DISPLAY "VENDOR ADDRESS-1 MUST BE ENTERED".
031500 PERFORM ACCEPT-VENDOR-ADDRESS-1.
031600

VENDOR-ADDRESS-2 is not a required field, so the entry routine is much simpler, as shown in Listing
16.3.

TYPE: Listing 16.3. Entering VENDOR-ADDRESS-2.

031700 ENTER-VENDOR-ADDRESS-2.
031800 DISPLAY "ENTER VENDOR ADDRESS-2".
031900 ACCEPT VENDOR-ADDRESS-2.
032000 INSPECT VENDOR-ADDRESS-2
032100 CONVERTING LOWER-ALPHA
032200 TO UPPER-ALPHA.

This type of logic can be repeated for all fields in the vendor file. VENDOR-ZIP and VENDOR-PHONE
can be validated the same way. Postal codes might contain letters when they are outside the United
States, such as the Canadian Postal Code system. Phone numbers rarely contain letters, but using this
approach enables you to enter gimmick phone numbers that contain letters.

This works fine until you get to VENDOR-STATE. This field is a required entry field that must be
uppercase but also must be tested against the state codes file to ensure that it already exists in that file.

Listing 16.4, vndmnt02.cbl, includes the validations discussed so far. The analysis concentrates
particularly on the changes made for handling the VENDOR-STATE.

TYPE: Listing 16.4. Looking up data in another file to validate it.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. VNDMNT02.
000300*--------------------------------
000400* Add, Change, Inquire and Delete
000500* for the Vendor File.
000600*--------------------------------
000700 ENVIRONMENT DIVISION.
000800 INPUT-OUTPUT SECTION.
000900 FILE-CONTROL.
001000

001100 COPY "SLVND01.CBL".
001200
001300 COPY "SLSTATE.CBL".
001400
001500 DATA DIVISION.
001600 FILE SECTION.
001700
001800 COPY "FDVND03.CBL".
001900
002000 COPY "FDSTATE.CBL".
002100
002200 WORKING-STORAGE SECTION.
002300
002400 77 MENU-PICK PIC 9.
002500 88 MENU-PICK-IS-VALID VALUES 0 THRU 4.
002600
002700 77 THE-MODE PIC X(7).
002800 77 WHICH-FIELD PIC 9.
002900 77 OK-TO-DELETE PIC X.
003000 77 VENDOR-RECORD-FOUND PIC X.
003100 77 STATE-RECORD-FOUND PIC X.
003200
003300
003400 77 VENDOR-NUMBER-FIELD PIC Z(5).
003500
003600 77 ERROR-MESSAGE PIC X(79) VALUE SPACE.
003700
003800 77 UPPER-ALPHA PIC X(26) VALUE
003900 "ABCDEFGHIJKLMNOPQRSTUVWXYZ".
004000 77 LOWER-ALPHA PIC X(26) VALUE
004100 "abcdefghijklmnopqrstuvwxyz".
004200
004300 PROCEDURE DIVISION.
004400 PROGRAM-BEGIN.
004500 PERFORM OPENING-PROCEDURE.
004600 PERFORM MAIN-PROCESS.
004700 PERFORM CLOSING-PROCEDURE.
004800
004900 PROGRAM-DONE.
005000 STOP RUN.
005100
005200 OPENING-PROCEDURE.
005300 OPEN I-O VENDOR-FILE.
005400 OPEN I-O STATE-FILE.
005500
005600 CLOSING-PROCEDURE.

005700 CLOSE VENDOR-FILE.
005800 CLOSE STATE-FILE.
005900
006000 MAIN-PROCESS.
006100 PERFORM GET-MENU-PICK.
006200 PERFORM MAINTAIN-THE-FILE
006300 UNTIL MENU-PICK = 0.
006400
006500*--------------------------------
006600* MENU
006700*--------------------------------
006800 GET-MENU-PICK.
006900 PERFORM DISPLAY-THE-MENU.
007000 PERFORM ACCEPT-MENU-PICK.
007100 PERFORM RE-ACCEPT-MENU-PICK
007200 UNTIL MENU-PICK-IS-VALID.
007300
007400 DISPLAY-THE-MENU.
007500 PERFORM CLEAR-SCREEN.
007600 DISPLAY " PLEASE SELECT:".
007700 DISPLAY " ".
007800 DISPLAY " 1. ADD RECORDS".
007900 DISPLAY " 2. CHANGE A RECORD".
008000 DISPLAY " 3. LOOK UP A RECORD".
008100 DISPLAY " 4. DELETE A RECORD".
008200 DISPLAY " ".
008300 DISPLAY " 0. EXIT".
008400 PERFORM SCROLL-LINE 8 TIMES.
008500
008600 ACCEPT-MENU-PICK.
008700 DISPLAY "YOUR CHOICE (0-4)?".
008800 ACCEPT MENU-PICK.
008900
009000 RE-ACCEPT-MENU-PICK.
009100 DISPLAY "INVALID SELECTION - PLEASE RE-TRY.".
009200 PERFORM ACCEPT-MENU-PICK.
009300
009400 CLEAR-SCREEN.
009500 PERFORM SCROLL-LINE 25 TIMES.
009600
009700 SCROLL-LINE.
009800 DISPLAY " ".
009900
010000 MAINTAIN-THE-FILE.
010100 PERFORM DO-THE-PICK.
010200 PERFORM GET-MENU-PICK.

010300
010400 DO-THE-PICK.
010500 IF MENU-PICK = 1
010600 PERFORM ADD-MODE
010700 ELSE
010800 IF MENU-PICK = 2
010900 PERFORM CHANGE-MODE
011000 ELSE
011100 IF MENU-PICK = 3
011200 PERFORM INQUIRE-MODE
011300 ELSE
011400 IF MENU-PICK = 4
011500 PERFORM DELETE-MODE.
011600
011700*--------------------------------
011800* ADD
011900*--------------------------------
012000 ADD-MODE.
012100 MOVE "ADD" TO THE-MODE.
012200 PERFORM GET-NEW-RECORD-KEY.
012300 PERFORM ADD-RECORDS
012400 UNTIL VENDOR-NUMBER = ZEROES.
012500
012600 GET-NEW-RECORD-KEY.
012700 PERFORM ACCEPT-NEW-RECORD-KEY.
012800 PERFORM RE-ACCEPT-NEW-RECORD-KEY
012900 UNTIL VENDOR-RECORD-FOUND = "N" OR
013000 VENDOR-NUMBER = ZEROES.
013100
013200 ACCEPT-NEW-RECORD-KEY.
013300 PERFORM INIT-VENDOR-RECORD.
013400 PERFORM ENTER-VENDOR-NUMBER.
013500 IF VENDOR-NUMBER NOT = ZEROES
013600 PERFORM READ-VENDOR-RECORD.
013700
013800 RE-ACCEPT-NEW-RECORD-KEY.
013900 DISPLAY "RECORD ALREADY ON FILE"
014000 PERFORM ACCEPT-NEW-RECORD-KEY.
014100
014200 ADD-RECORDS.
014300 PERFORM ENTER-REMAINING-FIELDS.
014400 PERFORM WRITE-VENDOR-RECORD.
014500 PERFORM GET-NEW-RECORD-KEY.
014600
014700 ENTER-REMAINING-FIELDS.
014800 PERFORM ENTER-VENDOR-NAME.

014900 PERFORM ENTER-VENDOR-ADDRESS-1.
015000 PERFORM ENTER-VENDOR-ADDRESS-2.
015100 PERFORM ENTER-VENDOR-CITY.
015200 PERFORM ENTER-VENDOR-STATE.
015300 PERFORM ENTER-VENDOR-ZIP.
015400 PERFORM ENTER-VENDOR-CONTACT.
015500 PERFORM ENTER-VENDOR-PHONE.
015600
015700*--------------------------------
015800* CHANGE
015900*--------------------------------
016000 CHANGE-MODE.
016100 MOVE "CHANGE" TO THE-MODE.
016200 PERFORM GET-EXISTING-RECORD.
016300 PERFORM CHANGE-RECORDS
016400 UNTIL VENDOR-NUMBER = ZEROES.
016500
016600 CHANGE-RECORDS.
016700 PERFORM GET-FIELD-TO-CHANGE.
016800 PERFORM CHANGE-ONE-FIELD
016900 UNTIL WHICH-FIELD = ZERO.
017000 PERFORM GET-EXISTING-RECORD.
017100
017200 GET-FIELD-TO-CHANGE.
017300 PERFORM DISPLAY-ALL-FIELDS.
017400 PERFORM ASK-WHICH-FIELD.
017500
017600 ASK-WHICH-FIELD.
017700 PERFORM ACCEPT-WHICH-FIELD.
017800 PERFORM RE-ACCEPT-WHICH-FIELD
017900 UNTIL WHICH-FIELD < 9.
018000
018100 ACCEPT-WHICH-FIELD.
018200 DISPLAY "ENTER THE NUMBER OF THE FIELD".
018300 DISPLAY "TO CHANGE (1-8) OR 0 TO EXIT".
018400 ACCEPT WHICH-FIELD.
018500
018600 RE-ACCEPT-WHICH-FIELD.
018700 DISPLAY "INVALID ENTRY".
018800 PERFORM ACCEPT-WHICH-FIELD.
018900
019000 CHANGE-ONE-FIELD.
019100 PERFORM CHANGE-THIS-FIELD.
019200 PERFORM GET-FIELD-TO-CHANGE.
019300
019400 CHANGE-THIS-FIELD.

019500 IF WHICH-FIELD = 1
019600 PERFORM ENTER-VENDOR-NAME.
019700 IF WHICH-FIELD = 2
019800 PERFORM ENTER-VENDOR-ADDRESS-1.
019900 IF WHICH-FIELD = 3
020000 PERFORM ENTER-VENDOR-ADDRESS-2.
020100 IF WHICH-FIELD = 4
020200 PERFORM ENTER-VENDOR-CITY.
020300 IF WHICH-FIELD = 5
020400 PERFORM ENTER-VENDOR-STATE.
020500 IF WHICH-FIELD = 6
020600 PERFORM ENTER-VENDOR-ZIP.
020700 IF WHICH-FIELD = 7
020800 PERFORM ENTER-VENDOR-CONTACT.
020900 IF WHICH-FIELD = 8
021000 PERFORM ENTER-VENDOR-PHONE.
021100
021200 PERFORM REWRITE-VENDOR-RECORD.
021300
021400*--------------------------------
021500* INQUIRE
021600*--------------------------------
021700 INQUIRE-MODE.
021800 MOVE "DISPLAY" TO THE-MODE.
021900 PERFORM GET-EXISTING-RECORD.
022000 PERFORM INQUIRE-RECORDS
022100 UNTIL VENDOR-NUMBER = ZEROES.
022200
022300 INQUIRE-RECORDS.
022400 PERFORM DISPLAY-ALL-FIELDS.
022500 PERFORM GET-EXISTING-RECORD.
022600
022700*--------------------------------
022800* DELETE
022900*--------------------------------
023000 DELETE-MODE.
023100 MOVE "DELETE" TO THE-MODE.
023200 PERFORM GET-EXISTING-RECORD.
023300 PERFORM DELETE-RECORDS
023400 UNTIL VENDOR-NUMBER = ZEROES.
023500
023600 DELETE-RECORDS.
023700 PERFORM DISPLAY-ALL-FIELDS.
023800
023900 PERFORM ASK-OK-TO-DELETE.
024000

024100 IF OK-TO-DELETE = "Y"
024200 PERFORM DELETE-VENDOR-RECORD.
024300
024400 PERFORM GET-EXISTING-RECORD.
024500
024600 ASK-OK-TO-DELETE.
024700 PERFORM ACCEPT-OK-TO-DELETE.
024800
024900 PERFORM RE-ACCEPT-OK-TO-DELETE
025000 UNTIL OK-TO-DELETE = "Y" OR "N".
025100
025200 ACCEPT-OK-TO-DELETE.
025300 DISPLAY "DELETE THIS RECORD (Y/N)?".
025400 ACCEPT OK-TO-DELETE.
025500 INSPECT OK-TO-DELETE
025600 CONVERTING LOWER-ALPHA TO UPPER-ALPHA.
025700
025800 RE-ACCEPT-OK-TO-DELETE.
025900 DISPLAY "YOU MUST ENTER YES OR NO".
026000 PERFORM ACCEPT-OK-TO-DELETE.
026100
026200*--------------------------------
026300* Routines shared by all modes
026400*--------------------------------
026500 INIT-VENDOR-RECORD.
026600 MOVE SPACE TO VENDOR-RECORD.
026700 MOVE ZEROES TO VENDOR-NUMBER.
026800
026900 ENTER-VENDOR-NUMBER.
027000 DISPLAY " ".
027100 DISPLAY "ENTER VENDOR NUMBER OF THE VENDOR" .
027200 DISPLAY "TO " THE-MODE " (1-99999)".
027300 DISPLAY "ENTER 0 TO STOP ENTRY".
027400 ACCEPT VENDOR-NUMBER-FIELD.
027500*OR ACCEPT VENDOR-NUMBER-FIELD WITH CONVERSION.
027600
027700 MOVE VENDOR-NUMBER-FIELD TO VENDOR-NUMBER.
027800
027900*--------------------------------
028000* Routines shared Add and Change
028100*--------------------------------
028200 ENTER-VENDOR-NAME.
028300 PERFORM ACCEPT-VENDOR-NAME.
028400 PERFORM RE-ACCEPT-VENDOR-NAME
028500 UNTIL VENDOR-NAME NOT = SPACE.
028600

028700 ACCEPT-VENDOR-NAME.
028800 DISPLAY "ENTER VENDOR NAME".
028900 ACCEPT VENDOR-NAME.
029000 INSPECT VENDOR-NAME
029100 CONVERTING LOWER-ALPHA
029200 TO UPPER-ALPHA.
029300
029400 RE-ACCEPT-VENDOR-NAME.
029500 DISPLAY "VENDOR NAME MUST BE ENTERED".
029600 PERFORM ACCEPT-VENDOR-NAME.
029700
029800 ENTER-VENDOR-ADDRESS-1.
029900 PERFORM ACCEPT-VENDOR-ADDRESS-1.
030000 PERFORM RE-ACCEPT-VENDOR-ADDRESS-1
030100 UNTIL VENDOR-ADDRESS-1 NOT = SPACE.
030200
030300 ACCEPT-VENDOR-ADDRESS-1.
030400 DISPLAY "ENTER VENDOR ADDRESS-1".
030500 ACCEPT VENDOR-ADDRESS-1.
030600 INSPECT VENDOR-ADDRESS-1
030700 CONVERTING LOWER-ALPHA
030800 TO UPPER-ALPHA.
030900
031000 RE-ACCEPT-VENDOR-ADDRESS-1.
031100 DISPLAY "VENDOR ADDRESS-1 MUST BE ENTERED".
031200 PERFORM ACCEPT-VENDOR-ADDRESS-1.
031300
031400 ENTER-VENDOR-ADDRESS-2.
031500 DISPLAY "ENTER VENDOR ADDRESS-2".
031600 ACCEPT VENDOR-ADDRESS-2.
031700 INSPECT VENDOR-ADDRESS-2
031800 CONVERTING LOWER-ALPHA
031900 TO UPPER-ALPHA.
032000
032100 ENTER-VENDOR-CITY.
032200 PERFORM ACCEPT-VENDOR-CITY.
032300 PERFORM RE-ACCEPT-VENDOR-CITY
032400 UNTIL VENDOR-CITY NOT = SPACE.
032500
032600 ACCEPT-VENDOR-CITY.
032700 DISPLAY "ENTER VENDOR CITY".
032800 ACCEPT VENDOR-CITY.
032900 INSPECT VENDOR-CITY
033000 CONVERTING LOWER-ALPHA
033100 TO UPPER-ALPHA.
033200

033300 RE-ACCEPT-VENDOR-CITY.
033400 DISPLAY "VENDOR CITY MUST BE ENTERED".
033500 PERFORM ACCEPT-VENDOR-CITY.
033600
033700 ENTER-VENDOR-STATE.
033800 PERFORM ACCEPT-VENDOR-STATE.
033900 PERFORM RE-ACCEPT-VENDOR-STATE
034000 UNTIL VENDOR-STATE NOT = SPACES AND
034100 STATE-RECORD-FOUND = "Y".
034200
034300 ACCEPT-VENDOR-STATE.
034400 DISPLAY "ENTER VENDOR STATE".
034500 ACCEPT VENDOR-STATE.
034600 PERFORM EDIT-CHECK-VENDOR-STATE.
034700
034800 RE-ACCEPT-VENDOR-STATE.
034900 DISPLAY ERROR-MESSAGE.
035000 PERFORM ACCEPT-VENDOR-STATE.
035100
035200 EDIT-CHECK-VENDOR-STATE.
035300 PERFORM EDIT-VENDOR-STATE.
035400 PERFORM CHECK-VENDOR-STATE.
035500
035600 EDIT-VENDOR-STATE.
035700 INSPECT VENDOR-STATE
035800 CONVERTING LOWER-ALPHA
035900 TO UPPER-ALPHA.
036000
036100 CHECK-VENDOR-STATE.
036200 PERFORM VENDOR-STATE-REQUIRED.
036300 IF VENDOR-STATE NOT = SPACES
036400 PERFORM VENDOR-STATE-ON-FILE.
036500
036600 VENDOR-STATE-REQUIRED.
036700 IF VENDOR-STATE = SPACE
036800 MOVE "VENDOR STATE MUST BE ENTERED"
036900 TO ERROR-MESSAGE.
037000
037100 VENDOR-STATE-ON-FILE.
037200 MOVE VENDOR-STATE TO STATE-CODE.
037300 PERFORM READ-STATE-RECORD.
037400 IF STATE-RECORD-FOUND = "N"
037500 MOVE "STATE CODE NOT FOUND IN CODES FILE"
037600 TO ERROR-MESSAGE.
037700
037800 ENTER-VENDOR-ZIP.

037900 PERFORM ACCEPT-VENDOR-ZIP.
038000 PERFORM RE-ACCEPT-VENDOR-ZIP
038100 UNTIL VENDOR-ZIP NOT = SPACE.
038200
038300 ACCEPT-VENDOR-ZIP.
038400 DISPLAY "ENTER VENDOR ZIP".
038500 ACCEPT VENDOR-ZIP.
038600 INSPECT VENDOR-ZIP
038700 CONVERTING LOWER-ALPHA
038800 TO UPPER-ALPHA.
038900
039000 RE-ACCEPT-VENDOR-ZIP.
039100 DISPLAY "VENDOR ZIP MUST BE ENTERED".
039200 PERFORM ACCEPT-VENDOR-ZIP.
039300
039400 ENTER-VENDOR-CONTACT.
039500 DISPLAY "ENTER VENDOR CONTACT".
039600 ACCEPT VENDOR-CONTACT.
039700 INSPECT VENDOR-CONTACT
039800 CONVERTING LOWER-ALPHA
039900 TO UPPER-ALPHA.
040000
040100 ENTER-VENDOR-PHONE.
040200 PERFORM ACCEPT-VENDOR-PHONE.
040300 PERFORM RE-ACCEPT-VENDOR-PHONE
040400 UNTIL VENDOR-PHONE NOT = SPACE.
040500
040600 ACCEPT-VENDOR-PHONE.
040700 DISPLAY "ENTER VENDOR PHONE".
040800 ACCEPT VENDOR-PHONE.
040900 INSPECT VENDOR-PHONE
041000 CONVERTING LOWER-ALPHA
041100 TO UPPER-ALPHA.
041200
041300 RE-ACCEPT-VENDOR-PHONE.
041400 DISPLAY "VENDOR PHONE MUST BE ENTERED".
041500 PERFORM ACCEPT-VENDOR-PHONE.
041600
041700*--------------------------------
041800* Routines shared by Change,
041900* Inquire and Delete
042000*--------------------------------
042100 GET-EXISTING-RECORD.
042200 PERFORM ACCEPT-EXISTING-KEY.
042300 PERFORM RE-ACCEPT-EXISTING-KEY
042400 UNTIL VENDOR-RECORD-FOUND = "Y" OR

042500 VENDOR-NUMBER = ZEROES.
042600
042700 ACCEPT-EXISTING-KEY.
042800 PERFORM INIT-VENDOR-RECORD.
042900 PERFORM ENTER-VENDOR-NUMBER.
043000 IF VENDOR-NUMBER NOT = ZEROES
043100 PERFORM READ-VENDOR-RECORD.
043200
043300 RE-ACCEPT-EXISTING-KEY.
043400 DISPLAY "RECORD NOT FOUND"
043500 PERFORM ACCEPT-EXISTING-KEY.
043600
043700 DISPLAY-ALL-FIELDS.
043800 DISPLAY " ".
043900 PERFORM DISPLAY-VENDOR-NUMBER.
044000 PERFORM DISPLAY-VENDOR-NAME.
044100 PERFORM DISPLAY-VENDOR-ADDRESS-1.
044200 PERFORM DISPLAY-VENDOR-ADDRESS-2.
044300 PERFORM DISPLAY-VENDOR-CITY.
044400 PERFORM DISPLAY-VENDOR-STATE.
044500 PERFORM DISPLAY-VENDOR-ZIP.
044600 PERFORM DISPLAY-VENDOR-CONTACT.
044700 PERFORM DISPLAY-VENDOR-PHONE.
044800 DISPLAY " ".
044900
045000 DISPLAY-VENDOR-NUMBER.
045100 DISPLAY " VENDOR NUMBER: " VENDOR-NUMBER.
045200
045300 DISPLAY-VENDOR-NAME.
045400 DISPLAY "1. VENDOR NAME: " VENDOR-NAME.
045500
045600 DISPLAY-VENDOR-ADDRESS-1.
045700 DISPLAY "2. VENDOR ADDRESS-1: " VENDOR-ADDRESS-1.
045800
045900 DISPLAY-VENDOR-ADDRESS-2.
046000 DISPLAY "3. VENDOR ADDRESS-2: " VENDOR-ADDRESS-2.
046100
046200 DISPLAY-VENDOR-CITY.
046300 DISPLAY "4. VENDOR CITY: " VENDOR-CITY.
046400
046500 DISPLAY-VENDOR-STATE.
046600 PERFORM VENDOR-STATE-ON-FILE.
046700 IF STATE-RECORD-FOUND = "N"
046800 MOVE "**Not found**" TO STATE-NAME.
046900 DISPLAY "5. VENDOR STATE: "
047000 VENDOR-STATE " "

047100 STATE-NAME.
047200
047300 DISPLAY-VENDOR-ZIP.
047400 DISPLAY "6. VENDOR ZIP: " VENDOR-ZIP.
047500
047600 DISPLAY-VENDOR-CONTACT.
047700 DISPLAY "7. VENDOR CONTACT: " VENDOR-CONTACT.
047800
047900 DISPLAY-VENDOR-PHONE.
048000 DISPLAY "8. VENDOR PHONE: " VENDOR-PHONE.
048100
048200*--------------------------------
048300* File I-O Routines
048400*--------------------------------
048500 READ-VENDOR-RECORD.
048600 MOVE "Y" TO VENDOR-RECORD-FOUND.
048700 READ VENDOR-FILE RECORD
048800 INVALID KEY
048900 MOVE "N" TO VENDOR-RECORD-FOUND.
049000
049100*or READ VENDOR-FILE RECORD WITH LOCK
049200* INVALID KEY
049300* MOVE "N" TO VENDOR-RECORD-FOUND.
049400
049500*or READ VENDOR-FILE RECORD WITH HOLD
049600* INVALID KEY
049700* MOVE "N" TO VENDOR-RECORD-FOUND.
049800
049900 WRITE-VENDOR-RECORD.
050000 WRITE VENDOR-RECORD
050100 INVALID KEY
050200 DISPLAY "RECORD ALREADY ON FILE".
050300
050400 REWRITE-VENDOR-RECORD.
050500 REWRITE VENDOR-RECORD
050600 INVALID KEY
050700 DISPLAY "ERROR REWRITING VENDOR RECORD".
050800
050900 DELETE-VENDOR-RECORD.
051000 DELETE VENDOR-FILE RECORD
051100 INVALID KEY
051200 DISPLAY "ERROR DELETING VENDOR RECORD".
051300
051400 READ-STATE-RECORD.
051500 MOVE "Y" TO STATE-RECORD-FOUND.
051600 READ STATE-FILE RECORD

051700 INVALID KEY
051800 MOVE "N" TO STATE-RECORD-FOUND.
051900

The new vndmnt02.cbl limits you to valid state codes, but the original vndmnt01.cbl did not. If
you entered an invalid state code using vndmnt01.cbl, vndmnt02.cbl would pick this up and
display it.

The sample output illustrates the messages received when a user displays a record containing an invalid
state code, attempts to change it to spaces, and then attempts to change it to an invalid state:

OUTPUT:
ENTER VENDOR NUMBER OF THE VENDOR
TO CHANGE (1-99999)
ENTER 0 TO STOP ENTRY
1
VENDOR NUMBER: 00001
1. VENDOR NAME: AERIAL SIGNS
2. VENDOR ADDRESS-1: BURBANK AIRPORT
3. VENDOR ADDRESS-2: HANGAR 305
4. VENDOR CITY: BURBANK
5. VENDOR STATE: WX **Not Found**
6. VENDOR ZIP: 90016
7. VENDOR CONTACT: HENRIETTA MARKSON
8. VENDOR PHONE: (818) 555-6066
ENTER THE NUMBER OF THE FIELD
TO CHANGE (1-8) OR 0 TO EXIT
5
ENTER VENDOR STATE

(User pressed Enter here with no entry.1)

VENDOR-STATE-MUST BE ENTERED
ENTER VENDOR STATE
ww
STATE CODE NOT FOUND IN CODES FILE
ENTER VENDOR STATE
ca
VENDOR NUMBER: 00001
1. VENDOR NAME: AERIAL SIGNS
2. VENDOR ADDRESS-1: BURBANK AIRPORT
3. VENDOR ADDRESS-2: HANGAR 305
4. VENDOR CITY: BURBANK
5. VENDOR STATE: CA CALIFORNIA
6. VENDOR ZIP: 90016
7. VENDOR CONTACT: HENRIETTA MARKSON
8. VENDOR PHONE: (818) 555-6066

ENTER THE NUMBER OF THE FIELD
TO CHANGE (1-8) OR 0 TO EXIT

ANALYSIS: In order to look up anything in the state code file, you have to include the file in the
program, and the file will have to be opened in the program. Lines 001300 and 002000 include the
SELECT and FD for the STATE-FILE. At lines 005400 and 005800, the state file is opened and
closed as part of OPENING-PROCEDURE and CLOSING-PROCEDURE.

The STATE-FILE has to be read, so you need a RECORD-FOUND flag for the STATE-FILE. The flag
with this name already is used for reading the VENDOR-FILE, so to avoid confusion, the
RECORD-FOUND variable is replaced with a VENDOR-RECORD-FOUND and a
STATE-RECORD-FOUND at lines 003000 and 003100, respectively. The VENDOR-FILE uses the
VENDOR-RECORD-FOUND flag during reads, and the STATE-FILE uses the
STATE-RECORD-FOUND flag during reads.

The READ-STATE-RECORD routine appears at lines 051400 through 051800, and the modified
READ-VENDOR-RECORD routine appears at lines 048500 through 048900.

The entry and validation of VENDOR-STATE appears at lines 033700 through 037600. The
VENDOR-STATE field requires multiple validations because two conditions must be true for the field to
be correct. The field must not be spaces, and a record for that state must be found in the state code file.

The ENTER-VENDOR-STATE paragraph at line 034000 has been coded to test for both of these things.
In the ACCEPT-VENDOR-STATE paragraph, the editing and checking (validating) of VENDOR-STATE
has been broken into a separate paragraph performed at line 034600. The
EDIT-CHECK-VENDOR-STATE paragraph at line 035200 is in turn broken into separate routines to
edit VENDOR-STATE and check (validate) VENDOR-STATE. In EDIT-VENDOR-STATE at line
035600, the field is converted to uppercase.

The checking (validating) of VENDOR-STATE in CHECK-VENDOR-STATE at line 036100 is broken
into two separate paragraphs. At line 036200, the VENDOR-STATE-REQUIRED paragraph is
performed. This routine, at line 036600, checks that the field has been entered and sets up an error
message for the user if it has not. If the validation of VENDOR-STATE-REQUIRED is passed, at line
036400, the VENDOR-STATE-ON-FILE routine is performed to check that the entered state code
appears in the state file.

The VENDOR-STATE-ON-FILE paragraph at line 037100 is fairly straightforward. It moves the
VENDOR-STATE to the STATE-CODE and then reads the state code file. If the record is not found,
another error message is set up.

The RE-ACCEPT-VENDOR-STATE paragraph at line 034800 could have displayed "INVALID
ENTRY" as a catchall error message, but it is helpful to the user to have a more detailed error message.
An ERROR-MESSAGE variable is defined at line 003600, filled in at line 036800 or 037500
(depending on the type of error), and then displayed at line 034900. This gives the user a better idea of
the problem with the data.

Of course, this assumes that the STATE-FILE contains all the valid states that might be used in vendor
addresses, and that these were entered correctly in the first place.

The VENDOR-STATE-ON-FILE routine also can be used to improve the information that is displayed
on the screen for the user. At line 046500, the DISPLAY-VENDOR-STATE routine has been modified
to display the name of the state, as well as the two-character abbreviation.

At line 046600, VENDOR-STATE-ON-FILE is performed. If the record is not found, the literal
"**Not found**" is moved to STATE-NAME. If a record was found, STATE-NAME includes the
state name from STATE-FILE. If not found, it includes the message "**Not found**". At lines
046900 through 047100, "5. VENDOR STATE: ", VENDOR-STATE, and STATE-NAME are
displayed.

Another new piece of coding worth looking at starts at line 012600 with the GET-NEW-RECORD-KEY
paragraph. This logic replaces the GET-NEW-VENDOR logic in vndmnt01.cbl. It is designed to work
as a standard field-entry routine, as shown in Figure 16.1.

Figure 16.1.
GET-NEW-RECORD-KEY as a standard field-entry routine.

A similar arrangement begins at line 042100 in the GET-EXISTING-RECORD routine, which is
compared to the standard field-entry routine in Figure 16.2.

Figure 16.2.
GET-EXISTING-RECORD as a standard field-entry routine.

Locating Invalid Data in Files
The new version of vndmnt02.cbl forces uppercase entry, but vndmnt01.cbl did not. It is possible
for your data file to contain values that are in lowercase if you used vndmnt01.cbl to add records.

If you have entered everything in uppercase, take the time to run vndmnt01.cbl once again, and add a
record with lowercase fields in it. You also might want to enter one record that contains an invalid
VENDOR-STATE--one that does not appear in the state code file.

In Figure 16.3, the state name has been added to the report immediately after the state code, and part of
the report has been moved to the right to make room for the extra 20 characters of state name. A report
such as this can be used to identify vendor records that contain fields in lowercase and vendor records
that contain invalid state codes.

Figure 16.3.
Spacing chart for vndrpt02.cbl.

In Listing 16.5, the state code is looked up using logic similar to that used in vndmnt02.cbl.

TYPE: Listing 16.5. Adding the state name to the report.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. VNDRPT02.
000300*--------------------------------
000400* Report on the Vendor File.

file:///D|/Cool Stuff/old/ftp/Sams.Teach.Yourself.Cobol.In.21.Days/Teach Yourself Cobol in 21 Days/ch16/01.htm
file:///D|/Cool Stuff/old/ftp/Sams.Teach.Yourself.Cobol.In.21.Days/Teach Yourself Cobol in 21 Days/ch16/02.htm
file:///D|/Cool Stuff/old/ftp/Sams.Teach.Yourself.Cobol.In.21.Days/Teach Yourself Cobol in 21 Days/ch16/03.htm

000500*--------------------------------
000600 ENVIRONMENT DIVISION.
000700 INPUT-OUTPUT SECTION.
000800 FILE-CONTROL.
000900
001000 COPY "SLVND01.CBL".
001100
001200 COPY "SLSTATE.CBL".
001300
001400 SELECT PRINTER-FILE
001500 ASSIGN TO PRINTER
001600 ORGANIZATION IS LINE SEQUENTIAL.
001700
001800 DATA DIVISION.
001900 FILE SECTION.
002000
002100 COPY "FDVND02.CBL".
002200
002300 COPY "FDSTATE.CBL".
002400
002500 FD PRINTER-FILE
002600 LABEL RECORDS ARE OMITTED.
002700 01 PRINTER-RECORD PIC X(80).
002800
002900 WORKING-STORAGE SECTION.
003000
003100 01 DETAIL-LINE.
003200 05 PRINT-NUMBER PIC 9(5).
003300 05 FILLER PIC X VALUE SPACE.
003400 05 PRINT-NAME PIC X(30).
003500 05 FILLER PIC X(15) VALUE SPACE.
003600 05 PRINT-CONTACT PIC X(30).
003700
003800 01 CITY-STATE-LINE.
003900 05 FILLER PIC X(6) VALUE SPACE.
004000 05 PRINT-CITY PIC X(20).
004100 05 FILLER PIC X VALUE SPACE.
004200 05 PRINT-STATE PIC X(2).
004300 05 FILLER PIC X VALUE SPACE.
004400 05 PRINT-STATE-NAME PIC X(20).
004500 05 FILLER PIC X(1) VALUE SPACE.
004600 05 PRINT-ZIP PIC X(10).
004700
004800 01 COLUMN-LINE.
004900 05 FILLER PIC X(2) VALUE "NO".
005000 05 FILLER PIC X(4) VALUE SPACE.

005100 05 FILLER PIC X(12) VALUE "NAME-ADDRESS".
005200 05 FILLER PIC X(33) VALUE SPACE.
005300 05 FILLER PIC X(17) VALUE "CONTACT-PHONE-ZIP".
005400
005500 01 TITLE-LINE.
005600 05 FILLER PIC X(25) VALUE SPACE.
005700 05 FILLER PIC X(11)
005800 VALUE "VENDOR LIST".
005900 05 FILLER PIC X(19) VALUE SPACE.
006000 05 FILLER PIC X(5) VALUE "PAGE:".
006100 05 FILLER PIC X(1) VALUE SPACE.
006200 05 PRINT-PAGE-NUMBER PIC ZZZZ9.
006300
006400 77 FILE-AT-END PIC X.
006500 77 STATE-RECORD-FOUND PIC X VALUE "N".
006600 77 LINE-COUNT PIC 999 VALUE ZERO.
006700 77 PAGE-NUMBER PIC 99999 VALUE ZERO.
006800 77 MAXIMUM-LINES PIC 999 VALUE 55.
006900
007000 PROCEDURE DIVISION.
007100 PROGRAM-BEGIN.
007200
007300 PERFORM OPENING-PROCEDURE.
007400 MOVE ZEROES TO LINE-COUNT
007500 PAGE-NUMBER.
007600
007700 PERFORM START-NEW-PAGE.
007800
007900 MOVE "N" TO FILE-AT-END.
008000 PERFORM READ-NEXT-RECORD.
008100 IF FILE-AT-END = "Y"
008200 MOVE "NO RECORDS FOUND" TO PRINTER-RECORD
008300 PERFORM WRITE-TO-PRINTER
008400 ELSE
008500 PERFORM PRINT-VENDOR-FIELDS
008600 UNTIL FILE-AT-END = "Y".
008700
008800 PERFORM CLOSING-PROCEDURE.
008900
009000 PROGRAM-DONE.
009100 STOP RUN.
009200
009300 OPENING-PROCEDURE.
009400 OPEN I-O VENDOR-FILE.
009500 OPEN I-O STATE-FILE.
009600 OPEN OUTPUT PRINTER-FILE.

009700
009800 CLOSING-PROCEDURE.
009900 CLOSE VENDOR-FILE.
010000 CLOSE STATE-FILE.
010100 PERFORM END-LAST-PAGE.
010200 CLOSE PRINTER-FILE.
010300
010400 PRINT-VENDOR-FIELDS.
010500 IF LINE-COUNT > MAXIMUM-LINES
010600 PERFORM START-NEXT-PAGE.
010700 PERFORM PRINT-THE-RECORD.
010800 PERFORM READ-NEXT-RECORD.
010900
011000 PRINT-THE-RECORD.
011100 PERFORM PRINT-LINE-1.
011200 PERFORM PRINT-LINE-2.
011300 PERFORM PRINT-LINE-3.
011400 PERFORM PRINT-LINE-4.
011500 PERFORM LINE-FEED.
011600
011700 PRINT-LINE-1.
011800 MOVE SPACE TO DETAIL-LINE.
011900 MOVE VENDOR-NUMBER TO PRINT-NUMBER.
012000 MOVE VENDOR-NAME TO PRINT-NAME.
012100 MOVE VENDOR-CONTACT TO PRINT-CONTACT.
012200 MOVE DETAIL-LINE TO PRINTER-RECORD.
012300 PERFORM WRITE-TO-PRINTER.
012400
012500 PRINT-LINE-2.
012600 MOVE SPACE TO DETAIL-LINE.
012700 MOVE VENDOR-ADDRESS-1 TO PRINT-NAME.
012800 MOVE VENDOR-PHONE TO PRINT-CONTACT.
012900 MOVE DETAIL-LINE TO PRINTER-RECORD.
013000 PERFORM WRITE-TO-PRINTER.
013100
013200 PRINT-LINE-3.
013300 MOVE SPACE TO DETAIL-LINE.
013400 MOVE VENDOR-ADDRESS-2 TO PRINT-NAME.
013500 IF VENDOR-ADDRESS-2 NOT = SPACE
013600 MOVE DETAIL-LINE TO PRINTER-RECORD
013700 PERFORM WRITE-TO-PRINTER.
013800
013900 PRINT-LINE-4.
014000 MOVE SPACE TO CITY-STATE-LINE.
014100 MOVE VENDOR-CITY TO PRINT-CITY.
014200 MOVE VENDOR-STATE TO PRINT-STATE.

014300
014400 MOVE VENDOR-STATE TO STATE-CODE.
014500 PERFORM READ-STATE-RECORD.
014600 IF STATE-RECORD-FOUND = "N"
014700 MOVE "***Not Found***" TO STATE-NAME.
014800 MOVE STATE-NAME TO PRINT-STATE-NAME.
014900
015000 MOVE VENDOR-ZIP TO PRINT-ZIP.
015100 MOVE CITY-STATE-LINE TO PRINTER-RECORD.
015200 PERFORM WRITE-TO-PRINTER.
015300
015400 READ-NEXT-RECORD.
015500 READ VENDOR-FILE NEXT RECORD
015600 AT END MOVE "Y" TO FILE-AT-END.
015700
015800 WRITE-TO-PRINTER.
015900 WRITE PRINTER-RECORD BEFORE ADVANCING 1.
016000 ADD 1 TO LINE-COUNT.
016100
016200 LINE-FEED.
016300 MOVE SPACE TO PRINTER-RECORD.
016400 PERFORM WRITE-TO-PRINTER.
016500
016600 START-NEXT-PAGE.
016700 PERFORM END-LAST-PAGE.
016800 PERFORM START-NEW-PAGE.
016900
017000 START-NEW-PAGE.
017100 ADD 1 TO PAGE-NUMBER.
017200 MOVE PAGE-NUMBER TO PRINT-PAGE-NUMBER.
017300 MOVE TITLE-LINE TO PRINTER-RECORD.
017400 PERFORM WRITE-TO-PRINTER.
017500 PERFORM LINE-FEED.
017600 MOVE COLUMN-LINE TO PRINTER-RECORD.
017700 PERFORM WRITE-TO-PRINTER.
017800 PERFORM LINE-FEED.
017900
018000 END-LAST-PAGE.
018100 PERFORM FORM-FEED.
018200 MOVE ZERO TO LINE-COUNT.
018300
018400 FORM-FEED.
018500 MOVE SPACE TO PRINTER-RECORD.
018600 WRITE PRINTER-RECORD BEFORE ADVANCING PAGE.
018700
018800 READ-STATE-RECORD.

018900 MOVE "Y" TO STATE-RECORD-FOUND.
019000 READ STATE-FILE RECORD
019100 INVALID KEY
019200 MOVE "N" TO STATE-RECORD-FOUND.
019300

An example of the output from vndrpt02.cbl shows one record containing an invalid state code and
a few records containing lowercase values. These are records that must be fixed so that the information in
the file is valid:

OUTPUT:
 VENDOR LIST PAGE: 1
NO NAME-ADDRESS CONTACT-PHONE-ZIP
00001 AERIAL SIGNS HENRIETTA MARKSON
BURBANK AIRPORT (818) 555-6066
HANGAR 305
BURBANK WX ***Not Found*** 90016
00002 ABC PRINTING CHARLES JOHANSSEN
1624 Foothill Blvd (818) 555-4321
SUITE 34
LOS ANGELES CA CALIFORNIA 91042
00003 CHARLES SMITH AND SONS Martha Harrison
1435 SOUTH STREET (213) 555-4432
LOS ANGELES CA CALIFORNIA 90064
00005 ALIAS SMITH AND JONES ROBIN COUSINS
1216 Main Street 415 555-9203
PALO ALTO CA CALIFORNIA 90061
00014 RANIER GRAPHICS JULIA SIMPSON
4433 WASHINGTON ST (213) 555-6789
LOS ANGELES CA CALIFORNIA 90032
00022 ARTFUL DODGER
123 UNDERWOOD LANE 202 555-1234
MARKHAM WA WASHINGTON 40466
01176 ABERCROMBIE AND OTHERS
1234 45TH ST. (213) 555-6543
SUITE 17
LOS ANGELES CA CALIFORNIA 92345
01440 ZINZINDORFF INC.
1604 7TH ST (213) 555-7234
LOS ANGELES CA CALIFORNIA 90404

ANALYSIS: A SELECT and FD are added for the STATE-FILE. A routine to read the state record,
READ-STATE-RECORD, is included at line 018800, and a STATE-RECORD-FOUND variable used in
that routine is defined in WORKING-STORAGE at line 006500.

The details for print line 4 containing the city, state code, state, and zip code no longer fit within
DETAIL-LINE. Therefore, an additional line, CITY-STATE-LINE, is defined at line 003800 and is

used in PRINT-LINE-4, which begins at line 013900.

The logic that uses the state file begins at line 014400 by moving the VENDOR-STATE to
STATE-CODE and then reading the record. If the record is not found, the STATE-NAME is filled in with
"***Not Found***". The value in STATE-NAME (either the state name or the value "***Not
Found***") is moved to PRINT-STATE-NAME. This is part of CITY-STATE-LINE, which also is
filled in with the zip code, and then finally printed at line 015200.

Fixing Invalid Data in Files
On Day 15, you learned that if you are working with a file that contains invalid data, you should track
down the program or programs that are putting invalid data in the file and correct the programs. Then
correct the data in the file. vndmnt02.cbl fixes the problem in vndmnt01.cbl, but now it is
necessary to correct the data.

In order to correct the data, you need to convert the data in the vendor file to uppercase. Once again, you
use LOWER-ALPHA and UPPER-ALPHA to do this. You already used them in three or four programs.
Listing 16.6, wscase01.cbl, is a COPY file that can be used in any program that has to perform case
conversion. It saves having to retype LOWER-ALPHA and UPPER-ALPHA each time they are used and
includes comments on how to use them. Remember that the COPY file is included by the compiler, as if
you had typed it all.

TYPE: Listing 16.6. wscase01.cbl, a COPY file for case conversion.

000100*--------------------------------
000200* Can be used for case conversion
000300* Ex:
000400* INSPECT data-field
000500* CONVERTING LOWER-ALPHA
000600* TO UPPER-ALPHA.
000700*--------------------------------
000800
000900 77 UPPER-ALPHA PIC X(26) VALUE
001000 "ABCDEFGHIJKLMNOPQRSTUVWXYZ".
001100 77 LOWER-ALPHA PIC X(26) VALUE
001200 "abcdefghijklmnopqrstuvwxyz".
001300
001400

Listing 16.7 is a program to convert all the fields in the vendor file to uppercase.

TYPE: Listing 16.7. Fixing the vendor file.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. VNDFIX01.
000300*--------------------------------

000400* Repairs any lowercase errors in
000500* the vendor file by converting the
000600* the whole record to uppercase.
000700*--------------------------------
000800 ENVIRONMENT DIVISION.
000900 INPUT-OUTPUT SECTION.
001000 FILE-CONTROL.
001100
001200 COPY "SLVND01.CBL".
001300
001400 DATA DIVISION.
001500 FILE SECTION.
001600
001700 COPY "FDVND03.CBL".
001800
001900 WORKING-STORAGE SECTION.
002000
002100 77 VENDOR-AT-END PIC X VALUE "N".
002200
002300 COPY "WSCASE01.CBL".
002400
002500 PROCEDURE DIVISION.
002600 PROGRAM-BEGIN.
002700 PERFORM OPENING-PROCEDURE.
002800 PERFORM MAIN-PROCESS.
002900 PERFORM CLOSING-PROCEDURE.
003000
003100 PROGRAM-DONE.
003200 STOP RUN.
003300
003400 OPENING-PROCEDURE.
003500 OPEN I-O VENDOR-FILE.
003600
003700 CLOSING-PROCEDURE.
003800 CLOSE VENDOR-FILE.
003900
004000 MAIN-PROCESS.
004100 PERFORM READ-NEXT-VENDOR-RECORD.
004200 PERFORM FIX-VENDOR-RECORDS
004300 UNTIL VENDOR-AT-END = "Y".
004400
004500 FIX-VENDOR-RECORDS.
004600 INSPECT VENDOR-RECORD
004700 CONVERTING LOWER-ALPHA
004800 TO UPPER-ALPHA.
004900 PERFORM REWRITE-VENDOR-RECORD.

005000
005100 PERFORM READ-NEXT-VENDOR-RECORD.
005200
005300 READ-NEXT-VENDOR-RECORD.
005400 MOVE "N" TO VENDOR-AT-END.
005500 READ VENDOR-FILE NEXT RECORD
005600 AT END MOVE "Y" TO VENDOR-AT-END.
005700
005800*or READ VENDOR-FILE NEXT RECORD WITH LOCK
005900* AT END MOVE "Y" TO VENDOR-AT-END.
006000
006100*or READ VENDOR-FILE NEXT RECORD WITH HOLD
006200* AT END MOVE "Y" TO VENDOR-AT-END.
006300
006400 REWRITE-VENDOR-RECORD.
006500 REWRITE VENDOR-RECORD
006600 INVALID KEY
006700 DISPLAY "ERROR REWRITING VENDOR RECORD".
006800

The output of vndrpt02.cbl after vndfix01.cbl has been run verifies that all fields have been
converted to uppercase:

OUTPUT:
 VENDOR LIST PAGE: 1
NO NAME-ADDRESS CONTACT-PHONE-ZIP
00001 AERIAL SIGNS HENRIETTA MARKSON
BURBANK AIRPORT (818) 555-6066
HANGAR 305
BURBANK WX ***Not Found*** 90016
00002 ABC PRINTING CHARLES JOHANSSEN
1624 FOOTHILL BLVD (818) 555-4321
SUITE 34
LOS ANGELES CA CALIFORNIA 91042
00003 CHARLES SMITH AND SONS MARTHA HARRISON
1435 SOUTH STREET (213) 555-4432
LOS ANGELES CA CALIFORNIA 90064
00005 ALIAS SMITH AND JONES ROBIN COUSINS
1216 MAIN STREET 415 555-9203
PALO ALTO CA CALIFORNIA 90061
00014 RANIER GRAPHICS JULIA SIMPSON
4433 WASHINGTON ST (213) 555-6789
LOS ANGELES CA CALIFORNIA 90032
00022 ARTFUL DODGER
123 UNDERWOOD LANE 202 555-1234
MARKHAM WA WASHINGTON 40466

01176 ABERCROMBIE AND OTHERS
1234 45TH ST. (213) 555-6543
SUITE 17
LOS ANGELES CA CALIFORNIA 92345
01440 ZINZINDORFF INC.
1604 7TH ST (213) 555-7234
LOS ANGELES CA CALIFORNIA 90404

The final error in vendor number 00001 is an invalid state code. This should be corrected manually.
Determine the correct code and enter it manually using vndmnt02.cbl. The final corrected output of
vndrpt02.cbl shows a clean file with all data corrected:

OUTPUT:
 VENDOR LIST PAGE: 1
NO NAME-ADDRESS CONTACT-PHONE-ZIP
00001 AERIAL SIGNS HENRIETTA MARKSON
BURBANK AIRPORT (818) 555-6066
HANGAR 305
BURBANK CA CALIFORNIA 90016
00002 ABC PRINTING CHARLES JOHANSSEN
1624 FOOTHILL BLVD (818) 555-4321
SUITE 34
LOS ANGELES CA CALIFORNIA 91042
00003 CHARLES SMITH AND SONS MARTHA HARRISON
1435 SOUTH STREET (213) 555-4432
LOS ANGELES CA CALIFORNIA 90064
00005 ALIAS SMITH AND JONES ROBIN COUSINS
1216 MAIN STREET 415 555-9203
PALO ALTO CA CALIFORNIA 90061
00014 RANIER GRAPHICS JULIA SIMPSON
4433 WASHINGTON ST (213) 555-6789
LOS ANGELES CA CALIFORNIA 90032
00022 ARTFUL DODGER
123 UNDERWOOD LANE 202 555-1234
MARKHAM WA WASHINGTON 40466
01176 ABERCROMBIE AND OTHERS
1234 45TH ST. (213) 555-6543
SUITE 17
LOS ANGELES CA CALIFORNIA 92345
01440 ZINZINDORFF INC.
1604 7TH ST (213) 555-7234
LOS ANGELES CA CALIFORNIA 90404

ANALYSIS: This program performs a simple task. It reads each vendor record, converts the whole
record to uppercase, and then rewrites the record.

At line 002300, the COPY file for case conversions, wscase01.cbl, is included. The

MAIN-PROCESS at line 004000 uses the standard file processing loop of reading the first record and
then processing the record until the file ends. The main processing loop is FIX-VENDOR-RECORDS at
line 004500. This applies the case conversion to the entire vendor record and then rewrites the record.
At the end of the loop at line 005100, the next record is read.

On large systems that require a lock or a hold before a record can be changed, READ NEXT also comes
with a LOCK or HOLD version. These versions appear commented out at lines 005800 through 006200
in case you need to use them.

Code, compile, and run vndfix01.cbl to correct the vendor file. Use vndrpt02.cbl to verify that
the case conversions have occurred.

What Is a Table?
The vndrpt02.cbl program performs file I/O (Input/Output) operations on two different files: the
vendor file and the state code file. File I/O operations take time. Disk drives are very slow compared to
main memory.

For a small vendor file, this is not particularly a problem. If the vendor file contains 80,000 records,
however, the program will have to perform 160,000 file I/O operations--one for each vendor record and
one for each state code associated with each vendor record.

Whenever you can avoid performing file operations you should do so, but it is unavoidable that files will
be accessed by a computer program. Otherwise, a program would have no way of storing and retrieving
information. Although the vndrpt02.cbl program has to read through the vendor file to extract all of
the information for the report, it is possible to avoid having to read the state code file so many times.

The state code file is small enough (probably 50 records minimum) that it could all be loaded into
memory once, and then the state codes could be looked up in memory. It would take 50 file I/O
operations to load the state code file into memory and 80,000 file I/O operations to read the vendor file.
No additional file I/O operations are needed to look up the state codes in memory. This total of 80,050
operations is close to half of the original 160,000 and represents a substantial increase in the speed of the
program.

In order to do this, you use a table or an array to load a file into memory.

New Term: A table or an array is an area of memory that has been set aside and organized in such a way
that it can hold multiple occurrences of the same type of information.

Returning to the file card analogy, using a table in a program is equivalent to pulling the cards out of a
card file box and laying them out on the desk, as shown in Figure 16.4. This analogy doesn't hold up
completely, because you can't actually pull records out of a file and arrange them in memory, but you can
read each record in a file and arrange the data from each record in memory.

Figure 16.4.
Turning a file into a table.

Listing 16.8 is the record for the state code file. What you need is a place in memory to hold 50

file:///D|/Cool Stuff/old/ftp/Sams.Teach.Yourself.Cobol.In.21.Days/Teach Yourself Cobol in 21 Days/ch16/04.htm

occurrences of the data in the STATE-RECORD.

TYPE: Listing 16.8. FD for the state code file.

000100*--------------------------------
000200* FDSTATE.CBL
000300* Primary Key - STATE-CODE
000400* NAME is required
000500* NAME and CODE should be uppercase
000600*--------------------------------
000700 FD STATE-FILE
000800 LABEL RECORDS ARE STANDARD.
000900 01 STATE-RECORD.
001000 05 STATE-CODE PIC X(2).
001100 05 STATE-NAME PIC X(20).
001200

Listing 16.9 can be set up in working storage and contains fields that are the same size as the state code
and state name fields of the state code file. You load this into memory by reading the state record and
then moving STATE-CODE to TABLE-STATE-CODE and STATE-NAME to TABLE-STATE-NAME.

TYPE: Listing 16.9. A duplicate of the state code record.

007000 01 TABLE-STATE-RECORD.
007100 05 TABLE-STATE-CODE PIC XX.
007200 05 TABLE-STATE-NAME PIC X(20).

Listing 16.9 allows for only one occurrence of the state information--and you need 50 occurrences. This
is handled by adding an OCCURS clause after the TABLE-STATE-RECORD, as shown in Listing 16.10.
This creates space in memory for 50 occurrences of TABLE-STATE-RECORD. The
TABLE-STATE-RECORD is 22 bytes long, so this reserves 1,100 bytes (50x22).

Listing 16.10. Make it happen 50 times.

007000 01 TABLE-STATE-RECORD OCCURS 50 TIMES.
007100 05 TABLE-STATE-CODE PIC XX.
007200 05 TABLE-STATE-NAME PIC X(20).

ANALYSIS: Adding the OCCURS 50 TIMES works as if you had typed lines 007000 through
007200 in Listing 16.9 50 times. This creates 50 occurrences of TABLE-STATE-RECORD. It also
creates multiple occurrences of all the subordinate variables, so 50 occurrences of
TABLE-STATE-CODE and TABLE-STATE-NAME are also within the 50 occurrences of
TABLE-STATE-RECORD.

If you move something to or from a table variable TABLE-STATE-RECORD (or TABLE-STATE-CODE
or TABLE-STATE-NAME), you must add some additional information to identify to or from which
occurrence you are moving. You single out a specific variable in a table by adding a number in
parentheses after the variable name. This number is called an index or a subscript. This is not the same

index as the index to a file, but it is a number that identifies which occurrence of the variable is being
referenced. Several examples of this are given in Listing 16.11.

TYPE: Listing 16.11. Examples of using table (array) variables.

018000 MOVE SPACE TO TABLE-STATE-RECORD(5).
018100 MOVE STATE-CODE TO TABLE-STATE-CODE(1).
018200 MOVE STATE-NAME TO TABLE-STATE-NAME(15).
018300 DISPLAY TABLE-STATE-NAME(23).
018400 MOVE TABLE-STATE-CODE(43) TO PRINT-CODE.

The examples in Listing 16.11 are not from a real program and don't do anything; they are only examples
of the syntax for accessing a table variable with an index or subscript. The index itself can be a variable,
as in lines 018500 and 018600 of Listing 16.12.

TYPE: Listing 16.12. A variable used as an index.

018500 MOVE 53 TO STATE-INDEX.
018600 DISPLAY TABLE-STATE-CODE(STATE-INDEX).

New Term: When you define a table (array), you also can (and usually should) define a variable that
specifically is intended to be used as the index for that table. This is called an index variable. Listing
16.13 shows an example of the syntax for a table in which STATE-INDEX is the index variable for the
TABLE-STATE-RECORD.

Several special commands can be used on tables if the table is given an index. An index variable is given
a special status in COBOL programs. It requires no picture or definition other than what is shown in
Listing 16.13 at line 007100, but it cannot be used for anything other than as an index to variables in the
table.

TYPE: Listing 16.13. Providing an index.

007000 01 TABLE-STATE-RECORD OCCURS 50 TIMES
007100 INDEXED BY STATE-INDEX.
007200 05 TABLE-STATE-CODE PIC XX.
007300 05 TABLE-STATE-NAME PIC X(20).

Although an index variable such as STATE-INDEX is used as a number that indicates the occurrence of
a variable, you can't treat it like a numeric variable. You can't use the COBOL math verbs on it, so you
cannot ADD, SUBTRACT, MULTIPLY, or DIVIDE with it.

In order to manipulate an index variable, you must use the SET command. Here is the syntax:

SET index variable TO value
SET index variable UP
 BY value
SET index variable DOWN
 BY value

The following are examples:

SET STATE-INDEX TO 1

SET STATE-INDEX TO A-VALUE

SET STATE-INDEX UP BY 1

SET STATE-INDEX UP
 BY NEXT-AMOUNT

SET STATE-INDEX DOWN BY 1

SET STATE-INDEX DOWN
 BY LAST-AMOUNT

You can use an index variable in a PERFORM VARYING command. Use this syntax:

PERFORM paragraph
 VARYING index variable
 FROM value BY value
 UNTIL condition.

The following is an example:

PERFORM CLEAR-TABLE
 VARYING STATE-INDEX
 FROM 1 BY 1
 UNTIL STATE-INDEX > 50.

Listing 16.14 is sttbrp01.cbl (state code table report). It is based on stcrpt01.cbl, but it prints
a report in the state code file by first loading a table of all the state codes and then printing the codes
from the table. (In practice, you usually wouldn't use this approach because it doesn't save any time, but I
want you to gain some familiarity with table basics before going on to the next topic.)

TYPE: Listing 16.14. Filling a table from a file.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. STTBRP01.
000300*--------------------------------
000400* Report on the STATE File.
000500*--------------------------------
000600 ENVIRONMENT DIVISION.
000700 INPUT-OUTPUT SECTION.
000800 FILE-CONTROL.
000900
001000 COPY "SLSTATE.CBL".
001100
001200 SELECT PRINTER-FILE

001300 ASSIGN TO PRINTER
001400 ORGANIZATION IS LINE SEQUENTIAL.
001500
001600 DATA DIVISION.
001700 FILE SECTION.
001800
001900 COPY "FDSTATE.CBL".
002000
002100 FD PRINTER-FILE
002200 LABEL RECORDS ARE OMITTED.
002300 01 PRINTER-RECORD PIC X(80).
002400
002500 WORKING-STORAGE SECTION.
002600
002700 01 DETAIL-LINE.
002800 05 PRINT-CODE PIC XX.
002900 05 FILLER PIC XXXX VALUE SPACE.
003000 05 PRINT-NAME PIC X(20).
003100
003200 01 COLUMN-LINE.
003300 05 FILLER PIC X(4) VALUE "CODE".
003400 05 FILLER PIC X(2) VALUE SPACE.
003500 05 FILLER PIC X(4) VALUE "NAME".
003600
003700 01 TITLE-LINE.
003800 05 FILLER PIC X(25) VALUE SPACE.
003900 05 FILLER PIC X(11)
004000 VALUE "STATE CODES".
004100 05 FILLER PIC X(15) VALUE SPACE.
004200 05 FILLER PIC X(5) VALUE "PAGE:".
004300 05 FILLER PIC X(1) VALUE SPACE.
004400 05 PRINT-PAGE-NUMBER PIC ZZZZ9.
004500
004600 77 FILE-AT-END PIC X.
004700 77 LINE-COUNT PIC 999 VALUE ZERO.
004800 77 PAGE-NUMBER PIC 99999 VALUE ZERO.
004900 77 MAXIMUM-LINES PIC 999 VALUE 55.
005000
005100 01 TABLE-STATE-RECORD OCCURS 50 TIMES
005200 INDEXED BY STATE-INDEX.
005300 05 TABLE-STATE-CODE PIC XX.
005400 05 TABLE-STATE-NAME PIC X(20).
005500
005600 PROCEDURE DIVISION.
005700 PROGRAM-BEGIN.
005800

005900 PERFORM OPENING-PROCEDURE.
006000 MOVE ZEROES TO LINE-COUNT
006100 PAGE-NUMBER.
006200
006300 PERFORM START-NEW-PAGE.
006400
006500 SET STATE-INDEX TO 1.
006600 PERFORM PRINT-STATE-FIELDS
006700 UNTIL STATE-INDEX > 50 OR
006800 TABLE-STATE-RECORD(STATE-INDEX) = SPACE.
006900
007000 PERFORM CLOSING-PROCEDURE.
007100
007200 PROGRAM-DONE.
007300 STOP RUN.
007400
007500 OPENING-PROCEDURE.
007600
007700 OPEN I-O STATE-FILE.
007800 PERFORM LOAD-STATE-TABLE.
007900 CLOSE STATE-FILE.
008000
008100 OPEN OUTPUT PRINTER-FILE.
008200
008300 LOAD-STATE-TABLE.
008400 PERFORM CLEAR-TABLE.
008500 SET STATE-INDEX TO 1.
008600 PERFORM READ-NEXT-RECORD.
008700 PERFORM LOAD-ONE-STATE-RECORD
008800 UNTIL FILE-AT-END = "Y" OR
008900 STATE-INDEX > 50.
009000
009100 CLEAR-TABLE.
009200 PERFORM CLEAR-ONE-TABLE-ROW
009300 VARYING STATE-INDEX FROM 1 BY 1
009400 UNTIL STATE-INDEX > 50.
009500
009600 CLEAR-ONE-TABLE-ROW.
009700 MOVE SPACE TO TABLE-STATE-RECORD(STATE-INDEX).
009800
009900 LOAD-ONE-STATE-RECORD.
010000 MOVE STATE-CODE TO TABLE-STATE-CODE(STATE-INDEX).
010100 MOVE STATE-NAME TO TABLE-STATE-NAME(STATE-INDEX).
010200
010300 PERFORM READ-NEXT-RECORD.
010400

010500 IF FILE-AT-END NOT = "Y"
010600 SET STATE-INDEX UP BY 1
010700 IF STATE-INDEX > 50
010800 DISPLAY "TABLE FULL".
010900
011000 CLOSING-PROCEDURE.
011100 PERFORM END-LAST-PAGE.
011200 CLOSE PRINTER-FILE.
011300
011400 PRINT-STATE-FIELDS.
011500 IF LINE-COUNT > MAXIMUM-LINES
011600 PERFORM START-NEXT-PAGE.
011700 PERFORM PRINT-THE-RECORD.
011800 SET STATE-INDEX UP BY 1.
011900
012000 PRINT-THE-RECORD.
012100 MOVE SPACE TO DETAIL-LINE.
012200 MOVE TABLE-STATE-CODE(STATE-INDEX) TO PRINT-CODE.
012300 MOVE TABLE-STATE-NAME(STATE-INDEX) TO PRINT-NAME.
012400 MOVE DETAIL-LINE TO PRINTER-RECORD.
012500 PERFORM WRITE-TO-PRINTER.
012600
012700 READ-NEXT-RECORD.
012800 READ STATE-FILE NEXT RECORD
012900 AT END MOVE "Y" TO FILE-AT-END.
013000
013100 WRITE-TO-PRINTER.
013200 WRITE PRINTER-RECORD BEFORE ADVANCING 1.
013300 ADD 1 TO LINE-COUNT.
013400
013500 LINE-FEED.
013600 MOVE SPACE TO PRINTER-RECORD.
013700 PERFORM WRITE-TO-PRINTER.
013800
013900 START-NEXT-PAGE.
014000
014100 PERFORM END-LAST-PAGE.
014200 PERFORM START-NEW-PAGE.
014300
014400 START-NEW-PAGE.
014500 ADD 1 TO PAGE-NUMBER.
014600 MOVE PAGE-NUMBER TO PRINT-PAGE-NUMBER.
014700 MOVE TITLE-LINE TO PRINTER-RECORD.
014800 PERFORM WRITE-TO-PRINTER.
014900 PERFORM LINE-FEED.
015000 MOVE COLUMN-LINE TO PRINTER-RECORD.

015100 PERFORM WRITE-TO-PRINTER.
015200 PERFORM LINE-FEED.
015300
015400 END-LAST-PAGE.
015500 PERFORM FORM-FEED.
015600 MOVE ZERO TO LINE-COUNT.
015700
015800 FORM-FEED.
015900 MOVE SPACE TO PRINTER-RECORD.
016000 WRITE PRINTER-RECORD BEFORE ADVANCING PAGE.
016100

The output report of sttbrp01.cbl should be identical to the output report created by
stcrpt01.cbl:

OUTPUT:
 STATE CODES PAGE: 1
CODE NAME
AK ARKANSAS
AL ALASKA
AZ ARIZONA
CA CALIFORNIA
FL FLORIDA
LA LOUISIANA
NC NORTH CAROLINA
NH NEW HAMPSHIRE
NM NEW MEXICO
NY NEW YORK
SC SOUTH CAROLINA
WA WASHINGTON
WI WISCONSIN

ANALYSIS: The table is defined at line 005100 in WORKING-STORAGE.

The state code file is opened, loaded into the table, and closed--all within the OPENING-PROCEDURE,
which starts at line 007500.

The LOAD-STATE-TABLE paragraph at line 008300 starts by clearing the table, using the
CLEAR-TABLE routine at lines 009100 through 009800. This is a simple routine that moves spaces to
each occurrence of TABLE-STATE-RECORD by varying the STATE-INDEX from 1 through 50.

Back at LOAD-STATE-TABLE, at lines 008500 through 008900, the STATE-INDEX is set to 1, the
first record in the STATE-FILE is read, and then the table is loaded one record at a time by performing
LOAD-ONE-STATE-RECORD until the state file reaches an end or the STATE-INDEX exceeds 50.

LOAD-ONE-STATE-RECORD at line 009900 loads the table elements from the fields in the record and
then, at the bottom of the loop (line 010300), reads the next record. If the read is successful, the
STATE-INDEX is set up by 1, and if the STATE-INDEX has exceeded 50, an error message is

displayed.

This error check is important. If by some accident the state file contained more than 50 records, the
records would not load correctly into memory. If the index variable is set to 51, and only 50 elements are
in the table, moving a value to TABLE-STATE-CODE(STATE-INDEX) or
TABLE-STATE-NAME(STATE-INDEX) has completely unpredictable results. Under some conditions,
the program will abort with a warning that an attempt was made to move a value outside the boundaries
of the table. Under other conditions, the move succeeds and the values will corrupt some other memory
in the program.

If the state file does exceed 50 entries and they are legitimate, you must edit the program so that the table
is larger by changing the OCCURS count at line 005100. You will also need to change the value 50
where it occurs in lines 006700, 008900, 009400, and 010700.

The main program loop is set up at line 006500 by setting the STATE-INDEX to 1, and then the main
loop is performed until STATE-INDEX > 50 or TABLE-STATE-RECORD(STATE-INDEX) =
SPACES. A STATE-TABLE-RECORD might be SPACES if the file did not contain a full 50 records, so
printing is stopped as if the whole array had been printed.

The main loop is at line 011400, which is PRINT-STATE-FIELDS. At the end of the loop at line
011800, the loop control variable STATE-INDEX is set UP BY 1.

The printing portion of the program at begins at line 012000. PRINT-THE-RECORD fills in the print
line by moving TABLE-STATE-CODE(STATE-INDEX) to PRINT-CODE and
TABLE-STATE-NAME(STATE-INDEX) to PRINT-NAME.

You should be able to create sttbrp01.cbl fairly easily by copying stcrpt01.cbl and making
modifications to it to match Listing 16.14.

Code, compile, and run sttbrp01.cbl and then rerun stcrpt01.cbl. The output from both
programs should be identical. Remember that you usually would not use this style of table operation for a
report of this nature. The next example is a much better use of tables.

Looking Up Data in Tables
The real power of tables (arrays) is that they can be searched very quickly for values, and COBOL
provides a special command to do it. If a table has been defined with an index variable, the SEARCH
command can be used to search the table for a specific piece of information.

The SEARCH command starts from the current value of the index variable, so it is important to remember
to set the index to 1 before the search begins.

The search syntax includes an AT END clause that is optional. The COBOL program knows the size of
the table, and it knows whether the index has reached the limit of the table. If this occurs, the command
following AT END is executed. Otherwise, the SEARCH command starts from the current index variable
value and performs the test described by the WHEN condition. If the condition is true, the command
associated with the WHEN is executed and the search is ended. The following is the syntax:

SEARCH table name

 [AT END
 do something]
 WHEN condition
 do something.

Here is an example:

SET STATE-INDEX TO 1.
SEARCH TABLE-STATE-RECORD
 AT END
 PERFORM SEARCH-FAILED
 WHEN
 VENDOR-STATE =
 TABLE-STATE-CODE(STATE-INDEX)
 PERFORM SEARCH-SUCCEEDED

Using a Table in a Program
Listing 16.15, vndrpt03.cbl, is a modified version of vndrpt02.cbl, and it uses a table for the
state codes.

TYPE: Listing 16.15. Using a table for a report.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. VNDRPT03.
000300*--------------------------------
000400* Report on the Vendor File.
000500*--------------------------------
000600 ENVIRONMENT DIVISION.
000700 INPUT-OUTPUT SECTION.
000800 FILE-CONTROL.
000900
001000 COPY "SLVND01.CBL".
001100
001200 COPY "SLSTATE.CBL".
001300
001400 SELECT PRINTER-FILE
001500 ASSIGN TO PRINTER
001600 ORGANIZATION IS LINE SEQUENTIAL.
001700
001800 DATA DIVISION.
001900 FILE SECTION.
002000
002100 COPY "FDVND02.CBL".
002200
002300 COPY "FDSTATE.CBL".

002400
002500 FD PRINTER-FILE
002600 LABEL RECORDS ARE OMITTED.
002700 01 PRINTER-RECORD PIC X(80).
002800
002900 WORKING-STORAGE SECTION.
003000
003100 01 DETAIL-LINE.
003200 05 PRINT-NUMBER PIC 9(5).
003300 05 FILLER PIC X VALUE SPACE.
003400 05 PRINT-NAME PIC X(30).
003500 05 FILLER PIC X(15) VALUE SPACE.
003600 05 PRINT-CONTACT PIC X(30).
003700
003800 01 CITY-STATE-LINE.
003900 05 FILLER PIC X(6) VALUE SPACE.
004000 05 PRINT-CITY PIC X(20).
004100 05 FILLER PIC X VALUE SPACE.
004200 05 PRINT-STATE PIC X(2).
004300 05 FILLER PIC X VALUE SPACE.
004400 05 PRINT-STATE-NAME PIC X(20).
004500 05 FILLER PIC X(1) VALUE SPACE.
004600 05 PRINT-ZIP PIC X(10).
004700
004800 01 COLUMN-LINE.
004900 05 FILLER PIC X(2) VALUE "NO".
005000 05 FILLER PIC X(4) VALUE SPACE.
005100 05 FILLER PIC X(12) VALUE "NAME-ADDRESS".
005200 05 FILLER PIC X(33) VALUE SPACE.
005300 05 FILLER PIC X(17) VALUE "CONTACT-PHONE-ZIP".
005400
005500 01 TITLE-LINE.
005600 05 FILLER PIC X(25) VALUE SPACE.
005700 05 FILLER PIC X(11)
005800 VALUE "VENDOR LIST".
005900 05 FILLER PIC X(19) VALUE SPACE.
006000 05 FILLER PIC X(5) VALUE "PAGE:".
006100 05 FILLER PIC X(1) VALUE SPACE.
006200 05 PRINT-PAGE-NUMBER PIC ZZZZ9.
006300
006400 77 FILE-AT-END PIC X.
006500 77 STATE-FILE-AT-END PIC X VALUE "N".
006600 77 LINE-COUNT PIC 999 VALUE ZERO.
006700 77 PAGE-NUMBER PIC 99999 VALUE ZERO.
006800 77 MAXIMUM-LINES PIC 999 VALUE 55.
006900

007000 01 TABLE-STATE-RECORD OCCURS 50 TIMES
007100 INDEXED BY STATE-INDEX.
007200 05 TABLE-STATE-CODE PIC XX.
007300 05 TABLE-STATE-NAME PIC X(20).
007400
007500 PROCEDURE DIVISION.
007600 PROGRAM-BEGIN.
007700
007800 PERFORM OPENING-PROCEDURE.
007900 MOVE ZEROES TO LINE-COUNT
008000 PAGE-NUMBER.
008100
008200 PERFORM START-NEW-PAGE.
008300
008400 MOVE "N" TO FILE-AT-END.
008500 PERFORM READ-NEXT-RECORD.
008600 IF FILE-AT-END = "Y"
008700 MOVE "NO RECORDS FOUND" TO PRINTER-RECORD
008800 PERFORM WRITE-TO-PRINTER
008900 ELSE
009000 PERFORM PRINT-VENDOR-FIELDS
009100 UNTIL FILE-AT-END = "Y".
009200
009300 PERFORM CLOSING-PROCEDURE.
009400
009500 PROGRAM-DONE.
009600 STOP RUN.
009700
009800 OPENING-PROCEDURE.
009900 OPEN I-O VENDOR-FILE.
010000
010100 OPEN I-O STATE-FILE.
010200 PERFORM LOAD-STATE-TABLE.
010300 CLOSE STATE-FILE.
010400
010500 OPEN OUTPUT PRINTER-FILE.
010600
010700 LOAD-STATE-TABLE.
010800 PERFORM CLEAR-TABLE.
010900 SET STATE-INDEX TO 1.
011000 PERFORM READ-NEXT-STATE-RECORD.
011100 PERFORM LOAD-ONE-STATE-RECORD
011200 UNTIL STATE-FILE-AT-END = "Y" OR
011300 STATE-INDEX > 50.
011400
011500 CLEAR-TABLE.

011600 PERFORM CLEAR-ONE-TABLE-ROW
011700 VARYING STATE-INDEX FROM 1 BY 1
011800 UNTIL STATE-INDEX > 50.
011900
012000 CLEAR-ONE-TABLE-ROW.
012100 MOVE SPACE TO TABLE-STATE-RECORD(STATE-INDEX).
012200
012300 LOAD-ONE-STATE-RECORD.
012400 MOVE STATE-CODE TO TABLE-STATE-CODE(STATE-INDEX).
012500 MOVE STATE-NAME TO TABLE-STATE-NAME(STATE-INDEX).
012600
012700 PERFORM READ-NEXT-STATE-RECORD.
012800
012900 IF STATE-FILE-AT-END NOT = "Y"
013000 SET STATE-INDEX UP BY 1
013100 IF STATE-INDEX > 50
013200 DISPLAY "TABLE FULL".
013300
013400 CLOSING-PROCEDURE.
013500 CLOSE VENDOR-FILE.
013600 PERFORM END-LAST-PAGE.
013700 CLOSE PRINTER-FILE.
013800
013900 PRINT-VENDOR-FIELDS.
014000 IF LINE-COUNT > MAXIMUM-LINES
014100 PERFORM START-NEXT-PAGE.
014200 PERFORM PRINT-THE-RECORD.
014300 PERFORM READ-NEXT-RECORD.
014400
014500 PRINT-THE-RECORD.
014600 PERFORM PRINT-LINE-1.
014700 PERFORM PRINT-LINE-2.
014800 PERFORM PRINT-LINE-3.
014900 PERFORM PRINT-LINE-4.
015000 PERFORM LINE-FEED.
015100
015200 PRINT-LINE-1.
015300 MOVE SPACE TO DETAIL-LINE.
015400 MOVE VENDOR-NUMBER TO PRINT-NUMBER.
015500 MOVE VENDOR-NAME TO PRINT-NAME.
015600 MOVE VENDOR-CONTACT TO PRINT-CONTACT.
015700 MOVE DETAIL-LINE TO PRINTER-RECORD.
015800 PERFORM WRITE-TO-PRINTER.
015900
016000 PRINT-LINE-2.
016100 MOVE SPACE TO DETAIL-LINE.

016200 MOVE VENDOR-ADDRESS-1 TO PRINT-NAME.
016300 MOVE VENDOR-PHONE TO PRINT-CONTACT.
016400 MOVE DETAIL-LINE TO PRINTER-RECORD.
016500 PERFORM WRITE-TO-PRINTER.
016600
016700 PRINT-LINE-3.
016800 MOVE SPACE TO DETAIL-LINE.
016900 MOVE VENDOR-ADDRESS-2 TO PRINT-NAME.
017000 IF VENDOR-ADDRESS-2 NOT = SPACE
017100 MOVE DETAIL-LINE TO PRINTER-RECORD
017200 PERFORM WRITE-TO-PRINTER.
017300
017400 PRINT-LINE-4.
017500 MOVE SPACE TO CITY-STATE-LINE.
017600 MOVE VENDOR-CITY TO PRINT-CITY.
017700 MOVE VENDOR-STATE TO PRINT-STATE.
017800
017900 PERFORM LOOK-UP-STATE-CODE.
018000
018100 MOVE VENDOR-ZIP TO PRINT-ZIP.
018200 MOVE CITY-STATE-LINE TO PRINTER-RECORD.
018300 PERFORM WRITE-TO-PRINTER.
018400
018500 LOOK-UP-STATE-CODE.
018600 SET STATE-INDEX TO 1.
018700 SEARCH TABLE-STATE-RECORD
018800 AT END
018900 MOVE "***Not Found***" TO PRINT-STATE-NAME
019000 WHEN VENDOR-STATE = TABLE-STATE-CODE(STATE-INDEX)
019100 MOVE TABLE-STATE-NAME(STATE-INDEX)
019200 TO PRINT-STATE-NAME.
019300
019400 IF STATE-NAME = SPACE
019500 MOVE "*State is Blank*" TO PRINT-STATE-NAME.
019600
019700 READ-NEXT-RECORD.
019800 READ VENDOR-FILE NEXT RECORD
019900 AT END MOVE "Y" TO FILE-AT-END.
020000
020100 WRITE-TO-PRINTER.
020200 WRITE PRINTER-RECORD BEFORE ADVANCING 1.
020300 ADD 1 TO LINE-COUNT.
020400
020500 LINE-FEED.
020600 MOVE SPACE TO PRINTER-RECORD.
020700 PERFORM WRITE-TO-PRINTER.

020800
020900 START-NEXT-PAGE.
021000 PERFORM END-LAST-PAGE.
021100 PERFORM START-NEW-PAGE.
021200
021300 START-NEW-PAGE.
021400 ADD 1 TO PAGE-NUMBER.
021500 MOVE PAGE-NUMBER TO PRINT-PAGE-NUMBER.
021600 MOVE TITLE-LINE TO PRINTER-RECORD.
021700 PERFORM WRITE-TO-PRINTER.
021800 PERFORM LINE-FEED.
021900 MOVE COLUMN-LINE TO PRINTER-RECORD.
022000 PERFORM WRITE-TO-PRINTER.
022100 PERFORM LINE-FEED.
022200
022300 END-LAST-PAGE.
022400 PERFORM FORM-FEED.
022500 MOVE ZERO TO LINE-COUNT.
022600
022700 FORM-FEED.
022800 MOVE SPACE TO PRINTER-RECORD.
022900 WRITE PRINTER-RECORD BEFORE ADVANCING PAGE.
023000
023100 READ-NEXT-STATE-RECORD.
023200 MOVE "N" TO STATE-FILE-AT-END.
023300 READ STATE-FILE NEXT RECORD
023400 AT END
023500 MOVE "Y" TO STATE-FILE-AT-END.
023600

ANALYSIS: The definition of the TABLE-STATE-RECORD occurs at lines 007000 through 007300.

At lines 009800 through 010500, the opening procedure has been modified to open the
STATE-FILE, load it into a table, and then close the file. The STATE-FILE itself is no longer needed
in the program because all the information has been pulled into memory.

The LOAD-STATE-TABLE paragraph, at line 010700, starts by clearing the table using the
CLEAR-TABLE routine at lines 011500 through 012100. This is a simple routine that moves spaces to
each occurrence of TABLE-STATE-RECORD by varying the STATE-INDEX from 1 through 50.

Back at LOAD-STATE-TABLE, at lines 010900 through 011300, the STATE-INDEX is set to 1, the
first record in the STATE-FILE is read, and then the table is loaded one record at a time by performing
LOAD-ONE-STATE-RECORD until the state file reaches an end or the STATE-INDEX exceeds 50.

LOAD-ONE-STATE-RECORD at line 012300 loads the table elements from the fields in the record and
then, at the bottom of the loop (line 012700), reads the next record. If the read is successful, the
STATE-INDEX is set up by 1, and if the STATE-INDEX has exceeded 50, an error message is

displayed.

If the state file does exceed 50 entries and they are legitimate, it is necessary to edit the program so that
the table is larger by changing the OCCURS count at line 007000. You will also need to change the
value 50 at lines 011300, 011330, 011800, and 013100.

The logic for using the table begins in PRINT-LINE-4 at line 017400, where
LOOK-UP-STATE-CODE is performed in order to locate the state name.

LOOK-UP-STATE-CODE at line 018500 starts by setting the state index to 1, and then the search is
performed at lines 018700 through 019200. The search attempts to match the VENDOR-STATE to the
TABLE-STATE-CODE(STATE-INDEX) and, if successful, the
TABLE-STATE-NAME(STATE-INDEX) is moved to PRINT-STATE-NAME.

If the match fails, the AT END logic at lines 018800 and 018900 takes over, and a "***Not
Found***" message is moved to PRINT-STATE-NAME.

At line 019400, one final test is made to check whether the PRINT-STATE-NAME field is still blank.
This is a case of being extra safe. If the state file does not contain all 50 states, some of the table entries
will contain spaces. If a vendor record contains a VENDOR-STATE that is spaces (which is invalid), the
search will find a match, because somewhere in the table after the actual entries, VENDOR-STATE =
TABLE-STATE-CODE(STATE-INDEX) will be true because both variables contain spaces. This is
caused by invalid data in the vendor file, so an extra message is displayed.

Code, compile, and run vndrpt03.cbl. The output should be identical to vndrpt02.cbl. You
probably won't notice a speed difference unless you have many records in your vendor file, but you will
know how to use tables.

The code in vndrpt03.cbl can be improved even more, by creating an additional variable containing
NUMBER-OF-STATES as in the following:

01 NUMBER-OF-STATES PIC 99 VALUE 50.

When 50 is used in the code, use the variable instead, as in the following two examples.

011200 UNTIL STATE-FILE-AT-END = "Y" OR
011300 STATE-INDEX > NUMBER-OF-STATES.
013100 IF STATE-INDEX > NUMBER-OF-STATES
013200 DISPLAY "TABLE FULL".

The advantage of this is that if the number of states is increased by adding DC, VI for Virgin Islands, PR
for Puerto Rico and so on, it is possible to modify the program to accommodate the larger table by
changing only two lines of code.

007000 01 TABLE-STATE-RECORD OCCURS 50 TIMES
007100 INDEXED BY STATE-INDEX.

becomes

007000 01 TABLE-STATE-RECORD OCCURS 60 TIMES
007100 INDEXED BY STATE-INDEX.

and

01 NUMBER-OF-STATES PIC 99 VALUE 50.

becomes

01 NUMBER-OF-STATES PIC 99 VALUE 60.

Summary
One of the main methods of validating entered data is to look up the information in another file that
contains correct information. Today, you learned the following basics:

Using code files is an effective way to validate input information.●

The user-entered field is validated by moving it to the key of a code file and reading the code file.
If the record is not found, it is assumed that the user entered the information incorrectly.

●

Code files can be loaded into tables and searched. For long reports, this can speed up the process.●

You create a table by using the OCCURS clause and, optionally, an INDEXED BY clause.●

Using INDEXED BY makes it easier to do searches on tables.●

Index variables are manipulated by using the SET command.●

Q&A
Q In Listing 16.15, vndrpt03.cbl, the loading of TABLE-STATE-CODE and
TABLE-STATE-NAME is done by moving the individual fields from STATE-RECORD, as in
the following:
012400 MOVE STATE-CODE TO TABLE-STATE-CODE(STATE-INDEX).
012500 MOVE STATE-NAME TO TABLE-STATE-NAME(STATE-INDEX).

Is it possible to move STATE-RECORD to TABLE-STATE-RECORD(STATE-INDEX)?

A Yes. STATE-RECORD and STATE-TABLE-RECORD(STATE-INDEX) are both
alphanumeric variables, and you always can move one to the other:

012400 MOVE STATE-RECORD TO TABLE-STATE-RECORD(STATE-INDEX).

The real question is, will this work the same way?

TABLE-STATE-RECORD and STATE-RECORD are identical in length and type, and the
subordinate variables are identical in length and type, so moving the whole STATE-RECORD to
TABLE-STATE-RECORD will have the same effect.

The state file record listing, which is

000900 01 STATE-RECORD.

001000 05 STATE-CODE PIC X(2).
001100 05 STATE-NAME PIC X(20).

and the table listing, which is

007000 01 TABLE-STATE-RECORD OCCURS 50 TIMES
007100 INDEXED BY STATE-INDEX.
007200 05 TABLE-STATE-CODE PIC XX.
007300 05 TABLE-STATE-NAME PIC X(20).

can be compared byte for byte, ignoring the OCCURS clause, and therefore they are equivalent.
However, it is a better practice to move the individual fields.

Q Do I need to use tables?

A No, but they are there to improve the efficiency of programs. Many programs do not use tables,
but you should know how to use them so that you have an idea of how to improve report speed.

Q Why do you use a table in a report program, but not in a maintenance program?

A You can use a table in a maintenance program, but tables are used primarily to increase speed.
Users type very slowly compared to the speed with which a report program looks up records, so
you usually don't find the need for a table in a maintenance program.

Workshop

Quiz

1. What would be the correct command to increase an index variable named VENDOR-INDEX by
1?

2. Using the table created in Listing 16.15, what is the value in STATE-INDEX after the following
commands are executed?

018300 MOVE 14 TO STATE-INDEX.
018400 MOVE "XX" TO TABLE-STATE-CODE(STATE-INDEX).

3. What is the value in TABLE-STATE-CODE(STATE-INDEX) after the commands in quiz
question 2 are executed?

Exercises

1. Design a table that will hold 100 vendor records. Include an index variable.

Hint: See the following listing for the vendor record:

002000 01 VENDOR-RECORD.
002100 05 VENDOR-NUMBER PIC 9(5).
002200 05 VENDOR-NAME PIC X(30).

002300 05 VENDOR-ADDRESS-1 PIC X(30).
002400 05 VENDOR-ADDRESS-2 PIC X(30).
002500 05 VENDOR-CITY PIC X(20).
002600 05 VENDOR-STATE PIC X(2).
002700 05 VENDOR-ZIP PIC X(10).
002800 05 VENDOR-CONTACT PIC X(30).
002900 05 VENDOR-PHONE PIC X(15).

2. Work out the size of the table created in exercise 1.

Previous chapter Next chapter Contents

Macmillan Computer Publishing USA

© Copyright, Macmillan Computer Publishing. All rights reserved.

Teach Yourself COBOL in 21 days,
Second Edition

Previous chapter Next chapter Contents

- Day 17 -
Alternate Keys

On Day 11, "Indexed File I/O," you learned that it is possible to set up more than one key in a file, in
order to retrieve records in a different order than they were entered. You saw examples of how to retrieve
in alphabetical and numerical order, and today's lesson teaches you the specifics of completing this task.
You also learn about the following topics:

What is an alternate key?●

Creating a file with alternate indexes.●

What is in a data file?●

Creating new files from old files.●

Maintaining a file with alternate keys.●

What is a key path?●

Accessing a file on key paths.●

Looking up records by alternate key.●

Helping the user with alternate keys.●

What Is an Alternate Key?
Although an indexed file must have a unique primary key, it is possible to put other keys in the file.
These keys do not have to be unique and can be arranged to return records in a different order than the
primary key. Alternate keys are useful for retrieving records in alphabetical order by name, in zip code
order, or any of a variety of other sort orders. A sales file could include an alternate key on the customer
territory to group information in territory order. An employee file could contain an alternate key on the
employment date to provide a sort on seniority of the employee.

Today, you use one of these alternate keys to provide a method of accessing the vendor file in
alphabetical vendor name order.

New Term: An alternate index or alternate key is an additional index in an indexed file that defines an
alternative path along which records can be retrieved. The term path is used because when you use an
alternate index to read records one after the other in a file, the records are read in a different sequence
than they would be read using a standard READ NEXT.

An indexed file containing alternate indexes still must have a primary key, but it usually is called an
alternate indexed file to indicate the existence of the extra keys.

An alternate indexed file is defined in the same way as an indexed file, but some additional information
appears in the SELECT statement for the file.

Listing 17.1 is a COPY file containing an FD for an alternate indexed file. Note that it is no different from
earlier versions of the FD for the vendor file, except that it includes a comment that VENDOR-NAME is an
alternate key with duplicates. The comment does not create an alternate key, and is only there for
reference.

TYPE: Listing 17.1. The FD for an alternate indexed file.

000100*--------------------------------
000200* FDVND04.CBL
000300* Primary Key - VENDOR-NUMBER
000400* Alternate - NAME with duplicates
000500
000600* NAME, ADDRESS-1, CITY, STATE,
000700* and PHONE are required fields.
000800*
000900* VENDOR-STATE must be looked up
001000* and must exist in the STATE-FILE
001100* to be valid.
001200* VENDOR-ADDRESS-2 not always used
001300* so may be SPACES
001400* VENDOR-PHONE is usually the
001500* number for VENDOR-CONTACT
001600* All fields should be entered in
001700* UPPER case.

001800*--------------------------------
001900 FD VENDOR-FILE
002000 LABEL RECORDS ARE STANDARD.
002100 01 VENDOR-RECORD.
002200 05 VENDOR-NUMBER PIC 9(5).
002300 05 VENDOR-NAME PIC X(30).
002400 05 VENDOR-ADDRESS-1 PIC X(30).
002500 05 VENDOR-ADDRESS-2 PIC X(30).
002600 05 VENDOR-CITY PIC X(20).
002700 05 VENDOR-STATE PIC X(2).
002800 05 VENDOR-ZIP PIC X(10).
002900 05 VENDOR-CONTACT PIC X(30).
003000 05 VENDOR-PHONE PIC X(15).
003100

Listing 17.2 is a COPY file containing a SELECT statement for an alternate indexed file, and this is
where the alternate key is actually defined.

TYPE: Listing 17.2. The SELECT for an alternate indexed file.

000100*--------------------------------
000200* SLVND02.CBL
000300*--------------------------------
000400 SELECT VENDOR-FILE
000500 ASSIGN TO "vendor"
000600 ORGANIZATION IS INDEXED
000700 RECORD KEY IS VENDOR-NUMBER
000800 ALTERNATE KEY
000900 IS VENDOR-NAME WITH DUPLICATES
001000 ACCESS MODE IS DYNAMIC.
001100

ANALYSIS: At lines 000800 and 000900, the alternate key is identified as VENDOR-NAME. The
WITH DUPLICATES clause on line 000900 indicates that more than one record can exist with the
same value in this field. Allowing duplicates in an alternate key field for names is a standard practice
because names can be duplicated. If the WITH DUPLICATES clause is omitted, VENDOR-NAME tends
to act like a second primary key on the file, and it forces each value in the key to be unique.

If an alternate indexed file is defined with an alternate key in which duplicates are not allowed,
attempting to write a record with a key that already is on file has the same effect as attempting to write a
file with a duplicate primary key. An INVALID KEY file error condition occurs because a record with
that key value already is on file.

Creating a File with Alternate Indexes
Adding the definition in a SELECT statement does not by itself make an alternate indexed file. The file
must have been created (opened in output mode) by a program containing that definition for the file.

After the file is created, you can treat it like any other indexed file. Records written to it will be stored
correctly with the alternate index values.

Opening a file in output mode destroys the original file if one exists. This presents a problem. You
already have created a vendor file without an alternate index and put several records in it. Now you need
a new file with the alternate key included. It is possible to convert the original file without losing the data
by using the records in the original file and writing them to the new file that has been created.

The method used for this is a program that opens the original file for reading, opens the new file for
output, and then copies records from the old file to the new file.

What Is in a Data File?
Recall that when using a COBOL program to open a file, I said that the file must be opened with the
same file definition that was used to create it. Now that you are more familiar with COBOL, I am going
to change that statement.

In order to sort this out, you need to delve into the inner workings of an indexed file. STATE-FILE is
used in this example because the records are shorter and easier to display, but the principle is the same
for the vendor file.

What's in a data file? Regardless of whether the file is indexed, the primary content of a data file is data.
Figure 17.1 represents the state code file containing five records. The figure also includes a ruler for the
22 bytes in each record.

Figure 17.1.
Five records in a state codes file.

The file contains five records of 22 bytes each. The first two bytes of each record is the two-character
code for that state. The remaining 20 bytes contain the state name followed by spaces to the end of the
record.

An indexed file contains the data records that have been stored in the file, but it also contains additional
information. This additional data is information about the file organization, record length, primary key
position and length, and any alternate keys. This information is used internally by the COBOL file
system but never shows up as data when reading a file through a COBOL program.

Exactly where this information is stored in the file isn't important as long as you know that it is stored
there. Figure 17.2 shows this data to indicate that it is in the file, but not as a data record.

Figure 17.2.
Five records in an indexed state codes file.

file:///D|/Cool Stuff/old/ftp/Sams.Teach.Yourself.Cobol.In.21.Days/Teach Yourself Cobol in 21 Days/ch17/01.htm
file:///D|/Cool Stuff/old/ftp/Sams.Teach.Yourself.Cobol.In.21.Days/Teach Yourself Cobol in 21 Days/ch17/02.htm

With this in mind, it is possible to clarify my earlier statement about opening a file. A file must be
opened with a file definition that matches the file organization, record length, and key structure of the
actual file. Usually, this is the file definition that was used to create it, but it does not have to be if it
matches the file organization, record length, and key structure of that file definition.

Note that the COBOL name for the file (STATE-FILE) and the fields in the record (STATE-CODE,
STATE-NAME, and so on) are not actually stored in the data file. They are stored in the COBOL
program.

Listings 17.3 and 17.4 are the original SELECT and FD for the state code file.

TYPE: Listing 17.3. The original SELECT for the state code file.

000100*--------------------------------
000200* SLSTATE.CBL
000300*--------------------------------
000400 SELECT STATE-FILE
000500 ASSIGN TO "STATE"
000600 ORGANIZATION IS INDEXED
000700 RECORD KEY IS STATE-CODE
000800 ACCESS MODE IS DYNAMIC.
000900

TYPE: Listing 17.4. The original FD for the state code file.

000100*--------------------------------
000200* FDSTATE.CBL
000300* Primary Key - STATE-CODE
000400* NAME is required
000500* NAME and CODE should be upper case
000600*--------------------------------
000700 FD STATE-FILE
000800 LABEL RECORDS ARE STANDARD.
000900 01 STATE-RECORD.
001000 05 STATE-CODE PIC X(2).
001100 05 STATE-NAME PIC X(20).
001200

Listings 17.5 and 17.6 are another SELECT and FD that also could be used to access the same state code
file. Although the data names have been changed, the file organization, record length, and key structure
are the same in both definitions.

TYPE: Listing 17.5. A SELECT that will work for the state code file.

000400 SELECT ST-FILE
000500 ASSIGN TO "STATE"
000600 ORGANIZATION IS INDEXED

000700 RECORD KEY IS ST-CODE
000800 ACCESS MODE IS DYNAMIC.
000900

TYPE: Listing 17.6. An FD that will work for the state code file.

000700 FD ST-FILE
000800 LABEL RECORDS ARE STANDARD.
000900 01 ST-RECORD.
001000 05 ST-CODE PIC X(2).
001100 05 ST-NAME PIC X(20).
001200

If you used Listings 17.5 and 17.6 in a program, you would use the data names from these listings to
access the file. When you open the file, you would OPEN I-O ST-FILE. To write the record, you
would use WRITE ST-RECORD, but the file would still be accessed correctly.

Listings 17.7 and 17.8 are an extreme (and possibly silly) example of changing things around. The record
originally was defined as two fields. What was STATE-CODE is now named THE-KEY, and the
20-character field that was called STATE-NAME is broken up arbitrarily into three smaller fields. Even
with the changes, the file organization, record length, and key structure remain the same. This pair of file
definitions could be used to open and process the state code file. Of course, using FIRST-5-OF-NAME
for anything represents only the first five characters of the original STATE-NAME. 2ND-5-OF-NAME or
LAST-10-OF-NAME represents other portions of the original STATE-NAME. It is useless to do
something like this, but this extreme example illustrates the point very well.

TYPE: Listing 17.7. Another SELECT statement that would work.

000400 SELECT THE-FILE
000500 ASSIGN TO "STATE"
000600 ORGANIZATION IS INDEXED
000700 RECORD KEY IS THE-KEY
000800 ACCESS MODE IS DYNAMIC.
000900

TYPE: Listing 17.8. An extreme example of changing the FD.

000700 FD THE-FILE
000800 LABEL RECORDS ARE STANDARD.
000900 01 THE-RECORD.
001000 05 THE-KEY PIC X(2).
001100 05 FIRST-5-OF-NAME PIC X(5).
001200 05 2ND-5-OF-NAME PIC X(5).
001300 05 LAST-10-OF-NAME PIC X(10).

There are times when a redefinition of the fields in a record can be useful. Suppose that one program that
uses the STATE-FILE calculates shipping charges based on whether the shipping address is within the

continental United States. The program currently has logic such as that shown in Listing 17.9. It is not a
good practice to hard-code special conditions like this, but you will find it in programs that you are asked
to modify all the time.

TYPE: Listing 17.9. The wrong way to test for shipping charges.

021000* Add extra shipping for Alaska and Hawaii
021100 IF STATE-CODE = "HI" OR STATE-CODE = "AK"
021200 PERFORM CHARGE-EXTRA-SHIPPING
021300 ELSE
021400 PERFORM CHARGE-REGULAR-SHIPPING.

This code keeps working until the business expands and you need to include state codes for U.S.
territories and Canadian provinces. There are just too many of these to hard-code into the program.

By inspecting the STATE-FILE you find that none of the states uses the full 20 characters of
STATE-NAME, and in every record, the 20th character of the STATE-NAME is a space.

A new FD could be defined that separates out the 20th character to use it as a continental flag as in
Listing 17.10.

TYPE: Listing 17.10. Adding a continental flag to the STATE-FILE.

000100*--------------------------------
000200* FDSTATC.CBL
000300* Primary Key - STATE-CODE
000400* NAME is required
000500* NAME and CODE should be upper case
000600*--------------------------------
000700 FD STATE-FILE
000800 LABEL RECORDS ARE STANDARD.
000900 01 STATE-RECORD.
001000 05 STATE-CODE PIC X(2).
001100 05 STATE-NAME PIC X(19).
001200 05 STATE-CONTINENTAL PIC X(1).

After setting the flag correctly to Y or N for each state, you could test the flag to determine shipping
charges as in Listing 17.11.

TYPE: Listing 17.11. The right way to test for shipping charges.

021000* Add extra shipping for non-continental US
021100 IF STATE-CONTINENTAL = "N"
021200 PERFORM CHARGE-EXTRA-SHIPPING
021300 ELSE
021400 PERFORM CHARGE-REGULAR-SHIPPING.

This method of allocating unused characters in existing fields for new fields is a very common practice.

File and data conversions such as adding STATE-CONTINENTAL, and the following conversion of the
VENDOR-FILE are very typical tasks that might be assigned to a junior programmer. Being able to do
conversions is one way you will be able to perform useful (and paid) work.

Creating New Files from Old Files
You have several things to deal with before you can create a new vendor file out of the existing one. The
data names in a program must not be identical, so it is necessary to create a temporary SELECT and FD
that can be used to open the original file, but use different data names.

Another problem has to do with the way files are stored on a disk. Two files cannot have the same
physical name on a disk. The new file will be called "vendor", so for the purpose of conversion, the
old file is renamed "ovendor".

Under MS-DOS, enter the following:

DIR vendor*

If you are using Micro Focus Personal COBOL, two files are named vendor: VENDOR and
VENDOR.IDX. Under ACUCOBOL, one file is named VENDOR. Under other COBOL compilers, two
files might be named VENDOR.DAT and VENDOR.IDX. If your system uses two files, both of them
must be renamed.

Enter one or more of these commands, depending on the filenames:

RENAME VENDOR OVENDOR
RENAME VENDOR.IDX OVENDOR.IDX
RENAME VENDOR.DAT OVENDOR.DAT

Listing 17.12, fdovnd01.cbl, is a COPY file of an FD that is created by copying fdvnd03.cbl to
fdovnd01.cbl and then changing each data name that starts with VENDOR- so that it starts with
OLD-VENDOR-.

Listing 17.13, slvnd01.cbl, is a COPY file of a SELECT statement that is created in a similar way, by
copying slvnd01.cbl to slovnd01.cbl and then changing each data name that starts with
VENDOR- so that it starts with OLD-VENDOR-.

Create these two files and modify each of them to match Listings 17.12 and 17.13.

TYPE: Listing 17.12. The FD for the original vendor file.

000100*--------------------------------
000200* FDOVND01.CBL
000300* Primary Key - OLD-VENDOR-NUMBER
000400* Original before alt path added
000500* NAME, ADDRESS-1, CITY, STATE,
000600* and PHONE are required fields.
000700*
000800* OLD-VENDOR-STATE must be looked up

000900* and must exist in the STATE-FILE
001000* to be valid.
001100* OLD-VENDOR-ADDRESS-2 not always used
001200* so may be SPACES
001300* OLD-VENDOR-PHONE is usually the
001400* number for OLD-VENDOR-CONTACT
001500* All fields should be entered in
001600* UPPER case.
001700*--------------------------------
001800 FD OLD-VENDOR-FILE
001900 LABEL RECORDS ARE STANDARD.
002000 01 OLD-VENDOR-RECORD.
002100 05 OLD-VENDOR-NUMBER PIC 9(5).
002200 05 OLD-VENDOR-NAME PIC X(30).
002300 05 OLD-VENDOR-ADDRESS-1 PIC X(30).
002400 05 OLD-VENDOR-ADDRESS-2 PIC X(30).
002500 05 OLD-VENDOR-CITY PIC X(20).
002600 05 OLD-VENDOR-STATE PIC X(2).
002700 05 OLD-VENDOR-ZIP PIC X(10).
002800 05 OLD-VENDOR-CONTACT PIC X(30).
002900 05 OLD-VENDOR-PHONE PIC X(15).
003000

For the SELECT statement, be sure to change line 000500 to read ASSIGN TO "ovendor".

TYPE: Listing 17.13. The SELECT for the original vendor file.

000100*--------------------------------
000200* SLOVND01.CBL
000300*--------------------------------
000400 SELECT OLD-VENDOR-FILE
000500 ASSIGN TO "ovendor"
000600 ORGANIZATION IS INDEXED
000700 RECORD KEY IS OLD-VENDOR-NUMBER
000800 ACCESS MODE IS DYNAMIC.

After these new file definitions are created, it is possible to write a program that converts the old file to
the new by reading each record in the old file and writing it to the new file (shown in Listing 17.14).

TYPE: Listing 17.14. Creating the new alternate indexed file.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. NEWVND01.
000300*--
000400* Create new Vendor File with Alt key from old.
000500*--
000600 ENVIRONMENT DIVISION.

000700 INPUT-OUTPUT SECTION.
000800 FILE-CONTROL.
000900
001000 COPY "SLOVND01.CBL".
001100
001200 COPY "SLVND02.CBL".
001300 DATA DIVISION.
001400 FILE SECTION.
001500
001600 COPY "FDOVND01.CBL".
001700
001800 COPY "FDVND04.CBL".
001900
002000 WORKING-STORAGE SECTION.
002100
002200 77 OLD-VENDOR-FILE-AT-END PIC X VALUE "N".
002300
002400 PROCEDURE DIVISION.
002500 PROGRAM-BEGIN.
002600 PERFORM OPENING-PROCEDURE.
002700 PERFORM MAIN-PROCESS.
002800 PERFORM CLOSING-PROCEDURE.
002900
003000 PROGRAM-DONE.
003100 STOP RUN.
003200
003300 OPENING-PROCEDURE.
003400 OPEN OUTPUT VENDOR-FILE.
003500 OPEN I-O OLD-VENDOR-FILE.
003600
003700 CLOSING-PROCEDURE.
003800 CLOSE VENDOR-FILE.
003900 CLOSE OLD-VENDOR-FILE.
004000
004100 MAIN-PROCESS.
004200 PERFORM READ-NEXT-OLD-VENDOR-RECORD.
004300 PERFORM PROCESS-ONE-RECORD
004400 UNTIL OLD-VENDOR-FILE-AT-END = "Y".
004500
004600 READ-NEXT-OLD-VENDOR-RECORD.
004700 MOVE "N" TO OLD-VENDOR-FILE-AT-END.
004800 READ OLD-VENDOR-FILE NEXT RECORD
004900 AT END
005000 MOVE "Y" TO OLD-VENDOR-FILE-AT-END.
005100
005200 PROCESS-ONE-RECORD.

005300 MOVE OLD-VENDOR-RECORD TO VENDOR-RECORD.
005400 PERFORM WRITE-VENDOR-RECORD.
005500
005600 PERFORM READ-NEXT-OLD-VENDOR-RECORD.
005700
005800 WRITE-VENDOR-RECORD.
005900 WRITE VENDOR-RECORD
006000 INVALID KEY
006100 DISPLAY "ERROR WRITING VENDOR RECORD".
006200
006300

ANALYSIS: Listing 17.14 is a fairly straightforward program. In the OPENING-PROCEDURE at line
003300, it opens the VENDOR-FILE in output mode. This creates the new vendor file with the
alternate index. It then opens OLD-VENDOR-FILE (ovendor) in I/O mode.

The loop control in MAIN-PROCESS at line 004100 follows the procedure of reading the first old
vendor record and then performing the processing loop (PROCESS-ONE-RECORD) until
OLD-VENDOR-FILE-AT-END = "Y".

The processing loop, PROCESS-ONE-RECORD at line 005200, moves the OLD-VENDOR-RECORD to
VENDOR-RECORD, writes the new record, and then at the end of the loop at line 005600, reads the next
old vendor record.

Code and compile this program. Be sure that you have renamed the vendor file to "ovendor" before
you run it. The new file named "vendor" will contain an alternate index. You won't notice any
difference in the file yet, although the file might be larger on the disk.

Maintaining a File with Alternate Keys
You have to modify the maintenance program for the vendor file, vndmnt02.cbl, to allow for the new
key in the file. The maintenance for a file with alternate keys can be identical to the maintenance for a
standard indexed file. To modify vndmnt02.cbl so that it will maintain the new vendor file, copy it to
vndmnt03.cbl. Then make the changes at lines 001100 and 001800 of Listing 17.15, a fragment of
vndmnd03.cbl, to include the new SELECT and FD for the vendor file.

TYPE: Listing 17.15. Maintaining a file with alternate keys.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. VNDMNT03.
000300*--------------------------------
000400* Add, Change, Inquire and Delete
000500* for the Vendor File.
000600*--------------------------------
000700 ENVIRONMENT DIVISION.
000800 INPUT-OUTPUT SECTION.
000900 FILE-CONTROL.

001000
001100 COPY "SLVND02.CBL".
001200
001300 COPY "SLSTATE.CBL".
001400
001500 DATA DIVISION.
001600 FILE SECTION.
001700
001800 COPY "FDVND04.CBL".
001900
002000 COPY "FDSTATE.CBL".
002100

Make the changes and compile the program so that you have a maintenance program for the new vendor
file.

What Is a Key Path?
Listing 17.16 illustrates a customer record with a primary key of CUSTOMER-NUMBER. This is a fairly
straightforward record layout, except that the phone number has been broken down additionally into area
code, prefix, and number.

TYPE: Listing 17.16. A customer record.

001000 01 CUSTOMER-RECORD.
001100 05 CUSTOMER-NUMBER PIC 9(5).
001200 05 CUSTOMER-NAME PIC X(20).
001300 05 CUSTOMER-ADDRESS-1 PIC X(20).
001400 05 CUSTOMER-ADDRESS-2 PIC X(20).
001500 05 CUSTOMER-ZIP PIC 9(5).
001600 05 CUSTOMER-PHONE.
001700 10 CUSTOMER-AREA-CODE PIC 9(3).
001800 10 CUSTOMER-PREFIX PIC 9(3).
001900 10 CUSTOMER-PHONE-NO PIC 9(4).

A field can be named as an alternate index so that, as each record is added to the file, information also is
stored in the alternate index area of the file to indicate the correct order of records for that alternate
index.

If you displayed the records in a customer file in primary key order, the file might look somewhat
haphazard. This would be reading and displaying the file along the primary key path.

If you request that the name field be used as an index, and that records be presented to you in the order of
the name index, they arrive in the order shown in Figure 17.3, along the CUSTOMER-NAME key path.

Figure 17.3.
Records sorted on the name field.

file:///D|/Cool Stuff/old/ftp/Sams.Teach.Yourself.Cobol.In.21.Days/Teach Yourself Cobol in 21 Days/ch17/03.htm

If you also request that the zip code and area code be used as an index for the records, you can have the
records arrive in zip code order (as in Figure 17.4) along the CUSTOMER-ZIP key path, or in area-code
order (as in Figure 17.5) along the CUSTOMER-AREA-CODE key path.

Figure 17.4.
Records sorted on the zip code field.

Figure 17.5.
Records sorted on the area code field.

In all the examples, the alternate indexed fields were fields in which duplicates might, and in fact do,
occur. Amphora Inc. and Malio Bros. both have the same zip code and area code. In a large customer
base, it is possible that customer names would be duplicated.

New Term: The key path is the natural sorted order of records as they are read from the file using a
particular key.

Listing 17.17 shows an example of the syntax that is used to define a file such as the customer file with
multiple keys.

TYPE: Listing 17.17. The SELECT with multiple alternate keys.

000400 SELECT CUSTOMER-FILE
000500 ASSIGN TO "CUSTOMER"
000600 ORGANIZATION IS INDEXED
000700 RECORD KEY IS CUSTOMER-NUMBER
000800 ALTERNATE KEY IS CUSTOMER-NAME WITH DUPLICATES
000900 ALTERNATE KEY IS CUSTOMER-ZIP WITH DUPLICATES
001000 ALTERNATE KEY IS CUSTOMER-AREA-CODE WITH DUPLICATES
001100 ACCESS MODE IS DYNAMIC.
001200

Accessing a File on Key Paths
When an alternate indexed file is opened, the key path is set to the primary key. If you READ NEXT
through the file, the records will be returned in the order of the primary key. COBOL includes a
command that enables you to change the key path--the START command.

The first step to using a START command is to move a value to the field that will be the new key. In the
case of the vendor file, the alternate key is the VENDOR-NAME. To set the file up to be able to read all
records in VENDOR-NAME order, move the lowest possible value to the VENDOR-NAME (MOVE
SPACES TO VENDOR-NAME). After the key is set up, you are ready for the second step. Start the file
using the START command.

Listing 17.18 is an example of starting on a new key. What you want to do is start the file at the first
record that contains a VENDOR-NAME that is greater than or equal to the spaces that are now in
VENDOR-NAME. It seems that you should be able to say START GREATER THAN OR EQUAL. You

file:///D|/Cool Stuff/old/ftp/Sams.Teach.Yourself.Cobol.In.21.Days/Teach Yourself Cobol in 21 Days/ch17/04.htm
file:///D|/Cool Stuff/old/ftp/Sams.Teach.Yourself.Cobol.In.21.Days/Teach Yourself Cobol in 21 Days/ch17/05.htm

can under the new COBOL-85 standard, but before that option was added you were limited to a little
more awkward syntax. It uses the complement of greater than or equal to which is NOT LESS THAN. In
this example, NOT < (NOT LESS THAN) is used to start at the first record whose VENDOR-NAME is
equal to or greater than spaces.

TYPE: Listing 17.18. Starting on the first record of a new key.

020000 MOVE SPACE TO VENDOR-NAME.
020100 START VENDOR-FILE
020200 KEY NOT < VENDOR-NAME
020300 INVALID KEY
020400 MOVE "Y" TO FILE-AT-END.

You can do some interesting positioning tricks using the START command. In Listing 17.19, the key is
initialized to an A followed by all Zs, and the start is GREATER THAN the key value. This causes the
start to position the file at the first record with a VENDOR-NAME greater than
"AZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ", which probably would be the first vendor name that
started with B.

TYPE: Listing 17.19. Starting partly through the key path.

020000 MOVE "AZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ" TO VENDOR-NAME.
020100 START VENDOR-FILE
020200 KEY > VENDOR-NAME
020300 INVALID KEY
020400 MOVE "Y" TO FILE-AT-END.

The START command originally supported three conditions for determining the starting position,
EQUALS, GREATER THAN, and NOT LESS THAN. The COBOL-85 standard added GREATER THAN
OR EQUAL TO (>=). Some vendors have extended these to include positioning for LESS THAN, NOT
GREATER THAN, and LESS THAN OR EQUAL TO. Here is the syntax for the standard three and the
COBOL-85 option:

START file name
 KEY NOT < key name
 [INVALID KEY
 do something]
START file name
 KEY > key name
 [INVALID KEY
 do something]
START file name
 KEY EQUALS key name
 [INVALID KEY
 do something]
START file name
 KEY GREATER THAN OR EQUAL TO key name

 [INVALID KEY
 do something]

The following are examples:

MOVE SPACE TO VENDOR-NAME.
START VENDOR-FILE
 KEY NOT < VENDOR-NAME
 INVALID KEY
 MOVE "Y" TO FILE-AT-END.
MOVE "AZZZZZZZZZZZZZZZZZZZ"
 TO VENDOR-NAME.
START VENDOR-FILE
 KEY > VENDOR-NAME
 INVALID KEY
 MOVE "Y" TO FILE-AT-END.
MOVE "JONES AND SONS"
 TO VENDOR-NAME.
START VENDOR-FILE
 KEY EQUALS VENDOR-NAME
 INVALID KEY
 MOVE "N" TO RECORD-FOUND.
START VENDOR-FILE
 KEY GREATER THAN OR EQUAL TO VENDOR-NAME
 INVALID KEY
 MOVE "Y" TO FILE-AT-END.

You will usually use START NOT < or the newer START >= (GREATER THAN OR EQUAL TO),
which are the most common types of START used in programs. When the START is completed
successfully, the key path is changed and any subsequent READ NEXT proceeds to the next record along
that path automatically.

The START has two effects: It changes the key path, and it positions the file someplace on that key path.
It most commonly is used to position at the beginning of a key path.

A START does not read or acquire a record; it only positions the file ready for a READ or READ NEXT.
If you use START NOT LESS THAN (NOT <) or START GREATER THAN (>), the start
does not actually read a record. It positions the file so that a READ NEXT will read the record that
matches the START condition. You see an example of this in Listing 17.20, the vendor-by-name report.

TYPE: Listing 17.20. Printing in vendor name order.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. VNBYNM01.
000300*--------------------------------
000400* Report on the Vendor File in
000500* alphabetical name order.
000600*--------------------------------

000700 ENVIRONMENT DIVISION.
000800 INPUT-OUTPUT SECTION.
000900 FILE-CONTROL.
001000
001100 COPY "SLVND02.CBL".
001200
001300 COPY "SLSTATE.CBL".
001400
001500 SELECT PRINTER-FILE
001600 ASSIGN TO PRINTER
001700 ORGANIZATION IS LINE SEQUENTIAL.
001800
001900 DATA DIVISION.
002000 FILE SECTION.
002100
002200 COPY "FDVND04.CBL".
002300
002400 COPY "FDSTATE.CBL".
002500
002600 FD PRINTER-FILE
002700 LABEL RECORDS ARE OMITTED.
002800 01 PRINTER-RECORD PIC X(80).
002900
003000 WORKING-STORAGE SECTION.
003100
003200 01 DETAIL-LINE.
003300 05 PRINT-NUMBER PIC 9(5).
003400 05 FILLER PIC X VALUE SPACE.
003500 05 PRINT-NAME PIC X(30).
003600 05 FILLER PIC X(15) VALUE SPACE.
003700 05 PRINT-CONTACT PIC X(30).
003800
003900 01 CITY-STATE-LINE.
004000 05 FILLER PIC X(6) VALUE SPACE.
004100 05 PRINT-CITY PIC X(20).
004200 05 FILLER PIC X VALUE SPACE.
004300 05 PRINT-STATE PIC X(2).
004400 05 FILLER PIC X VALUE SPACE.
004500 05 PRINT-STATE-NAME PIC X(20).
004600 05 FILLER PIC X(1) VALUE SPACE.
004700 05 PRINT-ZIP PIC X(10).
004800
004900 01 COLUMN-LINE.
005000 05 FILLER PIC X(2) VALUE "NO".
005100 05 FILLER PIC X(4) VALUE SPACE.
005200 05 FILLER PIC X(12) VALUE "NAME-ADDRESS".

005300 05 FILLER PIC X(33) VALUE SPACE.
005400 05 FILLER PIC X(17) VALUE "CONTACT-PHONE-ZIP".
005500
005600 01 TITLE-LINE.
005700 05 FILLER PIC X(20) VALUE SPACE.
005800 05 FILLER PIC X(24)
005900 VALUE "VENDOR ALPHABETICAL LIST".
006000 05 FILLER PIC X(11) VALUE SPACE.
006100 05 FILLER PIC X(5) VALUE "PAGE:".
006200 05 FILLER PIC X(1) VALUE SPACE.
006300 05 PRINT-PAGE-NUMBER PIC ZZZZ9.
006400
006500 77 FILE-AT-END PIC X.
006600 77 STATE-FILE-AT-END PIC X VALUE "N".
006700 77 LINE-COUNT PIC 999 VALUE ZERO.
006800 77 PAGE-NUMBER PIC 99999 VALUE ZERO.
006900 77 MAXIMUM-LINES PIC 999 VALUE 55.
007000
007100 01 TABLE-STATE-RECORD OCCURS 50 TIMES
007200 INDEXED BY STATE-INDEX.
007300 05 TABLE-STATE-CODE PIC XX.
007400 05 TABLE-STATE-NAME PIC X(20).
007500 01 NUMBER-OF-STATES PIC 99 VALUE 50.
007600 PROCEDURE DIVISION.
007700 PROGRAM-BEGIN.
007800
007900 PERFORM OPENING-PROCEDURE.
008000 MOVE ZEROES TO LINE-COUNT
008100 PAGE-NUMBER.
008200
008300 PERFORM START-NEW-PAGE.
008400
008500 MOVE "N" TO FILE-AT-END.
008600 PERFORM READ-FIRST-RECORD.
008700 IF FILE-AT-END = "Y"
008800 MOVE "NO RECORDS FOUND" TO PRINTER-RECORD
008900 PERFORM WRITE-TO-PRINTER
009000 ELSE
009100 PERFORM PRINT-VENDOR-FIELDS
009200 UNTIL FILE-AT-END = "Y".
009300
009400 PERFORM CLOSING-PROCEDURE.
009500
009600 PROGRAM-DONE.
009700 STOP RUN.
009800

009900 OPENING-PROCEDURE.
010000 OPEN I-O VENDOR-FILE.
010100
010200 OPEN I-O STATE-FILE.
010300 PERFORM LOAD-STATE-TABLE.
010400 CLOSE STATE-FILE.
010500
010600 OPEN OUTPUT PRINTER-FILE.
010700
010800 LOAD-STATE-TABLE.
010900 PERFORM CLEAR-TABLE.
011000 SET STATE-INDEX TO 1.
011100 PERFORM READ-NEXT-STATE-RECORD.
011200 PERFORM LOAD-ONE-STATE-RECORD
011300 UNTIL STATE-FILE-AT-END = "Y" OR
011400 STATE-INDEX > NUMBER-OF-STATES.
011500
011600 CLEAR-TABLE.
011700 PERFORM CLEAR-ONE-TABLE-ROW
011800 VARYING STATE-INDEX FROM 1 BY 1
011900 UNTIL STATE-INDEX > NUMBER-OF-STATES.
012000
012100 CLEAR-ONE-TABLE-ROW.
012200 MOVE SPACE TO TABLE-STATE-RECORD(STATE-INDEX).
012300
012400 LOAD-ONE-STATE-RECORD.
012500 MOVE STATE-CODE TO TABLE-STATE-CODE(STATE-INDEX).
012600 MOVE STATE-NAME TO TABLE-STATE-NAME(STATE-INDEX).
012700
012800 PERFORM READ-NEXT-STATE-RECORD.
012900
013000 IF STATE-FILE-AT-END NOT = "Y"
013100 SET STATE-INDEX UP BY 1
013200 IF STATE-INDEX > NUMBER-OF-STATES
013300 DISPLAY "TABLE FULL".
013400
013500 CLOSING-PROCEDURE.
013600 CLOSE VENDOR-FILE.
013700 PERFORM END-LAST-PAGE.
013800 CLOSE PRINTER-FILE.
013900
014000 PRINT-VENDOR-FIELDS.
014100 IF LINE-COUNT > MAXIMUM-LINES
014200 PERFORM START-NEXT-PAGE.
014300 PERFORM PRINT-THE-RECORD.
014400 PERFORM READ-NEXT-RECORD.

014500
014600 PRINT-THE-RECORD.
014700 PERFORM PRINT-LINE-1.
014800 PERFORM PRINT-LINE-2.
014900 PERFORM PRINT-LINE-3.
015000 PERFORM PRINT-LINE-4.
015100 PERFORM LINE-FEED.
015200
015300 PRINT-LINE-1.
015400 MOVE SPACE TO DETAIL-LINE.
015500 MOVE VENDOR-NUMBER TO PRINT-NUMBER.
015600 MOVE VENDOR-NAME TO PRINT-NAME.
015700 MOVE VENDOR-CONTACT TO PRINT-CONTACT.
015800 MOVE DETAIL-LINE TO PRINTER-RECORD.
015900 PERFORM WRITE-TO-PRINTER.
016000
016100 PRINT-LINE-2.
016200 MOVE SPACE TO DETAIL-LINE.
016300 MOVE VENDOR-ADDRESS-1 TO PRINT-NAME.
016400 MOVE VENDOR-PHONE TO PRINT-CONTACT.
016500 MOVE DETAIL-LINE TO PRINTER-RECORD.
016600 PERFORM WRITE-TO-PRINTER.
016700
016800 PRINT-LINE-3.
016900 MOVE SPACE TO DETAIL-LINE.
017000 MOVE VENDOR-ADDRESS-2 TO PRINT-NAME.
017100 IF VENDOR-ADDRESS-2 NOT = SPACE
017200 MOVE DETAIL-LINE TO PRINTER-RECORD
017300 PERFORM WRITE-TO-PRINTER.
017400
017500 PRINT-LINE-4.
017600 MOVE SPACE TO CITY-STATE-LINE.
017700 MOVE VENDOR-CITY TO PRINT-CITY.
017800 MOVE VENDOR-STATE TO PRINT-STATE.
017900
018000 PERFORM LOOK-UP-STATE-CODE.
018100
018200 MOVE VENDOR-ZIP TO PRINT-ZIP.
018300 MOVE CITY-STATE-LINE TO PRINTER-RECORD.
018400 PERFORM WRITE-TO-PRINTER.
018500
018600 LOOK-UP-STATE-CODE.
018700 SET STATE-INDEX TO 1.
018800 SEARCH TABLE-STATE-RECORD
018900 AT END
019000 MOVE "***Not Found***" TO PRINT-STATE-NAME

019100 WHEN VENDOR-STATE = TABLE-STATE-CODE(STATE-INDEX)
019200 MOVE TABLE-STATE-NAME(STATE-INDEX)
019300 TO PRINT-STATE-NAME.
019400
019500 IF STATE-NAME = SPACE
019600 MOVE "*State is Blank*" TO PRINT-STATE-NAME.
019700
019800 READ-FIRST-RECORD.
019900 MOVE "N" TO FILE-AT-END.
020000 MOVE SPACE TO VENDOR-NAME.
020100 START VENDOR-FILE
020200 KEY NOT < VENDOR-NAME
020300 INVALID KEY MOVE "Y" TO FILE-AT-END.
020400
020500 IF FILE-AT-END NOT = "Y"
020600 PERFORM READ-NEXT-RECORD.
020700
020800 READ-NEXT-RECORD.
020900 READ VENDOR-FILE NEXT RECORD
021000 AT END MOVE "Y" TO FILE-AT-END.
021100
021200 WRITE-TO-PRINTER.
021300 WRITE PRINTER-RECORD BEFORE ADVANCING 1.
021400 ADD 1 TO LINE-COUNT.
021500
021600 LINE-FEED.
021700 MOVE SPACE TO PRINTER-RECORD.
021800 PERFORM WRITE-TO-PRINTER.
021900
022000 START-NEXT-PAGE.
022100 PERFORM END-LAST-PAGE.
022200 PERFORM START-NEW-PAGE.
022300
022400 START-NEW-PAGE.
022500 ADD 1 TO PAGE-NUMBER.
022600 MOVE PAGE-NUMBER TO PRINT-PAGE-NUMBER.
022700 MOVE TITLE-LINE TO PRINTER-RECORD.
022800 PERFORM WRITE-TO-PRINTER.
022900 PERFORM LINE-FEED.
023000 MOVE COLUMN-LINE TO PRINTER-RECORD.
023100 PERFORM WRITE-TO-PRINTER.
023200 PERFORM LINE-FEED.
023300
023400 END-LAST-PAGE.
023500 PERFORM FORM-FEED.
023600 MOVE ZERO TO LINE-COUNT.

023700
023800 FORM-FEED.
023900 MOVE SPACE TO PRINTER-RECORD.
024000 WRITE PRINTER-RECORD BEFORE ADVANCING PAGE.
024100
024200 READ-NEXT-STATE-RECORD.
024300 MOVE "N" TO STATE-FILE-AT-END.
024400 READ STATE-FILE NEXT RECORD
024500 AT END
024600 MOVE "Y" TO STATE-FILE-AT-END.
024700

The output of vnbynm01.cbl prints the same information as vndrpt03.cbl, but the records are in
alphabetical order by name:

OUTPUT:
 VENDOR ALPHABETICAL LIST PAGE: 1
NO NAME-ADDRESS CONTACT-PHONE-ZIP
00002 ABC PRINTING CHARLES JOHANSSEN
1624 FOOTHILL BLVD (818) 555-4321
SUITE 34
LOS ANGELES CA CALIFORNIA 91042
01176 ABERCROMBIE AND OTHERS
1234 45TH ST. (213) 555-6543
SUITE 17
LOS ANGELES CA CALIFORNIA 92345
00001 AERIAL SIGNS HENRIETTA MARKSON
BURBANK AIRPORT (818) 555-6066
HANGAR 305
BURBANK CA CALIFORNIA 90016
00005 ALIAS SMITH AND JONES ROBIN COUSINS
1216 MAIN STREET 415 555-9203
PALO ALTO CA CALIFORNIA 90061
00022 ARTFUL DODGER
123 UNDERWOOD LANE 202 555-1234
MARKHAM WA WASHINGTON 40466
00003 CHARLES SMITH AND SONS MARTHA HARRISON
1435 SOUTH STREET (213) 555-4432
LOS ANGELES CA CALIFORNIA 90064
00014 RANIER GRAPHICS JULIA SIMPSON
4433 WASHINGTO ST (213) 555-6789
LOS ANGELES CA CALIFORNIA 90032
01440 ZINZINDORFF INC.
1604 7TH ST (213) 555-7234
LOS ANGELES CA CALIFORNIA 90404

ANALYSIS: The program is almost identical to vndrpt03.cbl. There are changes in TITLE-LINE
(lines 005600 to 006300), and the program uses the new SELECT and FD for the vendor file (lines
001100 and 002200).

The main change begins at line 008600, which performs READ-FIRST-RECORD.
READ-FIRST-RECORD begins at line 019800. It sets up the FILE-AT-END flag and moves spaces
to the VENDOR-NAME, which will be used as the key to the file.

The START at lines 020100 through 020300 attempts to position the file so that the next READ NEXT
will read a record whose VENDOR-NAME is equal to or greater than spaces.

The record has not actually been read, so at line 020600, a READ-NEXT-RECORD is requested.

One thing to note is the use of the INVALID KEY in START at line 020300. A START NOT LESS
THAN positions the file so that the next READ NEXT will read a record whose value matches the start
condition. If a START NOT LESS THAN fails with a file error condition (INVALID KEY), there is no
next record matching the START condition. The only way there can be no next record in a file is if you
are at the end of the file. If the START NOT LESS THAN fails, the INVALID KEY file error condition
is used to set the FILE-AT-END flag to "Y".

How is it possible to be at the end of the file if you are starting with the lowest possible value for the
VENDOR-NAME--all spaces? If a record cannot be located that contains a VENDOR-NAME equal to or
greater than spaces, the data file is empty and contains no records. Using the INVALID KEY and
FILE-AT-END logic, even when there seems to be no need for it, prevents file errors even if you
attempt to report on a new file that contains no records.

It is important to note that aside from START, which switches the key path, the rest of the program
remains basically unchanged. When the START is completed successfully, the key path is changed and
READ NEXT proceeds to the next and subsequent records along that path automatically.

Figure 17.6 is a printer spacing chart for a new vendor report program, vnbynm01.cbl (vendor by
name), that prints the same vendor information as vndrpt03.cbl, but in alphabetical name order.

Figure 17.6.
The spacing chart for vnbynm01.cbl.

Looking Up Records by Alternate Key
You also can use alternate keys to help a user look up a record. Listing 17.21, vninnm01.cbl, is a
vendor inquiry by name.

TYPE: Listing 17.21. Looking up records by alternate key.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. VNINNM01.
000300*--------------------------------
000400* Inquire for the Vendor File
000500* using vendor name.

file:///D|/Cool Stuff/old/ftp/Sams.Teach.Yourself.Cobol.In.21.Days/Teach Yourself Cobol in 21 Days/ch17/06.htm

000600*--------------------------------
000700 ENVIRONMENT DIVISION.
000800 INPUT-OUTPUT SECTION.
000900 FILE-CONTROL.
001000
001100 COPY "SLVND02.CBL".
001200
001300 COPY "SLSTATE.CBL".
001400
001500 DATA DIVISION.
001600 FILE SECTION.
001700
001800 COPY "FDVND04.CBL".
001900
002000 COPY "FDSTATE.CBL".
002100
002200 WORKING-STORAGE SECTION.
002300
002400 77 VENDOR-FILE-AT-END PIC X.
002500 77 STATE-RECORD-FOUND PIC X.
002600
002700
002800 77 VENDOR-NAME-FIELD PIC X(30).
002900
003000 COPY "WSCASE01.CBL".
003100
003200 PROCEDURE DIVISION.
003300 PROGRAM-BEGIN.
003400 PERFORM OPENING-PROCEDURE.
003500 PERFORM MAIN-PROCESS.
003600 PERFORM CLOSING-PROCEDURE.
003700
003800 PROGRAM-DONE.
003900 STOP RUN.
004000
004100 OPENING-PROCEDURE.
004200 OPEN I-O VENDOR-FILE.
004300 OPEN I-O STATE-FILE.
004400
004500 CLOSING-PROCEDURE.
004600 CLOSE VENDOR-FILE.
004700 CLOSE STATE-FILE.
004800
004900 MAIN-PROCESS.
005000 PERFORM INQUIRE-BY-NAME.
005100*--------------------------------

005200* INQUIRE
005300*--------------------------------
005400 INQUIRE-BY-NAME.
005500 PERFORM GET-EXISTING-RECORD.
005600 PERFORM INQUIRE-RECORDS
005700 UNTIL VENDOR-NAME = SPACES.
005800
005900 INQUIRE-RECORDS.
006000 PERFORM DISPLAY-ALL-FIELDS.
006100 PERFORM GET-EXISTING-RECORD.
006200
006300*--------------------------------
006400* Locate a record logic
006500*--------------------------------
006600 GET-EXISTING-RECORD.
006700 PERFORM ACCEPT-EXISTING-KEY.
006800 PERFORM RE-ACCEPT-EXISTING-KEY
006900 UNTIL VENDOR-FILE-AT-END NOT = "Y".
007000
007100 ACCEPT-EXISTING-KEY.
007200 PERFORM INIT-FOR-KEY-ENTRY.
007300 PERFORM ENTER-VENDOR-NAME.
007400 IF VENDOR-NAME NOT = SPACES
007500 PERFORM READ-FIRST-VENDOR-RECORD.
007600
007700 RE-ACCEPT-EXISTING-KEY.
007800 DISPLAY "RECORD NOT FOUND"
007900 PERFORM ACCEPT-EXISTING-KEY.
008000
008100*--------------------------------
008200* Field Entry logic
008300*--------------------------------
008400 ENTER-VENDOR-NAME.
008500 PERFORM ACCEPT-VENDOR-NAME.
008600
008700 ACCEPT-VENDOR-NAME.
008800 DISPLAY "ENTER VENDOR NAME".
008900 ACCEPT VENDOR-NAME.
009000 INSPECT VENDOR-NAME
009100 CONVERTING LOWER-ALPHA
009200 TO UPPER-ALPHA.
009300
009400*--------------------------------
009500* Display logic
009600*--------------------------------
009700 DISPLAY-ALL-FIELDS.

009800 DISPLAY " ".
009900 PERFORM DISPLAY-VENDOR-NUMBER.
010000 PERFORM DISPLAY-VENDOR-NAME.
010100 PERFORM DISPLAY-VENDOR-ADDRESS-1.
010200 PERFORM DISPLAY-VENDOR-ADDRESS-2.
010300 PERFORM DISPLAY-VENDOR-CITY.
010400 PERFORM DISPLAY-VENDOR-STATE.
010500 PERFORM DISPLAY-VENDOR-ZIP.
010600 PERFORM DISPLAY-VENDOR-CONTACT.
010700 PERFORM DISPLAY-VENDOR-PHONE.
010800 DISPLAY " ".
010900
011000 DISPLAY-VENDOR-NUMBER.
011100 DISPLAY " VENDOR NUMBER: " VENDOR-NUMBER.
011200
011300 DISPLAY-VENDOR-NAME.
011400 DISPLAY "1. VENDOR NAME: " VENDOR-NAME.
011500
011600 DISPLAY-VENDOR-ADDRESS-1.
011700 DISPLAY "2. VENDOR ADDRESS-1: " VENDOR-ADDRESS-1.
011800
011900 DISPLAY-VENDOR-ADDRESS-2.
012000 DISPLAY "3. VENDOR ADDRESS-2: " VENDOR-ADDRESS-2.
012100
012200 DISPLAY-VENDOR-CITY.
012300 DISPLAY "4. VENDOR CITY: " VENDOR-CITY.
012400
012500 DISPLAY-VENDOR-STATE.
012600 MOVE VENDOR-STATE TO STATE-CODE.
012700 PERFORM READ-STATE-RECORD.
012800 IF STATE-RECORD-FOUND = "N"
012900 MOVE "**Not found**" TO STATE-NAME.
013000 DISPLAY "5. VENDOR STATE: "
013100 VENDOR-STATE " "
013200 STATE-NAME.
013300
013400 DISPLAY-VENDOR-ZIP.
013500 DISPLAY "6. VENDOR ZIP: " VENDOR-ZIP.
013600
013700 DISPLAY-VENDOR-CONTACT.
013800 DISPLAY "7. VENDOR CONTACT: " VENDOR-CONTACT.
013900
014000 DISPLAY-VENDOR-PHONE.
014100 DISPLAY "8. VENDOR PHONE: " VENDOR-PHONE.
014200
014300*--------------------------------

014400* File Related Routines
014500*--------------------------------
014600 INIT-FOR-KEY-ENTRY.
014700 MOVE SPACE TO VENDOR-RECORD.
014800 MOVE ZEROES TO VENDOR-NUMBER.
014900 MOVE "N" TO VENDOR-FILE-AT-END.
015000
015100 READ-FIRST-VENDOR-RECORD.
015200 MOVE "N" TO VENDOR-FILE-AT-END.
015300 START VENDOR-FILE
015400 KEY NOT < VENDOR-NAME
015500 INVALID KEY
015600 MOVE "Y" TO VENDOR-FILE-AT-END.
015700
015800 IF VENDOR-FILE-AT-END NOT = "Y"
015900 PERFORM READ-NEXT-VENDOR-RECORD.
016000
016100 READ-NEXT-VENDOR-RECORD.
016200 READ VENDOR-FILE NEXT RECORD
016300 AT END
016400 MOVE "Y" TO VENDOR-FILE-AT-END.
016500
016600 READ-STATE-RECORD.
016700 MOVE "Y" TO STATE-RECORD-FOUND.
016800 READ STATE-FILE RECORD
016900 INVALID KEY
017000 MOVE "N" TO STATE-RECORD-FOUND.
017100

The output of vninnm01.cbl illustrates looking up vendors by name rather than by number. For the
third entry (user entries are bold), the user enters "b" and all entries are converted to uppercase. No
vendor names start with "B" in the file, so the program selects the first record that has a key equal to or
greater than "B", which is CHARLES SMITH AND SONS:

OUTPUT:
ENTER VENDOR NAME
abc
VENDOR NUMBER: 00002
1. VENDOR NAME: ABC PRINTING
2. VENDOR ADDRESS-1: 1624 FOOTHILL BLVD
3. VENDOR ADDRESS-2: SUITE 34
4. VENDOR CITY: LOS ANGELES
5. VENDOR STATE: CA CALIFORNIA
6. VENDOR ZIP: 91042
7. VENDOR CONTACT: CHARLES JOHANSSEN
8. VENDOR PHONE: (818) 555-4321

ENTER VENDOR NAME
aber
VENDOR NUMBER: 01176
1. VENDOR NAME: ABERCROMBIE AND OTHERS
2. VENDOR ADDRESS-1: 1234 45TH ST.
3. VENDOR ADDRESS-2: SUITE 17
4. VENDOR CITY: LOS ANGELES
5. VENDOR STATE: CA CALIFORNIA
6. VENDOR ZIP: 92345
7. VENDOR CONTACT:
8. VENDOR PHONE: (213) 555-6543
ENTER VENDOR NAME
b
VENDOR NUMBER: 00003
1. VENDOR NAME: CHARLES SMITH AND SONS
2. VENDOR ADDRESS-1: 1435 SOUTH STREET
3. VENDOR ADDRESS-2:
4. VENDOR CITY: LOS ANGELES
5. VENDOR STATE: CA CALIFORNIA
6. VENDOR ZIP: 90064
7. VENDOR CONTACT: MARTHA HARRISON
8. VENDOR PHONE: (213) 555-4432
ENTER VENDOR NAME

ANALYSIS: This program follows the pattern of vndinq01.cbl and the inquire logic of
vndmnt03.cbl, but instead of asking the user for the vendor number, it asks the user for the vendor
name.

The user is allowed to enter a partial value--"ABER" for ABERCROMBIE, for example--and the
program attempts to locate a record that contains a name that is close to that value.

For each name entered by the user, the program attempts to START the file using that value, and if the
start is successful, the next record in the file is read. It is possible for a user to enter a name that is
beyond the end of the file, such as "ZZZZZZ", so a VENDOR-FILE-AT-END flag is used to trap
entries that do not allow a record to be found in the file.

In this version of inquire, the user enters a vendor name of spaces to signal end of entry; anything else is
converted to uppercase and then used by the program. At lines 008400 and 008700,
ENTER-VENDOR-NAME ACCEPT-VENDOR-NAME takes care of this simple field-entry routine.

The loop control and loop start at line 005400 in 005400 INQUIRE-BY-NAME. This routine starts by
getting a valid record (GET-EXISTING-RECORD) and then performing the main loop,
INQUIRE-RECORDS, until the user enters a vendor name of spaces (VENDOR-NAME = SPACES).

The main loop itself at 005900 displays all fields; then at the bottom of the loop, line 006100 asks the
user for another vendor name to look for by once again performing GET-EXISTING-RECORD.

The GET-EXISTING-RECORD routine at line 006600 is structured as a standard field-entry routine

that performs an ACCEPT-EXISTING-KEY and then a RE-ACCEPT-EXISTING-KEY until
VENDOR-FILE-AT-END NOT = "Y". This logic is used to force the user to enter a vendor name that
is not at the end of the file.

At line 007100, ACCEPT-EXISTING-KEY initializes the vendor record and then gets the user entry of
the name to look up. If the name is not spaces, an attempt is made to READ-FIRST-VENDOR-RECORD,
which will START the file using the entered vendor name and then try to read the next record in the file.
If this causes VENDOR-FILE-AT-END = "Y", then back at line 006800, the program will
RE-ACCEPT-EXISTING-KEY until VENDOR-FILE-AT-END NOT = "Y".

The RE-ACCEPT-EXISTING-KEY routine at line 007700 displays an error message and then tries
again to ACCEPT-EXISTING-KEY.

The READ-FIRST-VENDOR-RECORD routine at line 015100 is identical to that used in Listing 17.20,
vnbynbm01.cbl, and it sets the VENDOR-FILE-AT-END flag if a record cannot be found.

The remainder of the program is used to display the fields in the record, and you are familiar with this
type of logic. Code, compile, and run vninnm01.cbl, and use it to look up records in your vendor file.

Helping the User with Alternate Keys
A flaw in vninnm01.cbl makes it awkward for the user. In the following output example, the user
wants to look up ABERCROMBIE AND OTHERS and enters "ab". In the sample file, two vendors start
with "AB", and ABC PRINTING appears before ABERCROMBIE AND OTHERS in the file in alternate
key order. The user's entry retrieves ABC PRINTING, and the user must enter "aber" to zero in on the
record that is wanted:

OUTPUT:
ENTER VENDOR NAME
ab
VENDOR NUMBER: 00002
1. VENDOR NAME: ABC PRINTING
2. VENDOR ADDRESS-1: 1624 FOOTHILL BLVD
3. VENDOR ADDRESS-2: SUITE 34
4. VENDOR CITY: LOS ANGELES
5. VENDOR STATE: CA CALIFORNIA
6. VENDOR ZIP: 91042
7. VENDOR CONTACT: CHARLES JOHANSSEN
8. VENDOR PHONE: (818) 555-4321
ENTER VENDOR NAME
aber
VENDOR NUMBER: 01176
1. VENDOR NAME: ABERCROMBIE AND OTHERS
2. VENDOR ADDRESS-1: 1234 45TH ST.
3. VENDOR ADDRESS-2: SUITE 17
4. VENDOR CITY: LOS ANGELES

5. VENDOR STATE: CA CALIFORNIA
6. VENDOR ZIP: 92345
7. VENDOR CONTACT:
8. VENDOR PHONE: (213) 555-6543
ENTER VENDOR NAME

This can become a headache in a large file with many names that are close to one another, and it can be
impossible to deal with if two vendors have the same name. In the following sample output, the vendor
file contains two firms named ABC PRINTING--one in Los Angeles and one in Pomona:

OUTPUT:
VENDOR NUMBER: 00002
1. VENDOR NAME: ABC PRINTING
2. VENDOR ADDRESS-1: 1624 FOOTHILL BLVD
3. VENDOR ADDRESS-2: SUITE 34
4. VENDOR CITY: LOS ANGELES
5. VENDOR STATE: CA CALIFORNIA
6. VENDOR ZIP: 91042
7. VENDOR CONTACT: CHARLES JOHANSSEN
8. VENDOR PHONE: (818) 555-4321
VENDOR NUMBER: 00067
1. VENDOR NAME: ABC PRINTING
2. VENDOR ADDRESS-1: 1606 SOUTH 7TH
3. VENDOR ADDRESS-2:
4. VENDOR CITY: POMONA
5. VENDOR STATE: CA CALIFORNIA
6. VENDOR ZIP: 90404
7. VENDOR CONTACT: HARRIET NELSON
8. VENDOR PHONE: (815) 555-2020

The user needs the phone number for the vendor in Pomona but does not know the vendor number. This
is a good time to use inquiry by vendor name. However, the next output sample indicates that, in spite of
repeated attempts to enter more and more of the company name, vninnm01.cbl always returns the
first vendor.

This problem has to do with the way records are stored by alternate key. If an alternate key allows
duplicates, and two or more records actually do have the same key value, which one is first? Usually, it is
the one that was added to the file first. Sometimes it is the record with the lowest primary index key
value. No matter which record is considered to be "first" in the file, vninnm01.cbl will not let you go
to the next record:

OUTPUT:
ENTER VENDOR NAME
abc
VENDOR NUMBER: 00002
1. VENDOR NAME: ABC PRINTING
2. VENDOR ADDRESS-1: 1624 FOOTHILL BLVD

3. VENDOR ADDRESS-2: SUITE 34
4. VENDOR CITY: LOS ANGELES
5. VENDOR STATE: CA CALIFORNIA
6. VENDOR ZIP: 91042
7. VENDOR CONTACT: CHARLES JOHANSSEN
8. VENDOR PHONE: (818) 555-4321
ENTER VENDOR NAME
abc print
VENDOR NUMBER: 00002
1. VENDOR NAME: ABC PRINTING
2. VENDOR ADDRESS-1: 1624 FOOTHILL BLVD
3. VENDOR ADDRESS-2: SUITE 34
4. VENDOR CITY: LOS ANGELES
5. VENDOR STATE: CA CALIFORNIA
6. VENDOR ZIP: 91042
7. VENDOR CONTACT: CHARLES JOHANSSEN
8. VENDOR PHONE: (818) 555-4321
ENTER VENDOR NAME
abc printing
VENDOR NUMBER: 00002
1. VENDOR NAME: ABC PRINTING
2. VENDOR ADDRESS-1: 1624 FOOTHILL BLVD
3. VENDOR ADDRESS-2: SUITE 34
4. VENDOR CITY: LOS ANGELES
5. VENDOR STATE: CA CALIFORNIA
6. VENDOR ZIP: 91042
7. VENDOR CONTACT: CHARLES JOHANSSEN
8. VENDOR PHONE: (818) 555-4321
ENTER VENDOR NAME

Listing 17.22 is vninnm02.cbl, and it solves the problem.

TYPE: Listing 17.22. A better alternate key look up.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. VNINNM02.
000300*--------------------------------
000400* Inquire for the Vendor File
000500* using vendor name.
000600*--------------------------------
000700 ENVIRONMENT DIVISION.
000800 INPUT-OUTPUT SECTION.
000900 FILE-CONTROL.
001000
001100 COPY "SLVND02.CBL".
001200

001300 COPY "SLSTATE.CBL".
001400
001500 DATA DIVISION.
001600 FILE SECTION.
001700
001800 COPY "FDVND04.CBL".
001900
002000 COPY "FDSTATE.CBL".
002100
002200 WORKING-STORAGE SECTION.
002300
002400 77 VENDOR-FILE-AT-END PIC X.
002500 77 STATE-RECORD-FOUND PIC X.
002600
002700 77 SEE-NEXT-RECORD PIC X.
002800
002900 77 VENDOR-NAME-FIELD PIC X(30).
003000
003100 COPY "WSCASE01.CBL".
003200
003300 PROCEDURE DIVISION.
003400 PROGRAM-BEGIN.
003500 PERFORM OPENING-PROCEDURE.
003600 PERFORM MAIN-PROCESS.
003700 PERFORM CLOSING-PROCEDURE.
003800
003900 PROGRAM-DONE.
004000 STOP RUN.
004100
004200 OPENING-PROCEDURE.
004300 OPEN I-O VENDOR-FILE.
004400 OPEN I-O STATE-FILE.
004500
004600 CLOSING-PROCEDURE.
004700 CLOSE VENDOR-FILE.
004800 CLOSE STATE-FILE.
004900
005000 MAIN-PROCESS.
005100 PERFORM INQUIRE-BY-NAME.
005200*--------------------------------
005300* INQUIRE
005400*--------------------------------
005500 INQUIRE-BY-NAME.
005600 PERFORM GET-EXISTING-RECORD.
005700 PERFORM INQUIRE-RECORDS
005800 UNTIL VENDOR-NAME = SPACES.

005900
006000 INQUIRE-RECORDS.
006100 PERFORM SHOW-THIS-RECORD.
006200 PERFORM SHOW-NEXT-RECORD
006300 UNTIL SEE-NEXT-RECORD = "N" OR
006400 VENDOR-FILE-AT-END = "Y".
006500
006600 PERFORM GET-EXISTING-RECORD.
006700
006800
006900*--------------------------------
007000* Show records one by one
007100*--------------------------------
007200 SHOW-THIS-RECORD.
007300 PERFORM DISPLAY-ALL-FIELDS.
007400 PERFORM GET-SEE-NEXT-RECORD.
007500
007600 SHOW-NEXT-RECORD.
007700 PERFORM READ-NEXT-VENDOR-RECORD.
007800 IF VENDOR-FILE-AT-END NOT = "Y"
007900 PERFORM SHOW-THIS-RECORD.
008000
008100*--------------------------------
008200* Get valid record logic
008300*--------------------------------
008400 GET-EXISTING-RECORD.
008500 PERFORM ACCEPT-EXISTING-KEY.
008600 PERFORM RE-ACCEPT-EXISTING-KEY
008700 UNTIL VENDOR-FILE-AT-END NOT = "Y".
008800
008900 ACCEPT-EXISTING-KEY.
009000 PERFORM INIT-FOR-KEY-ENTRY.
009100 PERFORM ENTER-VENDOR-NAME.
009200 IF VENDOR-NAME NOT = SPACES
009300 PERFORM READ-FIRST-VENDOR-RECORD.
009400
009500 RE-ACCEPT-EXISTING-KEY.
009600 DISPLAY "RECORD NOT FOUND"
009700 PERFORM ACCEPT-EXISTING-KEY.
009800
009900*--------------------------------
010000* Field Entry logic
010100*--------------------------------
010200 ENTER-VENDOR-NAME.
010300 PERFORM ACCEPT-VENDOR-NAME.
010400

010500 ACCEPT-VENDOR-NAME.
010600 DISPLAY "ENTER VENDOR NAME".
010700 ACCEPT VENDOR-NAME.
010800 INSPECT VENDOR-NAME
010900 CONVERTING LOWER-ALPHA
011000 TO UPPER-ALPHA.
011100
011200 GET-SEE-NEXT-RECORD.
011300 PERFORM ACCEPT-SEE-NEXT-RECORD.
011400 PERFORM RE-ACCEPT-SEE-NEXT-RECORD
011500 UNTIL SEE-NEXT-RECORD = "Y" OR "N".
011600
011700 ACCEPT-SEE-NEXT-RECORD.
011800 DISPLAY "DISPLAY NEXT RECORD (Y/N)?".
011900 ACCEPT SEE-NEXT-RECORD.
012000
012100 IF SEE-NEXT-RECORD = SPACE
012200 MOVE "Y" TO SEE-NEXT-RECORD.
012300
012400 INSPECT SEE-NEXT-RECORD
012500 CONVERTING LOWER-ALPHA
012600 TO UPPER-ALPHA.
012700
012800 RE-ACCEPT-SEE-NEXT-RECORD.
012900 DISPLAY "MUST ENTER YES OR NO".
013000 PERFORM ACCEPT-SEE-NEXT-RECORD.
013100
013200*--------------------------------
013300* Display logic
013400*--------------------------------
013500 DISPLAY-ALL-FIELDS.
013600 DISPLAY " ".
013700 PERFORM DISPLAY-VENDOR-NUMBER.
013800 PERFORM DISPLAY-VENDOR-NAME.
013900 PERFORM DISPLAY-VENDOR-ADDRESS-1.
014000 PERFORM DISPLAY-VENDOR-ADDRESS-2.
014100 PERFORM DISPLAY-VENDOR-CITY.
014200 PERFORM DISPLAY-VENDOR-STATE.
014300 PERFORM DISPLAY-VENDOR-ZIP.
014400 PERFORM DISPLAY-VENDOR-CONTACT.
014500 PERFORM DISPLAY-VENDOR-PHONE.
014600 DISPLAY " ".
014700
014800 DISPLAY-VENDOR-NUMBER.
014900 DISPLAY " VENDOR NUMBER: " VENDOR-NUMBER.
015000

015100 DISPLAY-VENDOR-NAME.
015200 DISPLAY "1. VENDOR NAME: " VENDOR-NAME.
015300
015400 DISPLAY-VENDOR-ADDRESS-1.
015500 DISPLAY "2. VENDOR ADDRESS-1: " VENDOR-ADDRESS-1.
015600
015700 DISPLAY-VENDOR-ADDRESS-2.
015800 DISPLAY "3. VENDOR ADDRESS-2: " VENDOR-ADDRESS-2.
015900
016000 DISPLAY-VENDOR-CITY.
016100 DISPLAY "4. VENDOR CITY: " VENDOR-CITY.
016200
016300 DISPLAY-VENDOR-STATE.
016400 MOVE VENDOR-STATE TO STATE-CODE.
016500 PERFORM READ-STATE-RECORD.
016600 IF STATE-RECORD-FOUND = "N"
016700 MOVE "**Not found**" TO STATE-NAME.
016800 DISPLAY "5. VENDOR STATE: "
016900 VENDOR-STATE " "
017000 STATE-NAME.
017100
017200 DISPLAY-VENDOR-ZIP.
017300 DISPLAY "6. VENDOR ZIP: " VENDOR-ZIP.
017400
017500 DISPLAY-VENDOR-CONTACT.
017600 DISPLAY "7. VENDOR CONTACT: " VENDOR-CONTACT.
017700
017800 DISPLAY-VENDOR-PHONE.
017900 DISPLAY "8. VENDOR PHONE: " VENDOR-PHONE.
018000
018100*--------------------------------
018200* File Related Routines
018300*--------------------------------
018400 INIT-FOR-KEY-ENTRY.
018500 MOVE SPACE TO VENDOR-RECORD.
018600 MOVE ZEROES TO VENDOR-NUMBER.
018700 MOVE "N" TO VENDOR-FILE-AT-END.
018800
018900 READ-FIRST-VENDOR-RECORD.
019000 MOVE "N" TO VENDOR-FILE-AT-END.
019100 START VENDOR-FILE
019200 KEY NOT < VENDOR-NAME
019300 INVALID KEY
019400 MOVE "Y" TO VENDOR-FILE-AT-END.
019500
019600 IF VENDOR-FILE-AT-END NOT = "Y"

019700 PERFORM READ-NEXT-VENDOR-RECORD.
019800
019900 READ-NEXT-VENDOR-RECORD.
020000 READ VENDOR-FILE NEXT RECORD
020100 AT END
020200 MOVE "Y" TO VENDOR-FILE-AT-END.
020300
020400 READ-STATE-RECORD.
020500 MOVE "Y" TO STATE-RECORD-FOUND.
020600 READ STATE-FILE RECORD
020700 INVALID KEY
020800 MOVE "N" TO STATE-RECORD-FOUND.
020900

The output from vninnm02.cbl enables the user to step through the file record by record or to skip
around, starting with different names:

OUTPUT:
ENTER VENDOR NAME
abc
VENDOR NUMBER: 00002
1. VENDOR NAME: ABC PRINTING
2. VENDOR ADDRESS-1: 1624 FOOTHILL BLVD
3. VENDOR ADDRESS-2: SUITE 34
4. VENDOR CITY: LOS ANGELES
5. VENDOR STATE: CA CALIFORNIA
6. VENDOR ZIP: 91042
7. VENDOR CONTACT: CHARLES JOHANSSEN
8. VENDOR PHONE: (818) 555-4321
DISPLAY NEXT RECORD (Y/N)?

(User presses Enter here.)

VENDOR NUMBER: 00067
1. VENDOR NAME: ABC PRINTING
2. VENDOR ADDRESS-1: 1606 SOUTH 7TH
3. VENDOR ADDRESS-2:
4. VENDOR CITY: POMONA
5. VENDOR STATE: CA CALIFORNIA
6. VENDOR ZIP: 90404
7. VENDOR CONTACT: HARRIET NELSON
8. VENDOR PHONE: (815) 555-2020
DISPLAY NEXT RECORD (Y/N)?

(User presses Enter here.)

VENDOR NUMBER: 01176
1. VENDOR NAME: ABERCROMBIE AND OTHERS

2. VENDOR ADDRESS-1: 1234 45TH ST.
3. VENDOR ADDRESS-2: SUITE 17
4. VENDOR CITY: LOS ANGELES
5. VENDOR STATE: CA CALIFORNIA
6. VENDOR ZIP: 92345
7. VENDOR CONTACT:
8. VENDOR PHONE: (213) 555-6543
DISPLAY NEXT RECORD (Y/N)?
n
ENTER VENDOR NAME
z
VENDOR NUMBER: 01440
1. VENDOR NAME: ZINZINDORFF INC.
2. VENDOR ADDRESS-1: 1604 7TH ST
3. VENDOR ADDRESS-2:
4. VENDOR CITY: LOS ANGELES
5. VENDOR STATE: CA CALIFORNIA
6. VENDOR ZIP: 90404
7. VENDOR CONTACT:
8. VENDOR PHONE: (213) 555-7234
DISPLAY NEXT RECORD (Y/N)?

ANALYSIS: This program is similar to vninnm01.cbl, but it enables the user to choose the option of
looking at the next record after the selected record is displayed.

The differences in the two programs start at line 006000, INQUIRE-RECORDS, in vninnm02.cbl.
Rather than displaying all fields and then asking the user for another vendor name, the loop is changed to
SHOW-THIS-RECORD and then SHOW-NEXT-RECORD until SEE-NEXT-RECORD = "N" or
VENDOR-FILE-AT-END = "Y". The SEE-NEXT-RECORD variable is a yes/no field entered by the
user to indicate whether to display the next record. It is defined at line 002700.

At line 007200, the SHOW-THIS-RECORD routine displays all fields and then asks the user whether
the next record is wanted. This answer is returned to INQUIRE-RECORDS at line 006200, and if the
user has indicated Y by entering the value or simply pressing Enter, the SHOW-NEXT-RECORD routine
is performed as a loop.

The SHOW-NEXT-RECORD routine at line 007600 tries to read the next record in the vendor file. If it is
successful, it performs SHOW-THIS-RECORD, which displays all fields, and once again asks the user
whether the next record is wanted. This loop continues until the user answers N or the read-next takes
him or her to the end of the file.

The GET-SEE-NEXT-RECORD routine at line 011200 is a standard field-entry routine. In this case,
the user can enter a space, but it is converted to "Y" at lines 012100 and 012200. This gives the user
the convenience of pressing Enter to see the next record rather than having to enter a "Y" explicitly. If
the user enters something, it must be "Y" or "N" (or the lowercase versions).

The GET-SEE-NEXT-RECORD loop continues until the end of the file is reached, whereupon the user
once again is asked for a vendor name.

Code, compile, and run vninnm02.cbl. If you want to, use vndmnt03.cbl to add a vendor with the
same name as an existing vendor in the file. You can use vninnm02.cbl to view this record.

Summary
Although an indexed file must have a unique primary key, it is possible to put other keys in the file.
These do not need to be unique and can be arranged to return records in a different order than the primary
key. Today, you learned these basics:

Use an alternate key to return records in a different order than the primary key.●

Define an alternate key in the SELECT statement by using the ALTERNATE KEY IS clause; you
can include an optional WITH DUPLICATES clause.

●

To create an alternate index in a file, the file must have been created (opened in output mode) by a
program containing a file definition that included an alternate key for the file.

●

After you create the file, you can treat it like any other indexed file. Records written to it will be
stored correctly with the alternate index values.

●

A file must be opened with a file definition that matches the file organization, record length, and
key structure of the actual file. Usually, this is the file definition that was used to create it, but it
does not have to be, as long as it matches the file organization, record length, and key structure of
the file definition that was used to create it.

●

When an alternate indexed file first is opened, the active path is the primary key path. To switch to
an alternate key path, use the START command.

●

After the START is completed successfully, the key path is changed, and READ NEXT proceeds to
the next and subsequent records along that path.

●

Alternate keys enable you to include routines that make it easier for a user to look up records.●

Because alternate keys with duplicates allow records containing duplicate keys, a look up program
must be included so that the user can step through the file record by record.

●

Q&A
Q How many alternate keys can be in a file?

A This varies based on your version of COBOL. Most versions of COBOL allow at least 16
alternate keys, which is plenty for most problems. I have seen some versions of COBOL that allow

63 and even 119 alternate keys.

Workshop

Quiz

1. If a vendor file contained records with the vendor names

ABC PRINTING

AZAZEL AND SONS

CHARLES RUMFORD INC.

OMEGA MANUFACTURING

ZYDEC DESIGNS

which record would be read after the logic in the following listing?

018900 MOVE "LINCOLN" TO VENDOR-NAME.
019000 START VENDOR-FILE
019100 KEY NOT < VENDOR-NAME
019200 INVALID KEY
019300 MOVE "Y" TO VENDOR-FILE-AT-END.
019400
019500 IF VENDOR-FILE-AT-END NOT = "Y"
019600 PERFORM READ-NEXT-VENDOR-RECORD.
019700
019800 READ-NEXT-VENDOR-RECORD.
019900 READ VENDOR-FILE NEXT RECORD
020000 AT END
020100 MOVE "Y" TO VENDOR-FILE-AT-END.

2. What are the keys in the following listing?

Hint: Don't forget the primary key.

000400 SELECT PART-FILE
000500 ASSIGN TO "PARTS"
000600 ORGANIZATION IS INDEXED
000700 RECORD KEY IS PART-NUMBER
000800 ALTERNATE KEY IS PART-VENDOR WITH DUPLICATES
000900 ALTERNATE KEY IS PART-DEPARTMENT WITH DUPLICATES
001000 ALTERNATE KEY IS PART-VENDOR-NUMBER
001100 ACCESS MODE IS DYNAMIC.
001200

3. In the listing in question 2, which keys allow duplicates? Which do not?

Exercise

Assuming a customer file with a record layout, as shown in the following listing, create a SELECT
statement that defines the CUSTOMER-NUMBER as the primary key, the CUSTOMER-NAME as an
alternate key with duplicates, and the CUSTOMER-ZIP as an alternate key with duplicates. The
physical name of the file on the disk will be "CUST".

000000 FD CUSTOMER-FILE
000000 LABEL RECORDS ARE STANDARD.
001000 01 CUSTOMER-RECORD.
001100 05 CUSTOMER-NUMBER PIC 9(5).
001200 05 CUSTOMER-NAME PIC X(20).
001300 05 CUSTOMER-ADDRESS-1 PIC X(20).
001400 05 CUSTOMER-ADDRESS-2 PIC X(20).
001500 05 CUSTOMER-ZIP PIC 9(5).
001600 05 CUSTOMER-PHONE.
001700 10 CUSTOMER-AREA-CODE PIC 9(3).
001800 10 CUSTOMER-PREFIX PIC 9(3).
001900 10 CUSTOMER-PHONE-NO PIC 9(4).

Previous chapter Next chapter Contents

Macmillan Computer Publishing USA

© Copyright, Macmillan Computer Publishing. All rights reserved.

Teach Yourself COBOL in 21 days,
Second Edition

Previous chapter Next chapter Contents

- Day 18 -
Calling Other Programs

In practice, a system is composed of many programs that work in concert. So far, you have worked with
state codes, file maintenance and report programs, and vendor maintenance and report programs. To get
these programs to work together for the user, you need to provide a menu with all these programs
available as choices, and then provide the capability of executing these programs based on the user's
choice.

Today, you learn about the following topics:

Executing one program from within another●

Handling STOP RUN●

Calling another program●

Creating large menus using calls●

Menu programs●

Executing One Program from Within Another
It is possible for one COBOL program to execute another program. The syntax for this is simple:

CALL "program name"

Here is an example:

CALL "VNDRPT03"

If a CALL is executed within a COBOL program, the calling program is suspended and the called

program is executed. When the called program is finished, control is returned to the calling program and
execution continues at the next line.

A CALL always is executed by calling the program using only the six- or eight-character program name
without an extension. (Some systems allow only six-character filenames.)

A CALL works like a PERFORM, treating another program as if it were one large paragraph. The calling
program still is loaded into memory and running, but it is waiting for the called program to complete
before it resumes execution.

Handling STOP RUN
Although the syntax for calling another program is simple, there is a complication introduced by our old
friend STOP RUN. STOP RUN stops all COBOL programs that you currently are running. If a STOP
RUN is executed in a called program, it stops both the called program and the calling program, and
control does not return to the calling program. This has not been a problem so far because you have been
executing only a single COBOL program.

Listings 18.1 and 18.2 are fragments from a hypothetical vendor menu program and vndrpt03.cbl.

TYPE: Listing 18.1. Calling vndrpt03.cbl.

020300 CALL-VENDOR-REPORT.
020400 DISPLAY "REPORT IN PROGRESS".
020500 CALL "VNDRPT03".
020600 DISPLAY "REPORT FINISHED".

TYPE: Listing 18.2. The top logic in vndrpt03.cbl.

007400
007500 PROCEDURE DIVISION.
007600 PROGRAM-BEGIN.
007700
007800 PERFORM OPENING-PROCEDURE.
007900 MOVE ZEROES TO LINE-COUNT
008000 PAGE-NUMBER.
008100
008200 PERFORM START-NEW-PAGE.
008300
008400 MOVE "N" TO FILE-AT-END.
008500 PERFORM READ-NEXT-RECORD.
008600 IF FILE-AT-END = "Y"
008700 MOVE "NO RECORDS FOUND" TO PRINTER-RECORD
008800 PERFORM WRITE-TO-PRINTER
008900 ELSE
009000 PERFORM PRINT-VENDOR-FIELDS

009100 UNTIL FILE-AT-END = "Y".
009200
009300 PERFORM CLOSING-PROCEDURE.
009400
009500 PROGRAM-DONE.
009600 STOP RUN.

ANALYSIS: At line 020400 in Listing 18.1, a message that the report is underway is displayed for the
user, and at line 020500, the report program is called. This transfers control to line 007500 in Listing
18.2 as if a PERFORM had been requested. At line 009500, the program is complete and the
PROGRAM-DONE paragraph begins and immediately executes a STOP RUN at line 009600. You want
control to return to line 020600 in Listing 18.1, but the STOP RUN brings everything to a halt.

There is another command that can be used to end a program: EXIT PROGRAM. This command checks
whether the current program is a called program and, if it is, it returns to the calling program as though
the end of a PERFORM had been reached. In most versions of COBOL, EXIT PROGRAM must appear in
a paragraph by itself.

EXIT PROGRAM should be used to end a called program, and STOP RUN should be used to end a
calling program.

When you write a program, you don't always know whether it will be a called or calling program; you
can hedge your bets by including both commands in the program, as shown in Listing 18.3. At the end of
each program, just before the paragraph containing STOP RUN, insert a paragraph containing EXIT
PROGRAM.

DO/DON'T:
DO be sure to spell EXIT PROGRAM correctly and end it with a period.

DON'T put a hyphen in the command (EXIT-PROGRAM) because the COBOL compilers
will mistake this for a paragraph name and will not execute the EXIT PROGRAM command.

TYPE: Listing 18.3. Using EXIT PROGRAM and STOP RUN in the same program.

007500 PROCEDURE DIVISION.
007600 PROGRAM-BEGIN.
007700
007800 PERFORM OPENING-PROCEDURE.
007900 MOVE ZEROES TO LINE-COUNT
008000 PAGE-NUMBER.
008100
008200 PERFORM START-NEW-PAGE.
008300
008400 MOVE "N" TO FILE-AT-END.
008500 PERFORM READ-NEXT-RECORD.
008600 IF FILE-AT-END = "Y"
008700 MOVE "NO RECORDS FOUND" TO PRINTER-RECORD

008800 PERFORM WRITE-TO-PRINTER
008900 ELSE
009000 PERFORM PRINT-VENDOR-FIELDS
009100 UNTIL FILE-AT-END = "Y".
009200
009300 PERFORM CLOSING-PROCEDURE.
009400
009500 PROGRAM-EXIT.
009600 EXIT PROGRAM.
009700
009800 PROGRAM-DONE.
009900 STOP RUN.

ANALYSIS: In Listing 18.3, after the main logic of the program is completed, the program executes the
logic in the PROGRAM-EXIT paragraph at line 009500. This performs an EXIT PROGRAM at line
009600. The COBOL program checks to see whether it is a called program. If it is, it returns to the
calling program immediately, and the paragraph at line 009800 containing STOP RUN is never
executed.

If the program is not a called program, EXIT PROGRAM is ignored and the program continues to lines
009700 and 009800, where the STOP RUN is executed and the program halts.

This approach to exiting and stopping is so workable you can include it in your standard COBOL shell. It
works for a called or calling program and you don't need to worry about how a program will be used.
Listing 18.4 includes this logic, as well as dummy paragraphs, with the basic structure of a program. This
is the last general COBOL shell and contains all the parts that you need for the work in the remainder of
this book. In a real world work environment, a COBOL shell program will probably have a lot more
information in it.

TYPE: Listing 18.4. A final COBOL shell.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. COBSHL04.
000300*--------------------------------
000400*
000500*--------------------------------
000600 ENVIRONMENT DIVISION.
000700 INPUT-OUTPUT SECTION.
000800 FILE-CONTROL.
000900
001000 DATA DIVISION.
001100 FILE SECTION.
001200
001300 WORKING-STORAGE SECTION.
001400
001500 PROCEDURE DIVISION.
001600 PROGRAM-BEGIN.

001700 PERFORM OPENING-PROCEDURE.
001800 PERFORM MAIN-PROCESS.
001900 PERFORM CLOSING-PROCEDURE.
002000
002100 PROGRAM-EXIT.
002200 EXIT PROGRAM.
002300
002400 PROGRAM-DONE.
002500 STOP RUN.
002600
002700 OPENING-PROCEDURE.
002800
002900 CLOSING-PROCEDURE.
003000
003100 MAIN-PROCESS.
003200

NOTE: You have a lot of programs that do not use the EXIT PROGRAM logic; in the
subsequent examples, these will be corrected. When this is the only change in the program,
only a fragment of the complete listing will be provided.

Calling Another Program
One final note on calling a program--it is important that your source code filename and program ID
match. If the program filename is stcrpt02.cbl, the PROGRAM-ID inside the COBOL program
must be STCRPT02. Some versions of COBOL, such as ACUCOBOL and Micro Focus Personal
COBOL, don't care about this match, but many do. It's also good practice to ensure that these match.

DO/DON'T:
DO force the source code filename and PROGRAM-ID to match.

DON'T forget to double-check these, especially when you are creating programs by copying
one file to another and then modifying the new file.

Listing 18.5 shows the corrections you need to make to stcrpt01.cbl for the next section of this
book. Copy stcrpt01.cbl to stcrpt02.cbl and add the exit program logic shown at line
007100. Then recompile the program. Be sure to change the PROGRAM-ID to STCRPT02.

TYPE: Listing 18.5. stcrpt02.cbl includes program exit logic.

005100 PROCEDURE DIVISION.
005200 PROGRAM-BEGIN.
005300
005400 PERFORM OPENING-PROCEDURE.

005500 MOVE ZEROES TO LINE-COUNT
005600 PAGE-NUMBER.
005700
005800 PERFORM START-NEW-PAGE.
005900
006000 MOVE "N" TO FILE-AT-END.
006100 PERFORM READ-NEXT-RECORD.
006200 IF FILE-AT-END = "Y"
006300 MOVE "NO RECORDS FOUND" TO PRINTER-RECORD
006400 PERFORM WRITE-TO-PRINTER
006500 ELSE
006600 PERFORM PRINT-STATE-FIELDS
006700 UNTIL FILE-AT-END = "Y".
006800
006900 PERFORM CLOSING-PROCEDURE.
007000
007100 PROGRAM-EXIT.
007200 EXIT PROGRAM.
007300
007400 PROGRAM-DONE.
007500 STOP RUN.
007600

Listing 18.6 is stcmnt04.cbl, a modified version of state code maintenance, stcmnt03.cbl.

TYPE: Listing 18.6. State code file maintenance including printing.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. STCMNT04.
000300*--------------------------------
000400* Add, Change, Inquire and Delete
000500* for the State Code.
000600* Calls the State Codes Report.
000700*--------------------------------
000800 ENVIRONMENT DIVISION.
000900 INPUT-OUTPUT SECTION.
001000 FILE-CONTROL.
001100
001200 COPY "SLSTATE.CBL".
001300
001400 DATA DIVISION.
001500 FILE SECTION.
001600
001700 COPY "FDSTATE.CBL".
001800
001900 WORKING-STORAGE SECTION.

002000
002100 77 MENU-PICK PIC 9.
002200 88 MENU-PICK-IS-VALID VALUES 0 THRU 5.
002300
002400 77 THE-MODE PIC X(7).
002500 77 OK-TO-DELETE PIC X.
002600 77 RECORD-FOUND PIC X.
002700 77 WHICH-FIELD PIC 9.
002800
002900 COPY "WSCASE01.CBL".
003000
003100 PROCEDURE DIVISION.
003200 PROGRAM-BEGIN.
003300 PERFORM OPENING-PROCEDURE.
003400 PERFORM MAIN-PROCESS.
003500 PERFORM CLOSING-PROCEDURE.
003600
003700 PROGRAM-EXIT.
003800 EXIT PROGRAM.
003900
004000 PROGRAM-DONE.
004100 STOP RUN.
004200
004300 OPENING-PROCEDURE.
004400 OPEN I-O STATE-FILE.
004500
004600 CLOSING-PROCEDURE.
004700 CLOSE STATE-FILE.
004800
004900
005000 MAIN-PROCESS.
005100 PERFORM GET-MENU-PICK.
005200 PERFORM MAINTAIN-THE-FILE
005300 UNTIL MENU-PICK = 0.
005400
005500*--------------------------------
005600* MENU
005700*--------------------------------
005800 GET-MENU-PICK.
005900 PERFORM DISPLAY-THE-MENU.
006000 PERFORM ACCEPT-MENU-PICK.
006100 PERFORM RE-ACCEPT-MENU-PICK
006200 UNTIL MENU-PICK-IS-VALID.
006300
006400 DISPLAY-THE-MENU.
006500 PERFORM CLEAR-SCREEN.

006600 DISPLAY " PLEASE SELECT:".
006700 DISPLAY " ".
006800 DISPLAY " 1. ADD RECORDS".
006900 DISPLAY " 2. CHANGE A RECORD".
007000 DISPLAY " 3. LOOK UP A RECORD".
007100 DISPLAY " 4. DELETE A RECORD".
007200 DISPLAY " 5. PRINT RECORDS".
007300 DISPLAY " ".
007400 DISPLAY " 0. EXIT".
007500 PERFORM SCROLL-LINE 8 TIMES.
007600
007700 ACCEPT-MENU-PICK.
007800 DISPLAY "YOUR CHOICE (0-5)?".
007900 ACCEPT MENU-PICK.
008000
008100 RE-ACCEPT-MENU-PICK.
008200 DISPLAY "INVALID SELECTION - PLEASE RE-TRY.".
008300 PERFORM ACCEPT-MENU-PICK.
008400
008500 CLEAR-SCREEN.
008600 PERFORM SCROLL-LINE 25 TIMES.
008700
008800 SCROLL-LINE.
008900 DISPLAY " ".
009000
009100 MAINTAIN-THE-FILE.
009200 PERFORM DO-THE-PICK.
009300 PERFORM GET-MENU-PICK.
009400
009500 DO-THE-PICK.
009600 IF MENU-PICK = 1
009700 PERFORM ADD-MODE
009800 ELSE
009900 IF MENU-PICK = 2
010000 PERFORM CHANGE-MODE
010100 ELSE
010200 IF MENU-PICK = 3
010300 PERFORM INQUIRE-MODE
010400 ELSE
010500 IF MENU-PICK = 4
010600 PERFORM DELETE-MODE
010700 ELSE
010800 IF MENU-PICK = 5
010900 PERFORM PRINT-THE-RECORDS.
011000
011100*--------------------------------

011200* ADD
011300*--------------------------------
011400 ADD-MODE.
011500 MOVE "ADD" TO THE-MODE.
011600 PERFORM GET-NEW-STATE-CODE.
011700 PERFORM ADD-RECORDS
011800 UNTIL STATE-CODE = "ZZ".
011900
012000 GET-NEW-STATE-CODE.
012100 PERFORM INIT-STATE-RECORD.
012200 PERFORM ENTER-STATE-CODE.
012300 MOVE "Y" TO RECORD-FOUND.
012400 PERFORM FIND-NEW-STATE-RECORD
012500 UNTIL RECORD-FOUND = "N" OR
012600 STATE-CODE = "ZZ".
012700
012800 FIND-NEW-STATE-RECORD.
012900 PERFORM READ-STATE-RECORD.
013000 IF RECORD-FOUND = "Y"
013100 DISPLAY "RECORD ALREADY ON FILE"
013200 PERFORM ENTER-STATE-CODE.
013300
013400 ADD-RECORDS.
013500 PERFORM ENTER-REMAINING-FIELDS.
013600 PERFORM WRITE-STATE-RECORD.
013700 PERFORM GET-NEW-STATE-CODE.
013800
013900 ENTER-REMAINING-FIELDS.
014000 PERFORM ENTER-STATE-NAME.
014100
014200*--------------------------------
014300* CHANGE
014400*--------------------------------
014500 CHANGE-MODE.
014600 MOVE "CHANGE" TO THE-MODE.
014700 PERFORM GET-STATE-RECORD.
014800 PERFORM CHANGE-RECORDS
014900 UNTIL STATE-CODE = "ZZ".
015000
015100 CHANGE-RECORDS.
015200 PERFORM GET-FIELD-TO-CHANGE.
015300* PERFORM CHANGE-ONE-FIELD
015400* UNTIL WHICH-FIELD = ZERO.
015500 PERFORM CHANGE-ONE-FIELD.
015600
015700 PERFORM GET-STATE-RECORD.

015800
015900 GET-FIELD-TO-CHANGE.
016000 PERFORM DISPLAY-ALL-FIELDS.
016100 PERFORM ASK-WHICH-FIELD.
016200
016300 ASK-WHICH-FIELD.
016400* PERFORM ACCEPT-WHICH-FIELD.
016500* PERFORM RE-ACCEPT-WHICH-FIELD
016600* UNTIL WHICH-FIELD NOT > 1.
016700 MOVE 1 TO WHICH-FIELD.
016800
016900*ACCEPT-WHICH-FIELD.
017000* DISPLAY "ENTER THE NUMBER OF THE FIELD".
017100* DISPLAY "TO CHANGE (1) OR 0 TO EXIT".
017200* ACCEPT WHICH-FIELD.
017300*
017400*RE-ACCEPT-WHICH-FIELD.
017500* DISPLAY "INVALID ENTRY".
017600* PERFORM ACCEPT-WHICH-FIELD.
017700
017800 CHANGE-ONE-FIELD.
017900 PERFORM CHANGE-THIS-FIELD.
018000* PERFORM GET-FIELD-TO-CHANGE.
018100
018200 CHANGE-THIS-FIELD.
018300 IF WHICH-FIELD = 1
018400 PERFORM ENTER-STATE-NAME.
018500
018600 PERFORM REWRITE-STATE-RECORD.
018700
018800*--------------------------------
018900* INQUIRE
019000*--------------------------------
019100 INQUIRE-MODE.
019200 MOVE "DISPLAY" TO THE-MODE.
019300 PERFORM GET-STATE-RECORD.
019400 PERFORM INQUIRE-RECORDS
019500 UNTIL STATE-CODE = "ZZ".
019600
019700 INQUIRE-RECORDS.
019800 PERFORM DISPLAY-ALL-FIELDS.
019900 PERFORM GET-STATE-RECORD.
020000
020100*--------------------------------
020200* DELETE
020300*--------------------------------

020400 DELETE-MODE.
020500 MOVE "DELETE" TO THE-MODE.
020600 PERFORM GET-STATE-RECORD.
020700 PERFORM DELETE-RECORDS
020800 UNTIL STATE-CODE = "ZZ".
020900
021000 DELETE-RECORDS.
021100 PERFORM DISPLAY-ALL-FIELDS.
021200
021300 PERFORM ASK-OK-TO-DELETE
021400 IF OK-TO-DELETE = "Y"
021500 PERFORM DELETE-STATE-RECORD.
021600
021700 PERFORM GET-STATE-RECORD.
021800
021900 ASK-OK-TO-DELETE.
022000 PERFORM ACCEPT-OK-TO-DELETE.
022100 PERFORM RE-ACCEPT-OK-TO-DELETE
022200 UNTIL OK-TO-DELETE = "Y" OR "N".
022300
022400 ACCEPT-OK-TO-DELETE.
022500 DISPLAY "DELETE THIS RECORD (Y/N)?".
022600 ACCEPT OK-TO-DELETE.
022700
022800 INSPECT OK-TO-DELETE
022900 CONVERTING LOWER-ALPHA
023000 TO UPPER-ALPHA.
023100
023200 RE-ACCEPT-OK-TO-DELETE.
023300 DISPLAY "YOU MUST ENTER YES OR NO".
023400 PERFORM ACCEPT-OK-TO-DELETE.
023500
023600*--------------------------------
023700* PRINT
023800*--------------------------------
023900 PRINT-THE-RECORDS.
024000 CLOSE STATE-FILE.
024100 DISPLAY "REPORT IN PROGRESS".
024200 CALL "STCRPT02".
024300 OPEN I-O STATE-FILE.
024400
024500*--------------------------------
024600* Routines shared by all modes
024700*--------------------------------
024800 INIT-STATE-RECORD.
024900 MOVE SPACE TO STATE-RECORD.

025000
025100 ENTER-STATE-CODE.
025200 PERFORM ACCEPT-STATE-CODE.
025300 PERFORM RE-ACCEPT-STATE-CODE
025400 UNTIL STATE-CODE NOT = SPACE.
025500
025600 ACCEPT-STATE-CODE.
025700 DISPLAY " ".
025800 DISPLAY "ENTER STATE CODE OF THE STATE" .
025900 DISPLAY "TO " THE-MODE
026000 "(2 UPPER CASE CHARACTERS)".
026100 DISPLAY "ENTER ZZ TO STOP ENTRY".
026200 ACCEPT STATE-CODE.
026300
026400 INSPECT STATE-CODE
026500 CONVERTING LOWER-ALPHA
026600 TO UPPER-ALPHA.
026700
026800 RE-ACCEPT-STATE-CODE.
026900 DISPLAY "STATE CODE MUST BE ENTERED".
027000 PERFORM ACCEPT-STATE-CODE.
027100
027200 GET-STATE-RECORD.
027300 PERFORM INIT-STATE-RECORD.
027400 PERFORM ENTER-STATE-CODE.
027500 MOVE "N" TO RECORD-FOUND.
027600 PERFORM FIND-STATE-RECORD
027700 UNTIL RECORD-FOUND = "Y" OR
027800 STATE-CODE = "ZZ".
027900
028000*--------------------------------
028100* Routines shared Add and Change
028200*--------------------------------
028300 FIND-STATE-RECORD.
028400 PERFORM READ-STATE-RECORD.
028500 IF RECORD-FOUND = "N"
028600 DISPLAY "RECORD NOT FOUND"
028700 PERFORM ENTER-STATE-CODE.
028800
028900 ENTER-STATE-NAME.
029000 PERFORM ACCEPT-STATE-NAME.
029100 PERFORM RE-ACCEPT-STATE-NAME
029200 UNTIL STATE-NAME NOT = SPACES.
029300
029400 ACCEPT-STATE-NAME.
029500 DISPLAY "ENTER STATE NAME".

029600 ACCEPT STATE-NAME.
029700
029800 INSPECT STATE-NAME
029900 CONVERTING LOWER-ALPHA
030000 TO UPPER-ALPHA.
030100
030200 RE-ACCEPT-STATE-NAME.
030300 DISPLAY "STATE NAME MUST BE ENTERED".
030400 PERFORM ACCEPT-STATE-NAME.
030500
030600*--------------------------------
030700* Routines shared by Change,
030800* Inquire and Delete
030900*--------------------------------
031000 DISPLAY-ALL-FIELDS.
031100 DISPLAY " ".
031200 PERFORM DISPLAY-STATE-CODE.
031300 PERFORM DISPLAY-STATE-NAME.
031400 DISPLAY " ".
031500
031600 DISPLAY-STATE-CODE.
031700 DISPLAY " STATE CODE: " STATE-CODE.
031800
031900 DISPLAY-STATE-NAME.
032000 DISPLAY "1. STATE NAME: " STATE-NAME.
032100
032200*--------------------------------
032300* File I-O Routines
032400*--------------------------------
032500 READ-STATE-RECORD.
032600 MOVE "Y" TO RECORD-FOUND.
032700 READ STATE-FILE RECORD
032800 INVALID KEY
032900 MOVE "N" TO RECORD-FOUND.
033000
033100*or READ STATE-FILE RECORD WITH LOCK
033200* INVALID KEY
033300* MOVE "N" TO RECORD-FOUND.
033400
033500*or READ STATE-FILE RECORD WITH HOLD
033600* INVALID KEY
033700* MOVE "N" TO RECORD-FOUND.
033800
033900 WRITE-STATE-RECORD.
034000 WRITE STATE-RECORD
034100 INVALID KEY

034200 DISPLAY "RECORD ALREADY ON FILE".
034300
034400 REWRITE-STATE-RECORD.
034500 REWRITE STATE-RECORD
034600 INVALID KEY
034700 DISPLAY "ERROR REWRITING STATE RECORD".
034800
034900 DELETE-STATE-RECORD.
035000 DELETE STATE-FILE RECORD
035100 INVALID KEY
035200 DISPLAY "ERROR DELETING STATE RECORD".
035300

The output of stcmnt04.cbl includes a menu option for printing the file and a progress message
while stcrpt02.cbl is running:

OUTPUT:
 PLEASE SELECT:

 1. ADD RECORDS
 2. CHANGE A RECORD
 3. LOOK UP A RECORD
 4. DELETE A RECORD
 5. PRINT RECORDS

 0. EXIT

YOUR CHOICE (0-5)?
5
REPORT IN PROGRESS

ANALYSIS: Listing 18.6 adds a menu pick that enables you to print the file. The changes to the menu
are at lines 002200, 007200, and 007800.

The DO-THE-PICK routine at line 009500 has had a selection added at lines 010800 and 010900 to
perform PRINT-THE-RECORDS if MENU-PICK = 5. The PRINT-THE-RECORDS routine at line
023900 closes the state file, displays a message for the user, calls stcrpt02, and then opens the state
file.

Closing and reopening the state file is a good practice. Some COBOL versions allow you to open a file
more than once, but many do not. The state file already is open in stcmnt04.cbl and will be opened
again in stcrpt02.cbl. If you close the state code file before calling STCRPT02, you can avoid any
possible conflict.

Note that stcmnt04.cbl also has been changed at lines 003700 and 003800 to include the exit
program logic.

If you are using Micro Focus Personal COBOL or ACUCOBOL, you can create this program by editing

and compiling. Other versions of COBOL might require an additional step. If you have been using a
version of COBOL that requires a link step, you need to link this program to stcrpt02.

For example, under VAX VMS enter the following:

LINK /EXE=STCMNT04 STCMNT04.OBJ STCRPT02.OBJ

This creates a program named STCMNT04.EXE by linking the two programs together. Consult your
manual for how to link with other versions of COBOL.

After you have created this program, run it and select 5 to print the file; you should get a copy of the
report produced by stcrpt02.cbl.

Creating Large Menus Using Calls
For the vendor file, you have several programs that could be added to the vendor maintenance menu.
Copy vnbynm01.cbl to vnbynm02.cbl. Change the PROGRAM-ID and then make the changes in
Listing 18.7 to include exit program logic. Compile the program so that it is ready to run.

TYPE: Listing 18.7. The changes for vnbynm02.cbl.

007600 PROCEDURE DIVISION.
007700 PROGRAM-BEGIN.
007800
007900 PERFORM OPENING-PROCEDURE.
008000 MOVE ZEROES TO LINE-COUNT
008100 PAGE-NUMBER.
008200
008300 PERFORM START-NEW-PAGE.
008400
008500 MOVE "N" TO FILE-AT-END.
008600 PERFORM READ-FIRST-RECORD.
008700 IF FILE-AT-END = "Y"
008800 MOVE "NO RECORDS FOUND" TO PRINTER-RECORD
008900 PERFORM WRITE-TO-PRINTER
009000 ELSE
009100 PERFORM PRINT-VENDOR-FIELDS
009200 UNTIL FILE-AT-END = "Y".
009300
009400 PERFORM CLOSING-PROCEDURE.
009500
009600 PROGRAM-EXIT.
009700 EXIT PROGRAM.
009800
009900 PROGRAM-DONE.
010000 STOP RUN.
010100

Listing 18.8 is created by copying vninnm02.cbl to vninnm03.cbl and making the needed
changes. Be sure to change the PROGRAM-ID.

TYPE: Listing 18.8. Changes for vninnm03.cbl.

003400 PROGRAM-BEGIN.
003500 PERFORM OPENING-PROCEDURE.
003600 PERFORM MAIN-PROCESS.
003700 PERFORM CLOSING-PROCEDURE.
003800
003900 PROGRAM-EXIT.
004000 EXIT PROGRAM.
004100
004200 PROGRAM-DONE.
004300 STOP RUN.

To modify vndrpt03.cbl, copy it to vndrpt04.cbl and make the changes shown in Listings 18.9
and 18.10. The vendor report program needs to be changed to use the new SELECT and FD for the
vendor file. Be sure to change the PROGRAM-ID. Compile the program so that it is ready to run.

TYPE: Listing 18.9. Fixing the SELECT and FD in vndrpt04.cbl.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. VNDRPT04.
000300*--------------------------------
000400* Report on the Vendor File.
000500*--------------------------------
000600 ENVIRONMENT DIVISION.
000700 INPUT-OUTPUT SECTION.
000800 FILE-CONTROL.
000900
001000 COPY "SLVND02.CBL".
001100
001200 COPY "SLSTATE.CBL".
001300
001400 SELECT PRINTER-FILE
001500 ASSIGN TO PRINTER
001600 ORGANIZATION IS LINE SEQUENTIAL.
001700
001800 DATA DIVISION.
001900 FILE SECTION.
002000
002100 COPY "FDVND04.CBL".
002200
002300 COPY "FDSTATE.CBL".
002400

TYPE: Listing 18.10. Adding the program exit logic in vndrpt04.cbl.

007500 PROCEDURE DIVISION.
007600 PROGRAM-BEGIN.
007700
007800 PERFORM OPENING-PROCEDURE.
007900 MOVE ZEROES TO LINE-COUNT
008000 PAGE-NUMBER.
008100
008200 PERFORM START-NEW-PAGE.
008300
008400 MOVE "N" TO FILE-AT-END.
008500 PERFORM READ-NEXT-RECORD.
008600 IF FILE-AT-END = "Y"
008700 MOVE "NO RECORDS FOUND" TO PRINTER-RECORD
008800 PERFORM WRITE-TO-PRINTER
008900 ELSE
009000 PERFORM PRINT-VENDOR-FIELDS
009100 UNTIL FILE-AT-END = "Y".
009200
009300 PERFORM CLOSING-PROCEDURE.
009400
009500 PROGRAM-EXIT.
009600 EXIT PROGRAM.
009700
009800 PROGRAM-DONE.
009900 STOP RUN.
010000

These new programs can be called now by another program, and you can create a vendor maintenance
program that gives the user any of these options.

Listing 18.11, vndmnt04.cbl, adds three more menu selections to the vendor maintenance menu.
Menu pick 5 allows a look up by name and calls VNINNM03, menu pick 6 prints the vendor report and
calls VNDRPT04, and menu pick 7 prints the vendor report by name and calls VNDBYNM02.

TYPE: Listing 18.11. Vendor maintenance with several options.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. VNDMNT04.
000300*--------------------------------
000400* Add, Change, Inquire and Delete
000500* for the Vendor File.
000600* Menu includes inquire by name,
000700* the vendor report, and the vendor
000800* report in name order.

000900*--------------------------------
001000 ENVIRONMENT DIVISION.
001100 INPUT-OUTPUT SECTION.
001200 FILE-CONTROL.
001300
001400 COPY "SLVND02.CBL".
001500
001600 COPY "SLSTATE.CBL".
001700
001800 DATA DIVISION.
001900 FILE SECTION.
002000
002100 COPY "FDVND04.CBL".
002200
002300 COPY "FDSTATE.CBL".
002400
002500 WORKING-STORAGE SECTION.
002600
002700 77 MENU-PICK PIC 9.
002800 88 MENU-PICK-IS-VALID VALUES 0 THRU 7.
002900
003000 77 THE-MODE PIC X(7).
003100 77 WHICH-FIELD PIC 9.
003200 77 OK-TO-DELETE PIC X.
003300 77 VENDOR-RECORD-FOUND PIC X.
003400 77 STATE-RECORD-FOUND PIC X.
003500
003600
003700 77 VENDOR-NUMBER-FIELD PIC Z(5).
003800
003900 77 ERROR-MESSAGE PIC X(79) VALUE SPACE.
004000
004100 COPY "WSCASE01.CBL".
004200
004300 PROCEDURE DIVISION.
004400 PROGRAM-BEGIN.
004500 PERFORM OPENING-PROCEDURE.
004600 PERFORM MAIN-PROCESS.
004700 PERFORM CLOSING-PROCEDURE.
004800
004900 PROGRAM-EXIT.
005000 EXIT PROGRAM.
005100
005200 PROGRAM-DONE.
005300 STOP RUN.
005400

005500 OPENING-PROCEDURE.
005600 OPEN I-O VENDOR-FILE.
005700 OPEN I-O STATE-FILE.
005800
005900 CLOSING-PROCEDURE.
006000 CLOSE VENDOR-FILE.
006100 CLOSE STATE-FILE.
006200
006300 MAIN-PROCESS.
006400 PERFORM GET-MENU-PICK.
006500 PERFORM MAINTAIN-THE-FILE
006600 UNTIL MENU-PICK = 0.
006700
006800*--------------------------------
006900* MENU
007000*--------------------------------
007100 GET-MENU-PICK.
007200 PERFORM DISPLAY-THE-MENU.
007300 PERFORM ACCEPT-MENU-PICK.
007400 PERFORM RE-ACCEPT-MENU-PICK
007500 UNTIL MENU-PICK-IS-VALID.
007600
007700 DISPLAY-THE-MENU.
007800 PERFORM CLEAR-SCREEN.
007900 DISPLAY " PLEASE SELECT:".
008000 DISPLAY " ".
008100 DISPLAY " 1. ADD RECORDS".
008200 DISPLAY " 2. CHANGE A RECORD".
008300 DISPLAY " 3. LOOK UP A RECORD".
008400 DISPLAY " 4. DELETE A RECORD".
008500 DISPLAY " 5. LOOK UP BY NAME".
008600 DISPLAY " 6. PRINT RECORDS".
008700 DISPLAY " 7. PRINT IN NAME ORDER".
008800 DISPLAY " ".
008900 DISPLAY " 0. EXIT".
009000 PERFORM SCROLL-LINE 8 TIMES.
009100
009200 ACCEPT-MENU-PICK.
009300 DISPLAY "YOUR CHOICE (0-7)?".
009400 ACCEPT MENU-PICK.
009500
009600 RE-ACCEPT-MENU-PICK.
009700 DISPLAY "INVALID SELECTION - PLEASE RE-TRY.".
009800 PERFORM ACCEPT-MENU-PICK.
009900
010000 CLEAR-SCREEN.

010100 PERFORM SCROLL-LINE 25 TIMES.
010200
010300 SCROLL-LINE.
010400 DISPLAY " ".
010500
010600 MAINTAIN-THE-FILE.
010700 PERFORM DO-THE-PICK.
010800 PERFORM GET-MENU-PICK.
010900
011000 DO-THE-PICK.
011100 IF MENU-PICK = 1
011200 PERFORM ADD-MODE
011300 ELSE
011400 IF MENU-PICK = 2
011500 PERFORM CHANGE-MODE
011600 ELSE
011700 IF MENU-PICK = 3
011800 PERFORM INQUIRE-MODE
011900 ELSE
012000 IF MENU-PICK = 4
012100 PERFORM DELETE-MODE
012200 ELSE
012300 IF MENU-PICK = 5
012400 PERFORM INQUIRE-BY-NAME
012500 ELSE
012600 IF MENU-PICK = 6
012700 PERFORM PRINT-VENDOR-REPORT
012800 ELSE
012900 IF MENU-PICK = 7
013000 PERFORM PRINT-BY-NAME.
013100
013200*--------------------------------
013300* ADD
013400*--------------------------------
013500 ADD-MODE.
013600 MOVE "ADD" TO THE-MODE.
013700 PERFORM GET-NEW-RECORD-KEY.
013800 PERFORM ADD-RECORDS
013900 UNTIL VENDOR-NUMBER = ZEROES.
014000
014100 GET-NEW-RECORD-KEY.
014200 PERFORM ACCEPT-NEW-RECORD-KEY.
014300 PERFORM RE-ACCEPT-NEW-RECORD-KEY
014400 UNTIL VENDOR-RECORD-FOUND = "N" OR
014500 VENDOR-NUMBER = ZEROES.
014600

014700 ACCEPT-NEW-RECORD-KEY.
014800 PERFORM INIT-VENDOR-RECORD.
014900 PERFORM ENTER-VENDOR-NUMBER.
015000 IF VENDOR-NUMBER NOT = ZEROES
015100 PERFORM READ-VENDOR-RECORD.
015200
015300 RE-ACCEPT-NEW-RECORD-KEY.
015400 DISPLAY "RECORD ALREADY ON FILE"
015500 PERFORM ACCEPT-NEW-RECORD-KEY.
015600
015700 ADD-RECORDS.
015800 PERFORM ENTER-REMAINING-FIELDS.
015900 PERFORM WRITE-VENDOR-RECORD.
016000 PERFORM GET-NEW-RECORD-KEY.
016100
016200 ENTER-REMAINING-FIELDS.
016300 PERFORM ENTER-VENDOR-NAME.
016400 PERFORM ENTER-VENDOR-ADDRESS-1.
016500 PERFORM ENTER-VENDOR-ADDRESS-2.
016600 PERFORM ENTER-VENDOR-CITY.
016700 PERFORM ENTER-VENDOR-STATE.
016800 PERFORM ENTER-VENDOR-ZIP.
016900 PERFORM ENTER-VENDOR-CONTACT.
017000 PERFORM ENTER-VENDOR-PHONE.
017100
017200*--------------------------------
017300* CHANGE
017400*--------------------------------
017500 CHANGE-MODE.
017600 MOVE "CHANGE" TO THE-MODE.
017700 PERFORM GET-EXISTING-RECORD.
017800 PERFORM CHANGE-RECORDS
017900 UNTIL VENDOR-NUMBER = ZEROES.
018000
018100 CHANGE-RECORDS.
018200 PERFORM GET-FIELD-TO-CHANGE.
018300 PERFORM CHANGE-ONE-FIELD
018400 UNTIL WHICH-FIELD = ZERO.
018500 PERFORM GET-EXISTING-RECORD.
018600
018700 GET-FIELD-TO-CHANGE.
018800 PERFORM DISPLAY-ALL-FIELDS.
018900 PERFORM ASK-WHICH-FIELD.
019000
019100 ASK-WHICH-FIELD.
019200 PERFORM ACCEPT-WHICH-FIELD.

019300 PERFORM RE-ACCEPT-WHICH-FIELD
019400 UNTIL WHICH-FIELD < 9.
019500
019600 ACCEPT-WHICH-FIELD.
019700 DISPLAY "ENTER THE NUMBER OF THE FIELD".
019800 DISPLAY "TO CHANGE (1-8) OR 0 TO EXIT".
019900 ACCEPT WHICH-FIELD.
020000
020100 RE-ACCEPT-WHICH-FIELD.
020200 DISPLAY "INVALID ENTRY".
020300 PERFORM ACCEPT-WHICH-FIELD.
020400
020500 CHANGE-ONE-FIELD.
020600 PERFORM CHANGE-THIS-FIELD.
020700 PERFORM GET-FIELD-TO-CHANGE.
020800
020900 CHANGE-THIS-FIELD.
021000 IF WHICH-FIELD = 1
021100 PERFORM ENTER-VENDOR-NAME.
021200 IF WHICH-FIELD = 2
021300 PERFORM ENTER-VENDOR-ADDRESS-1.
021400 IF WHICH-FIELD = 3
021500 PERFORM ENTER-VENDOR-ADDRESS-2.
021600 IF WHICH-FIELD = 4
021700 PERFORM ENTER-VENDOR-CITY.
021800 IF WHICH-FIELD = 5
021900 PERFORM ENTER-VENDOR-STATE.
022000 IF WHICH-FIELD = 6
022100 PERFORM ENTER-VENDOR-ZIP.
022200 IF WHICH-FIELD = 7
022300 PERFORM ENTER-VENDOR-CONTACT.
022400 IF WHICH-FIELD = 8
022500 PERFORM ENTER-VENDOR-PHONE.
022600
022700 PERFORM REWRITE-VENDOR-RECORD.
022800
022900*--------------------------------
023000* INQUIRE
023100*--------------------------------
023200 INQUIRE-MODE.
023300 MOVE "DISPLAY" TO THE-MODE.
023400 PERFORM GET-EXISTING-RECORD.
023500 PERFORM INQUIRE-RECORDS
023600 UNTIL VENDOR-NUMBER = ZEROES.
023700
023800 INQUIRE-RECORDS.

023900 PERFORM DISPLAY-ALL-FIELDS.
024000 PERFORM GET-EXISTING-RECORD.
024100
024200*--------------------------------
024300* DELETE
024400*--------------------------------
024500 DELETE-MODE.
024600 MOVE "DELETE" TO THE-MODE.
024700 PERFORM GET-EXISTING-RECORD.
024800 PERFORM DELETE-RECORDS
024900 UNTIL VENDOR-NUMBER = ZEROES.
025000
025100 DELETE-RECORDS.
025200 PERFORM DISPLAY-ALL-FIELDS.
025300
025400 PERFORM ASK-OK-TO-DELETE.
025500
025600 IF OK-TO-DELETE = "Y"
025700 PERFORM DELETE-VENDOR-RECORD.
025800
025900 PERFORM GET-EXISTING-RECORD.
026000
026100 ASK-OK-TO-DELETE.
026200 PERFORM ACCEPT-OK-TO-DELETE.
026300
026400 PERFORM RE-ACCEPT-OK-TO-DELETE
026500 UNTIL OK-TO-DELETE = "Y" OR "N".
026600
026700 ACCEPT-OK-TO-DELETE.
026800 DISPLAY "DELETE THIS RECORD (Y/N)?".
026900 ACCEPT OK-TO-DELETE.
027000 INSPECT OK-TO-DELETE
027100 CONVERTING LOWER-ALPHA TO UPPER-ALPHA.
027200
027300 RE-ACCEPT-OK-TO-DELETE.
027400 DISPLAY "YOU MUST ENTER YES OR NO".
027500 PERFORM ACCEPT-OK-TO-DELETE.
027600
027700*--------------------------------
027800* Routines shared by all modes
027900*--------------------------------
028000 INIT-VENDOR-RECORD.
028100 MOVE SPACE TO VENDOR-RECORD.
028200 MOVE ZEROES TO VENDOR-NUMBER.
028300
028400 ENTER-VENDOR-NUMBER.

028500 DISPLAY " ".
028600 DISPLAY "ENTER VENDOR NUMBER OF THE VENDOR" .
028700 DISPLAY "TO " THE-MODE " (1-99999)".
028800 DISPLAY "ENTER 0 TO STOP ENTRY".
028900 ACCEPT VENDOR-NUMBER-FIELD.
029000*OR ACCEPT VENDOR-NUMBER-FIELD WITH CONVERSION.
029100
029200 MOVE VENDOR-NUMBER-FIELD TO VENDOR-NUMBER.
029300
029400*--------------------------------
029500* INQUIRE BY NAME
029600*--------------------------------
029700 INQUIRE-BY-NAME.
029800 PERFORM CLOSING-PROCEDURE.
029900 CALL "VNINNM03".
030000 PERFORM OPENING-PROCEDURE.
030100
030200*--------------------------------
030300* PRINT
030400*--------------------------------
030500 PRINT-VENDOR-REPORT.
030600 PERFORM CLOSING-PROCEDURE.
030700 DISPLAY "VENDOR REPORT IN PROGRESS".
030800 CALL "VNDRPT04".
030900 PERFORM OPENING-PROCEDURE.
031000
031100*--------------------------------
031200* PRINT BY NAME
031300*--------------------------------
031400 PRINT-BY-NAME.
031500 PERFORM CLOSING-PROCEDURE.
031600 DISPLAY " REPORT BY NAME IN PROGRESS".
031700 CALL "VNBYNM02".
031800 PERFORM OPENING-PROCEDURE.
031900
032000*--------------------------------
032100* Routines shared Add and Change
032200*--------------------------------
032300 ENTER-VENDOR-NAME.
032400 PERFORM ACCEPT-VENDOR-NAME.
032500 PERFORM RE-ACCEPT-VENDOR-NAME
032600 UNTIL VENDOR-NAME NOT = SPACE.
032700
032800 ACCEPT-VENDOR-NAME.
032900 DISPLAY "ENTER VENDOR NAME".
033000 ACCEPT VENDOR-NAME.

033100 INSPECT VENDOR-NAME
033200 CONVERTING LOWER-ALPHA
033300 TO UPPER-ALPHA.
033400
033500 RE-ACCEPT-VENDOR-NAME.
033600 DISPLAY "VENDOR NAME MUST BE ENTERED".
033700 PERFORM ACCEPT-VENDOR-NAME.
033800
033900 ENTER-VENDOR-ADDRESS-1.
034000 PERFORM ACCEPT-VENDOR-ADDRESS-1.
034100 PERFORM RE-ACCEPT-VENDOR-ADDRESS-1
034200 UNTIL VENDOR-ADDRESS-1 NOT = SPACE.
034300
034400 ACCEPT-VENDOR-ADDRESS-1.
034500 DISPLAY "ENTER VENDOR ADDRESS-1".
034600 ACCEPT VENDOR-ADDRESS-1.
034700 INSPECT VENDOR-ADDRESS-1
034800 CONVERTING LOWER-ALPHA
034900 TO UPPER-ALPHA.
035000
035100 RE-ACCEPT-VENDOR-ADDRESS-1.
035200 DISPLAY "VENDOR ADDRESS-1 MUST BE ENTERED".
035300 PERFORM ACCEPT-VENDOR-ADDRESS-1.
035400
035500 ENTER-VENDOR-ADDRESS-2.
035600 DISPLAY "ENTER VENDOR ADDRESS-2".
035700 ACCEPT VENDOR-ADDRESS-2.
035800 INSPECT VENDOR-ADDRESS-2
035900 CONVERTING LOWER-ALPHA
036000 TO UPPER-ALPHA.
036100
036200 ENTER-VENDOR-CITY.
036300 PERFORM ACCEPT-VENDOR-CITY.
036400 PERFORM RE-ACCEPT-VENDOR-CITY
036500 UNTIL VENDOR-CITY NOT = SPACE.
036600
036700 ACCEPT-VENDOR-CITY.
036800 DISPLAY "ENTER VENDOR CITY".
036900 ACCEPT VENDOR-CITY.
037000 INSPECT VENDOR-CITY
037100 CONVERTING LOWER-ALPHA
037200 TO UPPER-ALPHA.
037300
037400 RE-ACCEPT-VENDOR-CITY.
037500 DISPLAY "VENDOR CITY MUST BE ENTERED".
037600 PERFORM ACCEPT-VENDOR-CITY.

037700
037800 ENTER-VENDOR-STATE.
037900 PERFORM ACCEPT-VENDOR-STATE.
038000 PERFORM RE-ACCEPT-VENDOR-STATE
038100 UNTIL VENDOR-STATE NOT = SPACES AND
038200 STATE-RECORD-FOUND = "Y".
038300
038400 ACCEPT-VENDOR-STATE.
038500 DISPLAY "ENTER VENDOR STATE".
038600 ACCEPT VENDOR-STATE.
038700 PERFORM EDIT-CHECK-VENDOR-STATE.
038800
038900 RE-ACCEPT-VENDOR-STATE.
039000 DISPLAY ERROR-MESSAGE.
039100 PERFORM ACCEPT-VENDOR-STATE.
039200
039300 EDIT-CHECK-VENDOR-STATE.
039400 PERFORM EDIT-VENDOR-STATE.
039500 PERFORM CHECK-VENDOR-STATE.
039600
039700 EDIT-VENDOR-STATE.
039800 INSPECT VENDOR-STATE
039900 CONVERTING LOWER-ALPHA
040000 TO UPPER-ALPHA.
040100
040200 CHECK-VENDOR-STATE.
040300 PERFORM VENDOR-STATE-REQUIRED.
040400 IF VENDOR-STATE NOT = SPACES
040500 PERFORM VENDOR-STATE-ON-FILE.
040600
040700 VENDOR-STATE-REQUIRED.
040800 IF VENDOR-STATE = SPACE
040900 MOVE "VENDOR STATE MUST BE ENTERED"
041000 TO ERROR-MESSAGE.
041100
041200 VENDOR-STATE-ON-FILE.
041300 MOVE VENDOR-STATE TO STATE-CODE.
041400 PERFORM READ-STATE-RECORD.
041500 IF STATE-RECORD-FOUND = "N"
041600 MOVE "STATE CODE NOT FOUND IN CODES FILE"
041700 TO ERROR-MESSAGE.
041800
041900 ENTER-VENDOR-ZIP.
042000 PERFORM ACCEPT-VENDOR-ZIP.
042100 PERFORM RE-ACCEPT-VENDOR-ZIP
042200 UNTIL VENDOR-ZIP NOT = SPACE.

042300
042400 ACCEPT-VENDOR-ZIP.
042500 DISPLAY "ENTER VENDOR ZIP".
042600 ACCEPT VENDOR-ZIP.
042700 INSPECT VENDOR-ZIP
042800 CONVERTING LOWER-ALPHA
042900 TO UPPER-ALPHA.
043000
043100 RE-ACCEPT-VENDOR-ZIP.
043200 DISPLAY "VENDOR ZIP MUST BE ENTERED".
043300 PERFORM ACCEPT-VENDOR-ZIP.
043400
043500 ENTER-VENDOR-CONTACT.
043600 DISPLAY "ENTER VENDOR CONTACT".
043700 ACCEPT VENDOR-CONTACT.
043800 INSPECT VENDOR-CONTACT
043900 CONVERTING LOWER-ALPHA
044000 TO UPPER-ALPHA.
044100
044200 ENTER-VENDOR-PHONE.
044300 PERFORM ACCEPT-VENDOR-PHONE.
044400 PERFORM RE-ACCEPT-VENDOR-PHONE
044500 UNTIL VENDOR-PHONE NOT = SPACE.
044600
044700 ACCEPT-VENDOR-PHONE.
044800 DISPLAY "ENTER VENDOR PHONE".
044900 ACCEPT VENDOR-PHONE.
045000 INSPECT VENDOR-PHONE
045100 CONVERTING LOWER-ALPHA
045200 TO UPPER-ALPHA.
045300
045400 RE-ACCEPT-VENDOR-PHONE.
045500 DISPLAY "VENDOR PHONE MUST BE ENTERED".
045600 PERFORM ACCEPT-VENDOR-PHONE.
045700
045800*--------------------------------
045900* Routines shared by Change,
046000* Inquire and Delete
046100*--------------------------------
046200 GET-EXISTING-RECORD.
046300 PERFORM ACCEPT-EXISTING-KEY.
046400 PERFORM RE-ACCEPT-EXISTING-KEY
046500 UNTIL VENDOR-RECORD-FOUND = "Y" OR
046600 VENDOR-NUMBER = ZEROES.
046700
046800 ACCEPT-EXISTING-KEY.

046900 PERFORM INIT-VENDOR-RECORD.
047000 PERFORM ENTER-VENDOR-NUMBER.
047100 IF VENDOR-NUMBER NOT = ZEROES
047200 PERFORM READ-VENDOR-RECORD.
047300
047400 RE-ACCEPT-EXISTING-KEY.
047500 DISPLAY "RECORD NOT FOUND"
047600 PERFORM ACCEPT-EXISTING-KEY.
047700
047800 DISPLAY-ALL-FIELDS.
047900 DISPLAY " ".
048000 PERFORM DISPLAY-VENDOR-NUMBER.
048100 PERFORM DISPLAY-VENDOR-NAME.
048200 PERFORM DISPLAY-VENDOR-ADDRESS-1.
048300 PERFORM DISPLAY-VENDOR-ADDRESS-2.
048400 PERFORM DISPLAY-VENDOR-CITY.
048500 PERFORM DISPLAY-VENDOR-STATE.
048600 PERFORM DISPLAY-VENDOR-ZIP.
048700 PERFORM DISPLAY-VENDOR-CONTACT.
048800 PERFORM DISPLAY-VENDOR-PHONE.
048900 DISPLAY " ".
049000
049100 DISPLAY-VENDOR-NUMBER.
049200 DISPLAY " VENDOR NUMBER: " VENDOR-NUMBER.
049300
049400 DISPLAY-VENDOR-NAME.
049500 DISPLAY "1. VENDOR NAME: " VENDOR-NAME.
049600
049700 DISPLAY-VENDOR-ADDRESS-1.
049800 DISPLAY "2. VENDOR ADDRESS-1: " VENDOR-ADDRESS-1.
049900
050000 DISPLAY-VENDOR-ADDRESS-2.
050100 DISPLAY "3. VENDOR ADDRESS-2: " VENDOR-ADDRESS-2.
050200
050300 DISPLAY-VENDOR-CITY.
050400 DISPLAY "4. VENDOR CITY: " VENDOR-CITY.
050500
050600 DISPLAY-VENDOR-STATE.
050700 PERFORM VENDOR-STATE-ON-FILE.
050800 IF STATE-RECORD-FOUND = "N"
050900 MOVE "**Not found**" TO STATE-NAME.
051000 DISPLAY "5. VENDOR STATE: "
051100 VENDOR-STATE " "
051200 STATE-NAME.
051300
051400 DISPLAY-VENDOR-ZIP.

051500 DISPLAY "6. VENDOR ZIP: " VENDOR-ZIP.
051600
051700 DISPLAY-VENDOR-CONTACT.
051800 DISPLAY "7. VENDOR CONTACT: " VENDOR-CONTACT.
051900
052000 DISPLAY-VENDOR-PHONE.
052100 DISPLAY "8. VENDOR PHONE: " VENDOR-PHONE.
052200
052300*--------------------------------
052400* File I-O Routines
052500*--------------------------------
052600 READ-VENDOR-RECORD.
052700 MOVE "Y" TO VENDOR-RECORD-FOUND.
052800 READ VENDOR-FILE RECORD
052900 INVALID KEY
053000 MOVE "N" TO VENDOR-RECORD-FOUND.
053100
053200*or READ VENDOR-FILE RECORD WITH LOCK
053300* INVALID KEY
053400* MOVE "N" TO VENDOR-RECORD-FOUND.
053500
053600*or READ VENDOR-FILE RECORD WITH HOLD
053700* INVALID KEY
053800* MOVE "N" TO VENDOR-RECORD-FOUND.
053900
054000 WRITE-VENDOR-RECORD.
054100 WRITE VENDOR-RECORD
054200 INVALID KEY
054300 DISPLAY "RECORD ALREADY ON FILE".
054400
054500 REWRITE-VENDOR-RECORD.
054600 REWRITE VENDOR-RECORD
054700 INVALID KEY
054800 DISPLAY "ERROR REWRITING VENDOR RECORD".
054900
055000 DELETE-VENDOR-RECORD.
055100 DELETE VENDOR-FILE RECORD
055200 INVALID KEY
055300 DISPLAY "ERROR DELETING VENDOR RECORD".
055400
055500 READ-STATE-RECORD.
055600 MOVE "Y" TO STATE-RECORD-FOUND.
055700 READ STATE-FILE RECORD
055800 INVALID KEY
055900 MOVE "N" TO STATE-RECORD-FOUND.
056000

The output of vndmnt04.cbl includes a full menu with several options:

OUTPUT:
 PLEASE SELECT:

 1. ADD RECORDS
 2. CHANGE A RECORD
 3. LOOK UP A RECORD
 4. DELETE A RECORD
 5. LOOK UP BY NAME
 6. PRINT RECORDS
 7. PRINT IN NAME ORDER

 0. EXIT

YOUR CHOICE (0-7)?

ANALYSIS: The calling routines are at lines 029400 through 031800, and they each use the method
of closing the open files by performing CLOSING-PROCEDURE before calling their respective
programs, and then calling OPENING-PROCEDURE on return. This is a handy way of closing all open
files and reopening them on the way back.

Code and compile (and link if necessary) vndmnt04.cbl, and you will have a complete menu of the
vendor file options.

Menu Programs
Menu programs that call other programs are even easier to write. Because a menu program probably has
no files open, there is no closing of files involved.

Listing 18.12 is bilmnu01.cbl. This will become the main menu for the bills processing system.

TYPE: Listing 18.12. Main menu for the bills processing system.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. BILMNU01.
000300*--------------------------------
000400* Menu for the bill payment system.
000500*--------------------------------
000600 ENVIRONMENT DIVISION.
000700 INPUT-OUTPUT SECTION.
000800 FILE-CONTROL.
000900
001000 DATA DIVISION.
001100 FILE SECTION.
001200

001300 WORKING-STORAGE SECTION.
001400
001500 77 MENU-PICK PIC 9.
001600 88 MENU-PICK-IS-VALID VALUES 0 THRU 2.
001700
001800 PROCEDURE DIVISION.
001900 PROGRAM-BEGIN.
002000 PERFORM OPENING-PROCEDURE.
002100 PERFORM MAIN-PROCESS.
002200 PERFORM CLOSING-PROCEDURE.
002300
002400 PROGRAM-EXIT.
002500 EXIT PROGRAM.
002600
002700 PROGRAM-DONE.
002800 STOP RUN.
002900
003000 OPENING-PROCEDURE.
003100
003200 CLOSING-PROCEDURE.
003300
003400 MAIN-PROCESS.
003500 PERFORM GET-MENU-PICK.
003600 PERFORM DO-THE-PICK
003700 UNTIL MENU-PICK = 0.
003800
003900*--------------------------------
004000* MENU
004100*--------------------------------
004200 GET-MENU-PICK.
004300 PERFORM DISPLAY-THE-MENU.
004400 PERFORM ACCEPT-MENU-PICK.
004500 PERFORM RE-ACCEPT-MENU-PICK
004600 UNTIL MENU-PICK-IS-VALID.
004700
004800 DISPLAY-THE-MENU.
004900 PERFORM CLEAR-SCREEN.
005000 DISPLAY " PLEASE SELECT:".
005100 DISPLAY " ".
005200 DISPLAY " 1. STATE CODE MAINTENANCE".
005300 DISPLAY " 2. VENDOR MAINTENANCE".
005400 DISPLAY " ".
005500 DISPLAY " 0. EXIT".
005600 PERFORM SCROLL-LINE 8 TIMES.
005700
005800 ACCEPT-MENU-PICK.

005900 DISPLAY "YOUR CHOICE (0-2)?".
006000 ACCEPT MENU-PICK.
006100
006200 RE-ACCEPT-MENU-PICK.
006300 DISPLAY "INVALID SELECTION - PLEASE RE-TRY.".
006400 PERFORM ACCEPT-MENU-PICK.
006500
006600 CLEAR-SCREEN.
006700 PERFORM SCROLL-LINE 25 TIMES.
006800
006900 SCROLL-LINE.
007000 DISPLAY " ".
007100
007200 DO-THE-PICK.
007300 IF MENU-PICK = 1
007400 PERFORM STATE-MAINTENANCE
007500 ELSE
007600 IF MENU-PICK = 2
007700 PERFORM VENDOR-MAINTENANCE.
007800
007900 PERFORM GET-MENU-PICK.
008000
008100*--------------------------------
008200* STATE
008300*--------------------------------
008400 STATE-MAINTENANCE.
008500 CALL "STCMNT04".
008600
008700*--------------------------------
008800* VENDOR
008900*--------------------------------
009000 VENDOR-MAINTENANCE.
009100 CALL "VNDMNT04".
009200

The output of bilmnu01.cbl and the programs that it calls shows the user selecting menu options and
descending into lower programs, and then exiting back to the top level:

OUTPUT:
 PLEASE SELECT:

 1. STATE CODE MAINTENANCE
 2. VENDOR MAINTENANCE

 0. EXIT

YOUR CHOICE (0-2)?
2
 PLEASE SELECT:

 1. ADD RECORDS
 2. CHANGE A RECORD
 3. LOOK UP A RECORD
 4. DELETE A RECORD
 5. LOOK UP BY NAME
 6. PRINT RECORDS
 7. PRINT IN NAME ORDER
 0. EXIT

YOUR CHOICE (0-7)?
5
ENTER VENDOR NAME
abc
VENDOR NUMBER: 00002
1. VENDOR NAME: ABC PRINTING
2. VENDOR ADDRESS-1: 1624 FOOTHILL BLVD
3. VENDOR ADDRESS-2: SUITE 34
4. VENDOR CITY: LOS ANGELES
5. VENDOR STATE: CA CALIFORNIA
6. VENDOR ZIP: 91042
7. VENDOR CONTACT: CHARLES JOHANSSEN
8. VENDOR PHONE: (818) 555-4321
DISPLAY NEXT RECORD (Y/N)?
n
ENTER VENDOR NAME

(The user presses Enter here.)

 PLEASE SELECT:

 1. ADD RECORDS
 2. CHANGE A RECORD
 3. LOOK UP A RECORD
 4. DELETE A RECORD
 5. LOOK UP BY NAME
 6. PRINT RECORDS
 7. PRINT IN NAME ORDER
 0. EXIT

YOUR CHOICE (0-7)?
0
 PLEASE SELECT:
 1. STATE CODE MAINTENANCE

 2. VENDOR MAINTENANCE
 0. EXIT

YOUR CHOICE (0-2)?
0
C>

ANALYSIS: You should recognize quickly that bilmnu01.cbl displays a menu and then calls an
appropriate program based on the pick. Code and compile (and link if necessary) bilmnu01.cbl. Run
the program and you should be able to select a menu option, descend to a lower-level menu such as
vendor maintenance, execute an option from that menu, and return up the menu tree to this top menu.

One point worth noting is the difference in the manner of exiting from menus and maintenance programs.
The menus all use zeroes to exit the current menu and return to the previous menu or exit the entire
program. Vendor Maintenance exits when the user enters 0, but State Code Maintenance exits when the
user enters ZZ. In practice, it is much better to keep a common style to all the programs in a system so
that a common exit method is used. In Listing 18.6, stcmnt04.cbl, changing the exit message and
the code that causes an exit to 0 would improve the overall interface so that the user could become
familiar with the idea that 0 always means exit. The sample changes are as follows:

025600 ACCEPT-STATE-CODE.
025700 DISPLAY " ".
025800 DISPLAY "ENTER STATE CODE OF THE STATE" .
025900 DISPLAY "TO " THE-MODE
026000 "(2 UPPER CASE CHARACTERS)".
026100 DISPLAY "or ENTER 0 TO STOP ENTRY".
026200 ACCEPT STATE-CODE.
026300
. . . .
. . . .
027200 GET-STATE-RECORD.
027300 PERFORM INIT-STATE-RECORD.
027400 PERFORM ENTER-STATE-CODE.
027500 MOVE "N" TO RECORD-FOUND.
027600 PERFORM FIND-STATE-RECORD
027700 UNTIL RECORD-FOUND = "Y" OR
027800 STATE-CODE = "0".
027900

Summary
In practice, a system is built of many programs that work in concert. In order to get these programs to
work together for the user, you need to provide a menu with all the programs available as choices.
Today, you learned the following basics:

CALL can be used to execute one COBOL program from within another.●

CALL works as if it were a PERFORM that performs a whole program.●

STOP RUN stops all COBOL programs that you currently are running even if it is executed in a
called program.

●

Use EXIT PROGRAM combined with STOP RUN at the end of all programs and you will have a
general-purpose end-of-program logic that works whether the program is a called or calling
program.

●

Q&A
Q Can any program be executed by using a CALL?

A This is limited by the amount of memory that you have available. There may be other
limitations on this based on your COBOL version. For example, the program being called must be
a COBOL program, or it must have been compiled with the same COBOL compiler.

Q Can a called program make a CALL to the calling program? In other words, if PROGRAMA
calls PROGRAMB, can PROGRAMB call PROGRAMA?

A No. A called program cannot call the parent program that called it, nor any other program above
it. If PROGRAMA calls PROGRAMB, and PROGRAMB in turn calls PROGRAMC, PROGRAMC may
not call either PROGRAMA or PROGRAMB. The compiler will allow you to do this, but the
programs will not run correctly, and you will start to get unpredictable results.

Q Can a called program use variables defined in a calling program or vice versa?

A The short answer is no. The variables in the called and calling program are completely isolated
from one another, and may even use identical data names without causing a naming conflict. There
is a way for some variables in a calling program to be available to a called program. This is
covered in Bonus Day 2, "Miscellaneous COBOL Syntax."

Workshop

Quiz

1. When one program calls another program, which of the following happens to the calling
program?

a. It continues executing.

b. It remains in memory, but waits for the calling program to complete.

c. It drops out of memory and disappears.

2. In a called program, which of the following commands causes the called program to finish
execution and return control to the calling program?

a. EXIT PROGRAM

b. STOP RUN

c. END PERFORM

Exercises

1. Locate vnddsp02.cbl, which you created as an exercise for Day 13, "Deleting Records and
Other Indexed File Operations." Copy it to vnddsp03.cbl, modify it to use the new SELECT
and FD for the vendor file, and add program exit logic to it. Don't forget to change the
PROGRAM-ID. Compile the program so that it is ready to run.

2. Copy vndmnt04.cbl to vndmnt05.cbl. Add a menu pick to display all records, and have
that pick call the new vnddsp03.cbl. Compile the new vndmnt05.cbl and, if necessary,
link it.

3. Run vndmnt05 and select the new menu pick. You probably will find a bug in the way it
displays. The last screen of the vendor list is displayed and then disappears to be replaced by the
menu as in the following sample output. There should be a pause where noted in the display, but
instead, the last page scrolls off the screen and the menu is immediately displayed:

 PLEASE SELECT:

 1. ADD RECORDS
 2. CHANGE A RECORD
 3. LOOK UP A RECORD
 4. DELETE A RECORD
 5. LOOK UP BY NAME
 6. PRINT RECORDS
 7. PRINT IN NAME ORDER
 8. DISPLAY ALL RECORDS

 0. EXIT

YOUR CHOICE (0-8)?
8
VENDOR LIST PAGE: 1
NO NAME-ADDRESS CONTACT-PHONE-ZIP
00001 AERIAL SIGNS HENRIETTA MARKSON
BURBANK AIRPORT (818) 555-6066
HANGAR 305
BURBANK CA 90016

00002 ABC PRINTING CHARLES JOHANSSEN
1624 FOOTHILL BLVD (818) 555-4321
SUITE 34
LOS ANGELES CA 91042
00003 CHARLES SMITH AND SONS MARTHA HARRISON
1435 SOUTH STREET (213) 555-4432
LOS ANGELES CA 90064
PRESS ENTER TO CONTINUE. . .
VENDOR LIST PAGE: 2
NO NAME-ADDRESS CONTACT-PHONE-ZIP
00005 ALIAS SMITH AND JONES ROBIN COUSINS
1216 MAIN STREET 415 555-9203
PALO ALTO CA 90061
00014 RANIER GRAPHICS JULIA SIMPSON
4433 WASHINGTON ST (213) 555-6789
LOS ANGELES CA 90032
00022 ARTFUL DODGER
123 UNDERWOOD LANE 202 555-1234
MARKHAM WA 40466
PRESS ENTER TO CONTINUE. . .
VENDOR LIST PAGE: 3
NO NAME-ADDRESS CONTACT-PHONE-ZIP
00067 ABC PRINTING HARRIET NELSON
1606 SOUTH 7TH (815) 555-2020
POMONA CA 90404
01176 ABERCROMBIE AND OTHERS
1234 45TH ST. (213) 555-6543
SUITE 17
LOS ANGELES CA 92345
01440 ZINZINDORFF INC.
1604 7TH ST (213) 555-7234
LOS ANGELES CA 90404

(The display should pause at this point and wait for the user to press Enter.)

 PLEASE SELECT:

 1. ADD RECORDS
 2. CHANGE A RECORD
 3. LOOK UP A RECORD
 4. DELETE A RECORD
 5. LOOK UP BY NAME
 6. PRINT RECORDS
 7. PRINT IN NAME ORDER
 8. DISPLAY ALL RECORDS

 0. EXIT

YOUR CHOICE (0-8)?

The assignment in this exercise is to add a Press ENTER message to vndmnt05.cbl that is
executed immediately after the return from vnddsp03.cbl.

4. Copy bilmnu01.cbl to bilmnu02.cbl, and modify it to call vndmnt05 instead of
vndmnt04. Be sure to change the PROGRAM-ID.

Previous chapter Next chapter Contents

Macmillan Computer Publishing USA

© Copyright, Macmillan Computer Publishing. All rights reserved.

Teach Yourself COBOL in 21 days,
Second Edition

Previous chapter Next chapter Contents

- Day 19 -
Complex Data Entry Problems

Data entry frequently is more complicated than the maintenance program examples that you have
explored so far. Validations might be more complicated, data fields such as dates frequently cause
problems, and some maintenance modules don't use all of the modes (add, change, inquire, and delete).
Today, you explore the following topics:

What is a control file?●

Creating a control file.●

Maintaining a control file.●

Multiple maintenance programs.●

Designing the bills payment system.●

Creating the voucher file.●

Handling date display.●

Handling date entry.●

What is a redefined variable?●

Handling date validation.●

Flexible date handling.●

What Is a Control File?
In any large system, there are basic values that have to be tracked in various programs within the system:

A payroll system has an employee file, allows time and work entries, and prints payroll checks. A
program to add employees to the system might have to keep track of the last employee number
used. When an employee is added to the system, the add mode might extract the last employee
number and automatically assign the next number to the new employee.

●

There has to be some value that the data entry program uses as the number of hours an employee
can work before his pay goes into overtime rates.

●

During check-printing, a program has to keep track of the last check number used, and it might
have to look up the account number to be used for payroll checks. Whenever checks are printed,
the last check number should be extracted and checks start printing from the next check number.
The payroll checking account number also should be extracted and printed on each check. At the
end of the print run, the last check number used should be updated with the number used at the end
of the print run.

●

This type of information usually is stored in a file called a control file. A control file frequently contains
a single record. This single record contains fields that hold all the information required for the system.
Listing 19.1 is an example of an FD for a payroll system control file containing some of the fields
described in the preceding paragraph.

TYPE: Listing 19.1. A payroll control file FD.

001000 FD PAYROLL-CONTROL-FILE
001100 LABEL RECORDS ARE STANDARD.
001200 01 PAYROLL-CONTROL-RECORD.
001300 05 PAYROLL-CONTROL-KEY PIC 9.
001400 05 PAYROLL-CONTROL-LAST-EMPLOYEE PIC 9(5).
001500 05 PAYROLL-CONTROL-OVERTIME-HOURS PIC 99V99.
001600 05 PAYROLL-CONTROL-LAST-CHECK PIC 9(6).
001700 05 PAYROLL-CONTROL-CHECK-ACCOUNT PIC X(15).

ANALYSIS: The payroll control file is an indexed file containing only one record. The key to the record
always is 1. Any program that needs information from the control file would open the file, move 1 to the
key, and read the record. The record could be updated by rewriting it.

It might seem odd to use an indexed file to store a single record, but there are reasons that an indexed file
is used. Indexed files are easier to REWRITE. Because control files frequently contain information that
is updated, such as last check number, they are updated in one or more programs. Indexed files also are
easier to share. In a large system, one user might be adding an employee, two others entering data for
hours worked, and yet another printing checks. All these programs need to share the control file, even
though each is using only one part of it.

The control file that is used in the bill payment system also is an indexed file. It contains a key that
always is 1 and a single field, CONTROL-LAST-VOUCHER.

New Term: In a bills paying system, each new invoice that is received for payment is assigned a
tracking number. This tracking number is the key to the voucher file, or bills file, and the number usually
is called a voucher number.

This control file is used to assign voucher numbers automatically whenever a new invoice is added to the
system. Listings 19.2 is the COPY file slcontrl.cbl and contains the SELECT for this control file.

TYPE: Listing 19.2. The SELECT statement for a control file.

000100*--------------------------------
000200* SLCONTRL.CBL
000300*--------------------------------
000400 SELECT CONTROL-FILE
000500 ASSIGN TO "CONTROL"
000600 ORGANIZATION IS INDEXED
000700 RECORD KEY IS CONTROL-KEY
000800 ACCESS MODE IS DYNAMIC.
000900

Listing 19.3 is the COPY file fdcontrl.cbl and contains the FD for this control file.

TYPE: Listing 19.3. The FD for a control file.

000100*--------------------------------
000200* FDCONTRL.CBL
000300* Primary Key - CONTROL-KEY
000400* LAST-VOUCHER is used
000500* to track the last
000600* used voucher number.
000700* This is a single record file
000800* CONTROL-KEY always = 1.
000900*--------------------------------
001000 FD CONTROL-FILE
001100 LABEL RECORDS ARE STANDARD.
001200 01 CONTROL-RECORD.
001300 05 CONTROL-KEY PIC 9.
001400 05 CONTROL-LAST-VOUCHER PIC 9(5).
001500

Creating a Control File
Creating a new control file for a system is slightly different from creating another file in the system. A
control file of the type that is used for the bills payment system is always expected to have that single
record in it.

Listing 19.4 is similar to other build programs, but at lines 002400 through 002600, it loads and writes a
single record to the file. This record contains a last voucher number of zeroes.

TYPE: Listing 19.4. Creating a control file with an initial record.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. CTLBLD01.
000300*--------------------------------
000400* Create a Control file for the
000500* bills payment system and write
000600* the initial record.
000700*--------------------------------
000800 ENVIRONMENT DIVISION.
000900 INPUT-OUTPUT SECTION.
001000 FILE-CONTROL.
001100
001200 COPY "SLCONTRL.CBL".
001300
001400 DATA DIVISION.
001500 FILE SECTION.
001600
001700 COPY "FDCONTRL.CBL".
001800
001900 WORKING-STORAGE SECTION.
002000
002100 PROCEDURE DIVISION.
002200 PROGRAM-BEGIN.
002300 OPEN OUTPUT CONTROL-FILE.
002400 MOVE 1 TO CONTROL-KEY.
002500 MOVE ZEROES TO CONTROL-LAST-VOUCHER.
002600 WRITE CONTROL-RECORD.
002700 CLOSE CONTROL-FILE.
002800
002900 PROGRAM-EXIT.
003000 EXIT PROGRAM.
003100
003200 PROGRAM-DONE.
003300 STOP RUN.
003400

Code Listing 19.2 and Listing 19.3 to create the SELECT and FD for the control file. Then code,
compile, and run ctlbld01.cbl to create the new control file with its single record.

Maintaining a Control File
Basically, maintaining a control file requires only the change and inquire modes from a standard
maintenance module. You never want to add records, and you certainly never want to delete the record,
so only the change and inquire options are left.

DO/DON'T:
DO allow a user, or more likely a system administrator, to look up information in the
control file, and make it possible to change the information.

DON'T allow anyone to delete the control record from the control file. Don't provide delete
mode in the maintenance program.

Listing 19.5 is a maintenance program for the control file. It uses only change and inquire mode, which
gives a user the ability of looking up the control information or changing the control information. The
control record cannot be deleted, nor can a new record be added.

TYPE: Listing 19.5. Maintaining a control file using change and inquire mode only.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. CTLMNT01.
000300*--------------------------------
000400* Change and Inquire only
000500* for the bills system control
000600* file.
000700*--------------------------------
000800 ENVIRONMENT DIVISION.
000900 INPUT-OUTPUT SECTION.
001000 FILE-CONTROL.
001100
001200 COPY "SLCONTRL.CBL".
001300
001400 DATA DIVISION.
001500 FILE SECTION.
001600
001700 COPY "FDCONTRL.CBL".
001800
001900 WORKING-STORAGE SECTION.
002000
002100 77 MENU-PICK PIC 9.
002200 88 MENU-PICK-IS-VALID VALUES 0 THRU 2.
002300
002400 77 THE-MODE PIC X(7).
002500 77 RECORD-FOUND PIC X.
002600 77 WHICH-FIELD PIC 9.

002700 77 A-DUMMY PIC X.
002800
002900 PROCEDURE DIVISION.
003000 PROGRAM-BEGIN.
003100 PERFORM OPENING-PROCEDURE.
003200 PERFORM MAIN-PROCESS.
003300 PERFORM CLOSING-PROCEDURE.
003400
003500 PROGRAM-EXIT.
003600 EXIT PROGRAM.
003700
003800 PROGRAM-DONE.
003900 STOP RUN.
004000
004100 OPENING-PROCEDURE.
004200 OPEN I-O CONTROL-FILE.
004300
004400 CLOSING-PROCEDURE.
004500 CLOSE CONTROL-FILE.
004600
004700
004800 MAIN-PROCESS.
004900 PERFORM GET-MENU-PICK.
005000 PERFORM MAINTAIN-THE-FILE
005100 UNTIL MENU-PICK = 0.
005200
005300*--------------------------------
005400* MENU
005500*--------------------------------
005600 GET-MENU-PICK.
005700 PERFORM DISPLAY-THE-MENU.
005800 PERFORM ACCEPT-MENU-PICK.
005900 PERFORM RE-ACCEPT-MENU-PICK
006000 UNTIL MENU-PICK-IS-VALID.
006100
006200 DISPLAY-THE-MENU.
006300 PERFORM CLEAR-SCREEN.
006400 DISPLAY " PLEASE SELECT:".
006500 DISPLAY " ".
006600 DISPLAY " 1. CHANGE CONTROL INFORMATION".
006700 DISPLAY " 2. DISPLAY CONTROL INFORMATION".
006800 DISPLAY " ".
006900 DISPLAY " 0. EXIT".
007000 PERFORM SCROLL-LINE 8 TIMES.
007100
007200 ACCEPT-MENU-PICK.

007300 DISPLAY "YOUR CHOICE (0-2)?".
007400 ACCEPT MENU-PICK.
007500
007600 RE-ACCEPT-MENU-PICK.
007700 DISPLAY "INVALID SELECTION - PLEASE RE-TRY.".
007800 PERFORM ACCEPT-MENU-PICK.
007900
008000 CLEAR-SCREEN.
008100 PERFORM SCROLL-LINE 25 TIMES.
008200
008300 SCROLL-LINE.
008400 DISPLAY " ".
008500
008600 MAINTAIN-THE-FILE.
008700 PERFORM DO-THE-PICK.
008800 PERFORM GET-MENU-PICK.
008900
009000 DO-THE-PICK.
009100 IF MENU-PICK = 1
009200 PERFORM CHANGE-MODE
009300 ELSE
009400 IF MENU-PICK = 2
009500 PERFORM INQUIRE-MODE.
009600
009700*--------------------------------
009800* CHANGE
009900*--------------------------------
010000 CHANGE-MODE.
010100 MOVE "CHANGE" TO THE-MODE.
010200 PERFORM GET-CONTROL-RECORD.
010300 IF RECORD-FOUND = "Y"
010400 PERFORM CHANGE-RECORDS.
010500
010600 CHANGE-RECORDS.
010700 PERFORM GET-FIELD-TO-CHANGE.
010800 PERFORM CHANGE-ONE-FIELD.
010900
011000 PERFORM GET-CONTROL-RECORD.
011100
011200 GET-FIELD-TO-CHANGE.
011300 PERFORM DISPLAY-ALL-FIELDS.
011400 PERFORM ASK-WHICH-FIELD.
011500
011600 ASK-WHICH-FIELD.
011700 MOVE 1 TO WHICH-FIELD.
011800

011900 CHANGE-ONE-FIELD.
012000 PERFORM CHANGE-THIS-FIELD.
012100
012200 CHANGE-THIS-FIELD.
012300 IF WHICH-FIELD = 1
012400 PERFORM ENTER-CONTROL-LAST-VOUCHER.
012500
012600 PERFORM REWRITE-CONTROL-RECORD.
012700
012800*--------------------------------
012900* INQUIRE
013000*--------------------------------
013100 INQUIRE-MODE.
013200 MOVE "DISPLAY" TO THE-MODE.
013300 PERFORM GET-CONTROL-RECORD.
013400 IF RECORD-FOUND = "Y"
013500 PERFORM INQUIRE-RECORDS.
013600
013700 INQUIRE-RECORDS.
013800 PERFORM DISPLAY-ALL-FIELDS.
013900 PERFORM PRESS-ENTER.
014000
014100 PRESS-ENTER.
014200 DISPLAY " ".
014300 DISPLAY "PRESS ENTER TO CONTINUE".
014400 ACCEPT A-DUMMY.
014500
014600*--------------------------------
014700* Routines for Change
014800*--------------------------------
014900 ENTER-CONTROL-LAST-VOUCHER.
015000 PERFORM ACCEPT-CONTROL-LAST-VOUCHER.
015100
015200 ACCEPT-CONTROL-LAST-VOUCHER.
015300 DISPLAY "ENTER LAST VOUCHER NUMBER".
015400 ACCEPT CONTROL-LAST-VOUCHER.
015500
015600*--------------------------------
015700* Routines shared by Change and Inquire
015800*--------------------------------
015900 INIT-CONTROL-RECORD.
016000 MOVE ZEROES TO CONTROL-RECORD.
016100
016200 ENTER-CONTROL-KEY.
016300 MOVE 1 TO CONTROL-KEY.
016400

016500 GET-CONTROL-RECORD.
016600 PERFORM INIT-CONTROL-RECORD.
016700 PERFORM ENTER-CONTROL-KEY.
016800 MOVE "N" TO RECORD-FOUND.
016900 PERFORM FIND-CONTROL-RECORD.
017000
017100 FIND-CONTROL-RECORD.
017200 PERFORM READ-CONTROL-RECORD.
017300 IF RECORD-FOUND = "N"
017400 DISPLAY "RECORD NOT FOUND"
017500 DISPLAY "YOU MUST RUN CTLBLD01"
017600 DISPLAY "TO CREATE THIS FILE".
017700
017800 DISPLAY-ALL-FIELDS.
017900 DISPLAY " ".
018000 PERFORM DISPLAY-CONTROL-LAST-VOUCHER.
018100 DISPLAY " ".
018200
018300 DISPLAY-CONTROL-LAST-VOUCHER.
018400 DISPLAY "1. LAST VOUCHER NUMBER: "
018500 CONTROL-LAST-VOUCHER.
018600
018700*--------------------------------
018800* File I-O Routines
018900*--------------------------------
019000 READ-CONTROL-RECORD.
019100 MOVE "Y" TO RECORD-FOUND.
019200 READ CONTROL-FILE RECORD
019300 INVALID KEY
019400 MOVE "N" TO RECORD-FOUND.
019500
019600*or READ CONTROL-FILE RECORD WITH LOCK
019700* INVALID KEY
019800* MOVE "N" TO RECORD-FOUND.
019900
020000*or READ CONTROL-FILE RECORD WITH HOLD
020100* INVALID KEY
020200* MOVE "N" TO RECORD-FOUND.
020300
020400 REWRITE-CONTROL-RECORD.
020500 REWRITE CONTROL-RECORD
020600 INVALID KEY
020700 DISPLAY "ERROR REWRITING CONTROL RECORD".
020800

ANALYSIS: There are two other features in the control maintenance program, the use of a permanent

key value of 1, and the absence of the key value on the display. The key to the record always is a value of
1. Rather than asking the user to enter a value, at line 016200, the ENTER-CONTROL-KEY routine
moves 1 to CONTROL-KEY.

If 1 is not a valid key for the record, something has gone wrong and the control record has been deleted
somehow. The FIND-CONTROL-RECORD routine at line 017100 expands on the standard "RECORD
NOT FOUND" message by adding some additional messages at lines 017500 and 017600.

The control key itself is not a number that the user ever needs to enter or even see, so the
DISPLAY-ALL-FIELDS routine at line 017800 is reduced to displaying the single field in the control
file, CONTROL-LAST-VOUCHER.

In other maintenance modules, the user is put into a loop to change or look up a record, the record is
displayed and modified, and then the user is asked for the key of another record to display or change.
With this control file, that loop would be pointless because there is only one record in the file, which
causes a problem in inquire mode. The fields (in this case, a single field) are displayed and the user is not
asked for another key, but is returned immediately to the menu. In inquire mode, the information flashes
briefly on the screen and then the menu is displayed.

To slow down the display so that the user has a chance to read the information, INQUIRE-RECORDS at
line 013700 includes a request to perform a PRESS-ENTER routine at line 013900. This enables the user
to see the record and then press Enter before being returned to the menu.

There is an exercise at the end of today's lesson to compare a simple maintenance module such as
stcmnt04.cbl with ctlmnt01.cbl. You might want to try this exercise right away.

Code, compile, and run ctlmnt01.cbl and ensure that you can change and display the last voucher
number. Use ctlmnt01.cbl to reset this number to zeroes.

Multiple Maintenance Programs
The bills payment system will use more than one program to maintain the voucher file, which is shown
in Listing 19.6 and which is a COPY file for the voucher FD.

TYPE: Listing 19.6. The FD for the voucher file.

000100*--------------------------------
000200* FDVOUCH.CBL
000300* Primary Key - VOUCHER-NUMBER
000400*Dates are in CCYYMMDD format
000500 FD VOUCHER-FILE
000600 LABEL RECORDS ARE STANDARD.
000700 01 VOUCHER-RECORD.
000800 05 VOUCHER-NUMBER PIC 9(5).
000900 05 VOUCHER-VENDOR PIC 9(5).
001000 05 VOUCHER-INVOICE PIC X(15).
001100 05 VOUCHER-FOR PIC X(30).

001200 05 VOUCHER-AMOUNT PIC S9(6)V99.
001300 05 VOUCHER-DATE PIC 9(8).
001400 05 VOUCHER-DUE PIC 9(8).
001500 05 VOUCHER-DEDUCTIBLE PIC X.
001600 05 VOUCHER-SELECTED PIC X.
001700 05 VOUCHER-PAID-AMOUNT PIC S9(6)V99.
001800 05 VOUCHER-PAID-DATE PIC 9(8).
001900 05 VOUCHER-CHECK-NO PIC 9(6).
002000

ANALYSIS: Whenever a new bill comes in, the user will use a standard maintenance module to add the
information to the file. The voucher number will be assigned automatically in add mode. The user will be
required to enter the vendor, vendor's invoice number, a comment on what the invoice is for, the amount
of the invoice, the invoice date and due date, and a yes/no flag as to whether this is tax deductible.
Basically, this encompasses all the fields from line 000900 through line 001500.

The remaining fields, from line 001600 through 001800, are filled in by the computer in add mode.
VOUCHER-SELECTED is set to "N"; VOUCHER-PAID-AMOUNT, VOUCHER-PAID-DATE, and
VOUCHER-CHECK-NO are set to zero.

All the date fields in the voucher file use an eight digit date in the form CCYYMMDD. CCYY represents
a full four digit year, such as 1997. Until recently it has been a tradition, based on the original very
expensive costs of memory and disk space, to store dates as YYMMDD. This practice is causing a major
problem in the computer industry as the year 2000 approaches. This issue is covered extensively in
Bonus Day 6, "Dates and the Year 2000."

A separate program enables the user to select which vouchers should be paid, and yet another program
enables the user to enter the paid amount, paid date, and check number. Here is an example of more than
one program maintaining a single file.

The voucher file has a single key--the voucher number--and Listing 19.7 is the COPY file slvouch.cbl
containing the SELECT statement for the file.

TYPE: Listing 19.7. The SELECT statement for the voucher file.

000100*--------------------------------
000200* SLVOUCH.CBL
000300*--------------------------------
000400 SELECT VOUCHER-FILE
000500 ASSIGN TO "VOUCHER"
000600 ORGANIZATION IS INDEXED
000700 RECORD KEY IS VOUCHER-NUMBER
000800 ACCESS MODE IS DYNAMIC.
000900

Designing the Bills Payment System
First, look at the basic design of the bills paying system, and then start putting together the programs you
need to implement the system.

New Term: A flowchart is a graphic representation of how a program or activity moves through various
processes or program routines. It uses symbols to represent the activities and arrows to represent the
direction of activity through the processes.

You can use flowcharts to define the behavior of a single program or a system (a combination of
programs).

Figure 19.1 shows a flowchart representing how the bills system operates. At step 1 in the diagram, the
arrival of a new bill is represented by a shape used to stand for a document.

Figure 19.1.
Flowchart of the bills payment system.

At step 2, the bill is keyed into the computer as a voucher. Step 2 is a voucher entry program very much
like a standard maintenance module, as described in the analysis of Listing 19.6.

At step 3, a decision is made whether to start bills payment. This decision is made by a person and
usually is based on a regular bills payment schedule, which could be weekly or biweekly. If it is not time
to start paying the bills, the flow of the system loops back up to await the arrival of any more bills. Steps
1, 2, and 3 are repeated while bills continue to come in.

When the decision is made to start the bill payment cycle, the bills report is printed at step 4. Step 4 is a
program that prints all the outstanding vouchers (bills) in the voucher file.

This system is designed to pay by dateline, so step 5 defines a manual process of deciding through which
date to pay bills. The decision involves someone sitting down with the bills report and making a decision
about what cutoff date to use.

Step 6 is a program that enables the user to enter the selected cutoff date, and it flags all bills due within
the cutoff date as ready to be paid by writing a "Y" to the VOUCHER-SELECTED flag.

Step 7 is a program that allows for the VOUCHER-SELECTED flag to be adjusted. This program can be
used to set the flag to "Y" or "N" for any voucher (bill) that is as yet unpaid. This program enables the
user to fine-tune the selections made in step 6 by including or excluding vouchers to pay.

Step 8 is a program that prints the cash requirements report. This report provides a total of all the cash
needed to pay the bills selected in steps 6 and 7.

Step 9 is another human decision. Someone sits down with the cash requirements report and the bank
balance and decides whether there is enough cash to fulfill the cash requirements.

If there is not enough cash, the user proceeds to step 10 where another decision is made: How bad is the
shortfall? If the cash requirements grossly exceeds the available cash, the process returns to the
beginning of the loop at step 5 where the user once again selects a cutoff date that will encompass fewer
bills. If the shortfall is not large, the user returns to step 6 and uses the VOUCHER-SELECTED

file:///D|/Cool Stuff/old/ftp/Sams.Teach.Yourself.Cobol.In.21.Days/Teach Yourself Cobol in 21 Days/ch19/01.htm

adjustment program to trim off some bills that won't be paid.

This process is continued until the answer to step 9 is yes and there is enough cash. Then the process
continues to step 11, where the user manually writes the checks for each voucher in the final version of
the cash requirements report.

At step 12, a data entry program enables the user to pull up the selected vouchers and mark them as paid.
The system also includes some programs that enable you to report on paid bills.

Creating the Voucher File
Listing 19.8 is a familiar program used to create a new voucher file.

TYPE: Listing 19.8. Creating a voucher file.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. VCHBLD01.
000300*--------------------------------
000400* Create a Voucher file for the
000500* bills payment system
000600*--------------------------------
000700 ENVIRONMENT DIVISION.
000800 INPUT-OUTPUT SECTION.
000900 FILE-CONTROL.
001000
001100 COPY "SLVOUCH.CBL".
001200
001300 DATA DIVISION.
001400 FILE SECTION.
001500
001600 COPY "FDVOUCH.CBL".
001700
001800 WORKING-STORAGE SECTION.
001900
002000 PROCEDURE DIVISION.
002100 PROGRAM-BEGIN.
002200 OPEN OUTPUT VOUCHER-FILE.
002300 CLOSE VOUCHER-FILE.
002400
002500 PROGRAM-EXIT.
002600 EXIT PROGRAM.
002700
002800 PROGRAM-DONE.
002900 STOP RUN.
003000

Edit, compile, and run this program to create the new voucher file.

Handling Date Storage
Before launching into the actual maintenance module, you need to take a look at date handling.

The first problem with dates is storing them. Dates traditionally have been stored as a six-digit number in
COBOL data files, either in YYMMDD format or MMDDYY format (in Europe, this is DDMMYY).
January 7th, 1994 is stored as 940107 (YYMMDD), 010794 (MMDDYY), or 070194 (DDMMYY).

Storing a date in either MMDDYY or DDMMYY format presents some problems. In Table 19.1, several
dates are listed in MMDDYY format and YYMMDD format. Each list contains the same dates. The first
list, in MMDDYY format, is sorted correctly in numeric order, but is an incorrect sort for date order. The
second list, in YYMMDD format, is sorted correctly as numbers and also is a correct sort for dates.

Table 19.1. Incorrect and correct sorts for date formats.

Sorted Dates in MMDDYY Format Sorted Dates in YYMMDD Format

011592 870814

011593 870919

021291 880711

031492 890523

041893 900630

052389 910212

063090 911011

071188 920115

081487 920314

091987 921128

101191 930115

112892 930418

121693 931216

When the date format is changed to an eight-digit equivalent, MMDDCCYY, the sorting problem
remains. Therefore, for the exercises in this book, you should store all dates in CCYYMMDD format so
that date order and numeric order are the same.

The second problem is just an extension of the first problem. The approach of the year 2000 has caused a
lot of consternation in COBOL circles. There are millions of lines of code currently in use that still use a
six-digit date. The continued use of a six-digit date will cause big sorting problems even if the date is
stored in YYMMDD format. When the user is looking for records dated between December 1, 1999, and
February 28, 2000, the program will be looking at values that are stored as 991201 and 000228, because
trying to store a four-digit year of 2000 in a two digit field only allows room for last two digits, 00.

One immediate solution is to start storing dates as eight digits by extending the year to the left and using
a CCYYMMDD format where CCYY is a full four-digit year with CC representing the hundreds portion
of the year. The voucher file provides for an eight-digit date. This isn't going to handle the millions of
lines of code that aren't using four-digit years, but at least it won't compound the problem.

NOTE: When discussing dates in CCYYMMDD or similar formats with anyone, be sure
that you understand the date format that he or she is discussing. Some people use CC or C to
designate a "century indicator" that might not be an actual two-digit 19 or 20. In one system
a zero represents 18, a 1 represents 19, a 2 represents 20, and so on. There are already a
confusing number of date standards being propounded by various people. I use CC to
indicate the two digits that represent the hundreds of years--18, 19, 20, and so on. Thus,
CCYY format is the same as YYYY format.

The date problem for existing programs is covered in Bonus Day 6.

Handling Date Display
The third problem is formatting dates for display. If the date is stored in CCYYMMDD format, it has to
be converted to MM/DD/CCYY format for displaying and printing. The CCYYMMDD format works
well for the programmer who can use this format for correct sorting of dates, but users are accustomed to
seeing dates as MM/DD/CCYY or MM-DD-CCYY.

You already have used editing characters to modify the way a number displays. Some of the editing
characters, such as the comma (,), are inserted into a numeric field to change the way the field appears
when it is displayed. Moving a value such as 09456.01 to a PIC ZZ,ZZZ.ZZ results in a display of
9,456.01. The leading zero is suppressed and the comma is inserted.

There is an editing character that was designed specifically for date handling. It is the slant or slash (/). A
slash placed in a numeric field causes the field to become an edited field, and the slashes are inserted into
any number moved into the field. Listing 19.9 is a code fragment showing the use of an edited numeric
field used to display slashes within a date. The display at line 032100 would be 05/15/1997.

TYPE: Listing 19.9. Formatting a date field with slashes.

011200 77 FORMATTED-DATE PIC 99/99/9999.

032000 MOVE 05151997 TO FORMATTED-DATE.
032100 DISPLAY FORMATTED-DATE.

Zero suppression can be used in an edited date field, as shown in Listing 19.10. The output of this
example would be 5/15/1997, with the leading zero suppressed.

TYPE: Listing 19.10. Zero suppression in a formatted date.

011200 77 FORMATTED-DATE PIC Z9/99/9999.

032000 MOVE 05151997 TO FORMATTED-DATE.
032100 DISPLAY FORMATTED-DATE.

The use of a simple edited field will add in the slashes, but both of the dates used in Listings 19.9 and
19.10 are in MMDDCCYY format. Listing 19.11 converts a date in CCYYMMDD format to
MMDDCCYY, and then moves it to an edited field.

TYPE: Listing 19.11. Converting CCYYMMDD to MMDDCCYY.

011200 77 FORMATTED-DATE PIC Z9/99/9999.
011300 77 DATE-CCYYMMDD PIC 9(8).
011400 77 DATE-MMDDCCYY PIC 9(8).

031900 MOVE 19970515 TO DATE-CCYYMMDD.
032000 COMPUTE DATE-MMDDCCYY =
032100 DATE-CCYYMMDD * 10000.0001
032200 MOVE DATE-MMDDCCYY TO FORMATTED-DATE.
032300 DISPLAY FORMATTED-DATE.

ANALYSIS: The formatted (edited) date field is defined at line 011200. Two separate PIC 9(8) variables
are defined to hold the date in CCYYMMDD and MMDDCCYY at lines 011300 and 011400,
respectively.

The code fragment at line 031900 starts by moving May 15, 1997, in CCYYMMDD format, to the
appropriate variable.

The COMPUTE command is used to multiply DATE-CCYYMMDD by 10000.0001 and store the result
in DATE-MMDDCCYY. This trick is used to convert the date.

The date starts out as 19970515. Multiplying it by 10000.0001 results in 199705151997, a 12-digit
number. The COMPUTE command stores the result in DATE-MMDDCCYY, which is only eight digits
long. Numeric variables are truncated on the left, so the initial 1997 is lost, leaving 05151997, which is
the correct value for an MMDDCCYY format.

Handling Date Entry
The fourth problem with dates concerns the data entry format versus the storage format, which is partly
the reverse of the date display. Users still are accustomed to entering dates as MM/DD/YY, and as the
new century approaches, they may have to get used to entering values as MM/DD/CCYY. This format
includes characters that are not stored in the file (the slashes), and the parts of the date are not arranged
correctly for CCYYMMDD storage. An entry of MM/DD/CCYY has to be converted to CCYYMMDD
to be stored correctly.

The easiest solution is to use a formatted date field as the data entry field, an example of which appears
in Listing 19.12.

TYPE: Listing 19.12. Accepting formatted dates.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. DATE01.
000300*--------------------------------
000400* Demo of Date Entry
000500*--------------------------------
000600 ENVIRONMENT DIVISION.
000700 INPUT-OUTPUT SECTION.
000800 FILE-CONTROL.
000900
001000 DATA DIVISION.
001100 FILE SECTION.
001200
001300 WORKING-STORAGE SECTION.
001400
001500 77 DATE-ENTRY-FIELD PIC Z9/99/9999.
001600 77 DATE-MMDDCCYY PIC 9(8).
001700 77 DATE-CCYYMMDD PIC 9(8).
001800
001900 PROCEDURE DIVISION.
002000 PROGRAM-BEGIN.
002100 PERFORM OPENING-PROCEDURE.
002200 PERFORM MAIN-PROCESS.
002300 PERFORM CLOSING-PROCEDURE.
002400
002500 PROGRAM-EXIT.
002600 EXIT PROGRAM.
002700
002800 PROGRAM-DONE.
002900 STOP RUN.
003000
003100 OPENING-PROCEDURE.
003200
003300 CLOSING-PROCEDURE.
003400
003500 MAIN-PROCESS.
003600 PERFORM GET-A-DATE.
003700 PERFORM DISPLAY-AND-GET-DATE
003800 UNTIL DATE-MMDDCCYY = ZEROES.
003900
004000 GET-A-DATE.
004100 DISPLAY "ENTER A DATE (MM/DD/CCYY)".
004200 ACCEPT DATE-ENTRY-FIELD.
004300 MOVE DATE-ENTRY-FIELD TO DATE-MMDDCCYY.
004400 COMPUTE DATE-CCYYMMDD =
004500 DATE-MMDDCCYY * 10000.0001.
004600

004700 DISPLAY-AND-GET-DATE.
004800 PERFORM DISPLAY-A-DATE.
004900 PERFORM GET-A-DATE.
005000
005100 DISPLAY-A-DATE.
005200 MOVE DATE-MMDDCCYY TO DATE-ENTRY-FIELD.
000300 DISPLAY "FORMATTED DATE IS " DATE-ENTRY-FIELD.
005400 DISPLAY "DATE-MMDDCCYY IS " DATE-MMDDCCYY.
005500 DISPLAY "DATE-CCYYMMDD IS " DATE-CCYYMMDD.
005600

ANALYSIS: Using the formatted date field defined at line 001500 for data entry allows the user to enter
any eight digits, including optional slashes at line 004200 in the ACCEPT command.

The user can enter 01/22/1996 or 01221996, and either version is stored in DATE-MMDDCCYY as
01221996. That takes care of enabling the user to enter a date including slashes.

Some COBOL compilers will require that line 004300 read: MOVE WITH CONVERSION
DATA-ENTRY-FIELD TO DATE-MMDDCCYY.

At lines 004400 and 004500, the same conversion trick is used to convert DATE-MMDDCCYY to
DATE-CCYYMMDD. Try it out with a pencil and paper, and you will see that multiplying an eight-digit
number by 10,000.0001, and then truncating the twelve-digit answer from the left to eight digits has the
effect of swapping the left and right four digits of the eight-digit number.

At line 005100, the DISPLAY-A-DATE routine displays the various date formats.

Code, compile, and run date01.cbl and enter various valid eight-digit dates, with and without slashes.
You will see the effect of using an edited field for the data entry.

What Is a Redefined Variable?
Run date01.cbl and enter some invalid dates, such as 12345 (not eight digits), or 31/64/2219 (month and
day are both invalid). The date01.cbl program accepts these without question, because as far as
date01.cbl is concerned it is accepting numbers that happen to have slashes in them. In order to ensure
that the date is valid, you are going to have to do some work in the program.

In order to validate a date, you need to be able to take the date (either DATE-CCYYMMDD or
DATE-MMDDCCYY) and break it into month, day, and year, and then validate each part of the date.

It seems at first glance that Listing 19.13 does the job, but there is a problem with this method of defining
a date field. In Listing 19.13, DATE-CC represents the hundreds of years.

TYPE: Listing 19.13. Trying to break up the date.

001100 01 DATE-CCYYMMDD.
001200 05 DATE-CC PIC 99.
001300 05 DATE-YY PIC 99.

001400 05 DATE-MM PIC 99.
001500 05 DATE-DD PIC 99.

In order to understand this problem, it is necessary to take another look at structure variables. Recall that
when variables are going to be used as a group, they can be combined into a single variable called a
structure or a record. A structure or record is a variable containing one or more COBOL variables. In
Listing 19.14, the variable named ALL-THE-VARIABLES contains the three variables 1ST-NUMBER,
2ND-NUMBER, and 3RD-NUMBER. ALL-THE-VARIABLES is a structure.

TYPE: Listing 19.14. A structure variable.

000900 01 ALL-THE-VARIABLES.
001000 05 1ST-NUMBER PIC 99.
001100 05 2ND-NUMBER PIC 99.
001200 05 3RD-NUMBER PIC 99.

ANALYSIS: Listing 19.14 actually defines six bytes of memory that contain four variables:
1ST-NUMBER, 2ND-NUMBER, 3RD-NUMBER, and ALL-THE-VARIABLES.

1ST-NUMBER is two bytes long and is designed to hold a PIC 99. 2ND-NUMBER and 3RD-NUMBER
also are designed to hold two-byte numbers. This is a total of six bytes.

The structure variable itself, ALL-THE-VARIABLES, is six bytes long and occupies the same six bytes
as 1ST-NUMBER, 2ND-NUMBER, and 3RD-NUMBER.

When a structure variable is created, it doesn't matter what the pictures of the subordinate variables are.
COBOL forces the structure variable to have an alphanumeric data type.

Because of the way COBOL treats structure variables, ALL-THE-VARIABLES has an implied
alphanumeric data type, so its picture becomes PIC X(6).

In effect, line 000900 defines a six-byte variable with a PICTURE of X(6), and lines 001000 through
001200 redefine those six bytes as three variables each with a PICTURE of 99.

In COBOL, this redefinition occurs in any structure variable. The structure variable has an implied
picture of PIC X(some number), and the subordinate variables can have numeric pictures.

At this point you might want to review Day 8, "Structured Data," which presents the organization of a
structure variable in some detail.

In Listing 19.15, which is a repeat of the problem posed in Listing 19.13 (a date broken into separate
elements), DATE-CCYYMMDD is an alphanumeric variable with a picture of PIC X(8), even though
the individual parts are all PIC 99 fields. You need each of the individual parts of DATE-CCYYMMDD
to have a PIC 99, but you also need DATE-CCYYMMDD to be numeric with a picture of PIC 9(8).

TYPE: Listing 19.15. DATE-CCYYMMDD is a PIC X(8).

001100 01 DATE-CCYYMMDD.
001200 05 DATE-CC PIC 99.
001300 05 DATE-YY PIC 99.

001400 05 DATE-MM PIC 99.
001500 05 DATE-DD PIC 99.

In COBOL, it is possible to create a variable that specifically redefines another variable. Listing 19.16 is
an example of how this is done.

TYPE: Listing 19.16. A redefinition.

001100 01 AN-X-FIELD PIC X(6).
001200 01 A-9-FIELD REDEFINES
001300 AN-X-FIELD PIC 9(6).

ANALYSIS: In Listing 19.16, the variable defined at lines 001200 and 001300 is a redefinition of the
variable defined at line 001100. The variable at line 001100 defines a six-byte variable that is used for
alphanumeric data. The variable at lines 001200 and 001300 redefines the same six bytes as a variable to
be used for numeric data.

In Listing 19.15, you end up with DATE-CCYYMMDD as a PIC X(8), but you really want it to be a PIC
9(8). You can use a REDEFINES to create that situation. A REDEFINES can be used to redefine any
variable, even a structure variable, as shown in Listing 19.17.

TYPE: Listing 19.17. Using REDEFINES to define a new variable.

001100 01 A-DATE.
001200 05 DATE-CC PIC 99.
001300 05 DATE-YY PIC 99.
001400 05 DATE-MM PIC 99.
001500 05 DATE-DD PIC 99.
001600 01 DATE-CCYYMMDD REDEFINES
001700 A-DATE PIC 9(8).

ANALYSIS: Lines 001100 through 001500 define a structure variable named A-DATE containing four
variables that are each a PIC 99. A-DATE will become a PIC X(8). A-DATE is of little use, so the name
used for the variable is unimportant.

At lines 001600 and 001700, the eight-byte variable A-DATE is redefined as a PIC 9(8) variable with the
name DATE-CCYYMMDD. This redefinition creates the effect that you want. DATE-CCYYMMDD is
a numeric variable with a picture of PIC 9(8). Each of the parts of the date is also numeric, having
pictures of PIC 99.

If you move the value 19970315 to DATE-CCYYMMDD, the eight bytes of memory will contain the
values for the number 19970315.

A-DATE will contain those eight bytes as "19970315", which are the same bytes but interpreted as
characters. DATE-CC will contain two bytes: the number 19. DATE-YY will contain two bytes: the
number 97. DATE-MM will contain two bytes: the number 03. DATE-DD will contain two bytes: the
number 15.

In the preceding example, a structure variable A-DATE is redefined as an elementary (nonstructured)

variable called DATE-CCYYMMDD. A-DATE is the redefined variable and DATE-CCYYMMDD is
the redefining variable.

In a redefinition, either or both of the redefined and redefining variables can be structure variables.

In Listing 19.18, the positions of the two variables are reversed. DATE-CCYYMMDD becomes the
redefined variable, and it is redefined with the structure variable, A-DATE. A-DATE is then broken into
its elementary variables.

TYPE: Listing 19.18. Redefining a variable with a structure.

001600 01 DATE-CCYYMMDD PIC 9(8).
001700 01 A-DATE REDEFINES DATE-CCYYMMDD.
001800 05 DATE-CC PIC 99.
001900 05 DATE-YY PIC 99.
002000 05 DATE-MM PIC 99.
002100 05 DATE-DD PIC 99.

A variable can be redefined by using the COBOL REDEFINES command. The redefined variable and
the redefining variable must have the same level number.

The redefining variable must not have a length longer than the redefined variable. The compiler would
complain about the example in Listing 19.19 because DATE-CCYYMMDD on line 001600 is only six
bytes long, but A-DATE is 8 bytes long.

TYPE: Listing 19.19. An illegal REDEFINES.

001600 01 DATE-CCYYMMDD PIC 9(6).
001700 01 A-DATE REDEFINES DATE-CCYYMMDD.
001800 05 DATE-CC PIC 99.
001900 05 DATE-YY PIC 99.
002000 05 DATE-MM PIC 99.
002100 05 DATE-DD PIC 99.

There is one more step you need to take to complete the redefinition of the date fields. A-DATE will
never be used. All you want is the numeric versions of DATE-CCYYMMDD, DATE-CC, DATE-YY,
and so on. Therefore, A-DATE can be converted to a FILLER as in Listing 19.20.

TYPE: Listing 19.20. The final date REDEFINES.

001600 01 DATE-CCYYMMDD PIC 9(8).
001700 01 FILLER REDEFINES DATE-CCYYMMDD.
001800 05 DATE-CC PIC 99.
001900 05 DATE-YY PIC 99.
002000 05 DATE-MM PIC 99.
002100 05 DATE-DD PIC 99.

Handling Date Validation
Date validation is the process of taking a date apart and checking that the parts are valid. Listing 19.21,
date02.cbl, includes a date validation routine.

TYPE: Listing 19.21. A demonstration of date validation.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. DATE02.
000300*---------------------------------
000400* Demo of Date Entry and validation
000500*---------------------------------
000600 ENVIRONMENT DIVISION.
000700 INPUT-OUTPUT SECTION.
000800 FILE-CONTROL.
000900
001000 DATA DIVISION.
001100 FILE SECTION.
001200
001300 WORKING-STORAGE SECTION.
001400
001500 77 DATE-ENTRY-FIELD PIC Z9/99/9999.
001600 77 DATE-MMDDCCYY PIC 9(8).
001700 77 DATE-QUOTIENT PIC 9999.
001800 77 DATE-REMAINDER PIC 9999.
001900
002000 77 VALID-DATE-FLAG PIC X.
002100 88 DATE-IS-INVALID VALUE "N".
002200 88 DATE-IS-ZERO VALUE "0".
002300 88 DATE-IS-VALID VALUE "Y".
002400 88 DATE-IS-OK VALUES "Y" "0".
002500
002600 01 DATE-CCYYMMDD PIC 9(8).
002700 01 FILLER REDEFINES DATE-CCYYMMDD.
002800 05 DATE-CCYY PIC 9999.
002900 05 DATE-MM PIC 99.
003000 05 DATE-DD PIC 99.
003100
003200
003300 PROCEDURE DIVISION.
003400 PROGRAM-BEGIN.
003500 PERFORM OPENING-PROCEDURE.
003600 PERFORM MAIN-PROCESS.
003700 PERFORM CLOSING-PROCEDURE.
003800

003900 PROGRAM-EXIT.
004000 EXIT PROGRAM.
004100
004200 PROGRAM-DONE.
004300 STOP RUN.
004400
004500 OPENING-PROCEDURE.
004600
004700 CLOSING-PROCEDURE.
004800
004900 MAIN-PROCESS.
005000 PERFORM GET-A-DATE.
005100 PERFORM DISPLAY-AND-GET-DATE
005200 UNTIL DATE-MMDDCCYY = ZEROES.
005300
005400 GET-A-DATE.
005500 PERFORM ACCEPT-A-DATE.
005600 PERFORM RE-ACCEPT-A-DATE
005700 UNTIL DATE-IS-OK.
005800
005900 ACCEPT-A-DATE.
006000 DISPLAY "ENTER A DATE (MM/DD/CCYY)".
006100 ACCEPT DATE-ENTRY-FIELD.
006200
006300 PERFORM EDIT-CHECK-DATE.
006400
006500 RE-ACCEPT-A-DATE.
006600 DISPLAY "INVALID DATE".
006700 PERFORM ACCEPT-A-DATE.
006800
006900 EDIT-CHECK-DATE.
007000 PERFORM EDIT-DATE.
007100 PERFORM CHECK-DATE.
007200
007300 EDIT-DATE.
007400 MOVE DATE-ENTRY-FIELD TO DATE-MMDDCCYY.
007500 COMPUTE DATE-CCYYMMDD =
007600 DATE-MMDDCCYY * 10000.0001.
007700
007800*---------------------------------
007900* Assume that the date is good, then
008000* test the date in the following
008100* steps. The routine stops if any
008200* of these conditions is true,
008300* and sets the valid date flag.
008400* Condition 1 returns the valid date

008500* flag set to "0".
008600* If any other condition is true,
008700* the valid date flag is set to "N".
008800* 1. Is the date zeroes
008900* 2. Month > 12 or < 1
009000* 3. Day < 1 or > 31
009100* 4. Day > 30 and
009200* Month = 2 (February) or
009300* 4 (April) or
009400* 6 (June) or
009500* 9 (September) or
009600* 11 (November)
009700* Day > 29 and
009800* Month = 2 (February)
009900* 5. Day = 29 and Month = 2 and
010000* Not a leap year
010100* (A leap year is any year evenly
010200* divisible by 4, but does not
010300* end in 00 and that is
010400* not evenly divisible by 400).
010500*---------------------------------
010600 CHECK-DATE.
010700 MOVE "Y" TO VALID-DATE-FLAG.
010800 PERFORM CHECK-IF-DATE-ZEROES.
010900 IF DATE-IS-VALID
011000 PERFORM CHECK-MM.
011100 IF DATE-IS-VALID
011200 PERFORM CHECK-DD.
011300 IF DATE-IS-VALID
011400 PERFORM CHECK-MMDD.
011500 IF DATE-IS-VALID
011600 PERFORM CHECK-LEAP-YEAR.
011700
011800 CHECK-IF-DATE-ZEROES.
011900 IF DATE-CCYYMMDD = ZEROES
012000 MOVE "0" TO VALID-DATE-FLAG.
012100
012200 CHECK-MM.
012300 IF DATE-MM < 1 OR DATE-MM > 12
012400 MOVE "N" TO VALID-DATE-FLAG.
012500
012600 CHECK-DD.
012700 IF DATE-DD < 1 OR DATE-DD > 31
012800 MOVE "N" TO VALID-DATE-FLAG.
012900
013000 CHECK-MMDD.

013100 IF (DATE-DD > 30) AND
013200 (DATE-MM = 2 OR 4 OR 6 OR 9 OR 11)
013300 MOVE "N" TO VALID-DATE-FLAG
013400 ELSE
013500 IF DATE-DD > 29 AND DATE-MM = 2
013600 MOVE "N" TO VALID-DATE-FLAG.
013700
013800 CHECK-LEAP-YEAR.
013900 IF DATE-DD = 29 AND DATE-MM = 2
014000 DIVIDE DATE-CCYY BY 400 GIVING DATE-QUOTIENT
014100 REMAINDER DATE-REMAINDER
014200 IF DATE-REMAINDER = 0
014300 MOVE "Y" TO VALID-DATE-FLAG
014400 ELSE
014500 DIVIDE DATE-CCYY BY 100 GIVING DATE-QUOTIENT
014600 REMAINDER DATE-REMAINDER
014700 IF DATE-REMAINDER = 0
014800 MOVE "N" TO VALID-DATE-FLAG
014900 ELSE
015000 DIVIDE DATE-CCYY BY 4 GIVING DATE-QUOTIENT
015100 REMAINDER DATE-REMAINDER
015200 IF DATE-REMAINDER = 0
015300 MOVE "Y" TO VALID-DATE-FLAG
015400 ELSE
015500 MOVE "N" TO VALID-DATE-FLAG.
015600
015700 DISPLAY-AND-GET-DATE.
015800 PERFORM DISPLAY-A-DATE.
015900 PERFORM GET-A-DATE.
016000
016100 DISPLAY-A-DATE.
016200 MOVE DATE-MMDDCCYY TO DATE-ENTRY-FIELD.
016300 DISPLAY "FORMATTED DATE IS " DATE-ENTRY-FIELD.
016400 DISPLAY "DATE-MMDDCCYY IS " DATE-MMDDCCYY.
016500 DISPLAY "DATE-CCYYMMDD IS " DATE-CCYYMMDD.
016600

ANALYSIS: The date-validation routine in Listing 19.21 has been created to be reasonably flexible. In
working storage at lines 001700 and 001800, DATE-QUOTIENT and DATE-REMAINDER have been
defined. These will be used in the date validation as part of the logic to check for a leap year.

At line 002000, the VALID-DATE-FLAG is defined. This flag is used to hold the result of the
validation. It has three possible result values, which are defined with level 88 entries at lines 002100
through 002300. If the date is in error, the flag is set to "N". If the date is valid, the flag is set to "Y". If
the date is zero, the flag is set to "0", which allows for a general-purpose date validation that will allow a
zero date entry. In some fields, it might be okay to enter a date with a value of zero, so the two entries

that are possibly okay, "0" and "Y", are defined with a level 88 at line 002400.

At line 002600, the DATE-CCYYMMDD variable is defined as a PIC 9(8). These eight bytes are
redefined at lines 002700 through 003100 into four two-byte numeric fields.

The GET-A-DATE routine begins at line 005400 and is a standard field-entry routine that performs
ACCEPT-A-DATE and then performs RE-ACCEPT-A-DATE until DATE-IS-OK.

ACCEPT-A-DATE at line 005900 displays a prompt, accepts the entry field, and then performs the edit
check EDIT-CHECK-DATE. The editing logic at line 007300, EDIT-DATE, moves the entered field to
DATE-MMDDCCYY and then converts this to DATE-CCYYMMDD.

It is the date validation logic that is extensive. It begins at line 007800 with a long comment explaining
how the routine works.

The routine CHECK-DATE starts at line 010600. The routine assumes that DATE-CCYYMMDD has
been filled in with the date to test (this was taken care of at lines 007500 and 007600) and that the date is
valid. The routine moves "Y" to the VALID-DATE-FLAG.

The routine is a series of tests on the date. If any tested condition is true, there is something wrong with
the date. The VALID-DATE-FLAG flag is set accordingly and the PERFORM commands in the rest of
the paragraph are skipped.

There are three possible conditions for the date: valid, invalid, or zero. Zero is checked first at line
011900, and if the date is zero, the VALID-DATE-FLAG is set to "0" and the remainder of the paragraph
is ignored.

If the date passes the zero test, a series of possible invalid conditions are tested.

At line 012200, CHECK-MM checks for an invalid month. At line 012600, CHECK-DD checks for an
invalid day.

At line 013000, CHECK-MMDD begins checking for an invalid month and day combination, which is a
day greater than 30 with a month that does not contain 31 days, or a day greater than 29 for the month of
February.

The CHECK-LEAP-YEAR routine at line 013800 tests for a leap year when the date is February 29. A
leap year is any year that is evenly divisible by 4, but not evenly divisible by 100, unless it is divisible by
400. The divisibility tests begin at lines 014000 and 014100, which perform the tests in what seems an
upside down manner. The routine tests for a leap year by performing a series of divisions, and saving the
results in DATE-QUOTIENT, and the remainder in DATE-REMAINDER. You don't care about the
value in DATE-REMAINDER. First the routine tests if the year is evenly divisible by 400. If it is, then it
is definitely a leap year. If the year is not evenly divisible by 400, then it is tested to see if it is evenly
divisible by 100. If it is, then the year is definitely not a leap year. The final check tests by dividing the
year by 4. Trying to come up with different ways to test for a leap year is a good exercise that you should
try.

As long as DATE-CCYYMMDD passes each test, the VALID-DATE-FLAG remains "Y"; any other
condition changes the flag.

As is the case with any programming problem, there usually is more than one way to skin a cat. Listing
19.22 is extracted from date02.cbl, and some changes are made to the CHECK-DATE logic.

TYPE: Listing 19.22. Another date validation.

005100*---------------------------
005200* PLDATE.CBL
005300*---------------------------
005400 GET-A-DATE.
005500 PERFORM ACCEPT-A-DATE.
005600 PERFORM RE-ACCEPT-A-DATE
005700 UNTIL DATE-IS-OK.
005800
005900 ACCEPT-A-DATE.
006000 DISPLAY "ENTER A DATE (MM/DD/CCYY)".
006100 ACCEPT DATE-ENTRY-FIELD.
006200
006300 PERFORM EDIT-CHECK-DATE.
006400
006500 RE-ACCEPT-A-DATE.
006600 DISPLAY "INVALID DATE".
006700 PERFORM ACCEPT-A-DATE.
006800
006900 EDIT-CHECK-DATE.
007000 PERFORM EDIT-DATE.
007100 PERFORM CHECK-DATE.
007200
007300 EDIT-DATE.
007400 MOVE DATE-ENTRY-FIELD TO DATE-MMDDCCYY.
007500 COMPUTE DATE-CCYYMMDD =
007600 DATE-MMDDCCYY * 10000.0001.
007700
007800*---------------------------------
007900* Assume that the date is good, then
008000* test the date in the following
008100* steps. The routine stops if any
008200* of these conditions is true,
008300* and sets the valid date flag.
008400* Condition 1 returns the valid date
008500* flag set to "0".
008600* If any other condition is true,
008700* the valid date flag is set to "N".
008800* 1. Is the date zeroes
008900* 2. Month > 12 or < 1
009000* 3. Day < 1 or > 31
009100* 4. Day > 30 and

009200* Month = 2 (February) or
009300* 4 (April) or
009400* 6 (June) or
009500* 9 (September) or
009600* 11 (November)
009700* Day > 29 and
009800* Month = 2 (February)
009900* 5. Day = 29 and
010000* Month = 2 and
010100* Not a leap year
010200* (A leap year is any year evenly
010300* divisible by 400 or by 4
010400* but not by 100).
010500*---------------------------------
010600 CHECK-DATE.
010700 MOVE "Y" TO VALID-DATE-FLAG.
010800 IF DATE-CCYYMMDD = ZEROES
010900 MOVE "0" TO VALID-DATE-FLAG
011000 ELSE
011100 IF DATE-MM < 1 OR DATE-MM > 12
011200 MOVE "N" TO VALID-DATE-FLAG
011300 ELSE
011400 IF DATE-DD < 1 OR DATE-DD > 31
011500 MOVE "N" TO VALID-DATE-FLAG
011600 ELSE
011700 IF (DATE-DD > 30) AND
011800 (DATE-MM = 2 OR 4 OR 6 OR 9 OR 11)
011900 MOVE "N" TO VALID-DATE-FLAG
012000 ELSE
012100 IF DATE-DD > 29 AND DATE-MM = 2
012200 MOVE "N" TO VALID-DATE-FLAG
012300 ELSE
012400 IF DATE-DD = 29 AND DATE-MM = 2
012500 DIVIDE DATE-CCYY BY 400 GIVING DATE-QUOTIENT
012600 REMAINDER DATE-REMAINDER
012700 IF DATE-REMAINDER = 0
012800 MOVE "Y" TO VALID-DATE-FLAG
012900 ELSE
013000 DIVIDE DATE-CCYY BY 100 GIVING DATE-QUOTIENT
013100 REMAINDER DATE-REMAINDER
013200 IF DATE-REMAINDER = 0
013300 MOVE "N" TO VALID-DATE-FLAG
013400 ELSE
013500 DIVIDE DATE-CCYY BY 4 GIVING DATE-QUOTIENT
013600 REMAINDER DATE-REMAINDER
013700 IF DATE-REMAINDER = 0

013800 MOVE "Y" TO VALID-DATE-FLAG
013900 ELSE
014000 MOVE "N" TO VALID-DATE-FLAG.
014100

ANALYSIS: The logic that appears at lines 010600 through 015600 in date02.cbl has been reduced to a
single paragraph in Listing 19.22. The routine is a long series of IF ELSE tests. If any tested condition is
true, there is something wrong with the date. The VALID-DATE-FLAG flag is set accordingly and the
rest of the paragraph is skipped.

Flexible Date Handling
Date validation involves a great deal of code. It would be a lot of work to have to rewrite all of this code
every time a date popped up in a program, so it seems that date handling could or should be put into a
COPY file.

So far you have put values for a file definition or WORKING-STORAGE only into a COPY file, but it
also is possible to put PROCEDURE DIVISION paragraphs and logic into COPY files.

The whole of Listing 19.22 can be copied into a file called pldate.cbl (the pl stands for program logic),
and this creates the program logic needed to validate dates. Then copy lines 001500 through 003100 of
Listing 19.21, date02.cbl, into a file called wsdate.cbl. This creates the needed WORKING-STORAGE.
Listing 19.23, date04.cbl, is now all you need to create the same date-entry and validation programs
date01.cbl. This gives you a routine that can be used for entering a date in any program.

TYPE: Listing 19.23. Using canned date handling.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. DATE04.
000300*--------------------------------
000400* Demo of Date Entry and validation
000500*--------------------------------
000600 ENVIRONMENT DIVISION.
000700 INPUT-OUTPUT SECTION.
000800 FILE-CONTROL.
000900
001000 DATA DIVISION.
001100 FILE SECTION.
001200
001300 WORKING-STORAGE SECTION.
001400
001500 COPY "WSDATE.CBL".
001600
001700 PROCEDURE DIVISION.
001800 PROGRAM-BEGIN.
001900 PERFORM OPENING-PROCEDURE.

002000 PERFORM MAIN-PROCESS.
002100 PERFORM CLOSING-PROCEDURE.
002200
002300 PROGRAM-EXIT.
002400 EXIT PROGRAM.
002500
002600 PROGRAM-DONE.
002700 STOP RUN.
002800
002900 OPENING-PROCEDURE.
003000
003100 CLOSING-PROCEDURE.
003200
003300 MAIN-PROCESS.
003400 PERFORM GET-A-DATE.
003500 PERFORM DISPLAY-AND-GET-DATE
003600 UNTIL DATE-MMDDCCYY = ZEROES.
003700
003800 COPY "PLDATE.CBL".
003900
004000 DISPLAY-AND-GET-DATE.
004100 PERFORM DISPLAY-A-DATE.
004200 PERFORM GET-A-DATE.
004300
004400 DISPLAY-A-DATE.
004500 MOVE DATE-MMDDCCYY TO DATE-ENTRY-FIELD.
004600 DISPLAY "FORMATTED DATE IS " DATE-ENTRY-FIELD.
004700 DISPLAY "DATE-MMDDCCYY IS " DATE-MMDDCCYY.
004800 DISPLAY "DATE-CCYYMMDD IS " DATE-CCYYMMDD.
004900

This code is almost, but not quite, adequate. The GET-A-DATE routine, which would end up being
included within pldate.cbl, has a problem that makes it unsuitable as a general-purpose, date-entry
routine: It isn't flexible enough. At line 006000 in Listing 19.22, the prompt for a date is forced to be
"ENTER A DATE (MM/DD/CCYY)". You might want the user to see a different prompt, such as
"ENTER THE INVOICE DATE (MM/DD/CCYY)".

At line 005700, the reaccept logic is performed until DATE-IS-OK. This allows an entry of zeroes, but
you might have date fields that are required entries and cannot allow the user to enter zeroes.

Both of these "inflexible" situations are fine for date04.cbl, but this will not be the case for all date entry.

The way to handle these problems is to build the flexibility into the WORKING-STORAGE and program
logic for date handling, and then create the COPY files containing the routines.

Listing 19.24, date05.cbl, has isolated a date-entry routine as well as other different types of date
handling routines. The date05.cbl is written as a test program only to test these date routines. After they

are tested, the WORKING-STORAGE and program logic can be extracted into COPY files.

TYPE: Listing 19.24. Date handling routines.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. DATE05.
000300*---------------------------------
000400* Testing Date Entry and handling
000500*---------------------------------
000600 ENVIRONMENT DIVISION.
000700 INPUT-OUTPUT SECTION.
000800 FILE-CONTROL.
000900
001000 DATA DIVISION.
001100 FILE SECTION.
001200
001300 WORKING-STORAGE SECTION.
001400
001500 77 ANY-DATE PIC 9(8) VALUE ZEROES.
001600 77 REQUIRED-DATE PIC 9(8) VALUE ZEROES.
001700
001800*---------------------------------
001900* Fields for date routines.
002000*---------------------------------
002100 77 FORMATTED-DATE PIC Z9/99/9999.
002200 77 DATE-MMDDCCYY PIC 9(8).
002300 77 DATE-QUOTIENT PIC 9999.
002400 77 DATE-REMAINDER PIC 9999.
002500
002600 77 VALID-DATE-FLAG PIC X.
002700 88 DATE-IS-INVALID VALUE "N".
002800 88 DATE-IS-ZERO VALUE "0".
002900 88 DATE-IS-VALID VALUE "Y".
003000 88 DATE-IS-OK VALUES "Y" "0".
003100
003200 01 DATE-CCYYMMDD PIC 9(8).
003300 01 FILLER REDEFINES DATE-CCYYMMDD.
003400 05 DATE-CCYY PIC 9999.
003500
003600 05 DATE-MM PIC 99.
003700 05 DATE-DD PIC 99.
003800
003900*---------------------------------
004000* User can set these values before
004100* performing GET-A-DATE.
004200*---------------------------------

004300 77 DATE-PROMPT PIC X(50) VALUE SPACE.
004400 77 DATE-ERROR-MESSAGE PIC X(50) VALUE SPACE.
004500*---------------------------------
004600* User can set this value before
004700* performing GET-A-DATE or CHECK-DATE.
004800*---------------------------------
004900 77 ZERO-DATE-IS-OK PIC X VALUE "N".
005000
005100 PROCEDURE DIVISION.
005200 PROGRAM-BEGIN.
005300 PERFORM OPENING-PROCEDURE.
005400 PERFORM MAIN-PROCESS.
005500 PERFORM CLOSING-PROCEDURE.
005600
005700 PROGRAM-EXIT.
005800 EXIT PROGRAM.
005900
006000 PROGRAM-DONE.
006100 STOP RUN.
006200
006300 OPENING-PROCEDURE.
006400
006500 CLOSING-PROCEDURE.
006600
006700 MAIN-PROCESS.
006800 PERFORM GET-TWO-DATES.
006900 PERFORM DISPLAY-AND-GET-DATES
007000 UNTIL REQUIRED-DATE = 00010101.
007100
007200 GET-TWO-DATES.
007300 PERFORM GET-ANY-DATE.
007400 PERFORM GET-REQUIRED-DATE.
007500
007600 GET-ANY-DATE.
007700 MOVE "Y" TO ZERO-DATE-IS-OK.
007800 MOVE "ENTER AN OPTIONAL MM/DD/CCYY?" TO DATE-PROMPT.
007900 MOVE "MUST BE ANY VALID DATE" TO DATE-ERROR-MESSAGE.
008000 PERFORM GET-A-DATE.
008100 MOVE DATE-CCYYMMDD TO ANY-DATE.
008200
008300 GET-REQUIRED-DATE.
008400 MOVE "N" TO ZERO-DATE-IS-OK.
008500 MOVE SPACE TO DATE-PROMPT.
008600 MOVE "MUST ENTER A VALID DATE" TO DATE-ERROR-MESSAGE.
008700 PERFORM GET-A-DATE.
008800 MOVE DATE-CCYYMMDD TO REQUIRED-DATE.

008900
009000 DISPLAY-AND-GET-DATES.
009100 PERFORM DISPLAY-THE-DATES.
009200 PERFORM GET-TWO-DATES.
009300
009400 DISPLAY-THE-DATES.
009500 MOVE ANY-DATE TO DATE-CCYYMMDD.
009600 PERFORM FORMAT-THE-DATE.
009700 DISPLAY "ANY DATE IS " FORMATTED-DATE.
009800 MOVE REQUIRED-DATE TO DATE-CCYYMMDD.
009900 PERFORM FORMAT-THE-DATE.
010000 DISPLAY "REQUIRED DATE IS " FORMATTED-DATE.
010100
010200*---------------------------------
010300* USAGE:
010400* MOVE "Y" (OR "N") TO ZERO-DATE-IS-OK. (optional)
010500* MOVE prompt TO DATE-PROMPT. (optional)
010600* MOVE message TO DATE-ERROR-MESSAGE (optional)
010700* PERFORM GET-A-DATE
010800* RETURNS:
010900* DATE-IS-OK (ZERO OR VALID)
011000* DATE-IS-VALID (VALID)
011100* DATE-IS-INVALID (BAD DATE)
011200*
011300* IF DATE IS VALID IT IS IN
011400* DATE-CCYYMMDD AND
011500* DATE-MMDDCCYY AND
011600* FORMATTED-DATE (formatted)
011700*---------------------------------
011800 GET-A-DATE.
011900 PERFORM ACCEPT-A-DATE.
012000 PERFORM RE-ACCEPT-A-DATE
012100 UNTIL DATE-IS-OK.
012200
012300 ACCEPT-A-DATE.
012400 IF DATE-PROMPT = SPACE
012500 DISPLAY "ENTER A DATE (MM/DD/CCYY)"
012600 ELSE
012700 DISPLAY DATE-PROMPT.
012800
012900 ACCEPT FORMATTED-DATE.
013000
013100 PERFORM EDIT-CHECK-DATE.
013200
013300 RE-ACCEPT-A-DATE.
013400 IF DATE-ERROR-MESSAGE = SPACE

013500 DISPLAY "INVALID DATE"
013600 ELSE
013700 DISPLAY DATE-ERROR-MESSAGE.
013800
013900 PERFORM ACCEPT-A-DATE.
014000
014100 EDIT-CHECK-DATE.
014200 PERFORM EDIT-DATE.
014300 PERFORM CHECK-DATE.
014400 MOVE DATE-MMDDCCYY TO FORMATTED-DATE.
014500
014600 EDIT-DATE.
014700 MOVE FORMATTED-DATE TO DATE-MMDDCCYY.
014800 PERFORM CONVERT-TO-CCYYMMDD.
014900
015000*---------------------------------
015100* USAGE:
015200* MOVE date(CCYYMMDD) TO DATE-CCYYMMDD.
015300* PERFORM CONVERT-TO-MMDDCCYY.
015400*
015500* RETURNS:
015600* DATE-MMDDCCYY.
015700*---------------------------------
015800 CONVERT-TO-MMDDCCYY.
015900 COMPUTE DATE-MMDDCCYY =
016000 DATE-CCYYMMDD * 10000.0001.
016100
016200*---------------------------------
016300* USAGE:
016400* MOVE date(MMDDCCYY) TO DATE-MMDDCCYY.
016500* PERFORM CONVERT-TO-CCYYMMDD.
016600*
016700* RETURNS:
016800* DATE-CCYYMMDD.
016900*---------------------------------
017000 CONVERT-TO-CCYYMMDD.
017100 COMPUTE DATE-CCYYMMDD =
017200 DATE-MMDDCCYY * 10000.0001.
017300
017400*---------------------------------
017500* USAGE:
017600* MOVE date(CCYYMMDD) TO DATE-CCYYMMDD.
017700* MOVE "Y" (OR "N") TO ZERO-DATE-IS-OK.
017800* PERFORM CHECK-DATE.
017900*
018000* RETURNS:

018100* DATE-IS-OK (ZERO OR VALID)
018200* DATE-IS-VALID (VALID)
018300* DATE-IS-INVALID (BAD DATE)
018400*
018500* Assume that the date is good, then
018600* test the date in the following
018700* steps. The routine stops if any
018800* of these conditions is true,
018900* and sets the valid date flag.
019000* Condition 1 returns the valid date
019100* flag set to "0" if ZERO-DATE-IS-OK
019200* is "Y", otherwise it sets the
019300* valid date flag to "N".
019400* If any other condition is true,
019500* the valid date flag is set to "N".
019600* 1. Is the date zeroes
019700* 2. Month > 12 or < 1
019800* 3. Day < 1 or > 31
019900* 4. Day > 30 and
020000* Month = 2 (February) or
020100* 4 (April) or
020200* 6 (June) or
020300* 9 (September) or
020400* 11 (November)
020500* Day > 29 and
020600* Month = 2 (February)
020700* 5. Day = 29 and
020800* Month = 2 and
020900* Not a leap year
021000* (A leap year is any year evenly
021100* divisible by 400 or by 4
021200* but not by 100).
021300*---------------------------------
021400 CHECK-DATE.
021500 MOVE "Y" TO VALID-DATE-FLAG.
021600 IF DATE-CCYYMMDD = ZEROES
021700 IF ZERO-DATE-IS-OK = "Y"
021800 MOVE "0" TO VALID-DATE-FLAG
021900 ELSE
022000 MOVE "N" TO VALID-DATE-FLAG
022100 ELSE
022200 IF DATE-MM < 1 OR DATE-MM > 12
022300 MOVE "N" TO VALID-DATE-FLAG
022400 ELSE
022500 IF DATE-DD < 1 OR DATE-DD > 31
022600 MOVE "N" TO VALID-DATE-FLAG

022700 ELSE
022800 IF (DATE-DD > 30) AND
022900 (DATE-MM = 2 OR 4 OR 6 OR 9 OR 11)
023000 MOVE "N" TO VALID-DATE-FLAG
023100 ELSE
023200 IF DATE-DD > 29 AND DATE-MM = 2
023300 MOVE "N" TO VALID-DATE-FLAG
023400 ELSE
023500 IF DATE-DD = 29 AND DATE-MM = 2
023600 DIVIDE DATE-CCYY BY 400 GIVING DATE-QUOTIENT
023700 REMAINDER DATE-REMAINDER
023800 IF DATE-REMAINDER = 0
023900 MOVE "Y" TO VALID-DATE-FLAG
024000 ELSE
024100 DIVIDE DATE-CCYY BY 100 GIVING DATE-QUOTIENT
024200 REMAINDER DATE-REMAINDER
024300 IF DATE-REMAINDER = 0
024400 MOVE "N" TO VALID-DATE-FLAG
024500 ELSE
024600 DIVIDE DATE-CCYY BY 4 GIVING DATE-QUOTIENT
024700 REMAINDER DATE-REMAINDER
024800 IF DATE-REMAINDER = 0
024900 MOVE "Y" TO VALID-DATE-FLAG
025000 ELSE
025100 MOVE "N" TO VALID-DATE-FLAG.
025200*---------------------------------
025300* USAGE:
025400* MOVE date(CCYYMMDD) TO DATE-CCYYMMDD.
025500* PERFORM FORMAT-THE-DATE.
025600*
025700* RETURNS:
025800* FORMATTED-DATE
025900* DATE-MMDDCCYY.
026000*---------------------------------
026100 FORMAT-THE-DATE.
026200 PERFORM CONVERT-TO-MMDDCCYY.
026300 MOVE DATE-MMDDCCYY TO FORMATTED-DATE.
026400

The output of date05.cbl displays errors when dates are incorrect depending on whether zero entry is
allowed. The prompt and error messages for the fields change. The following is an example of the output
for date05.cbl:

OUTPUT:
ENTER AN OPTIONAL DATE(MM/DD/CCYY)?

ENTER A DATE (MM/DD/CCYY)

MUST ENTER A VALID DATE
ENTER A DATE (MM/DD/CCYY)
12171993
ANY DATE IS 0/00/0000
REQUIRED DATE IS 12/17/1993
ENTER AN OPTIONAL DATE(MM/DD/CCYY)?
454519922
MUST BE ANY VALID DATE
ENTER AN OPTIONAL DATE(MM/DD/CCYY)?
02291968
ENTER A DATE (MM/DD/CCYY)
03041997
ANY DATE IS 2/29/1968
REQUIRED DATE IS 3/04/1997
ENTER AN OPTIONAL DATE(MM/DD/CCYY)?

ENTER A DATE (MM/DD/CCYY)
01/01/0001

c>

ANALYSIS: The program accepts and displays two date fields. One can be entered as zeroes or a valid
date (ANY-DATE); the other will accept only a valid date (REQUIRED-DATE). The program is set up
to test whether the validation for these two types of entry is handled correctly.

Working storage for two dates is defined at lines 001500 and 001600. These are used for the testing
program and will not be a part of the date logic directly.

The WORKING-STORAGE for the date routines is defined at lines 001800 through 004900. The
DATE-ENTRY-FIELD is renamed FORMATTED-DATE at line 002100, but aside from this change, the
fields will be familiar down through line 003700.

Starting at line 003900, three new fields are defined that are designed to make the date routines more
flexible. DATE-PROMPT at line 004300 can be filled in by the user to provide a prompt for the date
entry. DATE-ERROR-MESSAGE at line 004400 can be filled in to provide a specific error message if
the date is invalid. ZERO-DATE-IS-OK at line 004900 is a flag that can be set to yes or no and controls
the way the DATE-CHECK logic behaves. If ZERO-DATE-IS-OK is set to "N", a date entry of zero is
invalid and the user will be forced to enter a valid date. If ZERO-DATE-IS-OK is set to "Y", the routine
will accept zero as a valid entry.

Date handling routines begin at line 010200, and five separate routines have been created. At line
011800, GET-A-DATE can be used to perform date entry. At lines 015800 and 017000, the routines
CONVERT-TO-MMDDCCYY and CONVERT-TO-CCYYMMDD have been created to convert back
and forth between DATE-MMDDCCYY and DATE-CCYYMMDD.

At line 021400, CHECK-DATE can be used to validate a date that has been moved to

DATE-CCYYMMDD.

Finally, at line 026100, the routine FORMAT-THE-DATE can be used to create a display or print a
version of a date by moving it to DATE-CCYYMMDD and then performing FORMAT-THE-DATE.

The DATE-PROMPT variable is used in ACCEPT-A-DATE at line 012300. If DATE-PROMPT has
been filled in, it is used; otherwise, a general-purpose prompt, "ENTER A DATE (MM/DD/CCYY)", is
displayed.

The DATE-ERROR-MESSAGE field is used in a similar manner to DATE-PROMT--in
RE-ACCEPT-A-DATE at line 013300. If DATE-ERROR-MESSAGE has been filled in, then
DATE-ERROR-MESSAGE is displayed in the event of an error. If DATE-ERROR-MESSAGE is
spaces, a general-purpose error message, "INVALID DATE",is displayed.

The ZERO-DATE-IS-OK flag is used in the routine that begins at line 021400. The result of the original
test for a zero date has been changed slightly. If the date is a zero and if ZERO-DATE-IS-OK = "Y", "0"
is moved to VALID-DATE-FLAG; otherwise, a zero date is considered to be an error and "N" is moved
to VALID-DATE-FLAG.

The remaining date routines are fairly easy to follow.

The main logic of the program is to loop and repetitively accept two date fields. GET-ANY-DATE at
007600 allows zeroes to be entered, and DATE-PROMPT and DATE-ERROR-MESSAGE are modified
before the data entry is done.

GET-REQUIRED-DATE at line 008300 does not allow zeroes, and clears the DATE-PROMPT so that
the default prompt will be used, but does load a special error message into DATE-ERROR-MESSAGE.

The GET-ANY-DATE routine returns the entered date in DATE-CCYYMMDD, so at line 008100,
immediately after performing GET-A-DATE, DATE-CCYYMMDD is moved to ANY-DATE. The same
is done for REQUIRED-DATE at line 008800.

The date05.cbl program ends when the user enters a date of 01/01/0001 for the required date field.

Code, compile, and run date05.cbl. Test various date entries until you are satisfied that the routines are
working correctly. Copy date05.cbl to wsdate01.cbl and delete everything except lines 001800 through
004900. This creates the WORKING-STORAGE for date handling. Copy date05.cbl to pldate01.cbl and
delete everything except lines 010200 through 026400. This creates the program logic for date handling.

Finally, code and compile Listing 19.25, date06.cbl. Run it, testing that it behaves the same as date05.cbl.
You now have a general-purpose date-entry and validation routine and date- handling routines.

TYPE: Listing 19.25. Using the COPY files for date handling.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. DATE06.
000300*--------------------------------
000400* Testing Date Entry and handling
000500*-------------------------------
000600 ENVIRONMENT DIVISION.

000700 INPUT-OUTPUT SECTION.
000800 FILE-CONTROL.
000900
001000 DATA DIVISION.
001100 FILE SECTION.
001200
001300 WORKING-STORAGE SECTION.
001400
001500 77 ANY-DATE PIC 9(8) VALUE ZEROES.
001600 77 REQUIRED-DATE PIC 9(8) VALUE ZEROES.
001700
001800 COPY "WSDATE01.CBL".
001900
002000 PROCEDURE DIVISION.
002100 PROGRAM-BEGIN.
002200 PERFORM OPENING-PROCEDURE.
002300 PERFORM MAIN-PROCESS.
002400 PERFORM CLOSING-PROCEDURE.
002500
002600 PROGRAM-EXIT.
002700 EXIT PROGRAM.
002800
002900 PROGRAM-DONE.
003000 STOP RUN.
003100
003200 OPENING-PROCEDURE.
003300
003400 CLOSING-PROCEDURE.
003500
003600 MAIN-PROCESS.
003700 PERFORM GET-TWO-DATES.
003800 PERFORM DISPLAY-AND-GET-DATES
003900 UNTIL REQUIRED-DATE = 00010101.
004000
004100 GET-TWO-DATES.
004200 PERFORM GET-ANY-DATE.
004300 PERFORM GET-REQUIRED-DATE.
004400
004500 GET-ANY-DATE.
004600 MOVE "Y" TO ZERO-DATE-IS-OK.
004700 MOVE "ENTER AN OPTIONAL MM/DD/CCYY?" TO DATE-PROMPT.
004800 MOVE "MUST BE ANY VALID DATE" TO DATE-ERROR-MESSAGE.
004900 PERFORM GET-A-DATE.
005000 MOVE DATE-CCYYMMDD TO ANY-DATE.
005100
005200 GET-REQUIRED-DATE.

005300 MOVE "N" TO ZERO-DATE-IS-OK.
005400 MOVE SPACE TO DATE-PROMPT.
005500 MOVE "MUST ENTER A VALID DATE" TO DATE-ERROR-MESSAGE.
005600 PERFORM GET-A-DATE.
005700 MOVE DATE-CCYYMMDD TO REQUIRED-DATE.
005800
005900 DISPLAY-AND-GET-DATES.
006000 PERFORM DISPLAY-THE-DATES.
006100 PERFORM GET-TWO-DATES.
006200
006300 DISPLAY-THE-DATES.
006400 MOVE ANY-DATE TO DATE-CCYYMMDD.
006500 PERFORM FORMAT-THE-DATE.
006600 DISPLAY "ANY DATE IS " FORMATTED-DATE.
006700 MOVE REQUIRED-DATE TO DATE-CCYYMMDD.
006800 PERFORM FORMAT-THE-DATE.
006900 DISPLAY "REQUIRED DATE IS " FORMATTED-DATE.
007000
007100 COPY "PLDATE01.CBL".
007200

With the logic for date entry under control, you are ready to start work on entering data into the voucher
file.

Summary
Data entry can be complicated. Validations and dates frequently cause problems and some maintenance
modules don't use all the modes (add, change, inquire, and delete). Today, you learned the following
basics:

A control file is used to store basic values used in one or more parts of a COBOL system of
programs.

●

A control file usually is a single indexed record containing the key values.●

The maintenance program for a control file usually contains only change and inquire modes. It is
different than a standard maintenance module because the user usually does not need to see or
change the key to the file.

●

Formatted dates can be displayed by using a field with the / edit character, for example, PIC
99/99/9999. This type of formatted field also can be used for entering dates.

●

You can convert a date from MMDDCCYY format to CCYYMMDD format, and vice versa, by
multiplying the date by 10000.0001.

●

Use a REDEFINES command to define different types of variables that use the same space in
memory.

●

A leap year occurs on years that are evenly divisible by 400, or on years that are evenly divisible
by 4 but not by 100.

●

Date validation involves separating a date into its components--year, month, and day--and
checking each of the parts.

●

Q&A
Q Does a date validation routine have to allow any year?

A No. You can specify that no date fall outside a certain range by adding an additional test to the
date validation routine. The following listing prevents years prior to 1900 being entered. The lines
that have been added have no line numbers so that they will stand out:

021500 MOVE "Y" TO VALID-DATE-FLAG.
021600 IF DATE-CCYYMMDD = ZEROES
021700 IF ZERO-DATE-IS-OK = "Y"
021800 MOVE "0" TO VALID-DATE-FLAG
021900 ELSE
022000 MOVE "N" TO VALID-DATE-FLAG
022100 ELSE
 IF DATE-CC < 19
 MOVE "N" TO VALID-DATE-FLAG
 ELSE
022200 IF DATE-MM < 1 OR DATE-MM > 12
022300 MOVE "N" TO VALID-DATE-FLAG
022400 ELSE
022500 IF DATE-DD < 1 OR DATE-DD > 31
022600 MOVE "N" TO VALID-DATE-FLAG
022700 ELSE
022800 IF (DATE-DD > 30) AND
022900 (DATE-MM = 2 OR 4 OR 6 OR 9 OR 11)
023000 MOVE "N" TO VALID-DATE-FLAG
023100 ELSE
023200 IF DATE-DD > 29 AND DATE-MM = 2
023300 MOVE "N" TO VALID-DATE-FLAG
023400 ELSE
023500 IF DATE-DD = 29 AND DATE-MM = 2
023600 DIVIDE DATE-CCYY BY 400 GIVING DATE-QUOTIENT
023700 REMAINDER DATE-REMAINDER
023800 IF DATE-REMAINDER = 0
023900 MOVE "Y" TO VALID-DATE-FLAG

024000 ELSE
024100 DIVIDE DATE-CCYY BY 100 GIVING DATE-QUOTIENT
024200 REMAINDER DATE-REMAINDER
024300 IF DATE-REMAINDER = 0
024400 MOVE "N" TO VALID-DATE-FLAG
024500 ELSE
024600 DIVIDE DATE-CCYY BY 4 GIVING DATE-QUOTIENT
024700 REMAINDER DATE-REMAINDER
024800 IF DATE-REMAINDER = 0
024900 MOVE "Y" TO VALID-DATE-FLAG
025000 ELSE
025100 MOVE "N" TO VALID-DATE-FLAG.
025200

Q Can REDEFINES appear within REDEFINES?

A Yes. In fact, if you need to test the full four-digit year, you might use a variable definition that
looks something like the next listing. This defines eight bytes that contain six variables.
DATE-CCYYMMDD is a numeric eight-byte field. DATE-CCYY is a numeric four-byte field in
the first four bytes. DATE-CC is a numeric two-byte field in the first two bytes. DATE-YY is a
numeric two-byte field in positions 3 and 4. DATE-MM is a numeric two-byte field in positions 5
and 6, and DATE-DD is a numeric two-byte field in positions 7 and 8.

003200 01 DATE-CCYYMMDD PIC 9(8).
003300 01 FILLER REDEFINES DATE-CCYYMMDD.
003400 05 DATE-CCYY PIC 9999.
003500 05 FILLER REDEFINES DATE-CCYY.
003600 10 DATE-CC PIC 99.
003700 10 DATE-YY PIC 99.
003800 05 DATE-MM PIC 99.
003900 05 DATE-DD PIC 99.

Workshop

Quiz

1. The variable defined in the following listing is used to store the time in hour, minute, second
format (using a 24-hour clock) and includes a redefinition. How many bytes of memory are used
by the definition?

000100 01 TIME-HHMMSS PIC 9(6).
000200 01 FILLER REDEFINES TIME-HHMMSS.
000300 05 TIME-HH PIC 99.
000400 05 TIME-MM PIC 99.
000500 05 TIME-SS PIC 99.

2. How long is TIME-HHMMSS and what type of data will it hold?

3. How long is TIME-HH and what type of data will it hold?

4. How long is TIME-MM and what type of data will it hold?

5. How long is TIME-SS and what type of data will it hold?

Exercises

1. Print out copies of stcmnt04.cbl from Day 18, "Calling Other Programs," and ctlmnt01.cbl,
which is Listing 19.5 from today's lesson. Compare the change and inquire logic of ctlmnt01.cbl
with the change and inquire logic of stcmnt04.cbl. Try to get a feel for the changes that were made
to the logic flow for ctlmnt01.cbl to adjust for the fact that there is only one record, and for the fact
that the user doesn't have to enter or even see the key field.

2. Using data defined in the listing in the Q&A section, question 2, modify the listing in the Q&A
section, question 1, to exclude dates earlier than 1920, and later than the year 2150.

3. Print out wsdate01.cbl and pldate01.cbl and, using them as guides, create
WORKING-STORAGE and a routine analogous to CHECK-DATE; however, this routine will be
called CHECK-TIME, and will be used to validate time entries of hours, minutes, and seconds,
with the following conditions: the hour can be in the range zero to 23, and minutes and seconds
can be in the range 0 to 59.

Hint: There is no data entry in this logic, so the logic will include only WORKING-STORAGE, as
in the listing in the Q&A section, question 2, and a VALID-TIME-FLAG. TIME-HHMMSS = 0 is
a valid condition, so there will be no need for a TIME-IS-ZERO level 88.

Don't feel bad if you have to peek at the answers. The answer to this exercise includes a program
that can be used to test your logic.

Previous chapter Next chapter Contents

Macmillan Computer Publishing USA

© Copyright, Macmillan Computer Publishing. All rights reserved.

Teach Yourself COBOL in 21 days,
Second Edition

Previous chapter Next chapter Contents

- Day 20 -
More Complex Data Entry

You now have mastered some of the complex data entry problems that a program might have to tackle. It
is time to put this new knowledge to use. Today and in Day 21, "Selecting, Sorting, and Reporting," you
will complete all the pieces needed for the bills payment system described in Day 19, "Complex Data
Entry Problems."

Today, you learn about the following parts of the bills payment system:

Maintaining the voucher file●

Selecting individual vouchers●

Completing the payment cycle on a voucher●

Maintaining the Voucher File
Figure 20.1 highlights the parts of the bills payment system that will be covered today--steps 2, 7, and 12.
This section of the chapter deals with step 2 of the process.

A voucher is created every time a bill arrives. The voucher record contains important information needed
for selecting the bill for payment and for tracking the bill, such as due date, vendor, amount, and invoice
number.

Voucher Entry, highlighted as step 2 of Figure 20.1, really is a maintenance program with a few extra
features. Listing 20.1 is vchmnt01.cbl. When an invoice is received, the voucher entry cycle begins,
starting with adding a voucher for the invoice to the system. Although the primary use of
vchmnt01.cbl is to add new vouchers to the voucher file, it is possible at any time in the life of a
voucher that it might have to be changed or deleted. vchmnt01.cbl is a complete maintenance
module that primarily is used in add mode.

Figure 20.1.
The bills payment system with steps 2, 7, and 12 highlighted.

TYPE: Listing 20.1. Voucher entry.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. VCHMNT01.
000300*--------------------------------
000400* Add, Change, Inquire and Delete
000500* for the Voucher File.
000600* All fields are displayed, but
000700* SELECTED, PAID-AMOUNT, PAID-DATE and
000800* CHECK-NO are not modifiable
000900*--------------------------------
001000 ENVIRONMENT DIVISION.
001100 INPUT-OUTPUT SECTION.
001200 FILE-CONTROL.
001300
001400 COPY "SLVND02.CBL".
001500
001600 COPY "SLVOUCH.CBL".
001700
001800 COPY "SLCONTRL.CBL".
001900
002000 DATA DIVISION.
002100 FILE SECTION.
002200
002300 COPY "FDVND04.CBL".
002400
002500 COPY "FDVOUCH.CBL".
002600
002700 COPY "FDCONTRL.CBL".
002800
002900 WORKING-STORAGE SECTION.
003000
003100 77 MENU-PICK PIC 9.
003200 88 MENU-PICK-IS-VALID VALUES 0 THRU 4.
003300
003400 77 THE-MODE PIC X(7).
003500 77 WHICH-FIELD PIC 9.
003600 77 OK-TO-DELETE PIC X.
003700 77 VOUCHER-RECORD-FOUND PIC X.
003800 77 CONTROL-RECORD-FOUND PIC X.
003900 77 VENDOR-RECORD-FOUND PIC X.
004000 77 A-DUMMY PIC X.

file:///D|/Cool Stuff/old/ftp/Sams.Teach.Yourself.Cobol.In.21.Days/Teach Yourself Cobol in 21 Days/ch20/01.htm

004100 77 ADD-ANOTHER PIC X.
004200
004300 77 VOUCHER-NUMBER-FIELD PIC Z(5).
004400 77 VOUCHER-AMOUNT-FIELD PIC ZZZ,ZZ9.99-.
004500 77 VOUCHER-PAID-AMOUNT-FIELD PIC ZZZ,ZZ9.99-.
004600
004700 77 ERROR-MESSAGE PIC X(79) VALUE SPACE.
004800
004900 COPY "WSCASE01.CBL".
005000
005100 COPY "WSDATE01.CBL".
005200
005300 PROCEDURE DIVISION.
005400 PROGRAM-BEGIN.
005500 PERFORM OPENING-PROCEDURE.
005600 PERFORM MAIN-PROCESS.
005700 PERFORM CLOSING-PROCEDURE.
005800
005900 PROGRAM-EXIT.
006000 EXIT PROGRAM.
006100
006200 PROGRAM-DONE.
006300 STOP RUN.
006400
006500 OPENING-PROCEDURE.
006600 OPEN I-O VOUCHER-FILE.
006700 OPEN I-O VENDOR-FILE.
006800 OPEN I-O CONTROL-FILE.
006900
007000 CLOSING-PROCEDURE.
007100 CLOSE VOUCHER-FILE.
007200 CLOSE VENDOR-FILE.
007300 CLOSE CONTROL-FILE.
007400
007500 MAIN-PROCESS.
007600 PERFORM GET-MENU-PICK.
007700 PERFORM MAINTAIN-THE-FILE
007800 UNTIL MENU-PICK = 0.
007900
008000*--------------------------------
008100* MENU
008200*--------------------------------
008300 GET-MENU-PICK.
008400 PERFORM DISPLAY-THE-MENU.
008500 PERFORM ACCEPT-MENU-PICK.
008600 PERFORM RE-ACCEPT-MENU-PICK

008700 UNTIL MENU-PICK-IS-VALID.
008800
008900 DISPLAY-THE-MENU.
009000 PERFORM CLEAR-SCREEN.
009100 DISPLAY " PLEASE SELECT:".
009200 DISPLAY " ".
009300 DISPLAY " 1. ADD RECORDS".
009400 DISPLAY " 2. CHANGE A RECORD".
009500 DISPLAY " 3. LOOK UP A RECORD".
009600 DISPLAY " 4. DELETE A RECORD".
009700 DISPLAY " ".
009800 DISPLAY " 0. EXIT".
009900 PERFORM SCROLL-LINE 8 TIMES.
010000
010100 ACCEPT-MENU-PICK.
010200 DISPLAY "YOUR CHOICE (0-4)?".
010300 ACCEPT MENU-PICK.
010400
010500 RE-ACCEPT-MENU-PICK.
010600 DISPLAY "INVALID SELECTION - PLEASE RE-TRY.".
010700 PERFORM ACCEPT-MENU-PICK.
010800
010900 CLEAR-SCREEN.
011000 PERFORM SCROLL-LINE 25 TIMES.
011100
011200 SCROLL-LINE.
011300 DISPLAY " ".
011400
011500 MAINTAIN-THE-FILE.
011600 PERFORM DO-THE-PICK.
011700 PERFORM GET-MENU-PICK.
011800
011900 DO-THE-PICK.
012000 IF MENU-PICK = 1
012100 PERFORM ADD-MODE
012200 ELSE
012300 IF MENU-PICK = 2
012400 PERFORM CHANGE-MODE
012500 ELSE
012600 IF MENU-PICK = 3
012700 PERFORM INQUIRE-MODE
012800 ELSE
012900 IF MENU-PICK = 4
013000 PERFORM DELETE-MODE.
013100
013200*--------------------------------

013300* ADD
013400*--------------------------------
013500 ADD-MODE.
013600 MOVE "ADD" TO THE-MODE.
013700 MOVE "Y" TO ADD-ANOTHER.
013800 PERFORM GET-NEW-RECORD-KEY.
013900 PERFORM ADD-RECORDS
014000 UNTIL ADD-ANOTHER = "N".
014100
014200 GET-NEW-RECORD-KEY.
014300 PERFORM ACCEPT-NEW-RECORD-KEY.
014400 PERFORM RE-ACCEPT-NEW-RECORD-KEY
014500 UNTIL VOUCHER-RECORD-FOUND = "N".
014600
014700 PERFORM DISPLAY-VOUCHER-NUMBER.
014800
014900 ACCEPT-NEW-RECORD-KEY.
015000 PERFORM INIT-VOUCHER-RECORD.
015100 PERFORM RETRIEVE-NEXT-VOUCHER-NUMBER.
015200
015300 PERFORM READ-VOUCHER-RECORD.
015400
015500 RE-ACCEPT-NEW-RECORD-KEY.
015600 PERFORM ACCEPT-NEW-RECORD-KEY.
015700
015800 RETRIEVE-NEXT-VOUCHER-NUMBER.
015900 PERFORM READ-CONTROL-RECORD.
016000 ADD 1 TO CONTROL-LAST-VOUCHER.
016100 MOVE CONTROL-LAST-VOUCHER TO VOUCHER-NUMBER.
016200 PERFORM REWRITE-CONTROL-RECORD.
016300
016400 ADD-RECORDS.
016500 PERFORM ENTER-REMAINING-FIELDS.
016600 PERFORM WRITE-VOUCHER-RECORD.
016700 PERFORM GET-ADD-ANOTHER.
016800
016900 GET-ADD-ANOTHER.
017000 PERFORM ACCEPT-ADD-ANOTHER.
017100 PERFORM RE-ACCEPT-ADD-ANOTHER
017200 UNTIL ADD-ANOTHER = "Y" OR "N".
017300
017400 ACCEPT-ADD-ANOTHER.
017500 DISPLAY "ADD ANOTHER VOUCHER(Y/N)?".
017600 ACCEPT ADD-ANOTHER.
017700
017800 INSPECT ADD-ANOTHER

017900 CONVERTING LOWER-ALPHA
018000 TO UPPER-ALPHA.
018100
018200 IF ADD-ANOTHER = "Y"
018300 PERFORM GET-NEW-RECORD-KEY.
018400
018500 RE-ACCEPT-ADD-ANOTHER.
018600 DISPLAY "YOU MUST ENTER YES OR NO".
018700 PERFORM ACCEPT-ADD-ANOTHER.
018800
018900 ENTER-REMAINING-FIELDS.
019000 PERFORM ENTER-VOUCHER-VENDOR.
019100 PERFORM ENTER-VOUCHER-INVOICE.
019200 PERFORM ENTER-VOUCHER-FOR.
019300 PERFORM ENTER-VOUCHER-AMOUNT.
019400 PERFORM ENTER-VOUCHER-DATE.
019500 PERFORM ENTER-VOUCHER-DUE.
019600 PERFORM ENTER-VOUCHER-DEDUCTIBLE.
019700 PERFORM ENTER-VOUCHER-SELECTED.
019800
019900*--------------------------------
020000* CHANGE
020100*--------------------------------
020200 CHANGE-MODE.
020300 MOVE "CHANGE" TO THE-MODE.
020400 PERFORM GET-EXISTING-RECORD.
020500 PERFORM CHANGE-RECORDS
020600 UNTIL VOUCHER-NUMBER = ZEROES.
020700
020800 CHANGE-RECORDS.
020900 PERFORM GET-FIELD-TO-CHANGE.
021000 PERFORM CHANGE-ONE-FIELD
021100 UNTIL WHICH-FIELD = ZERO.
021200 PERFORM GET-EXISTING-RECORD.
021300
021400 GET-FIELD-TO-CHANGE.
021500 PERFORM DISPLAY-ALL-FIELDS.
021600 PERFORM ASK-WHICH-FIELD.
021700
021800 ASK-WHICH-FIELD.
021900 PERFORM ACCEPT-WHICH-FIELD.
022000 PERFORM RE-ACCEPT-WHICH-FIELD
022100 UNTIL WHICH-FIELD < 8.
022200
022300 ACCEPT-WHICH-FIELD.
022400 DISPLAY "ENTER THE NUMBER OF THE FIELD".

022500 DISPLAY "TO CHANGE (1-7) OR 0 TO EXIT".
022600 ACCEPT WHICH-FIELD.
022700
022800 RE-ACCEPT-WHICH-FIELD.
022900 DISPLAY "INVALID ENTRY".
023000 PERFORM ACCEPT-WHICH-FIELD.
023100
023200 CHANGE-ONE-FIELD.
023300 PERFORM CHANGE-THIS-FIELD.
023400 PERFORM GET-FIELD-TO-CHANGE.
023500
023600 CHANGE-THIS-FIELD.
023700 IF WHICH-FIELD = 1
023800 PERFORM ENTER-VOUCHER-VENDOR.
023900 IF WHICH-FIELD = 2
024000 PERFORM ENTER-VOUCHER-INVOICE.
024100 IF WHICH-FIELD = 3
024200 PERFORM ENTER-VOUCHER-FOR.
024300 IF WHICH-FIELD = 4
024400 PERFORM ENTER-VOUCHER-AMOUNT.
024500 IF WHICH-FIELD = 5
024600 PERFORM ENTER-VOUCHER-DATE.
024700 IF WHICH-FIELD = 6
024800 PERFORM ENTER-VOUCHER-DUE.
024900 IF WHICH-FIELD = 7
025000 PERFORM ENTER-VOUCHER-DEDUCTIBLE.
025100
025200 PERFORM REWRITE-VOUCHER-RECORD.
025300
025400*--------------------------------
025500* INQUIRE
025600*--------------------------------
025700 INQUIRE-MODE.
025800 MOVE "DISPLAY" TO THE-MODE.
025900 PERFORM GET-EXISTING-RECORD.
026000 PERFORM INQUIRE-RECORDS
026100 UNTIL VOUCHER-NUMBER = ZEROES.
026200
026300 INQUIRE-RECORDS.
026400 PERFORM DISPLAY-ALL-FIELDS.
026500 PERFORM GET-EXISTING-RECORD.
026600
026700*--------------------------------
026800* DELETE
026900*--------------------------------
027000 DELETE-MODE.

027100 MOVE "DELETE" TO THE-MODE.
027200 PERFORM GET-EXISTING-RECORD.
027300 PERFORM DELETE-RECORDS
027400 UNTIL VOUCHER-NUMBER = ZEROES.
027500
027600 DELETE-RECORDS.
027700 PERFORM DISPLAY-ALL-FIELDS.
027800
027900 PERFORM ASK-OK-TO-DELETE.
028000
028100 IF OK-TO-DELETE = "Y"
028200 PERFORM DELETE-VOUCHER-RECORD.
028300
028400 PERFORM GET-EXISTING-RECORD.
028500
028600 ASK-OK-TO-DELETE.
028700 PERFORM ACCEPT-OK-TO-DELETE.
028800
028900 PERFORM RE-ACCEPT-OK-TO-DELETE
029000 UNTIL OK-TO-DELETE = "Y" OR "N".
029100
029200 ACCEPT-OK-TO-DELETE.
029300 DISPLAY "DELETE THIS RECORD (Y/N)?".
029400 ACCEPT OK-TO-DELETE.
029500 INSPECT OK-TO-DELETE
029600 CONVERTING LOWER-ALPHA TO UPPER-ALPHA.
029700
029800 RE-ACCEPT-OK-TO-DELETE.
029900 DISPLAY "YOU MUST ENTER YES OR NO".
030000 PERFORM ACCEPT-OK-TO-DELETE.
030100
030200*--------------------------------
030300* Routines shared by all modes
030400*--------------------------------
030500 INIT-VOUCHER-RECORD.
030600 MOVE SPACE TO VOUCHER-INVOICE
030700 VOUCHER-FOR
030800 VOUCHER-DEDUCTIBLE
030900 VOUCHER-SELECTED.
031000 MOVE ZEROES TO VOUCHER-NUMBER
031100 VOUCHER-VENDOR
031200 VOUCHER-AMOUNT
031300 VOUCHER-DATE
031400 VOUCHER-DUE
031500 VOUCHER-PAID-AMOUNT
031600 VOUCHER-PAID-DATE

031700 VOUCHER-CHECK-NO.
031800
031900*--------------------------------
032000* Routines shared Add and Change
032100*--------------------------------
032200 ENTER-VOUCHER-VENDOR.
032300 PERFORM ACCEPT-VOUCHER-VENDOR.
032400 PERFORM RE-ACCEPT-VOUCHER-VENDOR
032500 UNTIL VOUCHER-VENDOR NOT = ZEROES AND
032600 VENDOR-RECORD-FOUND = "Y".
032700
032800 ACCEPT-VOUCHER-VENDOR.
032900 DISPLAY "ENTER VENDOR".
033000 ACCEPT VOUCHER-VENDOR.
033100 PERFORM EDIT-CHECK-VOUCHER-VENDOR.
033200 PERFORM DISPLAY-VOUCHER-VENDOR.
033300
033400 RE-ACCEPT-VOUCHER-VENDOR.
033500 DISPLAY ERROR-MESSAGE.
033600 PERFORM ACCEPT-VOUCHER-VENDOR.
033700
033800 EDIT-CHECK-VOUCHER-VENDOR.
033900 PERFORM EDIT-VOUCHER-VENDOR.
034000 PERFORM CHECK-VOUCHER-VENDOR.
034100
034200 EDIT-VOUCHER-VENDOR.
034300
034400 CHECK-VOUCHER-VENDOR.
034500 PERFORM VOUCHER-VENDOR-REQUIRED.
034600 IF VOUCHER-VENDOR NOT = ZEROES
034700 PERFORM VOUCHER-VENDOR-ON-FILE.
034800
034900 VOUCHER-VENDOR-REQUIRED.
035000 IF VOUCHER-VENDOR = ZEROES
035100 MOVE "VENDOR MUST BE ENTERED"
035200 TO ERROR-MESSAGE.
035300
035400 VOUCHER-VENDOR-ON-FILE.
035500 MOVE VOUCHER-VENDOR TO VENDOR-NUMBER.
035600 PERFORM READ-VENDOR-RECORD.
035700 IF VENDOR-RECORD-FOUND = "N"
035800 MOVE "VENDOR NOT ON FILE"
035900 TO ERROR-MESSAGE.
036000
036100 ENTER-VOUCHER-INVOICE.
036200 PERFORM ACCEPT-VOUCHER-INVOICE.

036300 PERFORM RE-ACCEPT-VOUCHER-INVOICE
036400 UNTIL VOUCHER-INVOICE NOT = SPACE.
036500
036600 ACCEPT-VOUCHER-INVOICE.
036700 DISPLAY "ENTER INVOICE NUMBER".
036800 ACCEPT VOUCHER-INVOICE.
036900 INSPECT VOUCHER-INVOICE
037000 CONVERTING LOWER-ALPHA
037100 TO UPPER-ALPHA.
037200
037300 RE-ACCEPT-VOUCHER-INVOICE.
037400 DISPLAY "INVOICE MUST BE ENTERED".
037500 PERFORM ACCEPT-VOUCHER-INVOICE.
037600
037700 ENTER-VOUCHER-FOR.
037800 PERFORM ACCEPT-VOUCHER-FOR.
037900 PERFORM RE-ACCEPT-VOUCHER-FOR
038000 UNTIL VOUCHER-FOR NOT = SPACE.
038100
038200 ACCEPT-VOUCHER-FOR.
038300 DISPLAY "WHAT FOR?".
038400 ACCEPT VOUCHER-FOR.
038500 INSPECT VOUCHER-FOR
038600 CONVERTING LOWER-ALPHA
038700 TO UPPER-ALPHA.
038800
038900 RE-ACCEPT-VOUCHER-FOR.
039000 DISPLAY "A DESCRIPTION MUST BE ENTERED".
039100 PERFORM ACCEPT-VOUCHER-FOR.
039200
039300 ENTER-VOUCHER-AMOUNT.
039400 PERFORM ACCEPT-VOUCHER-AMOUNT.
039500 PERFORM RE-ACCEPT-VOUCHER-AMOUNT
039600 UNTIL VOUCHER-AMOUNT NOT = ZEROES.
039700
039800 ACCEPT-VOUCHER-AMOUNT.
039900 DISPLAY "ENTER INVOICE AMOUNT".
040000 ACCEPT VOUCHER-AMOUNT-FIELD.
040100 MOVE VOUCHER-AMOUNT-FIELD TO VOUCHER-AMOUNT.
040200
040300 RE-ACCEPT-VOUCHER-AMOUNT.
040400 DISPLAY "AMOUNT MUST NOT BE ZERO".
040500 PERFORM ACCEPT-VOUCHER-AMOUNT.
040600
040700 ENTER-VOUCHER-DATE.
040800 MOVE "N" TO ZERO-DATE-IS-OK.

040900 MOVE "ENTER INVOICE DATE(MM/DD/CCYY)?"
041000 TO DATE-PROMPT.
041100 MOVE "AN INVOICE DATE IS REQUIRED"
041200 TO DATE-ERROR-MESSAGE.
041300 PERFORM GET-A-DATE.
041400 MOVE DATE-CCYYMMDD TO VOUCHER-DATE.
041500
041600 ENTER-VOUCHER-DUE.
041700 MOVE "N" TO ZERO-DATE-IS-OK.
041800 MOVE "ENTER DUE DATE(MM/DD/CCYY)?"
041900 TO DATE-PROMPT.
042000 MOVE "A DUE DATE IS REQUIRED"
042100 TO DATE-ERROR-MESSAGE.
042200 PERFORM GET-A-DATE.
042300 MOVE DATE-CCYYMMDD TO VOUCHER-DUE.
042400
042500
042600 ENTER-VOUCHER-DEDUCTIBLE.
042700 PERFORM ACCEPT-VOUCHER-DEDUCTIBLE.
042800 PERFORM RE-ACCEPT-VOUCHER-DEDUCTIBLE
042900 UNTIL VOUCHER-DEDUCTIBLE = "Y" OR "N".
043000
043100 ACCEPT-VOUCHER-DEDUCTIBLE.
043200 DISPLAY "IS THIS TAX DEDUCTIBLE?".
043300 ACCEPT VOUCHER-DEDUCTIBLE.
043400 INSPECT VOUCHER-DEDUCTIBLE
043500 CONVERTING LOWER-ALPHA
043600 TO UPPER-ALPHA.
043700
043800 RE-ACCEPT-VOUCHER-DEDUCTIBLE.
043900 DISPLAY "MUST BE YES OR NO".
044000 PERFORM ACCEPT-VOUCHER-DEDUCTIBLE.
044100
044200 ENTER-VOUCHER-SELECTED.
044300 MOVE "N" TO VOUCHER-SELECTED.
044400
044500*--------------------------------
044600* Routines shared by Change,
044700* Inquire and Delete
044800*--------------------------------
044900 GET-EXISTING-RECORD.
045000 PERFORM ACCEPT-EXISTING-KEY.
045100 PERFORM RE-ACCEPT-EXISTING-KEY
045200 UNTIL VOUCHER-RECORD-FOUND = "Y" OR
045300 VOUCHER-NUMBER = ZEROES.
045400

045500 ACCEPT-EXISTING-KEY.
045600 PERFORM INIT-VOUCHER-RECORD.
045700 PERFORM ENTER-VOUCHER-NUMBER.
045800 IF VOUCHER-NUMBER NOT = ZEROES
045900 PERFORM READ-VOUCHER-RECORD.
046000
046100 RE-ACCEPT-EXISTING-KEY.
046200 DISPLAY "RECORD NOT FOUND"
046300 PERFORM ACCEPT-EXISTING-KEY.
046400
046500 ENTER-VOUCHER-NUMBER.
046600 DISPLAY "ENTER VOUCHER NUMBER TO "
046700 THE-MODE.
046800 ACCEPT VOUCHER-NUMBER.
046900
047000 DISPLAY-ALL-FIELDS.
047100 DISPLAY " ".
047200 PERFORM DISPLAY-VOUCHER-NUMBER.
047300 PERFORM DISPLAY-VOUCHER-VENDOR.
047400 PERFORM DISPLAY-VOUCHER-INVOICE.
047500 PERFORM DISPLAY-VOUCHER-FOR.
047600 PERFORM DISPLAY-VOUCHER-AMOUNT.
047700 PERFORM DISPLAY-VOUCHER-DATE.
047800 PERFORM DISPLAY-VOUCHER-DUE.
047900 PERFORM DISPLAY-VOUCHER-DEDUCTIBLE.
048000 IF VOUCHER-PAID-DATE = ZEROES
048100 PERFORM DISPLAY-VOUCHER-SELECTED.
048200 IF VOUCHER-PAID-DATE NOT = ZEROES
048300 PERFORM DISPLAY-VOUCHER-PAID-AMOUNT
048400 PERFORM DISPLAY-VOUCHER-PAID-DATE
048500 PERFORM DISPLAY-VOUCHER-CHECK-NO.
048600 DISPLAY " ".
048700
048800 DISPLAY-VOUCHER-NUMBER.
048900 DISPLAY " VOUCHER NUMBER: " VOUCHER-NUMBER.
049000
049100 DISPLAY-VOUCHER-VENDOR.
049200 PERFORM VOUCHER-VENDOR-ON-FILE.
049300 IF VENDOR-RECORD-FOUND = "N"
049400 MOVE "**Not found**" TO VENDOR-NAME.
049500 DISPLAY "1. VENDOR: "
049600 VOUCHER-VENDOR " "
049700 VENDOR-NAME.
049800
049900 DISPLAY-VOUCHER-INVOICE.
050000 DISPLAY "2. INVOICE: " VOUCHER-INVOICE.

050100
050200 DISPLAY-VOUCHER-FOR.
050300 DISPLAY "3. FOR: " VOUCHER-FOR.
050400
050500 DISPLAY-VOUCHER-AMOUNT.
050600 MOVE VOUCHER-AMOUNT TO VOUCHER-AMOUNT-FIELD.
050700 DISPLAY "4. AMOUNT: " VOUCHER-AMOUNT-FIELD.
050800
050900 DISPLAY-VOUCHER-DATE.
051000 MOVE VOUCHER-DATE TO DATE-CCYYMMDD.
051100 PERFORM FORMAT-THE-DATE.
051200 DISPLAY "5. INVOICE DATE: " FORMATTED-DATE.
051300
051400 DISPLAY-VOUCHER-DUE.
051500 MOVE VOUCHER-DUE TO DATE-CCYYMMDD.
051600 PERFORM FORMAT-THE-DATE.
051700 DISPLAY "6. DUE DATE: " FORMATTED-DATE.
051800
051900 DISPLAY-VOUCHER-DEDUCTIBLE.
052000 DISPLAY "7. DEDUCTIBLE: " VOUCHER-DEDUCTIBLE.
052100
052200 DISPLAY-VOUCHER-SELECTED.
052300 DISPLAY " SELECTED FOR PAYMENT: " VOUCHER-SELECTED.
052400
052500 DISPLAY-VOUCHER-PAID-AMOUNT.
052600 MOVE VOUCHER-PAID-AMOUNT TO VOUCHER-PAID-AMOUNT-FIELD.
052700 DISPLAY " PAID: " VOUCHER-PAID-AMOUNT-FIELD.
052800
052900 DISPLAY-VOUCHER-PAID-DATE.
053000 MOVE VOUCHER-PAID-DATE TO DATE-CCYYMMDD.
053100 PERFORM FORMAT-THE-DATE.
053200 DISPLAY " PAID ON: " FORMATTED-DATE.
053300
053400 DISPLAY-VOUCHER-CHECK-NO.
053500 DISPLAY " CHECK: " VOUCHER-CHECK-NO.
053600
053700*--------------------------------
053800* File I-O Routines
053900*--------------------------------
054000 READ-VOUCHER-RECORD.
054100 MOVE "Y" TO VOUCHER-RECORD-FOUND.
054200 READ VOUCHER-FILE RECORD
054300 INVALID KEY
054400 MOVE "N" TO VOUCHER-RECORD-FOUND.
054500
054600*or READ VOUCHER-FILE RECORD WITH LOCK

054700* INVALID KEY
054800* MOVE "N" TO VOUCHER-RECORD-FOUND.
054900
055000*or READ VOUCHER-FILE RECORD WITH HOLD
055100* INVALID KEY
055200* MOVE "N" TO VOUCHER-RECORD-FOUND.
055300
055400 WRITE-VOUCHER-RECORD.
055500 WRITE VOUCHER-RECORD
055600 INVALID KEY
055700 DISPLAY "RECORD ALREADY ON FILE".
055800
055900 REWRITE-VOUCHER-RECORD.
056000 REWRITE VOUCHER-RECORD
056100 INVALID KEY
056200 DISPLAY "ERROR REWRITING VENDOR RECORD".
056300
056400 DELETE-VOUCHER-RECORD.
056500 DELETE VOUCHER-FILE RECORD
056600 INVALID KEY
056700 DISPLAY "ERROR DELETING VENDOR RECORD".
056800
056900 READ-VENDOR-RECORD.
057000 MOVE "Y" TO VENDOR-RECORD-FOUND.
057100 READ VENDOR-FILE RECORD
057200 INVALID KEY
057300 MOVE "N" TO VENDOR-RECORD-FOUND.
057400
057500 READ-CONTROL-RECORD.
057600 MOVE 1 TO CONTROL-KEY.
057700 MOVE "Y" TO CONTROL-RECORD-FOUND.
057800 READ CONTROL-FILE RECORD
057900 INVALID KEY
058000 MOVE "N" TO CONTROL-RECORD-FOUND
058100 DISPLAY "CONTROL FILE IS INVALID".
058200
058300 REWRITE-CONTROL-RECORD.
058400 REWRITE CONTROL-RECORD
058500 INVALID KEY
058600 DISPLAY "ERROR REWRITING CONTROL RECORD".
058700
058800 COPY "PLDATE01.CBL".
058900

Here is the sample output of vchmnt01.cbl as new vouchers are added:

OUTPUT:
PLEASE SELECT:
1. ADD RECORDS
2. CHANGE A RECORD
3. LOOK UP A RECORD
4. DELETE A RECORD
0. EXIT
YOUR CHOICE (0-4)?
1

VOUCHER NUMBER: 00004
ENTER VENDOR
2

1. VENDOR: 00002 ABC PRINTING
ENTER INVOICE NUMBER
cx-5055
WHAT FOR?
letter head
ENTER INVOICE AMOUNT
104.19
ENTER INVOICE DATE(MM/DD/CCYY)?
01/07/1997
ENTER DUE DATE(MM/DD/CCYY)?
02/07/1997
IS THIS TAX DEDUCTIBLE?
y
ADD ANOTHER VOUCHER(Y/N)?
n

PLEASE SELECT:
1. ADD RECORDS
2. CHANGE A RECORD
3. LOOK UP A RECORD
4. DELETE A RECORD
0. EXIT
YOUR CHOICE (0-4)?

ANALYSIS: At lines 001200 through 002800, the file definitions for the control file, the voucher file,
and the vendor file are included. OPENING-PROCEDURE and CLOSING-PROCEDURE, at lines
006500 and 007300, respectively, appropriately open and close these three files. The voucher file is
the main file that is being modified. The vendor file is used to look up vendors when they are entered,
and the control file is used to generate new voucher numbers in add mode.

The first big difference occurs in ACCEPT-NEW-RECORD-KEY at line 014900. Rather than ask the
user to enter a new voucher number, one is generated automatically by performing

RETRIEVE-NEXT-VOUCHER-NUMBER. The RETRIEVE-NEXT-VOUCHER-NUMBER routine at line
015800 reads the control file, adds 1 to the CONTROL-LAST-VOUCHER, and moves the new value to
VOUCHER-NUMBER. The routine then rewrites the CONTROL-RECORD, causing the control file to be
updated with the last used number. At line 015300, the voucher record is read. This loop, at lines
014900 through 015400, is performed at lines 014200 through 014500 until a voucher number is
generated that is not on file. This logic is used in the event that the control file and voucher file get out of
synch with each other. By repeating the logic until an unused voucher number is found, the two files
become synchronized. This also is useful in multiuser systems where two or more people might be
adding to a file at once.

After the new voucher number is generated successfully, it is displayed at line 014700. Usually, a data
entry operator writes this voucher number at the top of the physical invoice received so that the invoice is
associated with its voucher tracking number.

The data entry for the invoice date begins at line 040700. This routine uses GET-A-DATE in
pldate01.cbl (which is included by a COPY statement at line 058800). At line 040800, a zero
date is prevented; at lines 040900 through 041200, a special prompt and error message are set up, and
then GET-A-DATE is performed. After returning from GET-A-DATE at line 041400, the entered date
in DATE-CCYYMMDD is moved to VOUCHER-DATE.

The data entry for the invoice due date begins at line 041600 and uses the identical style of logic to get
a valid date for VOUCHER-DUE.

ENTER-VOUCHER-VENDOR at line 032200 looks up the vendor that is entered in the vendor file. The
vendor must be on file to be valid.

There is another difference from a standard maintenance module. Four of the fields are reserved to be
entered by other programs. These are VOUCHER-SELECTED, VOUCHER-PAID-AMOUNT,
VOUCHER-PAID-DATE, and VOUCHER-CHECK-NO.

VOUCHER-SELECTED is a flag that is set when a voucher is selected for payment. The remaining three
fields are set when a voucher actually is paid. VOUCHER-SELECTED will be modified by steps 6 and 7
in Figure 20.1, and the other three fields will be modified by step 12 of Figure 20.1. However, there is no
reason that the user should not be allowed to see these fields. When deleting records or changing values
in the fields that can be modified, it might help if the user can see the selected and paid status of the
voucher. In DISPLAY-ALL-FIELDS at line 047000, this program displays the four fields that cannot
be modified by the program.

If a voucher is paid, the paid date will not be zeroes, and the VOUCHER-SELECTED field is irrelevant
because the voucher obviously has been selected for payment as it has been paid. So, at line 048000,
the VOUCHER-SELECTED field is displayed only if the VOUCHER-PAID-DATE is zeroes. Because the
voucher has not been paid, the user might want to know whether it has been selected for payment.

If a voucher has been paid, the paid date, amount, and check number all have values. So, at lines
048200 through 048500, VOUCHER-PAID-AMOUNT, VOUCHER-PAID-DATE, and
VOUCHER-CHECK-NO are displayed when the VOUCHER-PAID-DATE is not zero.

Code and compile vchmnt01.cbl. Print a list of vendors using the vendor report programs from
earlier lessons, and then run vchmnt01.cbl and enter some vouchers as if real invoices had been

received.

Selecting Individual Vouchers
The selection of individual vouchers to pay is performed by a maintenance program that runs in change
mode only and allows only one field, VOUCHER-SELECTED, to be modified. Listing 20.2 is
vchpic01.cbl and allows single vouchers to be selected and the VOUCHER-SELECTED flag to be
entered to a yes or no. Step 7 of the flowchart shows where individual selection of bills fits into the flow
of activities in the bills payment system. (Refer to Figure 20.1.)

TYPE: Listing 20.2. Selecting records to be paid.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. VCHPIC01.
000300*--------------------------------
000400* Change only.
000500* Allows the user to change
000600* the VOUCHER-SELECTED flag
000700* for unpaid vouchers
000800*--------------------------------
000900 ENVIRONMENT DIVISION.
001000 INPUT-OUTPUT SECTION.
001100 FILE-CONTROL.
001200
001300 COPY "SLVND02.CBL".
001400
001500 COPY "SLVOUCH.CBL".
001600
001700 COPY "SLCONTRL.CBL".
001800
001900 DATA DIVISION.
002000 FILE SECTION.
002100
002200 COPY "FDVND04.CBL".
002300
002400 COPY "FDVOUCH.CBL".
002500
002600 COPY "FDCONTRL.CBL".
002700
002800 WORKING-STORAGE SECTION.
002900
003000 77 MENU-PICK PIC 9.
003100 88 MENU-PICK-IS-VALID VALUES 0 THRU 4.
003200
003300 77 WHICH-FIELD PIC 9.

003400 77 VOUCHER-RECORD-FOUND PIC X.
003500 77 VENDOR-RECORD-FOUND PIC X.
003600
003700 77 VOUCHER-NUMBER-FIELD PIC Z(5).
003800 77 VOUCHER-AMOUNT-FIELD PIC ZZZ,ZZ9.99-.
003900 77 VOUCHER-PAID-AMOUNT-FIELD PIC ZZZ,ZZ9.99-.
004000
004100 77 ERROR-MESSAGE PIC X(79) VALUE SPACE.
004200
004300 COPY "WSCASE01.CBL".
004400
004500 COPY "WSDATE01.CBL".
004600
004700 PROCEDURE DIVISION.
004800 PROGRAM-BEGIN.
004900 PERFORM OPENING-PROCEDURE.
005000 PERFORM MAIN-PROCESS.
005100 PERFORM CLOSING-PROCEDURE.
005200
005300 PROGRAM-EXIT.
005400 EXIT PROGRAM.
005500
005600 PROGRAM-DONE.
005700 STOP RUN.
005800
005900 OPENING-PROCEDURE.
006000 OPEN I-O VOUCHER-FILE.
006100 OPEN I-O VENDOR-FILE.
006200
006300 CLOSING-PROCEDURE.
006400 CLOSE VOUCHER-FILE.
006500 CLOSE VENDOR-FILE.
006600
006700 MAIN-PROCESS.
006800 PERFORM CHANGE-MODE.
006900
007000*--------------------------------
007100* CHANGE
007200*--------------------------------
007300 CHANGE-MODE.
007400 PERFORM GET-EXISTING-RECORD.
007500 PERFORM CHANGE-RECORDS
007600 UNTIL VOUCHER-NUMBER = ZEROES.
007700
007800 CHANGE-RECORDS.
007900 PERFORM GET-FIELD-TO-CHANGE.

008000 IF VOUCHER-PAID-DATE = ZEROES
008100 PERFORM CHANGE-ONE-FIELD.
008200 PERFORM GET-EXISTING-RECORD.
008300
008400 GET-FIELD-TO-CHANGE.
008500 PERFORM DISPLAY-ALL-FIELDS.
008600 PERFORM ASK-WHICH-FIELD.
008700
008800 ASK-WHICH-FIELD.
008900 MOVE 1 TO WHICH-FIELD.
009000
009100 CHANGE-ONE-FIELD.
009200 PERFORM CHANGE-THIS-FIELD.
009300
009400 CHANGE-THIS-FIELD.
009500 IF WHICH-FIELD = 1
009600 PERFORM ENTER-VOUCHER-SELECTED.
009700
009800 PERFORM REWRITE-VOUCHER-RECORD.
009900
010000*--------------------------------
010100* Routines shared by all modes
010200*--------------------------------
010300 INIT-VOUCHER-RECORD.
010400 MOVE SPACE TO VOUCHER-INVOICE
010500 VOUCHER-FOR
010600 VOUCHER-DEDUCTIBLE
010700 VOUCHER-SELECTED.
010800 MOVE ZEROES TO VOUCHER-NUMBER
010900 VOUCHER-VENDOR
011000 VOUCHER-AMOUNT
011100 VOUCHER-DATE
011200 VOUCHER-DUE
011300 VOUCHER-PAID-AMOUNT
011400 VOUCHER-PAID-DATE
011500 VOUCHER-CHECK-NO.
011600
011700*--------------------------------
011800* Routines shared Add and Change
011900*--------------------------------
012000 ENTER-VOUCHER-SELECTED.
012100 PERFORM ACCEPT-VOUCHER-SELECTED.
012200 PERFORM RE-ACCEPT-VOUCHER-SELECTED
012300 UNTIL VOUCHER-SELECTED = "Y" OR "N".
012400
012500 ACCEPT-VOUCHER-SELECTED.

012600 DISPLAY "SELECT THIS VOUCHER (Y/N)?".
012700 ACCEPT VOUCHER-SELECTED.
012800
012900 INSPECT VOUCHER-SELECTED
013000 CONVERTING LOWER-ALPHA
013100 TO UPPER-ALPHA.
013200
013300 RE-ACCEPT-VOUCHER-SELECTED.
013400 DISPLAY "YOU MUST ENTER YES OR NO".
013500 PERFORM ACCEPT-VOUCHER-SELECTED.
013600
013700*--------------------------------
013800* Routines shared by Change,
013900* Inquire and Delete
014000*--------------------------------
014100 GET-EXISTING-RECORD.
014200 PERFORM ACCEPT-EXISTING-KEY.
014300 PERFORM RE-ACCEPT-EXISTING-KEY
014400 UNTIL VOUCHER-RECORD-FOUND = "Y" OR
014500 VOUCHER-NUMBER = ZEROES.
014600
014700 ACCEPT-EXISTING-KEY.
014800 PERFORM INIT-VOUCHER-RECORD.
014900 PERFORM ENTER-VOUCHER-NUMBER.
015000 IF VOUCHER-NUMBER NOT = ZEROES
015100 PERFORM READ-VOUCHER-RECORD.
015200
015300 RE-ACCEPT-EXISTING-KEY.
015400 DISPLAY "RECORD NOT FOUND".
015500 PERFORM ACCEPT-EXISTING-KEY.
015600
015700 ENTER-VOUCHER-NUMBER.
015800 DISPLAY "ENTER VOUCHER NUMBER TO SELECT OR CLEAR ".
015900 ACCEPT VOUCHER-NUMBER.
016000
016100 DISPLAY-ALL-FIELDS.
016200 DISPLAY " ".
016300 IF VOUCHER-PAID-DATE NOT = ZEROES
016400 DISPLAY " !!! THIS VOUCHER IS ALREADY PAID !!!".
016500 PERFORM DISPLAY-VOUCHER-NUMBER.
016600 PERFORM DISPLAY-VOUCHER-VENDOR.
016700 PERFORM DISPLAY-VOUCHER-INVOICE.
016800 PERFORM DISPLAY-VOUCHER-FOR.
016900 PERFORM DISPLAY-VOUCHER-AMOUNT.
017000 PERFORM DISPLAY-VOUCHER-DATE.
017100 PERFORM DISPLAY-VOUCHER-DUE.

017200 PERFORM DISPLAY-VOUCHER-DEDUCTIBLE.
017300 IF VOUCHER-PAID-DATE = ZEROES
017400 PERFORM DISPLAY-VOUCHER-SELECTED.
017500 IF VOUCHER-PAID-DATE NOT = ZEROES
017600 PERFORM DISPLAY-VOUCHER-PAID-AMOUNT
017700 PERFORM DISPLAY-VOUCHER-PAID-DATE
017800 PERFORM DISPLAY-VOUCHER-CHECK-NO.
017900 DISPLAY " ".
018000
018100 DISPLAY-VOUCHER-NUMBER.
018200 DISPLAY " VOUCHER NUMBER: " VOUCHER-NUMBER.
018300
018400 DISPLAY-VOUCHER-VENDOR.
018500 PERFORM VOUCHER-VENDOR-ON-FILE.
018600 IF VENDOR-RECORD-FOUND = "N"
018700 MOVE "**Not found**" TO VENDOR-NAME.
018800 DISPLAY " VENDOR: "
018900 VOUCHER-VENDOR " "
019000 VENDOR-NAME.
019100
019200 VOUCHER-VENDOR-ON-FILE.
019300 MOVE VOUCHER-VENDOR TO VENDOR-NUMBER.
019400 PERFORM READ-VENDOR-RECORD.
019500 IF VENDOR-RECORD-FOUND = "N"
019600 MOVE "VENDOR NOT ON FILE"
019700 TO ERROR-MESSAGE.
019800
019900 DISPLAY-VOUCHER-INVOICE.
020000 DISPLAY " INVOICE: " VOUCHER-INVOICE.
020100
020200 DISPLAY-VOUCHER-FOR.
020300 DISPLAY " FOR: " VOUCHER-FOR.
020400
020500 DISPLAY-VOUCHER-AMOUNT.
020600 MOVE VOUCHER-AMOUNT TO VOUCHER-AMOUNT-FIELD.
020700 DISPLAY " AMOUNT: " VOUCHER-AMOUNT-FIELD.
020800
020900 DISPLAY-VOUCHER-DATE.
021000 MOVE VOUCHER-DATE TO DATE-CCYYMMDD.
021100 PERFORM FORMAT-THE-DATE.
021200 DISPLAY " INVOICE DATE: " FORMATTED-DATE.
021300
021400 DISPLAY-VOUCHER-DUE.
021500 MOVE VOUCHER-DUE TO DATE-CCYYMMDD.
021600 PERFORM FORMAT-THE-DATE.
021700 DISPLAY " DUE DATE: " FORMATTED-DATE.

021800
021900 DISPLAY-VOUCHER-DEDUCTIBLE.
022000 DISPLAY " DEDUCTIBLE: " VOUCHER-DEDUCTIBLE.
022100
022200 DISPLAY-VOUCHER-SELECTED.
022300 DISPLAY "1. SELECTED FOR PAYMENT: " VOUCHER-SELECTED.
022400
022500 DISPLAY-VOUCHER-PAID-AMOUNT.
022600 MOVE VOUCHER-PAID-AMOUNT TO VOUCHER-PAID-AMOUNT-FIELD.
022700 DISPLAY " PAID: " VOUCHER-PAID-AMOUNT-FIELD.
022800
022900 DISPLAY-VOUCHER-PAID-DATE.
023000 MOVE VOUCHER-PAID-DATE TO DATE-CCYYMMDD.
023100 PERFORM FORMAT-THE-DATE.
023200 DISPLAY " PAID ON: " FORMATTED-DATE.
023300
023400 DISPLAY-VOUCHER-CHECK-NO.
023500 DISPLAY " CHECK: " VOUCHER-CHECK-NO.
023600
023700*--------------------------------
023800* File I-O Routines
023900*--------------------------------
024000 READ-VOUCHER-RECORD.
024100 MOVE "Y" TO VOUCHER-RECORD-FOUND.
024200 READ VOUCHER-FILE RECORD
024300 INVALID KEY
024400 MOVE "N" TO VOUCHER-RECORD-FOUND.
024500
024600*or READ VOUCHER-FILE RECORD WITH LOCK
024700* INVALID KEY
024800* MOVE "N" TO VOUCHER-RECORD-FOUND.
024900
025000*or READ VOUCHER-FILE RECORD WITH HOLD
025100* INVALID KEY
025200* MOVE "N" TO VOUCHER-RECORD-FOUND.
025300
025400 REWRITE-VOUCHER-RECORD.
025500 REWRITE VOUCHER-RECORD
025600 INVALID KEY
025700 DISPLAY "ERROR REWRITING VENDOR RECORD".
025800
025900 READ-VENDOR-RECORD.
026000 MOVE "Y" TO VENDOR-RECORD-FOUND.
026100 READ VENDOR-FILE RECORD
026200 INVALID KEY
026300 MOVE "N" TO VENDOR-RECORD-FOUND.

026400
026500 COPY "PLDATE01.CBL".
026600

The output of vchpic01.cbl for a paid and an unpaid voucher follows:

OUTPUT:
ENTER VOUCHER NUMBER TO SELECT OR CLEAR
2
!!! THIS VOUCHER IS ALREADY PAID !!!
VOUCHER NUMBER: 00002
VENDOR: 00002 ABC PRINTING
INVOICE: CX-1407
FOR: BUSINESS CARDS
AMOUNT: 98.97
INVOICE DATE: 1/22/1997
DUE DATE: 2/22/1997
DEDUCTIBLE: Y
PAID: 98.97
PAID ON: 1/28/1997
CHECK: 000466
ENTER VOUCHER NUMBER TO SELECT OR CLEAR
3
VOUCHER NUMBER: 00003
VENDOR: 00003 CHARLES SMITH AND SONS
INVOICE: 5057
FOR: OFFICE SUPPLIES
AMOUNT: 27.76
INVOICE DATE: 1/15/1997
DUE DATE: 1/31/1997
DEDUCTIBLE: Y
1. SELECTED FOR PAYMENT: N
SELECT THIS VOUCHER (Y/N)?
Y

ANALYSIS: The vchpic01.cbl program is a cross between vchmnt01.cbl and a single-field
maintenance program such as stcmnt04.cbl--with an extra feature. The user is asked to select a
voucher to change. The voucher information is displayed, and the user is asked to enter yes or no for the
VOUCHER-SELECTED field.

The extra feature ensures that if the voucher is paid, the record is displayed with a warning message that
it has been paid, and the user is not asked to enter the VOUCHER-SELECTED field.

The warning message appears in DISPLAY-ALL-FIELDS at lines 016300 and 016400. The
program tests whether VOUCHER-PAID-DATE NOT = ZEROES and displays the warning before
displaying the rest of the record.

Data entry for the selected field is prevented at lines 008000 and 008100 in CHANGE-RECORDS.
CHANGE-ONE-FIELD is performed only if VOUCHER-PAID-DATE = ZEROES.

A couple of minor changes exist, such as the prompt for the voucher number at line 015800.

Completing the Payment Cycle on a Voucher
It might seem odd to skip to step 12 of the bills payment flowchart at this point, but the programs needed
for steps 2, 7, and 12 are closely related. Refer to Figure 20.1 and note the last step of the bills payment
cycle. In this section, you look at vchpay01.cbl, the program that flags vouchers as paid.

You might have noticed that programs that allow changes to one or more fields in a file tend to be based
on standard add, change, inquire, or delete maintenance modes. The vchpay01.cbl program in
Listing 20.3 is no exception.

TYPE: Listing 20.3. Paying vouchers.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. VCHPAY01.
000300*--------------------------------
000400* Change only.
000500* User can request a voucher.
000600* If the voucher is already paid,
000700* the user is asked if they
000800* would like to clear the payment
000900* and reopen the voucher.
001000* If the voucher is not paid,
001100* the user is required to enter
001200* a payment date, amount and check
001300* number.
001400* Only maintains PAID-DATE
001500* CHECK-NO and PAID-AMOUNT.
001600*--------------------------------
001700 ENVIRONMENT DIVISION.
001800 INPUT-OUTPUT SECTION.
001900 FILE-CONTROL.
002000
002100 COPY "SLVND02.CBL".
002200
002300 COPY "SLVOUCH.CBL".
002400
002500 COPY "SLCONTRL.CBL".
002600
002700 DATA DIVISION.
002800 FILE SECTION.
002900

003000 COPY "FDVND04.CBL".
003100
003200 COPY "FDVOUCH.CBL".
003300
003400 COPY "FDCONTRL.CBL".
003500
003600 WORKING-STORAGE SECTION.
003700
003800 77 WHICH-FIELD PIC 9.
003900 77 OK-TO-PROCESS PIC X.
004000 77 FULL-PAYMENT PIC X.
004100 77 NEW-VOUCHER PIC X.
004200
004300 77 VOUCHER-RECORD-FOUND PIC X.
004400 77 VENDOR-RECORD-FOUND PIC X.
004500 77 CONTROL-RECORD-FOUND PIC X.
004600 77 VOUCHER-NUMBER-FIELD PIC Z(5).
004700 77 AN-AMOUNT-FIELD PIC ZZZ,ZZ9.99-.
004800 77 CHECK-NO-FIELD PIC Z(6).
004900
005000 77 PROCESS-MESSAGE PIC X(79) VALUE SPACE.
005100
005200 77 SAVE-VOUCHER-RECORD PIC X(103).
005300
005400 COPY "WSDATE01.CBL".
005500
005600 COPY "WSCASE01.CBL".
005700
005800 PROCEDURE DIVISION.
005900 PROGRAM-BEGIN.
006000 PERFORM OPENING-PROCEDURE.
006100 PERFORM MAIN-PROCESS.
006200 PERFORM CLOSING-PROCEDURE.
006300
006400 PROGRAM-EXIT.
006500 EXIT PROGRAM.
006600
006700 PROGRAM-DONE.
006800 STOP RUN.
006900
007000 OPENING-PROCEDURE.
007100 OPEN I-O VOUCHER-FILE.
007200 OPEN I-O VENDOR-FILE.
007300 OPEN I-O CONTROL-FILE.
007400
007500 CLOSING-PROCEDURE.

007600 CLOSE VOUCHER-FILE.
007700 CLOSE VENDOR-FILE.
007800 CLOSE CONTROL-FILE.
007900
008000 MAIN-PROCESS.
008100 PERFORM CHANGE-MODE.
008200
008300*--------------------------------
008400* CHANGE
008500*--------------------------------
008600 CHANGE-MODE.
008700 PERFORM GET-EXISTING-RECORD.
008800 PERFORM CHANGE-RECORDS
008900 UNTIL VOUCHER-NUMBER = ZEROES.
009000
009100 CHANGE-RECORDS.
009200 PERFORM DISPLAY-ALL-FIELDS.
009300 IF VOUCHER-PAID-DATE = ZEROES
009400 PERFORM CHANGE-TO-PAID
009500 ELSE
009600 PERFORM CHANGE-TO-UNPAID.
009700
009800 PERFORM GET-EXISTING-RECORD.
009900
010000*--------------------------------
010100* Ask if the user wants to pay this
010200* voucher and if so:
010300* Change the voucher to paid status
010400* by getting PAID-DATE, PAID-AMOUNT
010500* and CHECK-NO.
010600*--------------------------------
010700 CHANGE-TO-PAID.
010800 PERFORM ASK-OK-TO-PAY.
010900 IF OK-TO-PROCESS = "Y"
011000 PERFORM CHANGE-ALL-FIELDS.
011100
011200 ASK-OK-TO-PAY.
011300 MOVE "PROCESS THIS VOUCHER AS PAID (Y/N)?"
011400 TO PROCESS-MESSAGE.
011500 PERFORM ASK-OK-TO-PROCESS.
011600
011700 CHANGE-ALL-FIELDS.
011800 PERFORM CHANGE-THIS-FIELD
011900 VARYING WHICH-FIELD FROM 1 BY 1
012000 UNTIL WHICH-FIELD > 3.
012100

012200 PERFORM REWRITE-VOUCHER-RECORD.
012300
012400 IF NEW-VOUCHER = "Y"
012500 PERFORM GENERATE-NEW-VOUCHER.
012600
012700 CHANGE-THIS-FIELD.
012800 IF WHICH-FIELD = 1
012900 PERFORM ENTER-VOUCHER-PAID-DATE.
013000 IF WHICH-FIELD = 2
013100 PERFORM ENTER-VOUCHER-PAYMENT.
013200 IF WHICH-FIELD = 3
013300 PERFORM ENTER-VOUCHER-CHECK-NO.
013400
013500*--------------------------------
013600* Ask if the user wants to re-open
013700* this voucher and if so:
013800* Move zeroes to PAID-DATE,
013900* PAID-AMOUNT and CHECK-NO.
014000*--------------------------------
014100 CHANGE-TO-UNPAID.
014200 PERFORM ASK-OK-TO-OPEN.
014300 IF OK-TO-PROCESS = "Y"
014400 PERFORM CLEAR-PAID-AND-REWRITE
014500 DISPLAY "VOUCHER HAS BEEN RE OPENED".
014600
014700 CLEAR-PAID-AND-REWRITE.
014800 PERFORM CLEAR-PAID-FIELDS.
014900 PERFORM REWRITE-VOUCHER-RECORD.
015000
015100 CLEAR-PAID-FIELDS.
015200 MOVE ZEROES TO VOUCHER-PAID-DATE
015300 VOUCHER-PAID-AMOUNT
015400 VOUCHER-CHECK-NO.
015500
015600 ASK-OK-TO-OPEN.
015700 MOVE "RE-OPEN THIS VOUCHER (Y/N)?" TO PROCESS-MESSAGE.
015800 PERFORM ASK-OK-TO-PROCESS.
015900
016000*--------------------------------
016100* This routine is used by both
016200* ASK-OK-TO-PAY which is part of
016300* the CHANGE-TO-PAID logic, and
016400* ASK-OK-TO-OPEN which is part
016500* of the CHANGE-TO-UNPAID LOGIC.
016600*--------------------------------
016700 ASK-OK-TO-PROCESS.

016800 PERFORM ACCEPT-OK-TO-PROCESS.
016900
017000 PERFORM RE-ACCEPT-OK-TO-PROCESS
017100 UNTIL OK-TO-PROCESS = "Y" OR "N".
017200
017300 ACCEPT-OK-TO-PROCESS.
017400 DISPLAY PROCESS-MESSAGE.
017500 ACCEPT OK-TO-PROCESS.
017600 INSPECT OK-TO-PROCESS
017700 CONVERTING LOWER-ALPHA TO UPPER-ALPHA.
017800
017900 RE-ACCEPT-OK-TO-PROCESS.
018000 DISPLAY "YOU MUST ENTER YES OR NO".
018100 PERFORM ACCEPT-OK-TO-PROCESS.
018200
018300*--------------------------------
018400* Field entry routines.
018500*--------------------------------
018600 ENTER-VOUCHER-PAID-DATE.
018700 MOVE "N" TO ZERO-DATE-IS-OK.
018800 MOVE "ENTER PAID DATE(MM/DD/CCYY)?"
018900 TO DATE-PROMPT.
019000 MOVE "A VALID PAID DATE IS REQUIRED"
019100 TO DATE-ERROR-MESSAGE.
019200 PERFORM GET-A-DATE.
019300 MOVE DATE-CCYYMMDD TO VOUCHER-PAID-DATE.
019400
019500*--------------------------------
019600* Voucher payment is entered by
019700* asking if the payment is for
019800* the exact amount of the voucher.
019900* If it is, VOUCHER-AMOUNT
020000* is moved in to VOUCHER-PAID-AMOUNT.
020100* If it is not, then the user is
020200* asked to enter the amount
020300* to be paid.
020400* If the paid amount is less than
020500* the voucher amount, the user
020600* is also asked if a new voucher
020700* should be generated for
020800* the balance. This allows
020900* for partial payments.
021000*--------------------------------
021100 ENTER-VOUCHER-PAYMENT.
021200 MOVE "N" TO NEW-VOUCHER.
021300 PERFORM ASK-FULL-PAYMENT.

021400 IF FULL-PAYMENT = "Y"
021500 MOVE VOUCHER-AMOUNT TO VOUCHER-PAID-AMOUNT
021600 ELSE
021700 PERFORM ENTER-VOUCHER-PAID-AMOUNT
021800 IF VOUCHER-PAID-AMOUNT < VOUCHER-AMOUNT
021900 PERFORM ASK-NEW-VOUCHER.
022000
022100 ASK-FULL-PAYMENT.
022200 PERFORM ACCEPT-FULL-PAYMENT.
022300 PERFORM RE-ACCEPT-FULL-PAYMENT
022400 UNTIL FULL-PAYMENT = "Y" OR "N".
022500
022600 ACCEPT-FULL-PAYMENT.
022700 MOVE VOUCHER-AMOUNT TO AN-AMOUNT-FIELD.
022800 DISPLAY "PAY THE EXACT AMOUNT "
022900 AN-AMOUNT-FIELD
023000 " (Y/N)?".
023100 ACCEPT FULL-PAYMENT.
023200 INSPECT FULL-PAYMENT
023300 CONVERTING LOWER-ALPHA TO UPPER-ALPHA.
023400
023500 RE-ACCEPT-FULL-PAYMENT.
023600 DISPLAY "YOU MUST ENTER YES OR NO".
023700 PERFORM ACCEPT-FULL-PAYMENT.
023800
023900 ASK-NEW-VOUCHER.
024000 PERFORM ACCEPT-NEW-VOUCHER.
024100 PERFORM RE-ACCEPT-NEW-VOUCHER
024200 UNTIL NEW-VOUCHER = "Y" OR "N".
024300
024400 ACCEPT-NEW-VOUCHER.
024500 MOVE VOUCHER-AMOUNT TO AN-AMOUNT-FIELD.
024600 DISPLAY "GENERATE A NEW VOUCHER".
024700 DISPLAY " FOR THE BALANCE (Y/N)?".
024800 ACCEPT NEW-VOUCHER.
024900 INSPECT NEW-VOUCHER
025000 CONVERTING LOWER-ALPHA TO UPPER-ALPHA.
025100
025200 RE-ACCEPT-NEW-VOUCHER.
025300 DISPLAY "YOU MUST ENTER YES OR NO".
025400 PERFORM ACCEPT-NEW-VOUCHER.
025500
025600 ENTER-VOUCHER-PAID-AMOUNT.
025700 PERFORM ACCEPT-VOUCHER-PAID-AMOUNT.
025800 PERFORM RE-ACCEPT-VOUCHER-PAID-AMOUNT
025900 UNTIL VOUCHER-PAID-AMOUNT NOT = ZEROES

026000 AND VOUCHER-PAID-AMOUNT NOT > VOUCHER-AMOUNT.
026100
026200 ACCEPT-VOUCHER-PAID-AMOUNT.
026300 DISPLAY "ENTER AMOUNT PAID".
026400 ACCEPT AN-AMOUNT-FIELD.
026500 MOVE AN-AMOUNT-FIELD TO VOUCHER-PAID-AMOUNT.
026600
026700 RE-ACCEPT-VOUCHER-PAID-AMOUNT.
026800 MOVE VOUCHER-AMOUNT TO AN-AMOUNT-FIELD.
026900 DISPLAY "A PAYMENT MUST BE ENTERED THAT IS".
027000 DISPLAY "NOT GREATER THAN " AN-AMOUNT-FIELD.
027100 PERFORM ACCEPT-VOUCHER-PAID-AMOUNT.
027200
027300 ENTER-VOUCHER-CHECK-NO.
027400 PERFORM ACCEPT-VOUCHER-CHECK-NO.
027500
027600 ACCEPT-VOUCHER-CHECK-NO.
027700 DISPLAY "ENTER THE CHECK NUMBER".
027800 DISPLAY "ENTER 0 FOR CASH PAYMENT".
027900 ACCEPT CHECK-NO-FIELD.
028000 MOVE CHECK-NO-FIELD TO VOUCHER-CHECK-NO.
028100
028200*--------------------------------
028300* A new voucher is generated by
028400* 1. Saving the existing voucher
028500* record.
028600* 2. Locating a new voucher number
028700* that is not in use by using
028800* the control file and attempting
028900* to read a voucher with the
029000* number offered by the control
029100* file.
029200* 3. Restoring the saved voucher record
029300* but using the new voucher number.
029400* 4. Setting the new voucher amount
029500* to the original amount minus
029600* the amount paid.
029700* 5. Resetting the paid date,
029800* paid amount and check number.
029900* 6. Setting the selected flag to "N".
030000* 7. Writing this new record.
030100*--------------------------------
030200 GENERATE-NEW-VOUCHER.
030300 MOVE VOUCHER-RECORD TO SAVE-VOUCHER-RECORD.
030400 PERFORM GET-NEW-RECORD-KEY.
030500 PERFORM CREATE-NEW-VOUCHER-RECORD.

030600 PERFORM DISPLAY-NEW-VOUCHER.
030700
030800 CREATE-NEW-VOUCHER-RECORD.
030900 MOVE SAVE-VOUCHER-RECORD TO VOUCHER-RECORD.
031000 MOVE CONTROL-LAST-VOUCHER TO VOUCHER-NUMBER.
031100 SUBTRACT VOUCHER-PAID-AMOUNT FROM VOUCHER-AMOUNT.
031200 MOVE "N" TO VOUCHER-SELECTED.
031300 PERFORM CLEAR-PAID-FIELDS.
031400 PERFORM WRITE-VOUCHER-RECORD.
031500
031600 DISPLAY-NEW-VOUCHER.
031700 MOVE VOUCHER-NUMBER TO VOUCHER-NUMBER-FIELD.
031800 MOVE VOUCHER-AMOUNT TO AN-AMOUNT-FIELD.
031900 DISPLAY "VOUCHER " VOUCHER-NUMBER-FIELD
032000 " CREATED FOR " AN-AMOUNT-FIELD.
032100
032200*--------------------------------
032300* Standard change mode routines to
032400* get a voucher number, read the
032500* voucher record.
032600*--------------------------------
032700 GET-NEW-RECORD-KEY.
032800 PERFORM ACCEPT-NEW-RECORD-KEY.
032900 PERFORM RE-ACCEPT-NEW-RECORD-KEY
033000 UNTIL VOUCHER-RECORD-FOUND = "N".
033100
033200
033300
033400 ACCEPT-NEW-RECORD-KEY.
033500 PERFORM INIT-VOUCHER-RECORD.
033600 PERFORM RETRIEVE-NEXT-VOUCHER-NUMBER.
033700
033800 PERFORM READ-VOUCHER-RECORD.
033900
034000 RE-ACCEPT-NEW-RECORD-KEY.
034100 PERFORM ACCEPT-NEW-RECORD-KEY.
034200
034300 RETRIEVE-NEXT-VOUCHER-NUMBER.
034400 PERFORM READ-CONTROL-RECORD.
034500 ADD 1 TO CONTROL-LAST-VOUCHER.
034600 MOVE CONTROL-LAST-VOUCHER TO VOUCHER-NUMBER.
034700 PERFORM REWRITE-CONTROL-RECORD.
034800
034900 GET-EXISTING-RECORD.
035000 PERFORM ACCEPT-EXISTING-KEY.
035100 PERFORM RE-ACCEPT-EXISTING-KEY

035200 UNTIL VOUCHER-RECORD-FOUND = "Y" OR
035300 VOUCHER-NUMBER = ZEROES.
035400
035500 ACCEPT-EXISTING-KEY.
035600 PERFORM INIT-VOUCHER-RECORD.
035700 PERFORM ENTER-VOUCHER-NUMBER.
035800 IF VOUCHER-NUMBER NOT = ZEROES
035900 PERFORM READ-VOUCHER-RECORD.
036000
036100 RE-ACCEPT-EXISTING-KEY.
036200 DISPLAY "RECORD NOT FOUND".
036300 PERFORM ACCEPT-EXISTING-KEY.
036400
036500 ENTER-VOUCHER-NUMBER.
036600 DISPLAY "ENTER VOUCHER NUMBER TO PROCESS".
036700 ACCEPT VOUCHER-NUMBER.
036800
036900*--------------------------------
037000* Standard routines to display
037100* voucher fields.
037200*--------------------------------
037300 DISPLAY-ALL-FIELDS.
037400 DISPLAY " ".
037500 PERFORM DISPLAY-VOUCHER-NUMBER.
037600 PERFORM DISPLAY-VOUCHER-VENDOR.
037700 PERFORM DISPLAY-VOUCHER-INVOICE.
037800 PERFORM DISPLAY-VOUCHER-FOR.
037900 PERFORM DISPLAY-VOUCHER-AMOUNT.
038000 PERFORM DISPLAY-VOUCHER-DATE.
038100 PERFORM DISPLAY-VOUCHER-DUE.
038200 PERFORM DISPLAY-VOUCHER-DEDUCTIBLE.
038300 PERFORM DISPLAY-VOUCHER-SELECTED.
038400 PERFORM DISPLAY-VOUCHER-PAID-DATE.
038500 PERFORM DISPLAY-VOUCHER-PAID-AMOUNT.
038600 PERFORM DISPLAY-VOUCHER-CHECK-NO.
038700 DISPLAY " ".
038800
038900 DISPLAY-VOUCHER-NUMBER.
039000 DISPLAY " VOUCHER NUMBER: " VOUCHER-NUMBER.
039100
039200 DISPLAY-VOUCHER-VENDOR.
039300 PERFORM VOUCHER-VENDOR-ON-FILE.
039400 IF VENDOR-RECORD-FOUND = "N"
039500 MOVE "**Not found**" TO VENDOR-NAME.
039600 DISPLAY " VENDOR: "
039700 VOUCHER-VENDOR " "

039800 VENDOR-NAME.
039900
040000 DISPLAY-VOUCHER-INVOICE.
040100 DISPLAY " INVOICE: " VOUCHER-INVOICE.
040200
040300 DISPLAY-VOUCHER-FOR.
040400 DISPLAY " FOR: " VOUCHER-FOR.
040500
040600 DISPLAY-VOUCHER-AMOUNT.
040700 MOVE VOUCHER-AMOUNT TO AN-AMOUNT-FIELD.
040800 DISPLAY " AMOUNT: " AN-AMOUNT-FIELD.
040900
041000 DISPLAY-VOUCHER-DATE.
041100 MOVE VOUCHER-DATE TO DATE-CCYYMMDD.
041200 PERFORM FORMAT-THE-DATE.
041300 DISPLAY " INVOICE DATE: " FORMATTED-DATE.
041400
041500 DISPLAY-VOUCHER-DUE.
041600 MOVE VOUCHER-DUE TO DATE-CCYYMMDD.
041700 PERFORM FORMAT-THE-DATE.
041800 DISPLAY " DUE DATE: " FORMATTED-DATE.
041900
042000 DISPLAY-VOUCHER-DEDUCTIBLE.
042100 DISPLAY " DEDUCTIBLE: " VOUCHER-DEDUCTIBLE.
042200
042300 DISPLAY-VOUCHER-SELECTED.
042400 DISPLAY " SELECTED FOR PAYMENT: " VOUCHER-SELECTED.
042500
042600 DISPLAY-VOUCHER-PAID-DATE.
042700 MOVE VOUCHER-PAID-DATE TO DATE-CCYYMMDD.
042800 PERFORM FORMAT-THE-DATE.
042900 DISPLAY "1. PAID ON: " FORMATTED-DATE.
043000
043100 DISPLAY-VOUCHER-PAID-AMOUNT.
043200 MOVE VOUCHER-PAID-AMOUNT TO AN-AMOUNT-FIELD.
043300 DISPLAY "2. PAID: " AN-AMOUNT-FIELD.
043400
043500 DISPLAY-VOUCHER-CHECK-NO.
043600 DISPLAY "3. CHECK: " VOUCHER-CHECK-NO.
043700
043800*--------------------------------
043900* File activity Routines
044000*--------------------------------
044100 INIT-VOUCHER-RECORD.
044200 MOVE SPACE TO VOUCHER-INVOICE
044300 VOUCHER-FOR

044400 VOUCHER-DEDUCTIBLE
044500 VOUCHER-SELECTED.
044600 MOVE ZEROES TO VOUCHER-NUMBER
044700 VOUCHER-VENDOR
044800 VOUCHER-AMOUNT
044900 VOUCHER-DATE
045000 VOUCHER-DUE
045100 VOUCHER-PAID-AMOUNT
045200 VOUCHER-PAID-DATE
045300 VOUCHER-CHECK-NO.
045400
045500 READ-VOUCHER-RECORD.
045600 MOVE "Y" TO VOUCHER-RECORD-FOUND.
045700 READ VOUCHER-FILE RECORD
045800 INVALID KEY
045900 MOVE "N" TO VOUCHER-RECORD-FOUND.
046000
046100*or READ VOUCHER-FILE RECORD WITH LOCK
046200* INVALID KEY
046300* MOVE "N" TO VOUCHER-RECORD-FOUND.
046400
046500*or READ VOUCHER-FILE RECORD WITH HOLD
046600* INVALID KEY
046700* MOVE "N" TO VOUCHER-RECORD-FOUND.
046800
046900 WRITE-VOUCHER-RECORD.
047000 WRITE VOUCHER-RECORD
047100 INVALID KEY
047200 DISPLAY "RECORD ALREADY ON FILE".
047300
047400 REWRITE-VOUCHER-RECORD.
047500 REWRITE VOUCHER-RECORD
047600 INVALID KEY
047700 DISPLAY "ERROR REWRITING VENDOR RECORD".
047800
047900 VOUCHER-VENDOR-ON-FILE.
048000 MOVE VOUCHER-VENDOR TO VENDOR-NUMBER.
048100 PERFORM READ-VENDOR-RECORD.
048200
048300 READ-VENDOR-RECORD.
048400 MOVE "Y" TO VENDOR-RECORD-FOUND.
048500 READ VENDOR-FILE RECORD
048600 INVALID KEY
048700 MOVE "N" TO VENDOR-RECORD-FOUND.
048800
048900 READ-CONTROL-RECORD.

049000 MOVE 1 TO CONTROL-KEY.
049100 MOVE "Y" TO CONTROL-RECORD-FOUND.
049200 READ CONTROL-FILE RECORD
049300 INVALID KEY
049400 MOVE "N" TO CONTROL-RECORD-FOUND
049500 DISPLAY "CONTROL FILE IS INVALID".
049600
049700 REWRITE-CONTROL-RECORD.
049800 REWRITE CONTROL-RECORD
049900 INVALID KEY
050000 DISPLAY "ERROR REWRITING CONTROL RECORD".
050100
050200*--------------------------------
050300* General utility routines
050400*--------------------------------
050500 COPY "PLDATE01.CBL".
050600

The sample output for vchpay01.cbl shows voucher 2 being processed as a partial payment of
$50.00 on an invoice that was for $98.97. The program indicates that voucher 10 was generated for the
balance. Voucher 10 then is processed, and the display confirms that a voucher was created for the
balance of the original invoice, $48.97. Voucher 10 is not processed. Finally, voucher 3 is reopened.
Here is the output:

OUTPUT:
ENTER VOUCHER NUMBER TO PROCESS
2
VOUCHER NUMBER: 00002
VENDOR: 00002 ABC PRINTING
INVOICE: CX-1407
FOR: BUSINESS CARDS
AMOUNT: 98.97
INVOICE DATE: 1/22/1997
DUE DATE: 2/22/1997
DEDUCTIBLE: Y
SELECTED FOR PAYMENT: N
1. PAID ON: 0/00/0000
2. PAID: 0.00
3. CHECK: 000000
PROCESS THIS VOUCHER AS PAID (Y/N)?
y
ENTER PAID DATE(MM/DD/CCYY)?
1/27/1997
PAY THE EXACT AMOUNT 98.97 (Y/N)?
n
ENTER AMOUNT PAID

50
GENERATE A NEW VOUCHER
FOR THE BALANCE (Y/N)?
y
ENTER THE CHECK NUMBER
ENTER 0 FOR CASH PAYMENT
107
VOUCHER 10 CREATED FOR 48.97
ENTER VOUCHER NUMBER TO PROCESS
10
VOUCHER NUMBER: 00010
VENDOR: 00002 ABC PRINTING
INVOICE: CX-1407
FOR: BUSINESS CARDS
AMOUNT: 48.97
INVOICE DATE: 1/22/1997
DUE DATE: 2/22/1997
DEDUCTIBLE: Y
SELECTED FOR PAYMENT: N
1. PAID ON: 0/00/0000
2. PAID: 0.00
3. CHECK: 000000
PROCESS THIS VOUCHER AS PAID (Y/N)?
n
ENTER VOUCHER NUMBER TO PROCESS
3
VOUCHER NUMBER: 00003
VENDOR: 00003 CHARLES SMITH AND SONS
INVOICE: 5057
FOR: OFFICE SUPPLIES
AMOUNT: 27.76
INVOICE DATE: 1/15/1997
DUE DATE: 1/31/1997
DEDUCTIBLE: Y
SELECTED FOR PAYMENT: N
1. PAID ON: 1/22/1997
2. PAID: 27.76
3. CHECK: 000106
RE-OPEN THIS VOUCHER (Y/N)?
y
VOUCHER HAS BEEN RE OPENED
ENTER VOUCHER NUMBER TO PROCESS

ANALYSIS: Before you look in detail at the analysis of the program, you need to know about some
differences between vchpay01.cbl and a standard maintenance module.

The program is in change mode only, but within change mode a user could be making two possible
changes. The user could be intending to change a voucher from unpaid to paid, which would be the usual
action of the program.

The user might also want to change the status from paid to unpaid for various reasons, such as, if a
voucher were flagged as paid in error, or for some reason the actual payment was not valid (because the
check bounced or all the cash was counterfeit).

The program also has a special feature that allows the user to enter a partial payment on a voucher. When
a partial payment is entered, the voucher is flagged as paid, and a new voucher is written for the balance
unpaid. This creates an add records action in the middle of change mode. This is described in more detail
in the analysis of the program, and in the description that follows here.

Change mode actually is broken into two different types of changes to handle this: CHANGE-TO-PAID
and CHANGE-TO-UNPAID. Either one affects three fields--VOUCHER-PAID-DATE,
VOUCHER-PAID-AMOUNT, and VOUCHER-CHECK-NO--but in slightly different ways.

In changing a voucher from unpaid to paid, the user must enter values for all three of these fields. It
would be incorrect to enter a paid date, but no paid amount or check number. The user must be forced to
enter all three fields and cannot be given the usual choice in change mode of selecting which field to
modify.

Reversing the process reopens a voucher by resetting the paid date, paid amount, and check number to
zeroes. There is no point in asking the user to enter zeroes for each of these fields, so this is done
automatically in the program if reopening of a voucher is selected.

The usual process of the program, changing a voucher from unpaid to paid, is more complicated than just
accepting entry of the three fields. On any voucher, you might want to pay the exact amount, overpay the
amount (because of late charges), or underpay the amount (as a partial payment).

Rather than directly asking for the amount to be paid, the program first asks the user whether the exact
amount of the voucher is to be paid. If so, VOUCHER-AMOUNT is moved to VOUCHER-PAID-AMOUNT,
and the user is not required to enter the amount. Otherwise, the user must enter the amount.

In a full accounts payable system (a bills payment system with accounting functions), overpayment
probably would not be allowed. If late charges or additional charges were created for an invoice, either
the original voucher would have to be modified, or a new voucher would have to be created with the
additional charges. The original voucher and the late charges voucher could be paid by the same check.
The vchpay01.cbl program also will not allow overpayment.

The last feature of vchpay01.cbl is designed to handle underpayment. The program assumes that
underpayment is a partial payment and asks the user whether a new voucher should be generated
automatically for the balance of the voucher that was just paid.

This new voucher will sit in the voucher file waiting for the next bills payment cycle. The automated
generation saves the user having to hand-enter another copy of the same voucher with the new balance
now owing on the invoice and, in the process, also reduces potential data error entries.

Now that you know what to expect in the way of differences, you can look at the program in some detail.

The first difference is apparent in CHANGE-RECORDS, which begins at line 009100. At this point, the
voucher record has been read and is displayed at line 009200. If VOUCHER-PAID-DATE = ZEROES,
the voucher is unpaid, and the logic performs CHANGE-TO-PAID. Otherwise, the voucher is paid, and
presumably the user wants to CHANGE-TO-UNPAID, which is performed at line 009600.

The CHANGE-TO-UNPAID logic is the simpler of the two types of logic. The user has just seen the
voucher displayed on-screen, and you cannot assume that it must be changed. The user could have typed
the wrong voucher number accidentally, and to move straight into the logic to clear the fields would
cause a voucher to be modified incorrectly.

CHANGE-TO-UNPAID and its related paragraphs extend from lines 014100 through 015900. The
first action at line 014200 is to ask the user whether it is okay to reopen this voucher
(ASK-OK-TO-OPEN). If the user says yes, zeroes are moved to VOUCHER-PAID-DATE,
VOUCHER-PAID-AMOUNT, and VOUCHER-CHECK-NO. The voucher record is rewritten and the user
is given a message saying "VOUCHER HAS BEEN RE OPENED".

CHANGE-TO-PAID and its related paragraphs extend from lines 010700 through 013400, and it is a
bit more complicated. At line 010800, the user immediately is asked whether this is the voucher to pay.
If so, CHANGE-ALL-FIELDS at line 011700 asks for an entry for each of the fields by performing
CHANGE-THIS-FIELD while varying WHICH-FIELD from 1 through 3. CHANGE-THIS-FIELD at
line 012700 performs the data entry routines for each field.

In CHANGE-ALL-FIELDS at line 012200, the record is rewritten. At lines 012400 and 012500, a
test is done to see whether NEW-VOUCHER = "Y". If so, the GENERATE-NEW-VOUCHER routine is
performed.

The field-entry routines start at line 018300 and extend to line 028100.
ENTER-VOUCHER-PAID-DATE at line 018600 is a standard date-entry routine that does not allow a
zero date to be entered.

At line 027300, ENTER-VOUCHER-CHECK-NO is another simple entry routine for the check number.
The user is allowed to enter a zero check number to signal that payment is by cash (or at least not by
check).

The meatiest data entry routine starts at line 021100, ENTER-VOUCHER-PAYMENT. The routine starts
by setting the NEW-VOUCHER flag to "N" and performing ASK-FULL-PAYMENT. This routine at line
022100 asks the user whether the voucher payment is for the exact amount of the voucher. If the user
answers yes, at line 021500, the VOUCHER-AMOUNT is moved to the VOUCHER-PAID-AMOUNT, and
the user is not required to enter the amount to be paid. Otherwise, at line 021700, the user is asked to
ENTER-VOUCHER-PAID-AMOUNT. This routine at line 025600 requires that the user enter an amount
greater than zero, but not greater than VOUCHER-AMOUNT. Upon return to line 021800, IF
VOUCHER-PAID-AMOUNT < VOUCHER-AMOUNT, the user is asked whether a new voucher should
be created. ASK-NEW-VOUCHER at line 023900 is a simple yes/no entry routine that accepts a value
into NEW-VOUCHER.

The last key part of the program begins at line 030200, the routine to GENERATE-NEW-VOUCHER. A
new voucher is generated by creating a new voucher with all the same information as the original
voucher, a new voucher number, and a voucher amount that is the original amount minus the amount just

paid.

Most of the information that is needed to create the new voucher record is in the VOUCHER-RECORD,
but you do need to locate a new voucher number that can be used. The GET-NEW-RECORD-KEY
routine, taken from vchmnt01.cbl, locates a usable voucher number, but in the process might destroy
the needed information in the VOUCHER-RECORD. To preserve the values in VOUCHER-RECORD, at
line 030300, it is moved to a SAVE-VOUCHER-RECORD. This is defined in WORKING-STORAGE at
line 005200 and is a space set aside for saving a copy of the voucher record. When the voucher record
is preserved, it is possible to perform GET-NEW-RECORD-KEY, which returns a new voucher number in
VOUCHER-NUMBER and in CONTROL-LAST-VOUCHER.

The next step is CREATE-NEW-VOUCHER-RECORD at line 030800. This routine moves the
SAVE-VOUCHER-RECORD back to the VOUCHER-RECORD. This destroys the new voucher number
that was set up in VOUCHER-NUMBER, but another copy of that number is available in
CONTROL-LAST-VOUCHER. This is moved to VOUCHER-NUMBER.

At this point, the voucher record contains all the information that was placed in the record after the
voucher was entered as paid but also contains the new voucher number. To set up the record so that the
VOUCHER-AMOUNT is correct, it is necessary to subtract the VOUCHER-PAID-AMOUNT from the
VOUCHER-AMOUNT. The voucher is flagged as not selected for payment at the
VOUCHER-PAID-AMOUNT, and VOUCHER-PAID-DATE and VOUCHER-CHECK-NO are reset to zero.
Finally, this new voucher record is written at line 031400.

Follow thoroughly what is happening in CREATE-NEW-VOUCHER-RECORD because it contains much
that is new to you.

The last routine in this series, DISPLAY-NEW-VOUCHER at line 031600, informs the user that a new
voucher has been created for the balance, and what the new voucher number is.

Code, compile, and run vchpay01.cbl against some trial vouchers created with vchmnt01.cbl.
Pay some in full, and make some partial payments. Then try reopening some of those vouchers.

Summary
Today, you created a maintenance module that actually is used as a voucher-entry program. This used a
control file to generate the new voucher number in add mode, thus avoiding the step of having the user
look up the next voucher number each time a voucher needs to be added. You also explored the
following:

Another maintenance-based program to allow selection of individual vouchers to pay●

A third variation on a maintenance program, used as the basis for the program that allows vouchers
to be flagged as paid

●

Several features that can be added to a standard change mode maintenance module in order to
assist the user while doing data entry, including recognition of whether a user wants to change a
voucher status from paid to unpaid, or vice versa, and automatic generation of new vouchers for

●

underpayment

Q&A
Q Why add all these features to a maintenance module?

A There are two answers to this. A computer is supposed to take the workload off the user. The
more it can do so, the better the program is. The second part of the answer has to do with data
accuracy. In vchpay01.cbl, a new voucher is generated automatically on an underpayment.
The computer easily can calculate the difference between the amount paid and the amount owed
and generate a voucher for the new amount. A user would have to do this subtraction by hand or
with an adding machine, opening up the possibility of an error. When thinking about features for a
program, always think in terms of whether it gets more work done and whether it achieves more
accuracy.

Workshop

Quiz

1. The original routine to enter the paid amount in vchpay01.cbl (shown in Listing 20.3)
allowed the entry of only a voucher amount less than or equal to the voucher amount. The program
has been modified as shown in the following listing:

025600 ENTER-VOUCHER-PAID-AMOUNT.
025700 PERFORM ACCEPT-VOUCHER-PAID-AMOUNT.
025800 PERFORM RE-ACCEPT-VOUCHER-PAID-AMOUNT
025900 UNTIL VOUCHER-PAID-AMOUNT NOT = ZEROES.
026000
026100
026200 ACCEPT-VOUCHER-PAID-AMOUNT.
026300 DISPLAY "ENTER AMOUNT PAID".
026400 ACCEPT AN-AMOUNT-FIELD.
026500 MOVE AN-AMOUNT-FIELD TO VOUCHER-PAID-AMOUNT.
026600
026700 RE-ACCEPT-VOUCHER-PAID-AMOUNT.
026800 MOVE VOUCHER-AMOUNT TO AN-AMOUNT-FIELD.
026900 DISPLAY "A PAYMENT MUST BE ENTERED".
027000 DISPLAY "AGAINST " AN-AMOUNT-FIELD.
027100 PERFORM ACCEPT-VOUCHER-PAID-AMOUNT.
027200

Compare this to lines 025600 through 027100 in vchpay01.cbl (shown in Listing 20.3).
What is the effect of this change?

Exercise

Copy vchpay01.cbl to vchpay02.cbl and using the listing in Quiz question 1, make the changes
indicated. Compile and run the program and try some overpayments and underpayments. Make sure the
program works correctly. The vchpay02.cbl program will be used in the next chapter, Day 21,
"Selecting, Sorting, and Reporting," so be sure to complete this exercise.

Previous chapter Next chapter Contents

Macmillan Computer Publishing USA

© Copyright, Macmillan Computer Publishing. All rights reserved.

Teach Yourself COBOL in 21 days, Second
Edition

Previous chapter Next chapter Contents

- Day 21 -
Selecting, Sorting, and Reporting

Reporting is the most visible part of any program. Hard-copy reports tend to circulate and be seen by many
users. Reports tend to be the area where most modification requests come in. You need several tools to
handle reports effectively.

Today, you learn about the following topics:

Selecting records●

Sorting a file●

Printing totals●

Programming control breaks●

The cash requirements report●

Continuing the Bills Payment System
Figure 21.1 shows the flowchart from Day 20. Steps 2, 7, and 12, shown in light gray, were completed on
that day. In today's lesson, you complete steps 4, 6, and 8 shown in dark gray. This will complete all of the
computer processes in the bills payment system.

Figure 21.1.
The bills payment system.

You start with step 6, the selection of records by date range.

Selecting Records
In many programs, it is necessary to read through a file, picking out records that require processing. Step 4 in
Figure 21.1 is to report on all unpaid bills. That report has to select for printing all voucher records in which
the VOUCHER-PAID-DATE is zeroes. In step 8, the cash-requirements report selects for printing all

file:///D|/Cool Stuff/old/ftp/Sams.Teach.Yourself.Cobol.In.21.Days/Teach Yourself Cobol in 21 Days/ch21/01.htm

vouchers that are unpaid (VOUCHER-PAID-DATE = ZEROES) and that are selected for payment
(VOUCHER-SELECTED = "Y").

There are several solutions to this selection problem, but one of the most efficient methods is to stick with
the basic processing-loop design. Listing 21.1 shows the pseudocode for this style of processing.

TYPE: Listing 21.1. Pseudocode for a selected records-processing loop.

process-records
 read-first-valid-record
 perform process-loop
 until file-at-end
process-loop
 process-this-record
 read-next-valid-record

ANALYSIS: In some programs, such as those covered in Day 17, "Alternate Keys," it is necessary to use a
START command to change the key path in the file before reading through the file. In such a program, the
read-first-valid-record action is used to set up the file so that it can be read.

In other programs, you don't need to do any setting up. The OPEN positions the file so that the first READ
NEXT will return the first record on the primary key path. In this type of program, there is no difference
between a read-first-valid-record and a read-next-valid-record.

The read-next-valid-record logic reads a record and makes all the decisions necessary to determine
that this record fits the selection criteria. The read-first-valid-record action sets up the file, reads
a record, and then uses the same decisions used in read-next-valid-record. Listing 21.2 shows how
this code might look on the voucher file.

TYPE: Listing 21.2. Code for a selected records processing loop.

010100 PROCESS-VOUCHERS.
010200 PERFORM READ-FIRST-VALID-VOUCHER.
010300 PERFORM PROCESS-ALL-VOUCHERS
010400 UNTIL VOUCHER-FILE-AT-END = "Y".
010500
010600 PROCESS-ALL-VOUCHERS.
010700 PERFORM PROCESS-THIS-VOUCHER.
010800 PERFORM READ-NEXT-VALID-VOUCHER.

Step 6 in Figure 21.1, selecting vouchers by range, is really a two-step process. Selecting vouchers for
payment the first time is simple, but if the user wants to change the selection, there must be some way to
clear out existing selections in order to start over again. This process of clearing existing selections and
selecting could be combined into one program, but for ease of illustration, it is broken down here into two
separate programs.

The vchclr01.cbl program in Listing 21.3 clears all VOUCHER-SELECTED flags, and
vchsel01.cbl (which you'll see soon) selects vouchers by range.

TYPE: Listing 21.3. Clearing existing selections.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. VCHCLR01.
000300*--------------------------------
000400* Asks the user if all selected
000500* vouchers should be cleared.
000600*
000700* 1. Searches the voucher file for
000800* unpaid vouchers that are
000900* selected and clears the
001000* selected flag
001100*--------------------------------
001200 ENVIRONMENT DIVISION.
001300 INPUT-OUTPUT SECTION.
001400 FILE-CONTROL.
001500
001600 COPY "SLVOUCH.CBL".
001700
001800 DATA DIVISION.
001900 FILE SECTION.
002000
002100 COPY "FDVOUCH.CBL".
002200
002300 WORKING-STORAGE SECTION.
002400
002500 77 OK-TO-CLEAR PIC X.
002600 77 VOUCHER-FILE-AT-END PIC X.
002700
002800 COPY "WSCASE01.CBL".
002900
003000 PROCEDURE DIVISION.
003100 PROGRAM-BEGIN.
003200 PERFORM OPENING-PROCEDURE.
003300 PERFORM MAIN-PROCESS.
003400 PERFORM CLOSING-PROCEDURE.
003500
003600 PROGRAM-EXIT.
003700 EXIT PROGRAM.
003800
003900 PROGRAM-DONE.
004000 STOP RUN.
004100
004200 OPENING-PROCEDURE.
004300 OPEN I-O VOUCHER-FILE.
004400
004500 CLOSING-PROCEDURE.
004600 CLOSE VOUCHER-FILE.
004700

004800 MAIN-PROCESS.
004900 PERFORM GET-OK-TO-CLEAR.
005000 IF OK-TO-CLEAR = "Y"
005100 PERFORM PROCESS-VOUCHERS.
005200
005300 GET-OK-TO-CLEAR.
005400 PERFORM ACCEPT-OK-TO-CLEAR.
005500 PERFORM RE-ACCEPT-OK-TO-CLEAR
005600 UNTIL OK-TO-CLEAR = "Y" OR "N".
005700
005800 ACCEPT-OK-TO-CLEAR.
005900 DISPLAY "CLEAR ALL PREVIOUS SELECTIONS (Y/N)?".
006000 ACCEPT OK-TO-CLEAR.
006100 INSPECT OK-TO-CLEAR
006200 CONVERTING LOWER-ALPHA
006300 TO UPPER-ALPHA.
006400
006500
006600 RE-ACCEPT-OK-TO-CLEAR.
006700 DISPLAY "YOU MUST ENTER YES OR NO".
006800 PERFORM ACCEPT-OK-TO-CLEAR.
006900
007000*--------------------------------
007100* Clear all previous selections.
007200*--------------------------------
007300 PROCESS-VOUCHERS.
007400 PERFORM READ-FIRST-VALID-VOUCHER.
007500 PERFORM PROCESS-ALL-VOUCHERS
007600 UNTIL VOUCHER-FILE-AT-END = "Y".
007700
007800 PROCESS-ALL-VOUCHERS.
007900 PERFORM PROCESS-THIS-VOUCHER.
008000 PERFORM READ-NEXT-VALID-VOUCHER.
008100
008200 PROCESS-THIS-VOUCHER.
008300 MOVE "N" TO VOUCHER-SELECTED
008400 PERFORM REWRITE-VOUCHER-RECORD.
008500
008600*--------------------------------
008700* Read first, read next routines
008800*--------------------------------
008900 READ-FIRST-VALID-VOUCHER.
009000 PERFORM READ-NEXT-VALID-VOUCHER.
009100
009200 READ-NEXT-VALID-VOUCHER.
009300 PERFORM READ-NEXT-VOUCHER-RECORD.
009400 PERFORM READ-NEXT-VOUCHER-RECORD

009500 UNTIL VOUCHER-FILE-AT-END = "Y"
009600 OR (VOUCHER-PAID-DATE = ZEROES
009700 AND VOUCHER-SELECTED = "Y").
009800
009900 READ-NEXT-VOUCHER-RECORD.
010000 MOVE "N" TO VOUCHER-FILE-AT-END.
010100 READ VOUCHER-FILE NEXT RECORD
010200 AT END
010300 MOVE "Y" TO VOUCHER-FILE-AT-END.
010400
010500*--------------------------------
010600* Other File I-O routines.
010700*--------------------------------
010800 REWRITE-VOUCHER-RECORD.
010900 REWRITE VOUCHER-RECORD
011000 INVALID KEY
011100 DISPLAY "ERROR REWRITING VENDOR RECORD".
011200

ANALYSIS: The MAIN-PROCESS of the program at line 004800 starts by asking the user whether to
"CLEAR ALL PREVIOUS SELECTIONS (Y/N)?". This gives the user a chance to back out in case the
program was run incorrectly. The routines to ask the user extend from line 005300 through line 006800. If
the user answers yes, PROCESS-VOUCHERS at line 007300 is performed. This logic extends from line
007300 through line 008400 and follows the format of a selected records processing loop.

The actual processing of the voucher is at line 008200 in PROCESS-THIS-VOUCHER. This routine moves
"N" to VOUCHER-SELECTED and rewrites the record. This takes care of what is to be done to the records,
but the selection of which records it will be done to still needs attention.

READ-FIRST-VALID-VOUCHER and READ-NEXT-VALID-VOUCHER are at lines 008900 and
009200. No special setup is needed for the READ-FIRST-VALID-VOUCHER routine, so it simply
performs READ-NEXT-VALID-VOUCHER.

The real action takes place in READ-NEXT-VALID-VOUCHER at line 009200. At first glance, the
paragraph seems odd because it appears to read the next voucher record twice. Remember that the UNTIL in
a PERFORM UNTIL is tested once before anything is performed. Lines 009200 through 009700 actually
do the following:

1. Read the next voucher record.

2. Test whether the file is at end or paid date is zeroes and the selected flag is "Y".

3. If none of the conditions is true, read the next voucher record and go back to step 2.

It is easy to forget that the test in a PERFORM UNTIL occurs before the PERFORM because of the way the
command is structured.

The overall effect is that READ-NEXT-VALID-VOUCHER continues reading through the file until either the
file is exhausted (at end), or a record is found that matches the two conditions of VOUCHER-PAID-DATE
= ZEROES and VOUCHER-SELECTED = "Y". The READ-NEXT-VOUCHER-RECORD routine at line

009900 is a standard read-next routine that sets an at-end flag.

The pseudocode for record selection now can be extended to incorporate the logic for reading the first and
next selected records, as in Listing 21.4.

TYPE: Listing 21.4. An extended selected record-processing loop.

process-records
 read-first-valid-record
 perform process-loop
 until file-at-end
process-loop
 process-this-record
 read-next-valid-record
read-first-valid-record
 start-the-file
 read-next-valid-record
read-next-valid-record
 read-next-record
 perform read-next-record
 until file is at end
 or (the selection condition is met)

The second half of the selection problem is solved with vchsel01.cbl, shown in Listing 21.5. This
program enables the user to select vouchers for payment by a cutoff date. The user enters a cutoff date, and
all unpaid vouchers due on or before that date are selected for payment. The vchsel01.cbl program that
you are about to create (vchclr01.cbl) and vchpic01.cbl created in Day 20, "More Complex Data
Entry," can be used repeatedly to select and reselect vouchers. This will be done as long as the cash
requirements report (step 8 of Figure 21.1) produces a number that is too large to pay.

TYPE: Listing 21.5. Selecting by cutoff date.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. VCHSEL01.
000300*--------------------------------
000400* Asks the user for a cutoff
000500* date
000600*
000700* 1. Searches the voucher file for
000800* unpaid vouchers that are
000900* within the cut off date
001000* and reflags them as selected
001100*--------------------------------
001200 ENVIRONMENT DIVISION.
001300 INPUT-OUTPUT SECTION.
001400 FILE-CONTROL.
001500
001600 COPY "SLVOUCH.CBL".

001700
001800 DATA DIVISION.
001900 FILE SECTION.
002000
002100 COPY "FDVOUCH.CBL".
002200
002300 WORKING-STORAGE SECTION.
002400
002500 77 OK-TO-PROCESS PIC X.
002600 77 VOUCHER-FILE-AT-END PIC X.
002700
002800 77 CUT-OFF-DATE PIC 9(8).
002900
003000 COPY "WSCASE01.CBL".
003100
003200 COPY "WSDATE01.CBL".
003300
003400 PROCEDURE DIVISION.
003500 PROGRAM-BEGIN.
003600 PERFORM OPENING-PROCEDURE.
003700 PERFORM MAIN-PROCESS.
003800 PERFORM CLOSING-PROCEDURE.
003900
004000 PROGRAM-EXIT.
004100 EXIT PROGRAM.
004200
004300 PROGRAM-DONE.
004400 STOP RUN.
004500
004600 OPENING-PROCEDURE.
004700 OPEN I-O VOUCHER-FILE.
004800
004900 CLOSING-PROCEDURE.
005000 CLOSE VOUCHER-FILE.
005100
005200 MAIN-PROCESS.
005300 PERFORM GET-OK-TO-PROCESS.
005400 IF OK-TO-PROCESS = "Y"
005500 PERFORM GET-CUT-OFF-DATE
005600 PERFORM PROCESS-VOUCHERS.
005700
005800 GET-OK-TO-PROCESS.
005900 PERFORM ACCEPT-OK-TO-PROCESS.
006000 PERFORM RE-ACCEPT-OK-TO-PROCESS
006100 UNTIL OK-TO-PROCESS = "Y" OR "N".
006200
006300 ACCEPT-OK-TO-PROCESS.

006400 DISPLAY "SELECT VOUCHER BY DATE RANGE (Y/N)?".
006500 ACCEPT OK-TO-PROCESS.
006600 INSPECT OK-TO-PROCESS
006700 CONVERTING LOWER-ALPHA
006800 TO UPPER-ALPHA.
006900
007000
007100 RE-ACCEPT-OK-TO-PROCESS.
007200 DISPLAY "YOU MUST ENTER YES OR NO".
007300 PERFORM ACCEPT-OK-TO-PROCESS.
007400
007500 GET-CUT-OFF-DATE.
007600 MOVE "N" TO ZERO-DATE-IS-OK.
007700 MOVE "SELECT ON OR BEFORE (MM/DD/CCYY)?"
007800 TO DATE-PROMPT.
007900 PERFORM GET-A-DATE.
008000 MOVE DATE-CCYYMMDD TO CUT-OFF-DATE.
008100
008200*--------------------------------
008300* Clear all previous selections.
008400*--------------------------------
008500 PROCESS-VOUCHERS.
008600 PERFORM READ-FIRST-VALID-VOUCHER.
008700 PERFORM PROCESS-ALL-VOUCHERS
008800 UNTIL VOUCHER-FILE-AT-END = "Y".
008900
009000 PROCESS-ALL-VOUCHERS.
009100 PERFORM PROCESS-THIS-VOUCHER.
009200 PERFORM READ-NEXT-VALID-VOUCHER.
009300
009400 PROCESS-THIS-VOUCHER.
009500 MOVE "Y" TO VOUCHER-SELECTED
009600 PERFORM REWRITE-VOUCHER-RECORD.
009700
009800*--------------------------------
009900* Read first, read next routines
010000*--------------------------------
010100 READ-FIRST-VALID-VOUCHER.
010200 PERFORM READ-NEXT-VALID-VOUCHER.
010300
010400 READ-NEXT-VALID-VOUCHER.
010500 PERFORM READ-NEXT-VOUCHER-RECORD.
010600 PERFORM READ-NEXT-VOUCHER-RECORD
010700 UNTIL VOUCHER-FILE-AT-END = "Y"
010800 OR (VOUCHER-PAID-DATE = ZEROES
010900 AND VOUCHER-DUE NOT > CUT-OFF-DATE).
011000

011100 READ-NEXT-VOUCHER-RECORD.
011200 MOVE "N" TO VOUCHER-FILE-AT-END.
011300 READ VOUCHER-FILE NEXT RECORD
011400 AT END
011500 MOVE "Y" TO VOUCHER-FILE-AT-END.
011600
011700*--------------------------------
011800* Other File I-O routines.
011900*--------------------------------
012000 REWRITE-VOUCHER-RECORD.
012100 REWRITE VOUCHER-RECORD
012200 INVALID KEY
012300 DISPLAY "ERROR REWRITING VENDOR RECORD".
012400*--------------------------------
012500* Utility routines.
012600*--------------------------------
012700 COPY "PLDATE01.CBL".
012800

ANALYSIS: This program is similar to vchclr01.cbl. The user is asked at line 005300 whether to
continue. If the answer is yes, GET-CUT-OFF-DATE is performed to get a date range to use for the
selection process. This is a simple routine at line 007500 that asks the user for a required date and stores it
in CUT-OFF-DATE. It uses the GET-A-DATE routine that was created in pldate01.cbl. This is copied
at the end of the program. After the cutoff date is entered, the flow of the program is identical to
vchclr01.cbl.

The only real differences are at line 009500 in PROCESS-THIS-VOUCHER, which moves "Y" instead of
"N" to VOUCHER-SELECTED, and in the record selection logic at lines 010700 through 010900. The
selection is for records with VOUCHER-PAID-DATE = ZEROES and VOUCHER-DUE NOT >
CUT-OFF-DATE.

Sorting a File
The bills report lists all the outstanding bills. It is step 4 of the flowchart in Figure 21.1. Figure 21.2 is a
printer spacing chart for the bills report. The column headed S will be used to print the
VOUCHER-SELECTED flag.

Figure 21.2.
The printer chart for bilrpt01.cbl.

Listing 21.6 is the simplest version of this report.

TYPE: Listing 21.6. The bills report.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. BILRPT01.
000300*--------------------------------
000400* Bills report in Due Date order

file:///D|/Cool Stuff/old/ftp/Sams.Teach.Yourself.Cobol.In.21.Days/Teach Yourself Cobol in 21 Days/ch21/02.htm

000500*--------------------------------
000600 ENVIRONMENT DIVISION.
000700 INPUT-OUTPUT SECTION.
000800 FILE-CONTROL.
000900
001000 COPY "SLVOUCH.CBL".
001100
001200 COPY "SLVND02.CBL".
001300
001400 SELECT PRINTER-FILE
001500 ASSIGN TO PRINTER
001600 ORGANIZATION IS LINE SEQUENTIAL.
001700
001800 DATA DIVISION.
001900 FILE SECTION.
002000
002100 COPY "FDVOUCH.CBL".
002200
002300 COPY "FDVND04.CBL".
002400
002500 FD PRINTER-FILE
002600 LABEL RECORDS ARE OMITTED.
002700 01 PRINTER-RECORD PIC X(80).
002800
002900 WORKING-STORAGE SECTION.
003000
003100 77 OK-TO-PROCESS PIC X.
003200
003300 COPY "WSCASE01.CBL".
003400
003500 01 DETAIL-LINE.
003600 05 PRINT-NUMBER PIC ZZZZ9.
003700 05 FILLER PIC X(3) VALUE SPACE.
003800 05 PRINT-NAME PIC X(30).
003900 05 FILLER PIC X(1) VALUE SPACE.
004000 05 PRINT-DUE-DATE PIC Z9/99/9999.
004100 05 FILLER PIC X(1) VALUE SPACE.
004200 05 PRINT-AMOUNT PIC ZZZ,ZZ9.99.
004300 05 FILLER PIC X(1) VALUE SPACE.
004400 05 PRINT-INVOICE PIC X(15).
004500 05 FILLER PIC X(1) VALUE SPACE.
004600 05 PRINT-SELECTED PIC X(1) VALUE SPACE.
004700
004800 01 TOTAL-THRU.
004900 05 FILLER PIC X(20) VALUE SPACE.
005000 05 FILLER PIC X(10) VALUE "TOTAL THRU".
005100

005200 01 COLUMN-LINE.
005300 05 FILLER PIC X(7) VALUE "VOUCHER".
005400 05 FILLER PIC X(1) VALUE SPACE.
005500 05 FILLER PIC X(10) VALUE "VENDOR/For".
005600 05 FILLER PIC X(23) VALUE SPACE.
005700 05 FILLER PIC X(8) VALUE "DUE DATE".
005800 05 FILLER PIC X(1) VALUE SPACE.
005900 05 FILLER PIC X(10) VALUE "AMOUNT DUE".
006000 05 FILLER PIC X(1) VALUE SPACE.
006100 05 FILLER PIC X(7) VALUE "INVOICE".
006200 05 FILLER PIC X(9) VALUE SPACE.
006300 05 FILLER PIC X(1) VALUE "S".
006400
006500 01 TITLE-LINE.
006600 05 FILLER PIC X(30) VALUE SPACE.
006700 05 FILLER PIC X(12)
006800 VALUE "BILLS REPORT".
006900 05 FILLER PIC X(19) VALUE SPACE.
007000 05 FILLER PIC X(5) VALUE "PAGE:".
007100 05 FILLER PIC X(1) VALUE SPACE.
007200 05 PRINT-PAGE-NUMBER PIC ZZZ9.
007300
007400 77 VOUCHER-FILE-AT-END PIC X.
007500 77 VENDOR-RECORD-FOUND PIC X.
007600
007700 77 LINE-COUNT PIC 999 VALUE ZERO.
007800 77 PAGE-NUMBER PIC 9999 VALUE ZERO.
007900 77 MAXIMUM-LINES PIC 999 VALUE 55.
008000
008100 77 RECORD-COUNT PIC 9999 VALUE ZEROES.
008200
008300 COPY "WSDATE01.CBL".
008400
008500 PROCEDURE DIVISION.
008600 PROGRAM-BEGIN.
008700
008800 PERFORM OPENING-PROCEDURE.
008900 PERFORM MAIN-PROCESS.
009000 PERFORM CLOSING-PROCEDURE.
009100
009200 PROGRAM-EXIT.
009300 EXIT PROGRAM.
009400
009500 PROGRAM-DONE.
009600 STOP RUN.
009700
009800 OPENING-PROCEDURE.

009900 OPEN I-O VENDOR-FILE.
010000
010100 OPEN OUTPUT PRINTER-FILE.
010200
010300 MAIN-PROCESS.
010400 PERFORM GET-OK-TO-PROCESS.
010500 IF OK-TO-PROCESS = "Y"
010600 PERFORM PRINT-THE-REPORT.
010700
010800 CLOSING-PROCEDURE.
010900 CLOSE VENDOR-FILE.
011000 PERFORM END-LAST-PAGE.
011100 CLOSE PRINTER-FILE.
011200
011300 GET-OK-TO-PROCESS.
011400 PERFORM ACCEPT-OK-TO-PROCESS.
011500 PERFORM RE-ACCEPT-OK-TO-PROCESS
011600 UNTIL OK-TO-PROCESS = "Y" OR "N".
011700
011800 ACCEPT-OK-TO-PROCESS.
011900 DISPLAY "PRINT BILLS REPORT (Y/N)?".
012000 ACCEPT OK-TO-PROCESS.
012100 INSPECT OK-TO-PROCESS
012200 CONVERTING LOWER-ALPHA
012300 TO UPPER-ALPHA.
012400
012500 RE-ACCEPT-OK-TO-PROCESS.
012600 DISPLAY "YOU MUST ENTER YES OR NO".
012700 PERFORM ACCEPT-OK-TO-PROCESS.
012800
012900 PRINT-THE-REPORT.
013000 OPEN INPUT VOUCHER-FILE.
013100 PERFORM START-ONE-REPORT.
013200 PERFORM PROCESS-VOUCHERS.
013300 PERFORM END-ONE-REPORT.
013400 CLOSE VOUCHER-FILE.
013500
013600 START-ONE-REPORT.
013700 PERFORM INITIALIZE-REPORT.
013800 PERFORM START-NEW-PAGE.
013900
014000 INITIALIZE-REPORT.
014100 MOVE ZEROES TO LINE-COUNT PAGE-NUMBER.
014200
014300 END-ONE-REPORT.
014400 IF RECORD-COUNT = ZEROES
014500 MOVE "NO RECORDS FOUND" TO PRINTER-RECORD

014600 PERFORM WRITE-TO-PRINTER.
014700
014800 PROCESS-VOUCHERS.
014900 PERFORM READ-FIRST-VALID-VOUCHER.
015000 PERFORM PROCESS-ALL-VOUCHERS
015100 UNTIL VOUCHER-FILE-AT-END = "Y".
015200
015300 PROCESS-ALL-VOUCHERS.
015400 PERFORM PROCESS-THIS-VOUCHER.
015500 PERFORM READ-NEXT-VALID-VOUCHER.
015600
015700 PROCESS-THIS-VOUCHER.
015800 ADD 1 TO RECORD-COUNT.
015900 IF LINE-COUNT > MAXIMUM-LINES
016000 PERFORM START-NEXT-PAGE.
016100 PERFORM PRINT-THE-RECORD.
016200
016300 PRINT-THE-RECORD.
016400 PERFORM PRINT-LINE-1.
016500 PERFORM PRINT-LINE-2.
016600 PERFORM LINE-FEED.
016700
016800 PRINT-LINE-1.
016900 MOVE SPACE TO DETAIL-LINE.
017000 MOVE VOUCHER-NUMBER TO PRINT-NUMBER.
017100
017200 MOVE VOUCHER-VENDOR TO VENDOR-NUMBER.
017300 PERFORM READ-VENDOR-RECORD.
017400 IF VENDOR-RECORD-FOUND = "Y"
017500 MOVE VENDOR-NAME TO PRINT-NAME
017600 ELSE
017700 MOVE "*VENDOR NOT ON FILE*" TO PRINT-NAME.
017800
017900 MOVE VOUCHER-DUE TO DATE-CCYYMMDD.
018000 PERFORM CONVERT-TO-MMDDCCYY.
018100 MOVE DATE-MMDDCCYY TO PRINT-DUE-DATE.
018200
018300 MOVE VOUCHER-AMOUNT TO PRINT-AMOUNT.
018400 MOVE VOUCHER-INVOICE TO PRINT-INVOICE.
018500
018600 IF VOUCHER-SELECTED = "Y"
018700 MOVE VOUCHER-SELECTED TO PRINT-SELECTED
018800 ELSE
018900 MOVE SPACE TO PRINT-SELECTED.
019000
019100 MOVE DETAIL-LINE TO PRINTER-RECORD.
019200 PERFORM WRITE-TO-PRINTER.

019300
019400 PRINT-LINE-2.
019500 MOVE SPACE TO DETAIL-LINE.
019600 MOVE VOUCHER-FOR TO PRINT-NAME.
019700 MOVE DETAIL-LINE TO PRINTER-RECORD.
019800 PERFORM WRITE-TO-PRINTER.
019900
020000 WRITE-TO-PRINTER.
020100 WRITE PRINTER-RECORD BEFORE ADVANCING 1.
020200 ADD 1 TO LINE-COUNT.
020300
020400 LINE-FEED.
020500 MOVE SPACE TO PRINTER-RECORD.
020600 PERFORM WRITE-TO-PRINTER.
020700
020800 START-NEXT-PAGE.
020900 PERFORM END-LAST-PAGE.
021000 PERFORM START-NEW-PAGE.
021100
021200 START-NEW-PAGE.
021300 ADD 1 TO PAGE-NUMBER.
021400 MOVE PAGE-NUMBER TO PRINT-PAGE-NUMBER.
021500 MOVE TITLE-LINE TO PRINTER-RECORD.
021600 PERFORM WRITE-TO-PRINTER.
021700 PERFORM LINE-FEED.
021800 MOVE COLUMN-LINE TO PRINTER-RECORD.
021900 PERFORM WRITE-TO-PRINTER.
022000 PERFORM LINE-FEED.
022100
022200 END-LAST-PAGE.
022300 PERFORM FORM-FEED.
022400 MOVE ZERO TO LINE-COUNT.
022500
022600 FORM-FEED.
022700 MOVE SPACE TO PRINTER-RECORD.
022800 WRITE PRINTER-RECORD BEFORE ADVANCING PAGE.
022900
023000*--------------------------------
023100* Read first, read next routines
023200*--------------------------------
023300 READ-FIRST-VALID-VOUCHER.
023400 PERFORM READ-NEXT-VALID-VOUCHER.
023500
023600 READ-NEXT-VALID-VOUCHER.
023700 PERFORM READ-NEXT-VOUCHER-RECORD.
023800 PERFORM READ-NEXT-VOUCHER-RECORD
023900 UNTIL VOUCHER-FILE-AT-END = "Y"

024000 OR VOUCHER-PAID-DATE = ZEROES.
024100
024200 READ-NEXT-VOUCHER-RECORD.
024300 MOVE "N" TO VOUCHER-FILE-AT-END.
024400 READ VOUCHER-FILE NEXT RECORD
024500 AT END MOVE "Y" TO VOUCHER-FILE-AT-END.
024600
024700*--------------------------------
024800* Other File IO routines
024900*--------------------------------
025000 READ-VENDOR-RECORD.
025100 MOVE "Y" TO VENDOR-RECORD-FOUND.
025200 READ VENDOR-FILE RECORD
025300 INVALID KEY
025400 MOVE "N" TO VENDOR-RECORD-FOUND.
025500
025600*--------------------------------
025700* Utility Routines
025800*--------------------------------
025900 COPY "PLDATE01.CBL".
026000

The sample report output from bilrpt01.cbl lists vouchers in voucher number order that are not yet
paid:

OUTPUT:
 BILLS REPORT PAGE: 1
VOUCHER VENDOR/For DUE DATE AMOUNT DUE INVOICE S
3 CHARLES SMITH AND SONS 2/22/1997 27.76 5057
OFFICE SUPPLIES
4 ABC PRINTING 2/07/1997 104.19 CX-5055
LETTER HEAD
7 ABC PRINTING 2/22/1997 48.97 CX-1407
BUSINESS CARDS
8 ABC PRINTING 1/27/1997 48.97 CX-1566
BUSINESS CARDS
13 MA BELL 1/23/1997 94.96 50577
PHONE LINE 555-6067
14 AERIAL SIGNS 1/17/1997 1,046.97 FA1234
SIGN OVER ZUMA BEACH
15 ABERCROMBIE AND OTHERS 1/31/1997 657.19 MONTHLY
RENT
16 CHARLES SMITH AND SONS 1/16/1997 25.97 5098
1997 DAY RUNNER
17 RANIER GRAPHICS 2/25/1997 4,057.07 ZO-1515
2 PAGE AD LAYOUT WITH RACE CAR
19 MA BELL 1/23/1997 34.95 50577
PHONE LINE 555-9098

ANALYSIS: The logic to process selected records begins at line 014800 with PROCESS-VOUCHERS. The
actual processing loop, PROCESS-THIS-VOUCHER at line 015700, is printing logic to print the record
information.

The READ-NEXT-VALID-VOUCHER routine at line 023600 is simpler than the previous examples
because all you want are records where VOUCHER-PAID-DATE = ZEROES.

One unusual thing in bilrpt01.cbl is the opening and closing of VOUCHER-FILE at lines 013000 and
013400, rather than in the OPENING-PROCEDURE and CLOSING-PROCEDURE. If this were the final
version of the program, the OPEN and CLOSE would have been placed correctly in OPENING-PROCEDURE
and CLOSING-PROCEDURE. You are working up to another version of this program, so allow this
discrepancy for the moment and it will be explained. This program still works correctly.

Code, compile, and run bilrpt01.cbl. Make sure that it works correctly, and make sure that you
understand how it works. You are about to add several things to this program, and if you understand this one
fairly well, the additions should not cause any confusion.

Although it is possible simply to write a report of the information in the voucher file, as in
bilrpt01.cbl, the report would be more useful if it were organized in order of the dates on which the
bills are due. Anyone reading the report would know that bills appearing earlier in the report are the more
urgent ones because their due dates are closer.

This presents a problem. The voucher file does not have an alternate key for the due date. Should you go
back, redefine the file, add a key, and go through a file conversion? You could, but there is another solution.
Alternate keys carry an overhead in a file. They slow down the writing of a new record because the alternate
key information has to be updated during the write. They also increase the size of the file on the disk.
Whether to create an alternate key or to use a sort on a field (which you learn about in this section) is a part
of database and file design, trading off different kinds of costs to produce an efficient compromise.

A file can be sorted on any field or fields in the record by using the COBOL SORT command. The SORT
command creates a new file in the process. It is a sequential file that has the same FD as the original file, but
it is not keyed. The SORT command requires three files to work correctly:

The input-file is the file that is being sorted.●

The output-file is the new file containing the sorted records.●

The sort-file is a special file used as a temporary work file for the SORT command.●

The SORT command has many options. Here is an example of a common syntax for the SORT command:

SORT sort-file
 ON ASCENDING KEY sort-field
 USING input-file
 GIVING output-file

The following is an example:

SORT SORT-FILE
 ON ASCENDING KEY SORT-DATE
 USING VOUCHER-FILE

 GIVING WORK-FILE.

The KEY in a SORT command is not an indexed key, but simply a way of indicating the field on which the
file will be sorted. Because the SORT command uses two extra files, both files must be defined in the
ENVIRONMENT DIVISION and the DATA DIVISION. The easiest way to understand this is to look at an
example of a sort. Listing 21.7 is bilrpt02.cbl, a modified version of bilrpt01.cbl that includes a
sort.

TYPE: Listing 21.7. The bills report sorted in due date order.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. BILRPT02.
000300*--------------------------------
000400* Bills report in Due Date order
000500*--------------------------------
000600 ENVIRONMENT DIVISION.
000700 INPUT-OUTPUT SECTION.
000800 FILE-CONTROL.
000900
001000 COPY "SLVOUCH.CBL".
001100
001200 COPY "SLVND02.CBL".
001300
001400 COPY "SLSTATE.CBL".
001500
001600 SELECT WORK-FILE
001700 ASSIGN TO "WORK"
001800 ORGANIZATION IS SEQUENTIAL.
001900
002000 SELECT SORT-FILE
002100 ASSIGN TO "SORT".
002200
002300 SELECT PRINTER-FILE
002400 ASSIGN TO PRINTER
002500 ORGANIZATION IS LINE SEQUENTIAL.
002600
002700 DATA DIVISION.
002800 FILE SECTION.
002900
003000 COPY "FDVOUCH.CBL".
003100
003200 COPY "FDVND04.CBL".
003300
003400 COPY "FDSTATE.CBL".
003500
003600 FD WORK-FILE
003700 LABEL RECORDS ARE STANDARD.
003800 01 WORK-RECORD.

003900 05 WORK-NUMBER PIC 9(5).
004000 05 WORK-VENDOR PIC 9(5).
004100 05 WORK-INVOICE PIC X(15).
004200 05 WORK-FOR PIC X(30).
004300 05 WORK-AMOUNT PIC S9(6)V99.
004400 05 WORK-DATE PIC 9(8).
004500 05 WORK-DUE PIC 9(8).
004600 05 WORK-DEDUCTIBLE PIC X.
004700 05 WORK-SELECTED PIC X.
004800 05 WORK-PAID-AMOUNT PIC S9(6)V99.
004900 05 WORK-PAID-DATE PIC 9(8).
005000 05 WORK-CHECK-NO PIC 9(6).
005100
005200 SD SORT-FILE.
005300
005400 01 SORT-RECORD.
005500 05 SORT-NUMBER PIC 9(5).
005600 05 SORT-VENDOR PIC 9(5).
005700 05 SORT-INVOICE PIC X(15).
005800 05 SORT-FOR PIC X(30).
005900 05 SORT-AMOUNT PIC S9(6)V99.
006000 05 SORT-DATE PIC 9(8).
006100 05 SORT-DUE PIC 9(8).
006200 05 SORT-DEDUCTIBLE PIC X.
006300 05 SORT-SELECTED PIC X.
006400 05 SORT-PAID-AMOUNT PIC S9(6)V99.
006500 05 SORT-PAID-DATE PIC 9(8).
006600 05 SORT-CHECK-NO PIC 9(6).
006700
006800 FD PRINTER-FILE
006900 LABEL RECORDS ARE OMITTED.
007000 01 PRINTER-RECORD PIC X(80).
007100
007200 WORKING-STORAGE SECTION.
007300
007400 77 OK-TO-PROCESS PIC X.
007500
007600 COPY "WSCASE01.CBL".
007700
007800 01 DETAIL-LINE.
007900 05 PRINT-NUMBER PIC ZZZZ9.
008000 05 FILLER PIC X(3) VALUE SPACE.
008100 05 PRINT-NAME PIC X(30).
008200 05 FILLER PIC X(1) VALUE SPACE.
008300 05 PRINT-DUE-DATE PIC Z9/99/9999.
008400 05 FILLER PIC X(1) VALUE SPACE.
008500 05 PRINT-AMOUNT PIC ZZZ,ZZ9.99.

008600 05 FILLER PIC X(1) VALUE SPACE.
008700 05 PRINT-INVOICE PIC X(15).
008800 05 FILLER PIC X(1) VALUE SPACE.
008900 05 PRINT-SELECTED PIC X(1) VALUE SPACE.
009000
009100 01 TOTAL-THRU.
009200 05 FILLER PIC X(20) VALUE SPACE.
009300 05 FILLER PIC X(10) VALUE "TOTAL THRU".
009400
009500 01 COLUMN-LINE.
009600 05 FILLER PIC X(7) VALUE "VOUCHER".
009700 05 FILLER PIC X(1) VALUE SPACE.
009800 05 FILLER PIC X(10) VALUE "VENDOR/For".
009900 05 FILLER PIC X(23) VALUE SPACE.
010000 05 FILLER PIC X(8) VALUE "DUE DATE".
010100 05 FILLER PIC X(1) VALUE SPACE.
010200 05 FILLER PIC X(10) VALUE "AMOUNT DUE".
010300 05 FILLER PIC X(1) VALUE SPACE.
010400 05 FILLER PIC X(7) VALUE "INVOICE".
010500 05 FILLER PIC X(9) VALUE SPACE.
010600 05 FILLER PIC X(1) VALUE "S".
010700
010800 01 TITLE-LINE.
010900 05 FILLER PIC X(30) VALUE SPACE.
011000 05 FILLER PIC X(12)
011100 VALUE "BILLS REPORT".
011200 05 FILLER PIC X(19) VALUE SPACE.
011300 05 FILLER PIC X(5) VALUE "PAGE:".
011400 05 FILLER PIC X(1) VALUE SPACE.
011500 05 PRINT-PAGE-NUMBER PIC ZZZ9.
011600
011700 77 WORK-FILE-AT-END PIC X.
011800 77 VENDOR-RECORD-FOUND PIC X.
011900
012000 77 LINE-COUNT PIC 999 VALUE ZERO.
012100 77 PAGE-NUMBER PIC 9999 VALUE ZERO.
012200 77 MAXIMUM-LINES PIC 999 VALUE 55.
012300
012400 77 RECORD-COUNT PIC 9999 VALUE ZEROES.
012500
012600 COPY "WSDATE01.CBL".
012700
012800 PROCEDURE DIVISION.
012900 PROGRAM-BEGIN.
013000
013100 PERFORM OPENING-PROCEDURE.
013200 PERFORM MAIN-PROCESS.

013300 PERFORM CLOSING-PROCEDURE.
013400
013500 PROGRAM-EXIT.
013600 EXIT PROGRAM.
013700
013800 PROGRAM-DONE.
013900 STOP RUN.
014000
014100 OPENING-PROCEDURE.
014200 OPEN I-O VENDOR-FILE.
014300
014400 OPEN OUTPUT PRINTER-FILE.
014500
014600 MAIN-PROCESS.
014700 PERFORM GET-OK-TO-PROCESS.
014800 IF OK-TO-PROCESS = "Y"
014900 PERFORM SORT-DATA-FILE
015000 PERFORM PRINT-THE-REPORT.
015100
015200 CLOSING-PROCEDURE.
015300 CLOSE VENDOR-FILE.
015400 PERFORM END-LAST-PAGE.
015500 CLOSE PRINTER-FILE.
015600
015700 GET-OK-TO-PROCESS.
015800 PERFORM ACCEPT-OK-TO-PROCESS.
015900 PERFORM RE-ACCEPT-OK-TO-PROCESS
016000 UNTIL OK-TO-PROCESS = "Y" OR "N".
016100
016200 ACCEPT-OK-TO-PROCESS.
016300 DISPLAY "PRINT BILLS REPORT (Y/N)?".
016400 ACCEPT OK-TO-PROCESS.
016500 INSPECT OK-TO-PROCESS
016600 CONVERTING LOWER-ALPHA
016700 TO UPPER-ALPHA.
016800
016900 RE-ACCEPT-OK-TO-PROCESS.
017000 DISPLAY "YOU MUST ENTER YES OR NO".
017100 PERFORM ACCEPT-OK-TO-PROCESS.
017200
017300*--------------------------------
017400* Sorting logic
017500*--------------------------------
017600 SORT-DATA-FILE.
017700 SORT SORT-FILE
017800 ON ASCENDING KEY SORT-DUE
017900 USING VOUCHER-FILE

018000 GIVING WORK-FILE.
018100
018200 PRINT-THE-REPORT.
018300 OPEN INPUT WORK-FILE.
018400 PERFORM START-ONE-REPORT.
018500 PERFORM PROCESS-VOUCHERS.
018600 PERFORM END-ONE-REPORT.
018700 CLOSE WORK-FILE.
018800
018900 START-ONE-REPORT.
019000 PERFORM INITIALIZE-REPORT.
019100 PERFORM START-NEW-PAGE.
019200
019300 INITIALIZE-REPORT.
019400 MOVE ZEROES TO LINE-COUNT PAGE-NUMBER.
019500
019600 END-ONE-REPORT.
019700 IF RECORD-COUNT = ZEROES
019800 MOVE "NO RECORDS FOUND" TO PRINTER-RECORD
019900 PERFORM WRITE-TO-PRINTER.
020000
020100 PROCESS-VOUCHERS.
020200 PERFORM READ-FIRST-VALID-WORK.
020300 PERFORM PROCESS-ALL-VOUCHERS
020400 UNTIL WORK-FILE-AT-END = "Y".
020500
020600 PROCESS-ALL-VOUCHERS.
020700 PERFORM PROCESS-THIS-VOUCHER.
020800 PERFORM READ-NEXT-VALID-WORK.
020900
021000 PROCESS-THIS-VOUCHER.
021100 ADD 1 TO RECORD-COUNT.
021200 IF LINE-COUNT > MAXIMUM-LINES
021300 PERFORM START-NEXT-PAGE.
021400 PERFORM PRINT-THE-RECORD.
021500
021600 PRINT-THE-RECORD.
021700 PERFORM PRINT-LINE-1.
021800 PERFORM PRINT-LINE-2.
021900 PERFORM LINE-FEED.
022000
022100 PRINT-LINE-1.
022200 MOVE SPACE TO DETAIL-LINE.
022300 MOVE WORK-NUMBER TO PRINT-NUMBER.
022400
022500 MOVE WORK-VENDOR TO VENDOR-NUMBER.
022600 PERFORM READ-VENDOR-RECORD.

022700 IF VENDOR-RECORD-FOUND = "Y"
022800 MOVE VENDOR-NAME TO PRINT-NAME
022900 ELSE
023000 MOVE "*VENDOR NOT ON FILE*" TO PRINT-NAME.
023100
023200 MOVE WORK-DUE TO DATE-CCYYMMDD.
023300 PERFORM CONVERT-TO-MMDDCCYY.
023400 MOVE DATE-MMDDCCYY TO PRINT-DUE-DATE.
023500
023600 MOVE WORK-AMOUNT TO PRINT-AMOUNT.
023700 MOVE WORK-INVOICE TO PRINT-INVOICE.
023800
023900 IF WORK-SELECTED = "Y"
024000 MOVE WORK-SELECTED TO PRINT-SELECTED
024100 ELSE
024200 MOVE SPACE TO PRINT-SELECTED.
024300
024400 MOVE DETAIL-LINE TO PRINTER-RECORD.
024500 PERFORM WRITE-TO-PRINTER.
024600
024700 PRINT-LINE-2.
024800 MOVE SPACE TO DETAIL-LINE.
024900 MOVE WORK-FOR TO PRINT-NAME.
025000 MOVE DETAIL-LINE TO PRINTER-RECORD.
025100 PERFORM WRITE-TO-PRINTER.
025200
025300 WRITE-TO-PRINTER.
025400 WRITE PRINTER-RECORD BEFORE ADVANCING 1.
025500 ADD 1 TO LINE-COUNT.
025600
025700 LINE-FEED.
025800 MOVE SPACE TO PRINTER-RECORD.
025900 PERFORM WRITE-TO-PRINTER.
026000
026100 START-NEXT-PAGE.
026200 PERFORM END-LAST-PAGE.
026300 PERFORM START-NEW-PAGE.
026400
026500 START-NEW-PAGE.
026600 ADD 1 TO PAGE-NUMBER.
026700 MOVE PAGE-NUMBER TO PRINT-PAGE-NUMBER.
026800 MOVE TITLE-LINE TO PRINTER-RECORD.
026900 PERFORM WRITE-TO-PRINTER.
027000 PERFORM LINE-FEED.
027100 MOVE COLUMN-LINE TO PRINTER-RECORD.
027200 PERFORM WRITE-TO-PRINTER.
027300 PERFORM LINE-FEED.

027400
027500 END-LAST-PAGE.
027600 PERFORM FORM-FEED.
027700 MOVE ZERO TO LINE-COUNT.
027800
027900 FORM-FEED.
028000 MOVE SPACE TO PRINTER-RECORD.
028100 WRITE PRINTER-RECORD BEFORE ADVANCING PAGE.
028200
028300*--------------------------------
028400* Read first, read next routines
028500*--------------------------------
028600 READ-FIRST-VALID-WORK.
028700 PERFORM READ-NEXT-VALID-WORK.
028800
028900 READ-NEXT-VALID-WORK.
029000 PERFORM READ-NEXT-WORK-RECORD.
029100 PERFORM READ-NEXT-WORK-RECORD
029200 UNTIL WORK-FILE-AT-END = "Y"
029300 OR WORK-PAID-DATE = ZEROES.
029400
029500 READ-NEXT-WORK-RECORD.
029600 MOVE "N" TO WORK-FILE-AT-END.
029700 READ WORK-FILE NEXT RECORD
029800 AT END MOVE "Y" TO WORK-FILE-AT-END.
029900
030000*--------------------------------
030100* Other File IO routines
030200*--------------------------------
030300 READ-VENDOR-RECORD.
030400 MOVE "Y" TO VENDOR-RECORD-FOUND.
030500 READ VENDOR-FILE RECORD
030600 INVALID KEY
030700 MOVE "N" TO VENDOR-RECORD-FOUND.
030800
030900*--------------------------------
031000* Utility Routines
031100*--------------------------------
031200 COPY "PLDATE01.CBL".
031300

The output of bilrpt02.cbl is sorted in due-date order, improving the usefulness of the report:

OUTPUT:
 BILLS REPORT PAGE: 1
VOUCHER VENDOR/For DUE DATE AMOUNT DUE INVOICE S
16 CHARLES SMITH AND SONS 1/16/1997 25.97 5098
1997 DAY RUNNER

14 AERIAL SIGNS 1/17/1997 1,046.97 FA1234
SIGN OVER ZUMA BEACH
13 MA BELL 1/23/1997 94.96 50577
PHONE LINE 555-6067
19 MA BELL 1/23/1997 34.95 50577
PHONE LINE 555-9098
8 ABC PRINTING 1/27/1997 48.97 CX-1566 Y
BUSINESS CARDS
15 ABERCROMBIE AND OTHERS 1/31/1997 657.19 MONTHLY
RENT
4 ABC PRINTING 2/07/1997 104.19 CX-5055 Y
LETTER HEAD
3 CHARLES SMITH AND SONS 2/22/1997 27.76 5057
OFFICE SUPPLIES
7 ABC PRINTING 2/22/1997 48.97 CX-1407
BUSINESS CARDS
17 RANIER GRAPHICS 2/25/1997 4,057.07 ZO-1515
2 PAGE AD LAYOUT WITH RACE CAR

ANALYSIS: This program is identical to bilrpt01.cbl except that the voucher file is sorted into a work
file, and the report is printed using the data in the work file rather than directly from the voucher file.

The FILE-CONTROL paragraph of the INPUT-OUTPUT SECTION in the ENVIRONMENT DIVISION
contains SELECT clauses for two new files. WORK-FILE at line 001600 will be used as the output of the
sort, and SORT-FILE at line 002000 will be used as a temporary file by the SORT command. Note that the
organization of the WORK-FILE is SEQUENTIAL because it will have no key. No organization is specified
for the SORT-FILE.

The organization of a sort file is omitted, because it is a special type of file used by the SORT command. The
actual organization of the file probably is nothing like any of the standard COBOL file organizations. It is set
up by your version of COBOL to produce the fastest possible sorting of another file.

In the FILE SECTION of the DATA DIVISION, the FD for the WORK-FILE is defined at lines 003600
through 005000. It is an exact duplicate of the VOUCHER-FILE, but it uses the prefix WORK- for all fields.
This work version of the voucher file will have exactly the same record layout as the voucher file, but it will
be a SEQUENTIAL file, not an INDEXED file.

The FD for the SORT-FILE begins at line 005200. Notice that it is not given a level number of FD but is
called an SD (sort descriptor). This again highlights the special nature of a sort file. The SD serves to set the
file apart from others as a special file that will be used only by the SORT command. It cannot be used as a
standard file. Aside from the SD, the remainder of the sort file is identical to the VOUCHER-FILE, but all
fields use the prefix SORT-.

The actual sort is done at lines 017600 through 018000 in the SORT-DATA-FILE paragraph. You can
think of the SORT command as a series of steps:

1. Copy the voucher file to the sort file.

2. Sort the sort file on the SORT-DUE field.

3. Copy the resulting sorted file to the work file.

This version of the SORT command automatically opens the input file (VOUCHER-FILE) and the output file
(WORK-FILE) before the sort and closes them when the sort is done. The SORT command fails if you have
opened either of these files in your program already. If you do need to open a file that is used in a sort for
any reason, it must be closed again before the SORT command is used. There is no OPEN or CLOSE of
VOUCHER-FILE or WORK-FILE in OPENING-PROCEDURE or CLOSING-PROCEDURE.

The work file cannot be opened until after the sort is completed, but it must be opened for the report. The
opening and closing of the WORK-FILE is performed at lines 018300 and 018700, respectively--which
are the top and bottom of the PRINT-THE-REPORT paragraph--just as the VOUCHER-FILE is handled in
bilrpt01.cbl.

To execute the sort, it is inserted into MAIN-PROCESS after the user has said yes to go ahead with the
report, but before performing PRINT-THE-REPORT (at line 014900).

From PRINT-THE-REPORT at line 018200 to the end of the program, the processing is identical to
bilrpt01.cbl except for one point. The bilrpt01.cbl program prints out the voucher file and
bilrpt02.cbl is printing out the work file, so all fields have been changed to WORK-. Values now are
moved from the work file to the print record.

Code, compile, and run bilrpt02.cbl; you should get a report with the same information, but sorted in
due-date order.

Printing Totals
The bilrpt02.cbl program still leaves the user the task of totaling the dollars and working out the total
due day by day, and it seems that the computer should be able to do the mathematics.

Figure 21.3 is a modified layout for the bills report program that provides a running total at the end of each
day.

The problem is to print the same report but to keep a running total of the amount owed as each voucher is
processed, with a running total printed at the end of each due date.

New Term: The interruption of the usual printing of a report program to print a total or subtotal is called a
control break or level break. In the following example, the report breaks at the end of each vendor, prints a
subtotal for that vendor, and then breaks at the end of the report and prints a total for the report. These are
control breaks:

Vendor DUE DATE AMOUNT
ABC Printing 1/23/1997 27.95
ABC Printing 1/31/1997 15.54
ABC Printing 2/16/1997 10.17
Total 53.66
GTE 1/17/1997 34.97
GTE 1/24/1997 17.54
Total 52.51
Grand Total 106.17

Programming Control Breaks
A control break in a program usually is programmed by setting up the program so that it prints until the value
in one of the fields changes. In the previous example, the report prints until the vendor name changes and
then prints a total. In the problem you are dealing with, the report prints until the due date changes. When the
field changes, a subtotal or running total is printed.

In all control breaking, the data file is sorted on the field that will be used for controlling the break. In the
case of bilrpt03.cbl in Listing 21.8, the control field will be WORK-DUE and the file already is sorted
on this field.

Listing 21.8. Sorted bills report with totals.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. BILRPT03.
000300*--------------------------------
000400* Bills Report with totals by day.
000500*--------------------------------
000600 ENVIRONMENT DIVISION.
000700 INPUT-OUTPUT SECTION.
000800 FILE-CONTROL.
000900
001000 COPY "SLVOUCH.CBL".
001100
001200 COPY "SLVND02.CBL".
001300
001400 COPY "SLSTATE.CBL".
001500
001600 SELECT WORK-FILE
001700 ASSIGN TO "WORK"
001800 ORGANIZATION IS SEQUENTIAL.
001900
002000 SELECT SORT-FILE
002100 ASSIGN TO "SORT".
002200
002300 SELECT PRINTER-FILE
002400 ASSIGN TO PRINTER
002500 ORGANIZATION IS LINE SEQUENTIAL.
002600
002700 DATA DIVISION.
002800 FILE SECTION.
002900
003000 COPY "FDVOUCH.CBL".
003100
003200 COPY "FDVND04.CBL".
003300
003400 COPY "FDSTATE.CBL".

003500
003600 FD WORK-FILE
003700 LABEL RECORDS ARE STANDARD.
003800 01 WORK-RECORD.
003900 05 WORK-NUMBER PIC 9(5).
004000 05 WORK-VENDOR PIC 9(5).
004100 05 WORK-INVOICE PIC X(15).
004200 05 WORK-FOR PIC X(30).
004300 05 WORK-AMOUNT PIC S9(6)V99.
004400 05 WORK-DATE PIC 9(8).
004500 05 WORK-DUE PIC 9(8).
004600 05 WORK-DEDUCTIBLE PIC X.
004700 05 WORK-SELECTED PIC X.
004800 05 WORK-PAID-AMOUNT PIC S9(6)V99.
004900 05 WORK-PAID-DATE PIC 9(8).
005000 05 WORK-CHECK-NO PIC 9(6).
005100
005200 SD SORT-FILE.
005300
005400 01 SORT-RECORD.
005500 05 SORT-NUMBER PIC 9(5).
005600 05 SORT-VENDOR PIC 9(5).
005700 05 SORT-INVOICE PIC X(15).
005800 05 SORT-FOR PIC X(30).
005900 05 SORT-AMOUNT PIC S9(6)V99.
006000 05 SORT-DATE PIC 9(8).
006100 05 SORT-DUE PIC 9(8).
006200 05 SORT-DEDUCTIBLE PIC X.
006300 05 SORT-SELECTED PIC X.
006400 05 SORT-PAID-AMOUNT PIC S9(6)V99.
006500 05 SORT-PAID-DATE PIC 9(8).
006600 05 SORT-CHECK-NO PIC 9(6).
006700
006800 FD PRINTER-FILE
006900 LABEL RECORDS ARE OMITTED.
007000 01 PRINTER-RECORD PIC X(80).
007100
007200 WORKING-STORAGE SECTION.
007300
007400 77 OK-TO-PROCESS PIC X.
007500
007600 COPY "WSCASE01.CBL".
007700
007800 01 DETAIL-LINE.
007900 05 PRINT-NUMBER PIC ZZZZ9.
008000 05 FILLER PIC X(3) VALUE SPACE.
008100 05 PRINT-NAME PIC X(30).

008200 05 FILLER PIC X(1) VALUE SPACE.
008300 05 PRINT-DUE-DATE PIC Z9/99/9999.
008400 05 FILLER PIC X(1) VALUE SPACE.
008500 05 PRINT-AMOUNT PIC ZZZ,ZZ9.99.
008600 05 FILLER PIC X(1) VALUE SPACE.
008700 05 PRINT-INVOICE PIC X(15).
008800 05 FILLER PIC X(1) VALUE SPACE.
008900 05 PRINT-SELECTED PIC X(1) VALUE SPACE.
009000
009100 01 TOTAL-THRU.
009200 05 FILLER PIC X(20) VALUE SPACE.
009300 05 FILLER PIC X(10) VALUE "TOTAL THRU".
009400
009500 01 COLUMN-LINE.
009600 05 FILLER PIC X(7) VALUE "VOUCHER".
009700 05 FILLER PIC X(1) VALUE SPACE.
009800 05 FILLER PIC X(10) VALUE "VENDOR/For".
009900 05 FILLER PIC X(23) VALUE SPACE.
010000 05 FILLER PIC X(8) VALUE "DUE DATE".
010100 05 FILLER PIC X(1) VALUE SPACE.
010200 05 FILLER PIC X(10) VALUE "AMOUNT DUE".
010300 05 FILLER PIC X(1) VALUE SPACE.
010400 05 FILLER PIC X(7) VALUE "INVOICE".
010500 05 FILLER PIC X(9) VALUE SPACE.
010600 05 FILLER PIC X(1) VALUE "S".
010700
010800 01 TITLE-LINE.
010900 05 FILLER PIC X(30) VALUE SPACE.
011000 05 FILLER PIC X(12)
011100 VALUE "BILLS REPORT".
011200 05 FILLER PIC X(19) VALUE SPACE.
011300 05 FILLER PIC X(5) VALUE "PAGE:".
011400 05 FILLER PIC X(1) VALUE SPACE.
011500 05 PRINT-PAGE-NUMBER PIC ZZZ9.
011600
011700 77 WORK-FILE-AT-END PIC X.
011800 77 VENDOR-RECORD-FOUND PIC X.
011900
012000 77 LINE-COUNT PIC 999 VALUE ZERO.
012100 77 PAGE-NUMBER PIC 9999 VALUE ZERO.
012200 77 MAXIMUM-LINES PIC 999 VALUE 55.
012300
012400 77 RECORD-COUNT PIC 9999 VALUE ZEROES.
012500
012600 77 SAVE-DUE PIC 9(8).
012700
012800 77 RUNNING-TOTAL PIC S9(6)V99.

012900
013000 COPY "WSDATE01.CBL".
013100
013200 PROCEDURE DIVISION.
013300 PROGRAM-BEGIN.
013400
013500 PERFORM OPENING-PROCEDURE.
013600 PERFORM MAIN-PROCESS.
013700 PERFORM CLOSING-PROCEDURE.
013800
013900 PROGRAM-EXIT.
014000 EXIT PROGRAM.
014100
014200 PROGRAM-DONE.
014300 STOP RUN.
014400
014500 OPENING-PROCEDURE.
014600 OPEN I-O VENDOR-FILE.
014700
014800 OPEN OUTPUT PRINTER-FILE.
014900
015000 MAIN-PROCESS.
015100 PERFORM GET-OK-TO-PROCESS.
015200 IF OK-TO-PROCESS = "Y"
015300 PERFORM SORT-DATA-FILE
015400 PERFORM PRINT-THE-REPORT.
015500
015600 CLOSING-PROCEDURE.
015700 CLOSE VENDOR-FILE.
015800 PERFORM END-LAST-PAGE.
015900 CLOSE PRINTER-FILE.
016000
016100 GET-OK-TO-PROCESS.
016200 PERFORM ACCEPT-OK-TO-PROCESS.
016300 PERFORM RE-ACCEPT-OK-TO-PROCESS
016400 UNTIL OK-TO-PROCESS = "Y" OR "N".
016500
016600 ACCEPT-OK-TO-PROCESS.
016700 DISPLAY "PRINT BILLS REPORT (Y/N)?".
016800 ACCEPT OK-TO-PROCESS.
016900 INSPECT OK-TO-PROCESS
017000 CONVERTING LOWER-ALPHA
017100 TO UPPER-ALPHA.
017200
017300 RE-ACCEPT-OK-TO-PROCESS.
017400 DISPLAY "YOU MUST ENTER YES OR NO".
017500 PERFORM ACCEPT-OK-TO-PROCESS.

017600
017700*--------------------------------
017800* Sorting logic
017900*--------------------------------
018000 SORT-DATA-FILE.
018100 SORT SORT-FILE
018200 ON ASCENDING KEY SORT-DUE
018300 USING VOUCHER-FILE
018400 GIVING WORK-FILE.
018500
018600 PRINT-THE-REPORT.
018700 OPEN INPUT WORK-FILE.
018800 PERFORM START-ONE-REPORT.
018900 PERFORM PROCESS-VOUCHERS.
019000 PERFORM END-ONE-REPORT.
019100 CLOSE WORK-FILE.
019200
019300 START-ONE-REPORT.
019400 PERFORM INITIALIZE-REPORT.
019500 PERFORM START-NEW-PAGE.
019600 MOVE ZEROES TO RUNNING-TOTAL.
019700
019800 INITIALIZE-REPORT.
019900 MOVE ZEROES TO LINE-COUNT PAGE-NUMBER.
020000
020100 END-ONE-REPORT.
020200 IF RECORD-COUNT = ZEROES
020300 MOVE "NO RECORDS FOUND" TO PRINTER-RECORD
020400 PERFORM WRITE-TO-PRINTER.
020500
020600 PROCESS-VOUCHERS.
020700 PERFORM READ-FIRST-VALID-WORK.
020800 PERFORM PROCESS-ALL-DATES
020900 UNTIL WORK-FILE-AT-END = "Y".
021000
021100 PROCESS-ALL-DATES.
021200 PERFORM START-ONE-DATE.
021300
021400 PERFORM PROCESS-ALL-VOUCHERS
021500 UNTIL WORK-FILE-AT-END = "Y"
021600 OR WORK-DUE NOT = SAVE-DUE.
021700
021800 PERFORM END-ONE-DATE.
021900
022000 START-ONE-DATE.
022100 MOVE WORK-DUE TO SAVE-DUE.
022200

022300 END-ONE-DATE.
022400 PERFORM PRINT-RUNNING-TOTAL.
022500
022600 PRINT-RUNNING-TOTAL.
022700 MOVE SPACE TO DETAIL-LINE.
022800 MOVE SAVE-DUE TO DATE-CCYYMMDD.
022900 PERFORM CONVERT-TO-MMDDCCYY.
023000 MOVE DATE-MMDDCCYY TO PRINT-DUE-DATE.
023100 MOVE RUNNING-TOTAL TO PRINT-AMOUNT.
023200 MOVE TOTAL-THRU TO PRINT-NAME.
023300 MOVE DETAIL-LINE TO PRINTER-RECORD.
023400 PERFORM WRITE-TO-PRINTER.
023500 PERFORM LINE-FEED 2 TIMES.
023600
023700 PROCESS-ALL-VOUCHERS.
023800 PERFORM PROCESS-THIS-VOUCHER.
023900 PERFORM READ-NEXT-VALID-WORK.
024000
024100 PROCESS-THIS-VOUCHER.
024200 ADD 1 TO RECORD-COUNT.
024300 IF LINE-COUNT > MAXIMUM-LINES
024400 PERFORM START-NEXT-PAGE.
024500 PERFORM PRINT-THE-RECORD.
024600 ADD WORK-AMOUNT TO RUNNING-TOTAL.
024700
024800 PRINT-THE-RECORD.
024900 PERFORM PRINT-LINE-1.
025000 PERFORM PRINT-LINE-2.
025100 PERFORM LINE-FEED.
025200
025300 PRINT-LINE-1.
025400 MOVE SPACE TO DETAIL-LINE.
025500 MOVE WORK-NUMBER TO PRINT-NUMBER.
025600
025700 MOVE WORK-VENDOR TO VENDOR-NUMBER.
025800 PERFORM READ-VENDOR-RECORD.
025900 IF VENDOR-RECORD-FOUND = "Y"
026000 MOVE VENDOR-NAME TO PRINT-NAME
026100 ELSE
026200 MOVE "*VENDOR NOT ON FILE*" TO PRINT-NAME.
026300
026400 MOVE WORK-DUE TO DATE-CCYYMMDD.
026500 PERFORM CONVERT-TO-MMDDCCYY.
026600 MOVE DATE-MMDDCCYY TO PRINT-DUE-DATE.
026700
026800 MOVE WORK-AMOUNT TO PRINT-AMOUNT.
026900 MOVE WORK-INVOICE TO PRINT-INVOICE.

027000
027100 IF WORK-SELECTED = "Y"
027200 MOVE WORK-SELECTED TO PRINT-SELECTED
027300 ELSE
027400 MOVE SPACE TO PRINT-SELECTED.
027500
027600 MOVE DETAIL-LINE TO PRINTER-RECORD.
027700 PERFORM WRITE-TO-PRINTER.
027800
027900 PRINT-LINE-2.
028000 MOVE SPACE TO DETAIL-LINE.
028100 MOVE WORK-FOR TO PRINT-NAME.
028200 MOVE DETAIL-LINE TO PRINTER-RECORD.
028300 PERFORM WRITE-TO-PRINTER.
028400
028500 WRITE-TO-PRINTER.
028600 WRITE PRINTER-RECORD BEFORE ADVANCING 1.
028700 ADD 1 TO LINE-COUNT.
028800
028900 LINE-FEED.
029000 MOVE SPACE TO PRINTER-RECORD.
029100 PERFORM WRITE-TO-PRINTER.
029200
029300 START-NEXT-PAGE.
029400 PERFORM END-LAST-PAGE.
029500 PERFORM START-NEW-PAGE.
029600
029700 START-NEW-PAGE.
029800 ADD 1 TO PAGE-NUMBER.
029900 MOVE PAGE-NUMBER TO PRINT-PAGE-NUMBER.
030000 MOVE TITLE-LINE TO PRINTER-RECORD.
030100 PERFORM WRITE-TO-PRINTER.
030200 PERFORM LINE-FEED.
030300 MOVE COLUMN-LINE TO PRINTER-RECORD.
030400 PERFORM WRITE-TO-PRINTER.
030500 PERFORM LINE-FEED.
030600
030700 END-LAST-PAGE.
030800 PERFORM FORM-FEED.
030900 MOVE ZERO TO LINE-COUNT.
031000
031100 FORM-FEED.
031200 MOVE SPACE TO PRINTER-RECORD.
031300 WRITE PRINTER-RECORD BEFORE ADVANCING PAGE.
031400
031500*--------------------------------
031600* Read first, read next routines

031700*--------------------------------
031800 READ-FIRST-VALID-WORK.
031900 PERFORM READ-NEXT-VALID-WORK.
032000
032100 READ-NEXT-VALID-WORK.
032200 PERFORM READ-NEXT-WORK-RECORD.
032300 PERFORM READ-NEXT-WORK-RECORD
032400 UNTIL WORK-FILE-AT-END = "Y"
032500 OR WORK-PAID-DATE = ZEROES.
032600
032700 READ-NEXT-WORK-RECORD.
032800 MOVE "N" TO WORK-FILE-AT-END.
032900 READ WORK-FILE NEXT RECORD
033000 AT END MOVE "Y" TO WORK-FILE-AT-END.
033100
033200*--------------------------------
033300* Other File IO routines
033400*--------------------------------
033500 READ-VENDOR-RECORD.
033600 MOVE "Y" TO VENDOR-RECORD-FOUND.
033700 READ VENDOR-FILE RECORD
033800 INVALID KEY
033900 MOVE "N" TO VENDOR-RECORD-FOUND.
034000
034100*--------------------------------
034200* Utility Routines
034300*--------------------------------
034400 COPY "PLDATE01.CBL".
034500

The output of bilrpt03.cbl includes running totals for each day:

OUTPUT:
 BILLS REPORT PAGE: 1
VOUCHER VENDOR/For DUE DATE AMOUNT DUE INVOICE S
16 CHARLES SMITH AND SONS 1/16/1997 25.97 5098
1997 DAY RUNNER
TOTAL THRU 1/16/1997 25.97
14 AERIAL SIGNS 1/17/1997 1,046.97 FA1234
SIGN OVER ZUMA BEACH
TOTAL THRU 1/17/1997 1,072.94
13 MA BELL 1/23/1997 94.96 50577
PHONE LINE 555-6067
19 MA BELL 1/23/1997 34.95 50577
PHONE LINE 555-9098
TOTAL THRU 1/23/1997 1,202.85
8 ABC PRINTING 1/27/1997 48.97 CX-1566 Y
BUSINESS CARDS

TOTAL THRU 1/27/1997 1,251.82
15 ABERCROMBIE AND OTHERS 1/31/1997 657.19 MONTHLY
RENT
TOTAL THRU 1/31/1997 1,909.01
4 ABC PRINTING 2/07/1997 104.19 CX-5055 Y
LETTER HEAD
TOTAL THRU 2/07/1997 2,013.20
3 CHARLES SMITH AND SONS 2/22/1997 27.76 5057
OFFICE SUPPLIES
7 ABC PRINTING 2/22/1997 48.97 CX-1407
BUSINESS CARDS
TOTAL THRU 2/22/1997 2,089.93
17 RANIER GRAPHICS 2/25/1997 4,057.07 ZO-1515
2 PAGE AD LAYOUT WITH RACE CAR
TOTAL THRU 2/25/1997 6,147.00

ANALYSIS: In Listing 21.8, a totaling field has been added to keep a running total of the amount owed.
RUNNING-TOTAL is defined at line 012800. This is kept up to date inside the
PROCESS-THIS-VOUCHER processing loop at line 024600, where WORK-AMOUNT is added to
RUNNING-TOTAL. At line 012600, SAVE-DUE is defined. This field will be used to save the values in the
due-date field so that it is possible to tell whether it has changed from one record to the next.

The original PROCESS-ALL-VOUCHERS routine is a processing loop that processes all voucher records.
You need a higher-level loop that processes the group of all records that have the same due date. The control
break logic PROCESS-ALL-DATES is inserted as a level between PRINT-THE-REPORT and
PROCESS-ALL-VOUCHERS at line 021100.

Rather than performing PROCESS-ALL-VOUCHERS, PRINT-THE-REPORT performs
PROCESS-ALL-DATES. PROCESS-ALL-DATES in turn performs PROCESS-ALL-VOUCHERS.

PROCESS-ALL-DATES is the clue to the control break. It starts by performing START-ONE-DATE. This
is a routine at line 022000 that saves WORK-DUE in SAVE-DUE. After this is saved, it is possible at line
021400 to perform PROCESS-ALL-VOUCHERS until WORK-FILE-AT-END = "Y" or WORK-DUE
NOT = SAVE-DUE.

This PERFORM causes the primary logic of the program to print individual records from the voucher file
until a read on the work file pulls up a voucher record with a different due date.

After this break happens at line 021800, END-ONE-DATE is performed. END-ONE-DATE at line 022300
in turn performs PRINT-RUNNING-TOTAL. This routine at line 022600 prints the running total so far for
this date by printing the SAVE-DATE and the RUNNING-TOTAL, along with a total message.

At this point, PROCESS-ALL-DATES ends and the logic returns to lines 020800 and 020900. If
WORK-FILE-AT-END = "Y" the whole loop ends, but if it is only a change of date,
PROCESS-ALL-DATES is performed again. This continues until WORK-FILE-AT-END = "Y".

The remainder of the program is identical to bilrpt02.cbl.

Code, compile, and run bilrpt03.cbl to see a report like the one given in the sample output. This report
helps a user determine what date line to use as the cutoff date for selecting records using vchsel01.cbl.

Several different methods can be used to organize a control breaking report. Listing 21.8, bilrpt02.cbl,
illustrates one flexible method that I like.

The Cash Requirements Report
The cash requirements report is the final program that you need in order to complete the bills payment
system shown in Figure 21.1. It is step 8 of the bills payment system.

The cash requirements report in Listing 21.9 is not much different from bilrpt03.cbl. It prints only
vouchers that are selected, so the "S" column has been removed from the report.

TYPE: Listing 21.9. The cash requirements report.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. CSHREQ01.
000300*--------------------------------
000400* Cash Requirements Report
000500*--------------------------------
000600 ENVIRONMENT DIVISION.
000700 INPUT-OUTPUT SECTION.
000800 FILE-CONTROL.
000900
001000 COPY "SLVOUCH.CBL".
001100
001200 COPY "SLVND02.CBL".
001300
001400 COPY "SLSTATE.CBL".
001500
001600 SELECT WORK-FILE
001700 ASSIGN TO "WORK"
001800 ORGANIZATION IS SEQUENTIAL.
001900
002000 SELECT SORT-FILE
002100 ASSIGN TO "SORT".
002200
002300 SELECT PRINTER-FILE
002400 ASSIGN TO PRINTER
002500 ORGANIZATION IS LINE SEQUENTIAL.
002600
002700 DATA DIVISION.
002800 FILE SECTION.
002900
003000 COPY "FDVOUCH.CBL".
003100
003200 COPY "FDVND04.CBL".
003300
003400 COPY "FDSTATE.CBL".

003500
003600 FD WORK-FILE
003700 LABEL RECORDS ARE STANDARD.
003800 01 WORK-RECORD.
003900 05 WORK-NUMBER PIC 9(5).
004000 05 WORK-VENDOR PIC 9(5).
004100 05 WORK-INVOICE PIC X(15).
004200 05 WORK-FOR PIC X(30).
004300 05 WORK-AMOUNT PIC S9(6)V99.
004400 05 WORK-DATE PIC 9(8).
004500 05 WORK-DUE PIC 9(8).
004600 05 WORK-DEDUCTIBLE PIC X.
004700 05 WORK-SELECTED PIC X.
004800 05 WORK-PAID-AMOUNT PIC S9(6)V99.
004900 05 WORK-PAID-DATE PIC 9(8).
005000 05 WORK-CHECK-NO PIC 9(6).
005100
005200 SD SORT-FILE.
005300
005400 01 SORT-RECORD.
005500 05 SORT-NUMBER PIC 9(5).
005600 05 SORT-VENDOR PIC 9(5).
005700 05 SORT-INVOICE PIC X(15).
005800 05 SORT-FOR PIC X(30).
005900 05 SORT-AMOUNT PIC S9(6)V99.
006000 05 SORT-DATE PIC 9(8).
006100 05 SORT-DUE PIC 9(8).
006200 05 SORT-DEDUCTIBLE PIC X.
006300 05 SORT-SELECTED PIC X.
006400 05 SORT-PAID-AMOUNT PIC S9(6)V99.
006500 05 SORT-PAID-DATE PIC 9(8).
006600 05 SORT-CHECK-NO PIC 9(6).
006700
006800 FD PRINTER-FILE
006900 LABEL RECORDS ARE OMITTED.
007000 01 PRINTER-RECORD PIC X(80).
007100
007200 WORKING-STORAGE SECTION.
007300
007400 77 OK-TO-PROCESS PIC X.
007500
007600 COPY "WSCASE01.CBL".
007700
007800 01 DETAIL-LINE.
007900 05 PRINT-NUMBER PIC ZZZZ9.
008000 05 FILLER PIC X(3) VALUE SPACE.
008100 05 PRINT-NAME PIC X(30).

008200 05 FILLER PIC X(1) VALUE SPACE.
008300 05 PRINT-DUE-DATE PIC Z9/99/9999.
008400 05 FILLER PIC X(1) VALUE SPACE.
008500 05 PRINT-AMOUNT PIC ZZZ,ZZ9.99.
008600 05 FILLER PIC X(1) VALUE SPACE.
008700 05 PRINT-INVOICE PIC X(15).
008800
008900 01 TOTAL-THRU.
009000 05 FILLER PIC X(20) VALUE SPACE.
009100 05 FILLER PIC X(10) VALUE "TOTAL THRU".
009200
009300 01 COLUMN-LINE.
009400 05 FILLER PIC X(7) VALUE "VOUCHER".
009500 05 FILLER PIC X(1) VALUE SPACE.
009600 05 FILLER PIC X(10) VALUE "VENDOR/For".
009700 05 FILLER PIC X(23) VALUE SPACE.
009800 05 FILLER PIC X(8) VALUE "DUE DATE".
009900 05 FILLER PIC X(1) VALUE SPACE.
010000 05 FILLER PIC X(10) VALUE "AMOUNT DUE".
010100 05 FILLER PIC X(1) VALUE SPACE.
010200 05 FILLER PIC X(7) VALUE "INVOICE".
010300
010400 01 TITLE-LINE.
010500 05 FILLER PIC X(28) VALUE SPACE.
010600 05 FILLER PIC X(17)
010700 VALUE "CASH REQUIREMENTS".
010800 05 FILLER PIC X(16) VALUE SPACE.
010900 05 FILLER PIC X(5) VALUE "PAGE:".
011000 05 FILLER PIC X(1) VALUE SPACE.
011100 05 PRINT-PAGE-NUMBER PIC ZZZ9.
011200
011300 77 WORK-FILE-AT-END PIC X.
011400 77 VENDOR-RECORD-FOUND PIC X.
011500
011600 77 LINE-COUNT PIC 999 VALUE ZERO.
011700 77 PAGE-NUMBER PIC 9999 VALUE ZERO.
011800 77 MAXIMUM-LINES PIC 999 VALUE 55.
011900
012000 77 RECORD-COUNT PIC 9999 VALUE ZEROES.
012100
012200 77 SAVE-DUE PIC 9(8).
012300
012400 77 RUNNING-TOTAL PIC S9(6)V99.
012500
012600 COPY "WSDATE01.CBL".
012700
012800 PROCEDURE DIVISION.

012900 PROGRAM-BEGIN.
013000
013100 PERFORM OPENING-PROCEDURE.
013200 PERFORM MAIN-PROCESS.
013300 PERFORM CLOSING-PROCEDURE.
013400
013500 PROGRAM-EXIT.
013600 EXIT PROGRAM.
013700
013800 PROGRAM-DONE.
013900 STOP RUN.
014000
014100 OPENING-PROCEDURE.
014200 OPEN I-O VENDOR-FILE.
014300
014400 OPEN OUTPUT PRINTER-FILE.
014500
014600 MAIN-PROCESS.
014700 PERFORM GET-OK-TO-PROCESS.
014800 IF OK-TO-PROCESS = "Y"
014900 PERFORM SORT-DATA-FILE
015000 PERFORM PRINT-THE-REPORT.
015100
015200 CLOSING-PROCEDURE.
015300 CLOSE VENDOR-FILE.
015400 PERFORM END-LAST-PAGE.
015500 CLOSE PRINTER-FILE.
015600
015700 GET-OK-TO-PROCESS.
015800 PERFORM ACCEPT-OK-TO-PROCESS.
015900 PERFORM RE-ACCEPT-OK-TO-PROCESS
016000 UNTIL OK-TO-PROCESS = "Y" OR "N".
016100
016200 ACCEPT-OK-TO-PROCESS.
016300 DISPLAY "PRINT CASH REQUIREMENTS REPORT (Y/N)?".
016400 ACCEPT OK-TO-PROCESS.
016500 INSPECT OK-TO-PROCESS
016600 CONVERTING LOWER-ALPHA
016700 TO UPPER-ALPHA.
016800
016900 RE-ACCEPT-OK-TO-PROCESS.
017000 DISPLAY "YOU MUST ENTER YES OR NO".
017100 PERFORM ACCEPT-OK-TO-PROCESS.
017200
017300*--------------------------------
017400* Sorting logic
017500*--------------------------------

017600 SORT-DATA-FILE.
017700 SORT SORT-FILE
017800 ON ASCENDING KEY SORT-DUE
017900 USING VOUCHER-FILE
018000 GIVING WORK-FILE.
018100
018200 PRINT-THE-REPORT.
018300 OPEN INPUT WORK-FILE.
018400 PERFORM START-ONE-REPORT.
018500 PERFORM PROCESS-VOUCHERS.
018600 PERFORM END-ONE-REPORT.
018700 CLOSE WORK-FILE.
018800
018900 START-ONE-REPORT.
019000 PERFORM INITIALIZE-REPORT.
019100 PERFORM START-NEW-PAGE.
019200 MOVE ZEROES TO RUNNING-TOTAL.
019300
019400 INITIALIZE-REPORT.
019500 MOVE ZEROES TO LINE-COUNT PAGE-NUMBER.
019600
019700 END-ONE-REPORT.
019800 IF RECORD-COUNT = ZEROES
019900 MOVE "NO RECORDS FOUND" TO PRINTER-RECORD
020000 PERFORM WRITE-TO-PRINTER.
020100
020200 PROCESS-VOUCHERS.
020300 PERFORM READ-FIRST-VALID-WORK.
020400 PERFORM PROCESS-ALL-DATES
020500 UNTIL WORK-FILE-AT-END = "Y".
020600
020700 PROCESS-ALL-DATES.
020800 PERFORM START-ONE-DATE.
020900
021000 PERFORM PROCESS-ALL-VOUCHERS
021100 UNTIL WORK-FILE-AT-END = "Y"
021200 OR WORK-DUE NOT = SAVE-DUE.
021300
021400 PERFORM END-ONE-DATE.
021500
021600 START-ONE-DATE.
021700 MOVE WORK-DUE TO SAVE-DUE.
021800
021900 END-ONE-DATE.
022000 PERFORM PRINT-RUNNING-TOTAL.
022100
022200 PRINT-RUNNING-TOTAL.

022300 MOVE SPACE TO DETAIL-LINE.
022400 MOVE SAVE-DUE TO DATE-CCYYMMDD.
022500 PERFORM CONVERT-TO-MMDDCCYY.
022600 MOVE DATE-MMDDCCYY TO PRINT-DUE-DATE.
022700 MOVE RUNNING-TOTAL TO PRINT-AMOUNT.
022800 MOVE TOTAL-THRU TO PRINT-NAME.
022900 MOVE DETAIL-LINE TO PRINTER-RECORD.
023000 PERFORM WRITE-TO-PRINTER.
023100 PERFORM LINE-FEED 2 TIMES.
023200
023300 PROCESS-ALL-VOUCHERS.
023400 PERFORM PROCESS-THIS-VOUCHER.
023500 PERFORM READ-NEXT-VALID-WORK.
023600
023700 PROCESS-THIS-VOUCHER.
023800 ADD 1 TO RECORD-COUNT.
023900 IF LINE-COUNT > MAXIMUM-LINES
024000 PERFORM START-NEXT-PAGE.
024100 PERFORM PRINT-THE-RECORD.
024200 ADD WORK-AMOUNT TO RUNNING-TOTAL.
024300
024400 PRINT-THE-RECORD.
024500 PERFORM PRINT-LINE-1.
024600 PERFORM PRINT-LINE-2.
024700 PERFORM LINE-FEED.
024800
024900 PRINT-LINE-1.
025000 MOVE SPACE TO DETAIL-LINE.
025100 MOVE WORK-NUMBER TO PRINT-NUMBER.
025200
025300 MOVE WORK-VENDOR TO VENDOR-NUMBER.
025400 PERFORM READ-VENDOR-RECORD.
025500 IF VENDOR-RECORD-FOUND = "Y"
025600 MOVE VENDOR-NAME TO PRINT-NAME
025700 ELSE
025800 MOVE "*VENDOR NOT ON FILE*" TO PRINT-NAME.
025900
026000 MOVE WORK-DUE TO DATE-CCYYMMDD.
026100 PERFORM CONVERT-TO-MMDDCCYY.
026200 MOVE DATE-MMDDCCYY TO PRINT-DUE-DATE.
026300
026400 MOVE WORK-AMOUNT TO PRINT-AMOUNT.
026500 MOVE WORK-INVOICE TO PRINT-INVOICE.
026600
026700 MOVE DETAIL-LINE TO PRINTER-RECORD.
026800 PERFORM WRITE-TO-PRINTER.
026900

027000 PRINT-LINE-2.
027100 MOVE SPACE TO DETAIL-LINE.
027200 MOVE WORK-FOR TO PRINT-NAME.
027300 MOVE DETAIL-LINE TO PRINTER-RECORD.
027400 PERFORM WRITE-TO-PRINTER.
027500
027600 WRITE-TO-PRINTER.
027700 WRITE PRINTER-RECORD BEFORE ADVANCING 1.
027800 ADD 1 TO LINE-COUNT.
027900
028000 LINE-FEED.
028100 MOVE SPACE TO PRINTER-RECORD.
028200 PERFORM WRITE-TO-PRINTER.
028300
028400 START-NEXT-PAGE.
028500 PERFORM END-LAST-PAGE.
028600 PERFORM START-NEW-PAGE.
028700
028800 START-NEW-PAGE.
028900 ADD 1 TO PAGE-NUMBER.
029000 MOVE PAGE-NUMBER TO PRINT-PAGE-NUMBER.
029100 MOVE TITLE-LINE TO PRINTER-RECORD.
029200 PERFORM WRITE-TO-PRINTER.
029300 PERFORM LINE-FEED.
029400 MOVE COLUMN-LINE TO PRINTER-RECORD.
029500 PERFORM WRITE-TO-PRINTER.
029600 PERFORM LINE-FEED.
029700
029800 END-LAST-PAGE.
029900 PERFORM FORM-FEED.
030000 MOVE ZERO TO LINE-COUNT.
030100
030200 FORM-FEED.
030300 MOVE SPACE TO PRINTER-RECORD.
030400 WRITE PRINTER-RECORD BEFORE ADVANCING PAGE.
030500
030600*--------------------------------
030700* Read first, read next routines
030800*--------------------------------
030900 READ-FIRST-VALID-WORK.
031000 PERFORM READ-NEXT-VALID-WORK.
031100
031200 READ-NEXT-VALID-WORK.
031300 PERFORM READ-NEXT-WORK-RECORD.
031400 PERFORM READ-NEXT-WORK-RECORD
031500 UNTIL WORK-FILE-AT-END = "Y"
031600 OR (WORK-PAID-DATE = ZEROES AND

031700 WORK-SELECTED = "Y").
031800
031900 READ-NEXT-WORK-RECORD.
032000 MOVE "N" TO WORK-FILE-AT-END.
032100 READ WORK-FILE NEXT RECORD
032200 AT END MOVE "Y" TO WORK-FILE-AT-END.
032300
032400*--------------------------------
032500* Other File IO routines
032600*--------------------------------
032700 READ-VENDOR-RECORD.
032800 MOVE "Y" TO VENDOR-RECORD-FOUND.
032900 READ VENDOR-FILE RECORD
033000 INVALID KEY
033100 MOVE "N" TO VENDOR-RECORD-FOUND.
033200
033300*--------------------------------
033400* Utility Routines
033500*--------------------------------
033600 COPY "PLDATE01.CBL".
033700

In the sample output report from cshrq01.cbl, the user has selected all vouchers through 01/23/1997,
using vchsel01.cbl, and has additionally selected vouchers numbered 3 and 4, using vchpic01.cbl:

OUTPUT:
 CASH REQUIREMENTS PAGE: 1
VOUCHER VENDOR/For DUE DATE AMOUNT DUE INVOICE
16 CHARLES SMITH AND SONS 1/16/1997 25.97 5098
1997 DAY RUNNER
TOTAL THRU 1/16/1997 25.97
14 AERIAL SIGNS 1/17/1997 1,046.97 FA1234
SIGN OVER ZUMA BEACH
TOTAL THRU 1/17/1997 1,072.94
13 MA BELL 1/23/1997 94.96 50577
PHONE LINE 555-6067
19 MA BELL 1/23/1997 34.95 50577
PHONE LINE 555-9098
TOTAL THRU 1/23/1997 1,202.85
4 ABC PRINTING 2/07/1997 104.19 CX-5055
LETTER HEAD
TOTAL THRU 2/07/1997 1,307.04
3 CHARLES SMITH AND SONS 2/22/1997 27.76 5057
OFFICE SUPPLIES
TOTAL THRU 2/22/1997 1,334.80

ANALYSIS: The TITLE-LINE is changed at lines 010600 and 010700. The main change is in the
record selection logic in READ-NEXT-VALID-WORK at line 031200. A test has been added at line

031700 so that records are selected only when WORK-PAID-DATE = ZEROES and WORK-SELECTED
= "Y". This additional test eliminates unselected records.

Completing the System
The last steps needed to tie all the programs together are to get all the parts on menus by creating a new
menu, and making some changes to an existing menu. Listing 21.10 is a menu of the voucher processes in
the order they are used in the bills processing system. This menu program calls VCHPAY02,which you
should have created in Exercise 1 of the previous chapter, Day 20, "More Complex Data Entry." If you did
not create it for that exercise, go back and do so now.

TYPE: Listing 21.10. A menu for voucher handling.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. VCHMNU01.
000300*-------------------------------
000400* Menu for Voucher Processing
000500*--------------------------------
000600 ENVIRONMENT DIVISION.
000700 INPUT-OUTPUT SECTION.
000800 FILE-CONTROL.
000900
001000 DATA DIVISION.
001100 FILE SECTION.
001200
001300 WORKING-STORAGE SECTION.
001400
001500 77 MENU-PICK PIC 9.
001600 88 MENU-PICK-IS-VALID VALUES 0 THRU 7.
001700
001800 PROCEDURE DIVISION.
001900 PROGRAM-BEGIN.
002000 PERFORM OPENING-PROCEDURE.
002100 PERFORM MAIN-PROCESS.
002200 PERFORM CLOSING-PROCEDURE.
002300
002400 PROGRAM-EXIT.
002500 EXIT PROGRAM.
002600
002700 PROGRAM-DONE.
002800 STOP RUN.
002900
003000 OPENING-PROCEDURE.
003100
003200 CLOSING-PROCEDURE.
003300
003400 MAIN-PROCESS.

003500 PERFORM GET-MENU-PICK.
003600 PERFORM DO-THE-PICK
003700 UNTIL MENU-PICK = 0.
003800
003900*--------------------------------
004000* MENU
004100*--------------------------------
004200 GET-MENU-PICK.
004300 PERFORM DISPLAY-THE-MENU.
004400 PERFORM ACCEPT-MENU-PICK.
004500 PERFORM RE-ACCEPT-MENU-PICK
004600 UNTIL MENU-PICK-IS-VALID.
004700
004800 DISPLAY-THE-MENU.
004900 PERFORM CLEAR-SCREEN.
005000 DISPLAY " PLEASE SELECT:".
005100 DISPLAY " ".
005200 DISPLAY " 1. VOUCHER ENTRY".
005300 DISPLAY " 2. BILLS REPORT".
005400 DISPLAY " 3. SELECT VOUCHERS BY DUE DATE RANGE".
005500 DISPLAY " 4. SELECT INDIVIDUAL VOUCHERS".
005600 DISPLAY " 5. CLEAR PREVIOUS SELECTIONS".
005700 DISPLAY " 6. CASH REQUIREMENTS REPORT".
005800 DISPLAY " 7. PAID BILLS ENTRY".
005900 DISPLAY " ".
006000 DISPLAY " 0. EXIT".
006100 PERFORM SCROLL-LINE 8 TIMES.
006200
006300 ACCEPT-MENU-PICK.
006400 DISPLAY "YOUR CHOICE (0-7)?".
006500 ACCEPT MENU-PICK.
006600
006700 RE-ACCEPT-MENU-PICK.
006800 DISPLAY "INVALID SELECTION - PLEASE RE-TRY.".
006900 PERFORM ACCEPT-MENU-PICK.
007000
007100 CLEAR-SCREEN.
007200 PERFORM SCROLL-LINE 25 TIMES.
007300
007400 SCROLL-LINE.
007500 DISPLAY " ".
007600
007700 DO-THE-PICK.
007800 IF MENU-PICK = 1
007900 PERFORM VOUCHER-ENTRY
008000 ELSE
008100 IF MENU-PICK = 2

008200 PERFORM BILLS-REPORT
008300 ELSE
008400 IF MENU-PICK = 3
008500 PERFORM DATE-SELECTION
008600 ELSE
008700 IF MENU-PICK = 4
008800 PERFORM SINGLE-SELECTION
008900 ELSE
009000 IF MENU-PICK = 5
009100 PERFORM CLEAR-SELECTIONS
009200 ELSE
009300 IF MENU-PICK = 6
009400 PERFORM CASH-REQUIREMENTS
009500 ELSE
009600 IF MENU-PICK = 7
009700 PERFORM PAID-ENTRY.
009800
009900 PERFORM GET-MENU-PICK.
010000
010100 VOUCHER-ENTRY.
010200 CALL "VCHMNT01".
010300
010400 BILLS-REPORT.
010500 CALL "BILRPT03".
010600
010700 DATE-SELECTION.
010800 CALL "VCHSEL01".
010900
011000 SINGLE-SELECTION.
011100 CALL "VCHPIC01".
011200
011300 CLEAR-SELECTIONS.
011400 CALL "VCHCLR01".
011500
011600 CASH-REQUIREMENTS.
011700 CALL "CSHREQ01".
011800
011900 PAID-ENTRY.
012000 CALL "VCHPAY02".
012100
012200

The following is the output:

OUTPUT:
PLEASE SELECT:
1. VOUCHER ENTRY
2. BILLS REPORT

3. SELECT VOUCHERS BY DUE DATE RANGE
4. SELECT INDIVIDUAL VOUCHERS
5. CLEAR PREVIOUS SELECTIONS
6. CASH REQUIREMENTS REPORT
7. PAID BILLS ENTRY
0. EXIT
YOUR CHOICE (0-7)?

Finally, the bills payment system main menu must be modified to call the new voucher-processing menu.
Listing 21.11, bilmnu03.cbl, adds a single pick to the main menu.

Listing 21.11. An extended main menu.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. BILMNU03.
000300*--------------------------------
000400* Menu for the bill payment system.
000500* Including Vouchers
000600*--------------------------------
000700 ENVIRONMENT DIVISION.
000800 INPUT-OUTPUT SECTION.
000900 FILE-CONTROL.
001000
001100 DATA DIVISION.
001200 FILE SECTION.
001300
001400 WORKING-STORAGE SECTION.
001500
001600 77 MENU-PICK PIC 9.
001700 88 MENU-PICK-IS-VALID VALUES 0 THRU 3.
001800
001900 PROCEDURE DIVISION.
002000 PROGRAM-BEGIN.
002100 PERFORM OPENING-PROCEDURE.
002200 PERFORM MAIN-PROCESS.
002300 PERFORM CLOSING-PROCEDURE.
002400
002500 PROGRAM-EXIT.
002600 EXIT PROGRAM.
002700
002800 PROGRAM-DONE.
002900 STOP RUN.
003000
003100 OPENING-PROCEDURE.
003200
003300 CLOSING-PROCEDURE.
003400
003500 MAIN-PROCESS.

003600 PERFORM GET-MENU-PICK.
003700 PERFORM DO-THE-PICK
003800 UNTIL MENU-PICK = 0.
003900
004000*--------------------------------
004100* MENU
004200*--------------------------------
004300 GET-MENU-PICK.
004400 PERFORM DISPLAY-THE-MENU.
004500 PERFORM ACCEPT-MENU-PICK.
004600 PERFORM RE-ACCEPT-MENU-PICK
004700 UNTIL MENU-PICK-IS-VALID.
004800
004900 DISPLAY-THE-MENU.
005000 PERFORM CLEAR-SCREEN.
005100 DISPLAY " PLEASE SELECT:".
005200 DISPLAY " ".
005300 DISPLAY " 1. STATE CODE MAINTENANCE".
005400 DISPLAY " 2. VENDOR MAINTENANCE".
005500 DISPLAY " 3. VOUCHER PROCESSING".
005600 DISPLAY " ".
005700 DISPLAY " 0. EXIT".
005800 PERFORM SCROLL-LINE 8 TIMES.
005900
006000 ACCEPT-MENU-PICK.
006100 DISPLAY "YOUR CHOICE (0-3)?".
006200 ACCEPT MENU-PICK.
006300
006400 RE-ACCEPT-MENU-PICK.
006500 DISPLAY "INVALID SELECTION - PLEASE RE-TRY.".
006600 PERFORM ACCEPT-MENU-PICK.
006700
006800 CLEAR-SCREEN.
006900 PERFORM SCROLL-LINE 25 TIMES.
007000
007100 SCROLL-LINE.
007200 DISPLAY " ".
007300
007400 DO-THE-PICK.
007500 IF MENU-PICK = 1
007600 PERFORM STATE-MAINTENANCE
007700 ELSE
007800 IF MENU-PICK = 2
007900 PERFORM VENDOR-MAINTENANCE
008000 ELSE
008100 IF MENU-PICK = 3
008200 PERFORM VOUCHER-PROCESSING.

008300
008400 PERFORM GET-MENU-PICK.
008500
008600*--------------------------------
008700* STATE
008800*--------------------------------
008900 STATE-MAINTENANCE.
009000 CALL "STCMNT04".
009100
009200*--------------------------------
009300* VENDOR
009400*--------------------------------
009500 VENDOR-MAINTENANCE.
009600 CALL "VNDMNT05".
009700
009800*--------------------------------
009900* VOUCHERS
010000*--------------------------------
010100 VOUCHER-PROCESSING.
010200 CALL "VCHMNU01".
010300

Here is the output:

OUTPUT:
PLEASE SELECT:
1. STATE CODE MAINTENANCE
2. VENDOR MAINTENANCE
3. VOUCHER PROCESSING
0. EXIT
YOUR CHOICE (0-3)?

In Closing
This course has not covered all of COBOL syntax, nor has it covered all the commands and their versions. It
has covered working COBOL not just at an individual level, but at a system level, trying to give you an idea
of how programs work together to get a job done.

A piece of advice frequently given to writers is, "If you want to learn how to write, write." The same is true
of programming. If you want to learn how to program, you should program.

Go back to earlier sections of the book. Pick up the phone book maintenance program that was started, and
work out how to do it better. Create an indexed phone file. Program your own phone book program with
fields for home, office, car, beeper, and fax numbers. Design a report that prints all this information. Add an
alternate key to the name field so that a phone number can be looked up by user name.

Write a program to keep track of your to-do list in a file containing the project description, priority, and due
date. Write reports that print the to-do list in priority order and in due-date order.

It really doesn't matter what the project is or how simple it is; in fact, the simpler the better. Just keep
writing!

This completes your 21-day course, and you now have an excellent grounding in COBOL. With practice,
you can become an expert.

COBOL is a comprehensive language, and you never really stop learning about it. I still study it whenever I
have the chance. To enable you to continue your progress in COBOL, this book includes six Bonus Day
lessons! These expand on topics already covered and open up some new areas.

The Bonus Day chapters also cover the issue that is filling the computer news these days: the year 2000, its
effect on COBOL programs, and what needs to be done to fix the problem.

So pat yourself on the back. You've done a terrific job so far. Onward to a few more days of work.

Summary
Reporting is the most visible part of any program. Today, you learned these basics:

A processing loop that requires record selection can be handled by using the logic flow demonstrated
by the following pseudocode:

●

process-records
 read-first-valid-record
 perform process-loop
 until file-at-end
process-loop
 process-this-record.
 read-next-valid-record
read-first-valid-record
 start-the-file
 read-next-valid-record
read-next-valid-record
 read-next-record
 perform read-next-record
 until file is at end
 or (the selection condition is met)

A SORT command can be used to sort a file on a field that is not a key in the file. You can think of the
SORT command as a series of steps:

Copy the input file to the sort file.1.

Sort the sort file on one or more fields in the sort record.2.

Copy the resulting sorted file to the output file.3.

●

The interruption of the normal printing of a report program to print a total or subtotal is called a
control break or level break.

●

You can create a control break for any field on which a file has been sorted.●

You can create menus to tie the whole report together.●

Q&A
Q Some of the fields in the VOUCHER-FILE are never used in reports such as the
VOUCHER-DEDUCTIBLE. What happens to this field?

A See the exercises in the Workshop section.

Workshop

Quiz

1. What is the SORT command used for?

2. Before the following command is used, in which state must the VOUCHER-FILE and WORK-FILE
be?

SORT SORT-FILE
 ON ASCENDING KEY SORT-DATE
 USING VOUCHER-FILE
 GIVING WORK-FILE

a. Open

b. Closed

c. Doesn't matter

Exercises

1. Copy cshreq01.cbl to deduct01.cbl, and modify the program to do the following:

a. Change the PROGRAM-ID to DEDUCT01.

b. Modify the comment to indicate that this will be the deductibles report.

c. Modify TITLE-LINE to read "DEDUCTIBLES".

d. Modify the column headings in COLUMN-LINE to read DATE and AMOUNT instead of DUE
DATE and AMOUNT DUE.

e. Change the variable SAVE-DUE to SAVE-PAID-DATE.

f. Modify ACCEPT-OK-TO-PROCESS to display "PRINT DEDUCTIBLES REPORT

(Y/N)?".

g. Sort by SORT-PAID-DATE.

h. Modify PROCESS-ALL-DATES and START-ONE-DATE to save WORK-PAID-DATE and
process until WORK-PAID-DATE NOT = SAVE-PAID-DATE.

i. Modify PRINT-RUNNING-TOTAL to print SAVE-PAID-DATE instead of SAVE-DUE.

j. Modify PROCESS-THIS-VOUCHER to move WORK-PAID-AMOUNT to the print line
instead of WORK-AMOUNT.

k. Modify PRINT-LINE-1 to print the WORK-PAID-AMOUNT and WORK-PAID-DATE.

2. Modify READ-NEXT-VALID-WORK to select records when (WORK-PAID-DATE NOT =
ZEROES AND WORK-DEDUCTIBLE = "Y").

3. Compile and run this program. It should give you a report on any paid vouchers that have the
VOUCHER-DEDUCTIBLE flag set to "Y".

Previous chapter Next chapter Contents

Macmillan Computer Publishing USA

© Copyright, Macmillan Computer Publishing. All rights reserved.

Teach Yourself COBOL in 21 days,
Second Edition

Previous chapter Next chapter Contents

Week 3 In Review
Congratulations! You've accomplished your goal of learning COBOL in 21 days. Now that you're on a
roll, you can move ahead to the bonus days that have been provided for those who are ambitious enough
to take what they've learned in 21 days and add real-world experiences.

Let's take a moment to reflect on what you've learned this week. The concepts of data integrity were
intentionally woven into each day because your users will need to know that they can depend on your
program's reliability. This trust isn't placed lightly. An unreliable program serves no purpose. The first
two days of this week focused on the concepts of data integrity and how to look up information in tables
and arrays. These skills ensure that you treat data properly and provide the means for your users to look
up information on demand. Who wants to remember everything when you have a computer on hand to
look up data? Day 17 enhanced your understanding of index files and provided the means for alternate
keys. Day 18 showed you how to call other programs from your program. This concept escapes many
programmers, but it significantly increases the power you can give your users. Days 19 and 20 completed
the concepts of data entry, one of the primary reasons users will come to count on your COBOL
programming prowess. Finally, Day 21 tied together the processes of selecting, sorting, and reporting.

If you choose to tackle the bonus days, you'll find that they aren't necessarily more difficult than any of
the previous days. These six days have been included to enhance your real-world understanding of
COBOL programming and finish preparing you for situations you might encounter but that are difficult
to include in a 21-day course.

Congratulations on a job well done!

Previous chapter Next chapter Contents

Macmillan Computer Publishing USA

© Copyright, Macmillan Computer Publishing. All rights reserved.

Teach Yourself COBOL in 21 days,
Second Edition

Previous chapter Next chapter Contents

- Bonus Day 1 -
Control Breaks

Control breaks, covered briefly on Day 21, "Selecting, Sorting, and Reporting," are an important part of
reports. On this first bonus day, you learn how to use them more effectively. You also learn about the
following topics:

Control breaks●

Control break variables●

The mechanics of a control break●

Control break levels●

Control break logic●

Using control breaks for totals●

Using control breaks for formatting●

Multilevel control breaks●

Control breaks are important in reports and are used extensively for totaling and subtotaling. Recall that a
control break is a break inserted into the normal processing of a program (usually a report program) to
cause groups of records to be processed together as one unit. The interruption of the normal printing of a
report program to print a total or subtotal is a control break or level break. In the example shown in
Figure B1.1, the report breaks at the end of each vendor and prints a subtotal for that vendor, and then
breaks at the end of the report and prints a total for the report.

Figure B1.1.
Control breaks for printing subtotals and a report total.

Using the definition of a control break, the subtotals for ABC Printing, Phone Co, and Moon Mountain
Inc. are generated by treating all records with the same vendor as a unit. The report total is generated by
treating all records in the file as a unit.

Control Break Variables
The actual records in the file might look something like the ones in Figure B1.2. The fields (name, date,
and amount) have some space inserted between them so that you can see them more easily. The file has
been sorted in vendor name order.

Figure B1.2.
The records used in Figure B1.1.

If you compare Figure B1.1 to the records in Figure B1.2, you will see immediately that in addition to the
values in the record, you need variables to hold the subtotals for each vendor and the grand total for the
report. The obvious choice would be totals for all needed values, as shown in Listing B1.1.

TYPE: Listing B1.1. The total for control breaks.

000500 77 ABC-TOTAL PIC S9(6)V99.
000600 77 PHONE-TOTAL PIC S9(6)V99.
000700 77 MOON-TOTAL PIC S9(6)V99.
000800 77 GRAND-TOTAL PIC S9(6)V99.

Unfortunately, when you're processing a file, you have no idea what values, which vendors, or how many
vendors are in the file. You cannot create a separate variable to hold a subtotal for each vendor.

You need one variable that is filled and emptied over and over for each vendor, and one that fills just for
the whole report, as shown in Listing B1.2.

TYPE: Listing B1.2. Just two variables for the control breaks.

000700 77 VENDOR-TOTAL PIC S9(6)V99.
000800 77 GRAND-TOTAL PIC S9(6)V99.

ANALYSIS: The VENDOR-TOTAL is set to zero at the start of each new vendor. As records are
processed, the amount in the record is added to VENDOR-TOTAL. After the last record with that vendor
name is processed, a line is formatted and the VENDOR-TOTAL is printed.

The Mechanics of a Control Break
Table B1.1 illustrates what is happening in a control break. The left column shows the record as it is read
from the file. These are numbered in the figure for reference. The right column shows the steps being
taken. The steps also are numbered for reference. The steps are only those connected with the control

file:///D|/Cool Stuff/old/ftp/Sams.Teach.Yourself.Cobol.In.21.Days/Teach Yourself Cobol in 21 Days/ch22/01.htm
file:///D|/Cool Stuff/old/ftp/Sams.Teach.Yourself.Cobol.In.21.Days/Teach Yourself Cobol in 21 Days/ch22/02.htm

break, and they do not include the actions necessary to print each line of the report. Imagine the actions
on the right being taken in response to each record read on the left.

Table B1.1. An idealized model of control breaking.

Record Action

1. MOVE ZERO TO GRAND-TOTAL

2. MOVE ZERO TO VENDOR-TOTAL

1. ABC Printing 19940123 00027.95 3. ADD 27.95 TO VENDOR-TOTAL

2. ABC Printing 19940131 00015.54 4. ADD 15.54 TO VENDOR-TOTAL

3. ABC Printing 19940216 00010.17 5. ADD 10.17 TO VENDOR-TOTAL

6. PRINT VENDOR-TOTAL

7. ADD VENDOR-TOTAL TO GRAND-TOTAL

8. MOVE ZERO TO VENDOR-TOTAL

4. Phone Co 19940117 00034.97 9. ADD 34.97 TO VENDOR-TOTAL

5. Phone Co 19940124 00017.54 10. ADD 17.54 TO VENDOR-TOTAL

6. Phone Co 19940131 00027.15 11. ADD 27.15 TO VENDOR-TOTAL

12. PRINT VENDOR-TOTAL

13. ADD VENDOR-TOTAL TO GRAND-TOTAL

14. MOVE ZERO TO VENDOR-TOTAL

7. Moon Mountain Inc. 19940106
00039.95

15. ADD 39.95 TO VENDOR-TOTAL

8. Moon Mountain Inc. 19940116
00047.55

16. ADD 47.55 TO VENDOR-TOTAL

17. PRINT VENDOR-TOTAL

18. ADD VENDOR-TOTAL TO GRAND-TOTAL

19. PRINT GRAND-TOTAL

This is an idealized model of control breaking. If you look at steps 6, 7, and 8 in the right column, you
see that after the last ABC Printing record is read, the total for ABC Printing is printed and then added to
the grand total for the report. These steps are sensible enough for a human being. You can scan up and
down through the records and quickly establish the breaking points; but how would the computer know
that ABC Printing was finished and that a new vendor was about to begin, unless it had already read the
next record in the file? This makes the programming of control breaks somewhat tricky. It is necessary to
read the file past the point that you want, and then execute the control break logic.

Table B1.2 shows a truer picture of what happens in a programmed control break.

Table B1.2. A truer picture of a programmed control break.

Record Action

1. ABC Printing 19940123 00027.95 1. MOVE ZERO TO GRAND-TOTAL

2. MOVE ZERO TO VENDOR-TOTAL

3. ADD 27.95 TO VENDOR-TOTAL

2. ABC Printing 19940131 00015.54 4. ADD 15.54 TO VENDOR-TOTAL

3. ABC Printing 19940216 00010.17 5. ADD 10.17 TO VENDOR-TOTAL

4. Phone Co 19940117 00034.97 6. PRINT VENDOR-TOTAL

7. ADD VENDOR-TOTAL TO GRAND-TOTAL

8. MOVE ZERO TO VENDOR-TOTAL

9. ADD 34.97 TO VENDOR-TOTAL

5. Phone Co 19940124 00017.54 10. ADD 17.54 TO VENDOR-TOTAL

6. Phone Co 19940131 00027.15 11. ADD 27.15 TO VENDOR-TOTAL

7. Moon Mountain Inc. 19940106
00039.95

12. PRINT VENDOR-TOTAL

13. ADD VENDOR-TOTAL TO GRAND-TOTAL

14. MOVE ZERO TO VENDOR-TOTAL

15. ADD 39.95 TO VENDOR-TOTAL

8. Moon Mountain Inc. 19940116
00047.55

16. ADD 47.55 TO VENDOR-TOTAL

9. END OF FILE 17. PRINT VENDOR-TOTAL

18. ADD VENDOR-TOTAL TO GRAND-TOTAL

19. PRINT GRAND-TOTAL

ANALYSIS: In the left column, the first record is read from the file. This triggers the start of a report,
and step 1 moves zero to the GRAND-TOTAL. This first record also triggers the beginning of a vendor,
and step 2 moves zeroes to the VENDOR-TOTAL.

Step 3 is the action taken based on the actual record. The value in the record is added to the
VENDOR-TOTAL. Record 2 is read, causing step 4 to be taken. Record 3 is read, causing step 5 to be
taken. When record 4 is read, the vendor name changes. The change of name signals the end of a vendor.
Steps 6 and 7 print the VENDOR-TOTAL and add it to the GRAND-TOTAL. Record 4 also signals the
beginning of a new vendor, and step 8 sets the VENDOR-TOTAL back to zero for the beginning of this
new vendor.

Step 9 adds the value in the record to VENDOR-TOTAL, and the values read from records 5 and 6 also
are added in steps 10 and 11. When record 7 is read, the vendor name changes again. This signals an end
of a vendor, and steps 12 and 13 print the VENDOR-TOTAL and add it to the GRAND-TOTAL. Record 7
also signals a new vendor, and step 14 zeroes the VENDOR-TOTAL again. Steps 15 and 16 add the
values for records 7 and 8.

The last read on the file (labeled record 9) does not retrieve a record but creates an end-of-file condition.
This condition triggers the end of a vendor, and steps 17 and 18 print the VENDOR-TOTAL and add it to
the GRAND-TOTAL. The end-of-file condition also triggers the end of the report and, finally, step 19
prints the GRAND-TOTAL.

Control Break Levels
Control breaks are usually thought of in terms of levels. In the example shown in Table B1.2, the senior,
or highest, level is the level that includes all records in the file. The next level below that is the level that
includes all records with the same vendor.

The senior level control break can be called the level-1 break. The vendor break would then be called the
level-2 break. Any file processing can have more than two level breaks, but this example works with
only two. There are several key parts to a control break.

New Term: The control break field or control field is the field in the record that causes a control break to
occur when it changes. In Table B1.2, the vendor name is a control break field.

The control break field is the field on which the file is sorted. One special type of control break field is
used at level 1. Level 1 is usually at the level of the complete file, or all records. The break on level 1 is
not a field, but an end-of-file condition. The control break field for a level-1 break can be thought of as
the whole file, and the condition that determines the break is that of no more records to process (end of
file).

New Term: The control break current value or control current value is a field created in
WORKING-STORAGE that holds a copy of the control break field. The control break current value is
sometimes called the control break holding area or control holding area.

The control break current value is filled in at the beginning of a control break level with the value in the
control break field. As the processing continues, the control break field is compared to the control break
current value to determine whether a control break has occurred. In Table B1.2, a control break current
value field was created in WORKING-STORAGE that is filled in with the vendor name from the record.
When reading a record creates the condition that the control break field does not match the control break
current value, the logic for that control break is executed.

New Term: Control break accumulators or control accumulators are any variables used for summing or
counting values within a control break. In Table B1.2, there are two accumulators: a grand total
accumulator, and a vendor accumulator.

Control Break Logic
The mechanics of a control break make it seem difficult, but the logic of a control break is quite easy to
express. Listing B1.3 is a general statement of the logic of a control break. The example is for a level-2
control break. I have shown the pseudocode for a level-2 break because the level-1 break (all records)
behaves slightly differently.

TYPE: Listing B1.3. Pseudocode for a control break.

process-level-2-control-break
 perform start-level-2-control-break
 perform process-level-3-control-break
 until file at end
 or level-2-control-field not = level-2-current-value
 perform end-level-2
start-level-2
 move level-2-control-field to level-2-current-value.
 move zeroes to level-2 accumulators.
 any other starting actions
end-level-2
 perform process-level-2-accumulators
 perform add-level-2 accumulators to level-1 accumulators
 any other ending actions

ANALYSIS: A control break starts by saving the control break field in the control break current value
and zeroing the accumulators for that control level.

The body of the break performs the next lower-level control break until the file is at the end or the
control break field no longer matches the control break value field.

The control break ends by processing the level accumulators. For a report program, this involves printing
the subtotals. Finally, it adds the accumulators for this level to the next higher level.

Listing B1.4 is the pseudocode for a level-1 (all records) control break.

TYPE: Listing B1.4. A level-1 control break.

process-level-1-control-break
 perform start-level-1
 perform process-level-2-control-break
 until file-at-end
 perform end-level-1
start-level-1
 read first valid record
 move zeroes to level-1-accumulators.
 any other starting actions
end-level-1
 perform process-level-1-accumulators
 any other ending actions

ANALYSIS: A level-1 break varies from any other break because there is no true control break current
value; the start-level-1 logic starts by executing a read first valid record.

The body of the level-1 break performs level 2 until the file is at end. The end of a level-1 break does not
add accumulators to the next higher level because there is no next higher level.

Using Control Breaks for Totals
A good way to get a feel for control breaks is to see them in action. Figure B1.3 is a printer spacing chart
for a Bills by Vendor report. This report produces a level-1 break for the complete file and a level-2
break for each vendor.

Figure B1.3.
A printer layout chart for blbyvn01.cbl.

Listing B1.5 is blbyvn01.cbl, the report program. It sorts on the vendor number, prints subtotals for
each vendor, and prints a grand total at the end of the report.

TYPE: Listing B1.5. More control breaks.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. BLBYVN01.
000300*--------------------------------
000400* Bills Report by vendor
000500*--------------------------------
000600 ENVIRONMENT DIVISION.
000700 INPUT-OUTPUT SECTION.
000800 FILE-CONTROL.
000900
001000 COPY "SLVOUCH.CBL".
001100
001200 COPY "SLVND02.CBL".
001300
001400 COPY "SLSTATE.CBL".
001500
001600 SELECT WORK-FILE
001700 ASSIGN TO "WORK"
001800 ORGANIZATION IS SEQUENTIAL.
001900
002000 SELECT SORT-FILE
002100 ASSIGN TO "SORT".
002200
002300 SELECT PRINTER-FILE
002400 ASSIGN TO PRINTER
002500 ORGANIZATION IS LINE SEQUENTIAL.
002600
002700 DATA DIVISION.
002800 FILE SECTION.
002900
003000 COPY "FDVOUCH.CBL".
003100
003200 COPY "FDVND04.CBL".

file:///D|/Cool Stuff/old/ftp/Sams.Teach.Yourself.Cobol.In.21.Days/Teach Yourself Cobol in 21 Days/ch22/03.htm

003300
003400 COPY "FDSTATE.CBL".
003500
003600 FD WORK-FILE
003700 LABEL RECORDS ARE STANDARD.
003800 01 WORK-RECORD.
003900 05 WORK-NUMBER PIC 9(5).
004000 05 WORK-VENDOR PIC 9(5).
004100 05 WORK-INVOICE PIC X(15).
004200 05 WORK-FOR PIC X(30).
004300 05 WORK-AMOUNT PIC S9(6)V99.
004400 05 WORK-DATE PIC 9(8).
004500 05 WORK-DUE PIC 9(8).
004600 05 WORK-DEDUCTIBLE PIC X.
004700 05 WORK-SELECTED PIC X.
004800 05 WORK-PAID-AMOUNT PIC S9(6)V99.
004900 05 WORK-PAID-DATE PIC 9(8).
005000 05 WORK-CHECK-NO PIC 9(6).
005100
005200 SD SORT-FILE.
005300
005400 01 SORT-RECORD.
005500 05 SORT-NUMBER PIC 9(5).
005600 05 SORT-VENDOR PIC 9(5).
005700 05 SORT-INVOICE PIC X(15).
005800 05 SORT-FOR PIC X(30).
005900 05 SORT-AMOUNT PIC S9(6)V99.
006000 05 SORT-DATE PIC 9(8).
006100 05 SORT-DUE PIC 9(8).
006200 05 SORT-DEDUCTIBLE PIC X.
006300 05 SORT-SELECTED PIC X.
006400 05 SORT-PAID-AMOUNT PIC S9(6)V99.
006500 05 SORT-PAID-DATE PIC 9(8).
006600 05 SORT-CHECK-NO PIC 9(6).
006700
006800 FD PRINTER-FILE
006900 LABEL RECORDS ARE OMITTED.
007000 01 PRINTER-RECORD PIC X(80).
007100
007200 WORKING-STORAGE SECTION.
007300
007400 77 OK-TO-PROCESS PIC X.
007500
007600 COPY "WSCASE01.CBL".
007700
007800 01 DETAIL-LINE.

007900 05 PRINT-NAME PIC X(30).
008000 05 FILLER PIC X(1) VALUE SPACE.
008100 05 PRINT-NUMBER PIC ZZZZ9.
008200 05 FILLER PIC X(3) VALUE SPACE.
008300 05 PRINT-DUE-DATE PIC Z9/99/9999.
008400 05 FILLER PIC X(1) VALUE SPACE.
008500 05 PRINT-AMOUNT PIC ZZZ,ZZ9.99.
008600 05 FILLER PIC X(1) VALUE SPACE.
008700 05 PRINT-INVOICE PIC X(15).
008800
008900 01 VENDOR-TOTAL-LITERAL.
009000 05 FILLER PIC X(18) VALUE SPACE.
009100 05 FILLER PIC X(12) VALUE "VENDOR TOTAL".
009200
009300 01 GRAND-TOTAL-LITERAL.
009400 05 FILLER PIC X(25) VALUE SPACE.
009500 05 FILLER PIC X(5) VALUE "TOTAL".
009600
009700 01 COLUMN-LINE.
009800 05 FILLER PIC X(6) VALUE "VENDOR".
009900 05 FILLER PIC X(23) VALUE SPACE.
010000 05 FILLER PIC X(7) VALUE "VOUCHER".
010100 05 FILLER PIC X(5) VALUE SPACE.
010200 05 FILLER PIC X(8) VALUE "DUE DATE".
010300 05 FILLER PIC X(1) VALUE SPACE.
010400 05 FILLER PIC X(10) VALUE "AMOUNT DUE".
010500 05 FILLER PIC X(1) VALUE SPACE.
010600 05 FILLER PIC X(7) VALUE "INVOICE".
010700
010800 01 TITLE-LINE.
010900 05 FILLER PIC X(25) VALUE SPACE.
011000 05 FILLER PIC X(22)
011100 VALUE "BILLS REPORT BY VENDOR".
011200 05 FILLER PIC X(11) VALUE SPACE.
011300 05 FILLER PIC X(5) VALUE "PAGE:".
011400 05 FILLER PIC X(1) VALUE SPACE.
011500 05 PRINT-PAGE-NUMBER PIC ZZZ9.
011600
011700 77 WORK-FILE-AT-END PIC X.
011800 77 VENDOR-RECORD-FOUND PIC X.
011900
012000 77 LINE-COUNT PIC 999 VALUE ZERO.
012100 77 PAGE-NUMBER PIC 9999 VALUE ZERO.
012200 77 MAXIMUM-LINES PIC 999 VALUE 55.
012300
012400 77 RECORD-COUNT PIC 9999 VALUE ZEROES.

012500
012600* Control break current value for vendor
012700 77 CURRENT-VENDOR PIC 9(5).
012800
012900* Control break accumulators
013000* GRAND TOTAL is the level 1 accumulator for the whole file
013100* VENDOR TOTAL is the level 2 accumulator
013200 77 GRAND-TOTAL PIC S9(6)V99.
013300 77 VENDOR-TOTAL PIC S9(6)V99.
013400
013500 COPY "WSDATE01.CBL".
013600
013700 PROCEDURE DIVISION.
013800 PROGRAM-BEGIN.
013900
014000 PERFORM OPENING-PROCEDURE.
014100 PERFORM MAIN-PROCESS.
014200 PERFORM CLOSING-PROCEDURE.
014300
014400 PROGRAM-EXIT.
014500 EXIT PROGRAM.
014600
014700 PROGRAM-DONE.
014800 STOP RUN.
014900
015000 OPENING-PROCEDURE.
015100 OPEN I-O VENDOR-FILE.
015200
015300 OPEN OUTPUT PRINTER-FILE.
015400
015500 MAIN-PROCESS.
015600 PERFORM GET-OK-TO-PROCESS.
015700 PERFORM PROCESS-THE-FILE
015800 UNTIL OK-TO-PROCESS = "N".
015900
016000 CLOSING-PROCEDURE.
016100 CLOSE VENDOR-FILE.
016200 CLOSE PRINTER-FILE.
016300
016400 GET-OK-TO-PROCESS.
016500 PERFORM ACCEPT-OK-TO-PROCESS.
016600 PERFORM RE-ACCEPT-OK-TO-PROCESS
016700 UNTIL OK-TO-PROCESS = "Y" OR "N".
016800
016900 ACCEPT-OK-TO-PROCESS.
017000 DISPLAY "PRINT BILLS BY VENDOR (Y/N)?".

017100 ACCEPT OK-TO-PROCESS.
017200 INSPECT OK-TO-PROCESS
017300 CONVERTING LOWER-ALPHA
017400 TO UPPER-ALPHA.
017500
017600 RE-ACCEPT-OK-TO-PROCESS.
017700 DISPLAY "YOU MUST ENTER YES OR NO".
017800 PERFORM ACCEPT-OK-TO-PROCESS.
017900
018000 PROCESS-THE-FILE.
018100 PERFORM START-THE-FILE.
018200 PERFORM PRINT-ONE-REPORT.
018300 PERFORM END-THE-FILE.
018400
018500* PERFORM GET-OK-TO-PROCESS.
018600 MOVE "N" TO OK-TO-PROCESS.
018700
018800 START-THE-FILE.
018900 PERFORM SORT-DATA-FILE.
019000 OPEN INPUT WORK-FILE.
019100
019200 END-THE-FILE.
019300 CLOSE WORK-FILE.
019400
019500 SORT-DATA-FILE.
019600 SORT SORT-FILE
019700 ON ASCENDING KEY SORT-VENDOR
019800 USING VOUCHER-FILE
019900 GIVING WORK-FILE.
020000
020100* LEVEL 1 CONTROL BREAK
020200 PRINT-ONE-REPORT.
020300 PERFORM START-ONE-REPORT.
020400 PERFORM PROCESS-ALL-VENDORS
020500 UNTIL WORK-FILE-AT-END = "Y".
020600 PERFORM END-ONE-REPORT.
020700
020800 START-ONE-REPORT.
020900 PERFORM READ-FIRST-VALID-WORK.
021000 MOVE ZEROES TO GRAND-TOTAL.
021100
021200 PERFORM START-NEW-REPORT.
021300
021400 START-NEW-REPORT.
021500 MOVE SPACE TO DETAIL-LINE.
021600 MOVE ZEROES TO LINE-COUNT PAGE-NUMBER.

021700 PERFORM START-NEW-PAGE.
021800
021900 END-ONE-REPORT.
022000 IF RECORD-COUNT = ZEROES
022100 MOVE "NO RECORDS FOUND" TO PRINTER-RECORD
022200 PERFORM WRITE-TO-PRINTER
022300 ELSE
022400 PERFORM PRINT-GRAND-TOTAL.
022500
022600 PERFORM END-LAST-PAGE.
022700
022800 PRINT-GRAND-TOTAL.
022900 MOVE GRAND-TOTAL TO PRINT-AMOUNT.
023000 MOVE GRAND-TOTAL-LITERAL TO PRINT-NAME.
023100 MOVE DETAIL-LINE TO PRINTER-RECORD.
023200 PERFORM WRITE-TO-PRINTER.
023300 PERFORM LINE-FEED 2 TIMES.
023400 MOVE SPACE TO DETAIL-LINE.
023500
023600* LEVEL 2 CONTROL BREAK
023700 PROCESS-ALL-VENDORS.
023800 PERFORM START-ONE-VENDOR.
023900
024000 PERFORM PROCESS-ALL-VOUCHERS
024100 UNTIL WORK-FILE-AT-END = "Y"
024200 OR WORK-VENDOR NOT = CURRENT-VENDOR.
024300
024400 PERFORM END-ONE-VENDOR.
024500
024600 START-ONE-VENDOR.
024700 MOVE WORK-VENDOR TO CURRENT-VENDOR.
024800 MOVE ZEROES TO VENDOR-TOTAL.
024900
025000 END-ONE-VENDOR.
025100 PERFORM PRINT-VENDOR-TOTAL.
025200 ADD VENDOR-TOTAL TO GRAND-TOTAL.
025300
025400 PRINT-VENDOR-TOTAL.
025500 MOVE VENDOR-TOTAL TO PRINT-AMOUNT.
025600 MOVE VENDOR-TOTAL-LITERAL TO PRINT-NAME.
025700 MOVE DETAIL-LINE TO PRINTER-RECORD.
025800 PERFORM WRITE-TO-PRINTER.
025900 PERFORM LINE-FEED.
026000 MOVE SPACE TO DETAIL-LINE.
026100
026200* PROCESS ONE RECORD LEVEL

026300 PROCESS-ALL-VOUCHERS.
026400 PERFORM PROCESS-THIS-VOUCHER.
026500 ADD WORK-AMOUNT TO VENDOR-TOTAL.
026600 ADD 1 TO RECORD-COUNT.
026700 PERFORM READ-NEXT-VALID-WORK.
026800
026900 PROCESS-THIS-VOUCHER.
027000 IF LINE-COUNT > MAXIMUM-LINES
027100 PERFORM START-NEXT-PAGE.
027200 PERFORM PRINT-THE-RECORD.
027300
027400 PRINT-THE-RECORD.
027500 MOVE WORK-NUMBER TO PRINT-NUMBER.
027600
027700 PERFORM LOAD-VENDOR-NAME.
027800
027900 MOVE WORK-DUE TO DATE-CCYYMMDD.
028000 PERFORM CONVERT-TO-MMDDCCYY.
028100 MOVE DATE-MMDDCCYY TO PRINT-DUE-DATE.
028200
028300 MOVE WORK-AMOUNT TO PRINT-AMOUNT.
028400 MOVE WORK-INVOICE TO PRINT-INVOICE.
028500
028600 MOVE DETAIL-LINE TO PRINTER-RECORD.
028700 PERFORM WRITE-TO-PRINTER.
028800 MOVE SPACE TO DETAIL-LINE.
028900
029000 LOAD-VENDOR-NAME.
029100 MOVE WORK-VENDOR TO VENDOR-NUMBER.
029200 PERFORM READ-VENDOR-RECORD.
029300 IF VENDOR-RECORD-FOUND = "Y"
029400 MOVE VENDOR-NAME TO PRINT-NAME
029500 ELSE
029600 MOVE "*VENDOR NOT ON FILE*" TO PRINT-NAME.
029700
029800* PRINTING ROUTINES
029900 WRITE-TO-PRINTER.
030000 WRITE PRINTER-RECORD BEFORE ADVANCING 1.
030100 ADD 1 TO LINE-COUNT.
030200
030300 LINE-FEED.
030400 MOVE SPACE TO PRINTER-RECORD.
030500 PERFORM WRITE-TO-PRINTER.
030600
030700 START-NEXT-PAGE.
030800 PERFORM END-LAST-PAGE.

030900 PERFORM START-NEW-PAGE.
031000
031100 START-NEW-PAGE.
031200 ADD 1 TO PAGE-NUMBER.
031300 MOVE PAGE-NUMBER TO PRINT-PAGE-NUMBER.
031400 MOVE TITLE-LINE TO PRINTER-RECORD.
031500 PERFORM WRITE-TO-PRINTER.
031600 PERFORM LINE-FEED.
031700 MOVE COLUMN-LINE TO PRINTER-RECORD.
031800 PERFORM WRITE-TO-PRINTER.
031900 PERFORM LINE-FEED.
032000
032100 END-LAST-PAGE.
032200 PERFORM FORM-FEED.
032300 MOVE ZERO TO LINE-COUNT.
032400
032500 FORM-FEED.
032600 MOVE SPACE TO PRINTER-RECORD.
032700 WRITE PRINTER-RECORD BEFORE ADVANCING PAGE.
032800
032900*--------------------------------
033000* Read first, read next routines
033100*--------------------------------
033200 READ-FIRST-VALID-WORK.
033300 PERFORM READ-NEXT-VALID-WORK.
033400
033500 READ-NEXT-VALID-WORK.
033600 PERFORM READ-NEXT-WORK-RECORD.
033700 PERFORM READ-NEXT-WORK-RECORD
033800 UNTIL WORK-FILE-AT-END = "Y"
033900 OR WORK-PAID-DATE = ZEROES.
034000
034100 READ-NEXT-WORK-RECORD.
034200 MOVE "N" TO WORK-FILE-AT-END.
034300 READ WORK-FILE NEXT RECORD
034400 AT END MOVE "Y" TO WORK-FILE-AT-END.
034500
034600*--------------------------------
034700* Other File IO routines
034800*--------------------------------
034900 READ-VENDOR-RECORD.
035000 MOVE "Y" TO VENDOR-RECORD-FOUND.
035100 READ VENDOR-FILE RECORD
035200 INVALID KEY
035300 MOVE "N" TO VENDOR-RECORD-FOUND.
035400

035500*--------------------------------
035600* Utility Routines
035700*--------------------------------
035800 COPY "PLDATE01.CBL".
035900

The output of the Bills by Vendor report provides subtotals for each vendor and a grand total at the end
of the report:

OUTPUT:
 BILLS REPORT BY VENDOR PAGE: 1
VENDOR VOUCHER DUE DATE AMOUNT DUE INVOICE
AERIAL SIGNS 14 1/17/1994 1,046.97 FA1234
VENDOR TOTAL 1,046.97
ABC PRINTING 4 2/07/1994 104.19 CX-5055
ABC PRINTING 7 2/22/1994 48.97 CX-1407
ABC PRINTING 8 1/27/1994 48.97 CX-1566
VENDOR TOTAL 202.13
CHARLES SMITH AND SONS 3 2/22/1994 27.76 5057
CHARLES SMITH AND SONS 16 1/16/1994 25.97 5098
VENDOR TOTAL 53.73
MA BELL 13 1/23/1994 94.96 50577
MA BELL 19 1/23/1994 34.95 50577
VENDOR TOTAL 129.91
RANIER GRAPHICS 20 2/25/1994 2,057.07 ZO-1515
VENDOR TOTAL 2,057.07
ABERCROMBIE AND OTHERS 15 1/31/1994 657.19 MONTHLY
VENDOR TOTAL 657.19
TOTAL 4,147.00

ANALYSIS: The program has two control level breaks: level 1 at file level (all records) and level 2 at
vendor-number level.

The control break field for level 1 is the entire WORK-RECORD. When there are no more work records,
the level 1 break is completed. The control break current value for this level is really the
WORK-FILE-AT-END flag defined at line 011700.

The control break field for level 2 is WORK-VENDOR, defined in the work file at line 004000. The
control break current value for the vendor level is defined at line 012700, a CURRENT-VENDOR that
will hold the value of the vendor that is currently undergoing processing.

The control break accumulators are GRAND-TOTAL and VENDOR-TOTAL, defined at lines 013200
and 013300, respectively. The RECORD-COUNT defined at line 012400 also is used as a control break
accumulator because it counts all the records processed by the report portion of the program.

The program starts by asking the user whether to proceed with the report. This logic is handled in
MAIN-PROCESS at line 015500 by performing GET-OK-TO-PROCESS. This routine at line 016400
requires that the user enter yes or no and place "Y" or "N" in OK-TO-PROCESS. MAIN-PROCESS

then performs the main loop, PROCESS-THE-FILE, until OK-TO-PROCESS = "N".

When the user has agreed to print the report, PROCESS-THE-FILE at line 018000 starts by
performing START-THE-FILE. This routine at line 018800 sorts the voucher file on the vendor
number into a work file and opens the work file ready for processing. The actual sort routine is at line
019500. PROCESS-THE-FILE continues by printing the report and then performing
END-THE-FILE, which closes the work file. The last action of PROCESS-THE-FILE is to decide
whether to process again. The code includes two solutions at lines 018500 and 018600. One
possibility at line 018500 is to ask the user whether to print the report again. This option is commented
out. The second option at line 018600 moves "N" to OK-TO-PROCESS. Either one of these will
resolve the main loop condition that will PROCESS-THE-FILE UNTIL OK-TO-PROCESS = "N".
The first enables the user to decide, and the second forces no further processing.

The sort step is important because the file must be in vendor number order for a control break to work
correctly on the vendor number.

The level-1 (all records) control break, PRINT-ONE-REPORT, and related routines are at lines 020100
through 023400. The logic follows a pattern similar to the pseudocode in Listing B1.4 for a level-1
control break. The additional start level actions in START-NEW-REPORT at line 021400 include
setting up a report ready to be printed.

END-ONE-REPORT at line 021900 prints either a grand total or a "NO RECORDS FOUND" message
and then ends the report by performing END-LAST-PAGE to issue a final form feed to the printer.

The level-2 control logic, PROCESS-ALL-VENDORS, and related routines are found at lines 023600
through 026100. This logic follows Listing B1.3, pseudocode for standard level break.

The level that processes single records, PROCESS-ALL-VOUCHERS at line 026300, performs a
routine to PROCESS-THIS-VOUCHER. When this is done, the WORK-AMOUNT is added to the
VENDOR-TOTAL, and the RECORD-COUNT is increased by 1. The last action of
PROCESS-ALL-VOUCHERS is READ-NEXT-VALID-WORK.

The printing-level routine, PROCESS-THIS-VOUCHER, performs fairly routine actions to print a single
record. One routine worth noting at line 029000 is LOAD-VENDOR-NAME, which is used to look up the
WORK-VENDOR in the VENDOR-FILE and print the vendor name instead of the vendor number.

Using Control Breaks for Formatting
In blbyvn01.cbl, the control breaking logic was used to create additional lines to print with vendor
subtotals and grand totals. Control breaking also is frequently used to eliminate the repetition of a control
field on a report. Figure B1.4 is a printer-spacing chart for a modified version of blbyvn01.cbl.

Figure B1.4.
A printer layout chart for blbyvn02.cbl.

In this version, the vendor name is printed on only the first line of a group of records with the same
vendor. This prevents the vendor name from repeating on each line.

file:///D|/Cool Stuff/old/ftp/Sams.Teach.Yourself.Cobol.In.21.Days/Teach Yourself Cobol in 21 Days/ch22/04.htm

Listing B1.6, blbyvn02.cbl, implements this change by removing the vendor name from the detail
line printing and moving it up to become part of START-ONE-VENDOR.

TYPE: Listing B1.6. Another control break problem.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. BLBYVN02.
000300*--------------------------------
000400* Bills Report by vendor
000500*--------------------------------
000600 ENVIRONMENT DIVISION.
000700 INPUT-OUTPUT SECTION.
000800 FILE-CONTROL.
000900
001000 COPY "SLVOUCH.CBL".
001100
001200 COPY "SLVND02.CBL".
001300
001400 COPY "SLSTATE.CBL".
001500
001600 SELECT WORK-FILE
001700 ASSIGN TO "WORK"
001800 ORGANIZATION IS SEQUENTIAL.
001900
002000 SELECT SORT-FILE
002100 ASSIGN TO "SORT".
002200
002300 SELECT PRINTER-FILE
002400 ASSIGN TO PRINTER
002500 ORGANIZATION IS LINE SEQUENTIAL.
002600
002700 DATA DIVISION.
002800 FILE SECTION.
002900
003000 COPY "FDVOUCH.CBL".
003100
003200 COPY "FDVND04.CBL".
003300
003400 COPY "FDSTATE.CBL".
003500
003600 FD WORK-FILE
003700 LABEL RECORDS ARE STANDARD.
003800 01 WORK-RECORD.
003900 05 WORK-NUMBER PIC 9(5).
004000 05 WORK-VENDOR PIC 9(5).
004100 05 WORK-INVOICE PIC X(15).

004200 05 WORK-FOR PIC X(30).
004300 05 WORK-AMOUNT PIC S9(6)V99.
004400 05 WORK-DATE PIC 9(8).
004500 05 WORK-DUE PIC 9(8).
004600 05 WORK-DEDUCTIBLE PIC X.
004700 05 WORK-SELECTED PIC X.
004800 05 WORK-PAID-AMOUNT PIC S9(6)V99.
004900 05 WORK-PAID-DATE PIC 9(8).
005000 05 WORK-CHECK-NO PIC 9(6).
005100
005200 SD SORT-FILE.
005300
005400 01 SORT-RECORD.
005500 05 SORT-NUMBER PIC 9(5).
005600 05 SORT-VENDOR PIC 9(5).
005700 05 SORT-INVOICE PIC X(15).
005800 05 SORT-FOR PIC X(30).
005900 05 SORT-AMOUNT PIC S9(6)V99.
006000 05 SORT-DATE PIC 9(8).
006100 05 SORT-DUE PIC 9(8).
006200 05 SORT-DEDUCTIBLE PIC X.
006300 05 SORT-SELECTED PIC X.
006400 05 SORT-PAID-AMOUNT PIC S9(6)V99.
006500 05 SORT-PAID-DATE PIC 9(8).
006600 05 SORT-CHECK-NO PIC 9(6).
006700
006800 FD PRINTER-FILE
006900 LABEL RECORDS ARE OMITTED.
007000 01 PRINTER-RECORD PIC X(80).
007100
007200 WORKING-STORAGE SECTION.
007300
007400 77 OK-TO-PROCESS PIC X.
007500
007600 COPY "WSCASE01.CBL".
007700
007800 01 DETAIL-LINE.
007900 05 PRINT-NAME PIC X(30).
008000 05 FILLER PIC X(1) VALUE SPACE.
008100 05 PRINT-NUMBER PIC ZZZZ9.
008200 05 FILLER PIC X(3) VALUE SPACE.
008300 05 PRINT-DUE-DATE PIC Z9/99/9999.
008400 05 FILLER PIC X(1) VALUE SPACE.
008500 05 PRINT-AMOUNT PIC ZZZ,ZZ9.99.
008600 05 FILLER PIC X(1) VALUE SPACE.
008700 05 PRINT-INVOICE PIC X(15).

008800
008900 01 VENDOR-TOTAL-LITERAL.
009000 05 FILLER PIC X(18) VALUE SPACE.
009100 05 FILLER PIC X(12) VALUE "VENDOR TOTAL".
009200
009300 01 GRAND-TOTAL-LITERAL.
009400 05 FILLER PIC X(25) VALUE SPACE.
009500 05 FILLER PIC X(5) VALUE "TOTAL".
009600
009700 01 COLUMN-LINE.
009800 05 FILLER PIC X(6) VALUE "VENDOR".
009900 05 FILLER PIC X(23) VALUE SPACE.
010000 05 FILLER PIC X(7) VALUE "VOUCHER".
010100 05 FILLER PIC X(5) VALUE SPACE.
010200 05 FILLER PIC X(8) VALUE "DUE DATE".
010300 05 FILLER PIC X(1) VALUE SPACE.
010400 05 FILLER PIC X(10) VALUE "AMOUNT DUE".
010500 05 FILLER PIC X(1) VALUE SPACE.
010600 05 FILLER PIC X(7) VALUE "INVOICE".
010700
010800 01 TITLE-LINE.
010900 05 FILLER PIC X(25) VALUE SPACE.
011000 05 FILLER PIC X(22)
011100 VALUE "BILLS REPORT BY VENDOR".
011200 05 FILLER PIC X(11) VALUE SPACE.
011300 05 FILLER PIC X(5) VALUE "PAGE:".
011400 05 FILLER PIC X(1) VALUE SPACE.
011500 05 PRINT-PAGE-NUMBER PIC ZZZ9.
011600
011700 77 WORK-FILE-AT-END PIC X.
011800 77 VENDOR-RECORD-FOUND PIC X.
011900
012000 77 LINE-COUNT PIC 999 VALUE ZERO.
012100 77 PAGE-NUMBER PIC 9999 VALUE ZERO.
012200 77 MAXIMUM-LINES PIC 999 VALUE 55.
012300
012400 77 RECORD-COUNT PIC 9999 VALUE ZEROES.
012500
012600* Control break current value for vendor
012700 77 CURRENT-VENDOR PIC 9(5).
012800
012900* Control break accumulators
013000* GRAND TOTAL is the level 1 accumulator for the whole file
013100* VENDOR TOTAL is the level 2 accumulator
013200 77 GRAND-TOTAL PIC S9(6)V99.
013300 77 VENDOR-TOTAL PIC S9(6)V99.

013400
013500 COPY "WSDATE01.CBL".
013600
013700 PROCEDURE DIVISION.
013800 PROGRAM-BEGIN.
013900
014000 PERFORM OPENING-PROCEDURE.
014100 PERFORM MAIN-PROCESS.
014200 PERFORM CLOSING-PROCEDURE.
014300
014400 PROGRAM-EXIT.
014500 EXIT PROGRAM.
014600
014700 PROGRAM-DONE.
014800 STOP RUN.
014900
015000 OPENING-PROCEDURE.
015100 OPEN I-O VENDOR-FILE.
015200
015300 OPEN OUTPUT PRINTER-FILE.
015400
015500 MAIN-PROCESS.
015600 PERFORM GET-OK-TO-PROCESS.
015700 PERFORM PROCESS-THE-FILE
015800 UNTIL OK-TO-PROCESS = "N".
015900
016000 CLOSING-PROCEDURE.
016100 CLOSE VENDOR-FILE.
016200 CLOSE PRINTER-FILE.
016300
016400 GET-OK-TO-PROCESS.
016500 PERFORM ACCEPT-OK-TO-PROCESS.
016600 PERFORM RE-ACCEPT-OK-TO-PROCESS
016700 UNTIL OK-TO-PROCESS = "Y" OR "N".
016800
016900 ACCEPT-OK-TO-PROCESS.
017000 DISPLAY "PRINT BILLS BY VENDOR (Y/N)?".
017100 ACCEPT OK-TO-PROCESS.
017200 INSPECT OK-TO-PROCESS
017300 CONVERTING LOWER-ALPHA
017400 TO UPPER-ALPHA.
017500
017600 RE-ACCEPT-OK-TO-PROCESS.
017700 DISPLAY "YOU MUST ENTER YES OR NO".
017800 PERFORM ACCEPT-OK-TO-PROCESS.
017900

018000 PROCESS-THE-FILE.
018100 PERFORM START-THE-FILE.
018200 PERFORM PRINT-ONE-REPORT.
018300 PERFORM END-THE-FILE.
018400
018500* PERFORM GET-OK-TO-PROCESS.
018600 MOVE "N" TO OK-TO-PROCESS.
018700
018800 START-THE-FILE.
018900 PERFORM SORT-DATA-FILE.
019000 OPEN INPUT WORK-FILE.
019100
019200 END-THE-FILE.
019300 CLOSE WORK-FILE.
019400
019500 SORT-DATA-FILE.
019600 SORT SORT-FILE
019700 ON ASCENDING KEY SORT-VENDOR
019800 USING VOUCHER-FILE
019900 GIVING WORK-FILE.
020000
020100* LEVEL 1 CONTROL BREAK
020200 PRINT-ONE-REPORT.
020300 PERFORM START-ONE-REPORT.
020400 PERFORM PROCESS-ALL-VENDORS
020500 UNTIL WORK-FILE-AT-END = "Y".
020600 PERFORM END-ONE-REPORT.
020700
020800 START-ONE-REPORT.
020900 PERFORM READ-FIRST-VALID-WORK.
021000 MOVE ZEROES TO GRAND-TOTAL.
021100
021200 PERFORM START-NEW-REPORT.
021300
021400 START-NEW-REPORT.
021500 MOVE SPACE TO DETAIL-LINE.
021600 MOVE ZEROES TO LINE-COUNT PAGE-NUMBER.
021700 PERFORM START-NEW-PAGE.
021800
021900 END-ONE-REPORT.
022000 IF RECORD-COUNT = ZEROES
022100 MOVE "NO RECORDS FOUND" TO PRINTER-RECORD
022200 PERFORM WRITE-TO-PRINTER
022300 ELSE
022400 PERFORM PRINT-GRAND-TOTAL.
022500

022600 PERFORM END-LAST-PAGE.
022700
022800 PRINT-GRAND-TOTAL.
022900 MOVE GRAND-TOTAL TO PRINT-AMOUNT.
023000 MOVE GRAND-TOTAL-LITERAL TO PRINT-NAME.
023100 MOVE DETAIL-LINE TO PRINTER-RECORD.
023200 PERFORM WRITE-TO-PRINTER.
023300 PERFORM LINE-FEED 2 TIMES.
023400 MOVE SPACE TO DETAIL-LINE.
023500
023600* LEVEL 2 CONTROL BREAK
023700 PROCESS-ALL-VENDORS.
023800 PERFORM START-ONE-VENDOR.
023900
024000 PERFORM PROCESS-ALL-VOUCHERS
024100 UNTIL WORK-FILE-AT-END = "Y"
024200 OR WORK-VENDOR NOT = CURRENT-VENDOR.
024300
024400 PERFORM END-ONE-VENDOR.
024500
024600 START-ONE-VENDOR.
024700 MOVE WORK-VENDOR TO CURRENT-VENDOR.
024800 MOVE ZEROES TO VENDOR-TOTAL.
024900
025000 PERFORM LOAD-VENDOR-NAME.
025100
025200 LOAD-VENDOR-NAME.
025300 MOVE WORK-VENDOR TO VENDOR-NUMBER.
025400 PERFORM READ-VENDOR-RECORD.
025500 IF VENDOR-RECORD-FOUND = "Y"
025600 MOVE VENDOR-NAME TO PRINT-NAME
025700 ELSE
025800 MOVE "*VENDOR NOT ON FILE*" TO PRINT-NAME.
025900
026000 END-ONE-VENDOR.
026100 PERFORM PRINT-VENDOR-TOTAL.
026200 ADD VENDOR-TOTAL TO GRAND-TOTAL.
026300
026400 PRINT-VENDOR-TOTAL.
026500 MOVE VENDOR-TOTAL TO PRINT-AMOUNT.
026600 MOVE VENDOR-TOTAL-LITERAL TO PRINT-NAME.
026700 MOVE DETAIL-LINE TO PRINTER-RECORD.
026800 PERFORM WRITE-TO-PRINTER.
026900 PERFORM LINE-FEED.
027000 MOVE SPACE TO DETAIL-LINE.
027100

027200* PROCESS ONE RECORD LEVEL
027300 PROCESS-ALL-VOUCHERS.
027400 PERFORM PROCESS-THIS-VOUCHER.
027500 ADD WORK-AMOUNT TO VENDOR-TOTAL.
027600 ADD 1 TO RECORD-COUNT.
027700 PERFORM READ-NEXT-VALID-WORK.
027800
027900 PROCESS-THIS-VOUCHER.
028000 IF LINE-COUNT > MAXIMUM-LINES
028100 PERFORM START-NEXT-PAGE.
028200 PERFORM PRINT-THE-RECORD.
028300
028400 PRINT-THE-RECORD.
028500 MOVE WORK-NUMBER TO PRINT-NUMBER.
028600
028700 MOVE WORK-DUE TO DATE-CCYYMMDD.
028800 PERFORM CONVERT-TO-MMDDCCYY.
028900 MOVE DATE-MMDDCCYY TO PRINT-DUE-DATE.
029000
029100 MOVE WORK-AMOUNT TO PRINT-AMOUNT.
029200 MOVE WORK-INVOICE TO PRINT-INVOICE.
029300
029400 MOVE DETAIL-LINE TO PRINTER-RECORD.
029500 PERFORM WRITE-TO-PRINTER.
029600 MOVE SPACE TO DETAIL-LINE.
029700
029800* PRINTING ROUTINES
029900 WRITE-TO-PRINTER.
030000 WRITE PRINTER-RECORD BEFORE ADVANCING 1.
030100 ADD 1 TO LINE-COUNT.
030200
030300 LINE-FEED.
030400 MOVE SPACE TO PRINTER-RECORD.
030500 PERFORM WRITE-TO-PRINTER.
030600
030700 START-NEXT-PAGE.
030800 PERFORM END-LAST-PAGE.
030900 PERFORM START-NEW-PAGE.
031000
031100 START-NEW-PAGE.
031200 ADD 1 TO PAGE-NUMBER.
031300 MOVE PAGE-NUMBER TO PRINT-PAGE-NUMBER.
031400 MOVE TITLE-LINE TO PRINTER-RECORD.
031500 PERFORM WRITE-TO-PRINTER.
031600 PERFORM LINE-FEED.
031700 MOVE COLUMN-LINE TO PRINTER-RECORD.

031800 PERFORM WRITE-TO-PRINTER.
031900 PERFORM LINE-FEED.
032000
032100 END-LAST-PAGE.
032200 PERFORM FORM-FEED.
032300 MOVE ZERO TO LINE-COUNT.
032400
032500 FORM-FEED.
032600 MOVE SPACE TO PRINTER-RECORD.
032700 WRITE PRINTER-RECORD BEFORE ADVANCING PAGE.
032800
032900*--------------------------------
033000* Read first, read next routines
033100*--------------------------------
033200 READ-FIRST-VALID-WORK.
033300 PERFORM READ-NEXT-VALID-WORK.
033400
033500 READ-NEXT-VALID-WORK.
033600 PERFORM READ-NEXT-WORK-RECORD.
033700 PERFORM READ-NEXT-WORK-RECORD
033800 UNTIL WORK-FILE-AT-END = "Y"
033900 OR WORK-PAID-DATE = ZEROES.
034000
034100 READ-NEXT-WORK-RECORD.
034200 MOVE "N" TO WORK-FILE-AT-END.
034300 READ WORK-FILE NEXT RECORD
034400 AT END MOVE "Y" TO WORK-FILE-AT-END.
034500
034600*--------------------------------
034700* Other File IO routines
034800*--------------------------------
034900 READ-VENDOR-RECORD.
035000 MOVE "Y" TO VENDOR-RECORD-FOUND.
035100 READ VENDOR-FILE RECORD
035200 INVALID KEY
035300 MOVE "N" TO VENDOR-RECORD-FOUND.
035400
035500*--------------------------------
035600* Utility Routines
035700*--------------------------------
035800 COPY "PLDATE01.CBL".
035900

The output of blbyvn02.cbl prints the vendor name only once for each group of vouchers attached to
the same vendor:

OUTPUT:
 BILLS REPORT BY VENDOR PAGE: 1
VENDOR VOUCHER DUE DATE AMOUNT DUE INVOICE
AERIAL SIGNS 14 1/17/1994 1,046.97 FA1234
VENDOR TOTAL 1,046.97
ABC PRINTING 4 2/07/1994 104.19 CX-5055
7 2/22/1994 48.97 CX-1407
8 1/27/1994 48.97 CX-1566
VENDOR TOTAL 202.13
CHARLES SMITH AND SONS 3 2/22/1994 27.76 5057
16 1/16/1994 25.97 5098
VENDOR TOTAL 53.73
MA BELL 13 1/23/1994 94.96 50577
19 1/23/1994 34.95 50577
VENDOR TOTAL 129.91
RANIER GRAPHICS 20 2/25/1994 2,057.07 ZO-1515
VENDOR TOTAL 2,057.07
ABERCROMBIE AND OTHERS 15 1/31/1994 657.19 MONTHLY
VENDOR TOTAL 657.19
TOTAL 4,147.00

ANALYSIS: START-ONE-VENDOR at line 024600 is identical to the same paragraph in
blbyvn01.cbl (shown in Listing B1.5), but it adds logic to perform LOAD-VENDOR-NAME. This
routine originally was performed in PRINT-THE-RECORD, which begins at line 028400 in this
version of the program. The vendor name is loaded into the detail line only once at the beginning of each
new vendor.

Multilevel Control Breaks
The logic of a multilevel control breaking program is quite easy to express. Listing B1.7 is a general
statement of control breaking in a file-processing program down to four levels. Level 1 is the all-records
level and the level-1-accumulators will be the grand totals for the whole file.

TYPE: Listing B1.7. A general logic flow for control breaks.

process-the-file
 perform start-the-file
 perform process-level-1-control-break
 perform end-the-file
start-the-file
 create-the-file
 open the file
create-the-file
 sort the file on
 level-2-control-field

 level-3-control-field
 level-4-control-field
end-the-file
 close the file
process-level-1-control-break
 perform start-level-1
 perform process-level-2-control-break
 until file-at-end
 perform end-level-1
start-level-1
 read first valid record
 move zeroes to level-1-accumulators
 any other starting actions
end-level-1
 perform process-level-1-accumulators
 any other ending actions
process-level-2-control-break
 perform start-level-2
 perform process-level-3-control-break
 until file-at-end
 or level-2-control-field not = level-2-current-value
 perform end-level-2
start-level-2
 move level-2-control-field to level-2-current-value
 move zeroes to level-2-accumulators
 any other starting actions
end-level-2
 perform process-level-2-accumulators
 perform add-level-2-accumulators to level-1-accumulators
 any other ending actions
process-level-3-control-break
 perform start-level-3
 perform process-level-4-control-break
 until file-at-end
 or level-2-control-field not = level-2-current-value
 or level-3-control-field not = level-3-current-value
 perform end-level-3
start-level-3
 move level-3-control-field to level-3-current-value
 move zeroes to level-3-accumulators
 any other starting actions
end-level-3
 perform process-level-3-accumulators
 perform add-level-3-accumulators to level-2-accumulators
 any other ending actions
process-level-4-control-break

 perform start-level-4
 perform process-one-record
 until file-at-end
 or level-2-control-field not = level-2-current-value
 or level-3-control-field not = level-3-current-value
 or level-4-control-field not = level-4-current-value
 perform end-level-4
start-level-4
 move level-4-control-field to level-4-current-value
 move zeroes to level-4-accumulators
 any other starting actions
end-level-4
 perform process-level-4-accumulators
 perform add-level-4-accumulators to level-3-accumulators
 any other ending actions
process-one-record
 perform process-this-record
 add record-values to level-4-accumulators
 read next valid record

This example carries the control breaking to four levels, and this can be repeated for as many levels as
necessary as long as the file is sorted on each of the control break fields.

Remember that the level-1 break is controlled by the end of the file, and notice that the conditions that
cause level breaks are cumulative as you descend to lower levels.

Using Multilevel Control Breaks

In order to illustrate a multilevel control breaking report, it is necessary to create a test file with multiple
levels in it.

For this example, you create a chain of six retail stores that sell sporting goods. All of the goods are
divided into 12 categories. The categories are allocated to departments, and the departments fall under
three main divisions. Table B1.3 shows the breakdown of divisions, departments, and categories.

Table B1.3. Divisions, departments, and categories of a hypothetical sporting goods
store.

Div. Dep. Division Name Cat. Department Category Name Name

01 Athletics 01 Exercise 01 Weights

02 Machines

02 Miscellaneous 03 Sunglasses

04 Vitamins

02 Sporting Goods 03 Sport Clothes 05 Men's Clothes

06 Women's Clothes

04 Equipment 07 Tennis

08 Soccer

03 Camping 05 Camp Equipment 09 Tents

10 Sleeping Bags

06 Camping Clothes 11 Clothing

12 Hiking Boots

Each day, the six stores send in their sales figures by category. A program looks up the division and
department and creates a temporary file of sales information that includes the store number, division
number, department number, category number, and sales figures. Listings B1.8 and B1.9 are the
SELECT and FD for this temporary file. The file is not indexed because it is used only for reporting.

TYPE: Listing B1.8. The SELECT statement for the sales file.

000100*--------------------------------
000200* SLSALES.CBL
000300*--------------------------------
000400 SELECT SALES-FILE
000500 ASSIGN TO "SALES"
000600 ORGANIZATION IS SEQUENTIAL.
000700

TYPE: Listing B1.9. The FD for the sales file.

000100*--------------------------------
000200* FDSALES.CBL
000400* Temporary daily sales file.
000600*--------------------------------
000700 FD SALES-FILE
000800 LABEL RECORDS ARE STANDARD.
000900 01 SALES-RECORD.
001000 05 SALES-STORE PIC 9(2).
001100 05 SALES-DIVISION PIC 9(2).
001200 05 SALES-DEPARTMENT PIC 9(2).
001300 05 SALES-CATEGORY PIC 9(2).
001400 05 SALES-AMOUNT PIC S9(6)V99.
001500

Because you do not actually have a retail chain at your disposal, you have to create a test file containing
random sales figures. Listing B1.10, slsgen01.cbl, generates a collection of random sales records
for all stores and all categories.

TYPE: Listing B1.10. Generating test sales data.

000100 IDENTIFICATION DIVISION.

000200 PROGRAM-ID. SLSGEN01.
000300*--------------------------------
000400* Generate test sales data
000500*--------------------------------
000600 ENVIRONMENT DIVISION.
000700 INPUT-OUTPUT SECTION.
000800 FILE-CONTROL.
000900
001000*--------------------------------
001100* SLSALES.CBL
001200*--------------------------------
001300 SELECT SALES-FILE
001400 ASSIGN TO "SALES"
001500 ORGANIZATION IS SEQUENTIAL.
001600
001700 DATA DIVISION.
001800 FILE SECTION.
001900
002000*--------------------------------
002100* FDSALES.CBL
002200* Temporary daily sales file.
002300*--------------------------------
002400 FD SALES-FILE
002500 LABEL RECORDS ARE STANDARD.
002600 01 SALES-RECORD.
002700 05 SALES-STORE PIC 9(2).
002800 05 SALES-DIVISION PIC 9(2).
002900 05 SALES-DEPARTMENT PIC 9(2).
003000 05 SALES-CATEGORY PIC 9(2).
003100 05 SALES-AMOUNT PIC S9(6)V99.
003200
003300 WORKING-STORAGE SECTION.
003400
003500 77 THE-STORE PIC 99.
003600 77 THE-DIVISION PIC 99.
003700 77 THE-DEPARTMENT PIC 99.
003800 77 THE-CATEGORY PIC 99.
003900
004000 77 THE-AMOUNT PIC S9(6)V99.
004100
004200 PROCEDURE DIVISION.
004300 PROGRAM-BEGIN.
004400 PERFORM OPENING-PROCEDURE.
004500 PERFORM MAIN-PROCESS.
004600 PERFORM CLOSING-PROCEDURE.
004700

004800 PROGRAM-EXIT.
004900 EXIT PROGRAM.
005000
005100 PROGRAM-DONE.
005200 STOP RUN.
005300
005400 OPENING-PROCEDURE.
005500 OPEN OUTPUT SALES-FILE.
005600
005700 CLOSING-PROCEDURE.
005800 CLOSE SALES-FILE.
005900
006000 MAIN-PROCESS.
006100 MOVE ZEROES TO THE-AMOUNT.
006200 PERFORM GENERATE-STORE-SALES
006300 VARYING THE-STORE FROM 1 BY 1
006400 UNTIL THE-STORE > 6.
006500
006600 GENERATE-STORE-SALES.
006700 PERFORM GENERATE-CATEGORY-SALES
006800 VARYING THE-CATEGORY FROM 1 BY 1
006900 UNTIL THE-CATEGORY > 12.
007000
007100 GENERATE-CATEGORY-SALES.
007200 ADD 237.57 TO THE-AMOUNT.
007300 IF THE-AMOUNT > 800
007400 SUBTRACT 900 FROM THE-AMOUNT.
007500
007600 MOVE THE-AMOUNT TO SALES-AMOUNT.
007700 MOVE THE-STORE TO SALES-STORE.
007800 MOVE THE-CATEGORY TO SALES-CATEGORY.
007900
008000 PERFORM GENERATE-THE-DEPARTMENT.
008100 PERFORM GENERATE-THE-DIVISION.
008200
008300 WRITE SALES-RECORD.
008400
008500 GENERATE-THE-DEPARTMENT.
008600 ADD 1 TO THE-CATEGORY.
008700 DIVIDE THE-CATEGORY BY 2
008800 GIVING THE-DEPARTMENT.
008900 MOVE THE-DEPARTMENT TO SALES-DEPARTMENT.
009000 SUBTRACT 1 FROM THE-CATEGORY.
009100
009200 GENERATE-THE-DIVISION.
009300 ADD 1 TO THE-DEPARTMENT

009400 DIVIDE THE-DEPARTMENT BY 2
009500 GIVING THE-DIVISION.
009600 MOVE THE-DIVISION TO SALES-DIVISION.
009700

ANALYSIS: The OPENING-PROCEDURE opens the file in output mode so that it is created.

The main process starts by moving zeroes to THE-AMOUNT at line 006100. This field will be used to
create some random sales numbers. MAIN-PROCESS then performs GENERATE-STORE-SALES for
each of the six stores at line 006200.

The GENERATE-STORE-SALES routine at line 006600 performs GENERATE-CATEGORY-SALES
for each of the 12 categories of goods.

The GENERATE-CATEGORY-SALES starts at line 007100. It uses some tricks to generate amounts at
lines 007200 through 007400. On each entry to GENERATE-CATEGORY-SALES, 237.57 is added
to THE-AMOUNT. If THE-AMOUNT has exceeded 800, 900 is subtracted from THE-AMOUNT. This
method was chosen as an arbitrary way of creating random sales figures for each category. Subtracting
900 when the number exceeds 800 allows some categories to be negative (because of refunds).

At lines 007600 through 007800, THE-AMOUNT, THE-STORE, and THE-CATEGORY are moved into
the SALES-RECORD.

Another trick is used to determine the department number for each category. From Table B1.3, you see
that department 1 includes categories 1 and 2, and department 2 includes categories 3 and 4. If you add 1
to the category and divide it by 2, the result (ignoring fractions) will be the department number. This is
just a convenient trick that gets the department number quickly. This logic is taken care of in
GENERATE-THE-DEPARTMENT, which starts at line 008500. After 1 is added to the category, it is
divided by 2 and the result is placed directly in THE-DEPARTMENT. THE-DEPARTMENT has no
decimal, so any decimal result of the division is truncated. Finally, THE-DEPARTMENT is moved to
SALES-DEPARTMENT. Because THE-CATEGORY is being used as a loop-control variable (in lines
006700 through 006900), it is necessary to subtract 1 from it to return it to its original value.

A similar trick is used in GENERATE-THE-DIVISION, which starts at line 009200 to generate the
division number from the department number.

After the department number and division number are filled in, all fields of the record are filled in, and at
line 008300 the program writes the SALES-RECORD.

Code, compile, and run slsgen01.cbl. It should create 72 test records, one for each of 12
departments in six stores.

Now that you have the test data that you need, you can build a multilevel control breaking report that
reports sales titles by store, division, department, and category.

Figure B1.5 is the printer spacing chart for slsrpt01.cbl. Line 7 is a detail line. Line 8 also is a
detail line, but because the division and department have not changed, they are not printed again on this
line. Line 9 is an example of a department subtotal. Line 15 is an example of a division subtotal. Lines 27
and 29 are store and grand totals. Each store will start on a new page. This report is an example of
several of the types of problems encountered when working on control breaking reports.

Figure B1.5.
Printer layout chart for slsrpt01.cbl.

Listing B1.11 is the report program that will generate the report using the test sales file that has been
created.

TYPE: Listing B1.11. A report with multiple control breaks.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. SLSRPT01.
000300*--------------------------------
000400* Print test sales data
000500*--------------------------------
000600 ENVIRONMENT DIVISION.
000700 INPUT-OUTPUT SECTION.
000800 FILE-CONTROL.
000900
001000*--------------------------------
001100* SLSALES.CBL
001200*--------------------------------
001300 SELECT SALES-FILE
001400 ASSIGN TO "SALES"
001500 ORGANIZATION IS SEQUENTIAL.
001600
001700 SELECT WORK-FILE
001800 ASSIGN TO "WORK"
001900 ORGANIZATION IS SEQUENTIAL.
002000
002100 SELECT SORT-FILE
002200 ASSIGN TO "SORT".
002300
002400 SELECT PRINTER-FILE
002500 ASSIGN TO PRINTER
002600 ORGANIZATION IS LINE SEQUENTIAL.
002700
002800 DATA DIVISION.
002900 FILE SECTION.
003000
003100*--------------------------------
003200* FDSALES.CBL
003300* Temporary daily sales file.
003400*--------------------------------
003500 FD SALES-FILE
003600 LABEL RECORDS ARE STANDARD.
003700 01 SALES-RECORD.

file:///D|/Cool Stuff/old/ftp/Sams.Teach.Yourself.Cobol.In.21.Days/Teach Yourself Cobol in 21 Days/ch22/05.htm

003800 05 SALES-STORE PIC 9(2).
003900 05 SALES-DIVISION PIC 9(2).
004000 05 SALES-DEPARTMENT PIC 9(2).
004100 05 SALES-CATEGORY PIC 9(2).
004200 05 SALES-AMOUNT PIC S9(6)V99.
004300
004400 FD WORK-FILE
004500 LABEL RECORDS ARE STANDARD.
004600 01 WORK-RECORD.
004700 05 WORK-STORE PIC 9(2).
004800 05 WORK-DIVISION PIC 9(2).
004900 05 WORK-DEPARTMENT PIC 9(2).
005000 05 WORK-CATEGORY PIC 9(2).
005100 05 WORK-AMOUNT PIC S9(6)V99.
005200
005300 SD SORT-FILE
005400 LABEL RECORDS ARE STANDARD.
005500 01 SORT-RECORD.
005600 05 SORT-STORE PIC 9(2).
005700 05 SORT-DIVISION PIC 9(2).
005800 05 SORT-DEPARTMENT PIC 9(2).
005900 05 SORT-CATEGORY PIC 9(2).
006000 05 SORT-AMOUNT PIC S9(6)V99.
006100
006200 FD PRINTER-FILE
006300 LABEL RECORDS ARE OMITTED.
006400 01 PRINTER-RECORD PIC X(80).
006500
006600 WORKING-STORAGE SECTION.
006700
006800 77 OK-TO-PROCESS PIC X.
006900
007000 COPY "WSCASE01.CBL".
007100
007200 01 LEGEND-LINE.
007300 05 FILLER PIC X(6) VALUE "STORE:".
007400 05 FILLER PIC X(1) VALUE SPACE.
007500 05 PRINT-STORE PIC Z9.
007600
007700 01 DETAIL-LINE.
007800 05 FILLER PIC X(3) VALUE SPACE.
007900 05 PRINT-DIVISION PIC Z9.
008000 05 FILLER PIC X(4) VALUE SPACE.
008100 05 FILLER PIC X(3) VALUE SPACE.
008200 05 PRINT-DEPARTMENT PIC Z9.
008300 05 FILLER PIC X(6) VALUE SPACE.

008400 05 FILLER PIC X(3) VALUE SPACE.
008500 05 PRINT-CATEGORY PIC Z9.
008600 05 FILLER PIC X(4) VALUE SPACE.
008700 05 PRINT-AMOUNT PIC ZZZ,ZZ9.99-.
008800
008900 01 COLUMN-LINE.
009000 05 FILLER PIC X(8) VALUE "DIVISION".
009100 05 FILLER PIC X(1) VALUE SPACE.
009200 05 FILLER PIC X(10) VALUE "DEPARTMENT".
009300 05 FILLER PIC X(1) VALUE SPACE.
009400 05 FILLER PIC X(8) VALUE "CATEGORY".
009500 05 FILLER PIC X(1) VALUE SPACE.
009600 05 FILLER PIC X(4) VALUE SPACE.
009700 05 FILLER PIC X(6) VALUE "AMOUNT".
009800
009900 01 TITLE-LINE.
010000 05 FILLER PIC X(30) VALUE SPACE.
010100 05 FILLER PIC X(12)
010200 VALUE "SALES REPORT".
010300 05 FILLER PIC X(16) VALUE SPACE.
010400 05 FILLER PIC X(5) VALUE "PAGE:".
010500 05 FILLER PIC X(1) VALUE SPACE.
010600 05 PRINT-PAGE-NUMBER PIC ZZZ9.
010700
010800 01 TOTAL-LINE.
010900 05 FILLER PIC X(11) VALUE SPACE.
011000 05 TOTAL-TYPE PIC X(8).
011100 05 FILLER PIC X(1) VALUE SPACE.
011200 05 TOTAL-NUMBER PIC Z9.
011300 05 FILLER PIC X(1) VALUE SPACE.
011400 05 TOTAL-LITERAL PIC X(5) VALUE "TOTAL".
011500 05 FILLER PIC X(1) VALUE SPACE.
011600 05 PRINT-TOTAL PIC ZZZ,ZZ9.99-.
011700
011800 77 GRAND-TOTAL-LITERAL PIC X(8) VALUE " GRAND".
011900 77 STORE-TOTAL-LITERAL PIC X(8) VALUE " STORE".
012000 77 DIVISION-TOTAL-LITERAL PIC X(8) VALUE "DIVISION".
012100 77 DEPARTMENT-TOTAL-LITERAL PIC X(8) VALUE " DEPT".
012200
012300 77 WORK-FILE-AT-END PIC X.
012400
012500 77 LINE-COUNT PIC 999 VALUE ZERO.
012600 77 PAGE-NUMBER PIC 9999 VALUE ZERO.
012700 77 MAXIMUM-LINES PIC 999 VALUE 55.
012800
012900 77 RECORD-COUNT PIC 9999 VALUE ZEROES.

013000
013100* Control break current values for store, division
013200* department.
013300 77 CURRENT-STORE PIC 99.
013400 77 CURRENT-DIVISION PIC 99.
013500 77 CURRENT-DEPARTMENT PIC 99.
013600
013700* Control break accumulators
013800* GRAND TOTAL is the level 1 accumulator for the whole file
013900* STORE TOTAL is the level 2 accumulator
014000* DIVISION TOTAL is the level 3 accumulator
014100* DEPARTMENT TOTAL is the level 4 accumulator.
014200 77 GRAND-TOTAL PIC S9(6)V99.
014300 77 STORE-TOTAL PIC S9(6)V99.
014400 77 DIVISION-TOTAL PIC S9(6)V99.
014500 77 DEPARTMENT-TOTAL PIC S9(6)V99.
014600
014700 PROCEDURE DIVISION.
014800 PROGRAM-BEGIN.
014900
015000 PERFORM OPENING-PROCEDURE.
015100 PERFORM MAIN-PROCESS.
015200 PERFORM CLOSING-PROCEDURE.
015300
015400 PROGRAM-EXIT.
015500 EXIT PROGRAM.
015600
015700 PROGRAM-DONE.
015800 STOP RUN.
015900
016000 OPENING-PROCEDURE.
016100
016200 OPEN OUTPUT PRINTER-FILE.
016300
016400 MAIN-PROCESS.
016500 PERFORM GET-OK-TO-PROCESS.
016600 PERFORM PROCESS-THE-FILE
016700 UNTIL OK-TO-PROCESS = "N".
016800
016900 CLOSING-PROCEDURE.
017000 CLOSE PRINTER-FILE.
017100
017200 GET-OK-TO-PROCESS.
017300 PERFORM ACCEPT-OK-TO-PROCESS.
017400 PERFORM RE-ACCEPT-OK-TO-PROCESS
017500 UNTIL OK-TO-PROCESS = "Y" OR "N".

017600
017700 ACCEPT-OK-TO-PROCESS.
017800 DISPLAY "PRINT SALES REPORT (Y/N)?".
017900 ACCEPT OK-TO-PROCESS.
018000 INSPECT OK-TO-PROCESS
018100 CONVERTING LOWER-ALPHA
018200 TO UPPER-ALPHA.
018300
018400 RE-ACCEPT-OK-TO-PROCESS.
018500 DISPLAY "YOU MUST ENTER YES OR NO".
018600 PERFORM ACCEPT-OK-TO-PROCESS.
018700
018800 PROCESS-THE-FILE.
018900 PERFORM START-THE-FILE.
019000 PERFORM PRINT-ONE-REPORT.
019100 PERFORM END-THE-FILE.
019200
019300* PERFORM GET-OK-TO-PROCESS.
019400 MOVE "N" TO OK-TO-PROCESS.
019500
019600 START-THE-FILE.
019700 PERFORM SORT-DATA-FILE.
019800 OPEN INPUT WORK-FILE.
019900
020000 END-THE-FILE.
020100 CLOSE WORK-FILE.
020200
020300 SORT-DATA-FILE.
020400 SORT SORT-FILE
020500 ON ASCENDING KEY SORT-STORE
020600 ASCENDING KEY SORT-DIVISION
020700 ASCENDING KEY SORT-DEPARTMENT
020800 ASCENDING KEY SORT-CATEGORY
020900 USING SALES-FILE
021000 GIVING WORK-FILE.
021100
021200* LEVEL 1 CONTROL BREAK
021300 PRINT-ONE-REPORT.
021400 PERFORM START-ONE-REPORT.
021500 PERFORM PROCESS-ALL-STORES
021600 UNTIL WORK-FILE-AT-END = "Y".
021700 PERFORM END-ONE-REPORT.
021800
021900 START-ONE-REPORT.
022000 PERFORM READ-FIRST-VALID-WORK.
022100 MOVE ZEROES TO GRAND-TOTAL.

022200
022300 PERFORM START-NEW-REPORT.
022400
022500 START-NEW-REPORT.
022600 MOVE SPACE TO DETAIL-LINE.
022700 MOVE ZEROES TO LINE-COUNT PAGE-NUMBER.
022800
022900 END-ONE-REPORT.
023000 IF RECORD-COUNT = ZEROES
023100 MOVE "NO RECORDS FOUND" TO PRINTER-RECORD
023200 PERFORM WRITE-TO-PRINTER
023300 ELSE
023400 PERFORM PRINT-GRAND-TOTAL.
023500
023600 PERFORM END-LAST-PAGE.
023700
023800 PRINT-GRAND-TOTAL.
023900 MOVE SPACE TO TOTAL-LINE.
024000 MOVE GRAND-TOTAL TO PRINT-TOTAL.
024100 MOVE GRAND-TOTAL-LITERAL TO TOTAL-TYPE.
024200 MOVE "TOTAL" TO TOTAL-LITERAL.
024300 MOVE TOTAL-LINE TO PRINTER-RECORD.
024400 PERFORM WRITE-TO-PRINTER.
024500 PERFORM LINE-FEED 2 TIMES.
024600 MOVE SPACE TO DETAIL-LINE.
024700
024800* LEVEL 2 CONTROL BREAK
024900 PROCESS-ALL-STORES.
025000 PERFORM START-ONE-STORE.
025100
025200 PERFORM PROCESS-ALL-DIVISIONS
025300 UNTIL WORK-FILE-AT-END = "Y"
025400 OR WORK-STORE NOT = CURRENT-STORE.
025500
025600 PERFORM END-ONE-STORE.
025700
025800 START-ONE-STORE.
025900 MOVE WORK-STORE TO CURRENT-STORE.
026000 MOVE ZEROES TO STORE-TOTAL.
026100 MOVE WORK-STORE TO PRINT-STORE.
026200
026300 PERFORM START-NEXT-PAGE.
026400
026500 END-ONE-STORE.
026600 PERFORM PRINT-STORE-TOTAL.
026700 ADD STORE-TOTAL TO GRAND-TOTAL.

026800
026900 PRINT-STORE-TOTAL.
027000 MOVE SPACE TO TOTAL-LINE.
027100 MOVE STORE-TOTAL TO PRINT-TOTAL.
027200 MOVE CURRENT-STORE TO TOTAL-NUMBER.
027300 MOVE STORE-TOTAL-LITERAL TO TOTAL-TYPE.
027400 MOVE "TOTAL" TO TOTAL-LITERAL.
027500 MOVE TOTAL-LINE TO PRINTER-RECORD.
027600 PERFORM WRITE-TO-PRINTER.
027700 PERFORM LINE-FEED.
027800 MOVE SPACE TO DETAIL-LINE.
027900
028000* LEVEL 3 CONTROL BREAK
028100 PROCESS-ALL-DIVISIONS.
028200 PERFORM START-ONE-DIVISION.
028300
028400 PERFORM PROCESS-ALL-DEPARTMENTS
028500 UNTIL WORK-FILE-AT-END = "Y"
028600 OR WORK-STORE NOT = CURRENT-STORE
028700 OR WORK-DIVISION NOT = CURRENT-DIVISION.
028800
028900 PERFORM END-ONE-DIVISION.
029000
029100 START-ONE-DIVISION.
029200 MOVE WORK-DIVISION TO CURRENT-DIVISION.
029300 MOVE ZEROES TO DIVISION-TOTAL.
029400 MOVE WORK-DIVISION TO PRINT-DIVISION.
029500
029600 END-ONE-DIVISION.
029700 PERFORM PRINT-DIVISION-TOTAL.
029800 ADD DIVISION-TOTAL TO STORE-TOTAL.
029900
030000 PRINT-DIVISION-TOTAL.
030100 MOVE SPACE TO TOTAL-LINE.
030200 MOVE DIVISION-TOTAL TO PRINT-TOTAL.
030300 MOVE CURRENT-DIVISION TO TOTAL-NUMBER.
030400 MOVE DIVISION-TOTAL-LITERAL TO TOTAL-TYPE.
030500 MOVE "TOTAL" TO TOTAL-LITERAL.
030600 MOVE TOTAL-LINE TO PRINTER-RECORD.
030700 PERFORM WRITE-TO-PRINTER.
030800 PERFORM LINE-FEED.
030900 MOVE SPACE TO DETAIL-LINE.
031000
031100* LEVEL 4 CONTROL BREAK
031200 PROCESS-ALL-DEPARTMENTS.
031300 PERFORM START-ONE-DEPARTMENT.

031400
031500 PERFORM PROCESS-ALL-CATEGORIES
031600 UNTIL WORK-FILE-AT-END = "Y"
031700 OR WORK-STORE NOT = CURRENT-STORE
031800 OR WORK-DIVISION NOT = CURRENT-DIVISION
031900 OR WORK-DEPARTMENT NOT = CURRENT-DEPARTMENT.
032000
032100 PERFORM END-ONE-DEPARTMENT.
032200
032300 START-ONE-DEPARTMENT.
032400 MOVE WORK-DEPARTMENT TO CURRENT-DEPARTMENT.
032500 MOVE ZEROES TO DEPARTMENT-TOTAL.
032600 MOVE WORK-DEPARTMENT TO PRINT-DEPARTMENT.
032700
032800 END-ONE-DEPARTMENT.
032900 PERFORM PRINT-DEPARTMENT-TOTAL.
033000 ADD DEPARTMENT-TOTAL TO DIVISION-TOTAL.
033100
033200 PRINT-DEPARTMENT-TOTAL.
033300 MOVE SPACE TO TOTAL-LINE.
033400 MOVE DEPARTMENT-TOTAL TO PRINT-TOTAL.
033500 MOVE CURRENT-DEPARTMENT TO TOTAL-NUMBER.
033600 MOVE DEPARTMENT-TOTAL-LITERAL TO TOTAL-TYPE.
033700 MOVE "TOTAL" TO TOTAL-LITERAL.
033800 MOVE TOTAL-LINE TO PRINTER-RECORD.
033900 PERFORM WRITE-TO-PRINTER.
034000 PERFORM LINE-FEED.
034100 MOVE SPACE TO DETAIL-LINE.
034200
034300* PROCESS ONE RECORD LEVEL
034400 PROCESS-ALL-CATEGORIES.
034500 PERFORM PROCESS-THIS-CATEGORY.
034600 ADD WORK-AMOUNT TO DEPARTMENT-TOTAL.
034700 ADD 1 TO RECORD-COUNT.
034800 PERFORM READ-NEXT-VALID-WORK.
034900
035000 PROCESS-THIS-CATEGORY.
035100 IF LINE-COUNT > MAXIMUM-LINES
035200 PERFORM START-NEXT-PAGE.
035300 PERFORM PRINT-THE-RECORD.
035400
035500 PRINT-THE-RECORD.
035600 MOVE WORK-CATEGORY TO PRINT-CATEGORY.
035700
035800 MOVE WORK-AMOUNT TO PRINT-AMOUNT.
035900

036000 MOVE DETAIL-LINE TO PRINTER-RECORD.
036100 PERFORM WRITE-TO-PRINTER.
036200 MOVE SPACE TO DETAIL-LINE.
036300
036400* PRINTING ROUTINES
036500 WRITE-TO-PRINTER.
036600 WRITE PRINTER-RECORD BEFORE ADVANCING 1.
036700 ADD 1 TO LINE-COUNT.
036800
036900 LINE-FEED.
037000 MOVE SPACE TO PRINTER-RECORD.
037100 PERFORM WRITE-TO-PRINTER.
037200
037300 START-NEXT-PAGE.
037400 PERFORM END-LAST-PAGE.
037500 PERFORM START-NEW-PAGE.
037600
037700 START-NEW-PAGE.
037800 ADD 1 TO PAGE-NUMBER.
037900 MOVE PAGE-NUMBER TO PRINT-PAGE-NUMBER.
038000 MOVE TITLE-LINE TO PRINTER-RECORD.
038100 PERFORM WRITE-TO-PRINTER.
038200 PERFORM LINE-FEED.
038300 MOVE LEGEND-LINE TO PRINTER-RECORD.
038400 PERFORM WRITE-TO-PRINTER.
038500 PERFORM LINE-FEED.
038600 MOVE COLUMN-LINE TO PRINTER-RECORD.
038700 PERFORM WRITE-TO-PRINTER.
038800 PERFORM LINE-FEED.
038900
039000 END-LAST-PAGE.
039100 IF PAGE-NUMBER > 0
039200 PERFORM FORM-FEED.
039300 MOVE ZERO TO LINE-COUNT.
039400
039500 FORM-FEED.
039600 MOVE SPACE TO PRINTER-RECORD.
039700 WRITE PRINTER-RECORD BEFORE ADVANCING PAGE.
039800
039900*--------------------------------
040000* Read first, read next routines
040100*--------------------------------
040200 READ-FIRST-VALID-WORK.
040300 PERFORM READ-NEXT-VALID-WORK.
040400
040500 READ-NEXT-VALID-WORK.

040600 PERFORM READ-NEXT-WORK-RECORD.
040700
040800 READ-NEXT-WORK-RECORD.
040900 MOVE "N" TO WORK-FILE-AT-END.
041000 READ WORK-FILE NEXT RECORD
041100 AT END MOVE "Y" TO WORK-FILE-AT-END.
041200

The output of slsrpt01 shows four levels of control breaks: all records, store, division, and
department:

OUTPUT:
SALES REPORT PAGE: 1
STORE: 1
DIVISION DEPARTMENT CATEGORY AMOUNT
1 1 1 237.57
2 475.14
DEPT 1 TOTAL 712.71
2 3 712.71
4 50.28
DEPT 2 TOTAL 762.99
DIVISION 1 TOTAL 1,475.70
2 3 5 287.85
6 525.42
DEPT 3 TOTAL 813.27
4 7 762.99
8 100.56
DEPT 4 TOTAL 863.55
DIVISION 2 TOTAL 1,676.82
3 5 9 338.13
10 575.70
DEPT 5 TOTAL 913.83
6 11 86.73-
12 150.84
DEPT 6 TOTAL 64.11
DIVISION 3 TOTAL 977.94
STORE 1 TOTAL 4,130.46
SALES REPORT PAGE: 2
STORE: 2
DIVISION DEPARTMENT CATEGORY AMOUNT
1 1 1 388.41
2 625.98
DEPT 1 TOTAL 1,014.39
2 3 36.45-
4 201.12
DEPT 2 TOTAL 164.67

DIVISION 1 TOTAL 1,179.06
2 3 5 438.69
6 676.26
DEPT 3 TOTAL 1,114.95
4 7 13.83
8 251.40
DEPT 4 TOTAL 265.23
DIVISION 2 TOTAL 1,380.18
3 5 9 488.97
10 726.54
DEPT 5 TOTAL 1,215.51
6 11 64.11
12 301.68
DEPT 6 TOTAL 365.79
DIVISION 3 TOTAL 1,581.30
STORE 2 TOTAL 4,140.54
SALES REPORT PAGE: 3
STORE: 3
DIVISION DEPARTMENT CATEGORY AMOUNT
1 1 1 539.25
2 776.82
DEPT 1 TOTAL 1,316.07
2 3 114.39
4 351.96
DEPT 2 TOTAL 466.35
DIVISION 1 TOTAL 1,782.42
2 3 5 589.53
6 72.90-
DEPT 3 TOTAL 516.63
4 7 164.67
8 402.24
DEPT 4 TOTAL 566.91
DIVISION 2 TOTAL 1,083.54
3 5 9 639.81
10 22.62-
DEPT 5 TOTAL 617.19
6 11 214.95
12 452.52
DEPT 6 TOTAL 667.47
DIVISION 3 TOTAL 1,284.66
STORE 3 TOTAL 4,150.62
SALES REPORT PAGE: 4
STORE: 4
DIVISION DEPARTMENT CATEGORY AMOUNT
1 1 1 690.09
2 27.66

DEPT 1 TOTAL 717.75
2 3 265.23
4 502.80
DEPT 2 TOTAL 768.03
DIVISION 1 TOTAL 1,485.78
2 3 5 740.37
6 77.94
DEPT 3 TOTAL 818.31
4 7 315.51
8 553.08
DEPT 4 TOTAL 868.59
DIVISION 2 TOTAL 1,686.90
3 5 9 790.65
10 128.22
DEPT 5 TOTAL 918.87
6 11 365.79
12 603.36
DEPT 6 TOTAL 969.15
DIVISION 3 TOTAL 1,888.02
STORE 4 TOTAL 5,060.70
SALES REPORT PAGE: 5
STORE: 5
DIVISION DEPARTMENT CATEGORY AMOUNT
1 1 1 59.07-
2 178.50
DEPT 1 TOTAL 119.43
2 3 416.07
4 653.64
DEPT 2 TOTAL 1,069.71
DIVISION 1 TOTAL 1,189.14
2 3 5 8.79-
6 228.78
DEPT 3 TOTAL 219.99
4 7 466.35
8 703.92
DEPT 4 TOTAL 1,170.27
DIVISION 2 TOTAL 1,390.26
3 5 9 41.49
10 279.06
DEPT 5 TOTAL 320.55
6 11 516.63
12 754.20
DEPT 6 TOTAL 1,270.83
DIVISION 3 TOTAL 1,591.38
STORE 5 TOTAL 4,170.78
SALES REPORT PAGE: 6

STORE: 6
DIVISION DEPARTMENT CATEGORY AMOUNT
1 1 1 91.77
2 329.34
DEPT 1 TOTAL 421.11
2 3 566.91
4 95.52-
DEPT 2 TOTAL 471.39
DIVISION 1 TOTAL 892.50
2 3 5 142.05
6 379.62
DEPT 3 TOTAL 521.67
4 7 617.19
8 45.24-
DEPT 4 TOTAL 571.95
DIVISION 2 TOTAL 1,093.62
3 5 9 192.33
10 429.90
DEPT 5 TOTAL 622.23
6 11 667.47
12 5.04
DEPT 6 TOTAL 672.51
DIVISION 3 TOTAL 1,294.74
STORE 6 TOTAL 3,280.86
GRAND TOTAL 24,933.96

ANALYSIS: The report contains four level breaks: all records, store, division, and department. The first
thing you would expect of a report like this is that the input data file must be sorted. Lines 003500,
004400, and 005300 contain the definitions for the sales file, a work file, and a sort file, respectively.

The sort itself is at lines 020400 through 021000. Note the wording of the multiple sort. When a
multiple key sort is done, the first key named is the first sort. Records then are sorted in order of the
second key, within the first sort, and so on. The sort keys are given in the order SORT-STORE,
SORT-DIVISION, SORT-DEPARTMENT, and then SORT-CATEGORY. When the sort is complete, the
primary order of the file will be by store. Then within each store, the records are sorted by division.
Within each division, the records are in department order, and within each department, the records are in
category order. The file is sorted on four keys, but only three of them are used. Category is not a control
break, but adding category to the sort will cause the records within a department break to print in
category order.

The level-1 control break extends from lines 021200 through 024700. It is similar to level-1 logic in
earlier programs, with one exception. The logic to START-NEXT-PAGE is not performed as part of
START-ONE-REPORT. A new page will be started on each new store, so this logic has been moved
down to level 2 where it is performed in START-ONE-STORE.

The level-2 control break, PROCESS-ALL-STORES, extends from lines 024900 to 027800. This has
two special features. The logic to START-NEXT-PAGE is performed inside START-ONE-STORE, at

line 026300. Usually, this routine is performed as part of START-ONE-REPORT. The store
information is printed on a special line, which is defined in WORKING-STORAGE at line 007200. This
is named LEGEND-LINE, a name frequently used for an extra line such as this one that appears between
the title of a report and the column lines of a report.

The printing of the LEGEND-LINE has been added to the START-NEW-PAGE routine at lines 038300
through 038500.

The END-ONE-STORE logic at line 026500 handles the printing of the store total. This begins at line
026900. A special totaling line is defined in WORKING-STORAGE at lines 010800 through 011600.
This line can be filled in with the total type, and the store, division, or department number. The
PRINT-STORE-TOTAL logic at line 026900 fills this in with the STORE-TOTAL and appropriate
other values, and then it is printed.

The PRINT-STORE-TOTAL logic for the store control break is imitated at line 030000,
PRINT-DIVISION-TOTAL, for printing the division total, and at line 033200,
PRINT-DEPARTMENT-TOTAL, for printing the department total.

Code, compile, and run slsrpt01.cbl, and look at the sample output. You will see that control
breaks are just a repetitive series of steps for each level.

Summary
Control breaks are an important part of reports, and you should know how to use them more effectively.
Today, you learned these basics:

Control breaks are important to report and file processing. A control break is a break inserted into
the normal processing of a program (usually a report program) to cause groups of records to be
processed together as one unit. The interruption of the normal printing of a report program to print
a total or subtotal is a control break or level break.

●

The control break field or control field is the field in the record that causes a control break to occur
when the field changes.

●

The control break current value or control current value is a field created in WORKING-STORAGE
that holds a copy of the control break field. The control break current value is filled in at the
beginning of a control break level with the value in the control break field. As the processing
continues, the control break field is compared to the control break current value to determine
whether a control break has occurred.

●

Control break accumulators or control accumulators are variables used for summing or counting
values within a control break.

●

The pseudocode for a level-2 or lower control break is the following:●

process-level-2-control-break
 perform start-level-2-control-break

 perform process-level-3-control-break
 until file at end
 or level-2-control-field not = level-2-current-value
 perform end-level-2
start-level-2
 move level-2-control-field to level-2-current-value.
 move zeroes to level-2 accumulators.
 any other starting actions
end-level-2
 perform process-level-2-accumulators
 perform add-level-2 accumulators to level-1 accumulators
 any other ending actions

A control break starts by saving the control break field in the control break current value and
zeroing the accumulators for that control level.

●

The body of the break performs the next lower level control break until the file is at end or the
control break field no longer matches the control break value field.

●

The control break ends by processing the level accumulators. For a report program, this involves
printing the subtotals. Finally, it adds the accumulators for this level to the next higher level.

●

A level-1 break varies from any other break because there is no true control break current value, so
the start-level-1 logic begins by executing a read first valid record.

●

The body of the level-1 break performs level-2 breaks until the file is at end. The end of a level-1
break does not add accumulators to the next higher level because there is no higher level.

●

The pseudocode for a level 1 control break is the following:●

process-level-1-control-break
 perform start-level-1
 perform process-level-2-control-break
 until file-at-end
 perform end-level-1
start-level-1
 read first valid record
 move zeroes to level-1-accumulators.
 any other starting actions
end-level-1
 perform process-level-1-accumulators
 any other ending actions

Control breaking can be repeated for as many levels as necessary, as long as the file is sorted on
each of the control break fields.

●

Q&A
Q Is a control break the same as a level break?

A Because control breaks usually are organized in levels, control break and level break sometimes
are used interchangeably as terms for a control break.

Workshop

Quiz

1. What is a control break?

2. What is the function of a control break field?

3. What is the function of a control break current value field?

4. What is the function of a control break accumulator?

5. Why is a level-1 control break different from other levels?

Exercises

1. Copy slsrpt01.cbl to slsrpt02.cbl. Modify it so that the division number and
department number are printed on each detail line.

Hint: Code in START-ONE-DIVISION and START-ONE-DEPARTMENT needs to be moved to
PRINT-THE-RECORD.

2. Copy slsrpt01.cbl to slssum01.cbl. Modify the new program so that no detail lines
are printed at all. This will become a sales summary report that prints only the totals for the control
breaks.

Hint: The key to this problem is to prevent the printing of the detail line somewhere between lines
035000 and 036300.

Previous chapter Next chapter Contents

Macmillan Computer Publishing USA

© Copyright, Macmillan Computer Publishing. All rights reserved.

Teach Yourself COBOL in 21 days, Second
Edition

Previous chapter Next chapter Contents

- Bonus Day 2 -
Miscellaneous COBOL Syntax

Although the 21-day course covered the meat of COBOL, many areas of the language and the use of COBOL in
programming have not been touched. This chapter rounds out some of those areas, touching on different topics
that are not necessarily related. They are common issues that will come up when you work with COBOL.

Today, you learn about the following topics:

Internal tables●

STRING●

UNSTRING●

INSPECT●

CALL USING●

ACCEPT FROM DATE or TIME●

Computational fields●

Numbering paragraphs●

Qualified data names●

MOVE CORRESPONDING●

Continuation characters●

Internal Tables
You learned to use tables on Day 16, "Using Look Up and Arrays." In that lesson you created a table for state
codes and loaded the table from the state codes file. The table then was used in the program to look up state codes
while printing a report on the vendor file.

It also is possible to create tables or arrays in memory that already are filled in with values, rather than loading
them from a file.

Today, you improve the appearance of the sales reports created on Bonus Day 1, "Control Breaks," by printing
the division, department, and category names on the report. First, a quick review of tables. A table or an array is
an area of memory that has been set aside and organized in such a way that it can hold multiple occurrences of the

same type of information.

On Day 16, you created a table that looked like Listing B2.1.

TYPE: Listing B2.1. A state code table.

007000 01 TABLE-STATE-RECORD OCCURS 50 TIMES
007100 INDEXED BY STATE-INDEX.
007200 05 TABLE-STATE-CODE PIC XX.
007300 05 TABLE-STATE-NAME PIC X(20).

For the sales report, you need a table of division names, a table of department names, and a table of category
names. Table B2.1 shows the list of names for these subdivisions.

Table B2.1. Names for the sales report.

Div Division Name Dep Department Name Cat Category Name

01 Athletics 01 Exercise 01 Weights

02 Machines

02 Miscellaneous 03 Sunglasses

04 Vitamins

02 Sporting Goods 03 Sport Clothes 05 Men's Clothes

06 Women's Clothes

04 Equipment 07 Tennis

08 Soccer

03 Camping 05 Camp Equipment 09 Tents

10 Sleeping Bags

06 Camping Clothes 11 Clothing

12 Hiking Boots

Listing B2.2 is a table that is good enough for the divisions.

TYPE: Listing B2.2. WORKING-STORAGE for a division table.

007000 01 DIVISION-TABLE OCCURS 3 TIMES
007100 INDEXED BY DIVISION-INDEX.
007200 05 DIVISION-NUMBER PIC 99.
007300 05 DIVISION-NAME PIC X(15).

This table could be loaded in the program with a series of commands, as shown in Listing B2.3.

TYPE: Listing B2.3. Loading a table in the program.

010700 MOVE 1 TO DIVISION-NUMBER(1).
010800 MOVE "ATHLETICS" TO DIVISION-NAME(1).
010900 MOVE 2 TO DIVISION-NUMBER(2).
011000 MOVE "SPORTING GOODS" TO DIVISION-NAME(2).
011100 MOVE 3 TO DIVISION-NUMBER(3).

011200 MOVE "CAMPING" TO DIVISION-NAME(3).

However, the usual method for loading a table is to initialize it directly in working storage when it is defined.
This is done by first creating a variable that has all the needed values and space, as shown in Listing B2.4.

TYPE: Listing B2.4. Creating the needed values in WORKING-STORAGE.

007000 01 THE-DIVISIONS.
007100 05 FILLER PIC 99 VALUE 01.
007200 05 FILLER PIC X(15) VALUE "ATHLETICS".
007100 05 FILLER PIC 99 VALUE 02.
007200 05 FILLER PIC X(15) VALUE "SPORTING GOODS".
007100 05 FILLER PIC 99 VALUE 01.
007200 05 FILLER PIC X(15) VALUE "CAMPING".

This variable is then redefined as a table, as shown in Listing B2.5.

TYPE: Listing B2.5. Redefining the variable.

007000 01 THE-DIVISIONS.
007100 05 FILLER PIC 99 VALUE 01.
007200 05 FILLER PIC X(15) VALUE "ATHLETICS".
007100 05 FILLER PIC 99 VALUE 02.
007200 05 FILLER PIC X(15) VALUE "SPORTING GOODS".
007100 05 FILLER PIC 99 VALUE 03.
007200 05 FILLER PIC X(15) VALUE "CAMPING".
007300 01 FILLER REDEFINES THE-DIVISIONS.
007400 05 DIVISION-TABLE OCCURS 3 TIMES
007500 INDEXED BY DIVISION-INDEX.
007600 10 DIVISION-NUMBER PIC 99.
007700 10 DIVISION-NAME PIC X(15).

Using Internal Tables

Figure B2.1 is a printer spacing chart for a version of the sales report that includes the name of each division,
department, or category. Listing B2.6 is slsrpt03.cbl. It is based on slsrpt01.cbl, but the layout has been
modified to accommodate an extra 15-character name for division, department, and category.

Figure B2.1.
Printer layout chart for slsrpt03.cbl.

TYPE: Listing B2.6. Printing the subdivision names.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. SLSRPT03.
000300*--------------------------------
000400* Print test sales data
000500*--------------------------------
000600 ENVIRONMENT DIVISION.
000700 INPUT-OUTPUT SECTION.
000800 FILE-CONTROL.

file:///D|/Cool Stuff/old/ftp/Sams.Teach.Yourself.Cobol.In.21.Days/Teach Yourself Cobol in 21 Days/ch23/01.htm

000900
001000*--------------------------------
001100* SLSALES.CBL
001200*--------------------------------
001300 SELECT SALES-FILE
001400 ASSIGN TO "SALES"
001500 ORGANIZATION IS SEQUENTIAL.
001600
001700 SELECT WORK-FILE
001800 ASSIGN TO "WORK"
001900 ORGANIZATION IS SEQUENTIAL.
002000
002100 SELECT SORT-FILE
002200 ASSIGN TO "SORT".
002300
002400 SELECT PRINTER-FILE
002500 ASSIGN TO PRINTER
002600 ORGANIZATION IS LINE SEQUENTIAL.
002700
002800 DATA DIVISION.
002900 FILE SECTION.
003000
003100*--------------------------------
003200* FDSALES.CBL
003300* Temporary daily sales file.
003400*--------------------------------
003500 FD SALES-FILE
003600 LABEL RECORDS ARE STANDARD.
003700 01 SALES-RECORD.
003800 05 SALES-STORE PIC 9(2).
003900 05 SALES-DIVISION PIC 9(2).
004000 05 SALES-DEPARTMENT PIC 9(2).
004100 05 SALES-CATEGORY PIC 9(2).
004200 05 SALES-AMOUNT PIC S9(6)V99.
004300
004400 FD WORK-FILE
004500 LABEL RECORDS ARE STANDARD.
004600 01 WORK-RECORD.
004700 05 WORK-STORE PIC 9(2).
004800 05 WORK-DIVISION PIC 9(2).
004900 05 WORK-DEPARTMENT PIC 9(2).
005000 05 WORK-CATEGORY PIC 9(2).
005100 05 WORK-AMOUNT PIC S9(6)V99.
005200
005300 SD SORT-FILE
005400 LABEL RECORDS ARE STANDARD.
005500 01 SORT-RECORD.
005600 05 SORT-STORE PIC 9(2).
005700 05 SORT-DIVISION PIC 9(2).

005800 05 SORT-DEPARTMENT PIC 9(2).
005900 05 SORT-CATEGORY PIC 9(2).
006000 05 SORT-AMOUNT PIC S9(6)V99.
006100
006200 FD PRINTER-FILE
006300 LABEL RECORDS ARE OMITTED.
006400 01 PRINTER-RECORD PIC X(80).
006500
006600 WORKING-STORAGE SECTION.
006700
006800 01 THE-DIVISIONS.
006900 05 FILLER PIC 99 VALUE 01.
007000 05 FILLER PIC X(15) VALUE "ATHLETICS".
007100 05 FILLER PIC 99 VALUE 02.
007200 05 FILLER PIC X(15) VALUE "SPORTING GOODS".
007300 05 FILLER PIC 99 VALUE 03.
007400 05 FILLER PIC X(15) VALUE "CAMPING".
007500 01 FILLER REDEFINES THE-DIVISIONS.
007600 05 DIVISION-TABLE OCCURS 3 TIMES
007700 INDEXED BY DIVISION-INDEX.
007800 10 DIVISION-NUMBER PIC 99.
007900 10 DIVISION-NAME PIC X(15).
008000
008100 01 THE-DEPARTMENTS.
008200 05 FILLER PIC 99 VALUE 01.
008300 05 FILLER PIC X(15) VALUE "EXERCISE".
008400 05 FILLER PIC 99 VALUE 02.
008500 05 FILLER PIC X(15) VALUE "MISCELLANEOUS".
008600 05 FILLER PIC 99 VALUE 03.
008700 05 FILLER PIC X(15) VALUE "SPORT CLOTHES".
008800 05 FILLER PIC 99 VALUE 04.
008900 05 FILLER PIC X(15) VALUE "EQUIPMENT".
009000 05 FILLER PIC 99 VALUE 05.
009100 05 FILLER PIC X(15) VALUE "CAMP EQUIPMENT".
009200 05 FILLER PIC 99 VALUE 06.
009300 05 FILLER PIC X(15) VALUE "CAMPING CLOTHES".
009400 01 FILLER REDEFINES THE-DEPARTMENTS.
009500 05 DEPARTMENT-TABLE OCCURS 6 TIMES
009600 INDEXED BY DEPARTMENT-INDEX.
009700 10 DEPARTMENT-NUMBER PIC 99.
009800 10 DEPARTMENT-NAME PIC X(15).
009900
010000 01 THE-CATEGORIES.
010100 05 FILLER PIC 99 VALUE 01.
010200 05 FILLER PIC X(15) VALUE "WEIGHTS".
010300 05 FILLER PIC 99 VALUE 02.
010400 05 FILLER PIC X(15) VALUE "MACHINES".
010500 05 FILLER PIC 99 VALUE 03.
010600 05 FILLER PIC X(15) VALUE "SUN GLASSES".

010700 05 FILLER PIC 99 VALUE 04.
010800 05 FILLER PIC X(15) VALUE "VITAMINS".
010900 05 FILLER PIC 99 VALUE 05.
011000 05 FILLER PIC X(15) VALUE "MEN'S CLOTHES".
011100 05 FILLER PIC 99 VALUE 06.
011200 05 FILLER PIC X(15) VALUE "WOMEN'S CLOTHES".
011300 05 FILLER PIC 99 VALUE 07.
011400 05 FILLER PIC X(15) VALUE "TENNIS".
011500 05 FILLER PIC 99 VALUE 08.
011600 05 FILLER PIC X(15) VALUE "SOCCER".
011700 05 FILLER PIC 99 VALUE 09.
011800 05 FILLER PIC X(15) VALUE "TENTS".
011900 05 FILLER PIC 99 VALUE 10.
012000 05 FILLER PIC X(15) VALUE "SLEEPING BAGS".
012100 05 FILLER PIC 99 VALUE 11.
012200 05 FILLER PIC X(15) VALUE "CLOTHING".
012300 05 FILLER PIC 99 VALUE 12.
012400 05 FILLER PIC X(15) VALUE "HIKING BOOTS".
012500 01 FILLER REDEFINES THE-CATEGORIES.
012600 05 CATEGORY-TABLE OCCURS 12 TIMES
012700 INDEXED BY CATEGORY-INDEX.
012800 10 CATEGORY-NUMBER PIC 99.
012900 10 CATEGORY-NAME PIC X(15).
013000
013100 77 OK-TO-PROCESS PIC X.
013200
013300 COPY "WSCASE01.CBL".
013400
013500 01 LEGEND-LINE.
013600 05 FILLER PIC X(6) VALUE "STORE:".
013700 05 FILLER PIC X(1) VALUE SPACE.
013800 05 PRINT-STORE PIC Z9.
013900
014000 01 DETAIL-LINE.
014100 05 FILLER PIC X(3) VALUE SPACE.
014200 05 PRINT-DIVISION PIC Z9.
014300 05 FILLER PIC X(4) VALUE SPACE.
014400 05 FILLER PIC X(3) VALUE SPACE.
014500 05 PRINT-DEPARTMENT PIC Z9.
014600 05 FILLER PIC X(6) VALUE SPACE.
014700 05 FILLER PIC X(3) VALUE SPACE.
014800 05 PRINT-CATEGORY PIC Z9.
014900 05 FILLER PIC X(4) VALUE SPACE.
015000 05 PRINT-CATEGORY-NAME PIC X(15).
015100 05 FILLER PIC X(1) VALUE SPACE.
015200 05 PRINT-AMOUNT PIC ZZZ,ZZ9.99-.
015300
015400 01 COLUMN-LINE.
015500 05 FILLER PIC X(8) VALUE "DIVISION".

015600 05 FILLER PIC X(1) VALUE SPACE.
015700 05 FILLER PIC X(10) VALUE "DEPARTMENT".
015800 05 FILLER PIC X(1) VALUE SPACE.
015900 05 FILLER PIC X(8) VALUE "CATEGORY".
016000 05 FILLER PIC X(1) VALUE SPACE.
016100 05 FILLER PIC X(15) VALUE SPACE.
016200 05 FILLER PIC X(5) VALUE SPACE.
016300 05 FILLER PIC X(6) VALUE "AMOUNT".
016400
016500 01 TITLE-LINE.
016600 05 FILLER PIC X(30) VALUE SPACE.
016700 05 FILLER PIC X(12)
016800 VALUE "SALES REPORT".
016900 05 FILLER PIC X(16) VALUE SPACE.
017000 05 FILLER PIC X(5) VALUE "PAGE:".
017100 05 FILLER PIC X(1) VALUE SPACE.
017200 05 PRINT-PAGE-NUMBER PIC ZZZ9.
017300
017400 01 TOTAL-LINE.
017500 05 FILLER PIC X(11) VALUE SPACE.
017600 05 TOTAL-TYPE PIC X(8).
017700 05 FILLER PIC X(1) VALUE SPACE.
017800 05 TOTAL-NUMBER PIC Z9.
017900 05 FILLER PIC X(1) VALUE SPACE.
018000 05 TOTAL-NAME PIC X(15) VALUE SPACE.
018100 05 FILLER PIC X(1) VALUE SPACE.
018200 05 TOTAL-LITERAL PIC X(5) VALUE "TOTAL".
018300 05 FILLER PIC X(1) VALUE SPACE.
018400 05 PRINT-TOTAL PIC ZZZ,ZZ9.99-.
018500
018600 77 GRAND-TOTAL-LITERAL PIC X(8) VALUE " GRAND".
018700 77 STORE-TOTAL-LITERAL PIC X(8) VALUE " STORE".
018800 77 DIVISION-TOTAL-LITERAL PIC X(8) VALUE "DIVISION".
018900 77 DEPARTMENT-TOTAL-LITERAL PIC X(8) VALUE " DEPT".
019000
019100 77 WORK-FILE-AT-END PIC X.
019200
019300 77 LINE-COUNT PIC 999 VALUE ZERO.
019400 77 PAGE-NUMBER PIC 9999 VALUE ZERO.
019500 77 MAXIMUM-LINES PIC 999 VALUE 55.
019600
019700 77 RECORD-COUNT PIC 9999 VALUE ZEROES.
019800
019900* Control break current values for store, division
020000* department.
020100 77 CURRENT-STORE PIC 99.
020200 77 CURRENT-DIVISION PIC 99.
020300 77 CURRENT-DEPARTMENT PIC 99.
020400

020500* Control break accumulators
020600* GRAND TOTAL is the level 1 accumulator for the whole file
020700* STORE TOTAL is the level 2 accumulator
020800* DIVISION TOTAL is the level 3 accumulator
020900* DEPARTMENT TOTAL is the level 4 accumulator.
021000 77 GRAND-TOTAL PIC S9(6)V99.
021100 77 STORE-TOTAL PIC S9(6)V99.
021200 77 DIVISION-TOTAL PIC S9(6)V99.
021300 77 DEPARTMENT-TOTAL PIC S9(6)V99.
021400
021500 PROCEDURE DIVISION.
021600 PROGRAM-BEGIN.
021700
021800 PERFORM OPENING-PROCEDURE.
021900 PERFORM MAIN-PROCESS.
022000 PERFORM CLOSING-PROCEDURE.
022100
022200 PROGRAM-EXIT.
022300 EXIT PROGRAM.
022400
022500 PROGRAM-DONE.
022600 STOP RUN.
022700
022800 OPENING-PROCEDURE.
022900
023000 OPEN OUTPUT PRINTER-FILE.
023100
023200 MAIN-PROCESS.
023300 PERFORM GET-OK-TO-PROCESS.
023400 PERFORM PROCESS-THE-FILE
023500 UNTIL OK-TO-PROCESS = "N".
023600
023700 CLOSING-PROCEDURE.
023800 CLOSE PRINTER-FILE.
023900
024000 GET-OK-TO-PROCESS.
024100 PERFORM ACCEPT-OK-TO-PROCESS.
024200 PERFORM RE-ACCEPT-OK-TO-PROCESS
024300 UNTIL OK-TO-PROCESS = "Y" OR "N".
024400
024500 ACCEPT-OK-TO-PROCESS.
024600 DISPLAY "PRINT SALES REPORT (Y/N)?".
024700 ACCEPT OK-TO-PROCESS.
024800 INSPECT OK-TO-PROCESS
024900 CONVERTING LOWER-ALPHA
025000 TO UPPER-ALPHA.
025100
025200 RE-ACCEPT-OK-TO-PROCESS.
025300 DISPLAY "YOU MUST ENTER YES OR NO".

025400 PERFORM ACCEPT-OK-TO-PROCESS.
025500
025600 PROCESS-THE-FILE.
025700 PERFORM START-THE-FILE.
025800 PERFORM PRINT-ONE-REPORT.
025900 PERFORM END-THE-FILE.
026000
026100* PERFORM GET-OK-TO-PROCESS.
026200 MOVE "N" TO OK-TO-PROCESS.
026300
026400 START-THE-FILE.
026500 PERFORM SORT-DATA-FILE.
026600 OPEN INPUT WORK-FILE.
026700
026800 END-THE-FILE.
026900 CLOSE WORK-FILE.
027000
027100 SORT-DATA-FILE.
027200 SORT SORT-FILE
027300 ON ASCENDING KEY SORT-STORE
027400 ASCENDING KEY SORT-DIVISION
027500 ASCENDING KEY SORT-DEPARTMENT
027600 ASCENDING KEY SORT-CATEGORY
027700 USING SALES-FILE
027800 GIVING WORK-FILE.
027900
028000* LEVEL 1 CONTROL BREAK
028100 PRINT-ONE-REPORT.
028200 PERFORM START-ONE-REPORT.
028300 PERFORM PROCESS-ALL-STORES
028400 UNTIL WORK-FILE-AT-END = "Y".
028500 PERFORM END-ONE-REPORT.
028600
028700 START-ONE-REPORT.
028800 PERFORM READ-FIRST-VALID-WORK.
028900 MOVE ZEROES TO GRAND-TOTAL.
029000
029100 PERFORM START-NEW-REPORT.
029200
029300 START-NEW-REPORT.
029400 MOVE SPACE TO DETAIL-LINE.
029500 MOVE ZEROES TO LINE-COUNT PAGE-NUMBER.
029600
029700 END-ONE-REPORT.
029800 IF RECORD-COUNT = ZEROES
029900 MOVE "NO RECORDS FOUND" TO PRINTER-RECORD
030000 PERFORM WRITE-TO-PRINTER
030100 ELSE
030200 PERFORM PRINT-GRAND-TOTAL.

030300
030400 PERFORM END-LAST-PAGE.
030500
030600 PRINT-GRAND-TOTAL.
030700 MOVE SPACE TO TOTAL-LINE.
030800 MOVE GRAND-TOTAL TO PRINT-TOTAL.
030900 MOVE GRAND-TOTAL-LITERAL TO TOTAL-TYPE.
031000 MOVE "TOTAL" TO TOTAL-LITERAL.
031100 MOVE TOTAL-LINE TO PRINTER-RECORD.
031200 PERFORM WRITE-TO-PRINTER.
031300 PERFORM LINE-FEED 2 TIMES.
031400 MOVE SPACE TO DETAIL-LINE.
031500
031600* LEVEL 2 CONTROL BREAK
031700 PROCESS-ALL-STORES.
031800 PERFORM START-ONE-STORE.
031900
032000 PERFORM PROCESS-ALL-DIVISIONS
032100 UNTIL WORK-FILE-AT-END = "Y"
032200 OR WORK-STORE NOT = CURRENT-STORE.
032300
032400 PERFORM END-ONE-STORE.
032500
032600 START-ONE-STORE.
032700 MOVE WORK-STORE TO CURRENT-STORE.
032800 MOVE ZEROES TO STORE-TOTAL.
032900 MOVE WORK-STORE TO PRINT-STORE.
033000
033100 PERFORM START-NEXT-PAGE.
033200
033300 END-ONE-STORE.
033400 PERFORM PRINT-STORE-TOTAL.
033500 ADD STORE-TOTAL TO GRAND-TOTAL.
033600
033700 PRINT-STORE-TOTAL.
033800 MOVE SPACE TO TOTAL-LINE.
033900 MOVE STORE-TOTAL TO PRINT-TOTAL.
034000 MOVE CURRENT-STORE TO TOTAL-NUMBER.
034100 MOVE STORE-TOTAL-LITERAL TO TOTAL-TYPE.
034200 MOVE "TOTAL" TO TOTAL-LITERAL.
034300 MOVE TOTAL-LINE TO PRINTER-RECORD.
034400 PERFORM WRITE-TO-PRINTER.
034500 PERFORM LINE-FEED.
034600 MOVE SPACE TO DETAIL-LINE.
034700
034800* LEVEL 3 CONTROL BREAK
034900 PROCESS-ALL-DIVISIONS.
035000 PERFORM START-ONE-DIVISION.
035100

035200 PERFORM PROCESS-ALL-DEPARTMENTS
035300 UNTIL WORK-FILE-AT-END = "Y"
035400 OR WORK-STORE NOT = CURRENT-STORE
035500 OR WORK-DIVISION NOT = CURRENT-DIVISION.
035600
035700 PERFORM END-ONE-DIVISION.
035800
035900 START-ONE-DIVISION.
036000 MOVE WORK-DIVISION TO CURRENT-DIVISION.
036100 MOVE ZEROES TO DIVISION-TOTAL.
036200 MOVE WORK-DIVISION TO PRINT-DIVISION.
036300
036400 END-ONE-DIVISION.
036500 PERFORM PRINT-DIVISION-TOTAL.
036600 ADD DIVISION-TOTAL TO STORE-TOTAL.
036700
036800 PRINT-DIVISION-TOTAL.
036900 MOVE SPACE TO TOTAL-LINE.
037000 MOVE DIVISION-TOTAL TO PRINT-TOTAL.
037100 MOVE CURRENT-DIVISION TO TOTAL-NUMBER.
037200 MOVE DIVISION-TOTAL-LITERAL TO TOTAL-TYPE.
037300 MOVE "TOTAL" TO TOTAL-LITERAL.
037400 PERFORM LOAD-DIVISION-NAME.
037500 MOVE TOTAL-LINE TO PRINTER-RECORD.
037600 PERFORM WRITE-TO-PRINTER.
037700 PERFORM LINE-FEED.
037800 MOVE SPACE TO DETAIL-LINE.
037900
038000 LOAD-DIVISION-NAME.
038100 SET DIVISION-INDEX TO 1.
038200 SEARCH DIVISION-TABLE
038300 AT END
038400 MOVE "NOT FOUND" TO TOTAL-NAME
038500 WHEN
038600 DIVISION-NUMBER(DIVISION-INDEX) =
038700 CURRENT-DIVISION
038800 MOVE DIVISION-NAME(DIVISION-INDEX) TO
038900 TOTAL-NAME.
039000
039100* LEVEL 4 CONTROL BREAK
039200 PROCESS-ALL-DEPARTMENTS.
039300 PERFORM START-ONE-DEPARTMENT.
039400
039500 PERFORM PROCESS-ALL-CATEGORIES
039600 UNTIL WORK-FILE-AT-END = "Y"
039700 OR WORK-STORE NOT = CURRENT-STORE
039800 OR WORK-DIVISION NOT = CURRENT-DIVISION
039900 OR WORK-DEPARTMENT NOT = CURRENT-DEPARTMENT.
040000

040100 PERFORM END-ONE-DEPARTMENT.
040200
040300 START-ONE-DEPARTMENT.
040400 MOVE WORK-DEPARTMENT TO CURRENT-DEPARTMENT.
040500 MOVE ZEROES TO DEPARTMENT-TOTAL.
040600 MOVE WORK-DEPARTMENT TO PRINT-DEPARTMENT.
040700
040800 END-ONE-DEPARTMENT.
040900 PERFORM PRINT-DEPARTMENT-TOTAL.
041000 ADD DEPARTMENT-TOTAL TO DIVISION-TOTAL.
041100
041200 PRINT-DEPARTMENT-TOTAL.
041300 MOVE SPACE TO TOTAL-LINE.
041400 MOVE DEPARTMENT-TOTAL TO PRINT-TOTAL.
041500 MOVE CURRENT-DEPARTMENT TO TOTAL-NUMBER.
041600 MOVE DEPARTMENT-TOTAL-LITERAL TO TOTAL-TYPE.
041700 MOVE "TOTAL" TO TOTAL-LITERAL.
041800 PERFORM LOAD-DEPARTMENT-NAME.
041900 MOVE TOTAL-LINE TO PRINTER-RECORD.
042000 PERFORM WRITE-TO-PRINTER.
042100 PERFORM LINE-FEED.
042200 MOVE SPACE TO DETAIL-LINE.
042300
042400 LOAD-DEPARTMENT-NAME.
042500 SET DEPARTMENT-INDEX TO 1.
042600 SEARCH DEPARTMENT-TABLE
042700 AT END
042800 MOVE "NOT FOUND" TO TOTAL-NAME
042900 WHEN
043000 DEPARTMENT-NUMBER(DEPARTMENT-INDEX) =
043100 CURRENT-DEPARTMENT
043200 MOVE DEPARTMENT-NAME(DEPARTMENT-INDEX) TO
043300 TOTAL-NAME.
043400
043500* PROCESS ONE RECORD LEVEL
043600 PROCESS-ALL-CATEGORIES.
043700 PERFORM PROCESS-THIS-CATEGORY.
043800 ADD WORK-AMOUNT TO DEPARTMENT-TOTAL.
043900 ADD 1 TO RECORD-COUNT.
044000 PERFORM READ-NEXT-VALID-WORK.
044100
044200 PROCESS-THIS-CATEGORY.
044300 IF LINE-COUNT > MAXIMUM-LINES
044400 PERFORM START-NEXT-PAGE.
044500 PERFORM PRINT-THE-RECORD.
044600
044700 PRINT-THE-RECORD.
044800 MOVE WORK-CATEGORY TO PRINT-CATEGORY.
044900

045000 PERFORM LOAD-CATEGORY-NAME.
045100
045200 MOVE WORK-AMOUNT TO PRINT-AMOUNT.
045300
045400 MOVE DETAIL-LINE TO PRINTER-RECORD.
045500 PERFORM WRITE-TO-PRINTER.
045600 MOVE SPACE TO DETAIL-LINE.
045700
045800 LOAD-CATEGORY-NAME.
045900 SET CATEGORY-INDEX TO 1.
046000 SEARCH CATEGORY-TABLE
046100 AT END
046200 MOVE "NOT FOUND" TO TOTAL-NAME
046300 WHEN
046400 CATEGORY-NUMBER(CATEGORY-INDEX) =
046500 WORK-CATEGORY
046600 MOVE CATEGORY-NAME(CATEGORY-INDEX) TO
046700 PRINT-CATEGORY-NAME.
046800
046900* PRINTING ROUTINES
047000 WRITE-TO-PRINTER.
047100 WRITE PRINTER-RECORD BEFORE ADVANCING 1.
047200 ADD 1 TO LINE-COUNT.
047300
047400 LINE-FEED.
047500 MOVE SPACE TO PRINTER-RECORD.
047600 PERFORM WRITE-TO-PRINTER.
047700
047800 START-NEXT-PAGE.
047900 PERFORM END-LAST-PAGE.
048000 PERFORM START-NEW-PAGE.
048100
048200 START-NEW-PAGE.
048300 ADD 1 TO PAGE-NUMBER.
048400 MOVE PAGE-NUMBER TO PRINT-PAGE-NUMBER.
048500 MOVE TITLE-LINE TO PRINTER-RECORD.
048600 PERFORM WRITE-TO-PRINTER.
048700 PERFORM LINE-FEED.
048800 MOVE LEGEND-LINE TO PRINTER-RECORD.
048900 PERFORM WRITE-TO-PRINTER.
049000 PERFORM LINE-FEED.
049100 MOVE COLUMN-LINE TO PRINTER-RECORD.
049200 PERFORM WRITE-TO-PRINTER.
049300 PERFORM LINE-FEED.
049400
049500 END-LAST-PAGE.
049600 IF PAGE-NUMBER > 0
049700 PERFORM FORM-FEED.
049800 MOVE ZERO TO LINE-COUNT.

049900
050000 FORM-FEED.
050100 MOVE SPACE TO PRINTER-RECORD.
050200 WRITE PRINTER-RECORD BEFORE ADVANCING PAGE.
050300
050400*--------------------------------
050500* Read first, read next routines
050600*--------------------------------
050700 READ-FIRST-VALID-WORK.
050800 PERFORM READ-NEXT-VALID-WORK.
050900
051000 READ-NEXT-VALID-WORK.
051100 PERFORM READ-NEXT-WORK-RECORD.
051200
051300 READ-NEXT-WORK-RECORD.
051400 MOVE "N" TO WORK-FILE-AT-END.
051500 READ WORK-FILE NEXT RECORD
051600 AT END MOVE "Y" TO WORK-FILE-AT-END.
051700

OUTPUT:
 SALES REPORT PAGE: 1

STORE: 1

DIVISION DEPARTMENT CATEGORY AMOUNT

 1 1 1 WEIGHTS 237.57
 2 MACHINES 475.14
 DEPT 1 EXERCISE TOTAL 712.71

 2 3 SUN GLASSES 712.71
 4 VITAMINS 50.28
 DEPT 2 MISCELLANEOUS TOTAL 762.99

 DIVISION 1 ATHLETICS TOTAL 1,475.70

 2 3 5 MEN'S CLOTHES 287.85
 6 WOMEN'S CLOTHES 525.42
 DEPT 3 SPORT CLOTHES TOTAL 813.27

 4 7 TENNIS 762.99
 8 SOCCER 100.56
 DEPT 4 EQUIPMENT TOTAL 863.55

 DIVISION 2 SPORTING GOODS TOTAL 1,676.82

 3 5 9 TENTS 338.13
 10 SLEEPING BAGS 575.70
 DEPT 5 CAMP EQUIPMENT TOTAL 913.83

 6 11 CLOTHING 86.73-
 12 HIKING BOOTS 150.84
 DEPT 6 CAMPING CLOTHES TOTAL 64.11

 DIVISION 3 CAMPING TOTAL 977.94

 STORE 1 TOTAL 4,130.46
 SALES REPORT PAGE: 2

STORE: 2

DIVISION DEPARTMENT CATEGORY AMOUNT

 1 1 1 WEIGHTS 388.41
 2 MACHINES 625.98
 DEPT 1 EXERCISE TOTAL 1,014.39

 2 3 SUN GLASSES 36.45-
 4 VITAMINS 201.12
 DEPT 2 MISCELLANEOUS TOTAL 164.67

 DIVISION 1 ATHLETICS TOTAL 1,179.06

 2 3 5 MEN'S CLOTHES 438.69
 6 WOMEN'S CLOTHES 676.26
 DEPT 3 SPORT CLOTHES TOTAL 1,114.95

 4 7 TENNIS 13.83
 8 SOCCER 251.40
 DEPT 4 EQUIPMENT TOTAL 265.23

 DIVISION 2 SPORTING GOODS TOTAL 1,380.18

 3 5 9 TENTS 488.97
 10 SLEEPING BAGS 726.54
 DEPT 5 CAMP EQUIPMENT TOTAL 1,215.51

 6 11 CLOTHING 64.11
 12 HIKING BOOTS 301.68
 DEPT 6 CAMPING CLOTHES TOTAL 365.79

 DIVISION 3 CAMPING TOTAL 1,581.30

 STORE 2 TOTAL 4,140.54
 SALES REPORT PAGE: 3

STORE: 3

DIVISION DEPARTMENT CATEGORY AMOUNT

 1 1 1 WEIGHTS 539.25
 2 MACHINES 776.82
 DEPT 1 EXERCISE TOTAL 1,316.07

 2 3 SUN GLASSES 114.39
 4 VITAMINS 351.96
 DEPT 2 MISCELLANEOUS TOTAL 466.35

 DIVISION 1 ATHLETICS TOTAL 1,782.42

 2 3 5 MEN'S CLOTHES 589.53
 6 WOMEN'S CLOTHES 72.90-
 DEPT 3 SPORT CLOTHES TOTAL 516.63

 4 7 TENNIS 164.67
 8 SOCCER 402.24
 DEPT 4 EQUIPMENT TOTAL 566.91

 DIVISION 2 SPORTING GOODS TOTAL 1,083.54

 3 5 9 TENTS 639.81
 10 SLEEPING BAGS 22.62-
 DEPT 5 CAMP EQUIPMENT TOTAL 617.19

 6 11 CLOTHING 214.95
 12 HIKING BOOTS 452.52
 DEPT 6 CAMPING CLOTHES TOTAL 667.47

 DIVISION 3 CAMPING TOTAL 1,284.66

 STORE 3 TOTAL 4,150.62
 SALES REPORT PAGE: 4

STORE: 4

DIVISION DEPARTMENT CATEGORY AMOUNT

 1 1 1 WEIGHTS 690.09
 2 MACHINES 27.66
 DEPT 1 EXERCISE TOTAL 717.75

 2 3 SUN GLASSES 265.23
 4 VITAMINS 502.80
 DEPT 2 MISCELLANEOUS TOTAL 768.03

 DIVISION 1 ATHLETICS TOTAL 1,485.78

 2 3 5 MEN'S CLOTHES 740.37
 6 WOMEN'S CLOTHES 77.94
 DEPT 3 SPORT CLOTHES TOTAL 818.31

 4 7 TENNIS 315.51
 8 SOCCER 553.08
 DEPT 4 EQUIPMENT TOTAL 868.59

 DIVISION 2 SPORTING GOODS TOTAL 1,686.90

 3 5 9 TENTS 790.65
 10 SLEEPING BAGS 128.22
 DEPT 5 CAMP EQUIPMENT TOTAL 918.87

 6 11 CLOTHING 365.79
 12 HIKING BOOTS 603.36
 DEPT 6 CAMPING CLOTHES TOTAL 969.15

 DIVISION 3 CAMPING TOTAL 1,888.02

 STORE 4 TOTAL 5,060.70
 SALES REPORT PAGE: 5

STORE: 5

DIVISION DEPARTMENT CATEGORY AMOUNT

 1 1 1 WEIGHTS 59.07-
 2 MACHINES 178.50
 DEPT 1 EXERCISE TOTAL 119.43

 2 3 SUN GLASSES 416.07
 4 VITAMINS 653.64
 DEPT 2 MISCELLANEOUS TOTAL 1,069.71

 DIVISION 1 ATHLETICS TOTAL 1,189.14

 2 3 5 MEN'S CLOTHES 8.79-
 6 WOMEN'S CLOTHES 228.78
 DEPT 3 SPORT CLOTHES TOTAL 219.99

 4 7 TENNIS 466.35
 8 SOCCER 703.92
 DEPT 4 EQUIPMENT TOTAL 1,170.27

 DIVISION 2 SPORTING GOODS TOTAL 1,390.26

 3 5 9 TENTS 41.49
 10 SLEEPING BAGS 279.06

 DEPT 5 CAMP EQUIPMENT TOTAL 320.55

 6 11 CLOTHING 516.63
 12 HIKING BOOTS 754.20
 DEPT 6 CAMPING CLOTHES TOTAL 1,270.83

 DIVISION 3 CAMPING TOTAL 1,591.38

 STORE 5 TOTAL 4,170.78
 SALES REPORT PAGE: 6

STORE: 6

DIVISION DEPARTMENT CATEGORY AMOUNT

 1 1 1 WEIGHTS 91.77
 2 MACHINES 329.34
 DEPT 1 EXERCISE TOTAL 421.11

 2 3 SUN GLASSES 566.91
 4 VITAMINS 95.52-
 DEPT 2 MISCELLANEOUS TOTAL 471.39

 DIVISION 1 ATHLETICS TOTAL 892.50

 2 3 5 MEN'S CLOTHES 142.05
 6 WOMEN'S CLOTHES 379.62
 DEPT 3 SPORT CLOTHES TOTAL 521.67

 4 7 TENNIS 617.19
 8 SOCCER 45.24-
 DEPT 4 EQUIPMENT TOTAL 571.95

 DIVISION 2 SPORTING GOODS TOTAL 1,093.62

 3 5 9 TENTS 192.33
 10 SLEEPING BAGS 429.90
 DEPT 5 CAMP EQUIPMENT TOTAL 622.23

 6 11 CLOTHING 667.47
 12 HIKING BOOTS 5.04
 DEPT 6 CAMPING CLOTHES TOTAL 672.51

 DIVISION 3 CAMPING TOTAL 1,294.74

 STORE 6 TOTAL 3,280.86

 GRAND TOTAL 24,933.96

ANALYSIS: The tables for THE-DIVISIONS, THE-DEPARTMENTS, and THE-CATEGORIES are defined at

lines 006800, 008100, and 010000, respectively.

The division name is loaded in the END-ONE-DIVISION as part of PRINT-DIVISION-TOTAL at line
036800. This paragraph performs LOAD-DIVISION-NAME at line 037400. LOAD-DIVISION-NAME at line
038000 uses the SEARCH verb to locate the division name using the CURRENT-DIVISION.

The department name is loaded using similar logic in the END-ONE-DEPARTMENT as part of
PRINT-DEPARTMENT-TOTAL at line 041200. This paragraph performs LOAD-DEPARTMENT-NAME at line
042400. LOAD-DEPARTMENT-NAME at line 042400 uses the SEARCH verb to locate the department name
using the CURRENT-DEPARTMENT.

The category name is loaded in the detail printing as part of PRINT-THE-RECORD at line 044700. This
paragraph performs LOAD-CATEGORY-NAME at line 045000. LOAD-CATEGORY-NAME at line 045800 uses
the SEARCH verb to locate the category name using the CURRENT-CATEGORY.

Code, compile, and run slsrpt03.cbl to see these internal tables being used to fill in the names.

STRING

The STRING verb can be used to combine several fields into one by appending the input fields end to end.

New Term: The action of appending fields one behind the other into a single field is called concatenation.

In Figure B2.2, 30 bytes have been used to define three variables, each containing a ten-character portion of a
name.

Figure B2.2.
Three separate name fields.

The data definition for the fields described in Figure B2.2 is illustrated in Listing B2.7.

TYPE: Listing B2.7. The data definition of three names.

000900 01 THE-NAME
001000 05 LAST-NAME PIC X(10).
001100 05 FIRST-NAME PIC X(10).
001200 05 MIDDLE-NAME PIC X(10).

If these fields were printed by moving them to print fields, as shown in Listing B2.8, the resulting printed name
would contain all the extra spaces at the end of each name.

TYPE: Listing B2.8. Printing the names.

001300 01 DETAIL-LINE.
001400 05 PRINT-FIRST PIC X(10).
001500 05 FILLER PIC X(1).
001600 05 PRINT-MIDDLE PIC X(10).
001700 05 FILLER PIC X(1).
001800 05 PRINT-LAST PIC X(10).
.......
010300 MOVE SPACE TO DETAIL-LINE.
010400 MOVE FIRST-NAME TO PRINT-FIRST.
010500 MOVE MIDDLE-NAME TO PRINT-MIDDLE.

file:///D|/Cool Stuff/old/ftp/Sams.Teach.Yourself.Cobol.In.21.Days/Teach Yourself Cobol in 21 Days/ch23/02.htm

010600 MOVE LAST-NAME TO PRINT-MIDDLE.
010700 PERFORM PRINT-DETAIL-LINE.

OUTPUT:
JOHN PAUL JONES

A better approach is to use the STRING verb. This can be used to concatenate all three fields, ignoring the spaces
in each field. A STRING verb will combine two or more fields into a destination field. The input fields may be
truncated by a value used to specify that the STRING action is to stop at a specific character. The input field may
also be included by its full length. This is the STRING syntax:

STRING
 value
 DELIMITED BY delimiter
 value
 DELIMITED BY delimiter
 INTO variable.

The following is an example:

STRING
 FIRST-NAME
 DELIMITED BY SPACE
 LAST-NAME
 DELIMITED BY SPACE
 INTO FULL-NAME.

The output of the code fragment in Listing B2.9 is better, but now we have eliminated all spaces.

TYPE: Listing B2.9. Using STRING to put fields together.

001300 01 DETAIL-LINE.
001400 05 PRINT-WHOLE-NAME PIC X(30).
.......
010300 MOVE SPACE TO DETAIL-LINE.
010400 STRING
010500 FIRST-NAME DELIMITED BY SPACE
010600 MIDDLE-NAME DELIMITED BY SPACE
010700 LAST-NAME DELIMITED BY SPACE
010800 INTO PRINT-WHOLE-NAME.
010900 PERFORM PRINT-DETAIL-LINE.

OUTPUT:
JOHNPAULJONES

ANALYSIS: The STRING must add spaces to break the fields apart. PRINT-WHOLE-NAME is increased to
accommodate a name that fills all 30 spaces and also needs the two extra spaces to separate the names. In Listing
B2.10 at lines 010600 and 010800, a space is inserted between each field.

TYPE: Listing B2.10. Adding extra spaces.

001300 01 DETAIL-LINE.
001400 05 PRINT-WHOLE-NAME PIC X(32).

.......
010300 MOVE SPACE TO DETAIL-LINE.
010400 STRING
010500 FIRST-NAME DELIMITED BY SPACE
010600 " " DELIMITED BY SIZE
010700 MIDDLE-NAME DELIMITED BY SPACE
010800 " " DELIMITED BY SIZE
010900 LAST-NAME DELIMITED BY SPACE
011000 INTO PRINT-WHOLE-NAME.
011100 PERFORM PRINT-DETAIL-LINE.

OUTPUT:
JOHN PAUL JONES

The STRING verb frequently is used to format names to print envelopes and for other mailing list activities.

UNSTRING

As indicated by the name, the UNSTRING verb does the opposite of the STRING verb, enabling you to break a
single field on a specific character into several separate fields. It is used less often than the STRING verb. The
following is the UNSTRING syntax:

UNSTRING variable
 DELIMITED BY [ALL] delimiter
 [OR [ALL] delimiter]
 INTO variable . . .

Here is an example:

UNSTRING INPUT-DATA
 DELIMITED BY SPACE
 INTO FIRST-NAME
 LAST-NAME

UNSTRING can be used to make data entry seem more natural and then break the results into separate fields.
Listing B2.11 is an example of using UNSTRING.

TYPE: Listing B2.11. Unstringing input.

001100 01 INPUT-DATA PIC X(50).
001200
001300 01 FORMATTED-NAME.
001400 05 FIRST-NAME PIC X(25).
001500 05 LAST-NAME PIC X(25).
......
010700 DISPLAY "ENTER FIRST AND LAST NAMES".
010800 DISPLAY "WITH A SPACE BETWEEN THE NAMES".
010900 ACCEPT INPUT-DATA.
011000 MOVE SPACE TO FORMATTED-NAME.
011100 UNSTRING INPUT-DATA
011200 DELIMITED BY ALL SPACE
011300 INTO FIRST-NAME

011400 LAST-NAME.
011500

INSPECT

The INSPECT verb, which you used to convert lowercase to uppercase, has two other formats.

INSPECT can be used to count characters in a field. In the following example, SLASH-COUNTER (if it starts
with a zero value) will contain the number of / characters that appear in DATE-FIELD. Here is the syntax:

INSPECT variable
 TALLYING counter
 FOR [ALL] character

and the example:

INSPECT DATE-FIELD
 TALLYING SLASH-COUNTER
 FOR ALL "/"

The second version of INSPECT is more useful. INSPECT can be used to convert a single character in much the
same way it is used to convert multiple characters. Multiple characters are converted by using INSPECT
CONVERTING; a single character is converted by using INSPECT REPLACING. This is the syntax:

INSPECT variable
 REPLACING [ALL]
 character BY character.

and the example:

INSPECT FORMATTED-DATE
 REPLACING ALL
 "/" BY "-"

This version can be used to change formatting characters after a value has been moved into an edited field. In
Listing B2.12, the date is changed to display with dashes instead of slashes.

TYPE: Listing B2.12. Using INSPECT.

000900 01 FORMATTED-DATE PIC Z9/99/9999.
001000 01 DATE-MMDDCCYY PIC 9(8).
......
010100 MOVE 02141995 TO DATE-MMDDCCYY.
010200 MOVE DATE-MMDDCCYY TO FORMATTED-DATE.
010300 DISPLAY FORMATTED-DATE.
010400 INSPECT FORMATTED-DATE
010500 REPLACING ALL "\" BY "-".
010600 DISPLAY FORMATTED-DATE.

OUTPUT: The output of Listing B2.12 illustrates the date format, before and after the INSPECT is used to
change the formatting characters:

2/14/1995
2-14-1995

CALL USING

The CALL verb is used to execute one COBOL program from within another. In Day 18, "Calling Other
Programs," you used the CALL verb to build a menu that executed different programs. In those and subsequent
examples, there was no way for the called and calling program to share information. The DATA DIVISION of
both the called and calling program were separate from each other, and neither program could access variables in
the other program.

It is possible to CALL a program and pass it a variable from the calling program with this syntax:

CALL "TIMEDIT"
 USING variable
 [variable . .]

The following is an example:

CALL "TIMEDIT"
 USING TIME-HHMMSS
 FORMATTED-TIME
 ZERO-TIME-IS-OK

The calling program, the program that passes the value to another program, contains the definition of the data to
be passed in WORKING-STORAGE just like any other data item. The variable can be shared by the calling and
called program, but the variable really exists only in the DATA DIVISION of the calling program. The USING
phrase in CALL USING is really a signal to the compiler that a value must be passed to let the called program
know where the variables exist in the calling program.

The called program must receive the value. The definition of the data item in a called program is a bit more
complicated. Variables that exist in a calling program but are used in a called program are defined in a special
section of the DATA DIVISION in the called program. This is the LINKAGE SECTION, and an example is
shown starting at line 002100 in Listing B2.13.

TYPE: Listing B2.13. The LINKAGE SECTION.

001000 DATA DIVISION.
001100 FILE SECTION.
001200
001300 WORKING-STORAGE SECTION.
001400
001500 77 VALID-TIME-FLAG PIC X.
001600 88 TIME-IS-INVALID VALUE "N".
001700 88 TIME-IS-ZERO VALUE "0".
001800 88 TIME-IS-VALID VALUE "Y".
001900 88 TIME-IS-OK VALUES "Y" "0".
002000
002100 LINKAGE SECTION.
002200*--------------------------------
002300* Fields passed for TIME routines.
002400*--------------------------------
002500 77 FORMATTED-TIME PIC Z9/99/99.
002600
002700 01 TIME-HHMMSS PIC 9(6).

002800 01 FILLER REDEFINES TIME-HHMMSS.
002900 05 TIME-HH PIC 99.
003000 05 TIME-MM PIC 99.
003100 05 TIME-SS PIC 99.
003200
003300 77 ZERO-TIME-IS-OK PIC X VALUE "N".
003400

ANALYSIS: The LINKAGE SECTION starts at line 002100. It contains a description of the data that is
expected to be passed by the calling program. The LINKAGE SECTION is used by the called program as a
description of the variables that are passed by the calling program. However, variables defined in the LINKAGE
SECTION do not exist in the called program; they exist in the calling program.

For example, at line 002700, TIME-HHMMSS is defined as a PIC 9(6). This indicates that 6 bytes of data that
are passed by the calling program are to be treated as a PIC 9(6) in the called program. The called program
will use the name TIME-HHMMSS as the name of these 6 bytes. These 6 bytes could be passed to a called
program that used the value to format a formatted time for display, or to be printed at the top of a report along
with the date to indicate the date and time that report was run.

One other thing that a called program must do is name the variables that are passed from the calling program in
the order in which they are passed. This is taken care of by adding USING to the PROCEDURE DIVISION of a
called program, as shown in Listing B2.14.

TYPE: Listing B2.14. PROCEDURE DIVISION USING.

003500 PROCEDURE DIVISION
003600 USING TIME-HHMMSS FORMATTED-TIME
003700 ZERO-TIME-IS-OK.
003800

ANALYSIS: At lines 003500-003700, the PROCEDURE DIVISION is extended by adding a USING list.
The USING list in the called program must match, in sequence, the variables passed in the CALL USING list of
the calling program.

Listing B2.15 is a program to enter time values and display them. Instead of doing the data entry and validation in
the program, it calls another program to do this.

TYPE: Listing B2.15. A calling program.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. TIME02.
000300*--------------------------------
000400* Testing Time Entry and handling
000500*--------------------------------
000600 ENVIRONMENT DIVISION.
000700 INPUT-OUTPUT SECTION.
000800 FILE-CONTROL.
000900
001000 DATA DIVISION.
001100 FILE SECTION.
001200
001300 WORKING-STORAGE SECTION.

001400
001500 77 ANY-TIME PIC 9(6) VALUE ZEROES.
001600
001700 77 ANY-FORMATTED PIC X(8).
001800
001900 77 FORMATTED-TIME PIC Z9/99/99.
002000
002100 77 THE-TIME PIC 9(6).
002200
002300 77 ZERO-IS-OK PIC X VALUE "N".
002400
002500 PROCEDURE DIVISION.
002600 PROGRAM-BEGIN.
002700 PERFORM OPENING-PROCEDURE.
002800 PERFORM MAIN-PROCESS.
002900 PERFORM CLOSING-PROCEDURE.
003000
003100 PROGRAM-EXIT.
003200 EXIT PROGRAM.
003300
003400 PROGRAM-DONE.
003500 STOP RUN.
003600
003700 OPENING-PROCEDURE.
003800
003900 CLOSING-PROCEDURE.
004000
004100 MAIN-PROCESS.
004200 PERFORM GET-ANY-TIME.
004300 PERFORM DISPLAY-AND-GET-ANY-TIME
004400 UNTIL ANY-TIME = 000001.
004500
004600 GET-ANY-TIME.
004700 MOVE "Y" TO ZERO-IS-OK.
004800 PERFORM GET-THE-TIME.
004900 MOVE THE-TIME TO ANY-TIME.
005000 MOVE FORMATTED-TIME TO ANY-FORMATTED.
005100
005200 GET-THE-TIME.
005300 CALL "TIMEDIT" USING
005400 THE-TIME FORMATTED-TIME
005500 ZERO-IS-OK.
005600
005700 DISPLAY-AND-GET-ANY-TIME.
005800 PERFORM DISPLAY-THE-TIME.
005900 PERFORM GET-ANY-TIME.
006000
006100 DISPLAY-THE-TIME.
006200 DISPLAY "ANY TIME IS " ANY-FORMATTED.

006300

ANALYSIS: The time02.cbl program calls timedit.cbl to do the data entry and testing of the field. The
two programs must pass three values back and forth between the called and calling program.

The first is a field that will hold the time as a six-digit number when the data entry is completed. This field is
filled in by timedit.cbl during the data entry process. The second field is a formatted version of the time.
This field also is filled in by timedit.cbl and returned to time02.cbl. The third field is filled by
time02.cbl and is a flag indicating whether timedit.cbl should accept a time entry of zeroes.

These variables are all defined in the WORKING-STORAGE section of time02.cbl at lines 001900, 002100,
and 002300. The values are passed to timedit.cbl at lines 005300-005500.

Listing B2.16 is the called program. It has a LINKAGE SECTION in the DATA DIVISION.

TYPE: Listing B2.16. The called program.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. TIMEDIT.
000300*--------------------------------
000400* TIME ENTRY AND VALIDATION SUB PROGRAM
000500*--------------------------------
000600 ENVIRONMENT DIVISION.
000700 INPUT-OUTPUT SECTION.
000800 FILE-CONTROL.
000900
001000 DATA DIVISION.
001100 FILE SECTION.
001200
001300 WORKING-STORAGE SECTION.
001400
001500 77 VALID-TIME-FLAG PIC X.
001600 88 TIME-IS-INVALID VALUE "N".
001700 88 TIME-IS-ZERO VALUE "0".
001800 88 TIME-IS-VALID VALUE "Y".
001900 88 TIME-IS-OK VALUES "Y" "0".
002000
002100 LINKAGE SECTION.
002200*--------------------------------
002300* Fields passed for TIME routines.
002400*--------------------------------
002500 77 FORMATTED-TIME PIC Z9/99/99.
002600
002700 01 TIME-HHMMSS PIC 9(6).
002800 01 FILLER REDEFINES TIME-HHMMSS.
002900 05 TIME-HH PIC 99.
003000 05 TIME-MM PIC 99.
003100 05 TIME-SS PIC 99.
003200
003300 77 ZERO-TIME-IS-OK PIC X VALUE "N".
003400

003500 PROCEDURE DIVISION
003600 USING TIME-HHMMSS FORMATTED-TIME
003700 ZERO-TIME-IS-OK.
003800
003900 PROGRAM-BEGIN.
004000 PERFORM OPENING-PROCEDURE.
004100 PERFORM MAIN-PROCESS.
004200 PERFORM CLOSING-PROCEDURE.
004300
004400 PROGRAM-EXIT.
004500 EXIT PROGRAM.
004600
004700 PROGRAM-DONE.
004800 STOP RUN.
004900
005000 OPENING-PROCEDURE.
005100
005200 CLOSING-PROCEDURE.
005300
005400 MAIN-PROCESS.
005500 PERFORM GET-A-TIME.
005600
005700 GET-A-TIME.
005800 PERFORM ACCEPT-A-TIME.
005900 PERFORM RE-ACCEPT-A-TIME
006000 UNTIL TIME-IS-OK.
006100
006200 ACCEPT-A-TIME.
006300 DISPLAY "ENTER A TIME (HH:MM:SS)".
006400
006500 ACCEPT FORMATTED-TIME.
006600
006700 PERFORM EDIT-CHECK-TIME.
006800
006900 RE-ACCEPT-A-TIME.
007000 DISPLAY "INVALID TIME".
007100
007200 PERFORM ACCEPT-A-TIME.
007300
007400 EDIT-CHECK-TIME.
007500 PERFORM EDIT-TIME.
007600 PERFORM CHECK-TIME.
007700 PERFORM FORMAT-THE-TIME.
007800
007900 EDIT-TIME.
008000 MOVE FORMATTED-TIME TO TIME-HHMMSS.
008100
008200 CHECK-TIME.
008300 MOVE "Y" TO VALID-TIME-FLAG.

008400 IF TIME-HHMMSS = ZEROES
008500 IF ZERO-TIME-IS-OK = "Y"
008600 MOVE "0" TO VALID-TIME-FLAG
008700 ELSE
008800 MOVE "N" TO VALID-TIME-FLAG
008900 ELSE
009000 IF TIME-HH > 24
009100 MOVE "N" TO VALID-TIME-FLAG
009200 ELSE
009300 IF TIME-MM > 59
009400 MOVE "N" TO VALID-TIME-FLAG
009500 ELSE
009600 IF TIME-SS > 59
009700 MOVE "N" TO VALID-TIME-FLAG
009800 ELSE
009900 IF TIME-HHMMSS > 240000
010000 MOVE "N" TO VALID-TIME-FLAG.
010100
010200 FORMAT-THE-TIME.
010300 MOVE TIME-HHMMSS TO FORMATTED-TIME.
010400 INSPECT FORMATTED-TIME
010500 REPLACING ALL "/" BY ":".
010600

OUTPUT:

The output of the combined time02.cbl and timedit.cbl shows the two programs working together. Each
line of output is marked to indicate which program is doing the work:

ENTER A TIME (HH:MM:SS) timedit.cbl
111495 user entry still in timedit.cbl
INVALID TIME error message from timedit.cbl
ENTER A TIME (HH:MM:SS) still in timedit.cbl
111435 user tries again in timedit.cbl
ANY TIME IS 11:14:35 displayed in time02.cbl
ENTER A TIME (HH:MM:SS) back in timedit.cbl

ANALYSIS: The entries in the LINKAGE SECTION at lines 002500, 002700, and 003300 describe three
variables that are expected to be passed from the calling program. The variables don't have to have the same
names, but they must be the same size (same number of bytes).

After the "shape" of the variables is described in the LINKAGE SECTION, the PROCEDURE DIVISION at
lines 003500-003700 lists the values that are passed from the calling program.

If you compare this list with lines 005300-005500 in time02.cbl, Listing B2.15, you will find that the variables
match in length.

The first variable is a 6-byte field called THE-TIME in time02.cbl and TIME-HHMMSS in timedit.cbl. The
second variable is an 8-byte edited field called FORMATTED-TIME in both programs. The third field is a single
byte called ZERO-IS-OK in time02.cbl and ZERO-TIME-IS-OK in timedit.cbl.

The timedit.cbl program is a fairly straightforward program that accepts data entry of a time field and checks
whether it is valid. If the passed flag indicates that a zero entry is OK, the program allows the user to enter zeroes;

otherwise, it forces an entry of a valid time in the range of 000001-240000.

One notable piece of code appears at lines 010300-010500 and uses the INSPECT REPLACING verb to
convert the slashes (/) in the formatted field to colons (:), which are more appropriate for time formatting (for
example, 11:14:29).

Code and compile time02.cbl and timedit.cbl and link them if necessary. Run time02.cbl and see that the called
program timedit.cbl is correctly entering and validating the time fields. Enter a value of 1 for the time to stop the
program.

ACCEPT FROM DATE or TIME
Usually, the ACCEPT verb is used to receive input keyboard information into a field. The ACCEPT verb has an
implied KEYBOARD as the device from which information is being accepted:

ACCEPT INPUT-DATA [FROM KEYBOARD].

You also may accept data from the computer's internal system clock. This clock provides at least two pieces of
information that you might want in a program: today's date and the current time. To extract the date, you must
ACCEPT FROM DATE. To extract the time, ACCEPT FROM TIME. Use this syntax:

ACCEPT variable
 FROM DATE
ACCEPT variable
 FROM TIME

The following is an example:

ACCEPT TODAYS-DATE
 FROM DATE
ACCEPT THE-TIME
 FROM TIME.

The variable used for today's date must be defined as a PIC 9(6), and the date is returned in YYMMDD
format. Another mechanism has been developed for 8-digit dates as the year 2000 approaches. The variable for
the time must be a PIC 9(8), and the value returned is hours, minutes, seconds, and hundredths of seconds. The
time used is a 24-hour clock, so 3:56 PM would be returned as 15560000.

System date and time can be used to identify the run date and time of a report, as shown in Listing B2.17, a code
fragment that could be used in a report program.

TYPE: Listing B2.17. Using the system date and time.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. SLSRPT04.
000300*--------------------------------
000400* Print test sales data
000500*--------------------------------
000600 ENVIRONMENT DIVISION.
000700 INPUT-OUTPUT SECTION.
000800 FILE-CONTROL.
000900
001000*--------------------------------
001100* SLSALES.CBL

001200*--------------------------------
001300 SELECT SALES-FILE
001400 ASSIGN TO "SALES"
001500 ORGANIZATION IS SEQUENTIAL.
001600
001700 SELECT WORK-FILE
001800 ASSIGN TO "WORK"
001900 ORGANIZATION IS SEQUENTIAL.
002000
002100 SELECT SORT-FILE
002200 ASSIGN TO "SORT".
002300
002400 SELECT PRINTER-FILE
002500 ASSIGN TO PRINTER
002600 ORGANIZATION IS LINE SEQUENTIAL.
002700
002800 DATA DIVISION.
002900 FILE SECTION.
003000
003100*--------------------------------
003200* FDSALES.CBL
003300* Temporary daily sales file.
003400*--------------------------------
003500 FD SALES-FILE
003600 LABEL RECORDS ARE STANDARD.
003700 01 SALES-RECORD.
003800 05 SALES-STORE PIC 9(2).
003900 05 SALES-DIVISION PIC 9(2).
004000 05 SALES-DEPARTMENT PIC 9(2).
004100 05 SALES-CATEGORY PIC 9(2).
004200 05 SALES-AMOUNT PIC S9(6)V99.
004300
004400 FD WORK-FILE
004500 LABEL RECORDS ARE STANDARD.
004600 01 WORK-RECORD.
004700 05 WORK-STORE PIC 9(2).
004800 05 WORK-DIVISION PIC 9(2).
004900 05 WORK-DEPARTMENT PIC 9(2).
005000 05 WORK-CATEGORY PIC 9(2).
005100 05 WORK-AMOUNT PIC S9(6)V99.
005200
005300 SD SORT-FILE
005400 LABEL RECORDS ARE STANDARD.
005500 01 SORT-RECORD.
005600 05 SORT-STORE PIC 9(2).
005700 05 SORT-DIVISION PIC 9(2).
005800 05 SORT-DEPARTMENT PIC 9(2).
005900 05 SORT-CATEGORY PIC 9(2).
006000 05 SORT-AMOUNT PIC S9(6)V99.

006100
006200 FD PRINTER-FILE
006300 LABEL RECORDS ARE OMITTED.
006400 01 PRINTER-RECORD PIC X(80).
006500
006600 WORKING-STORAGE SECTION.
006700
006800 01 THE-DIVISIONS.
006900 05 FILLER PIC 99 VALUE 01.
007000 05 FILLER PIC X(15) VALUE "ATHLETICS".
007100 05 FILLER PIC 99 VALUE 02.
007200 05 FILLER PIC X(15) VALUE "SPORTING GOODS".
007300 05 FILLER PIC 99 VALUE 03.
007400 05 FILLER PIC X(15) VALUE "CAMPING".
007500 01 FILLER REDEFINES THE-DIVISIONS.
007600 05 DIVISION-TABLE OCCURS 3 TIMES
007700 INDEXED BY DIVISION-INDEX.
007800 10 DIVISION-NUMBER PIC 99.
007900 10 DIVISION-NAME PIC X(15).
008000
008100 01 THE-DEPARTMENTS.
008200 05 FILLER PIC 99 VALUE 01.
008300 05 FILLER PIC X(15) VALUE "EXERCISE".
008400 05 FILLER PIC 99 VALUE 02.
008500 05 FILLER PIC X(15) VALUE "MISCELLANEOUS".
008600 05 FILLER PIC 99 VALUE 03.
008700 05 FILLER PIC X(15) VALUE "SPORT CLOTHES".
008800 05 FILLER PIC 99 VALUE 04.
008900 05 FILLER PIC X(15) VALUE "EQUIPMENT".
009000 05 FILLER PIC 99 VALUE 05.
009100 05 FILLER PIC X(15) VALUE "CAMP EQUIPMENT".
009200 05 FILLER PIC 99 VALUE 06.
009300 05 FILLER PIC X(15) VALUE "CAMPING CLOTHES".
009400 01 FILLER REDEFINES THE-DEPARTMENTS.
009500 05 DEPARTMENT-TABLE OCCURS 6 TIMES
009600 INDEXED BY DEPARTMENT-INDEX.
009700 10 DEPARTMENT-NUMBER PIC 99.
009800 10 DEPARTMENT-NAME PIC X(15).
009900
010000 01 THE-CATEGORIES.
010100 05 FILLER PIC 99 VALUE 01.
010200 05 FILLER PIC X(15) VALUE "WEIGHTS".
010300 05 FILLER PIC 99 VALUE 02.
010400 05 FILLER PIC X(15) VALUE "MACHINES".
010500 05 FILLER PIC 99 VALUE 03.
010600 05 FILLER PIC X(15) VALUE "SUN GLASSES".
010700 05 FILLER PIC 99 VALUE 04.
010800 05 FILLER PIC X(15) VALUE "VITAMINS".
010900 05 FILLER PIC 99 VALUE 05.

011000 05 FILLER PIC X(15) VALUE "MEN'S CLOTHES".
011100 05 FILLER PIC 99 VALUE 06.
011200 05 FILLER PIC X(15) VALUE "WOMEN'S CLOTHES".
011300 05 FILLER PIC 99 VALUE 07.
011400 05 FILLER PIC X(15) VALUE "TENNIS".
011500 05 FILLER PIC 99 VALUE 08.
011600 05 FILLER PIC X(15) VALUE "SOCCER".
011700 05 FILLER PIC 99 VALUE 09.
011800 05 FILLER PIC X(15) VALUE "TENTS".
011900 05 FILLER PIC 99 VALUE 10.
012000 05 FILLER PIC X(15) VALUE "SLEEPING BAGS".
012100 05 FILLER PIC 99 VALUE 11.
012200 05 FILLER PIC X(15) VALUE "CLOTHING".
012300 05 FILLER PIC 99 VALUE 12.
012400 05 FILLER PIC X(15) VALUE "HIKING BOOTS".
012500 01 FILLER REDEFINES THE-CATEGORIES.
012600 05 CATEGORY-TABLE OCCURS 12 TIMES
012700 INDEXED BY CATEGORY-INDEX.
012800 10 CATEGORY-NUMBER PIC 99.
012900 10 CATEGORY-NAME PIC X(15).
013000
013100 77 OK-TO-PROCESS PIC X.
013200
013300 COPY "WSCASE01.CBL".
013400
013500 01 LEGEND-LINE.
013600 05 FILLER PIC X(6) VALUE "STORE:".
013700 05 FILLER PIC X(1) VALUE SPACE.
013800 05 PRINT-STORE PIC Z9.
013900
014000 01 DETAIL-LINE.
014100 05 FILLER PIC X(3) VALUE SPACE.
014200 05 PRINT-DIVISION PIC Z9.
014300 05 FILLER PIC X(4) VALUE SPACE.
014400 05 FILLER PIC X(3) VALUE SPACE.
014500 05 PRINT-DEPARTMENT PIC Z9.
014600 05 FILLER PIC X(6) VALUE SPACE.
014700 05 FILLER PIC X(3) VALUE SPACE.
014800 05 PRINT-CATEGORY PIC Z9.
014900 05 FILLER PIC X(4) VALUE SPACE.
015000 05 PRINT-CATEGORY-NAME PIC X(15).
015100 05 FILLER PIC X(1) VALUE SPACE.
015200 05 PRINT-AMOUNT PIC ZZZ,ZZ9.99-.
015300
015400 01 COLUMN-LINE.
015500 05 FILLER PIC X(8) VALUE "DIVISION".
015600 05 FILLER PIC X(1) VALUE SPACE.
015700 05 FILLER PIC X(10) VALUE "DEPARTMENT".
015800 05 FILLER PIC X(1) VALUE SPACE.

015900 05 FILLER PIC X(8) VALUE "CATEGORY".
016000 05 FILLER PIC X(1) VALUE SPACE.
016100 05 FILLER PIC X(15) VALUE SPACE.
016200 05 FILLER PIC X(5) VALUE SPACE.
016300 05 FILLER PIC X(6) VALUE "AMOUNT".
016400
016500 01 TITLE-LINE.
016600 05 FILLER PIC X(4) VALUE "RUN:".
016700 05 FORMATTED-RUN-DATE PIC X(10).
016800 05 FILLER PIC X(4) VALUE " AT ".
016900 05 FORMATTED-RUN-TIME PIC X(8).
017000 05 FILLER PIC X(10) VALUE SPACE.
017100 05 FILLER PIC X(12)
017200 VALUE "SALES REPORT".
017300 05 FILLER PIC X(10) VALUE SPACE.
017400 05 FILLER PIC X(5) VALUE "PAGE:".
017500 05 FILLER PIC X(1) VALUE SPACE.
017600 05 PRINT-PAGE-NUMBER PIC ZZZ9.
017700
017800 01 TOTAL-LINE.
017900 05 FILLER PIC X(11) VALUE SPACE.
018000 05 TOTAL-TYPE PIC X(8).
018100 05 FILLER PIC X(1) VALUE SPACE.
018200 05 TOTAL-NUMBER PIC Z9.
018300 05 FILLER PIC X(1) VALUE SPACE.
018400 05 TOTAL-NAME PIC X(15) VALUE SPACE.
018500 05 FILLER PIC X(1) VALUE SPACE.
018600 05 TOTAL-LITERAL PIC X(5) VALUE "TOTAL".
018700 05 FILLER PIC X(1) VALUE SPACE.
018800 05 PRINT-TOTAL PIC ZZZ,ZZ9.99-.
018900
019000 77 GRAND-TOTAL-LITERAL PIC X(8) VALUE " GRAND".
019100 77 STORE-TOTAL-LITERAL PIC X(8) VALUE " STORE".
019200 77 DIVISION-TOTAL-LITERAL PIC X(8) VALUE "DIVISION".
019300 77 DEPARTMENT-TOTAL-LITERAL PIC X(8) VALUE " DEPT".
019400
019500 77 WORK-FILE-AT-END PIC X.
019600
019700 77 LINE-COUNT PIC 999 VALUE ZERO.
019800 77 PAGE-NUMBER PIC 9999 VALUE ZERO.
019900 77 MAXIMUM-LINES PIC 999 VALUE 55.
020000
020100 77 RECORD-COUNT PIC 9999 VALUE ZEROES.
020200
020300* Control break current values for store, division
020400* department.
020500 77 CURRENT-STORE PIC 99.
020600 77 CURRENT-DIVISION PIC 99.
020700 77 CURRENT-DEPARTMENT PIC 99.

020800
020900* Control break accumulators
021000* GRAND TOTAL is the level 1 accumulator for the whole file
021100* STORE TOTAL is the level 2 accumulator
021200* DIVISION TOTAL is the level 3 accumulator
021300* DEPARTMENT TOTAL is the level 4 accumulator.
021400 77 GRAND-TOTAL PIC S9(6)V99.
021500 77 STORE-TOTAL PIC S9(6)V99.
021600 77 DIVISION-TOTAL PIC S9(6)V99.
021700 77 DEPARTMENT-TOTAL PIC S9(6)V99.
021800
021900* System date and time
022000 77 RUN-DATE PIC 9(6).
022100 77 RUN-TIME PIC 9(8).
022200
022300*--------------------------------
022400* Fields for date routines.
022500*--------------------------------
022600 77 FORMATTED-DATE PIC Z9/99/9999.
022700 77 DATE-MMDDCCYY PIC 9(8).
022800 01 DATE-CCYYMMDD PIC 9(8).
022900 01 FILLER REDEFINES DATE-CCYYMMDD.
023000 05 DATE-CC PIC 99.
023100 05 DATE-YY PIC 99.
023200 05 DATE-MM PIC 99.
023300 05 DATE-DD PIC 99.
023400
023500*--------------------------------
023600* Fields for TIME routines.
023700*--------------------------------
023800 77 FORMATTED-TIME PIC Z9/99/99.
023900
024000 01 TIME-HHMMSS PIC 9(6).
024100 01 FILLER REDEFINES TIME-HHMMSS.
024200 05 TIME-HH PIC 99.
024300 05 TIME-MM PIC 99.
024400 05 TIME-SS PIC 99.
024500
024600 PROCEDURE DIVISION.
024700 PROGRAM-BEGIN.
024800
024900 PERFORM OPENING-PROCEDURE.
025000 PERFORM MAIN-PROCESS.
025100 PERFORM CLOSING-PROCEDURE.
025200
025300 PROGRAM-EXIT.
025400 EXIT PROGRAM.
025500
025600 PROGRAM-DONE.

025700 STOP RUN.
025800
025900 OPENING-PROCEDURE.
026000
026100 OPEN OUTPUT PRINTER-FILE.
026200
026300 MAIN-PROCESS.
026400 PERFORM GET-OK-TO-PROCESS.
026500 PERFORM PROCESS-THE-FILE
026600 UNTIL OK-TO-PROCESS = "N".
026700
026800 CLOSING-PROCEDURE.
026900 CLOSE PRINTER-FILE.
027000
027100 GET-OK-TO-PROCESS.
027200 PERFORM ACCEPT-OK-TO-PROCESS.
027300 PERFORM RE-ACCEPT-OK-TO-PROCESS
027400 UNTIL OK-TO-PROCESS = "Y" OR "N".
027500
027600 ACCEPT-OK-TO-PROCESS.
027700 DISPLAY "PRINT SALES REPORT (Y/N)?".
027800 ACCEPT OK-TO-PROCESS.
027900 INSPECT OK-TO-PROCESS
028000 CONVERTING LOWER-ALPHA
028100 TO UPPER-ALPHA.
028200
028300 RE-ACCEPT-OK-TO-PROCESS.
028400 DISPLAY "YOU MUST ENTER YES OR NO".
028500 PERFORM ACCEPT-OK-TO-PROCESS.
028600
028700 PROCESS-THE-FILE.
028800 PERFORM START-THE-FILE.
028900 PERFORM PRINT-ONE-REPORT.
029000 PERFORM END-THE-FILE.
029100
029200* PERFORM GET-OK-TO-PROCESS.
029300 MOVE "N" TO OK-TO-PROCESS.
029400
029500 START-THE-FILE.
029600 PERFORM SORT-DATA-FILE.
029700 OPEN INPUT WORK-FILE.
029800
029900 END-THE-FILE.
030000 CLOSE WORK-FILE.
030100
030200 SORT-DATA-FILE.
030300 SORT SORT-FILE
030400 ON ASCENDING KEY SORT-STORE
030500 ASCENDING KEY SORT-DIVISION

030600 ASCENDING KEY SORT-DEPARTMENT
030700 ASCENDING KEY SORT-CATEGORY
030800 USING SALES-FILE
030900 GIVING WORK-FILE.
031000
031100* LEVEL 1 CONTROL BREAK
031200 PRINT-ONE-REPORT.
031300 PERFORM START-ONE-REPORT.
031400 PERFORM PROCESS-ALL-STORES
031500 UNTIL WORK-FILE-AT-END = "Y".
031600 PERFORM END-ONE-REPORT.
031700
031800 START-ONE-REPORT.
031900 PERFORM READ-FIRST-VALID-WORK.
032000 MOVE ZEROES TO GRAND-TOTAL.
032100
032200 PERFORM START-NEW-REPORT.
032300
032400 START-NEW-REPORT.
032500 MOVE SPACE TO DETAIL-LINE.
032600 MOVE ZEROES TO LINE-COUNT PAGE-NUMBER.
032700
032800 ACCEPT RUN-DATE FROM DATE.
032900 MOVE RUN-DATE TO DATE-CCYYMMDD.
033000 IF DATE-YY > 90
033100 MOVE 19 TO DATE-CC
033200 ELSE
033300 MOVE 20 TO DATE-CC.
033400
033500 PERFORM FORMAT-THE-DATE.
033600 MOVE FORMATTED-DATE TO FORMATTED-RUN-DATE.
033700
033800 ACCEPT RUN-TIME FROM TIME.
033900 COMPUTE TIME-HHMMSS = RUN-TIME / 100.
034000 PERFORM FORMAT-THE-TIME.
034100 MOVE FORMATTED-TIME TO FORMATTED-RUN-TIME.
034200
034300
034400 END-ONE-REPORT.
034500 IF RECORD-COUNT = ZEROES
034600 MOVE "NO RECORDS FOUND" TO PRINTER-RECORD
034700 PERFORM WRITE-TO-PRINTER
034800 ELSE
034900 PERFORM PRINT-GRAND-TOTAL.
035000
035100 PERFORM END-LAST-PAGE.
035200
035300 PRINT-GRAND-TOTAL.
035400 MOVE SPACE TO TOTAL-LINE.

035500 MOVE GRAND-TOTAL TO PRINT-TOTAL.
035600 MOVE GRAND-TOTAL-LITERAL TO TOTAL-TYPE.
035700 MOVE "TOTAL" TO TOTAL-LITERAL.
035800 MOVE TOTAL-LINE TO PRINTER-RECORD.
035900 PERFORM WRITE-TO-PRINTER.
036000 PERFORM LINE-FEED 2 TIMES.
036100 MOVE SPACE TO DETAIL-LINE.
036200
036300* LEVEL 2 CONTROL BREAK
036400 PROCESS-ALL-STORES.
036500 PERFORM START-ONE-STORE.
036600
036700 PERFORM PROCESS-ALL-DIVISIONS
036800 UNTIL WORK-FILE-AT-END = "Y"
036900 OR WORK-STORE NOT = CURRENT-STORE.
037000
037100 PERFORM END-ONE-STORE.
037200
037300 START-ONE-STORE.
037400 MOVE WORK-STORE TO CURRENT-STORE.
037500 MOVE ZEROES TO STORE-TOTAL.
037600 MOVE WORK-STORE TO PRINT-STORE.
037700
037800 PERFORM START-NEXT-PAGE.
037900
038000 END-ONE-STORE.
038100 PERFORM PRINT-STORE-TOTAL.
038200 ADD STORE-TOTAL TO GRAND-TOTAL.
038300
038400 PRINT-STORE-TOTAL.
038500 MOVE SPACE TO TOTAL-LINE.
038600 MOVE STORE-TOTAL TO PRINT-TOTAL.
038700 MOVE CURRENT-STORE TO TOTAL-NUMBER.
038800 MOVE STORE-TOTAL-LITERAL TO TOTAL-TYPE.
038900 MOVE "TOTAL" TO TOTAL-LITERAL.
039000 MOVE TOTAL-LINE TO PRINTER-RECORD.
039100 PERFORM WRITE-TO-PRINTER.
039200 PERFORM LINE-FEED.
039300 MOVE SPACE TO DETAIL-LINE.
039400
039500* LEVEL 3 CONTROL BREAK
039600 PROCESS-ALL-DIVISIONS.
039700 PERFORM START-ONE-DIVISION.
039800
039900 PERFORM PROCESS-ALL-DEPARTMENTS
040000 UNTIL WORK-FILE-AT-END = "Y"
040100 OR WORK-STORE NOT = CURRENT-STORE
040200 OR WORK-DIVISION NOT = CURRENT-DIVISION.
040300

040400 PERFORM END-ONE-DIVISION.
040500
040600 START-ONE-DIVISION.
040700 MOVE WORK-DIVISION TO CURRENT-DIVISION.
040800 MOVE ZEROES TO DIVISION-TOTAL.
040900 MOVE WORK-DIVISION TO PRINT-DIVISION.
041000
041100 END-ONE-DIVISION.
041200 PERFORM PRINT-DIVISION-TOTAL.
041300 ADD DIVISION-TOTAL TO STORE-TOTAL.
041400
041500 PRINT-DIVISION-TOTAL.
041600 MOVE SPACE TO TOTAL-LINE.
041700 MOVE DIVISION-TOTAL TO PRINT-TOTAL.
041800 MOVE CURRENT-DIVISION TO TOTAL-NUMBER.
041900 MOVE DIVISION-TOTAL-LITERAL TO TOTAL-TYPE.
042000 MOVE "TOTAL" TO TOTAL-LITERAL.
042100 PERFORM LOAD-DIVISION-NAME.
042200 MOVE TOTAL-LINE TO PRINTER-RECORD.
042300 PERFORM WRITE-TO-PRINTER.
042400 PERFORM LINE-FEED.
042500 MOVE SPACE TO DETAIL-LINE.
042600
042700 LOAD-DIVISION-NAME.
042800 SET DIVISION-INDEX TO 1.
042900 SEARCH DIVISION-TABLE
043000 AT END
043100 MOVE "NOT FOUND" TO TOTAL-NAME
043200 WHEN
043300 DIVISION-NUMBER(DIVISION-INDEX) =
043400 CURRENT-DIVISION
043500 MOVE DIVISION-NAME(DIVISION-INDEX) TO
043600 TOTAL-NAME.
043700
043800* LEVEL 4 CONTROL BREAK
043900 PROCESS-ALL-DEPARTMENTS.
044000 PERFORM START-ONE-DEPARTMENT.
044100
044200 PERFORM PROCESS-ALL-CATEGORIES
044300 UNTIL WORK-FILE-AT-END = "Y"
044400 OR WORK-STORE NOT = CURRENT-STORE
044500 OR WORK-DIVISION NOT = CURRENT-DIVISION
044600 OR WORK-DEPARTMENT NOT = CURRENT-DEPARTMENT.
044700
044800 PERFORM END-ONE-DEPARTMENT.
044900
045000 START-ONE-DEPARTMENT.
045100 MOVE WORK-DEPARTMENT TO CURRENT-DEPARTMENT.
045200 MOVE ZEROES TO DEPARTMENT-TOTAL.

045300 MOVE WORK-DEPARTMENT TO PRINT-DEPARTMENT.
045400
045500 END-ONE-DEPARTMENT.
045600 PERFORM PRINT-DEPARTMENT-TOTAL.
045700 ADD DEPARTMENT-TOTAL TO DIVISION-TOTAL.
045800
045900 PRINT-DEPARTMENT-TOTAL.
046000 MOVE SPACE TO TOTAL-LINE.
046100 MOVE DEPARTMENT-TOTAL TO PRINT-TOTAL.
046200 MOVE CURRENT-DEPARTMENT TO TOTAL-NUMBER.
046300 MOVE DEPARTMENT-TOTAL-LITERAL TO TOTAL-TYPE.
046400 MOVE "TOTAL" TO TOTAL-LITERAL.
046500 PERFORM LOAD-DEPARTMENT-NAME.
046600 MOVE TOTAL-LINE TO PRINTER-RECORD.
046700 PERFORM WRITE-TO-PRINTER.
046800 PERFORM LINE-FEED.
046900 MOVE SPACE TO DETAIL-LINE.
047000
047100 LOAD-DEPARTMENT-NAME.
047200 SET DEPARTMENT-INDEX TO 1.
047300 SEARCH DEPARTMENT-TABLE
047400 AT END
047500 MOVE "NOT FOUND" TO TOTAL-NAME
047600 WHEN
047700 DEPARTMENT-NUMBER(DEPARTMENT-INDEX) =
047800 CURRENT-DEPARTMENT
047900 MOVE DEPARTMENT-NAME(DEPARTMENT-INDEX) TO
048000 TOTAL-NAME.
048100
048200* PROCESS ONE RECORD LEVEL
048300 PROCESS-ALL-CATEGORIES.
048400 PERFORM PROCESS-THIS-CATEGORY.
048500 ADD WORK-AMOUNT TO DEPARTMENT-TOTAL.
048600 ADD 1 TO RECORD-COUNT.
048700 PERFORM READ-NEXT-VALID-WORK.
048800
048900 PROCESS-THIS-CATEGORY.
049000 IF LINE-COUNT > MAXIMUM-LINES
049100 PERFORM START-NEXT-PAGE.
049200 PERFORM PRINT-THE-RECORD.
049300
049400 PRINT-THE-RECORD.
049500 MOVE WORK-CATEGORY TO PRINT-CATEGORY.
049600
049700 PERFORM LOAD-CATEGORY-NAME.
049800
049900 MOVE WORK-AMOUNT TO PRINT-AMOUNT.
050000
050100 MOVE DETAIL-LINE TO PRINTER-RECORD.

050200 PERFORM WRITE-TO-PRINTER.
050300 MOVE SPACE TO DETAIL-LINE.
050400
050500 LOAD-CATEGORY-NAME.
050600 SET CATEGORY-INDEX TO 1.
050700 SEARCH CATEGORY-TABLE
050800 AT END
050900 MOVE "NOT FOUND" TO TOTAL-NAME
051000 WHEN
051100 CATEGORY-NUMBER(CATEGORY-INDEX) =
051200 WORK-CATEGORY
051300 MOVE CATEGORY-NAME(CATEGORY-INDEX) TO
051400 PRINT-CATEGORY-NAME.
051500
051600* PRINTING ROUTINES
051700 WRITE-TO-PRINTER.
051800 WRITE PRINTER-RECORD BEFORE ADVANCING 1.
051900 ADD 1 TO LINE-COUNT.
052000
052100 LINE-FEED.
052200 MOVE SPACE TO PRINTER-RECORD.
052300 PERFORM WRITE-TO-PRINTER.
052400
052500 START-NEXT-PAGE.
052600 PERFORM END-LAST-PAGE.
052700 PERFORM START-NEW-PAGE.
052800
052900 START-NEW-PAGE.
053000 ADD 1 TO PAGE-NUMBER.
053100 MOVE PAGE-NUMBER TO PRINT-PAGE-NUMBER.
053200 MOVE TITLE-LINE TO PRINTER-RECORD.
053300 PERFORM WRITE-TO-PRINTER.
053400 PERFORM LINE-FEED.
053500 MOVE LEGEND-LINE TO PRINTER-RECORD.
053600 PERFORM WRITE-TO-PRINTER.
053700 PERFORM LINE-FEED.
053800 MOVE COLUMN-LINE TO PRINTER-RECORD.
053900 PERFORM WRITE-TO-PRINTER.
054000 PERFORM LINE-FEED.
054100
054200 END-LAST-PAGE.
054300 IF PAGE-NUMBER > 0
054400 PERFORM FORM-FEED.
054500 MOVE ZERO TO LINE-COUNT.
054600
054700 FORM-FEED.
054800 MOVE SPACE TO PRINTER-RECORD.
054900 WRITE PRINTER-RECORD BEFORE ADVANCING PAGE.
055000

055100*--------------------------------
055200* Read first, read next routines
055300*--------------------------------
055400 READ-FIRST-VALID-WORK.
055500 PERFORM READ-NEXT-VALID-WORK.
055600
055700 READ-NEXT-VALID-WORK.
055800 PERFORM READ-NEXT-WORK-RECORD.
055900
056000 READ-NEXT-WORK-RECORD.
056100 MOVE "N" TO WORK-FILE-AT-END.
056200 READ WORK-FILE NEXT RECORD
056300 AT END MOVE "Y" TO WORK-FILE-AT-END.
056400
056500* Date and time routines
056600 FORMAT-THE-DATE.
056700 PERFORM CONVERT-TO-MMDDCCYY.
056800 MOVE DATE-MMDDCCYY TO FORMATTED-DATE.
056900
057000 CONVERT-TO-MMDDCCYY.
057100 COMPUTE DATE-MMDDCCYY =
057200 DATE-CCYYMMDD * 10000.0001.
057300
057400 FORMAT-THE-TIME.
057500 MOVE TIME-HHMMSS TO FORMATTED-TIME.
057600 INSPECT FORMATTED-TIME
057700 REPLACING ALL "/" BY ":".
057800

OUTPUT:

The output of slsrpt04.cbl shows a run date and time printed at the top of the report with each title line:

RUN: 2/19/1997 AT 17:14:59 SALES REPORT PAGE: 1

STORE: 1

DIVISION DEPARTMENT CATEGORY AMOUNT

 1 1 1 WEIGHTS 237.57
 2 MACHINES 475.14
 DEPT 1 EXERCISE TOTAL 712.71

 2 3 SUN GLASSES 712.71
 4 VITAMINS 50.28
 DEPT 2 MISCELLANEOUS TOTAL 762.99

 DIVISION 1 ATHLETICS TOTAL 1,475.70

 2 3 5 MEN'S CLOTHES 287.85
 6 WOMEN'S CLOTHES 525.42

 DEPT 3 SPORT CLOTHES TOTAL 813.27

 4 7 TENNIS 762.99
 8 SOCCER 100.56
 DEPT 4 EQUIPMENT TOTAL 863.55

 DIVISION 2 SPORTING GOODS TOTAL 1,676.82

 3 5 9 TENTS 338.13
 10 SLEEPING BAGS 575.70
 DEPT 5 CAMP EQUIPMENT TOTAL 913.83

 6 11 CLOTHING 86.73-
 12 HIKING BOOTS 150.84
 DEPT 6 CAMPING CLOTHES TOTAL 64.11

 DIVISION 3 CAMPING TOTAL 977.94

 STORE 1 TOTAL 4,130.46
RUN: 2/19/1997 AT 17:14:59 SALES REPORT PAGE: 2

STORE: 2

DIVISION DEPARTMENT CATEGORY AMOUNT

 1 1 1 WEIGHTS 388.41
 2 MACHINES 625.98
 DEPT 1 EXERCISE TOTAL 1,014.39

 2 3 SUN GLASSES 36.45-
 4 VITAMINS 201.12
 DEPT 2 MISCELLANEOUS TOTAL 164.67

 DIVISION 1 ATHLETICS TOTAL 1,179.06

 2 3 5 MEN'S CLOTHES 438.69
 6 WOMEN'S CLOTHES 676.26
 DEPT 3 SPORT CLOTHES TOTAL 1,114.95

 4 7 TENNIS 13.83
 8 SOCCER 251.40
 DEPT 4 EQUIPMENT TOTAL 265.23

 DIVISION 2 SPORTING GOODS TOTAL 1,380.18

 3 5 9 TENTS 488.97
 10 SLEEPING BAGS 726.54
 DEPT 5 CAMP EQUIPMENT TOTAL 1,215.51

 6 11 CLOTHING 64.11
 12 HIKING BOOTS 301.68
 DEPT 6 CAMPING CLOTHES TOTAL 365.79

 DIVISION 3 CAMPING TOTAL 1,581.30

 STORE 2 TOTAL 4,140.54
RUN: 2/19/1997 AT 17:14:59 SALES REPORT PAGE: 3

STORE: 3

DIVISION DEPARTMENT CATEGORY AMOUNT

 1 1 1 WEIGHTS 539.25
 2 MACHINES 776.82
 DEPT 1 EXERCISE TOTAL 1,316.07

 2 3 SUN GLASSES 114.39
 4 VITAMINS 351.96
 DEPT 2 MISCELLANEOUS TOTAL 466.35

 DIVISION 1 ATHLETICS TOTAL 1,782.42

 2 3 5 MEN'S CLOTHES 589.53
 6 WOMEN'S CLOTHES 72.90-
 DEPT 3 SPORT CLOTHES TOTAL 516.63

 4 7 TENNIS 164.67
 8 SOCCER 402.24
 DEPT 4 EQUIPMENT TOTAL 566.91

 DIVISION 2 SPORTING GOODS TOTAL 1,083.54

 3 5 9 TENTS 639.81
 10 SLEEPING BAGS 22.62-
 DEPT 5 CAMP EQUIPMENT TOTAL 617.19

 6 11 CLOTHING 214.95
 12 HIKING BOOTS 452.52
 DEPT 6 CAMPING CLOTHES TOTAL 667.47

 DIVISION 3 CAMPING TOTAL 1,284.66

 STORE 3 TOTAL 4,150.62
RUN: 2/19/1997 AT 17:14:59 SALES REPORT PAGE: 4

STORE: 4

DIVISION DEPARTMENT CATEGORY AMOUNT

 1 1 1 WEIGHTS 690.09
 2 MACHINES 27.66
 DEPT 1 EXERCISE TOTAL 717.75

 2 3 SUN GLASSES 265.23
 4 VITAMINS 502.80
 DEPT 2 MISCELLANEOUS TOTAL 768.03

 DIVISION 1 ATHLETICS TOTAL 1,485.78

 2 3 5 MEN'S CLOTHES 740.37
 6 WOMEN'S CLOTHES 77.94
 DEPT 3 SPORT CLOTHES TOTAL 818.31

 4 7 TENNIS 315.51
 8 SOCCER 553.08
 DEPT 4 EQUIPMENT TOTAL 868.59

 DIVISION 2 SPORTING GOODS TOTAL 1,686.90

 3 5 9 TENTS 790.65
 10 SLEEPING BAGS 128.22
 DEPT 5 CAMP EQUIPMENT TOTAL 918.87

 6 11 CLOTHING 365.79
 12 HIKING BOOTS 603.36
 DEPT 6 CAMPING CLOTHES TOTAL 969.15

 DIVISION 3 CAMPING TOTAL 1,888.02

 STORE 4 TOTAL 5,060.70
RUN: 2/19/1997 AT 17:14:59 SALES REPORT PAGE: 5

STORE: 5

DIVISION DEPARTMENT CATEGORY AMOUNT

 1 1 1 WEIGHTS 59.07-
 2 MACHINES 178.50
 DEPT 1 EXERCISE TOTAL 119.43

 2 3 SUN GLASSES 416.07
 4 VITAMINS 653.64
 DEPT 2 MISCELLANEOUS TOTAL 1,069.71

 DIVISION 1 ATHLETICS TOTAL 1,189.14

 2 3 5 MEN'S CLOTHES 8.79-

 6 WOMEN'S CLOTHES 228.78
 DEPT 3 SPORT CLOTHES TOTAL 219.99

 4 7 TENNIS 466.35
 8 SOCCER 703.92
 DEPT 4 EQUIPMENT TOTAL 1,170.27

 DIVISION 2 SPORTING GOODS TOTAL 1,390.26

 3 5 9 TENTS 41.49
 10 SLEEPING BAGS 279.06
 DEPT 5 CAMP EQUIPMENT TOTAL 320.55

 6 11 CLOTHING 516.63
 12 HIKING BOOTS 754.20
 DEPT 6 CAMPING CLOTHES TOTAL 1,270.83

 DIVISION 3 CAMPING TOTAL 1,591.38

 STORE 5 TOTAL 4,170.78
RUN: 2/19/1997 AT 17:14:59 SALES REPORT PAGE: 6

STORE: 6

DIVISION DEPARTMENT CATEGORY AMOUNT

 1 1 1 WEIGHTS 91.77
 2 MACHINES 329.34
 DEPT 1 EXERCISE TOTAL 421.11

 2 3 SUN GLASSES 566.91
 4 VITAMINS 95.52-
 DEPT 2 MISCELLANEOUS TOTAL 471.39

 DIVISION 1 ATHLETICS TOTAL 892.50

 2 3 5 MEN'S CLOTHES 142.05
 6 WOMEN'S CLOTHES 379.62
 DEPT 3 SPORT CLOTHES TOTAL 521.67

 4 7 TENNIS 617.19
 8 SOCCER 45.24-
 DEPT 4 EQUIPMENT TOTAL 571.95

 DIVISION 2 SPORTING GOODS TOTAL 1,093.62

 3 5 9 TENTS 192.33
 10 SLEEPING BAGS 429.90
 DEPT 5 CAMP EQUIPMENT TOTAL 622.23

 6 11 CLOTHING 667.47
 12 HIKING BOOTS 5.04
 DEPT 6 CAMPING CLOTHES TOTAL 672.51

 DIVISION 3 CAMPING TOTAL 1,294.74

 STORE 6 TOTAL 3,280.86

 GRAND TOTAL 24,933.96

ANALYSIS: At lines 016500-017600, TITLE-LINE has been modified to allow room for a run date and
time.

Variables for extracting the date and time and formatting them are defined at lines 021900-024400. The
extraction and formatting of the date and time are done in START-NEW-REPORT, which begins at line 032400.

At lines 032800 and 032900, RUN-DATE is accepted from DATE and moved to DATE-CCYYMMDD.

Because you accept the current date, the year portion of the date will come back as 94. When the year turns over,
it will return as 95, and so on up to 1999. In the year 2000, the year portion of the date will come back as 00, then
01, and so on. The effect of this is that we have to assume that any year from 94 through 99 is 1994 through 1999.
Sometime when the century turns, the years will start coming back as 00, 01, and so on. If the year is greater than
90, then the first two digits must be 19; otherwise, they are set to 20. This logic appears at lines
033000-033300. The date is formatted at line 033500 and then moved into the title line at line 033600. Of
course, in about 110 years this program won't work correctly.

At line 033800, RUN-TIME is accepted from TIME. This time had hundredths that are not needed, so it is
computed into TIME-HHMMSS by dividing it by 100. At lines 034000 and 034100, the time is formatted and
moved into the title line.

Lines 056500-057700 contain the routines for formatting the date and time.

Computational Fields
Numbers are stored in COBOL in several different ways. The methods used were chosen as compromises
between speed of calculation and saving space in memory.

In all the programs you have worked on so far, you have used a type of storage called zoned. This is the default
storage for a number in COBOL:

01 A-NUMBER PIC S9(5)V99.

This definition creates zoned numeric storage. Each digit in the number uses one byte of storage; the sign and
decimal point do not use any space.

The decimal point is saved in the PIC, and the sign is saved by combining it with the first or last digit of the
number. The first or last digit in a zoned field actually is a code that represents both the digit value and the sign.
The field is 7 bytes long.

The other main type of storage used in COBOL is called computational. The most common form of
computational storage is COMPUTATIONAL-3 or COMP-3. This is so common that it frequently is just called
"comp" by programmers, even though different COBOL versions require that it be called COMP-3. In some

versions of COBOL, it is the only version of computational storage that is supported.

Computational storage comes in many different types, and is used to squeeze more than one digit into a byte. Just
as the sign and a digit of a zoned field are encoded into a single byte, computational takes this encoding even
further.

A COMP-3 field is created by adding COMP-3 after the picture:

01 A-NUMBER PIC S9(5)V99 COMP-3.

In versions of COBOL that support only COMPUTATIONAL-3, you might be required only to add COMP after the
picture:

01 A-NUMBER PIC S9(5)V99 COMP.

ACUCOBOL, Micro Focus Personal COBOL, LPI COBOL, and VAX COBOL all require that the field be
named COMP-3.

A computational field can be treated like any other numeric field in all respects. The only difference in a
computational field is the number of bytes used for the storage of a number.

You should know how to determine the size of a COMP-3 field for counting record lengths and table sizes. The
digits and sign of a COMP-3 field are stored two to a byte. If the picture does not contain a sign, a sign is still
created for the storage.

The steps for calculating the size of a COMP-3 field are simple:

1. Count the number of digits in the number.

2. Add 1 for the sign (even if the number does not have a sign in the PICTURE).

3. If the result is an odd number, add 1 to make it even.

4. Divide this result by 2.

Step 3 is used because a byte cannot be split. If the total number of digits and sign equals 7, the number would be
stored in 3 1/2 bytes, except that a byte cannot be split. Rounding up to an even number always makes the result
divisible by 2. Table B2.2 shows the steps for calculating the size of a PIC 9(8) COMP-3 definition.

Table B2.2. Calculating the size of PIC 9 (8) COMP-3 field.

Step Function Result

Beginning total number of digits 8

Add 1 for the sign (even though not in PIC) + 1

Calculate the result = 9

Round up to the next even number + 1

Calculate the new result = 10

Divide by 2 / 2

The number of bytes used by ANOTHER-NUMBER = 5

Computational storage is frequently used to reduce the size of a file. The size of accounting files that contain
many numeric fields can be drastically reduced by converting zone numeric fields to computational fields.

Numbering Paragraphs
Paragraph numbering is not required by the COBOL language, but it is a style that is used so commonly that you
should see an example of it to be familiar with it.

The basic idea of paragraph numbering is that the program is a series of layers. The top layer performs one or
more routines in the next lower layer, the second layer performs one or more routines in the next lower layer, and
so on. The paragraphs in each layer are given related paragraph numbers and are kept together in the source code
file to make reading and analyzing easier. The numbers help to keep the paragraphs together physically on the
page, and help to indicate the relationships between various routines quickly.

Listing B2.18 is an example of a numbered paragraph listing. It was created by using slsprt04.cbl as the base and
renaming it slsrpt05.cbl. Note that the general-purpose routines starting at line 051600 are not numbered.
They could be left unnumbered or given general-purpose numbers to indicate that they are utility routines, such as
G000-WRITE-TO-PRINTER (G for general routine) or P000-WRITE-TO-PRINTER (P for print routine).

TYPE: Listing B2.18. Numbered paragraphs.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. SLSRPT05.
000300*--------------------------------
000400* Print test sales data
000500*--------------------------------
000600 ENVIRONMENT DIVISION.
000700 INPUT-OUTPUT SECTION.
000800 FILE-CONTROL.
000900
001000*--------------------------------
001100* SLSALES.CBL
001200*--------------------------------
001300 SELECT SALES-FILE
001400 ASSIGN TO "SALES"
001500 ORGANIZATION IS SEQUENTIAL.
001600
001700 SELECT WORK-FILE
001800 ASSIGN TO "WORK"
001900 ORGANIZATION IS SEQUENTIAL.
002000
002100 SELECT SORT-FILE
002200 ASSIGN TO "SORT".
002300
002400 SELECT PRINTER-FILE
002500 ASSIGN TO PRINTER
002600 ORGANIZATION IS LINE SEQUENTIAL.
002700
002800 DATA DIVISION.
002900 FILE SECTION.
003000
003100*--------------------------------
003200* FDSALES.CBL

003300* Temporary daily sales file.
003400*--------------------------------
003500 FD SALES-FILE
003600 LABEL RECORDS ARE STANDARD.
003700 01 SALES-RECORD.
003800 05 SALES-STORE PIC 9(2).
003900 05 SALES-DIVISION PIC 9(2).
004000 05 SALES-DEPARTMENT PIC 9(2).
004100 05 SALES-CATEGORY PIC 9(2).
004200 05 SALES-AMOUNT PIC S9(6)V99.
004300
004400 FD WORK-FILE
004500 LABEL RECORDS ARE STANDARD.
004600 01 WORK-RECORD.
004700 05 WORK-STORE PIC 9(2).
004800 05 WORK-DIVISION PIC 9(2).
004900 05 WORK-DEPARTMENT PIC 9(2).
005000 05 WORK-CATEGORY PIC 9(2).
005100 05 WORK-AMOUNT PIC S9(6)V99.
005200
005300 SD SORT-FILE
005400 LABEL RECORDS ARE STANDARD.
005500 01 SORT-RECORD.
005600 05 SORT-STORE PIC 9(2).
005700 05 SORT-DIVISION PIC 9(2).
005800 05 SORT-DEPARTMENT PIC 9(2).
005900 05 SORT-CATEGORY PIC 9(2).
006000 05 SORT-AMOUNT PIC S9(6)V99.
006100
006200 FD PRINTER-FILE
006300 LABEL RECORDS ARE OMITTED.
006400 01 PRINTER-RECORD PIC X(80).
006500
006600 WORKING-STORAGE SECTION.
006700
006800 01 THE-DIVISIONS.
006900 05 FILLER PIC 99 VALUE 01.
007000 05 FILLER PIC X(15) VALUE "ATHLETICS".
007100 05 FILLER PIC 99 VALUE 02.
007200 05 FILLER PIC X(15) VALUE "SPORTING GOODS".
007300 05 FILLER PIC 99 VALUE 03.
007400 05 FILLER PIC X(15) VALUE "CAMPING".
007500 01 FILLER REDEFINES THE-DIVISIONS.
007600 05 DIVISION-TABLE OCCURS 3 TIMES
007700 INDEXED BY DIVISION-INDEX.
007800 10 DIVISION-NUMBER PIC 99.
007900 10 DIVISION-NAME PIC X(15).
008000
008100 01 THE-DEPARTMENTS.

008200 05 FILLER PIC 99 VALUE 01.
008300 05 FILLER PIC X(15) VALUE "EXERCISE".
008400 05 FILLER PIC 99 VALUE 02.
008500 05 FILLER PIC X(15) VALUE "MISCELLANEOUS".
008600 05 FILLER PIC 99 VALUE 03.
008700 05 FILLER PIC X(15) VALUE "SPORT CLOTHES".
008800 05 FILLER PIC 99 VALUE 04.
008900 05 FILLER PIC X(15) VALUE "EQUIPMENT".
009000 05 FILLER PIC 99 VALUE 05.
009100 05 FILLER PIC X(15) VALUE "CAMP EQUIPMENT".
009200 05 FILLER PIC 99 VALUE 06.
009300 05 FILLER PIC X(15) VALUE "CAMPING CLOTHES".
009400 01 FILLER REDEFINES THE-DEPARTMENTS.
009500 05 DEPARTMENT-TABLE OCCURS 6 TIMES
009600 INDEXED BY DEPARTMENT-INDEX.
009700 10 DEPARTMENT-NUMBER PIC 99.
009800 10 DEPARTMENT-NAME PIC X(15).
009900
010000 01 THE-CATEGORIES.
010100 05 FILLER PIC 99 VALUE 01.
010200 05 FILLER PIC X(15) VALUE "WEIGHTS".
010300 05 FILLER PIC 99 VALUE 02.
010400 05 FILLER PIC X(15) VALUE "MACHINES".
010500 05 FILLER PIC 99 VALUE 03.
010600 05 FILLER PIC X(15) VALUE "SUN GLASSES".
010700 05 FILLER PIC 99 VALUE 04.
010800 05 FILLER PIC X(15) VALUE "VITAMINS".
010900 05 FILLER PIC 99 VALUE 05.
011000 05 FILLER PIC X(15) VALUE "MEN'S CLOTHES".
011100 05 FILLER PIC 99 VALUE 06.
011200 05 FILLER PIC X(15) VALUE "WOMEN'S CLOTHES".
011300 05 FILLER PIC 99 VALUE 07.
011400 05 FILLER PIC X(15) VALUE "TENNIS".
011500 05 FILLER PIC 99 VALUE 08.
011600 05 FILLER PIC X(15) VALUE "SOCCER".
011700 05 FILLER PIC 99 VALUE 09.
011800 05 FILLER PIC X(15) VALUE "TENTS".
011900 05 FILLER PIC 99 VALUE 10.
012000 05 FILLER PIC X(15) VALUE "SLEEPING BAGS".
012100 05 FILLER PIC 99 VALUE 11.
012200 05 FILLER PIC X(15) VALUE "CLOTHING".
012300 05 FILLER PIC 99 VALUE 12.
012400 05 FILLER PIC X(15) VALUE "HIKING BOOTS".
012500 01 FILLER REDEFINES THE-CATEGORIES.
012600 05 CATEGORY-TABLE OCCURS 12 TIMES
012700 INDEXED BY CATEGORY-INDEX.
012800 10 CATEGORY-NUMBER PIC 99.
012900 10 CATEGORY-NAME PIC X(15).
013000

013100 77 OK-TO-PROCESS PIC X.
013200
013300 COPY "WSCASE01.CBL".
013400
013500 01 LEGEND-LINE.
013600 05 FILLER PIC X(6) VALUE "STORE:".
013700 05 FILLER PIC X(1) VALUE SPACE.
013800 05 PRINT-STORE PIC Z9.
013900
014000 01 DETAIL-LINE.
014100 05 FILLER PIC X(3) VALUE SPACE.
014200 05 PRINT-DIVISION PIC Z9.
014300 05 FILLER PIC X(4) VALUE SPACE.
014400 05 FILLER PIC X(3) VALUE SPACE.
014500 05 PRINT-DEPARTMENT PIC Z9.
014600 05 FILLER PIC X(6) VALUE SPACE.
014700 05 FILLER PIC X(3) VALUE SPACE.
014800 05 PRINT-CATEGORY PIC Z9.
014900 05 FILLER PIC X(4) VALUE SPACE.
015000 05 PRINT-CATEGORY-NAME PIC X(15).
015100 05 FILLER PIC X(1) VALUE SPACE.
015200 05 PRINT-AMOUNT PIC ZZZ,ZZ9.99-.
015300
015400 01 COLUMN-LINE.
015500 05 FILLER PIC X(8) VALUE "DIVISION".
015600 05 FILLER PIC X(1) VALUE SPACE.
015700 05 FILLER PIC X(10) VALUE "DEPARTMENT".
015800 05 FILLER PIC X(1) VALUE SPACE.
015900 05 FILLER PIC X(8) VALUE "CATEGORY".
016000 05 FILLER PIC X(1) VALUE SPACE.
016100 05 FILLER PIC X(15) VALUE SPACE.
016200 05 FILLER PIC X(5) VALUE SPACE.
016300 05 FILLER PIC X(6) VALUE "AMOUNT".
016400
016500 01 TITLE-LINE.
016600 05 FILLER PIC X(4) VALUE "RUN:".
016700 05 FORMATTED-RUN-DATE PIC X(10).
016800 05 FILLER PIC X(4) VALUE " AT ".
016900 05 FORMATTED-RUN-TIME PIC X(8).
017000 05 FILLER PIC X(10) VALUE SPACE.
017100 05 FILLER PIC X(12)
017200 VALUE "SALES REPORT".
017300 05 FILLER PIC X(10) VALUE SPACE.
017400 05 FILLER PIC X(5) VALUE "PAGE:".
017500 05 FILLER PIC X(1) VALUE SPACE.
017600 05 PRINT-PAGE-NUMBER PIC ZZZ9.
017700
017800 01 TOTAL-LINE.
017900 05 FILLER PIC X(11) VALUE SPACE.

018000 05 TOTAL-TYPE PIC X(8).
018100 05 FILLER PIC X(1) VALUE SPACE.
018200 05 TOTAL-NUMBER PIC Z9.
018300 05 FILLER PIC X(1) VALUE SPACE.
018400 05 TOTAL-NAME PIC X(15) VALUE SPACE.
018500 05 FILLER PIC X(1) VALUE SPACE.
018600 05 TOTAL-LITERAL PIC X(5) VALUE "TOTAL".
018700 05 FILLER PIC X(1) VALUE SPACE.
018800 05 PRINT-TOTAL PIC ZZZ,ZZ9.99-.
018900
019000 77 GRAND-TOTAL-LITERAL PIC X(8) VALUE " GRAND".
019100 77 STORE-TOTAL-LITERAL PIC X(8) VALUE " STORE".
019200 77 DIVISION-TOTAL-LITERAL PIC X(8) VALUE "DIVISION".
019300 77 DEPARTMENT-TOTAL-LITERAL PIC X(8) VALUE " DEPT".
019400
019500 77 WORK-FILE-AT-END PIC X.
019600
019700 77 LINE-COUNT PIC 999 VALUE ZERO.
019800 77 PAGE-NUMBER PIC 9999 VALUE ZERO.
019900 77 MAXIMUM-LINES PIC 999 VALUE 55.
020000
020100 77 RECORD-COUNT PIC 9999 VALUE ZEROES.
020200
020300* Control break current values for store, division
020400* department.
020500 77 CURRENT-STORE PIC 99.
020600 77 CURRENT-DIVISION PIC 99.
020700 77 CURRENT-DEPARTMENT PIC 99.
020800
020900* Control break accumulators
021000* GRAND TOTAL is the level 1 accumulator for the whole file
021100* STORE TOTAL is the level 2 accumulator
021200* DIVISION TOTAL is the level 3 accumulator
021300* DEPARTMENT TOTAL is the level 4 accumulator.
021400 77 GRAND-TOTAL PIC S9(6)V99.
021500 77 STORE-TOTAL PIC S9(6)V99.
021600 77 DIVISION-TOTAL PIC S9(6)V99.
021700 77 DEPARTMENT-TOTAL PIC S9(6)V99.
021800
021900* System date and time
022000 77 RUN-DATE PIC 9(6).
022100 77 RUN-TIME PIC 9(8).
022200
022300*--------------------------------
022400* Fields for date routines.
022500*--------------------------------
022600 77 FORMATTED-DATE PIC Z9/99/9999.
022700 77 DATE-MMDDCCYY PIC 9(8).
022800 01 DATE-CCYYMMDD PIC 9(8).

022900 01 FILLER REDEFINES DATE-CCYYMMDD.
023000 05 DATE-CC PIC 99.
023100 05 DATE-YY PIC 99.
023200 05 DATE-MM PIC 99.
023300 05 DATE-DD PIC 99.
023400
023500*--------------------------------
023600* Fields for TIME routines.
023700*--------------------------------
023800 77 FORMATTED-TIME PIC Z9/99/99.
023900
024000 01 TIME-HHMMSS PIC 9(6).
024100 01 FILLER REDEFINES TIME-HHMMSS.
024200 05 TIME-HH PIC 99.
024300 05 TIME-MM PIC 99.
024400 05 TIME-SS PIC 99.
024500
024600 PROCEDURE DIVISION.
024700 1000-PROGRAM-BEGIN.
024800
024900 PERFORM 1300-OPENING-PROCEDURE.
025000 PERFORM 2000-MAIN-PROCESS.
025100 PERFORM 1400-CLOSING-PROCEDURE.
025200
025300 1100-PROGRAM-EXIT.
025400 EXIT PROGRAM.
025500
025600 1200-PROGRAM-DONE.
025700 STOP RUN.
025800
025900 1300-OPENING-PROCEDURE.
026000
026100 OPEN OUTPUT PRINTER-FILE.
026200
026300 1400-CLOSING-PROCEDURE.
026400 CLOSE PRINTER-FILE.
026500
026600 2000-MAIN-PROCESS.
026700 PERFORM 2100-GET-OK-TO-PROCESS.
026800 PERFORM 3000-PROCESS-THE-FILE
026900 UNTIL OK-TO-PROCESS = "N".
027000
027100 2100-GET-OK-TO-PROCESS.
027200 PERFORM 2110-ACCEPT-OK-TO-PROCESS.
027300 PERFORM 2120-RE-ACCEPT-OK-TO-PROCESS
027400 UNTIL OK-TO-PROCESS = "Y" OR "N".
027500
027600 2110-ACCEPT-OK-TO-PROCESS.
027700 DISPLAY "PRINT SALES REPORT (Y/N)?".

027800 ACCEPT OK-TO-PROCESS.
027900 INSPECT OK-TO-PROCESS
028000 CONVERTING LOWER-ALPHA
028100 TO UPPER-ALPHA.
028200
028300 2120-RE-ACCEPT-OK-TO-PROCESS.
028400 DISPLAY "YOU MUST ENTER YES OR NO".
028500 PERFORM 2110-ACCEPT-OK-TO-PROCESS.
028600
028700 3000-PROCESS-THE-FILE.
028800 PERFORM 3100-START-THE-FILE.
028900 PERFORM 4000-PRINT-ONE-REPORT.
029000 PERFORM 3200-END-THE-FILE.
029100
029200 MOVE "N" TO OK-TO-PROCESS.
029300
029400 3100-START-THE-FILE.
029500 PERFORM 3110-SORT-DATA-FILE.
029600 OPEN INPUT WORK-FILE.
029700
029800 3110-SORT-DATA-FILE.
029900 SORT SORT-FILE
030000 ON ASCENDING KEY SORT-STORE
030100 ASCENDING KEY SORT-DIVISION
030200 ASCENDING KEY SORT-DEPARTMENT
030300 ASCENDING KEY SORT-CATEGORY
030400 USING SALES-FILE
030500 GIVING WORK-FILE.
030600
030700 3200-END-THE-FILE.
030800 CLOSE WORK-FILE.
030900
031000* LEVEL 1 CONTROL BREAK
031100 4000-PRINT-ONE-REPORT.
031200 PERFORM 4100-START-ONE-REPORT.
031300 PERFORM 5000-PROCESS-ALL-STORES
031400 UNTIL WORK-FILE-AT-END = "Y".
031500 PERFORM 4200-END-ONE-REPORT.
031600
031700 4100-START-ONE-REPORT.
031800 PERFORM READ-FIRST-VALID-WORK.
031900 MOVE ZEROES TO GRAND-TOTAL.
032000
032100 PERFORM 4110-START-NEW-REPORT.
032200
032300 4110-START-NEW-REPORT.
032400 MOVE SPACE TO DETAIL-LINE.
032500 MOVE ZEROES TO LINE-COUNT PAGE-NUMBER.
032600

032700 ACCEPT RUN-DATE FROM DATE.
032800 MOVE RUN-DATE TO DATE-CCYYMMDD.
032900 IF DATE-YY > 90
033000 MOVE 19 TO DATE-CC
033100 ELSE
033200 MOVE 20 TO DATE-CC.
033300
033400 PERFORM FORMAT-THE-DATE.
033500 MOVE FORMATTED-DATE TO FORMATTED-RUN-DATE.
033600
033700 ACCEPT RUN-TIME FROM TIME.
033800 COMPUTE TIME-HHMMSS = RUN-TIME / 100.
033900 PERFORM FORMAT-THE-TIME.
034000 MOVE FORMATTED-TIME TO FORMATTED-RUN-TIME.
034100
034200
034300 4200-END-ONE-REPORT.
034400 IF RECORD-COUNT = ZEROES
034500 MOVE "NO RECORDS FOUND" TO PRINTER-RECORD
034600 PERFORM WRITE-TO-PRINTER
034700 ELSE
034800 PERFORM 4210-PRINT-GRAND-TOTAL.
034900
035000 PERFORM END-LAST-PAGE.
035100
035200 4210-PRINT-GRAND-TOTAL.
035300 MOVE SPACE TO TOTAL-LINE.
035400 MOVE GRAND-TOTAL TO PRINT-TOTAL.
035500 MOVE GRAND-TOTAL-LITERAL TO TOTAL-TYPE.
035600 MOVE "TOTAL" TO TOTAL-LITERAL.
035700 MOVE TOTAL-LINE TO PRINTER-RECORD.
035800 PERFORM WRITE-TO-PRINTER.
035900 PERFORM LINE-FEED 2 TIMES.
036000 MOVE SPACE TO DETAIL-LINE.
036100
036200* LEVEL 2 CONTROL BREAK
036300 5000-PROCESS-ALL-STORES.
036400 PERFORM 5100-START-ONE-STORE.
036500
036600 PERFORM 6000-PROCESS-ALL-DIVISIONS
036700 UNTIL WORK-FILE-AT-END = "Y"
036800 OR WORK-STORE NOT = CURRENT-STORE.
036900
037000 PERFORM 5200-END-ONE-STORE.
037100
037200 5100-START-ONE-STORE.
037300 MOVE WORK-STORE TO CURRENT-STORE.
037400 MOVE ZEROES TO STORE-TOTAL.
037500 MOVE WORK-STORE TO PRINT-STORE.

037600
037700 PERFORM START-NEXT-PAGE.
037800
037900 5200-END-ONE-STORE.
038000 PERFORM 5210-PRINT-STORE-TOTAL.
038100 ADD STORE-TOTAL TO GRAND-TOTAL.
038200
038300 5210-PRINT-STORE-TOTAL.
038400 MOVE SPACE TO TOTAL-LINE.
038500 MOVE STORE-TOTAL TO PRINT-TOTAL.
038600 MOVE CURRENT-STORE TO TOTAL-NUMBER.
038700 MOVE STORE-TOTAL-LITERAL TO TOTAL-TYPE.
038800 MOVE "TOTAL" TO TOTAL-LITERAL.
038900 MOVE TOTAL-LINE TO PRINTER-RECORD.
039000 PERFORM WRITE-TO-PRINTER.
039100 PERFORM LINE-FEED.
039200 MOVE SPACE TO DETAIL-LINE.
039300
039400* LEVEL 3 CONTROL BREAK
039500 6000-PROCESS-ALL-DIVISIONS.
039600 PERFORM 6100-START-ONE-DIVISION.
039700
039800 PERFORM 7000-PROCESS-ALL-DEPARTMENTS
039900 UNTIL WORK-FILE-AT-END = "Y"
040000 OR WORK-STORE NOT = CURRENT-STORE
040100 OR WORK-DIVISION NOT = CURRENT-DIVISION.
040200
040300 PERFORM 6200-END-ONE-DIVISION.
040400
040500 6100-START-ONE-DIVISION.
040600 MOVE WORK-DIVISION TO CURRENT-DIVISION.
040700 MOVE ZEROES TO DIVISION-TOTAL.
040800 MOVE WORK-DIVISION TO PRINT-DIVISION.
040900
041000 6200-END-ONE-DIVISION.
041100 PERFORM 6210-PRINT-DIVISION-TOTAL.
041200 ADD DIVISION-TOTAL TO STORE-TOTAL.
041300
041400 6210-PRINT-DIVISION-TOTAL.
041500 MOVE SPACE TO TOTAL-LINE.
041600 MOVE DIVISION-TOTAL TO PRINT-TOTAL.
041700 MOVE CURRENT-DIVISION TO TOTAL-NUMBER.
041800 MOVE DIVISION-TOTAL-LITERAL TO TOTAL-TYPE.
041900 MOVE "TOTAL" TO TOTAL-LITERAL.
042000 PERFORM 6220-LOAD-DIVISION-NAME.
042100 MOVE TOTAL-LINE TO PRINTER-RECORD.
042200 PERFORM WRITE-TO-PRINTER.
042300 PERFORM LINE-FEED.
042400 MOVE SPACE TO DETAIL-LINE.

042500
042600 6220-LOAD-DIVISION-NAME.
042700 SET DIVISION-INDEX TO 1.
042800 SEARCH DIVISION-TABLE
042900 AT END
043000 MOVE "NOT FOUND" TO TOTAL-NAME
043100 WHEN
043200 DIVISION-NUMBER(DIVISION-INDEX) =
043300 CURRENT-DIVISION
043400 MOVE DIVISION-NAME(DIVISION-INDEX) TO
043500 TOTAL-NAME.
043600
043700* LEVEL 4 CONTROL BREAK
043800 7000-PROCESS-ALL-DEPARTMENTS.
043900 PERFORM 7100-START-ONE-DEPARTMENT.
044000
044100 PERFORM 8000-PROCESS-ALL-CATEGORIES
044200 UNTIL WORK-FILE-AT-END = "Y"
044300 OR WORK-STORE NOT = CURRENT-STORE
044400 OR WORK-DIVISION NOT = CURRENT-DIVISION
044500 OR WORK-DEPARTMENT NOT = CURRENT-DEPARTMENT.
044600
044700 PERFORM 7200-END-ONE-DEPARTMENT.
044800
044900 7100-START-ONE-DEPARTMENT.
045000 MOVE WORK-DEPARTMENT TO CURRENT-DEPARTMENT.
045100 MOVE ZEROES TO DEPARTMENT-TOTAL.
045200 MOVE WORK-DEPARTMENT TO PRINT-DEPARTMENT.
045300
045400 7200-END-ONE-DEPARTMENT.
045500 PERFORM 7210-PRINT-DEPARTMENT-TOTAL.
045600 ADD DEPARTMENT-TOTAL TO DIVISION-TOTAL.
045700
045800 7210-PRINT-DEPARTMENT-TOTAL.
045900 MOVE SPACE TO TOTAL-LINE.
046000 MOVE DEPARTMENT-TOTAL TO PRINT-TOTAL.
046100 MOVE CURRENT-DEPARTMENT TO TOTAL-NUMBER.
046200 MOVE DEPARTMENT-TOTAL-LITERAL TO TOTAL-TYPE.
046300 MOVE "TOTAL" TO TOTAL-LITERAL.
046400 PERFORM LOAD-DEPARTMENT-NAME.
046500 MOVE TOTAL-LINE TO PRINTER-RECORD.
046600 PERFORM WRITE-TO-PRINTER.
046700 PERFORM LINE-FEED.
046800 MOVE SPACE TO DETAIL-LINE.
046900
047000 LOAD-DEPARTMENT-NAME.
047100 SET DEPARTMENT-INDEX TO 1.
047200 SEARCH DEPARTMENT-TABLE
047300 AT END

047400 MOVE "NOT FOUND" TO TOTAL-NAME
047500 WHEN
047600 DEPARTMENT-NUMBER(DEPARTMENT-INDEX) =
047700 CURRENT-DEPARTMENT
047800 MOVE DEPARTMENT-NAME(DEPARTMENT-INDEX) TO
047900 TOTAL-NAME.
048000
048100* PROCESS ONE RECORD LEVEL
048200 8000-PROCESS-ALL-CATEGORIES.
048300 PERFORM 8100-PROCESS-THIS-CATEGORY.
048400 ADD WORK-AMOUNT TO DEPARTMENT-TOTAL.
048500 ADD 1 TO RECORD-COUNT.
048600 PERFORM READ-NEXT-VALID-WORK.
048700
048800 8100-PROCESS-THIS-CATEGORY.
048900 IF LINE-COUNT > MAXIMUM-LINES
049000 PERFORM START-NEXT-PAGE.
049100 PERFORM 8110-PRINT-THE-RECORD.
049200
049300 8110-PRINT-THE-RECORD.
049400 MOVE WORK-CATEGORY TO PRINT-CATEGORY.
049500
049600 PERFORM 8120-LOAD-CATEGORY-NAME.
049700
049800 MOVE WORK-AMOUNT TO PRINT-AMOUNT.
049900
050000 MOVE DETAIL-LINE TO PRINTER-RECORD.
050100 PERFORM WRITE-TO-PRINTER.
050200 MOVE SPACE TO DETAIL-LINE.
050300
050400 8120-LOAD-CATEGORY-NAME.
050500 SET CATEGORY-INDEX TO 1.
050600 SEARCH CATEGORY-TABLE
050700 AT END
050800 MOVE "NOT FOUND" TO TOTAL-NAME
050900 WHEN
051000 CATEGORY-NUMBER(CATEGORY-INDEX) =
051100 WORK-CATEGORY
051200 MOVE CATEGORY-NAME(CATEGORY-INDEX) TO
051300 PRINT-CATEGORY-NAME.
051400
051500* PRINTING ROUTINES
051600 WRITE-TO-PRINTER.
051700 WRITE PRINTER-RECORD BEFORE ADVANCING 1.
051800 ADD 1 TO LINE-COUNT.
051900
052000 LINE-FEED.
052100 MOVE SPACE TO PRINTER-RECORD.
052200 PERFORM WRITE-TO-PRINTER.

052300
052400 START-NEXT-PAGE.
052500 PERFORM END-LAST-PAGE.
052600 PERFORM START-NEW-PAGE.
052700
052800 START-NEW-PAGE.
052900 ADD 1 TO PAGE-NUMBER.
053000 MOVE PAGE-NUMBER TO PRINT-PAGE-NUMBER.
053100 MOVE TITLE-LINE TO PRINTER-RECORD.
053200 PERFORM WRITE-TO-PRINTER.
053300 PERFORM LINE-FEED.
053400 MOVE LEGEND-LINE TO PRINTER-RECORD.
053500 PERFORM WRITE-TO-PRINTER.
053600 PERFORM LINE-FEED.
053700 MOVE COLUMN-LINE TO PRINTER-RECORD.
053800 PERFORM WRITE-TO-PRINTER.
053900 PERFORM LINE-FEED.
054000
054100 END-LAST-PAGE.
054200 IF PAGE-NUMBER > 0
054300 PERFORM FORM-FEED.
054400 MOVE ZERO TO LINE-COUNT.
054500
054600 FORM-FEED.
054700 MOVE SPACE TO PRINTER-RECORD.
054800 WRITE PRINTER-RECORD BEFORE ADVANCING PAGE.
054900
055000*--------------------------------
055100* Read first, read next routines
055200*--------------------------------
055300 READ-FIRST-VALID-WORK.
055400 PERFORM READ-NEXT-VALID-WORK.
055500
055600 READ-NEXT-VALID-WORK.
055700 PERFORM READ-NEXT-WORK-RECORD.
055800
055900 READ-NEXT-WORK-RECORD.
056000 MOVE "N" TO WORK-FILE-AT-END.
056100 READ WORK-FILE NEXT RECORD
056200 AT END MOVE "Y" TO WORK-FILE-AT-END.
056300
056400* Date and time routines
056500 FORMAT-THE-DATE.
056600 PERFORM CONVERT-TO-MMDDCCYY.
056700 MOVE DATE-MMDDCCYY TO FORMATTED-DATE.
056800
056900 CONVERT-TO-MMDDCCYY.
057000 COMPUTE DATE-MMDDCCYY =
057100 DATE-CCYYMMDD * 10000.0001.

057200
057300 FORMAT-THE-TIME.
057400 MOVE TIME-HHMMSS TO FORMATTED-TIME.
057500 INSPECT FORMATTED-TIME
057600 REPLACING ALL "/" BY ":".
057700

Qualified Data Names
Although data names should be unique within a program, there is a way around this--using a qualified data name
that became available in the COBOL-74 standard. Data names do not need to be unique, as long as the name
exists within a hierarchy of names in such a way that the name can be made unique by reference to one or more of
the higher-level names. Use this syntax:

QUALIFIED NAMES
01 a-structure-name
 05 variable-1 picture
 05 variable-2 picture
01 another-structure
 05 variable-1 picture
 05 variable-2 picture
statement variable-1
 of another-structure

The following is an example:

01 STORE-TOTALS
 05 SALES-AMT PIC S9(5)V99
 05 TAX-AMT PIC S9(3)V99.
01 GRAND-TOTALS
 05 SALES-AMT PIC S9(5)V99
 05 TAX-AMT PIC S9(3)V99.
ADD SALES-AMT OF STORE-TOTALS
 TO SALES-AMT OF GRAND-TOTALS
ADD TAX-AMT OF STORE-TOTALS
 TO TAX-AMT OF GRAND-TOTALS.

Listing B2.19 shows slsprt06.cbl, based on slsrpt04.cbl.

TYPE: Listing B2.19. Qualified data names.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. SLSRPT06.
000300*--------------------------------
000400* Print test sales data
000500* Uses qualified data names.
000600*--------------------------------
000700 ENVIRONMENT DIVISION.
000800 INPUT-OUTPUT SECTION.
000900 FILE-CONTROL.
001000

001100*--------------------------------
001200* SLSALES.CBL
001300*--------------------------------
001400 SELECT SALES-FILE
001500 ASSIGN TO "SALES"
001600 ORGANIZATION IS SEQUENTIAL.
001700
001800 SELECT WORK-FILE
001900 ASSIGN TO "WORK"
002000 ORGANIZATION IS SEQUENTIAL.
002100
002200 SELECT SORT-FILE
002300 ASSIGN TO "SORT".
002400
002500 SELECT PRINTER-FILE
002600 ASSIGN TO PRINTER
002700 ORGANIZATION IS LINE SEQUENTIAL.
002800
002900 DATA DIVISION.
003000 FILE SECTION.
003100
003200*--------------------------------
003300* FDSALES.CBL
003400* Temporary daily sales file.
003500*--------------------------------
003600 FD SALES-FILE
003700 LABEL RECORDS ARE STANDARD.
003800 01 SALES-RECORD.
003900 05 SALES-STORE PIC 9(2).
004000 05 SALES-DIVISION PIC 9(2).
004100 05 SALES-DEPARTMENT PIC 9(2).
004200 05 SALES-CATEGORY PIC 9(2).
004300 05 SALES-AMOUNT PIC S9(6)V99.
004400
004500 FD WORK-FILE
004600 LABEL RECORDS ARE STANDARD.
004700 01 WORK-RECORD.
004800 05 SALES-STORE PIC 9(2).
004900 05 SALES-DIVISION PIC 9(2).
005000 05 SALES-DEPARTMENT PIC 9(2).
005100 05 SALES-CATEGORY PIC 9(2).
005200 05 SALES-AMOUNT PIC S9(6)V99.
005300
005400 SD SORT-FILE
005500 LABEL RECORDS ARE STANDARD.
005600 01 SORT-RECORD.
005700 05 SALES-STORE PIC 9(2).
005800 05 SALES-DIVISION PIC 9(2).
005900 05 SALES-DEPARTMENT PIC 9(2).

006000 05 SALES-CATEGORY PIC 9(2).
006100 05 SALES-AMOUNT PIC S9(6)V99.
006200
006300 FD PRINTER-FILE
006400 LABEL RECORDS ARE OMITTED.
006500 01 PRINTER-RECORD PIC X(80).
006600
006700 WORKING-STORAGE SECTION.
006800
006900 01 THE-DIVISIONS.
007000 05 FILLER PIC 99 VALUE 01.
007100 05 FILLER PIC X(15) VALUE "ATHLETICS".
007200 05 FILLER PIC 99 VALUE 02.
007300 05 FILLER PIC X(15) VALUE "SPORTING GOODS".
007400 05 FILLER PIC 99 VALUE 03.
007500 05 FILLER PIC X(15) VALUE "CAMPING".
007600 01 FILLER REDEFINES THE-DIVISIONS.
007700 05 DIVISION-TABLE OCCURS 3 TIMES
007800 INDEXED BY DIVISION-INDEX.
007900 10 DIVISION-NUMBER PIC 99.
008000 10 DIVISION-NAME PIC X(15).
008100
008200 01 THE-DEPARTMENTS.
008300 05 FILLER PIC 99 VALUE 01.
008400 05 FILLER PIC X(15) VALUE "EXERCISE".
008500 05 FILLER PIC 99 VALUE 02.
008600 05 FILLER PIC X(15) VALUE "MISCELLANEOUS".
008700 05 FILLER PIC 99 VALUE 03.
008800 05 FILLER PIC X(15) VALUE "SPORT CLOTHES".
008900 05 FILLER PIC 99 VALUE 04.
009000 05 FILLER PIC X(15) VALUE "EQUIPMENT".
009100 05 FILLER PIC 99 VALUE 05.
009200 05 FILLER PIC X(15) VALUE "CAMP EQUIPMENT".
009300 05 FILLER PIC 99 VALUE 06.
009400 05 FILLER PIC X(15) VALUE "CAMPING CLOTHES".
009500 01 FILLER REDEFINES THE-DEPARTMENTS.
009600 05 DEPARTMENT-TABLE OCCURS 6 TIMES
009700 INDEXED BY DEPARTMENT-INDEX.
009800 10 DEPARTMENT-NUMBER PIC 99.
009900 10 DEPARTMENT-NAME PIC X(15).
010000
010100 01 THE-CATEGORIES.
010200 05 FILLER PIC 99 VALUE 01.
010300 05 FILLER PIC X(15) VALUE "WEIGHTS".
010400 05 FILLER PIC 99 VALUE 02.
010500 05 FILLER PIC X(15) VALUE "MACHINES".
010600 05 FILLER PIC 99 VALUE 03.
010700 05 FILLER PIC X(15) VALUE "SUN GLASSES".
010800 05 FILLER PIC 99 VALUE 04.

010900 05 FILLER PIC X(15) VALUE "VITAMINS".
011000 05 FILLER PIC 99 VALUE 05.
011100 05 FILLER PIC X(15) VALUE "MEN'S CLOTHES".
011200 05 FILLER PIC 99 VALUE 06.
011300 05 FILLER PIC X(15) VALUE "WOMEN'S CLOTHES".
011400 05 FILLER PIC 99 VALUE 07.
011500 05 FILLER PIC X(15) VALUE "TENNIS".
011600 05 FILLER PIC 99 VALUE 08.
011700 05 FILLER PIC X(15) VALUE "SOCCER".
011800 05 FILLER PIC 99 VALUE 09.
011900 05 FILLER PIC X(15) VALUE "TENTS".
012000 05 FILLER PIC 99 VALUE 10.
012100 05 FILLER PIC X(15) VALUE "SLEEPING BAGS".
012200 05 FILLER PIC 99 VALUE 11.
012300 05 FILLER PIC X(15) VALUE "CLOTHING".
012400 05 FILLER PIC 99 VALUE 12.
012500 05 FILLER PIC X(15) VALUE "HIKING BOOTS".
012600 01 FILLER REDEFINES THE-CATEGORIES.
012700 05 CATEGORY-TABLE OCCURS 12 TIMES
012800 INDEXED BY CATEGORY-INDEX.
012900 10 CATEGORY-NUMBER PIC 99.
013000 10 CATEGORY-NAME PIC X(15).
013100
013200 77 OK-TO-PROCESS PIC X.
013300
013400 COPY "WSCASE01.CBL".
013500
013600 01 LEGEND-LINE.
013700 05 FILLER PIC X(6) VALUE "STORE:".
013800 05 FILLER PIC X(1) VALUE SPACE.
013900 05 PRINT-STORE PIC Z9.
014000
014100 01 DETAIL-LINE.
014200 05 FILLER PIC X(3) VALUE SPACE.
014300 05 PRINT-DIVISION PIC Z9.
014400 05 FILLER PIC X(4) VALUE SPACE.
014500 05 FILLER PIC X(3) VALUE SPACE.
014600 05 PRINT-DEPARTMENT PIC Z9.
014700 05 FILLER PIC X(6) VALUE SPACE.
014800 05 FILLER PIC X(3) VALUE SPACE.
014900 05 PRINT-CATEGORY PIC Z9.
015000 05 FILLER PIC X(4) VALUE SPACE.
015100 05 PRINT-CATEGORY-NAME PIC X(15).
015200 05 FILLER PIC X(1) VALUE SPACE.
015300 05 PRINT-AMOUNT PIC ZZZ,ZZ9.99-.
015400
015500 01 COLUMN-LINE.
015600 05 FILLER PIC X(8) VALUE "DIVISION".
015700 05 FILLER PIC X(1) VALUE SPACE.

015800 05 FILLER PIC X(10) VALUE "DEPARTMENT".
015900 05 FILLER PIC X(1) VALUE SPACE.
016000 05 FILLER PIC X(8) VALUE "CATEGORY".
016100 05 FILLER PIC X(1) VALUE SPACE.
016200 05 FILLER PIC X(15) VALUE SPACE.
016300 05 FILLER PIC X(5) VALUE SPACE.
016400 05 FILLER PIC X(6) VALUE "AMOUNT".
016500
016600 01 TITLE-LINE.
016700 05 FILLER PIC X(4) VALUE "RUN:".
016800 05 FORMATTED-RUN-DATE PIC X(10).
016900 05 FILLER PIC X(4) VALUE " AT ".
017000 05 FORMATTED-RUN-TIME PIC X(8).
017100 05 FILLER PIC X(10) VALUE SPACE.
017200 05 FILLER PIC X(12)
017300 VALUE "SALES REPORT".
017400 05 FILLER PIC X(10) VALUE SPACE.
017500 05 FILLER PIC X(5) VALUE "PAGE:".
017600 05 FILLER PIC X(1) VALUE SPACE.
017700 05 PRINT-PAGE-NUMBER PIC ZZZ9.
017800
017900 01 TOTAL-LINE.
018000 05 FILLER PIC X(11) VALUE SPACE.
018100 05 TOTAL-TYPE PIC X(8).
018200 05 FILLER PIC X(1) VALUE SPACE.
018300 05 TOTAL-NUMBER PIC Z9.
018400 05 FILLER PIC X(1) VALUE SPACE.
018500 05 TOTAL-NAME PIC X(15) VALUE SPACE.
018600 05 FILLER PIC X(1) VALUE SPACE.
018700 05 TOTAL-LITERAL PIC X(5) VALUE "TOTAL".
018800 05 FILLER PIC X(1) VALUE SPACE.
018900 05 PRINT-TOTAL PIC ZZZ,ZZ9.99-.
019000
019100 77 GRAND-TOTAL-LITERAL PIC X(8) VALUE " GRAND".
019200 77 STORE-TOTAL-LITERAL PIC X(8) VALUE " STORE".
019300 77 DIVISION-TOTAL-LITERAL PIC X(8) VALUE "DIVISION".
019400 77 DEPARTMENT-TOTAL-LITERAL PIC X(8) VALUE " DEPT".
019500
019600 77 WORK-FILE-AT-END PIC X.
019700
019800 77 LINE-COUNT PIC 999 VALUE ZERO.
019900 77 PAGE-NUMBER PIC 9999 VALUE ZERO.
020000 77 MAXIMUM-LINES PIC 999 VALUE 55.
020100
020200 77 RECORD-COUNT PIC 9999 VALUE ZEROES.
020300
020400* Control break current values for store, division
020500* department.
020600 77 CURRENT-STORE PIC 99.

020700 77 CURRENT-DIVISION PIC 99.
020800 77 CURRENT-DEPARTMENT PIC 99.
020900
021000* Control break accumulators
021100* GRAND TOTAL is the level 1 accumulator for the whole file
021200* STORE TOTAL is the level 2 accumulator
021300* DIVISION TOTAL is the level 3 accumulator
021400* DEPARTMENT TOTAL is the level 4 accumulator.
021500 77 GRAND-TOTAL PIC S9(6)V99.
021600 77 STORE-TOTAL PIC S9(6)V99.
021700 77 DIVISION-TOTAL PIC S9(6)V99.
021800 77 DEPARTMENT-TOTAL PIC S9(6)V99.
021900
022000* System date and time
022100 77 RUN-DATE PIC 9(6).
022200 77 RUN-TIME PIC 9(8).
022300
022400*--------------------------------
022500* Fields for date routines.
022600*--------------------------------
022700 77 FORMATTED-DATE PIC Z9/99/9999.
022800 77 DATE-MMDDCCYY PIC 9(8).
022900 01 DATE-CCYYMMDD PIC 9(8).
023000 01 FILLER REDEFINES DATE-CCYYMMDD.
023100 05 DATE-CC PIC 99.
023200 05 DATE-YY PIC 99.
023300 05 DATE-MM PIC 99.
023400 05 DATE-DD PIC 99.
023500
023600*--------------------------------
023700* Fields for TIME routines.
023800*--------------------------------
023900 77 FORMATTED-TIME PIC Z9/99/99.
024000
024100 01 TIME-HHMMSS PIC 9(6).
024200 01 FILLER REDEFINES TIME-HHMMSS.
024300 05 TIME-HH PIC 99.
024400 05 TIME-MM PIC 99.
024500 05 TIME-SS PIC 99.
024600
024700 PROCEDURE DIVISION.
024800 PROGRAM-BEGIN.
024900
025000 PERFORM OPENING-PROCEDURE.
025100 PERFORM MAIN-PROCESS.
025200 PERFORM CLOSING-PROCEDURE.
025300
025400 PROGRAM-EXIT.
025500 EXIT PROGRAM.

025600
025700 PROGRAM-DONE.
025800 STOP RUN.
025900
026000 OPENING-PROCEDURE.
026100
026200 OPEN OUTPUT PRINTER-FILE.
026300
026400 MAIN-PROCESS.
026500 PERFORM GET-OK-TO-PROCESS.
026600 PERFORM PROCESS-THE-FILE
026700 UNTIL OK-TO-PROCESS = "N".
026800
026900 CLOSING-PROCEDURE.
027000 CLOSE PRINTER-FILE.
027100
027200 GET-OK-TO-PROCESS.
027300 PERFORM ACCEPT-OK-TO-PROCESS.
027400 PERFORM RE-ACCEPT-OK-TO-PROCESS
027500 UNTIL OK-TO-PROCESS = "Y" OR "N".
027600
027700 ACCEPT-OK-TO-PROCESS.
027800 DISPLAY "PRINT SALES REPORT (Y/N)?".
027900 ACCEPT OK-TO-PROCESS.
028000 INSPECT OK-TO-PROCESS
028100 CONVERTING LOWER-ALPHA
028200 TO UPPER-ALPHA.
028300
028400 RE-ACCEPT-OK-TO-PROCESS.
028500 DISPLAY "YOU MUST ENTER YES OR NO".
028600 PERFORM ACCEPT-OK-TO-PROCESS.
028700
028800 PROCESS-THE-FILE.
028900 PERFORM START-THE-FILE.
029000 PERFORM PRINT-ONE-REPORT.
029100 PERFORM END-THE-FILE.
029200
029300* PERFORM GET-OK-TO-PROCESS.
029400 MOVE "N" TO OK-TO-PROCESS.
029500
029600 START-THE-FILE.
029700 PERFORM SORT-DATA-FILE.
029800 OPEN INPUT WORK-FILE.
029900
030000 END-THE-FILE.
030100 CLOSE WORK-FILE.
030200
030300 SORT-DATA-FILE.
030400 SORT SORT-FILE

030500 ON ASCENDING KEY SALES-STORE OF SORT-RECORD
030600 ASCENDING KEY SALES-DIVISION OF SORT-RECORD
030700 ASCENDING KEY SALES-DEPARTMENT OF SORT-RECORD
030800 ASCENDING KEY SALES-CATEGORY OF SORT-RECORD
030900 USING SALES-FILE
031000 GIVING WORK-FILE.
031100
031200* LEVEL 1 CONTROL BREAK
031300 PRINT-ONE-REPORT.
031400 PERFORM START-ONE-REPORT.
031500 PERFORM PROCESS-ALL-STORES
031600 UNTIL WORK-FILE-AT-END = "Y".
031700 PERFORM END-ONE-REPORT.
031800
031900 START-ONE-REPORT.
032000 PERFORM READ-FIRST-VALID-WORK.
032100 MOVE ZEROES TO GRAND-TOTAL.
032200
032300 PERFORM START-NEW-REPORT.
032400
032500 START-NEW-REPORT.
032600 MOVE SPACE TO DETAIL-LINE.
032700 MOVE ZEROES TO LINE-COUNT PAGE-NUMBER.
032800
032900 ACCEPT RUN-DATE FROM DATE.
033000 MOVE RUN-DATE TO DATE-CCYYMMDD.
033100 IF DATE-YY > 90
033200 MOVE 19 TO DATE-CC
033300 ELSE
033400 MOVE 20 TO DATE-CC.
033500
033600 PERFORM FORMAT-THE-DATE.
033700 MOVE FORMATTED-DATE TO FORMATTED-RUN-DATE.
033800
033900 ACCEPT RUN-TIME FROM TIME.
034000 COMPUTE TIME-HHMMSS = RUN-TIME / 100.
034100 PERFORM FORMAT-THE-TIME.
034200 MOVE FORMATTED-TIME TO FORMATTED-RUN-TIME.
034300
034400
034500 END-ONE-REPORT.
034600 IF RECORD-COUNT = ZEROES
034700 MOVE "NO RECORDS FOUND" TO PRINTER-RECORD
034800 PERFORM WRITE-TO-PRINTER
034900 ELSE
035000 PERFORM PRINT-GRAND-TOTAL.
035100
035200 PERFORM END-LAST-PAGE.
035300

035400 PRINT-GRAND-TOTAL.
035500 MOVE SPACE TO TOTAL-LINE.
035600 MOVE GRAND-TOTAL TO PRINT-TOTAL.
035700 MOVE GRAND-TOTAL-LITERAL TO TOTAL-TYPE.
035800 MOVE "TOTAL" TO TOTAL-LITERAL.
035900 MOVE TOTAL-LINE TO PRINTER-RECORD.
036000 PERFORM WRITE-TO-PRINTER.
036100 PERFORM LINE-FEED 2 TIMES.
036200 MOVE SPACE TO DETAIL-LINE.
036300
036400* LEVEL 2 CONTROL BREAK
036500 PROCESS-ALL-STORES.
036600 PERFORM START-ONE-STORE.
036700
036800 PERFORM PROCESS-ALL-DIVISIONS
036900 UNTIL WORK-FILE-AT-END = "Y"
037000 OR SALES-STORE OF WORK-RECORD
037100 NOT = CURRENT-STORE.
037200
037300 PERFORM END-ONE-STORE.
037400
037500 START-ONE-STORE.
037600 MOVE SALES-STORE OF WORK-RECORD TO CURRENT-STORE.
037700 MOVE ZEROES TO STORE-TOTAL.
037800 MOVE SALES-STORE OF WORK-RECORD TO PRINT-STORE.
037900
038000 PERFORM START-NEXT-PAGE.
038100
038200 END-ONE-STORE.
038300 PERFORM PRINT-STORE-TOTAL.
038400 ADD STORE-TOTAL TO GRAND-TOTAL.
038500
038600 PRINT-STORE-TOTAL.
038700 MOVE SPACE TO TOTAL-LINE.
038800 MOVE STORE-TOTAL TO PRINT-TOTAL.
038900 MOVE CURRENT-STORE TO TOTAL-NUMBER.
039000 MOVE STORE-TOTAL-LITERAL TO TOTAL-TYPE.
039100 MOVE "TOTAL" TO TOTAL-LITERAL.
039200 MOVE TOTAL-LINE TO PRINTER-RECORD.
039300 PERFORM WRITE-TO-PRINTER.
039400 PERFORM LINE-FEED.
039500 MOVE SPACE TO DETAIL-LINE.
039600
039700* LEVEL 3 CONTROL BREAK
039800 PROCESS-ALL-DIVISIONS.
039900 PERFORM START-ONE-DIVISION.
040000
040100 PERFORM PROCESS-ALL-DEPARTMENTS
040200 UNTIL WORK-FILE-AT-END = "Y"

040300 OR SALES-STORE OF WORK-RECORD
040400 NOT = CURRENT-STORE
040500 OR SALES-DIVISION OF WORK-RECORD
040600 NOT = CURRENT-DIVISION.
040700
040800 PERFORM END-ONE-DIVISION.
040900
041000 START-ONE-DIVISION.
041100 MOVE SALES-DIVISION OF WORK-RECORD TO CURRENT-DIVISION.
041200 MOVE ZEROES TO DIVISION-TOTAL.
041300 MOVE SALES-DIVISION OF WORK-RECORD TO PRINT-DIVISION.
041400
041500 END-ONE-DIVISION.
041600 PERFORM PRINT-DIVISION-TOTAL.
041700 ADD DIVISION-TOTAL TO STORE-TOTAL.
041800
041900 PRINT-DIVISION-TOTAL.
042000 MOVE SPACE TO TOTAL-LINE.
042100 MOVE DIVISION-TOTAL TO PRINT-TOTAL.
042200 MOVE CURRENT-DIVISION TO TOTAL-NUMBER.
042300 MOVE DIVISION-TOTAL-LITERAL TO TOTAL-TYPE.
042400 MOVE "TOTAL" TO TOTAL-LITERAL.
042500 PERFORM LOAD-DIVISION-NAME.
042600 MOVE TOTAL-LINE TO PRINTER-RECORD.
042700 PERFORM WRITE-TO-PRINTER.
042800 PERFORM LINE-FEED.
042900 MOVE SPACE TO DETAIL-LINE.
043000
043100 LOAD-DIVISION-NAME.
043200 SET DIVISION-INDEX TO 1.
043300 SEARCH DIVISION-TABLE
043400 AT END
043500 MOVE "NOT FOUND" TO TOTAL-NAME
043600 WHEN
043700 DIVISION-NUMBER(DIVISION-INDEX) =
043800 CURRENT-DIVISION
043900 MOVE DIVISION-NAME(DIVISION-INDEX) TO
044000 TOTAL-NAME.
044100
044200* LEVEL 4 CONTROL BREAK
044300 PROCESS-ALL-DEPARTMENTS.
044400 PERFORM START-ONE-DEPARTMENT.
044500
044600 PERFORM PROCESS-ALL-CATEGORIES
044700 UNTIL WORK-FILE-AT-END = "Y"
044800 OR SALES-STORE OF WORK-RECORD
044900 NOT = CURRENT-STORE
045000 OR SALES-DIVISION OF WORK-RECORD
045100 NOT = CURRENT-DIVISION

045200 OR SALES-DEPARTMENT OF WORK-RECORD
045300 NOT = CURRENT-DEPARTMENT.
045400
045500 PERFORM END-ONE-DEPARTMENT.
045600
045700 START-ONE-DEPARTMENT.
045800 MOVE SALES-DEPARTMENT OF WORK-RECORD
045900 TO CURRENT-DEPARTMENT.
046000 MOVE ZEROES TO DEPARTMENT-TOTAL.
046100 MOVE SALES-DEPARTMENT OF WORK-RECORD
046200 TO PRINT-DEPARTMENT.
046300
046400 END-ONE-DEPARTMENT.
046500 PERFORM PRINT-DEPARTMENT-TOTAL.
046600 ADD DEPARTMENT-TOTAL TO DIVISION-TOTAL.
046700
046800 PRINT-DEPARTMENT-TOTAL.
046900 MOVE SPACE TO TOTAL-LINE.
047000 MOVE DEPARTMENT-TOTAL TO PRINT-TOTAL.
047100 MOVE CURRENT-DEPARTMENT TO TOTAL-NUMBER.
047200 MOVE DEPARTMENT-TOTAL-LITERAL TO TOTAL-TYPE.
047300 MOVE "TOTAL" TO TOTAL-LITERAL.
047400 PERFORM LOAD-DEPARTMENT-NAME.
047500 MOVE TOTAL-LINE TO PRINTER-RECORD.
047600 PERFORM WRITE-TO-PRINTER.
047700 PERFORM LINE-FEED.
047800 MOVE SPACE TO DETAIL-LINE.
047900
048000 LOAD-DEPARTMENT-NAME.
048100 SET DEPARTMENT-INDEX TO 1.
048200 SEARCH DEPARTMENT-TABLE
048300 AT END
048400 MOVE "NOT FOUND" TO TOTAL-NAME
048500 WHEN
048600 DEPARTMENT-NUMBER(DEPARTMENT-INDEX) =
048700 CURRENT-DEPARTMENT
048800 MOVE DEPARTMENT-NAME(DEPARTMENT-INDEX) TO
048900 TOTAL-NAME.
049000
049100* PROCESS ONE RECORD LEVEL
049200 PROCESS-ALL-CATEGORIES.
049300 PERFORM PROCESS-THIS-CATEGORY.
049400 ADD SALES-AMOUNT OF WORK-RECORD
049500 TO DEPARTMENT-TOTAL.
049600 ADD 1 TO RECORD-COUNT.
049700 PERFORM READ-NEXT-VALID-WORK.
049800
049900 PROCESS-THIS-CATEGORY.
050000 IF LINE-COUNT > MAXIMUM-LINES

050100 PERFORM START-NEXT-PAGE.
050200 PERFORM PRINT-THE-RECORD.
050300
050400 PRINT-THE-RECORD.
050500 MOVE SALES-CATEGORY OF WORK-RECORD
050600 TO PRINT-CATEGORY.
050700
050800 PERFORM LOAD-CATEGORY-NAME.
050900
051000 MOVE SALES-AMOUNT OF WORK-RECORD
051100 TO PRINT-AMOUNT.
051200
051300 MOVE DETAIL-LINE TO PRINTER-RECORD.
051400 PERFORM WRITE-TO-PRINTER.
051500 MOVE SPACE TO DETAIL-LINE.
051600
051700 LOAD-CATEGORY-NAME.
051800 SET CATEGORY-INDEX TO 1.
051900 SEARCH CATEGORY-TABLE
052000 AT END
052100 MOVE "NOT FOUND" TO TOTAL-NAME
052200 WHEN
052300 CATEGORY-NUMBER(CATEGORY-INDEX) =
052400 SALES-CATEGORY OF WORK-RECORD
052500 MOVE CATEGORY-NAME(CATEGORY-INDEX) TO
052600 PRINT-CATEGORY-NAME.
052700
052800* PRINTING ROUTINES
052900 WRITE-TO-PRINTER.
053000 WRITE PRINTER-RECORD BEFORE ADVANCING 1.
053100 ADD 1 TO LINE-COUNT.
053200
053300 LINE-FEED.
053400 MOVE SPACE TO PRINTER-RECORD.
053500 PERFORM WRITE-TO-PRINTER.
053600
053700 START-NEXT-PAGE.
053800 PERFORM END-LAST-PAGE.
053900 PERFORM START-NEW-PAGE.
054000
054100 START-NEW-PAGE.
054200 ADD 1 TO PAGE-NUMBER.
054300 MOVE PAGE-NUMBER TO PRINT-PAGE-NUMBER.
054400 MOVE TITLE-LINE TO PRINTER-RECORD.
054500 PERFORM WRITE-TO-PRINTER.
054600 PERFORM LINE-FEED.
054700 MOVE LEGEND-LINE TO PRINTER-RECORD.
054800 PERFORM WRITE-TO-PRINTER.
054900 PERFORM LINE-FEED.

055000 MOVE COLUMN-LINE TO PRINTER-RECORD.
055100 PERFORM WRITE-TO-PRINTER.
055200 PERFORM LINE-FEED.
055300
055400 END-LAST-PAGE.
055500 IF PAGE-NUMBER > 0
055600 PERFORM FORM-FEED.
055700 MOVE ZERO TO LINE-COUNT.
055800
055900 FORM-FEED.
056000 MOVE SPACE TO PRINTER-RECORD.
056100 WRITE PRINTER-RECORD BEFORE ADVANCING PAGE.
056200
056300*--------------------------------
056400* Read first, read next routines
056500*--------------------------------
056600 READ-FIRST-VALID-WORK.
056700 PERFORM READ-NEXT-VALID-WORK.
056800
056900 READ-NEXT-VALID-WORK.
057000 PERFORM READ-NEXT-WORK-RECORD.
057100
057200 READ-NEXT-WORK-RECORD.
057300 MOVE "N" TO WORK-FILE-AT-END.
057400 READ WORK-FILE NEXT RECORD
057500 AT END MOVE "Y" TO WORK-FILE-AT-END.
057600
057700* Date and time routines
057800 FORMAT-THE-DATE.
057900 PERFORM CONVERT-TO-MMDDCCYY.
058000 MOVE DATE-MMDDCCYY TO FORMATTED-DATE.
058100
058200 CONVERT-TO-MMDDCCYY.
058300 COMPUTE DATE-MMDDCCYY =
058400 DATE-CCYYMMDD * 10000.0001.
058500
058600 FORMAT-THE-TIME.
058700 MOVE TIME-HHMMSS TO FORMATTED-TIME.
058800 INSPECT FORMATTED-TIME
058900 REPLACING ALL "/" BY ":".
059000

ANALYSIS: Rather than using different names for each of the fields in the three records used by the program, all
the fields are given the same names (see lines 003900-004300, 004800-005200, and 005700-006100).
This apparent naming conflict can be resolved by referring to the field with a qualifier OF RECORD-NAME.
Throughout the program, qualifiers are added to the names of the fields to clarify which field is meant.

At lines 030500-030800, all the sort fields are qualified by adding OF SORT-RECORD after the field name.
All the fields in the WORK-RECORD are qualified by adding OF WORK-RECORD. Some examples of this are at
lines 037600, 037800, 040300-0406000, 044800-045300, and 052400. There are many other examples

in the program.

Code, compile, and run slsrpt06.cbl, and satisfy yourself that it runs with the same result as slsrpt04.cbl. Then edit
the file and remove one of the OF WORK-RECORD phrases from any variable. Attempt to compile the program
and you should receive an error such as "Qualifier needed" or "Ambiguous reference to
variable." Micro Focus Personal COBOL produces the error "User-name not unique."

MOVE CORRESPONDING

The use of qualified variables makes it possible to use MOVE to move more than one field at a time. In Listing
B2.20, the DETAIL-LINE has been defined using the same data names as some of the fields in the
SALES-RECORD.

TYPE: Listing B2.20. Using MOVE CORRESPONDING.

003600 FD SALES-FILE
003700 LABEL RECORDS ARE STANDARD.
003800 01 SALES-RECORD.
003900 05 SALES-STORE PIC 9(2).
004000 05 SALES-DIVISION PIC 9(2).
004100 05 SALES-DEPARTMENT PIC 9(2).
004200 05 SALES-CATEGORY PIC 9(2).
004300 05 SALES-AMOUNT PIC S9(6)V99.
......
014100 01 DETAIL-LINE.
014200 05 FILLER PIC X(3) VALUE SPACE.
014300 05 SALES-DIVISION PIC Z9.
014400 05 FILLER PIC X(4) VALUE SPACE.
014500 05 FILLER PIC X(3) VALUE SPACE.
014600 05 SALES-DEPARTMENT PIC Z9.
014700 05 FILLER PIC X(6) VALUE SPACE.
014800 05 FILLER PIC X(3) VALUE SPACE.
014900 05 SALES-CATEGORY PIC Z9.
015000 05 FILLER PIC X(4) VALUE SPACE.
015300 05 SALES-AMOUNT PIC ZZZ,ZZ9.99-.
......
020100 MOVE CORRESPONDING SALES-RECORD TO DETAIL-LINE.

ANALYSIS: At line 020100, the MOVE CORRESPONDING will cause fields in the SALES-RECORD that
have the same name as fields in the DETAIL-LINE to be moved one by one to corresponding fields in the detail
line. These moves happen as if each field were moved individually.

SALES-DIVISION, SALES-DEPARTMENT, SALES-CATEGORY, and SALES-AMOUNT will be moved.
SALES-STORE will not be moved because there is no corresponding field in the DETAIL-LINE.

Continuation Characters
When an alphanumeric value is too long to fit on a single line, it may be continued on the next line by using a
continuation character. In Listing B2.21, the columns have been included. The message must be continued to the
end of Area B (column 72) and ends without a closing quote. The next line begins with a hyphen (-) in column 7

to indicate that the previous quoted string is being continued. The rest of the message starts with a quote and
continues as long as is necessary to complete the message. Lines can be continued over more than one line if
necessary.

TYPE: Listing B2.21. The continuation character.

000500 01 LONG-MESSAGE PIC X(80) VALUE "This is an incredibly long
000600- "message that will take more than one line to define".

Summary
Today, you learned about some common issues that will come up when you work with COBOL, including these
basics:

A table may be initialized in WORKING-STORAGE by first defining a variable containing the needed
values, and then redefining this variable as a table.

●

The STRING verb can be used to concatenate several fields into one by appending the input fields end to
end.

●

An UNSTRING verb can be used to break a longer field into smaller pieces.●

A calling program may pass a variable to a called program. If the variable is changed by either the called or
calling program, that change affects the variable in both programs.

●

Computational numeric storage can be used to save space in memory or in a file.●

The steps for calculating the size of a COMP-3 field are

1. Count the number of digits in the number.

2. Add 1 for the sign (even if the number does not have a sign in the PICTURE).

3. If the result is an odd number, add 1 to make it even.

4. Divide this result by two.

●

One style of COBOL coding uses paragraph numbers to break the paragraphs of a program into sections of
code that can be easily located on a printed listing, and helps to indicate the relationships between various
routines.

●

Data names do not have to be unique, as long as the name exists within a hierarchy of names in such a way
that the name can be made unique by reference to one or more of the higher-level names. A data name can
be made unique by qualifying it.

●

MOVE CORRESPONDING can be used to move individual fields with the same names from one record to
another.

●

A continuation character can be used to continue a literal on one or more subsequent lines.●

Q&A
Q Do I need to number paragraphs?

A No. It is not part of the COBOL language, but you might end up working for a company that requires it
as part of its coding style.

Q What would a continuation look like for a literal that extended over more than two lines?

A The following code presents a much longer continuation:

000500 01 LONG-MESSAGE PIC X(200) VALUE "This is an incredibly lon
000600- "g message that will take more than one line to define. In fa
000700- "ct this now extends over several lines."

Q What happens on the display if an alphanumeric value longer than 80 characters is displayed?
Does it wrap to the next line, or is it truncated?

A Usually, values that are longer than 80 characters wrap to the next line. However, some versions of
COBOL display only the first 80 characters on a single line and truncate the remaining characters.

Workshop

Quiz

1. What is the output of the STRING operation described in the following code, using JONES and JOHN as
the values in LAST-NAME and FIRST-NAME, and PAUL as the value in MIDDLE-NAME?

001300 01 DETAIL-LINE.
001400 05 PRINT-WHOLE-NAME PIC X(32).
.......
010300 MOVE SPACE TO DETAIL-LINE.
010400 STRING
010500 LAST-NAME DELIMITED BY SPACE
010600 "," DELIMITED BY SIZE
010700 " " DELIMITED BY SIZE
010800 FIRST-NAME DELIMITED BY SPACE
010900 " " DELIMITED BY SIZE
011000 MIDDLE-NAME DELIMITED BY SPACE
011100 INTO PRINT-WHOLE-NAME.
011200 PERFORM PRINT-DETAIL-LINE.

2. After executing the following code, what will be the values in FIRST-NAME and LAST-NAME if the
user enters JANE JOHANSEN?

001100 01 INPUT-DATA PIC X(50).
001200
001300 01 FORMATTED-NAME.
001400 05 FIRST-NAME PIC X(25).
001500 05 LAST-NAME PIC X(25).

......
010700 DISPLAY "ENTER FIRST AND LAST NAMES".
010800 DISPLAY "WITH A SPACE BETWEEN THE NAMES".
010900 ACCEPT INPUT-DATA.
011000 MOVE SPACE TO FORMATTED-NAME.
011100 UNSTRING INPUT-DATA
011200 DELIMITED BY ALL SPACE
011300 INTO FIRST-NAME
011400 LAST-NAME.
011500

Exercise

Write a program named yesorno.cbl that can be called, and that will ask the user to answer yes or no.

Hint: This program should only have to be passed one field, a single PIC X that is filled in by the program. You
should be able to pattern this on timedit.cbl. Appendix A, "Answers," includes a short program that can be used to
test your program.

Previous chapter Next chapter Contents

Macmillan Computer Publishing USA

© Copyright, Macmillan Computer Publishing. All rights reserved.

Teach Yourself COBOL in 21 days, Second
Edition

Previous chapter Next chapter Contents

- Bonus Day 3 -
Full-Screen I/O

So far you have worked with COBOL programs that display and accept all data by scrolling up from the
bottom of the screen. All activity you have encountered so far occurs one line at a time.

Several modern versions of COBOL enable a more polished method of handling user input by enabling the
program to display and accept a full screen of information at a time. Full-screen I/O is not a standard part of
the COBOL language, but it is so common in modern COBOL that you should have some understanding of
how this works. Because full-screen I/O is not a standard part of the language, there are variations on how
each version of COBOL handles this problem. There are enough similarities, however, that a general
understanding of how some versions of COBOL handle full-screen I/O will be usable with almost any
version of COBOL.

Today, you learn about the following topics:

What is full-screen I/O?●

The keyboard●

Formatting full screens●

Defining a screen to maintain a file●

A maintenance module for the file●

Boilerplate●

What Is Full-Screen I/O?
Full-screen I/O enables you to define a complete screen (24 rows by 80 columns) containing prompts and
fields to be entered. This screen can be displayed to the user, which enables the user to enter data in the
fields, move the cursor around the screen to different fields, modify the fields in any order, and then
complete the entry by pressing a key to indicate that all fields are complete.

Figure B3.1 is an example of what a full screen might look like. The screen is a series of prompts followed
by one or more fields into which information can be typed.

Figure B3.1.
An example of full-screen I/O.

Most versions of COBOL make this feature available by providing an enhanced version of the ACCEPT and
DISPLAY verbs. These enhanced features usually allow for the following:

Fields to be positioned by row and column●

Fields to be given special attributes, such as blinking, highlighting, or underlining●

The cursor to be positioned by row and column●

Keys on the keyboard to be defined with special functions●

The Keyboard
The keyboard usually behaves differently during full-screen I/O, and you will have to experiment with it
once you have your first program up and running. Usually, the Tab key and arrow keys move you around the
screen from field to field, and the Enter key causes the screen input to terminate and sends the data you have
entered back to the program. This might cause confusion for some PC users who are used to using the Enter
key to move the cursor to the next field.

Formatting Full Screens
The simplest screen to format for data entry usually is a menu screen. It has several values that are displayed
onscreen, and usually only one data entry field, which is the selection by the user.

First look at the following proposed output for a full-screen menu:

OUTPUT:
 PLEASE SELECT:

 1. STATE CODE MAINTENANCE
 2. VENDOR MAINTENANCE
 3. VOUCHER PROCESSING

 0. EXIT

file:///D|/Cool Stuff/old/ftp/Sams.Teach.Yourself.Cobol.In.21.Days/Teach Yourself Cobol in 21 Days/ch24/01.htm

YOUR SELECTION 5
INVALID SELECTION - PLEASE RE-TRY.

Now look at the code to create this screen. Listing B3.1 is bilmnu04.cbl, and is a full-screen version of
the billing system menu for Micro Focus Personal or Professional COBOL, ACUCOBOL, and with slight
revisions LPI COBOL.

TYPE: Listing B3.1. A full-screen menu.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. BILMNU04.
000300*--------------------------------
000400* Menu for the bill payment system.
000500* Including Vouchers
000600* Using full screen IO.
000700*--------------------------------
000800 ENVIRONMENT DIVISION.
000900 INPUT-OUTPUT SECTION.
001000 FILE-CONTROL.
001100
001200 DATA DIVISION.
001300 FILE SECTION.
001400
001500 WORKING-STORAGE SECTION.
001600
001700 77 MENU-PICK PIC 9 VALUE 0.
001800 88 MENU-PICK-IS-VALID VALUES 0 THRU 3.
001900
002000 77 ERROR-MESSAGE PIC X(79).
002100
002200 SCREEN SECTION.
002300 01 MENU-SCREEN.
002400 05 BLANK SCREEN.
002500 05 LINE 6 COL 20 VALUE "PLEASE SELECT:".
002600 05 LINE 8 COL 25 VALUE "1. STATE CODE MAINTENANCE".
002700 05 LINE 9 COL 25 VALUE "2. VENDOR MAINTENANCE".
002800 05 LINE 10 COL 25 VALUE "3. VOUCHER PROCESSING".
002900 05 LINE 12 COL 25 VALUE "0. EXIT".
003000 05 LINE 20 COL 1 VALUE "YOUR SELECTION".
003100 05 LINE 20 COL 16 PIC Z USING MENU-PICK.
003200 05 LINE 24 COL 1 PIC X(79) FROM ERROR-MESSAGE.
003300
003400 PROCEDURE DIVISION.
003500 PROGRAM-BEGIN.
003600 PERFORM OPENING-PROCEDURE.
003700 PERFORM MAIN-PROCESS.
003800 PERFORM CLOSING-PROCEDURE.

003900
004000 PROGRAM-EXIT.
004100 EXIT PROGRAM.
004200
004300 PROGRAM-DONE.
004400 STOP RUN.
004500
004600 OPENING-PROCEDURE.
004700
004800 CLOSING-PROCEDURE.
004900
005000 MAIN-PROCESS.
005100 PERFORM GET-MENU-PICK.
005200 PERFORM DO-THE-PICK
005300 UNTIL MENU-PICK = 0.
005400
005500*--------------------------------
005600* MENU
005700*--------------------------------
005800 GET-MENU-PICK.
005900 PERFORM DISPLAY-MENU-SCREEN.
006000 PERFORM ACCEPT-MENU-SCREEN.
006100 PERFORM RE-ACCEPT-MENU-SCREEN
006200 UNTIL MENU-PICK-IS-VALID.
006300
006400 DISPLAY-MENU-SCREEN.
006500
006600 DISPLAY MENU-SCREEN.
006700
006800 ACCEPT-MENU-SCREEN.
006900 ACCEPT MENU-SCREEN.
007000 MOVE SPACE TO ERROR-MESSAGE.
007100
007200 RE-ACCEPT-MENU-SCREEN.
007300 MOVE "INVALID SELECTION - PLEASE RE-TRY."
007400 TO ERROR-MESSAGE.
007500 PERFORM DISPLAY-MENU-SCREEN.
007600 PERFORM ACCEPT-MENU-SCREEN.
007700
007800 DO-THE-PICK.
007900 IF MENU-PICK = 1
008000 PERFORM STATE-MAINTENANCE
008100 ELSE
008200 IF MENU-PICK = 2
008300 PERFORM VENDOR-MAINTENANCE
008400 ELSE
008500 IF MENU-PICK = 3

008600 PERFORM VOUCHER-PROCESSING.
008700
008800 PERFORM GET-MENU-PICK.
008900
009000*--------------------------------
009100* STATE
009200*--------------------------------
009300 STATE-MAINTENANCE.
009400 CALL "STCMNT04".
009500
009600*--------------------------------
009700* VENDOR
009800*--------------------------------
009900 VENDOR-MAINTENANCE.
010000 CALL "VNDMNT05".
010100
010200*--------------------------------
010300* VOUCHERS
010400*--------------------------------
010500 VOUCHER-PROCESSING.
010600 CALL "VCHMNU01".
010700

ANALYSIS: The SCREEN SECTION begins at line 002200. The screen definition for MENU-SCREEN
begins at line 002200.

The first variable within MENU-SCREEN is BLANK SCREEN at line 002400. This is not really a value, but
an instruction to blank the screen when DISPLAY MENU-SCREEN is executed.

Lines 002500 through 002900 define values that will be displayed onscreen. Each field is defined with a
LINE (row), COL (column), and a VALUE definition of the literal.

Line 003100 defines a data entry field. This definition includes a line and column (LINE 20 COL 16), a
picture (PIC Z), and a USING clause (USING MENU-PICK) that names the field to be used for receiving
the entered data. When the MENU-SCREEN is processed, this definition causes various things to happen.

During DISPLAY MENU-SCREEN, the cursor is positioned at row 20 and column 16. The value in
MENU-PICK is moved to the screen and displayed using zero suppression (PIC Z).

During ACCEPT MENU-PICK, the cursor is positioned at row 20 and column 16. The value entered by the
user is saved. When the user presses Enter, the saved value is moved to MENU-PICK.

It is important to note that MENU-PICK is defined in WORKING-STORAGE at line 001700, and not in the
SCREEN SECTION. The field that is displayed or entered is always processed by moving it to a temporary
area and then displaying it, or accepting it into a temporary area and moving it back to the field. This moving
back and forth is performed automatically by displaying or accepting a full screen. The field itself is not part
of the screen definition, but is used by the screen definition.

The last field in MENU-SCREEN is defined at line 003200. This has a row and column position (LINE 24
COL 1), a picture (PIC X(79)), and a FROM clause (FROM ERROR-MESSAGE).

A FROM clause affects only the way DISPLAY behaves. During DISPLAY MENU-SCREEN the cursor is
positioned at row 24 and column 1. The value in ERROR-MESSAGE is moved to the screen and displayed as
a PIC X(79) field.

The logic of bilmnu04.cbl is similar to bilmnu03.cbl, but uses full screens instead of individual
fields.

GET-MENU-PICK at line 005800 displays the menu, then accepts the user entry, and, if necessary,
reaccepts entry until a valid value is entered.

The DISPLAY-MENU-SCREEN routine at line 006400 displays the whole MENU-SCREEN.

The ACCEPT-MENU-SCREEN routine at line 006800 accepts the entire MENU-SCREEN. Only one field is
defined in MENU-SCREEN at line 003100; the field that will accept data into MENU-PICK. The ACCEPT
of MENU-SCREEN actually causes data entry to take place only for that single field.

The routine to RE-ACCEPT-MENU-SCREEN, at line 007200, moves an error message to
ERROR-MESSAGE, displays the entire MENU-SCREEN, and then accepts the MENU-SCREEN again.

One short point worth noting is that MENU-PICK must be initialized when it is defined. If it is not, the first
DISPLAY MENU-SCREEN will cause an error, because MENU-PICK will contain an invalid numeric value.

TIP: Some versions of COBOL will not accept COL as an abbreviation for COLUMN in a screen
definition. LPI COBOL is one that does not. If your compiler complains about the use of COL,
change all of them to COLUMN and try to compile again.

Code, compile, and run bilmnu04.cbl to see the effect of full-screen I/O. It will compile and run
correctly for Micro Focus Personal COBOL, ACUCOBOL, LPI COBOL by changing COL to COLUMN, and
probably others. It will not work for VAX COBOL, which does not support full-screen I/O.

Try entering some valid and invalid menu choices to see how the field at the bottom of the screen is either
filled with error messages or cleared, depending on the validity of the choice.

Defining a Screen to Maintain a File
In the next example, you create a full-screen version of vendor maintenance. First, you need to define the
screens. A screen can be designed on printer spacing paper by using 80 columns and 24 lines of the chart.
Figure B3.2 is a layout chart for the menu portion of the program.

Figure B3.2.
Screen layout for the menu.

Listing B3.2 shows the menu screen to be used in vendor maintenance. It has only one modifiable field,
MENU-PICK, which must be defined in WORKING-STORAGE.

TYPE: Listing B3.2. The menu screen.

004800 01 MENU-SCREEN.
004900 05 BLANK SCREEN.
005000 05 LINE 2 COLUMN 30 VALUE "VENDOR MAINTENANCE".

file:///D|/Cool Stuff/old/ftp/Sams.Teach.Yourself.Cobol.In.21.Days/Teach Yourself Cobol in 21 Days/ch24/02.htm

005100 05 LINE 6 COLUMN 20 VALUE "PLEASE SELECT:".
005200 05 LINE 8 COLUMN 25 VALUE "1. ADD RECORDS".
005300 05 LINE 9 COLUMN 25 VALUE "2. CHANGE A RECORD".
005400 05 LINE 10 COLUMN 25 VALUE "3. LOOK UP A RECORD".
005500 05 LINE 11 COLUMN 25 VALUE "4. DELETE A RECORD".
005600 05 LINE 12 COLUMN 25 VALUE "5. LOOK UP BY NAME".
005700 05 LINE 13 COLUMN 25 VALUE "6. PRINT RECORDS".
005800 05 LINE 14 COLUMN 25 VALUE "7. PRINT IN NAME ORDER".
005900 05 LINE 15 COLUMN 25 VALUE "8. DISPLAY ALL RECORDS".
006000 05 LINE 17 COLUMN 25 VALUE "0. EXIT".
006100 05 LINE 20 COLUMN 1 VALUE "YOUR SELECTION? ".
006200 05 LINE 20 COLUMN 17 PIC Z USING MENU-PICK.
006300 05 LINE 24 COLUMN 1 PIC X(79) FROM ERROR-MESSAGE.

Figure B3.3 is a screen layout chart for the new vendor maintenance program. The layout includes prompts
and entry fields for each of the fields in the vendor file. The extra field on line 12 is a 20-character field to
hold the state name retrieved from the state codes file. This field cannot be modified; it is for display only.

Figure B3.3.
Screen layout chart for vendor maintenance.

The DATA DIVISION definition of the basic screen for vendor maintenance is shown in Listing B3.3. It
includes modifiable entry fields for all of the fields in the vendor file.

TYPE: Listing B3.3. Basic vendor maintenance screen.

007200 01 VENDOR-SCREEN.
007300 05 BLANK SCREEN.
007400 05 LINE 4 COLUMN 20 VALUE "VENDOR NUMBER:".
007500 05 LINE 4 COLUMN 40 PIC Z(5) USING VENDOR-NUMBER.
007600 05 LINE 6 COLUMN 20 VALUE "VENDOR NAME: ".
007700 05 LINE 6 COLUMN 40 PIC X(30) USING VENDOR-NAME.
007800 05 LINE 8 COLUMN 20 VALUE "VENDOR ADDRESS:".
007900 05 LINE 8 COLUMN 40 PIC X(30) USING VENDOR-ADDRESS-1.
008000 05 LINE 9 COLUMN 40 PIC X(30) USING VENDOR-ADDRESS-2.
008100 05 LINE 10 COLUMN 20 VALUE "VENDOR CITY:".
008200 05 LINE 10 COLUMN 40 PIC X(20) USING VENDOR-CITY.
008300 05 LINE 12 COLUMN 20 VALUE "VENDOR STATE:".
008400 05 LINE 12 COLUMN 40 PIC XX USING VENDOR-STATE.
008500 05 LINE 12 COLUMN 45 PIC X(20) FROM STATE-NAME.
008600 05 LINE 14 COLUMN 20 VALUE "VENDOR ZIP:".
008700 05 LINE 14 COLUMN 40 PIC X(10) USING VENDOR-ZIP.
008800 05 LINE 16 COLUMN 20 VALUE "VENDOR CONTACT:".
008900 05 LINE 16 COLUMN 40 PIC X(30) USING VENDOR-CONTACT.
009000 05 LINE 18 COLUMN 20 VALUE "VENDOR PHONE:".
009100 05 LINE 18 COLUMN 40 PIC X(15) USING VENDOR-PHONE.
009200 05 LINE 22 COLUMN 1 PIC X(79) FROM FOOTER-FIELD.
009300 05 LINE 22 COLUMN 1 PIC X(79) FROM 2ND-FOOTER-FIELD.

file:///D|/Cool Stuff/old/ftp/Sams.Teach.Yourself.Cobol.In.21.Days/Teach Yourself Cobol in 21 Days/ch24/03.htm

009400 05 LINE 24 COLUMN 1 PIC X(79) FROM ERROR-MESSAGE.
009500

A maintenance program that uses full-screen I/O faces one problem. When a field is defined in a screen, it
can be defined as a USING field, such as line 007500 in Listing B3.3. This definition will allow data entry.
A field also can be defined with a FROM clause, as in line 008500 of Listing B3.3. A FROM field cannot be
modified. There are times during maintenance when you want a field to be modifiable, and there are other
times when you do not. How can you define a field to be both modifiable and nonmodifiable?

Some versions of COBOL allow you to change whether a field can be modified while the program is
running, but some do not. The solution should take as many versions of COBOL into account as possible.
One solution that works on many different versions of COBOL is to define several different screens.

You will need three screens. The first screen allows the user to enter only the values that make up the
primary key to the file; in this case, the VENDOR-NUMBER. The second screen allows the user to enter all
fields except the primary key fields. The third screen displays all fields, but allows none of them to be
entered.

The key screen is used by all modes (add, change, inquire, and delete) to get the user entry of the vendor
number to process. The change screen is used by add and change modes to enable the user to enter or update
the fields in the file. The display-only screen is used by inquire and delete modes to enable the user to view
or review a record before deciding to delete it.

Ignoring the user instructions and error messages, Listing B3.4 is a listing of the three screens that will be
used in the program. A few more fields will be added for the actual program, but these are the basic screen
definitions.

TYPE: Listing B3.4. Example of screen definitions for vendor maintenance.

006500 01 KEY-SCREEN.
006600 05 BLANK SCREEN.
006700 05 LINE 4 COLUMN 20 VALUE "VENDOR NUMBER:".
006800 05 LINE 4 COLUMN 40 PIC Z(5) USING VENDOR-NUMBER.
......
007100
007200 01 ENTRY-SCREEN.
007300 05 BLANK SCREEN.
007400 05 LINE 4 COLUMN 20 VALUE "VENDOR NUMBER:".
007500 05 LINE 4 COLUMN 40 PIC Z(5) FROM VENDOR-NUMBER.
007600 05 LINE 6 COLUMN 20 VALUE "VENDOR NAME: ".
007700 05 LINE 6 COLUMN 40 PIC X(30) USING VENDOR-NAME.
007800 05 LINE 8 COLUMN 20 VALUE "VENDOR ADDRESS:".
007900 05 LINE 8 COLUMN 40 PIC X(30) USING VENDOR-ADDRESS-1.
008000 05 LINE 9 COLUMN 40 PIC X(30) USING VENDOR-ADDRESS-2.
008100 05 LINE 10 COLUMN 20 VALUE "VENDOR CITY:".
008200 05 LINE 10 COLUMN 40 PIC X(20) USING VENDOR-CITY.
008300 05 LINE 12 COLUMN 20 VALUE "VENDOR STATE:".
008400 05 LINE 12 COLUMN 40 PIC XX USING VENDOR-STATE.
008500 05 LINE 12 COLUMN 45 PIC X(20) FROM STATE-NAME.

008600 05 LINE 14 COLUMN 20 VALUE "VENDOR ZIP:".
008700 05 LINE 14 COLUMN 40 PIC X(10) USING VENDOR-ZIP.
008800 05 LINE 16 COLUMN 20 VALUE "VENDOR CONTACT:".
008900 05 LINE 16 COLUMN 40 PIC X(30) USING VENDOR-CONTACT.
009000 05 LINE 18 COLUMN 20 VALUE "VENDOR PHONE:".
009100 05 LINE 18 COLUMN 40 PIC X(15) USING VENDOR-PHONE.
......
009600
009700 01 DISPLAY-SCREEN.
009800 05 BLANK SCREEN.
009900 05 LINE 4 COLUMN 20 VALUE "VENDOR NUMBER:".
010000 05 LINE 4 COLUMN 40 PIC Z(5) FROM VENDOR-NUMBER.
010100 05 LINE 6 COLUMN 20 VALUE "VENDOR NAME: ".
010200 05 LINE 6 COLUMN 40 PIC X(30) FROM VENDOR-NAME.
010300 05 LINE 8 COLUMN 20 VALUE "VENDOR ADDRESS:".
010400 05 LINE 8 COLUMN 40 PIC X(30) FROM VENDOR-ADDRESS-1.
010500 05 LINE 9 COLUMN 40 PIC X(30) FROM VENDOR-ADDRESS-2.
010600 05 LINE 10 COLUMN 20 VALUE "VENDOR CITY:".
010700 05 LINE 10 COLUMN 40 PIC X(20) FROM VENDOR-CITY.
010800 05 LINE 12 COLUMN 20 VALUE "VENDOR STATE:".
010900 05 LINE 12 COLUMN 40 PIC XX FROM VENDOR-STATE.
011000 05 LINE 12 COLUMN 45 PIC X(20) FROM STATE-NAME.
011100 05 LINE 14 COLUMN 20 VALUE "VENDOR ZIP:".
011200 05 LINE 14 COLUMN 40 PIC X(10) FROM VENDOR-ZIP.
011300 05 LINE 16 COLUMN 20 VALUE "VENDOR CONTACT:".
011400 05 LINE 16 COLUMN 40 PIC X(30) FROM VENDOR-CONTACT.
011500 05 LINE 18 COLUMN 20 VALUE "VENDOR PHONE:".
011600 05 LINE 18 COLUMN 40 PIC X(15) FROM VENDOR-PHONE.

ANALYSIS: The KEY-SCREEN at line 006500 contains only a prompt for the vendor number and a field
for entry of the vendor number.

The ENTRY-SCREEN at line 007200 is similar to the VENDOR-SCREEN in Listing B3.3, but at line
007500, the VENDOR-NUMBER is not modifiable because it is defined with a FROM clause.

The DISPLAY-SCREEN at line 009700 is the same as ENTRY-SCREEN, except that all fields are defined
with USING clauses, which makes all fields nonmodifiable.

A Maintenance Module for the File
With the screens worked out, it is possible to complete the maintenance module. Listing B3.5 contains add,
change, inquire, and delete modes.

TYPE: Listing B3.5. Maintenance using full-screen I/O.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. VNDMNT06.
000300*--------------------------------

000400* Add, Change, Inquire and Delete
000500* for the Vendor File.
000600* This includes Inquire by name
000700* The vendor report, and the vendor
000800* report in name order.
000900* Added Display all records.
001000* Uses full screen IO
001100*--------------------------------
001200 ENVIRONMENT DIVISION.
001300 INPUT-OUTPUT SECTION.
001400 FILE-CONTROL.
001500
001600 COPY "SLVND02.CBL".
001700
001800 COPY "SLSTATE.CBL".
001900
002000 DATA DIVISION.
002100 FILE SECTION.
002200
002300 COPY "FDVND04.CBL".
002400
002500 COPY "FDSTATE.CBL".
002600
002700 WORKING-STORAGE SECTION.
002800
002900 77 MENU-PICK PIC 9 VALUE ZERO.
003000 88 MENU-PICK-IS-VALID VALUES 0 THRU 8.
003100
003200 77 VENDOR-RECORD-FOUND PIC X.
003300 77 STATE-RECORD-FOUND PIC X.
003400
003500 77 SCREEN-ERROR PIC X.
003600 77 ERROR-MESSAGE PIC X(79) VALUE SPACE.
003700
003800 77 CONTINUE-MESSAGE PIC X(40) VALUE SPACE.
003900 77 OK-TO-CONTINUE PIC X.
004000
004100 01 FOOTER-FIELD.
004200 05 FOOTER-1-FIELD PIC X(40) VALUE SPACE.
004300 05 FOOTER-2-FIELD PIC X(39) VALUE SPACE.
004400
004500 COPY "WSCASE01.CBL".
004600
004700 SCREEN SECTION.
004800 01 MENU-SCREEN.
004900 05 BLANK SCREEN.
005000 05 LINE 2 COLUMN 30 VALUE "VENDOR MAINTENANCE".

005100 05 LINE 6 COLUMN 20 VALUE "PLEASE SELECT:".
005200 05 LINE 8 COLUMN 25 VALUE "1. ADD RECORDS".
005300 05 LINE 9 COLUMN 25 VALUE "2. CHANGE A RECORD".
005400 05 LINE 10 COLUMN 25 VALUE "3. LOOK UP A RECORD".
005500 05 LINE 11 COLUMN 25 VALUE "4. DELETE A RECORD".
005600 05 LINE 12 COLUMN 25 VALUE "5. LOOK UP BY NAME".
005700 05 LINE 13 COLUMN 25 VALUE "6. PRINT RECORDS".
005800 05 LINE 14 COLUMN 25 VALUE "7. PRINT IN NAME ORDER".
005900 05 LINE 15 COLUMN 25 VALUE "8. DISPLAY ALL RECORDS".
006000 05 LINE 17 COLUMN 25 VALUE "0. EXIT".
006100 05 LINE 20 COLUMN 1 VALUE "YOUR SELECTION? ".
006200 05 LINE 20 COLUMN 17 PIC Z USING MENU-PICK.
006300 05 LINE 24 COLUMN 1 PIC X(79) FROM ERROR-MESSAGE.
006400
006500 01 KEY-SCREEN.
006600 05 BLANK SCREEN.
006700 05 LINE 4 COLUMN 20 VALUE "VENDOR NUMBER:".
006800 05 LINE 4 COLUMN 40 PIC Z(5) USING VENDOR-NUMBER.
006900 05 LINE 22 COLUMN 1 PIC X(79) FROM FOOTER-FIELD.
007000 05 LINE 24 COLUMN 1 PIC X(79) FROM ERROR-MESSAGE.
007100
007200 01 ENTRY-SCREEN.
007300 05 BLANK SCREEN.
007400 05 LINE 4 COLUMN 20 VALUE "VENDOR NUMBER:".
007500 05 LINE 4 COLUMN 40 PIC Z(5) FROM VENDOR-NUMBER.
007600 05 LINE 6 COLUMN 20 VALUE "VENDOR NAME: ".
007700 05 LINE 6 COLUMN 40 PIC X(30) USING VENDOR-NAME.
007800 05 LINE 8 COLUMN 20 VALUE "VENDOR ADDRESS:".
007900 05 LINE 8 COLUMN 40 PIC X(30) USING VENDOR-ADDRESS-1.
008000 05 LINE 9 COLUMN 40 PIC X(30) USING VENDOR-ADDRESS-2.
008100 05 LINE 10 COLUMN 20 VALUE "VENDOR CITY:".
008200 05 LINE 10 COLUMN 40 PIC X(20) USING VENDOR-CITY.
008300 05 LINE 12 COLUMN 20 VALUE "VENDOR STATE:".
008400 05 LINE 12 COLUMN 40 PIC XX USING VENDOR-STATE.
008500 05 LINE 12 COLUMN 45 PIC X(20) FROM STATE-NAME.
008600 05 LINE 14 COLUMN 20 VALUE "VENDOR ZIP:".
008700 05 LINE 14 COLUMN 40 PIC X(10) USING VENDOR-ZIP.
008800 05 LINE 16 COLUMN 20 VALUE "VENDOR CONTACT:".
008900 05 LINE 16 COLUMN 40 PIC X(30) USING VENDOR-CONTACT.
009000 05 LINE 18 COLUMN 20 VALUE "VENDOR PHONE:".
009100 05 LINE 18 COLUMN 40 PIC X(15) USING VENDOR-PHONE.
009200 05 LINE 22 COLUMN 1 PIC X(79) FROM FOOTER-FIELD.
009300 05 LINE 23 COLUMN 1 PIC X(40) FROM CONTINUE-MESSAGE.
009400 05 LINE 23 COLUMN 41 PIC X USING OK-TO-CONTINUE.
009500 05 LINE 24 COLUMN 1 PIC X(79) FROM ERROR-MESSAGE.
009600
009700 01 DISPLAY-SCREEN.

009800 05 BLANK SCREEN.
009900 05 LINE 4 COLUMN 20 VALUE "VENDOR NUMBER:".
010000 05 LINE 4 COLUMN 40 PIC Z(5) FROM VENDOR-NUMBER.
010100 05 LINE 6 COLUMN 20 VALUE "VENDOR NAME: ".
010200 05 LINE 6 COLUMN 40 PIC X(30) FROM VENDOR-NAME.
010300 05 LINE 8 COLUMN 20 VALUE "VENDOR ADDRESS:".
010400 05 LINE 8 COLUMN 40 PIC X(30) FROM VENDOR-ADDRESS-1.
010500 05 LINE 9 COLUMN 40 PIC X(30) FROM VENDOR-ADDRESS-2.
010600 05 LINE 10 COLUMN 20 VALUE "VENDOR CITY:".
010700 05 LINE 10 COLUMN 40 PIC X(20) FROM VENDOR-CITY.
010800 05 LINE 12 COLUMN 20 VALUE "VENDOR STATE:".
010900 05 LINE 12 COLUMN 40 PIC XX FROM VENDOR-STATE.
011000 05 LINE 12 COLUMN 45 PIC X(20) FROM STATE-NAME.
011100 05 LINE 14 COLUMN 20 VALUE "VENDOR ZIP:".
011200 05 LINE 14 COLUMN 40 PIC X(10) FROM VENDOR-ZIP.
011300 05 LINE 16 COLUMN 20 VALUE "VENDOR CONTACT:".
011400 05 LINE 16 COLUMN 40 PIC X(30) FROM VENDOR-CONTACT.
011500 05 LINE 18 COLUMN 20 VALUE "VENDOR PHONE:".
011600 05 LINE 18 COLUMN 40 PIC X(15) FROM VENDOR-PHONE.
011700 05 LINE 23 COLUMN 1 PIC X(40) FROM CONTINUE-MESSAGE.
011800 05 LINE 23 COLUMN 41 PIC X USING OK-TO-CONTINUE.
011900 05 LINE 24 COLUMN 1 PIC X(79) FROM ERROR-MESSAGE.
012000
012100 PROCEDURE DIVISION.
012200 PROGRAM-BEGIN.
012300 PERFORM OPENING-PROCEDURE.
012400 PERFORM MAIN-PROCESS.
012500 PERFORM CLOSING-PROCEDURE.
012600
012700 PROGRAM-EXIT.
012800 EXIT PROGRAM.
012900
013000 PROGRAM-DONE.
013100 STOP RUN.
013200
013300 OPENING-PROCEDURE.
013400 OPEN I-O VENDOR-FILE.
013500 OPEN I-O STATE-FILE.
013600
013700 CLOSING-PROCEDURE.
013800 CLOSE VENDOR-FILE.
013900 CLOSE STATE-FILE.
014000
014100 MAIN-PROCESS.
014200 PERFORM GET-MENU-PICK.
014300 PERFORM MAINTAIN-THE-FILE
014400 UNTIL MENU-PICK = 0.

014500
014600*--------------------------------
014700* MENU
014800*--------------------------------
014900 GET-MENU-PICK.
015000 PERFORM INITIALIZE-MENU-PICK.
015100 PERFORM DISPLAY-ACCEPT-MENU.
015200 PERFORM RE-DISPLAY-ACCEPT-MENU
015300 UNTIL MENU-PICK-IS-VALID.
015400
015500 INITIALIZE-MENU-PICK.
015600 MOVE 0 TO MENU-PICK.
015700
015800 DISPLAY-ACCEPT-MENU.
015900 DISPLAY MENU-SCREEN.
016000 ACCEPT MENU-SCREEN.
016100 MOVE SPACE TO ERROR-MESSAGE.
016200
016300 RE-DISPLAY-ACCEPT-MENU.
016400 MOVE "INVALID SELECTION - PLEASE RE-TRY."
016500 TO ERROR-MESSAGE.
016600 PERFORM DISPLAY-ACCEPT-MENU.
016700
016800 MAINTAIN-THE-FILE.
016900 PERFORM DO-THE-PICK.
017000 PERFORM GET-MENU-PICK.
017100
017200 DO-THE-PICK.
017300 IF MENU-PICK = 1
017400 PERFORM ADD-MODE
017500 ELSE
017600 IF MENU-PICK = 2
017700 PERFORM CHANGE-MODE
017800 ELSE
017900 IF MENU-PICK = 3
018000 PERFORM INQUIRE-MODE
018100 ELSE
018200 IF MENU-PICK = 4
018300 PERFORM DELETE-MODE
018400 ELSE
018500 IF MENU-PICK = 5
018600 PERFORM INQUIRE-BY-NAME
018700 ELSE
018800 IF MENU-PICK = 6
018900 PERFORM PRINT-VENDOR-REPORT
019000 ELSE
019100 IF MENU-PICK = 7

019200 PERFORM PRINT-BY-NAME
019300 ELSE
019400 IF MENU-PICK = 8
019500 PERFORM DISPLAY-ALL.
019600
019700*--------------------------------
019800* ADD
019900*--------------------------------
020000 ADD-MODE.
020100 PERFORM INITIALIZE-ADD-MODE.
020200 PERFORM GET-NEW-RECORD-KEY.
020300 PERFORM ADD-RECORDS
020400 UNTIL VENDOR-NUMBER = ZEROES.
020500
020600 INITIALIZE-ADD-MODE.
020700 MOVE "ENTER THE VENDOR NUMBER TO ADD"
020800 TO FOOTER-1-FIELD.
020900
021000 GET-NEW-RECORD-KEY.
021100 PERFORM ACCEPT-NEW-RECORD-KEY.
021200 PERFORM RE-ACCEPT-NEW-RECORD-KEY
021300 UNTIL VENDOR-NUMBER = ZEROES
021400 OR VENDOR-RECORD-FOUND = "N".
021500
021600 ACCEPT-NEW-RECORD-KEY.
021700 PERFORM INITIALIZE-VENDOR-FIELDS.
021800 PERFORM ENTER-VENDOR-NUMBER.
021900 IF VENDOR-NUMBER NOT = ZEROES
022000 PERFORM READ-VENDOR-RECORD.
022100
022200 RE-ACCEPT-NEW-RECORD-KEY.
022300 MOVE "RECORD ALREADY ON FILE" TO ERROR-MESSAGE.
022400 PERFORM ACCEPT-NEW-RECORD-KEY.
022500
022600 ADD-RECORDS.
022700 PERFORM INITIALIZE-TO-ADD-FIELDS.
022800 PERFORM ENTER-REMAINING-FIELDS.
022900 IF OK-TO-CONTINUE = "Y"
023000 PERFORM WRITE-VENDOR-RECORD.
023100 PERFORM GET-NEW-RECORD-KEY.
023200
023300 INITIALIZE-TO-ADD-FIELDS.
023400 MOVE "ADD NEW FIELDS" TO FOOTER-FIELD.
023500 MOVE "CONTINUE WITH ADDITIONS (Y/N)?"
023600 TO CONTINUE-MESSAGE.
023700 MOVE "Y" TO OK-TO-CONTINUE.
023800

023900*--------------------------------
024000* CHANGE
024100*--------------------------------
024200 CHANGE-MODE.
024300 PERFORM INITIALIZE-CHANGE-MODE.
024400 PERFORM GET-EXISTING-RECORD.
024500 PERFORM CHANGE-RECORDS
024600 UNTIL VENDOR-NUMBER = ZEROES.
024700
024800 INITIALIZE-CHANGE-MODE.
024900 MOVE "ENTER THE VENDOR NUMBER TO CHANGE"
025000 TO FOOTER-1-FIELD.
025100
025200 CHANGE-RECORDS.
025300 PERFORM INITIALIZE-TO-CHANGE-FIELDS.
025400 PERFORM ENTER-REMAINING-FIELDS.
025500 IF OK-TO-CONTINUE = "Y"
025600 PERFORM REWRITE-VENDOR-RECORD.
025700 PERFORM GET-EXISTING-RECORD.
025800
025900 INITIALIZE-TO-CHANGE-FIELDS.
026000 MOVE "CHANGE FIELDS" TO FOOTER-FIELD.
026100 MOVE "CONTINUE WITH CHANGES (Y/N)?"
026200 TO CONTINUE-MESSAGE.
026300 MOVE "Y" TO OK-TO-CONTINUE.
026400
026500*--------------------------------
026600* INQUIRE
026700*--------------------------------
026800 INQUIRE-MODE.
026900 PERFORM INITIALIZE-INQUIRE-MODE.
027000 PERFORM GET-EXISTING-RECORD.
027100 PERFORM INQUIRE-RECORDS
027200 UNTIL VENDOR-NUMBER = ZEROES.
027300
027400 INITIALIZE-INQUIRE-MODE.
027500 MOVE "ENTER THE VENDOR NUMBER TO DISPLAY"
027600 TO FOOTER-1-FIELD.
027700
027800 INQUIRE-RECORDS.
027900 PERFORM INITIALIZE-TO-INQUIRE.
028000 PERFORM DISPLAY-ACCEPT-ALL-FIELDS.
028100 PERFORM GET-EXISTING-RECORD.
028200
028300 INITIALIZE-TO-INQUIRE.
028400 MOVE "PRESS ENTER TO CONTINUE" TO CONTINUE-MESSAGE.
028500 MOVE SPACE TO OK-TO-CONTINUE.

028600
028700*--------------------------------
028800* DELETE
028900*--------------------------------
029000 DELETE-MODE.
029100 PERFORM INITIALIZE-DELETE-MODE.
029200 PERFORM GET-EXISTING-RECORD.
029300 PERFORM DELETE-RECORDS
029400 UNTIL VENDOR-NUMBER = ZEROES.
029500
029600 INITIALIZE-DELETE-MODE.
029700 MOVE "ENTER THE VENDOR NUMBER TO DELETE"
029800 TO FOOTER-1-FIELD.
029900
030000 DELETE-RECORDS.
030100 PERFORM INITIALIZE-TO-DELETE-RECORD.
030200 PERFORM ASK-OK-TO-DELETE.
030300 IF OK-TO-CONTINUE = "Y"
030400 PERFORM DELETE-VENDOR-RECORD.
030500 PERFORM GET-EXISTING-RECORD.
030600
030700 INITIALIZE-TO-DELETE-RECORD.
030800 MOVE "OK TO DELETE(Y/N)?" TO CONTINUE-MESSAGE.
030900 MOVE "N" TO OK-TO-CONTINUE.
031000
031100 ASK-OK-TO-DELETE.
031200 PERFORM DISPLAY-ACCEPT-ALL-FIELDS.
031300 PERFORM RE-DISPLAY-ACCEPT-ALL-FIELDS
031400 UNTIL OK-TO-CONTINUE = "Y" OR "N".
031500
031600 RE-DISPLAY-ACCEPT-ALL-FIELDS.
031700 MOVE "YOU MUST ENTER YES OR NO"
031800 TO ERROR-MESSAGE.
031900 PERFORM DISPLAY-ACCEPT-ALL-FIELDS.
032000
032100*--------------------------------
032200* Routines shared by all modes
032300*--------------------------------
032400 INITIALIZE-VENDOR-FIELDS.
032500 MOVE SPACE TO VENDOR-RECORD.
032600 MOVE ZEROES TO VENDOR-NUMBER.
032700 MOVE SPACE TO STATE-NAME.
032800
032900 ENTER-VENDOR-NUMBER.
033000 MOVE "ENTER 0 TO QUIT" TO FOOTER-2-FIELD.
033100 DISPLAY KEY-SCREEN.
033200 ACCEPT KEY-SCREEN.

033300 MOVE SPACE TO ERROR-MESSAGE.
033400
033500*--------------------------------
033600* Routines shared Add and Change
033700*--------------------------------
033800 ENTER-REMAINING-FIELDS.
033900 PERFORM DISPLAY-ACCEPT-ENTRY-SCREEN.
034000 PERFORM DISPLAY-ACCEPT-ENTRY-SCREEN
034100 UNTIL SCREEN-ERROR = "N"
034200 OR OK-TO-CONTINUE = "N".
034300
034400 DISPLAY-ACCEPT-ENTRY-SCREEN.
034500 DISPLAY ENTRY-SCREEN.
034600 ACCEPT ENTRY-SCREEN.
034700 MOVE SPACE TO ERROR-MESSAGE.
034800
034900 INSPECT OK-TO-CONTINUE
035000 CONVERTING LOWER-ALPHA TO UPPER-ALPHA.
035100
035200 IF OK-TO-CONTINUE = "Y"
035300 PERFORM EDIT-CHECK-FIELDS.
035400
035500 EDIT-CHECK-FIELDS.
035600 MOVE "N" TO SCREEN-ERROR.
035700 PERFORM EDIT-CHECK-VENDOR-NAME.
035800 IF SCREEN-ERROR NOT = "Y"
035900 PERFORM EDIT-CHECK-VENDOR-ADDRESS-1.
036000 IF SCREEN-ERROR NOT = "Y"
036100 PERFORM EDIT-CHECK-VENDOR-ADDRESS-2.
036200 IF SCREEN-ERROR NOT = "Y"
036300 PERFORM EDIT-CHECK-VENDOR-CITY.
036400 IF SCREEN-ERROR NOT = "Y"
036500 PERFORM EDIT-CHECK-VENDOR-STATE.
036600 IF SCREEN-ERROR NOT = "Y"
036700 PERFORM EDIT-CHECK-VENDOR-ZIP.
036800 IF SCREEN-ERROR NOT = "Y"
036900 PERFORM EDIT-CHECK-VENDOR-CONTACT.
037000 IF SCREEN-ERROR NOT = "Y"
037100 PERFORM EDIT-CHECK-VENDOR-PHONE.
037200
037300 EDIT-CHECK-VENDOR-NAME.
037400 INSPECT VENDOR-NAME
037500 CONVERTING LOWER-ALPHA
037600 TO UPPER-ALPHA.
037700
037800 IF VENDOR-NAME = SPACES
037900 MOVE "Y" TO SCREEN-ERROR

038000 MOVE "VENDOR NAME MUST BE ENTERED"
038100 TO ERROR-MESSAGE.
038200 EDIT-CHECK-VENDOR-ADDRESS-1.
038300 INSPECT VENDOR-ADDRESS-1
038400 CONVERTING LOWER-ALPHA
038500 TO UPPER-ALPHA.
038600 IF VENDOR-ADDRESS-1 = SPACE
038700 MOVE "Y" TO SCREEN-ERROR
038800 MOVE "VENDOR ADDRESS-1 MUST BE ENTERED"
038900 TO ERROR-MESSAGE.
039000
039100 EDIT-CHECK-VENDOR-ADDRESS-2.
039200 INSPECT VENDOR-ADDRESS-2
039300 CONVERTING LOWER-ALPHA
039400 TO UPPER-ALPHA.
039500
039600 EDIT-CHECK-VENDOR-CITY.
039700 INSPECT VENDOR-CITY
039800 CONVERTING LOWER-ALPHA
039900 TO UPPER-ALPHA.
040000
040100 IF VENDOR-CITY = SPACE
040200 MOVE "Y" TO SCREEN-ERROR
040300 MOVE "VENDOR CITY MUST BE ENTERED"
040400 TO ERROR-MESSAGE.
040500
040600 EDIT-CHECK-VENDOR-STATE.
040700 PERFORM EDIT-VENDOR-STATE.
040800 PERFORM CHECK-VENDOR-STATE.
040900
041000 EDIT-VENDOR-STATE.
041100 INSPECT VENDOR-STATE
041200 CONVERTING LOWER-ALPHA
041300 TO UPPER-ALPHA.
041400
041500 CHECK-VENDOR-STATE.
041600 PERFORM VENDOR-STATE-REQUIRED.
041700 IF VENDOR-STATE NOT = SPACES
041800 PERFORM VENDOR-STATE-ON-FILE.
041900
042000 VENDOR-STATE-REQUIRED.
042100 IF VENDOR-STATE = SPACE
042200 MOVE "Y" TO SCREEN-ERROR
042300 MOVE "VENDOR STATE MUST BE ENTERED"
042400 TO ERROR-MESSAGE.
042500
042600 VENDOR-STATE-ON-FILE.

042700 MOVE VENDOR-STATE TO STATE-CODE.
042800 PERFORM READ-STATE-RECORD.
042900 IF STATE-RECORD-FOUND = "N"
043000 MOVE "Y" TO SCREEN-ERROR
043100 MOVE "STATE CODE NOT FOUND IN CODES FILE"
043200 TO ERROR-MESSAGE.
043300
043400 EDIT-CHECK-VENDOR-ZIP.
043500 INSPECT VENDOR-ZIP
043600 CONVERTING LOWER-ALPHA
043700 TO UPPER-ALPHA.
043800 IF VENDOR-ZIP = SPACE
043900 MOVE "Y" TO SCREEN-ERROR
044000 MOVE "VENDOR ZIP MUST BE ENTERED"
044100 TO ERROR-MESSAGE.
044200
044300 EDIT-CHECK-VENDOR-CONTACT.
044400 INSPECT VENDOR-CONTACT
044500 CONVERTING LOWER-ALPHA
044600 TO UPPER-ALPHA.
044700
044800 EDIT-CHECK-VENDOR-PHONE.
044900 INSPECT VENDOR-PHONE
045000 CONVERTING LOWER-ALPHA
045100 TO UPPER-ALPHA.
045200 IF VENDOR-PHONE = SPACE
045300 MOVE "Y" TO SCREEN-ERROR
045400 MOVE "ENTER VENDOR PHONE"
045500 TO ERROR-MESSAGE.
045600
045700*--------------------------------
045800* Routines shared by Change,
045900* Inquire and Delete
046000*--------------------------------
046100 GET-EXISTING-RECORD.
046200 PERFORM INITIALIZE-VENDOR-FIELDS.
046300 PERFORM ACCEPT-EXISTING-KEY.
046400 PERFORM RE-ACCEPT-EXISTING-KEY
046500 UNTIL VENDOR-RECORD-FOUND = "Y" OR
046600 VENDOR-NUMBER = ZEROES.
046700
046800 ACCEPT-EXISTING-KEY.
046900 PERFORM ENTER-VENDOR-NUMBER.
047000 IF VENDOR-NUMBER NOT = ZEROES
047100 PERFORM READ-VENDOR-AND-STATE.
047200
047300 RE-ACCEPT-EXISTING-KEY.

047400 MOVE "RECORD NOT FOUND" TO ERROR-MESSAGE.
047500 PERFORM ACCEPT-EXISTING-KEY.
047600
047700*--------------------------------
047800* Routines shared by delete and inquire
047900*--------------------------------
048000 DISPLAY-ACCEPT-ALL-FIELDS.
048100 DISPLAY DISPLAY-SCREEN.
048200 ACCEPT DISPLAY-SCREEN.
048300 MOVE SPACE TO ERROR-MESSAGE.
048400 INSPECT OK-TO-CONTINUE
048500 CONVERTING LOWER-ALPHA TO UPPER-ALPHA.
048600
048700*--------------------------------
048800* File I-O Routines
048900*--------------------------------
049000 READ-VENDOR-AND-STATE.
049100 PERFORM READ-VENDOR-RECORD.
049200 IF VENDOR-RECORD-FOUND = "Y"
049300 MOVE VENDOR-STATE TO STATE-CODE
049400 PERFORM READ-STATE-RECORD
049500 IF STATE-RECORD-FOUND = "N"
049600 MOVE "*** NOT FOUND ***" TO STATE-NAME.
049700
049800 READ-VENDOR-RECORD.
049900 MOVE "Y" TO VENDOR-RECORD-FOUND.
050000 READ VENDOR-FILE RECORD
050100 INVALID KEY
050200 MOVE "N" TO VENDOR-RECORD-FOUND.
050300
050400 WRITE-VENDOR-RECORD.
050500 WRITE VENDOR-RECORD
050600 INVALID KEY
050700 DISPLAY "RECORD ALREADY ON FILE".
050800
050900 REWRITE-VENDOR-RECORD.
051000 REWRITE VENDOR-RECORD
051100 INVALID KEY
051200 DISPLAY "ERROR REWRITING VENDOR RECORD".
051300
051400 DELETE-VENDOR-RECORD.
051500 DELETE VENDOR-FILE RECORD
051600 INVALID KEY
051700 DISPLAY "ERROR DELETING VENDOR RECORD".
051800
051900 READ-STATE-RECORD.
052000 MOVE "Y" TO STATE-RECORD-FOUND.

052100 READ STATE-FILE RECORD
052200 INVALID KEY
052300 MOVE "N" TO STATE-RECORD-FOUND.
052400
052500*--------------------------------
052600* CALLS TO OTHER PROGRAMS
052700*--------------------------------
052800
052900*--------------------------------
053000* INQUIRE BY NAME
053100*--------------------------------
053200 INQUIRE-BY-NAME.
053300 PERFORM CLOSING-PROCEDURE.
053400 CALL "VNINNM03".
053500 PERFORM OPENING-PROCEDURE.
053600
053700*--------------------------------
053800* PRINT
053900*--------------------------------
054000 PRINT-VENDOR-REPORT.
054100 PERFORM CLOSING-PROCEDURE.
054200 DISPLAY "VENDOR REPORT IN PROGRESS".
054300 CALL "VNDRPT04".
054400 PERFORM OPENING-PROCEDURE.
054500
054600*--------------------------------
054700* PRINT BY NAME
054800*--------------------------------
054900 PRINT-BY-NAME.
055000 PERFORM CLOSING-PROCEDURE.
055100 DISPLAY " REPORT BY NAME IN PROGRESS".
055200 CALL "VNBYNM02".
055300 PERFORM OPENING-PROCEDURE.
055400
055500*--------------------------------
055600* DISPLAY ALL
055700*--------------------------------
055800 DISPLAY-ALL.
055900 PERFORM CLOSING-PROCEDURE.
056000 CALL "VNDDSP03".
056100 DISPLAY "DISPLAY COMPLETE".
056200 DISPLAY "PRESS ENTER TO CONTINUE".
056300 ACCEPT OK-TO-CONTINUE.
056400 PERFORM OPENING-PROCEDURE.
056500

OUTPUT:

The following output of vndmnt06.cbl illustrates some of the full screens that are created by the
program:

 VENDOR MAINTENANCE
 PLEASE SELECT:
 1. ADD RECORDS
 2. CHANGE A RECORD
 3. LOOK UP A RECORD
 4. DELETE A RECORD
 5. LOOK UP BY NAME
 6. PRINT RECORDS
 7. PRINT IN NAME ORDER
 8. DISPLAY ALL RECORDS
 0. EXIT
YOUR SELECTION?

 VENDOR NUMBER: _____
ENTER THE VENDOR NUMBER TO CHANGE ENTER 0 TO QUIT

 VENDOR NUMBER: __606
ENTER THE VENDOR NUMBER TO CHANGE ENTER 0 TO QUIT
RECORD NOT FOUND

 VENDOR NUMBER: 2
 VENDOR NAME: ABC PRINTING_________________
 VENDOR ADDRESS: 1624 FOOTHILL BLVD
 SUITE 34
 VENDOR CITY: LOS ANGELES
 VENDOR STATE: CA CALIFORNIA
 VENDOR ZIP: 91042
 VENDOR CONTACT: CHARLES JOHANSSEN
 VENDOR PHONE: (818) 555-4321
CHANGE FIELDS
CONTINUE WITH CHANGES (Y/N)? Y

 VENDOR NUMBER: 2
 VENDOR NAME: ABC PRINTING
 VENDOR ADDRESS: 1624 FOOTHILL BLVD
 SUITE 34
 VENDOR CITY: LOS ANGELES
 VENDOR STATE: CA CALIFORNIA
 VENDOR ZIP: 91042
 VENDOR CONTACT: CHARLES JOHANSSEN
 VENDOR PHONE: (818) 555-4321
OK TO DELETE(Y/N)? N
--

ANALYSIS: The screens are defined at lines 004800, 006500, 007200, and 009700 in the SCREEN

SECTION. All of the fields used in the screen definitions are defined either in the WORKING-STORAGE
SECTION or in the FILE SECTION.

At lines 003500 and 003600, fields are defined to handle error logic, a SCREEN-ERROR flag, and an
ERROR-MESSAGE that will be displayed on the screens.

The user instructions fields on rows 23 and 24 are defined at lines 0003800 through 004300, which
consist of a CONTINUE-MESSAGE flag, an OK-TO-CONTINUE flag, and a FOOTER-FIELD that is
broken into two smaller fields, FOOTER-1-FIELD and FOOTER-2-FIELD.

When through the menu, all modes start by using the ENTER-VENDOR-NUMBER routine at line 032900.
This routine is used to display and accept entry of the KEY-SCREEN.

ADD-MODE begins at line 020000. It uses INITIALIZE-ADD-MODE to set up a message in
FOOTER-1-FIELD, and then performs GET-NEW-RECORD-KEY at line 021000.

The task of GET-NEW-RECORD-KEY is to get the user to enter a vendor number that is not on file or enter
0 to indicate that the user wants to exit. The GET-NEW-RECORD-KEY paragraph uses
ENTER-VENDOR-NUMBER and the KEY-SCREEN to do this. After the user has entered a valid vendor
number (a new number or a zero), ADD-RECORDS at line 020300 is performed until VENDOR-NUMBER =
ZEROES.

ADD-RECORDS at line 022600 initializes for adding fields, and then performs
ENTER-REMAINING-FIELDS. If on the return from ENTER-REMAINING-FIELDS the test for
OK-TO-CONTINUE = "Y" is true, the new vendor record is written. Another new record key is asked of
the user and ADD-RECORDS continues until the user enters 0.

ENTER-REMAINING-FIELDS at line 033800 is probably the largest routine in the file. Its job is to
display and accept the ENTRY-SCREEN, and to edit and validate all of the entered fields. It starts by
performing DISPLAY-ACCEPT-ENTRY-SCREEN and then repeating
DISPLAY-ACCEPT-ENTRY-SCREEN UNTIL SCREEN-ERROR = "N" OR OK-TO-CONTINUE =
"N". The OK-TO-CONTINUE flag gives the user a chance to bail out if the data entry cycle began in error.

This bail-out takes place in DISPLAY-ACCEPT-ENTRY-SCREEN, which begins at line 034400. After
displaying and accepting the screens at line 034900, the OK-TO-CONTINUE flag is converted to
uppercase, and if OK-TO-CONTINUE = "Y" is true, the edit-check is performed.

The edit-checks are performed on the basis that all editing and checking stops on the first field that contains
an error. EDIT-CHECK-FIELDS at line 035500 performs each edit-check, field by field, as long as
SCREEN-ERROR NOT = "Y" is true.

The actual checks are at lines 037300 through 045500. Each edit-check must set up two conditions if an
error occurs in a field. It must MOVE "Y" TO SCREEN-ERROR and it must move an error message to
ERROR-MESSAGE.

Change mode, which is similar to add mode, first locates the key of a record that does exist, and then uses
ENTER-REMAINING-FIELDS to enable the user to change values. Inquire mode and delete mode are
simple; they are left for you to analyze.

Code and compile vndmnt06.cbl. Print out a copy of the program and as you run it, follow where you are
at each point in the maintenance program.

Boilerplate
The cobshl04.cbl program is a boilerplate, though a very simple one. The vndmnt06.cbl program
can be used as a boilerplate for full-screen maintenance programs. Replace the data and statements that are
specific to the vendor file with those from another file.

New Term: A boilerplate is a program that can be used as the basic starting block for other programs.

As your coding improves, you gradually will develop something that you are happy with as the basic way a
file should be maintained and that will become your boilerplate. For now, you can use vndmnt06.cbl as a
boilerplate and for the exercises of today's lesson.

Summary
Several modern versions of COBOL enable a more polished method of handling user input by allowing the
program to display and accept a full screen of information at a time. Today, you learned these basics:

Full-screen I/O allows a screen of 24 rows and 80 columns to be defined and then displayed and
accepted as a single unit.

●

Full-screen I/O is an extension to several versions of COBOL. Because it is not defined as a standard
component of the language, there are slight variations from version to version.

●

Full-screen I/O creates a more professional look and feel to the program.●

Q&A
Q Do I have to use full-screen I/O?

A No, but you probably will. After you become more familiar with COBOL, you will want to try these
"slicker" screens. If you land a job working in COBOL, you will almost certainly have to code in
full-screen mode.

Q Can I use a mouse with COBOL programs?

A A mouse is not supported as a standard part of the COBOL language, but several modern COBOL
compilers include programs or routines that can be called upon that will return mouse positions and
mouse clicks. Micro Focus Personal COBOL supports mouse commands, but this is beyond the scope
of this book.

Workshop

Quiz

1. The following code is a fragment of a screen definition. Which lines create fields on the screen that
cannot be modified?

008300 05 LINE 12 COLUMN 20 VALUE "VENDOR STATE:".
008400 05 LINE 12 COLUMN 40 PIC XX USING VENDOR-STATE.
008500 05 LINE 12 COLUMN 45 PIC X(20) FROM STATE-NAME.

2. Which line or lines of the code in question 1 create fields on the screen that can be modified?

Exercise

Using vndmnt06.cbl as a pattern, create stcmnt05.cbl as a full-screen maintenance module for the state codes
file.

Previous chapter Next chapter Contents

Macmillan Computer Publishing USA

© Copyright, Macmillan Computer Publishing. All rights reserved.

Teach Yourself COBOL in 21 days,
Second Edition

Previous chapter Next chapter Contents

- Bonus Day 4 -
Using a Symbolic Debugger

Today you'll learn about symbolic debugging. You should be familiar with using a debugger, because it's
an indispensable tool. Today's lesson shows you the main activities for which a symbolic debugger may
be used.

Today you will learn

What a symbolic debugger is●

How to prepare a program for symbolic debugging●

How to start and run a symbolic debugger●

The Symbolic Debugger
The symbolic debugger is probably the single most powerful tool that you will ever use to understand a
program. Unfortunately, there is no such thing as a standard debugger. However, certain common
features of a debugger can be discussed.

New Term: A symbolic debugger lets you execute a program in small increments (usually a line at a
time) and watch the code as it's being executed. A symbolic debugger also lets you display the values of
variables using the variable name. It is called a symbolic debugger because it lets you display the
variables using the symbolic name that the variable was given in the original source-code program.

Learning to use a debugger requires a complete course in itself, but knowing even the fundamentals
makes your programming life easier.

It's not easy to create a lesson on this subject, because debuggers vary, but an example using the Micro
Focus Personal COBOL debugger will give you an idea of how powerful debuggers are. You must read

your debugger's manual and practice with it to learn how to use it. The steps shown here are fairly
common to all debuggers. Examples for different machines are given. If you're using Micro Focus
Personal COBOL, follow along with these steps.

Preparing for Debugging
The first step in debugging is often to compile the program for debugging. In these examples, you will
compile and run wrdsrt01.cbl from Day 4, "Decision Making." This simple program illustrates the
debugger's power. Adding debugging information to a compiled program usually increases the size of the
program and slows down the compiler. It also slows down the program itself when it runs. Most versions
of COBOL require that the program be compiled in a special way to allow for debugging:

Micro Focus Personal COBOL has no special requirements. The Micro Focus Personal COBOL
compiler is set up to automatically compile with debugging.

●

Press F2 until Check is displayed, and then press Enter. The program will be compiled with
debugging information included. Unless you have deleted the earlier compiled version of
wrdsrt01.cbl, you don't need to follow this step, but it doesn't hurt to do it anyway.

●

For ACUCOBOL, add -Zd to the command line:●

ccbl -Zd -owrdsrt01 wrdsrt01.cbl

For VAX COBOL, add /DEBUG=ALL to the compile command line and /DEBUG to the link
command line:

●

COBOL/DEBUG=ALL WRDSRT01.COB
LINK/DEBUG/EXE=WRDSRT01 WRDSRT01.OBJ

Starting the Debugger
Some versions of COBOL require that a program be run in a special way in order to be debugged:

For Micro Focus Personal COBOL, you must run the program through the debugger, called the
Animator. If you have just loaded and compiled, you have already loaded the program into the
editor. Otherwise, start by loading it into the editor:

●

PCOBOL WRDSRT01

Press F2 until Animate is displayed, and then press Enter.●

For ACUCOBOL, add -d to the command line:●

runcbl -d wrdsrt01

For VAX COBOL, a program compiled and linked with debug information will start automatically
in debug mode:

●

RUN WRDSRT01.EXE

Running the Debugger
You already have seen considerable differences between compiling for debugging and starting the
debugger. Once the debugger is running, the differences in the behavior of debuggers are too complex to
cover here. The following steps show a series of common debugging actions using the Animator
debugger in Micro Focus Personal COBOL.

When the debugger first comes up, the screen displays a portion of the code on rows 1 through 21. Rows
22, 23, and 24 contain a menu of various commands you can give to the debugger. The next line of code
to be executed is highlighted on the display, as shown in Figure B4.1.

Figure B4.1.
The first screen from the debugger.

Pressing S causes a single step of the program (the next line) to be executed. The line to be executed is
PERFORM INITIALIZE-PROGRAM.

After this line is executed, the highlight moves to line 27, the first line of INITIALIZE-PROGRAM. The
highlight indicates that the next line of code to be executed is MOVE " " TO WORD-1.

Press S again to step to the next line of code. Line 27 is executed, and the highlight is now ready to
execute line 28.

Pressing S again steps through line 28, completing the INITIALIZE-PROGRAM paragraph. The
highlight is now set to line 18.

Press S four more times, and you step one line at a time until the highlight is set to line 35. The 21 rows
at the top of the screen might shift around while you're doing this to display different sets of lines.

Pressing S one more time moves the highlight to line 36 and displays a new group of 21 lines, including
line 36. Line 36 is ready to be executed.

Pressing S at this point causes the display to shift to the screen as the user would see it. The debugger is
executing an ACCEPT verb and needs input from the keyboard. Type the word beta and press Enter.
The screen should look like this:

OUTPUT:
* Accepted - CONFIRM
This program will accept 2 words,
and then display them
in ASCII order.
Please enter the first word.
beta

The debugger returns to the debug screen, ready to execute line 38.

Press S once more to advance the highlight to line 39, ready to accept WORD-2.

Pressing S one more time displays a user screen again into which you should type the word alpha. The

file:///D|/Cool Stuff/old/ftp/Sams.Teach.Yourself.Cobol.In.21.Days/Teach Yourself Cobol in 21 Days/ch25/01.htm

screen should look like this:

OUTPUT:
* Accepted - CONFIRM
This program will accept 2 words,
and then display them
in ASCII order.
Please enter the first word.
beta
Please enter the second word.
alpha

The debug screen returns, having completed the ENTER-THE-WORDS paragraph, ready to execute line
19.

Using the Debugger to View Variables
Now you should examine the values in WORD-1 and WORD-2. Press Q to start a query. Row 24 changes
to allow various new options.

Press E to enter a name. Row 24 again changes, and a blinking cursor appears in row 25. You can now
type the variable name. Type word-1 and press Enter.

As shown in Figure B4.2, row 25 now displays the value beta, the value that you entered for word-1.

Figure B4.2.
Displaying the value of a variable.

The ability to enter a variable name and display the contents of the value is what gives a symbolic
debugger its power. Prior to the advent of symbolic debuggers, the programmer had to know where each
of the program's variables were in memory. Then a request was made to display the values at the memory
address. This made debugging very tedious and error-prone.

Press Esc, Q, E to enter a new variable, and then change word-1 to word-2 and press Enter. The value
in word-2, alpha, is displayed on row 25.

While this has been going on, the highlight bar has been waiting patiently at line 19, ready for the next
step command. Press Esc, and then press S to continue stepping through the program. This lets you
examine how the IF logic in lines 45 through 51 is processed. Continue to press S until the highlight is
on STOP RUN. Press S one more time, and a final message is displayed on row 25, concluding the
program. Leave the program sitting at this point in the debugger because you will continue working with
this program in the next section.

You can see that the debugger makes it possible to examine in detail what's going on in a program. You
can step through the action one line at a time and examine the values in variables at any point. This is a
very useful tool to find out what a program is doing, and especially to find out why a program is doing
something wrong.

file:///D|/Cool Stuff/old/ftp/Sams.Teach.Yourself.Cobol.In.21.Days/Teach Yourself Cobol in 21 Days/ch25/02.htm

Stopping the Program at a Specific Line
Before leaving the debugger, you should examine one more feature, called a breakpoint.

In a large program, it would be tedious to step through all the lines of code one by one to get to the area
of code where you know your program is having trouble.

This example illustrates how to use a breakpoint to get to a section of a program quickly. Restart the
program by pressing R, S to reset and start the program. This sets the highlight back to line 17.

Press the down arrow twice. This moves the cursor (not the highlight) down two lines to line 19. Press B
to set a breakpoint and S to set it at the current cursor position. Figure B4.3 shows the debugger screen
after B is pressed.

Figure B4.3.
The debugger is ready to set a breakpoint.

When the breakpoint is set, press Z to zoom. This starts the program running as if it were not in the
debugger. The debugger screen clears, and you're asked for the two words, just as you would be in the
usual running:

OUTPUT:
This program will accept 2 words,
and then display them
in ASCII order.
Please enter the first word.
dog
Please enter the second word.
cat

Enter any value for both fields, and the program will continue running as usual.

This usual running continues until the line with the breakpoint is encountered--line 19. The program
reverts to debugging mode, and the debug screen is displayed with line 19 highlighted as the next line to
be executed. Row 25 displays the message Breakpoint encountered.

From this point you may examine variables, single-step through the program, or set another breakpoint
further on in the program and zoom to it.

Summary
Symbolic debuggers improve debugging capability. There is no such thing as a "standard" symbolic
debugger, because debuggers vary from one software vendor to another, but they all have common
commands that can be used to examine a program. Today you learned these basics:

Programs usually must be compiled in a special way to so that they can be executed by a symbolic
debugger.

●

file:///D|/Cool Stuff/old/ftp/Sams.Teach.Yourself.Cobol.In.21.Days/Teach Yourself Cobol in 21 Days/ch25/03.htm

A symbolic debugger loads a program and then waits for the user to press a key to start the
program.

●

When a program is running, it can usually be stopped.●

A symbolic debugger lets you inspect the value of a variable in the program.●

A symbolic debugger lets you set a breakpoint at a line of code. The program will run normally
until that line of code is about to be executed, and then the program will stop in the debugger
window and wait for commands from the user.

●

Q&A
Q If a breakpoint is set on a line, does the debugger stop the program before or after the line
is executed?

A Every debugger I have ever worked with (about 40 different ones) stops the program before the
line is executed. I would be very surprised to have it break after, but I suppose this is possible.

Q How can I learn a different symbolic debugger?

A Ask for the manual. Although COBOL is a fairly standard language, the tools used to develop
and test COBOL programs are not. It's not uncommon to have to read the manuals to learn a
linker, an editor, and a debugger.

Workshop

Quiz

1. The following code is a fragment of a program being run in the debugger. Assuming the normal
breakpoint behavior of breaking before, what value would be displayed in A-NUMBER if the
program broke at line 018500? At line 018600?

008300 01 A-NUMBER PIC 999.
.
018400 COMPUTE A-NUMBER = 110 / 11.
018500 COMPUTE A-NUMBER = 110 / 10.
018600 DISPLAY A-NUMBER.

Exercises

1. Find a program that you don't understand perfectly and compile it for debugging. Load it into
the debugger and step through it using the debugger until you understand what the program does.

2. If you're working on a different computer system, locate the manual for your debugger and find
out how to prepare a program for debugging, start the debugger, examine the contents of a
variable, and set a breakpoint. Practice with the debugger if you can get permission.

Previous chapter Next chapter Contents

Macmillan Computer Publishing USA

© Copyright, Macmillan Computer Publishing. All rights reserved.

Teach Yourself COBOL in 21 days,
Second Edition

Previous chapter Next chapter Contents

- Bonus Day 5 -
Intrinsic Functions and the Year 2000

Part of the reason for this chapter is to prepare you for the manpower shortage that is already resulting from
the year 2000 problem. (This subject is covered in greater detail in Bonus Day 6, "Dates and the Year
2000.") Recent versions of COBOL include several tools designed to help you handle year 2000 problems
and date issues. These tools are called intrinsic functions. Intrinsic functions aren't limited to handling date
problems, but many intrinsic functions are targeted at dates.

New Term: intrinsic--Belonging to the essential nature or constitution of something.

New Term: function--A computer subroutine--specifically, one that performs an action using zero, one, or
more variables from a program and supplies the program with a single result.

Today you will learn about the following topics:

What intrinsic functions are●

How to use arguments with intrinsic functions●

Numeric intrinsic functions●

Understanding Intrinsic Functions
Intrinsic functions were added to the COBOL 85 standard. You've already seen something that looks and
acts somewhat like an intrinsic function:

ACCEPT SYSTEM-DATE FROM DATE

The ACCEPT...FROM DATE syntax was covered in Bonus Day 2, "Miscellaneous COBOL Syntax." In
the preceding example, DATE isn't a data item--it is a request for the system date from the operating
system. DATE doesn't really exist as something on the system. It is actually a routine that looks up, builds,
and returns a six-digit date. It does this dynamically while the program is running. If you run the program

on two separate days, DATE will return two separate dates from the operating system, even though you
haven't changed the program.

The CURRENT-DATE Intrinsic Function
Intrinsic functions are similar to DATE, but their syntax is different. They are easier to understand with an
example. The first intrinsic function we will look at is CURRENT-DATE. The CURRENT-DATE function
returns the current date as a PIC X(21) that is broken down into a date and time and a number of hours
difference from Greenwich Mean Time (GMT). The date fills the first eight positions with digits in the
form of CCYYMMDD (where CC represents the hundredths of years of the four-digit year). The next eight
positions are the time down to hundredths of a second in the form HHMMSSDD (where DD represents
hundredths). The next five positions give you the difference in hours and minutes of local time from GMT.

The five-character GMT is broken down into a sign and four digits. The sign is - if local time is earlier than
GMT. The sign is + if local time is the same as or later than GMT. The sign is set to 0 if the difference
from GMT is not available on this system. Using Micro Focus Personal COBOL on an MS-DOS-based
machine, this character will always be 0, because MS-DOS doesn't store information about your local time
zone. The remaining four character positions are the hour and minute difference from GMT if the sign is
not 0. Many operating systems store the difference from GMT, and you will see these five-character
positions filled in when you use CURRENT-DATE on larger computers.

Listing B5.1, CURDAT.CBL, uses the CURRENT-DATE intrinsic function to extract the current date
information.

TYPE: Listing B5.1. CURDAT.CBL uses CURRENT-DATE.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. CURDAT.
000300 AUTHOR. MO BUDLONG.
000400 INSTALLATION.
000500 DATE-WRITTEN. 09/07/96.
000600 DATE-COMPILED.
000700 SECURITY. NONE
000800 ENVIRONMENT DIVISION.
000900 INPUT-OUTPUT SECTION.
001000 FILE-CONTROL.
001100 DATA DIVISION.
001200 FILE SECTION.
001300 WORKING-STORAGE SECTION.
001400
001500 01 CD-DATE PIC X(21).
001600 01 FILLER REDEFINES CD-DATE.
001700 05 CD-CYMD PIC 9(8).
001800 05 CD-HMSD PIC 9(8).
001900 05 CD-GMT-OFF PIC S9(4) SIGN LEADING SEPARATE.
002000 05 FILLER REDEFINES CD-GMT-OFF.
002100 10 CD-GMT-OFF-SIGN PIC X.

002200 10 CD-GMT-OFF-HM PIC 9(4).
002300
002400 01 CD-MDCY PIC 9(8).
002500 01 CD-FORMATTED-MDCY PIC Z9/99/9999.
002600 01 CD-FORMATTED-HMSD PIC Z9/99/99/99.
002700 01 CD-FORMATTED-GMT-OFF PIC 99/99.
002800
002900 01 DUMMY PIC X.
003000
003100 PROCEDURE DIVISION.
003200 MAIN-LOGIC SECTION.
003300 PROGRAM-BEGIN.
003400
003500 PERFORM OPENING-PROCEDURE.
003600 PERFORM MAIN-PROCESS.
003700 PERFORM CLOSING-PROCEDURE.
003800
003900 EXIT-PROGRAM.
004000 EXIT PROGRAM.
004100 STOP-RUN.
004200 STOP RUN.
004300
004400
004500 THE-OTHER SECTION.
004600
004700 OPENING-PROCEDURE.
004800 CLOSING-PROCEDURE.
004900 MAIN-PROCESS.
005000
005100 MOVE FUNCTION CURRENT-DATE TO CD-DATE.
005200
005300 DISPLAY CD-DATE.
005400 COMPUTE CD-MDCY = CD-CYMD * 10000.0001.
005500 MOVE CD-MDCY TO CD-FORMATTED-MDCY.
005600 MOVE CD-HMSD TO CD-FORMATTED-HMSD.
005700 INSPECT CD-FORMATTED-HMSD REPLACING ALL `/' BY `:'.
005800 MOVE CD-GMT-OFF-HM TO CD-FORMATTED-GMT-OFF.
005900 INSPECT CD-FORMATTED-GMT-OFF REPLACING ALL `/' BY `:'.
006000 DISPLAY "DATE = " CD-FORMATTED-MDCY.
006100 DISPLAY "TIME = " CD-FORMATTED-HMSD.
006200 DISPLAY "GMT OFFSET = " CD-GMT-OFF-SIGN CD-FORMATTED-GMT-OFF.
006300 ACCEPT DUMMY.
006400

The following output was created by running CURDAT.CBL three times in a row. You will see the time
portion of the displayed data change each time you run the program, because the system time has moved
forward each time.

OUTPUT:
Personal COBOL version 2.0 from Micro Focus
PCOBRUN V2.0.02 Copyright(C) 1983-1993 Micro Focus Ltd.
199701052258001100000
DATE = 1/05/1997
TIME = 22:58:00:11
GMT OFFSET = 000:00
C:\pcobol\DATE8\intrnsic>pcobrun curdat
Personal COBOL version 2.0 from Micro Focus
PCOBRUN V2.0.02 Copyright (C) 1983-1993 Micro Focus Ltd.
199701052258210400000
DATE = 1/05/1997
TIME = 22:58:21:04
GMT OFFSET = 000:00
C:\pcobol\DATE8\intrnsic>pcobrun curdat
Personal COBOL version 2.0 from Micro Focus
PCOBRUN V2.0.02 Copyright (C) 1983-1993 Micro Focus Ltd.
199701052258572300000
DATE = 1/05/1997
TIME = 22:58:57:23
GMT OFFSET = 000:00

ANALYSIS: The key syntax for using CURRENT-DATE is on line 005100:

005100 MOVE FUNCTION CURRENT-DATE TO CD-DATE.

As I mentioned earlier, an intrinsic function behaves as if it were a data item. It doesn't have to be defined
in WORKING-STORAGE--it is there already. In order for the compiler to recognize that it is dealing with a
function as a pseudo-data item rather than a real data item, the keyword FUNCTION appears before the
function name.

The destination of the MOVE, CD-DATE, is a real data item and is defined in WORKING-STORAGE on lines
001500 through 002200. The execution of the statement on line 005100 causes the program to create a
temporary variable of a PIC X(21) size. This variable is filled with eight digits of current date, eight
digits of current time, and a sign plus four digits of GMT offset information. The resulting 21 bytes are
moved to CD-DATE, just as if CURRENT-DATE had already existed in WORKING-STORAGE and had
been filled in somewhere else in the program.

The remainder of the program displays CD-DATE as it was received from CURRENT-DATE and then
formats and displays the parts of CD-DATE.

Passing Arguments to an Intrinsic Function
Some intrinsic functions act on data that is passed to the function. Data passed to a function is similar to
arguments passed in linkage to called programs (as covered in Bonus Day 2).

Listing B5.2, UPPER.CBL, illustrates the use of the UPPER-CASE intrinsic function. This function
requires an alphabetic or alphanumeric argument, and it will convert the argument to uppercase. You coded

an uppercase conversion program, UPPER01.CBL, on Day 15, "Data Integrity," but you will see that the
intrinsic function makes the case conversion problem easier to solve.

TYPE: Listing B5.2. UPPER.CBL converts an argument to uppercase.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. UPPER.
000300 AUTHOR. MO BUDLONG.
000400 INSTALLATION.
000500 DATE-WRITTEN. 09/07/96.
000600 DATE-COMPILED.
000700 SECURITY. NONE
000800 ENVIRONMENT DIVISION.
000900 INPUT-OUTPUT SECTION.
001000 FILE-CONTROL.
001100 DATA DIVISION.
001200 FILE SECTION.
001300 WORKING-STORAGE SECTION.
001400
001500 01 ALPHA-FIELD PIC X(20).
001600
001700 01 DUMMY PIC X.
001800
001900 PROCEDURE DIVISION.
002000 MAIN-LOGIC SECTION.
002100 PROGRAM-BEGIN.
002200
002300 PERFORM OPENING-PROCEDURE.
002400 PERFORM MAIN-PROCESS.
002500 PERFORM CLOSING-PROCEDURE.
002600
002700 EXIT-PROGRAM.
002800 EXIT PROGRAM.
002900 STOP-RUN.
003000 STOP RUN.
003100
003200
003300 THE-OTHER SECTION.
003400
003500 OPENING-PROCEDURE.
003600 CLOSING-PROCEDURE.
003700 MAIN-PROCESS.
003800
003900 MOVE FUNCTION UPPER-CASE("goodbye") TO ALPHA-FIELD.
004000
004100 DISPLAY ALPHA-FIELD.
004200

004300 MOVE "hello" TO ALPHA-FIELD.
004400
004500 DISPLAY FUNCTION UPPER-CASE(ALPHA-FIELD).
004600
004700 ACCEPT DUMMY.
004800

OUTPUT:
C:\pcobol\DATE8\intrnsic>pcobrun upper
Personal COBOL version 2.0 from Micro Focus
PCOBRUN V2.0.02 Copyright (C) 1983-1993 Micro Focus Ltd.
GOODBYE
HELLO

ANALYSIS: UPPER.CBL provides two separate examples of using the UPPER-CASE function. In the
first, UPPER-CASE("goodbye") is used as the source of a MOVE statement, and the result is moved to
ALPHA-FIELD and then displayed on lines 003900 through 004100.

In this example, the running program creates a temporary variable, calls the subroutine UPPER-CASE, and
passes it "goodbye". The result of converting it to uppercase is moved to the temporary variable. The
temporary variable is then moved to ALPHA-FIELD.

UPPER-CASE(constant or data-item) acts like a data item, so it should be possible to directly
display the result of an UPPER-CASE function call. Lines 004300 through 004500 illustrate this by
moving a value to ALPHA-FIELD and then using DISPLAY UPPER-CASE(ALPHA-FIELD) to place
the information onscreen.

In this use of UPPER-CASE, a temporary variable is created, and then the uppercase subroutine is called
and passed the contents of ALPHA-FIELD. The result is moved to the temporary variable. The temporary
variable is then displayed as if it had always existed in WORKING-STORAGE.

FUNCTION UPPER-CASE("goodbye") acts as if it were a single PIC X item containing the
uppercase version of "goodbye", just as FUNCTION UPPER-CASE(ALPHA-FIELD) acts as if it were
a single PIC X item containing the uppercase version of whatever is in ALPHA-FIELD. In either case,
you can move from it or display it.

Limitations of Intrinsic Functions
Because an intrinsic function is actually a call to a subroutine that acts like a data item, you can't use an
intrinsic function as the destination of a MOVE or in any command that attempts to use it as a destination
type data item. An intrinsic function acts like a constant or a read-only value.

The following statements are illegal because the intrinsic function is being used as the destination of a
MOVE or STRING:

MOVE "199701011236174800000" TO FUNCTION CURRENT-DATE.
STRING
 "199701011236174800000" DELIMITED BY SIZE
 INTO FUNCTION CURRENT-DATE.

An intrinsic function doesn't actually modify the data item arguments that it operates on. Instead, it creates
a temporary variable and acts on that. In the following example, after the two statements are executed,
ALPHA-FIELD still contains the lowercase "hello", while OTHER-FIELD now contains "HELLO".
The call to FUNCTION UPPER-CASE(ALPHA-FIELD) doesn't modify the contents of ALPHA-FIELD:

MOVE "hello" TO ALPHA-FIELD.
MOVE FUNCTION UPPER-CASE(ALPHA-FIELD) TO OTHER-FIELD.

Intrinsic String Functions
The complementary intrinsic function FUNCTION LOWER-CASE (argument) creates a lowercase
version of its argument. There is also an intrinsic function, REVERSE, that reverses its argument:

MOVE FUNCTION REVERSE("hello") TO BACK-WARDS.

In this example, REVERSE will produce the value olleh in BACK-WARDS.

Listing B5.3, STRNG.CBL, illustrates the three string-handling functions: FUNCTION
UPPER-CASE(argument), FUNCTION LOWER-CASE (argument), and FUNCTION
REVERSE(argument). It also highlights some additional actions you can take with an intrinsic, such as
using an intrinsic as the source of a STRING command.

TYPE: Listing B5.3. STRNG.CBL shows some string functions.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. STRNG.
000300 AUTHOR. MO BUDLONG.
000400 INSTALLATION.
000500 DATE-WRITTEN. 09/07/96.
000600 DATE-COMPILED.
000700 SECURITY. NONE
000800 ENVIRONMENT DIVISION.
000900 INPUT-OUTPUT SECTION.
001000 FILE-CONTROL.
001100 DATA DIVISION.
001200 FILE SECTION.
001300 WORKING-STORAGE SECTION.
001400
001500 01 ALPHA-FIELD PIC X(26).
001600 01 SECOND-FIELD PIC X(26).
001700
001800 01 DUMMY PIC X.
001900
002000 PROCEDURE DIVISION.
002100 MAIN-LOGIC SECTION.
002200 PROGRAM-BEGIN.
002300
002400 PERFORM OPENING-PROCEDURE.

002500 PERFORM MAIN-PROCESS.
002600 PERFORM CLOSING-PROCEDURE.
002700
002800 EXIT-PROGRAM.
002900 EXIT PROGRAM.
003000 STOP-RUN.
003100 STOP RUN.
003200
003300
003400 THE-OTHER SECTION.
003500
003600 OPENING-PROCEDURE.
003700 CLOSING-PROCEDURE.
003800 MAIN-PROCESS.
003900
004000 MOVE FUNCTION UPPER-CASE("goodbye") TO ALPHA-FIELD.
004100
004200 DISPLAY ALPHA-FIELD.
004300
004400 MOVE FUNCTION LOWER-CASE(ALPHA-FIELD) TO SECOND-FIELD.
004500
004600 DISPLAY "ALPHA = " ALPHA-FIELD.
004700 DISPLAY "SECOND = " SECOND-FIELD.
004800
004900 MOVE "abcdefghijklmnopqrstuvwxyz" TO ALPHA-FIELD.
005000
005100 STRING
005200 FUNCTION UPPER-CASE("hello") DELIMITED BY SIZE
005300 INTO ALPHA-FIELD.
005400
005500 DISPLAY FUNCTION REVERSE(ALPHA-FIELD).
005600
005700 ACCEPT DUMMY.
005800

OUTPUT:
C:\pcobol\DATE8\intrnsic>pcobrun strng
Personal COBOL version 2.0 from Micro Focus
PCOBRUN V2.0.02 Copyright (C) 1983-1993 Micro Focus Ltd.
GOODBYE
ALPHA = GOODBYE
SECOND = goodbye
zyxwvutsrqponmlkjihgfOLLEH

ANALYSIS: On lines 004000 and 004200, goodbye is converted to uppercase, stored in
ALPHA-FIELD, and then displayed. On line 004400, ALPHA-FIELD is converted to lowercase and
stored in SECOND-FIELD, and then, on lines 004600 and 004700, ALPHA-FIELD and

SECOND-FIELD are displayed.

On line 004900, a new value is moved to ALPHA-FIELD that contains the letters of the alphabet. On
lines 005100 through 005300, the STRING verb moves an uppercase version of hello into the same
field.

Remember that the STRING verb won't clear out the rest of ALPHA-FIELD, which would have happened
if a MOVE verb had been used. Instead, the uppercase letters HELLO are moved over the first five positions
of the contents of ALPHA-FIELD.

Finally, on line 005500, a reversed version of ALPHA-FIELD is displayed.

Numeric Intrinsic Functions
An intrinsic function acts like a data item. Data items can be numeric or alphanumeric, so there must be
some intrinsic functions that can act like numbers. There are several, including intrinsic functions that act
on dates. For the moment, we will look at a simple intrinsic function that doesn't involve dates so that you
can get a feel for them.

Listing B5.4, REMEX.CBL, illustrates the REM function. REM returns the remainder of a division between
two numbers. The REM function behaves as a numeric data item, but in the Micro Focus personal COBOL
compiler, a numeric function can't be used as the source of a MOVE. Other compilers also have this
limitation. The best way to use a numeric function is in a COMPUTE statement, as shown in Listing B5.4.

TYPE: Listing B5.4. REMEX.CBL uses the REM intrinsic function.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. REMEX.
000300 AUTHOR. MO BUDLONG.
000400 INSTALLATION.
000500 DATE-WRITTEN. 09/07/96.
000600 DATE-COMPILED.
000700 SECURITY. NONE
000800 ENVIRONMENT DIVISION.
000900 INPUT-OUTPUT SECTION.
001000 FILE-CONTROL.
001100 DATA DIVISION.
001200 FILE SECTION.
001300 WORKING-STORAGE SECTION.
001400
001500 01 NUMERIC-1 PIC 9(9).
001600 01 NUMERIC-2 PIC 9(9).
001700 01 NUMERIC-3 PIC 9(9).
001800
001900 01 DUMMY PIC X.
002000
002100 PROCEDURE DIVISION.
002200 MAIN-LOGIC SECTION.

002300 PROGRAM-BEGIN.
002400
002500 PERFORM OPENING-PROCEDURE.
002600 PERFORM MAIN-PROCESS.
002700 PERFORM CLOSING-PROCEDURE.
002800
002900 EXIT-PROGRAM.
003000 EXIT PROGRAM.
003100 STOP-RUN.
003200 STOP RUN.
003300
003400
003500 THE-OTHER SECTION.
003600
003700 OPENING-PROCEDURE.
003800 CLOSING-PROCEDURE.
003900 MAIN-PROCESS.
004000 MOVE 1 TO NUMERIC-1, NUMERIC-2.
004100 PERFORM ENTER-PARAMETERS.
004200 PERFORM TEST-REM UNTIL
004300 NUMERIC-1 = 0
004400 OR NUMERIC-2 = 0.
004500
004600 ENTER-PARAMETERS.
004700 DISPLAY "ENTER LARGER NUMBER (0 TO QUIT)".
004800 ACCEPT NUMERIC-1.
004900
005000 IF NUMERIC-1 NOT = 0
005100 DISPLAY "ENTER SMALLER NUMBER (0 TO QUIT)"
005200 ACCEPT NUMERIC-2.
005300
005400 TEST-REM.
005500 COMPUTE NUMERIC-3 =
005600 FUNCTION REM (NUMERIC-1, NUMERIC-2).
005700
005800 DISPLAY "REMAINDER OF " NUMERIC-1 "/" NUMERIC-2 " IS ".
005900 DISPLAY NUMERIC-3.
006000 DISPLAY "PRESS ENTER TO CONTINUE . . . "
006100 ACCEPT DUMMY.
006200
006300 PERFORM ENTER-PARAMETERS.
006400

The output illustrates several remainder calculations.

OUTPUT:
C:\pcobol\DATE8\intrnsic>pcobrun remex

Personal COBOL version 2.0 from Micro Focus
PCOBRUN V2.0.02 Copyright (C) 1983-1993 Micro Focus Ltd.
ENTER LARGER NUMBER (0 TO QUIT)
23
ENTER SMALLER NUMBER (0 TO QUIT)
7
REMAINDER OF 000000023/000000007 IS
000000002
PRESS ENTER TO CONTINUE . . .
ENTER LARGER NUMBER (0 TO QUIT)
4266
ENTER SMALLER NUMER (0 TO QUIT)
11
REMAINDER OF 000004266/000000011 IS
000000009
PRESS ENTER TO CONTINUE . . .
ENTER LARGER NUMBER (0 TO QUIT)
0
C:\pcobol\DATE8\intrnsic>

On lines 004600 through 005300, a larger number and a smaller number are accepted as input.
TEST-REM, on lines 005400 through 006400, displays the remainder of dividing the larger number by
the smaller. MAIN-PROCESS, on lines 003900 through 004500, creates a loop that repeats until the user
enters 0.

Summary
Today you learned about intrinsic functions, why they were introduced in the COBOL 85 standard, and
how to use several of them in your programs. You explored the following:

The CURRENT-DATE function, which extracts an eight-digit date, time, and other information.●

How to pass arguments to functions and how to use the values created and returned by functions.●

String-handling functions such as UPPER-CASE, LOWER-CASE, and REVERSE.●

How to use the numeric function REM.●

Q&A
Q Are there other intrinsic functions?

A Yes. You will learn about several other intrinsic functions on Bonus Day 6, "Dates and the Year
2000."

Workshop

Quiz

What does the following call to REM return as a value that is stored in RESULT?

COMPUTE RESULT = REM(15, 4).

Exercise

Review the date routines in Day 19, "Complex Data Entry Problems," and work out a way to use the REM
function to check for leap years.

Previous chapter Next chapter Contents

Macmillan Computer Publishing USA

© Copyright, Macmillan Computer Publishing. All rights reserved.

Teach Yourself COBOL in 21 days, Second
Edition

Previous chapter Next chapter Contents

- Bonus Day 6 -
Dates and the Year 2000

The approach of the year 2000 (just around the corner now) has produced a great deal of activity regarding
dates. The biggest issue is solving the problem of millions of lines of code that use only two digits to represent
years. There are also issues involving the rules for leap years and new standards for storing and retrieving date
information

Today, you learn about the following parts of the bills-payment system:

A short history of the modern calendar used in computer dating●

The correct rules for determining a leap year●

Date formats and calendars used in computer dating, including the Julian calendar, Julian period dating,
Julian format dates, the Gregorian calendar, Gregorian format dates, Lilian dates, and ANSI/ISO dates

●

Using computer dating to calculate the day of the week and to add days to a date to calculate a new date●

The year 2000 problem●

Using intrinsic functions to help solve year 2000 problems●

Solutions currently being used in the industry for the year 2000 problem●

More Than You Ever Wanted to Know About Dates
This section covers dating systems and calendars so that you'll understand how computers calculate dates (or
miscalculate dates) and the dating techniques used by computers.

I won't make this a history lesson, but suffice it to say that calendars were a source of great consternation in the
past (not that we're doing much better these days). They were based on either the lunar month (about 291/2

days), the solar year (about 3651/4 days--note the use of "about" here; it will come back to haunt us), or a
combination of both.

There are as many versions of history as there are historians. I would like to say that the following information
on the Greco-Roman origins of the calendar is etched-in-bronze irrefutable fact, but the truth is that no one
really knows, and calendar historians love to argue about it. For the purposes of this early history, the following
should be called the story of the calendar, or perhaps even the legend of the calendar, rather than its history.

The modern Western calendar as we know it has its roots in a Roman calendar that was borrowed from the
Greeks. It had 10 months of varying lengths that made up a year of 304 days. The remaining 61 (or 62) days
were just left over, lying around for whatever you wanted to do with them. The 10 months were Martius,
Aprilis, Maius, Junius, Quintilis, Sextilis, Septembris, Octobris, Novembris, and Decembris. Greedy rulers (gee,
Rome had those too?), notably Numa Pompilius, realized that they could collect more taxes if there were more
months in a year, so they scooped up the spare days, placed them at the end of the year, and divided them into
two more months, Januarius and Februarius. The year started on Martius 1 and ended on the last day of
Februarius. In this arrangement, you can see the beginnings of a proto-modern calendar.

The First Julian Calendar
There were still some loose days lying around, and seasons drifted around, appearing in different months in
some years. In 46 B.C.E. (Before the Common Era), Julius Caesar grabbed the astronomer Sosigenes and told
him to sort things out. Sosigenes devised a year with 12 months of 30 or 31 days each, except for Februarius,
which had 29. Every four years, one extra day was added to Februarius to keep the calendar year synchronized
with the solar year. In order to align the year with the seasons, Julius declared that the current year should have
begun on Januarius 1, and that henceforth each year would begin on that date. The population was also
informed that Januarius 1 hadn't occurred when they thought it had, but that it had actually happened more than
20 days earlier. Therefore, the year 46 B.C.E. had many extra days to compensate for all this date-shifting.
Romans called it the year of confusion.

In order to honor the calendar reform, and presumably with a fair bit of pressure from Julius himself, the Roman
Senate renamed the month Quintilis to Julius (which, of course, is now July).

Does all this sound familiar? You have a 12-month year starting in Januarius; each month has 30 or 31 days,
except Februarius, which has 29; and Februarius gains an extra day every four years.

Interestingly, Sosigenes, who actually devised this scheme and was almost right, was never honored in the
calendar. Otherwise, Americans might be celebrating the 4th of Sosigeny as Independence Day.

The Calendar According to Augustus
Julius Caesar's successor, Emperor Augustus, who felt that he was every bit as cool as his predecessor, had the
month Sextilis renamed Augustus. Officially, the Senate proclaimed this renaming, but it isn't difficult to guess
who was lobbying for it.

Unfortunately, the month Julius had 31 days, and the renamed Augustus had only 30. Augustus, upset that his
month wasn't as big as Julius's, took a day from Februarius and stuck it onto the end of Augustus, so February
ended up having only 28 days most of the time.

The change caused by Augustus was not a very big one, so the calendar was still called the Julian calendar for
another 1,500 years.

A final warning. Some serious calendar scholars claim that the whole story so far is learned claptrap and a
medieval fabrication by calendar reformers who wanted to create some "history" for their own scheme to
regularize the calendar.

Leap Year Drift
Earlier I said that the solar year was about 3651/4 days long. It's actually 11 minutes and 14 seconds shorter than
that. You might think that this isn't much to worry about. In the course of a 70-year lifetime, the calendar would
drift by only about 13 hours. However, over 1,500 years, the drift was beginning to show. In 1582, the spring
equinox, one of those inescapably observable astronomical phenomena, had drifted back to March 11, 10 days
earlier than its traditional March 21 date. Something had to be done, and quickly. After all, in another 140 years,
the spring equinox would slip to March 10.

The Gregorian Calendar
Pope Gregory XIII turned this problem over to the scholar Aloysius Lilius. He and his brother came up with a
solution that involved further fiddling with poor old Februarius. Having an extra day every four years was
almost right, but the system could be further tuned with two additional rules.

Here was the original rule:

Years that are evenly divisible by 4 are leap years.●

Here were the additional new rules:

Years that are divisible by 100 (that is, years that end in 00) are not leap years, even though they are
evenly divisible by 4.

●

Years that end in 00 and that are evenly divisible by 400 are leap years.●

So, for example, 1700, 1800, and 1900 are not leap years, but 2000 is, and 1600 was.

These are the leap year rules that are used in the current calendar.

With all the attention to the year 2000, considerable significance has been attached to the fact that the year 2000
is a leap year. This was caused by a notable series of goofs by more than one software company that applied
only the old rule and the first new rule to the year 2000 and determined that 2000 was not a leap year.

So much attention is attached to this issue that you might be asked about it in a job interview. Is the year 2000 a
leap year, and why or why not?

Adjusting the Drift
The new rules worked well, but something had to be done about the 10-day drift. The Pope handled this by
proclaiming that the day that should have been October 5, 1582 would be October 15, 1582. So the days
October 5 through October 14, 1582 don't actually exist in the Gregorian calendar.

Of course, the new calendar didn't roll out overnight. The average man-in-the-street (in those days known as the
average peasant-in-ye-muddy-rutted-path) didn't have the benefit of the 9 o'clock news to warn him of the
changes. There was also political resistance to the change. It took Great Britain 200 years to get with the

program. They went Gregorian in 1752, calling it the New Style calendar, and declared that the day following
September 2, 1752 would be September 14, 1752. They also ordered all colonies to adopt the new date
conventions. Note that because Great Britain waited 200 years before adopting the Gregorian calendar, it had to
drop 11 days, September 3 through 13, one day more than Gregory had to drop in 1582 (October 5 through 14).

Turkey didn't adopt the new calendar until 1927. Since each country adopted the calendar at a different time,
calendar adjustments happened at different times in various parts of the world. There are missing days in
different periods for each location, depending on when the country in question adopted the calendar and which
days were disposed of to adjust for the adoption.

The Gregorian calendar is very accurate in keeping pace with the solar year. It is still about 26 seconds too long,
so in a few thousand years, that pesky spring equinox will have drifted off by a day. I guess we will cross that
bridge when we come to it.

The Gregorian calendar is not the only calendar. The Islamic calendar is based on a lunar calendar with leap
year adjustments and is quite accurate, although the year drifts through a complete cycle every 30 years. On the
Hebrew calendar, the current year (1997) is 5757, and their year begins in autumn. There are many more.
Because the Gregorian calendar is used for most business computing, it is the calendar that this chapter deals
with.

The Other Julian System
In 1582, Joseph Scaliger devised another dating system called the Julian period. He numbered days starting
from noon on January 1, 4713 B.C.E. Noon on December 31, 1994 was the beginning of Julian Day 2,449,718.

The starting date for the Julian period was chosen because it was the convergence in recent history of three
earlier chronological cycles that were used for determining dates: the 28-year solar cycle, the 19-year lunar
cycle, and the 15-year Roman Tax cycle, also called the indiction cycle. Julian period dating is used today in
astronomy as a convenient method of dating astronomical events. This has advantages on an international scale
because the Gregorian calendar was adopted at different times in different places. June 3, 1602 is not the same
day to an Italian astronomer whose country was on the Gregorian calendar and an English astronomer whose
country was not. Scaliger named the system after his father, Julius, not after the Julian calendar. This Julian
period dating system is frequently called the Julian calendar or Julian Day, which causes some confusion with
the Julius Caesar version.

Julian Dates
Just to throw another Julian into the pot, the computer industry has developed a date format containing five or
seven digits, composed of a two- or four-digit year and a three-digit day of the year. This format does not have a
month in it but simply counts the days from the beginning of the year with January 1 being day 1. Thus, January
1, 1997 is 97001 or 1997001, and February 2, 1998 becomes 1998033 or 98033. This date format is used in a
lot of military software. This format should be called Ordinal Day of the Year or Ordinal Year Day Format, but
somewhere along the line the name Julian was applied, and it stuck.

Gregorian Versus Julian Formats
In the computer business, two naming conventions have arisen for two date formats: Julian format, as already
described, and Gregorian format. Gregorian dates are those stored with a year (2 or 4 digit), a month, and a day
(without regard to the order of these numbers) as 970213 or 02131997.

Both Julian and Gregorian formats use the underlying Gregorian calendar, but the term Julian date has been in
use long enough now that it will persist. Even IBM uses the terms Julian date and Julian format to refer to the
ordinal day of the year format of a two- or four-digit year followed by a three-digit day of the year.

A Final Note on the Julians
With so much attention on the year 2000, a new breed of programmer has appeared--the arcane date trivia buff.
These folks are characterized by a tendency to correct you vehemently whenever you refer to a date as a Julian
date when it is in Julian format. They will trot out either the Julian calendar (Caesar's) or the Julian period
dating system (Scaliger's) and proceed to beat you over the head with it to illustrate what a dolt you are for not
knowing that the year-year-day-day-day format is actually in the Gregorian calendar but uses the ordinal day
and year format.

These folks usually also know all about Scaliger's Julian period or Julian Day dates and incorrectly call it the
Julian calendar and then criticize you for defining the Julian calendar as the calendar developed at Julius
Caesar's order in 46 B.C.E., or vice versa.

A third piece of information that these date buffs love thrusting down your throat is the fact that the year 2000 is
not the beginning of the 21st century; it is the last year of the 19th century. Because there is no year 0, the 1st
century was years 1 through 100, the 2nd century was years 101 through 200, and so on up to the 20th century,
which is the years 1901 through 2000. 2001 is the first year of the 21st century. This has nothing to do with
computer date problems, but when some people get going, they just can't stop. It does mean that we will have
two great New Year's celebrations back to back: the first to incorrectly celebrate the end of the 20th century on
December 31, 1999, and the other to correctly celebrate it on December 31, 2000.

Don't be too hard on these people just because you now know the correct answers. Just smile and refer them to a
good encyclopedia.

Lilian Dates
The Lilian dating system was named for Aloysius Lilius, one of the two brothers who were instrumental in
developing the Gregorian calendar. The Lilian dating system is based on counting the number of days since
October 14, 1582. The Gregorian calendar was deployed by papal decree on October 15, 1582, or Lilian day 1.

This system of creating dates by counting days from a specified date in the past has been used in various
calendars and dating systems, including the Julian period system devised by Joseph Scaliger. The American
National Standards Institute (ANSI) adopted a system of counting days starting from December 31, 1600 as
Day 0. Thus, January 1, 1601 is ANSI Day 1. This format is referred to as the ANSI or ISO (International
Standards Organization) date format.

The Lilian and ANSI date formats are two examples of a style of dating usually called integer-day dating
systems or day-as-integer dates.

The Lilian and ANSI day dating systems use large numbers to store the number of days since a particular start
date. For example, January 1, 1998 will be ANSI day 145,002.

Dating Systems Used on Computers
What does all this have to do with computers? You will commonly find the following seven date types on
computers:

Gregorian calendar dates: Most business computers use the Gregorian calendar. Regardless of how dates
are displayed to the user--1/1/98 or 1998001 or 1-JAN-1998--these are all methods of expressing dates in
the Gregorian calendar.

●

Gregorian format dates: A Gregorian calendar date stored as a two- or four-digit year, a two-digit month,
and a two-digit day. Usually 19980101.

●

Julian format dates: A Gregorian calendar date stored as a two- or four-digit year and a three-digit day of
the year. Usually 1998001.

●

Lilian dates: A date stored as a number of days from October 14, 1582 as Day 0.●

ANSI (or ISO) dates: A date stored as a number of days from December 31, 1600 as Day 0.●

Integer day dates: A date stored as a number of days from a fixed date. Some mainframes and
minicomputers have an option during the initial setting up of the computer that allows the installer to
choose a start date. Thereafter, dates are tracked as days from the user-entered date in a manner similar to
Lilian or ANSI dates.

●

Integer interval dates: A date and time stored as a number of seconds, hundredths of seconds, computer
clock ticks, or similar measurements from a fixed date in the past. Because this method of storing dates
produces very large numbers, the starting date for these systems is almost always something recent, such
as January 1, 1990.

●

If you work on computers that store astronomical data, you might run into Julian period dates, in which a date is
stored as a number of days from noon on January 1, 4713 B.C.E. Julian period dates are beyond the scope of
this chapter.

Even less likely and also beyond the scope of this chapter might be software that tracks archaeological finds or
historical documents on the Julian (Caesar's) calendar, the Mayan calendar, or any other possible dating system
based on the culture associated with the artifact.

Intrinsic Functions for Dates
Several intrinsic functions are designed to handle dates. Table B6.1 lists each function, its arguments, and its
return values.

Table B6.1. Date functions.

Function Name Content of
Arguments

Data Type of
Arguments

Content of
Returned Value

Data Type of Returned
Value

CURRENT-DATE None None Current date, time,
and GMT
difference1

Alphanumeric

DATE-OF-INTEGER ANSI date2 Integer Gregorian date3 Integer

DAY-OF-INTEGER ANSI date2 Integer Julian date4 Integer

INTEGER-OF-DATE Gregorian date3 Integer ANSI date2 Integer

INTEGER-OF-DAY Julian date4 Integer ANSI date2 Integer

An integer is a whole number.

1Current date, time, and Greenwich Mean Time (GMT) difference. A date and time in the format
CCYYMMDDHHMMSSDD followed by a sign and four digits of difference from GMT in HHMM format. In
the format CC = hundreds of years, YY = years, MM = month 1-12, DD = day 1-31, HH = hour 0-23, MM =
minutes 0-59, SS = seconds 0-59 and DD = hundredths of a second 0-99. When it is 7:55 pm in Greenwich, it is
also 7:55 pm in Dublin, Ireland, and the GMT difference will appear as +0000. In Moscow it will be 10:55 pm,
and the GMT difference will be +0300. Los Angeles, California is eight hours earlier than GMT. The time there
will be 11:55 am, and the GMT difference will be -0800. All of these numbers ignore any shifts that occur for
Daylight savings time.

2The number of days since December 31, 1600.

3A date in the format YYYYMMDD.

4A date in the format YYYYDDD. Bonus Day 5, "Intrinsic Functions and the Year 2000," covered the
CURRENT-DATE function, so let's look at some of the others.

Day of the Week
One of the reasons that the ANSI committee chose January 1, 1601 to be Day 1 of the ANSI date-recording
technique is that January 1, 1601 also happens to be a Monday. This makes it possible to combine the REM
function with the INTEGER-OF-DATE function to calculate the day of the week for dates equal to or greater
than January 1, 1601, which is day 1 of the ANSI dating system.

Table B6.2 shows you how the day of the week is calculated using the ANSI date in days, dividing it by 7, and
using the remainder to determine the actual day of the week for that date. It lists a date starting from January 1,
1601, the ANSI day, which is the remainder of dividing the ANSI day by 7 and the day of the week for the date.
The pattern shows a remainder of 1 for Mondays, 2 for Tuesdays, and so on through to Sunday, which returns a
remainder of zero. This pattern repeats for successive dates all the way to the present. A remainder of 0
represents a Sunday, 1 is a Monday, and so on through Friday, which is 6. Hark back to your early elementary
school long division classes when looking at the table, and you will remember that 1 divided by 7 produces a
result of 0 and a remainder of 1, 2 divided by 7 also produces a result of 0 but a remainder of 2, and so on.

To determine the day of the week for any date from January 1, 1601, you need to convert the date to ANSI days
using the INTEGER-OF-DATE function and find the remainder of dividing that number by 7 using the REM
function. The INTEGER-OF-DATE function will not work correctly for dates prior to January 1, 1601.

Table B6.2. Day-of-the-week calculations.

Date ANSI Date REM (Remainder of ANSI Date Divided by 7) Day of the Week

Jan 1, 1601 1 1 Monday

Jan 2, 1601 2 2 Tuesday

Jan 3, 1601 3 3 Wednesday

Jan 4, 1601 4 4 Thursday

Jan 5, 1601 5 5 Friday

Jan 6, 1601 6 6 Saturday

Jan 7, 1601 7 0 Sunday

Jan 8, 1601 8 1 Monday

Jan 9, 1601 9 2 Tuesday

Jan 10, 1601 10 3 Wednesday

Jan 11, 1601 11 4 Thursday

Jan 12, 1601 12 5 Friday

Jan 13, 1601 13 6 Saturday

Jan 14, 1601 14 0 Sunday

Jan 15, 1601 15 1 Monday

Listing B6.1, DOW.CBL, uses the REM and the INTEGER-OF-DATE functions to calculate the day of the week
of the current system date and a date entered by the user. It does this using two different styles.

TYPE: Listing B6.1. DOW.CBL.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. DOW.
000300 AUTHOR. MO BUDLONG.
000400 INSTALLATION.
000500 DATE-WRITTEN. 09/07/96.
000600 DATE-COMPILED.
000700 SECURITY. NONE
000800 ENVIRONMENT DIVISION.
000900 INPUT-OUTPUT SECTION.
001000 FILE-CONTROL.
001100 DATA DIVISION.
001200 FILE SECTION.
001300 WORKING-STORAGE SECTION.
001400
001500 01 CD-DATE.
001600 05 CD-YYYYMMDD PIC 9(8).
001700 05 FILLER PIC X(13).
001800 01 THE-DATE PIC 9(8).
001900 01 ANSI-DATE PIC 9(6).
002000 01 THE-DOW PIC 9.

002100
002200 01 DAYS-OF-WEEK.
002300 05 FILLER PIC X(9) VALUE "SUNDAY".
002400 05 FILLER PIC X(9) VALUE "MONDAY".
002500 05 FILLER PIC X(9) VALUE "TUESDAY".
002600 05 FILLER PIC X(9) VALUE "WEDNESDAY".
002700 05 FILLER PIC X(9) VALUE "THURSDAY".
002800 05 FILLER PIC X(9) VALUE "FRIDAY".
002900 05 FILLER PIC X(9) VALUE "SATURDAY".
003000 01 FILLER REDEFINES DAYS-OF-WEEK.
003100 05 THE-DAY PIC X(9) OCCURS 7 TIMES.
003200
003300 01 DOW-SUB PIC 9.
003400
003500 01 DUMMY PIC X.
003600
003700 PROCEDURE DIVISION.
003800 MAIN-LOGIC SECTION.
003900 PROGRAM-BEGIN.
004000
004100 PERFORM OPENING-PROCEDURE.
004200 PERFORM MAIN-PROCESS.
004300 PERFORM CLOSING-PROCEDURE.
004400
004500 EXIT-PROGRAM.
004600 EXIT PROGRAM.
004700 STOP-RUN.
004800 STOP RUN.
004900
005000
005100 THE-OTHER SECTION.
005200
005300 OPENING-PROCEDURE.
005400 CLOSING-PROCEDURE.
005500 MAIN-PROCESS.
005600 MOVE 1 TO THE-DATE.
005700 PERFORM ENTER-PARAMETERS.
005800 PERFORM TEST-DOW UNTIL
005900 THE-DATE = 0.
006000
006100 ENTER-PARAMETERS.
006200 DISPLAY "ENTER A DATE IN YYYYMMDD FORMAT (0 TO QUIT)".
006300 ACCEPT THE-DATE.
006400
006500 TEST-DOW.
006600 MOVE FUNCTION CURRENT-DATE TO CD-DATE.
006700
006800 COMPUTE ANSI-DATE = FUNCTION INTEGER-OF-DATE(CD-YYYYMMDD).
006900 COMPUTE THE-DOW = FUNCTION REM(ANSI-DATE,7).

007000 COMPUTE DOW-SUB = THE-DOW + 1.
007100
007200 DISPLAY "TODAY IS " CD-YYYYMMDD " A "
007300 THE-DAY(DOW-SUB).
007400
007500 COMPUTE DOW-SUB = FUNCTION REM(
007600 FUNCTION INTEGER-OF-DATE(THE-DATE), 7) + 1.
007700
007800 DISPLAY THE-DATE " IS A "
007900 THE-DAY(DOW-SUB).
008000
008100 DISPLAY "PRESS ENTER TO CONTINUE . . . "
008200 ACCEPT DUMMY.
008300
008400 PERFORM ENTER-PARAMETERS.
008500

OUTPUT:
C:\pcobol\DATE8\intrnsic>PCOBRUN DOW
Personal COBOL version 2.0 from Micro Focus
PCOBRUN V2.0.02 Copyright (C) 1983-1993 Micro Focus Ltd.
ENTER A DATE IN YYYYMMDD FORMAT (0 TO QUIT)
16010101
TODAY IS 19970112 A SUNDAY
16010101 IS A MONDAY
PRESS ENTER TO CONTINUE . . .
ENTER A DATE IN YYYYMMDD FORMAT (0 TO QUIT)
19970113
TODAY IS 19970112 A SUNDAY
19970113 IS A MONDAY
PRESS ENTER TO CONTINUE . . .
ENTER A DATE IN YYYYMMDD FORMAT (0 TO QUIT)
19480304
TODAY IS 19970112 A SUNDAY
19480304 IS A THURSDAY
PRESS ENTER TO CONTINUE . . .
ENTER A DATE IN YYYYMMDD FORMAT (0 TO QUIT)

ANALYSIS: In lines 006600 through 007400, the CURRENT-DATE is extracted and then converted to an
ANSI date. The remainder division is performed on the ANSI date, and the result is placed in DOW. DOW is used
to create a subscript DOW-SUB into the DAYS-OF-WEEK table, and the result is displayed.

The second version starting on line 007500 uses a feature of intrinsic functions. The result of an intrinsic
function can be used directly as an argument to another intrinsic function. The second version computes the
value of DOW-SUB in one statement on lines 007500 and 007600. Let's analyze this statement and see how it
works while the computer executes the statement. First, it helps to scrunch everything onto one line:

COMPUTE DOW-SUB = FUNCTION REM(FUNCTION INTEGER-OF-DATE(THE-DATE), 7) + 1.

For this example, I will assume that the entered date is 16010108 (January 8, 1601), a Monday. Functions,

just like arithmetic statements, are evaluated from the inside out. The first thing the computer does is replace the
THE-DATE for the INTEGER-OF-DATE function with the actual value that was entered, 16010108:

COMPUTE DOW-SUB = FUNCTION REM(FUNCTION INTEGER-OF-DATE(16010108), 7) + 1.

The inner function, FUNCTION INTEGER-OF-DATE(16010108), is resolved to ANSI Day 8, and the
statement becomes

COMPUTE DOW-SUB = FUNCTION REM(8, 7) + 1.

Now the REM(8, 7) function is performed and resolves to 1:

COMPUTE DOW-SUB = 1 + 1.

Finally, the value 2 is assigned to DOW-SUB, which points to the value "MONDAY" in the DAYS-OF-WEEK
table, which is what we were after.

Adding Days to a Date
It's possible to use INTEGER-OF-DATE and the inverse function DATE-OF-INTEGER to calculate a new
date when a number of days are added to an existing date. Listing B6.2, DADD.CBL, illustrates one method of
doing this by adding a positive or negative number to the current date.

TYPE: Listing B6.2. DADD.CBL: Adds days to a date.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. DADD.
000300 AUTHOR. MO BUDLONG.
000400 INSTALLATION.
000500 DATE-WRITTEN. 09/07/96.
000600 DATE-COMPILED.
000700 SECURITY. NONE
000800 ENVIRONMENT DIVISION.
000900 INPUT-OUTPUT SECTION.
001000 FILE-CONTROL.
001100 DATA DIVISION.
001200 FILE SECTION.
001300 WORKING-STORAGE SECTION.
001400
001500 01 CD-DATE.
001600 05 CD-YYYYMMDD PIC 9(8).
001700 05 FILLER PIC X(13).
001800 01 NEW-DATE PIC 9(8).
001900 01 DAYS-TO-ADD PIC S9(5).
002000 01 FORMAT-DAYS-TO-ADD PIC ZZZZ9-.
002100
002200 01 DUMMY PIC X.
002300
002400 PROCEDURE DIVISION.
002500 MAIN-LOGIC SECTION.
002600 PROGRAM-BEGIN.
002700

002800 PERFORM OPENING-PROCEDURE.
002900 PERFORM MAIN-PROCESS.
003000 PERFORM CLOSING-PROCEDURE.
003100
003200 EXIT-PROGRAM.
003300 EXIT PROGRAM.
003400 STOP-RUN.
003500 STOP RUN.
003600
003700
003800 THE-OTHER SECTION.
003900
004000 OPENING-PROCEDURE.
004100 CLOSING-PROCEDURE.
004200 MAIN-PROCESS.
004300 MOVE 1 TO DAYS-TO-ADD.
004400 PERFORM ENTER-PARAMETERS.
004500 PERFORM TEST-DADD UNTIL
004600 DAYS-TO-ADD = 0.
004700
004800 ENTER-PARAMETERS.
004900 DISPLAY "ENTER NUMBER-OF-DAYS TO ADD (0 TO QUIT)".
005000 ACCEPT DAYS-TO-ADD.
005100 MOVE DAYS-TO-ADD TO FORMAT-DAYS-TO-ADD.
005200
005300 TEST-DADD.
005400 MOVE FUNCTION CURRENT-DATE TO CD-DATE.
005500
005600 COMPUTE NEW-DATE =
005700 FUNCTION DATE-OF-INTEGER(
005800 FUNCTION INTEGER-OF-DATE(CD-YYYYMMDD)
005900 + DAYS-TO-ADD).
006000
006100 DISPLAY "CURRENT DATE " CD-YYYYMMDD
006200 " + " FORMAT-DAYS-TO-ADD
006300 " WILL BE " NEW-DATE.
006400
006500 PERFORM ENTER-PARAMETERS.
006600

OUTPUT:
Accepted - CONFIRM
ENTER NUMBER-OF-DAYS TO ADD (0 TO QUIT)
15
CURRENT DATE 19970112 + 15 WILL BE 19970127
ENTER NUMBER-OF-DAYS TO ADD (0 TO QUIT)
-1
CURRENT DATE 19970112 + 1- WILL BE 19970111
ENTER NUMBER-OF-DAYS TO ADD (0 TO QUIT)

-30
CURRENT DATE 19970112 + 30- WILL BE 19961213
ENTER NUMBER-OF-DAYS TO ADD (0 TO QUIT)
-500
CURRENT DATE 19970112 + 500- WILL BE 19950831
ENTER NUMBER-OF-DAYS TO ADD (0 TO QUIT)
-365
CURRENT DATE 19970112 + 365- WILL BE 19960113
ENTER NUMBER-OF-DAYS TO ADD (0 TO QUIT)
-366
CURRENT DATE 19970112 + 366- WILL BE 19960112
ENTER NUMBER-OF-DAYS TO ADD (0 TO QUIT)
+365
CURRENT DATE 19970112 + 365 WILL BE 19980112
ENTER NUMBER-OF-DAYS TO ADD (0 TO QUIT)

ANALYSIS: The technique of using the return value of a function as an argument to another function is used in
lines 005600 through 005900. In the following example, the line is too wide for this book's margins, so it is
broken into two lines. The statement starts out as follows:

COMPUTE NEW-DATE = FUNCTION DATE-OF-INTEGER (
ÂFUNCTION INTEGER-OF-DATE(CD-YYYYMMDD) + DAYS-TO-ADD).

Assuming that the current date is 19970112 and that the user entered -30 as the days offset, the function
resolves in stages. Again, the following line is split across two lines. First, the value of the current date is
plugged into the INTEGER-OF-DATE function:

COMPUTE NEW-DATE = FUNCTION DATE-OF-INTEGER (
ÂFUNCTION INTEGER-OF-DATE(19970112) + DAYS-TO-ADD).

The ANSI days are calculated by calling INTEGER-OF-DATE and replacing the function call:

COMPUTE NEW-DATE = FUNCTION DATE-OF-INTEGER(144,648 + DAYS-TO-ADD).

DAYS-TO-ADD is plugged into the formula, and the arithmetic is done:

COMPUTE NEW-DATE = FUNCTION DATE-OF-INTEGER(144,648 + (-30)).
COMPUTE NEW-DATE = FUNCTION DATE-OF-INTEGER(144,618).

Finally, the DATE-OF-INTEGER function is called with this value and returns 19961231, which is assigned
to NEW-DATE:

COMPUTE NEW-DATE = 19961231.

What Is the Year 2000 Problem?
Now that you have seen what can be done with intrinsic functions operating on dates, it's time to look at the
year 2000 problem. COBOL programs, as well as other software, including even the software that displays the
date and time on your IBM-compatible PC, use a six-digit date. The date, in YYMMDD or MMDDYY format,
and the accompanying code assume 19 for the first part of the year and store, for example, November 12, 1997
as 971112 or 111297. January 1, 2000 would become 000101. This will mess up a lot of sorting logic and other
parts of the program.

For many, the problem is upon them already. Financial institutions are currently dealing with the maturation

date of five-year CDs, for example. My insurance company has calculated my life insurance premium based on
an actuarial table that estimates my death in a four-digit year that begins with a 20, not an assumed 19. At least I
hope so!

For other companies, the problem will have to be solved by the beginning of 1999. This will allow purchase
orders, due dates, delivery dates, and other future-based transactions to be processed correctly.

Some people erroneously believe that the problem has already been solved. I recently attended a demonstration
of a payroll package that displayed dates with a four-digit year. After I used the package and tried a few options,
something struck me as odd about the dates. I ran a few quick tests. I wasn't allowed to see the source code, but
I hypothesized that the logic read something like this:

IF YY > 20
 PERFORM FORMAT-AS-1900
ELSE
 PERFORM FORMAT-AS-2000

The date hadn't been converted to YYYY format. Instead, a simple hack had been put in to display years ending
in 21 and greater as 1921, 1922, and so on, and years ending in 00 to 20 as 2000, 2001, and so on.

The logic didn't hold up under a few simple sorts. Reports showed the year 2001 as occurring prior to the year
1921. The package cost almost $60,000, and the sales representative was devastated when I pointed out the
nature of the internal coding error. I wrote it up in detail so that their technical people could see the problem.
Many months of coding will be required to correct the mistake and all the other date problems that presumably
exist in the system. By then I will have chosen another package in which the problem has truly been solved, and
the sale will have been lost. This is one example of the problem.

In systems that use six-digit YYMMDD formatted dates or five-digit YYDDD Julian Dates, routines already
exist to handle standard business calculations such as calculating the day of the week using a five- or six-digit
date or adding days to an existing date and coming up with the new date. To move these routines to the larger
date format needed to accommodate the year 2000, all of these routines would have to be rewritten to
accommodate the four-digit year format. Additionally, the DATE used in ACCEPT statements such as ACCEPT
SYSTEM-DATE FROM DATE is a six-digit date, and extracting the system date in an eight-digit format would
require complex coding and calling techniques. Fortunately, intrinsic functions make this task much easier.

Other difficult date problems are sitting on systems based on coding practices that have developed. At one time,
it was common to use a date of 990909 to indicate some special condition for a date. It was frequently used to
mean "forever." An archive file or tape might be given an expiration date of 990909 to indicate that it was a
permanent archive, never to be deleted. Of course, in a couple of years, "forever" will actually arrive, and unless
the date is fixed, archives could be inadvertently deleted. Other popular "forever" dates are 990101 and 991231.

Solutions for Year 2000 Problems
The year 2000 problem goes far beyond business date routines. Intrinsic functions take care of many of the
existing business routines, but they don't address the real core of the problem. Dates that are stored with a
two-digit year are time bombs waiting to explode the first time someone tries to enter or process transactions
with a date of January 1, 2000 or greater. This problem could easily surface on a large scale in early 1999 when
users try to enter future receiving dates for inventory on order.

Incorrect date handling is already a problem in some credit card machines. Cards with an expiration date in the
year 2000 or beyond are being refused. Credit card companies that have completed their year 2000

programming are finding their cards are rejected by credit card machines because the machine itself extracts
only the last two digits of the year--00, 01, 02, or whatever--and assumes that the card is expired. The machine
doesn't even try to connect to the central clearinghouse to clear the transaction.

As we get closer to 2000, the problem will become more and more severe. All data that is stored with a
two-digit date must be modified to allow for these upcoming dates--either by modifying the dates in the file and
the programs that read the file, or by modifying the way programs interpret the data in the file. Either way,
millions of lines of code will need to be modified to handle this situation over the next three years.

There are two basic methods for solving the year 2000 problem:

Change the data in all files to reflect a new date format that includes two extra digits for the year portion
of the date. Then change all the programs to read or write this new full date to and from files. Programs
that sort or format this new date will also have to be changed.

●

Change the data in all files to reflect a new way of storing dates, but use the same amount of space
currently used for dates. Then change all the programs to read, sort, or format this new date. This method
breaks down into four main sub-methods:

Fixed-window dating uses the two digits of the year and provides a break or rollover point in the
programs. For example, all years stored as 51 to 99 represent 1951 to 1999, and all years stored as
00 to 50 represent 2000 to 2050. Even if your computer processes a maximum of 100 years worth
of data, this method will eventually need revision sometime before 2049.

❍

Sliding-window dating is similar to fixed-window dating, but instead of a fixed rollover, the
rollover point slides in time. The rollover point is defined as the current system date, and limits are
set for the bottom and top of the 100-year limit. As an example, an inventory system might have to
deal with dates received on goods as much as five years ago and dates of expected shipment on
new goods that are as much as two years in the future. The sliding window could be set so that the
system could store 40 years into the past and 60 years into the future. During 1997, years 37
through 99 represent 1937 through 1999, and years 00 through 36 represent 2000 through 2036.
When the system date moves to 1999, years 39 through 99 represent 1939 through 1999, and years
00 through 38 represent 2000 through 2038. This assumes that material is retired from the system
so that the sliding window doesn't slide up over old dates and that the system doesn't process more
than a 100-year range of dates.

❍

Encoding dates involves modifying dates in the files to use a new coding scheme that lets the date
be stored as other than just digits. A wide variety of methods has been suggested. Alphabetical
characters and hexadecimal digits are two suggestions that show up frequently, but at the moment,
no coding scheme stands out as a favorite. This involves modifying all date-handling logic to
convert to and from this encoded scheme.

❍

Use the six digits currently used to store year month and day to store the ANSI days date (or the
Lilian days date on many IBM systems). Again, all programs must be modified to convert between
YYYYMMDD format and ANSI days format when reading from and writing to a file. The six
digits of days would allow for about 2,739 years worth of dates, or January 1, 1601 to some date in
the year 4339.

❍

●

Additional Information
The year 2000 situation is rapidly changing, and it is impossible to keep up-to-date on everything. The intent of
this chapter isn't to help you sweep into a company to fix all its date problems, but to help you become an
employable resource who can be used as part of a date-handling team. For further information on the year 2000
problem, I recommend reading the following:

The Year 2000 and 2-Digit Dates: A Guide for Planning and Implementation, published by IBM
(914-432-9405).

●

Dates and the Year 2000, published by King Computer Services, Inc. (818-951-5240).●

Summary
The year 2000 problem will demand huge programming resources. This will include extremely skilled analysts
who can sort out the problem and determine how to approach it, as well as many people who can code and test
the solutions that the analyst comes up with. In this lesson, you learned the following:

How to use intrinsic functions to handle date problems●

The importance of correcting dates●

Some of the methods used to correct dates●

What the year 2000 problem is●

Some methods in use to handle the year 2000 problem●

Q&A
Q Where are Lilian Dates used?

A IBM has adopted Lilian dates in many instances as an alternative to ANSI dates. Some of their
machines and systems provide routines that perform the same functions as INTEGER-FROM-DATE and
DATE-FROM-INTEGER but use the Lilian date as the base date. The main difference in using Lilian
dates is that Lilian Day 1--October 15, 1582--was a Friday, while ANSI Day 1--January 1, 1601--was a
Monday. This changes the behavior of any day-of-the-week logic:

Date Lilian Date REM (Lilian Date Divided by 7) Day of the Week

Oct 15, 1582 1 1 Friday

Oct 16, 1582 2 2 Saturday

Oct 17, 1582 3 3 Sunday

Oct 18, 1582 4 4 Monday

Oct 19, 1582 5 5 Tuesday

Oct 20, 1582 6 6 Wednesday

Oct 21, 1582 7 0 Thursday

Oct 22, 1582 1 1 Friday

Oct 23, 1582 2 2 Saturday

Oct 24, 1582 3 3 Sunday

Oct 25, 1582 4 4 Monday

Oct 26, 1582 5 5 Tuesday

Oct 27, 1582 6 6 Wednesday

Oct 28, 1582 7 0 Thursday

Q Is there a fix or simple software solution for year 2000 problems?

A So far there isn't, and it seems very unlikely that there will be. Several expensive software packages on
the market analyze the problem by searching through source code for DATE, YMD, YYMMDD, and other
similar words. These packages perform a variety of source-code analysis tricks to point you toward the
problem, but so far, the work of fixing and testing is a manual task. An automated solution is unlikely.

One example from a school is a file containing a data item:

05 THE-SEMESTER PICTURE 9(3).

This is actually a two-digit year and a one-digit month (3, 6, or 9) for the beginning month of the
semester, a YYM format. No analysis program would ever pick this up as a date problem, because
nothing in the data item THE-SEMESTER or PICTURE 9(3) would cause an automated computer
program to think this might be a date.

Q Can ANSI days be used to calculate days and dates prior to January 1, 1601?

A Some systems might allow it, but Microfocus Personal COBOL does not. The ANSI days date format
is defined as "days since December 31, 1600," which implies only going forward in time from that date.

Workshop

Quiz

1. How are the Lilian days date format and the ANSI days date format similar?

2. What does the following call to REM return as a value that is stored in RESULT?

COMPUTE RESULT = REM(15, 4).

3. What are the rules for determining if a year is a leap year?

4. Which of the following are leap years?

1600 1700 1901 1955 1996 2000

Exercise

Develop a program that will let you enter two dates and will then tell you the number-of-days difference
between the two.

Hint: If you convert the two dates to ANSI dates using INTEGER-OF-DATE, the two numbers can be
subtracted from one another.

Previous chapter Next chapter Contents

Macmillan Computer Publishing USA

© Copyright, Macmillan Computer Publishing. All rights reserved.

Teach Yourself COBOL in 21 days,
Second Edition

Previous chapter Next chapter Contents

- A -
Answers

Answers to Day 1, "Your First COBOL Program"

Quiz

1. The output of the sample program BYEBYE is the following:

Bye bye birdie

2. The byebye.cbl program contains four divisions: the IDENTIFICATION DIVISION, the
ENVIRONMENT DIVISION, the DATA DIVISION, and the PROCEDURE DIVISION.

3. The program contains three paragraphs: PROGRAM-ID in the IDENTIFICATION DIVISION,
PROGRAM-BEGIN in the PROCEDURE DIVISION, and PROGRAM-STOP in the PROCEDURE
DIVISION.

4. The program contains two sentences: DISPLAY "Bye bye birdie" and STOP RUN. It also
is possible to consider BYEBYE (the PROGRAM-ID) a sentence.

5. The bad01.cbl program contains no DATA DIVISION and, therefore, is missing one of the
four standard divisions. ANSI-85 COBOL allows the ENVIRONMENT DIVISION and the DATA
DIVISION to be omitted if there is nothing to put in them. Do not get into a habit of leaving these
out, as your code might have to run on a version of COBOL that does not allow this option.

6. The bad02.cbl program contains a sentence, DISPLAY "I'm bad!", that begins in Area A.

7. The bad03.cbl program contains a comment, but there is no asterisk in column 7. The compiler
will attempt to compile the comment "This program displays a message." and will fail
because it is not in COBOL syntax.

Exercises

1. One method of solving the problem is shown in Listing A.1, iam.cbl.

TYPE: Listing A.1. Another simple display.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. IAM.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.
000500 PROCEDURE DIVISION.
000600
000700 PROGRAM-BEGIN.
000800 DISPLAY "I am a COBOL programmer".
000900 PROGRAM-DONE.
001000 STOP RUN.

2. Make a note of the errors.

3. Add a DATA DIVISION under the ENVIRONMENT DIVISION:

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. BAD01FIX.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.
000500 PROCEDURE DIVISION.
000600
000700 PROGRAM-BEGIN.
000800 DISPLAY "I'm bad!".
000900 PROGRAM-DONE.
001000 STOP RUN.

4. Move the DISPLAY statement to the right so that it begins in column 12 or higher:

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. BAD01FIX.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.
000500 PROCEDURE DIVISION.
000600
000700 PROGRAM-BEGIN.
000800 DISPLAY "I'm bad!".
000900 PROGRAM-DONE.
001000 STOP RUN.

5. Place an asterisk in column 7 of a line containing a comment:

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. BAD03FIX.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.

000500 PROCEDURE DIVISION.
000600* This program displays a message.
000700 PROGRAM-BEGIN.
000800 DISPLAY "I'm really bad!".
000900 PROGRAM-DONE.
001100 STOP RUN.

Answers to Day 2, "Using Variables and Constants"

Quiz

1. 30 bytes.

2. Alphanumeric data.

3. The remaining character positions are filled with spaces by the MOVE verb.

4. The largest value is 9,999.

5. The smallest value is 0, which would be stored as 0000.

6. The four places are filled with 0012.

Exercises

1. Adding a one-line DISPLAY informs the user of what's happening (as shown in Listing A.2).

TYPE: Listing A.2. Keeping the user informed.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. ADD03.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.
000500
000600 WORKING-STORAGE SECTION.
000700
000800 01 FIRST-NUMBER PICTURE IS 99.
000900 01 SECOND-NUMBER PICTURE IS 99.
001000 01 THE-RESULT PICTURE IS 999.
001100
001200 PROCEDURE DIVISION.
001300
001400 PROGRAM-BEGIN.
001500 DISPLAY "This program will add 2 numbers.".
001600 DISPLAY "Enter the first number.".
001700

001800 ACCEPT FIRST-NUMBER.
001900
002000 DISPLAY "Enter the second number.".
002100
002200 ACCEPT SECOND-NUMBER.
002300
002400 COMPUTE THE-RESULT = FIRST-NUMBER + SECOND-NUMBER.
002500
002600 DISPLAY "The result is " THE-RESULT.
002700
002800
002900 PROGRAM-DONE.
003000 STOP RUN.
003100

The following is sample output for Listing A.2:

OUTPUT:
C>pcobrun add03
This program will add 2 numbers.
Enter the first number.
16
Enter the second number.
44
The result is 060

C>

2. For my selection of a verse, I have chosen the sad tale of the Lady of Eiger, which is recounted
with numbered lines in Listing A.3. Of course, your program will contain a verse of your own
choosing.

TYPE: Listing A.3. Numbering a longer phrase.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. EIGER01.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.
000500
000600 WORKING-STORAGE SECTION.
000700
000800 01 THE-MESSAGE PIC X(50).
000900 01 THE-NUMBER PIC 9(2).
001000 01 A-SPACE PIC X.
001100
001200 PROCEDURE DIVISION.
001300 PROGRAM-BEGIN.
001400

001500* Initialize the space variable
001600 MOVE " " TO A-SPACE.
001700
001800* Set up and display line 1
001900 MOVE 1 TO THE-NUMBER.
002000 MOVE "There once was a lady from Eiger,"
002100 TO THE-MESSAGE.
002200 DISPLAY
002300 THE-NUMBER
002400 A-SPACE
002500 THE-MESSAGE.
002600
002700* Set up and Display line 2
002800 ADD 1 TO THE-NUMBER.
002900 MOVE "Who smiled and rode forth on a tiger."
003000 TO THE-MESSAGE.
003100 DISPLAY
003200 THE-NUMBER
003300 A-SPACE
003400 THE-MESSAGE.
003500
003600* Set up and display line 3
003700 ADD 1 TO THE-NUMBER.
003800 MOVE "They returned from the ride" TO THE-MESSAGE.
003900 DISPLAY
004000 THE-NUMBER
004100 A-SPACE
004200 THE-MESSAGE.
004300
004400* Set up and display line 4
004500 ADD 1 TO THE-NUMBER.
004600 MOVE "With the lady inside," TO THE-MESSAGE.
004700 DISPLAY
004800 THE-NUMBER
004900 A-SPACE
005000 THE-MESSAGE.
005100
005200* Set up and display line 5
005300 ADD 1 TO THE-NUMBER.
005400 MOVE "And the smile on the face of the tiger."
005500 TO THE-MESSAGE.
005600 DISPLAY
005700 THE-NUMBER
005800 A-SPACE
005900 THE-MESSAGE.
006000
006100

006200 PROGRAM-DONE.
006300 STOP RUN.
006400

The following is sample output for Listing A.3:

OUTPUT:
01 There once was a lady from Eiger,
02 Who smiled and rode forth on a tiger.
03 They returned from the ride
04 With the lady inside,
05 And the smile on the face of the tiger.
C>
C>

3. Listing A.4 reprises the sad tale with line numbers in increments of 5.

TYPE: Listing A.4. Incrementing by 5.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. EIGER02.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.
000500
000600 WORKING-STORAGE SECTION.
000700
000800 01 THE-MESSAGE PIC X(50).
000900 01 THE-NUMBER PIC 9(2).
001000 01 A-SPACE PIC X.
001100
001200 PROCEDURE DIVISION.
001300 PROGRAM-BEGIN.
001400
001500* Initialize the space variable
001600 MOVE " " TO A-SPACE.
001700
001800* Set up and display line 1
001900 MOVE 5 TO THE-NUMBER.
002000 MOVE "There once was a lady from Eiger,"
002100 TO THE-MESSAGE.
002200 DISPLAY
002300 THE-NUMBER
002400 A-SPACE
002500 THE-MESSAGE.
002600
002700* Set up and Display line 2
002800 ADD 5 TO THE-NUMBER.
002900 MOVE "Who smiled and rode forth on a tiger."
003000 TO THE-MESSAGE.

003100 DISPLAY
003200 THE-NUMBER
003300 A-SPACE
003400 THE-MESSAGE.
003500
003600* Set up and display line 3
003700 ADD 5 TO THE-NUMBER.
003800 MOVE "They returned from the ride" TO THE-MESSAGE.
003900 DISPLAY
004000 THE-NUMBER
004100 A-SPACE
004200 THE-MESSAGE.
004300
004400* Set up and display line 4
004500 ADD 5 TO THE-NUMBER.
004600 MOVE "With the lady inside," TO THE-MESSAGE.
004700 DISPLAY
004800 THE-NUMBER
004900 A-SPACE
005000 THE-MESSAGE.
005100
005200* Set up and display line 5
005300 ADD 5 TO THE-NUMBER.
005400 MOVE "And the smile on the face of the tiger."
005500 TO THE-MESSAGE.
005600 DISPLAY
005700 THE-NUMBER
005800 A-SPACE
005900 THE-MESSAGE.
006000
006100
006200 PROGRAM-DONE.
006300 STOP RUN.
006400

The following is sample output for Listing A.4:

OUTPUT:
05 There once was a lady from Eiger,
10 Who smiled and rode forth on a tiger.
15 They returned from the ride
20 With the lady inside,
25 And the smile on the face of the tiger.
C>
C>

Answers to Day 3, "A First Look at Structured
COBOL"

Quiz

1. c. LOCATE-OVERDUE-CUSTOMERS best describes the function of the paragraph.

2. There are two ways to number the program. In the first example, the paragraph names as well as
the sentences being executed are numbered:

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. MSG01.
000300
000400 ENVIRONMENT DIVISION.
000500 DATA DIVISION.
000600
000700 WORKING-STORAGE SECTION.
000800
000900 PROCEDURE DIVISION.
001000
001100 PROGRAM-BEGIN.
001200
001300 PERFORM MAIN-LOGIC.
001400
001500 PROGRAM-DONE.
001600 STOP RUN.
001700
001800 MAIN-LOGIC.
001900 PERFORM DISPLAY-MSG-1.
002000 PERFORM DISPLAY-MSG-2.
002100
002200 DISPLAY-MSG-1.
002300 DISPLAY "This is message 1.".
002400
002500 DISPLAY-MSG-2.
002600 DISPLAY "This is message 2.".
002700

In this example, only the sentences are numbered:

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. MSG01.
000300
000400 ENVIRONMENT DIVISION.
000500 DATA DIVISION.
000600
000700 WORKING-STORAGE SECTION.
000800

000900 PROCEDURE DIVISION.
001000
001100 PROGRAM-BEGIN.
001200
001300 PERFORM MAIN-LOGIC.
001400
001500 PROGRAM-DONE.
001600 STOP RUN.
001700
001800 MAIN-LOGIC.
001900 PERFORM DISPLAY-MSG-1.
002000 PERFORM DISPLAY-MSG-2.
002100
002200 DISPLAY-MSG-1.
002300 DISPLAY "This is message 1.".
002400
002500 DISPLAY-MSG-2.
002600 DISPLAY "This is message 2.".
002700

Exercises

1. In Listing A.5, PROGRAM-DONE and STOP RUN have been removed.

TYPE: Listing A.5. Missing a STOP RUN.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. HELLO06.
000300
000400* This program illustrates the use of a PERFORM
000500
000600 ENVIRONMENT DIVISION.
000700 DATA DIVISION.
000800 PROCEDURE DIVISION.
000900
001000 PROGRAM-BEGIN.
001100 DISPLAY "Today's message is:".
001200 PERFORM SAY-HELLO.
001300
001400 SAY-HELLO.
001500 DISPLAY "Hello world".
001600

The following output from hello06.cbl is similar to the output of hello05.cbl in Day 3:

OUTPUT:
Today's message is:
Hello world

Hello world
C>
C>

You must have a STOP RUN in your program that appears before any paragraphs that are
PERFORMed.

2. The flow of hello06.cbl is the following:

Line 001000. Internally note that the PROGRAM-BEGIN paragraph has started.●

Line 001100. Display "Today's message is:" on-screen.●

Line 001200. Jump to line 001400, the beginning of SAY-HELLO.●

Line 001400. Internally note that the SAY-HELLO paragraph has started.●

Line 001500. Display "Hello world" on-screen.●

End of file. Recognize that the SAY-HELLO paragraph has ended. Because this is in the
middle of a PERFORM requested on line 001200, return to the end of line 001200,
where no further actions are requested.

●

Line 001200. No other actions on this line.●

Line 001400. Internally note that the SAY-HELLO paragraph has started.●

Line 001500. Display "Hello world" on-screen. End of file. Recognize that the
SAY-HELLO paragraph has ended. There is no active PERFORM requested, so the
program ends here. The end of the program might cause an error in your version of
COBOL after this display.

●

3. Insert a STOP RUN at line 001300 to prevent this problem.

4. Listing A.6, add08.cbl, adds three numbers together and displays the result.

TYPE: Listing A.6. Adding three numbers.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. ADD08.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.
000500
000600 WORKING-STORAGE SECTION.
000700
000800 01 FIRST-NUMBER PICTURE IS 99.
000900 01 SECOND-NUMBER PICTURE IS 99.

001000 01 THIRD-NUMBER PICTURE IS 99.
001100 01 THE-RESULT PICTURE IS 999.
001200
001300 PROCEDURE DIVISION.
001400
001500 PROGRAM-BEGIN.
001600
001700 PERFORM ADVISE-THE-USER.
001800 PERFORM GET-FIRST-NUMBER.
001900 PERFORM GET-SECOND-NUMBER.
002000 PERFORM GET-THIRD-NUMBER.
002100 PERFORM COMPUTE-AND-DISPLAY.
002200
002300 PROGRAM-DONE.
002400 STOP RUN.
002500
002600 ADVISE-THE-USER.
002700 DISPLAY "This program will add 3 numbers.".
002800
002900 GET-FIRST-NUMBER.
003000
003100 DISPLAY "Enter the first number.".
003200 ACCEPT FIRST-NUMBER.
003300
003400 GET-SECOND-NUMBER.
003500
003600 DISPLAY "Enter the second number.".
003700 ACCEPT SECOND-NUMBER.
003800
003900 GET-THIRD-NUMBER.
004000
004100 DISPLAY "Enter the third number.".
004200 ACCEPT THIRD-NUMBER.
004300
004400 COMPUTE-AND-DISPLAY.
004500
004600 COMPUTE THE-RESULT = FIRST-NUMBER +
004700 SECOND-NUMBER +
004800 THIRD-NUMBER.
004900 DISPLAY "The result is " THE-RESULT.
005000

The following is sample output for Listing A.6:

OUTPUT:
This program will add 3 numbers.
Enter the first number.
12

Enter the second number.
64
Enter the third number.
99
The result is 175
C>
C>

5. Listing A.7, add09.cbl, provides a sample method of breaking add02.cbl into performed
paragraphs.

TYPE: Listing A.7. Adding two numbers using PERFORM.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. ADD09.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.
000500
000600 WORKING-STORAGE SECTION.
000700
000800 01 FIRST-NUMBER PICTURE IS 99.
000900 01 SECOND-NUMBER PICTURE IS 99.
001000 01 THE-RESULT PICTURE IS 999.
001100
001200 PROCEDURE DIVISION.
001300
001400 PROGRAM-BEGIN.
001500
001600 PERFORM ENTER-THE-FIRST-NUMBER.
001700 PERFORM ENTER-THE-SECOND-NUMBER.
001800 PERFORM COMPUTE-AND-DISPLAY.
001900
002000 PROGRAM-DONE.
002100 STOP RUN.
002200
002300 ENTER-THE-FIRST-NUMBER.
002400
002500 DISPLAY "Enter the first number.".
002600
002700 ACCEPT FIRST-NUMBER.
002800
002900 ENTER-THE-SECOND-NUMBER.
003000
003100 DISPLAY "Enter the second number.".
003200
003300 ACCEPT SECOND-NUMBER.
003400
003500 COMPUTE-AND-DISPLAY.

003600
003700 COMPUTE THE-RESULT = FIRST-NUMBER + SECOND-NUMBER.
003800
003900 DISPLAY "The result is " THE-RESULT.
004000

Answers to Day 4, "Decision Making"

Quiz

1. Lines 005500 and 005600.

2. Line 005800.

3. Lines 005500 and 005600.

4. Line 005800.

Exercises

1. Listing A.8 shows one method of providing for three possible answers.

TYPE: Listing A.8. Allowing for three valid answers.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. MAYBE01.
000300*--
000400* This program asks for a Y or N answer, and then
000500* displays whether the user chose yes or no.
000600* The edit logic allows for entry of Y, y, N, or n.
000700*--
000800 ENVIRONMENT DIVISION.
000900 DATA DIVISION.
001000 WORKING-STORAGE SECTION.
001100
001200 01 YES-OR-NO PIC X.
001300
001400 PROCEDURE DIVISION.
001500 PROGRAM-BEGIN.
001600
001700 PERFORM GET-THE-ANSWER.
001800
001900 PERFORM EDIT-THE-ANSWER.
002000
002100 PERFORM DISPLAY-THE-ANSWER.
002200

002300 PROGRAM-DONE.
002400 STOP RUN.
002500
002600 GET-THE-ANSWER.
002700
002800 DISPLAY "Is the answer Yes, No or Maybe? (Y/N/M)".
002900 ACCEPT YES-OR-NO.
003000
003100 EDIT-THE-ANSWER.
003200
003300 IF YES-OR-NO = "y"
003400 MOVE "Y" TO YES-OR-NO.
003500
003600 IF YES-OR-NO = "n"
003700 MOVE "N" TO YES-OR-NO.
003800
003900 IF YES-OR-NO = "m"
004000 MOVE "M" TO YES-OR-NO.
004100
004200 DISPLAY-THE-ANSWER.
004300 IF YES-OR-NO = "Y"
004400 DISPLAY "You answered Yes.".
004500
004600 IF YES-OR-NO = "N"
004700 DISPLAY "You answered No.".
004800
004900 IF YES-OR-NO = "M"
005000 DISPLAY "You answered Maybe.".

2. Listing A.9 shows one way of adding Maybe as an option. You can test three conditions as well as
two, as in this example.

TYPE: Listing A.9. Using OR to test three conditions.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. MAYBE02.
000300*--
000400* This program asks for a Y, N, or M answer, and
000500* displays the user's choice.
000600* The edit allows for Y, y, N, n, M, or m.
000700*--
000800 ENVIRONMENT DIVISION.
000900 DATA DIVISION.
001000 WORKING-STORAGE SECTION.
001100
001200 01 YES-OR-NO PIC X.
001300
001400 PROCEDURE DIVISION.

001500 PROGRAM-BEGIN.
001600
001700 PERFORM GET-THE-ANSWER.
001800
001900 PERFORM EDIT-THE-ANSWER.
002000
002100 PERFORM DISPLAY-THE-ANSWER.
002200
002300 PROGRAM-DONE.
002400 STOP RUN.
002500
002600 GET-THE-ANSWER.
002700
002800 DISPLAY "Is the answer Yes, No or Maybe? (Y/N/M)".
002900 ACCEPT YES-OR-NO.
003000
003100 EDIT-THE-ANSWER.
003200
003300 IF YES-OR-NO = "y"
003400 MOVE "Y" TO YES-OR-NO.
003500
003600 IF YES-OR-NO = "n"
003700 MOVE "N" TO YES-OR-NO.
003800
003900 IF YES-OR-NO = "m"
004000 MOVE "M" TO YES-OR-NO.
004100
004200 DISPLAY-THE-ANSWER.
004300
004400 IF YES-OR-NO = "Y" OR
004500 YES-OR-NO = "N" OR
004600 YES-OR-NO = "M"
004700 PERFORM DISPLAY-YES-NO-OR-MAYBE
004800 ELSE
004900 DISPLAY "Your answer was invalid.".
005000
005100 DISPLAY-YES-NO-OR-MAYBE.
005200 IF YES-OR-NO = "Y"
005300 DISPLAY "You answered Yes.".
005400
005500 IF YES-OR-NO = "N"
005600 DISPLAY "You answered No.".
005700
005800 IF YES-OR-NO = "M"
005900 DISPLAY "You answered Maybe.".
006000

Answers to Day 5, "Using PERFORM, GO TO, and IF to
Control Programs"

Quiz

1. Assuming that the program contains the correct structure, with a STOP RUN located in the correct
place in the code, 10 times.

2. 5 times.

3. In the listing for question 1, the loop control is at line 003600 and the processing loop is at lines
003800 through 003900:

003600 PERFORM DISPLAY-HELLO 10 TIMES.
003700
003800 DISPLAY-HELLO.
003900 DISPLAY "hello".
004000

In the listing for question 2, the loop control is at lines 003600 through 003800. The processing
loop is at lines 004000 through 004100:

003600 PERFORM DISPLAY-HELLO
003700 VARYING THE-COUNT FROM 1 BY 1
003800 UNTIL THE-COUNT > 5.
003900
004000 DISPLAY-HELLO.
004100 DISPLAY "hello".
004200

Exercise

There are several ways to do this. The following are four possible examples.

The following uses the TIMES option of the PERFORM verb.

003900 PERFORM A-PARAGRAPH 8 TIMES.

The following example uses THE-COUNT as a variable that is controlled by a VARYING option of the
PERFORM verb.

003900 PERFORM A-PARAGRAPH
004000 VARYING THE-COUNT FROM 1 BY 1
004100 UNTIL THE-COUNT > 8.

The following example uses THE-COUNT as a variable that is tested with the UNTIL option of the
PERFORM verb. The value of the variable is changed in the paragraph that is being PERFORMed.

003800 MOVE 1 TO THE-COUNT.
003900 PERFORM A-PARAGRAPH
004000 UNTIL THE-COUNT > 8.

......

......
005600 A-PARAGRAPH.
005700* Some processing code goes here
......
......
006500 ADD 1 TO THE-COUNT.

This example uses a GO TO and will be frowned on by some:

003800 MOVE 1 TO THE-COUNT.
003900 PERFORM A-PARAGRAPH.
......
......
005600 A-PARAGRAPH.
005700* Some processing code goes here
......
......
006500 ADD 1 TO THE-COUNT.
006600 IF THE-COUNT NOT > 8
006700 GO TO A-PARAGRAPH.
006800

Answers to Day 6, "Using Data and COBOL
Operators"

Quiz

1. 04976.

2. 76.

3. The integer portion of the value, 1000, is too large to fit in a PIC 999, so the 1 is truncated,
resulting in a value of 000. The decimal portion .001 is truncated on the right when it is moved to
the V99 portion of the picture. The overall result is that the far left 1 and the far right 1 are both
truncated in the move, leaving a 000.00 in the variable.

Exercises

1. Note any errors or warnings and look them up.

2. Note the errors and look them up.

Answers to Day 7, "Basics of Design"

Quiz

1. The step to be performed to continue the design is to break the job description into smaller tasks.

2. The first six steps of design are as follows:

1. Create a job description for the program.

2. Break the job description into tasks until the tasks approximate what the computer will do.

3. Identify the processing loops.

4. Identify the main processing loop if it has not become apparent during step 3.

5. Write the program in pseudocode.

6. Convert the pseudocode into actual code.

Exercises

1. The design steps for a sales tax calculator are as follows:

a. Job: Ask the user for sales amounts and sales tax rates, and use these values to calculate the
sales tax on the amount.

b. Tasks: Ask the user for a sales amount, ask the user for a sales tax percentage, and calculate
the sales tax (over and over).

c. Processing loops: There is only one processing loop in the task list, calculate the sales tax
(over and over).

d. Main loop: The main loop is the loop for calculating the sales tax.

e. Pseudocode:

THE-PROGRAM
 MOVE "Y" TO YES-NO.
 PERFORM CALCULATE-SALES-TAX
 UNTIL YES-NO = "N".

CALCULATE-SALES-TAX.
 PERFORM GET-SALES-AMOUNT.
 PERFORM GET-TAX-PERCENT.
 PERFORM CALCULATE-TAX-AMOUNT.
 PERFORM DISPLAY-TAX-AMOUNT.

 PERFORM GO-AGAIN.

GET-SALES-AMOUNT.
 (between 0.01 and 9999.99)

GET-TAX-PERCENT.
 (between 0.1% and 20.0%)

CALCULATE-TAX-AMOUNT.
 COMPUTE SALES-TAX ROUNDED =
 SALES-AMOUNT * TAX-AS-DECIMAL.

DISPLAY-TAX-AMOUNT.
 (sales tax = SALES-TAX)

GO-AGAIN.
 (yes or no)

f. Code. Listing A.10 is an example of the code that could result from this design. Remember to
adjust the ACCEPT WITH CONVERSION statements at lines 004700 and 005800. Listing A.10 is
coded for versions of COBOL that require ACCEPT WITH CONVERSION. If you are using Micro
Focus Personal COBOL, just use ACCEPT.

TYPE: Listing A.10. A sales tax calculator.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. SLSTAX01.
000300*--
000400* Calculates sales tax based on entered sales
000500* amounts and tax rates.
000600*--
000700 ENVIRONMENT DIVISION.
000800 DATA DIVISION.
000900 WORKING-STORAGE SECTION.
001000
001100 01 YES-NO PIC X.
001200 01 ENTRY-OK PIC X.
001300 01 TAX-PERCENT PIC 99V99.
001400 01 TAX-AS-DECIMAL PIC V9999.
001500
001600 01 SALES-AMOUNT PIC 9(4)V99.
001700 01 SALES-TAX PIC 9(4)V99.
001800
001900 01 ENTRY-FIELD PIC Z(4).ZZ.
002000 01 DISPLAY-SALES-TAX PIC Z,ZZ9.99.
002100
002200
002300 PROCEDURE DIVISION.

002400 PROGRAM-BEGIN.
002500
002600 MOVE "Y" TO YES-NO.
002700 PERFORM CALCULATE-SALES-TAX
002800 UNTIL YES-NO = "N".
002900
003000 PROGRAM-DONE.
003100 STOP RUN.
003200
003300 CALCULATE-SALES-TAX.
003400 PERFORM GET-SALES-AMOUNT.
003500 PERFORM GET-TAX-PERCENT.
003600 PERFORM CALCULATE-TAX-AMOUNT.
003700 PERFORM DISPLAY-TAX-AMOUNT.
003800 PERFORM GO-AGAIN.
003900
004000 GET-SALES-AMOUNT.
004100 MOVE "N" TO ENTRY-OK.
004200 PERFORM ENTER-SALES-AMOUNT
004300 UNTIL ENTRY-OK = "Y".
004400
004500 ENTER-SALES-AMOUNT.
004600 DISPLAY "SALES AMOUNT (0.01 TO 9999.99)?".
004700 ACCEPT ENTRY-FIELD WITH CONVERSION.
004800 MOVE ENTRY-FIELD TO SALES-AMOUNT.
004900 IF SALES-AMOUNT < .01 OR
005000 SALES-AMOUNT > 9999.99
005100 DISPLAY "INVALID ENTRY"
005200 ELSE
005300 MOVE "Y" TO ENTRY-OK.
005400
005500 GET-TAX-PERCENT.
005600 DISPLAY "SALES TAX PERCENT (.01% TO 20.00%)?".
005700 ACCEPT ENTRY-FIELD WITH CONVERSION.
005800 MOVE ENTRY-FIELD TO TAX-PERCENT.
005900 IF TAX-PERCENT < .01 OR
006000 TAX-PERCENT > 20.0
006100 DISPLAY "INVALID ENTRY"
006200 ELSE
006300 MOVE "Y" TO ENTRY-OK
006400 COMPUTE TAX-AS-DECIMAL = TAX-PERCENT / 100.
006500
006600 CALCULATE-TAX-AMOUNT.
006700 COMPUTE SALES-TAX ROUNDED =
006800 SALES-AMOUNT * TAX-AS-DECIMAL.
006900
007000 DISPLAY-TAX-AMOUNT.

007100 MOVE SALES-TAX TO DISPLAY-SALES-TAX.
007200 DISPLAY "SALES TAX = " DISPLAY-SALES-TAX.
007300
007400 GO-AGAIN.
007500 DISPLAY "GO AGAIN?".
007600 ACCEPT YES-NO.
007700 IF YES-NO = "y"
007800 MOVE "Y" TO YES-NO.
007900 IF YES-NO NOT = "Y"
008000 MOVE "N" TO YES-NO.
008100

The sample output for slstax01.cbl is as follows:

OUTPUT:
SALES AMOUNT (0.01 TO 9999.99)?
22.95
SALES TAX PERCENT (.01% TO 20.00%)?
8.25
SALES TAX = 1.89
GO AGAIN?
y
SALES AMOUNT (0.01 TO 9999.99)?
432.17
SALES TAX PERCENT (.01% TO 20.00%)?
6.5
SALES TAX = 28.09
GO AGAIN?

2. Get the program working correctly before proceeding to the next exercise. Refer to the previous
example for tips on how to do this.

3. Listing A.11 is an example of one way to change the program to ask for the sales tax rate only
once. Study the difference between slstax01.cbl and slstax02.cbl--in particular, the fact
that the sales tax percentage is asked for outside of the main loop. Remember the rule for a
processing loop: You set up any values needed for the first entry into the loop. This applies even if
setting up the initial value requires a DISPLAY and ACCEPT statement or even more complicated
logic. Remember to change the ACCEPT WITH CONVERSION statements to ACCEPT statements
as necessary.

TYPE: Listing A.11. Asking for the tax rate once.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. SLSTAX02.
000300*--
000400* Accepts tax rate from the user and then
000500* calculates sales tax over and over based on
000600* entered sales amounts.
000700*--

000800 ENVIRONMENT DIVISION.
000900 DATA DIVISION.
001000 WORKING-STORAGE SECTION.
001100
001200 01 YES-NO PIC X.
001300 01 ENTRY-OK PIC X.
001400 01 TAX-PERCENT PIC 99V99.
001500 01 TAX-AS-DECIMAL PIC V9999.
001600
001700 01 SALES-AMOUNT PIC 9(4)V99.
001800 01 SALES-TAX PIC 9(4)V99.
001900
002000 01 ENTRY-FIELD PIC Z(4).ZZ.
002100 01 DISPLAY-SALES-TAX PIC Z,ZZ9.99.
002200
002300 PROCEDURE DIVISION.
002400 PROGRAM-BEGIN.
002500
002600 PERFORM GET-TAX-PERCENT.
002700 MOVE "Y" TO YES-NO.
002800 PERFORM CALCULATE-SALES-TAX
002900 UNTIL YES-NO = "N".
003000
003100 PROGRAM-DONE.
003200 STOP RUN.
003300
003400 CALCULATE-SALES-TAX.
003500 PERFORM GET-SALES-AMOUNT.
003600 PERFORM CALCULATE-TAX-AMOUNT.
003700 PERFORM DISPLAY-TAX-AMOUNT.
003800 PERFORM GO-AGAIN.
003900
004000 GET-SALES-AMOUNT.
004100 MOVE "N" TO ENTRY-OK.
004200 PERFORM ENTER-SALES-AMOUNT
004300 UNTIL ENTRY-OK = "Y".
004400
004500 ENTER-SALES-AMOUNT.
004600 DISPLAY "SALES AMOUNT (0.01 TO 9999.99)?".
004700 ACCEPT ENTRY-FIELD WITH CONVERSION.
004800 MOVE ENTRY-FIELD TO SALES-AMOUNT.
004900 IF SALES-AMOUNT < .01 OR
005000 SALES-AMOUNT > 9999.99
005100 DISPLAY "INVALID ENTRY"
005200 ELSE
005300 MOVE "Y" TO ENTRY-OK.
005400

005500 GET-TAX-PERCENT.
005600 DISPLAY "SALES TAX PERCENT (.01% TO 20.00%)?".
005700 ACCEPT ENTRY-FIELD WITH CONVERSION.
005800 MOVE ENTRY-FIELD TO TAX-PERCENT.
005900 IF TAX-PERCENT < .01 OR
006000 TAX-PERCENT > 20.0
006100 DISPLAY "INVALID ENTRY"
006200 ELSE
006300 MOVE "Y" TO ENTRY-OK
006400 COMPUTE TAX-AS-DECIMAL = TAX-PERCENT / 100.
006500
006600 CALCULATE-TAX-AMOUNT.
006700 COMPUTE SALES-TAX ROUNDED =
006800 SALES-AMOUNT * TAX-AS-DECIMAL.
006900
007000 DISPLAY-TAX-AMOUNT.
007100 MOVE SALES-TAX TO DISPLAY-SALES-TAX.
007200 DISPLAY "SALES TAX = " DISPLAY-SALES-TAX.
007300
007400 GO-AGAIN.
007500 DISPLAY "GO AGAIN?".
007600 ACCEPT YES-NO.
007700 IF YES-NO = "y"
007800 MOVE "Y" TO YES-NO.
007900 IF YES-NO NOT = "Y"
008000 MOVE "N" TO YES-NO.
008100

Here is the output:

OUTPUT:
SALES TAX PERCENT (.01% TO 20.00%)?
8.75
SALES AMOUNT (0.01 TO 9999.99)?
312.95
SALES TAX = 27.38
GO AGAIN?
y
SALES AMOUNT (0.01 TO 9999.99)?
419.15
SALES TAX = 36.68
GO AGAIN?

Answers to Day 8, "Structured Data"

Quiz

1. THE-WHOLE-MESSAGE is 53 bytes long.

2. The implied PICTURE for THE-WHOLE-MESSAGE is PIC X(53).

3. A data structure is a method of combining several variables into one larger variable, frequently for
display purposes.

4. The values are destroyed and replaced by whatever was moved into the structure.

5. 004600 IF ANSWER-IS-YES

6. 004600 IF ANSWER-IS-VALID

7. 001800 01 YES-NO PIC X. 001900 88 ANSWER-IS-VALID VALUES "Y", "y",
"N", "n". 004600 IF ANSWER-IS-VALID 004700 PERFORM DO-SOMETHING.

Exercises

1. Listing A.12 is one possible way of setting up a structure to display the results.

TYPE: Listing A.12. Displaying multiplication tables with a structure.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. MULT09.
000300*--
000400* This program asks the user for a number for a
000500* multiplication table, and a table size
000600* and then displays a table for that number
000700* times the values 1 through HOW-MANY.
000800*
000900* The display is paused after each 15 lines.
001000*--
001100 ENVIRONMENT DIVISION.
001200 DATA DIVISION.
001300 WORKING-STORAGE SECTION.
001400
001500 01 THE-TABLE PIC 99.
001600 01 THE-ENTRY PIC 999.
001700 01 THE-PRODUCT PIC 9999.
001800 01 HOW-MANY-ENTRIES PIC 99.
001900 01 SCREEN-LINES PIC 99.
002000

002100 01 A-DUMMY PIC X.
002200
002300 01 YES-NO PIC X VALUE "Y".
002400
002500 01 THE-TABLE-LINE.
002600 05 DISPLAY-THE-TABLE PIC ZZ9.
002700 05 FILLER PIC XXX VALUE " * ".
002800 05 DISPLAY-THE-ENTRY PIC ZZ9.
002900 05 FILLER PIC XXX VALUE " = ".
003000 05 DISPLAY-THE-PRODUCT PIC ZZZ9.
003100
003200
003300 PROCEDURE DIVISION.
003400
003500 PROGRAM-BEGIN.
003600 MOVE "Y" TO YES-NO.
003700 PERFORM DISPLAY-ONE-TABLE
003800 UNTIL YES-NO = "N".
003900
004000 PROGRAM-DONE.
004100 STOP RUN.
004200
004300 DISPLAY-ONE-TABLE.
004400 PERFORM GET-WHICH-TABLE.
004500 PERFORM DISPLAY-TABLE.
004600 PERFORM GO-AGAIN.
004700
004800 GET-WHICH-TABLE.
004900 DISPLAY
005000 "Which multiplication table(01-99)?".
005100 ACCEPT THE-TABLE.
005200
005300 DISPLAY-TABLE.
005400 PERFORM GET-HOW-MANY-ENTRIES.
005500
005600 MOVE 0 TO SCREEN-LINES.
005700
005800 PERFORM DISPLAY-ONE-ENTRY
005900 VARYING THE-ENTRY
006000 FROM 1 BY 1
006100 UNTIL THE-ENTRY > HOW-MANY-ENTRIES.
006200
006300 GO-AGAIN.
006400 DISPLAY "Go Again (Y/N)?".
006500 ACCEPT YES-NO.
006600 IF YES-NO = "y"
006700 MOVE "Y" TO YES-NO.

006800 IF YES-NO NOT = "Y"
006900 MOVE "N" TO YES-NO.
007000
007100 GET-HOW-MANY-ENTRIES.
007200 DISPLAY
007300 "How many entries would you like (01-99)?".
007400 ACCEPT HOW-MANY-ENTRIES.
007500
007600 DISPLAY-ONE-ENTRY.
007700
007800 IF SCREEN-LINES = 15
007900 PERFORM PRESS-ENTER.
008000 COMPUTE THE-PRODUCT = THE-TABLE * THE-ENTRY.
008100 MOVE THE-TABLE TO DISPLAY-THE-TABLE.
008200 MOVE THE-ENTRY TO DISPLAY-THE-ENTRY.
008300 MOVE THE-PRODUCT TO DISPLAY-THE-PRODUCT.
008400 DISPLAY THE-TABLE-LINE.
008500
008600 ADD 1 TO SCREEN-LINES.
008700
008800 PRESS-ENTER.
008900 DISPLAY "Press ENTER to continue . . .".
009000 ACCEPT A-DUMMY.
009100 MOVE 0 TO SCREEN-LINES.
009200

The following is the first screen of output of mult09.cbl:

Which multiplication table(01-99)?
15
How many entries would you like (01-99)?
33
15 * 1 = 15
15 * 2 = 30
15 * 3 = 45
15 * 4 = 60
15 * 5 = 75
15 * 6 = 90
15 * 7 = 105
15 * 8 = 120
15 * 9 = 135
15 * 10 = 150
15 * 11 = 165
15 * 12 = 180
15 * 13 = 195
15 * 14 = 210
15 * 15 = 225
Press ENTER to continue . . .

2. 001100 01 CUST-DATA. 001200 05 CUST-NUMBER PIC 9(5). 001300 05
CUST-NAME PIC X(30). 001400 05 CUST-ADDRESS PIC X(50). 001500 05
CUST-ZIP PIC 9(5).

3. 001100 01 CUST-DATA. 001200 05 CUST-NUMBER PIC 9(5) VALUE ZEROES.
001300 05 CUST-NAME PIC X(30) VALUE SPACES. 001400 05 CUST-ADDRESS
PIC X(50) VALUE SPACES. 001500 05 CUST-ZIP PIC 9(5) VALUE ZEROES.

Answers to Day 9, "File I/O"

Quiz

No, the file must be opened with the same logical and physical definition that was used to create the file. In
this case, the file definition is longer than the actual physical records in the file.

Exercises

1. Listing A.13 adds the extra field, and it prompts for the extension.

TYPE: Listing A.13. Adding a phone extension.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. PHNADD02.
000300*--
000400* This program creates a new data file if necessary
000500* and adds records to the file from user entered
000600* data.
000700*--
000800 ENVIRONMENT DIVISION.
000900 INPUT-OUTPUT SECTION.
001000 FILE-CONTROL.
001100 SELECT OPTIONAL PHONE-FILE
001200*or SELECT PHONE-FILE
001300 ASSIGN TO "phone.dat"
001400*or ASSIGN TO "phone"
001500 ORGANIZATION IS SEQUENTIAL.
001600
001700 DATA DIVISION.
001800 FILE SECTION.
001900 FD PHONE-FILE
002000 LABEL RECORDS ARE STANDARD.
002100 01 PHONE-RECORD.
002200 05 PHONE-LAST-NAME PIC X(20).
002300 05 PHONE-FIRST-NAME PIC X(20).
002400 05 PHONE-NUMBER PIC X(15).
002500 05 PHONE-EXTENSION PIC X(5).

002600
002700 WORKING-STORAGE SECTION.
002800
002900* Variables for SCREEN ENTRY
003000 01 PROMPT-1 PIC X(9) VALUE "Last Name".
003100 01 PROMPT-2 PIC X(10) VALUE "First Name".
003200 01 PROMPT-3 PIC X(6) VALUE "Number".
003300 01 PROMPT-4 PIC X(9) VALUE "Extension".
003400
003500 01 YES-NO PIC X.
003600 01 ENTRY-OK PIC X.
003700
003800 PROCEDURE DIVISION.
003900 MAIN-LOGIC SECTION.
004000 PROGRAM-BEGIN.
004100
004200 PERFORM OPENING-PROCEDURE.
004300 MOVE "Y" TO YES-NO.
004400 PERFORM ADD-RECORDS
004500 UNTIL YES-NO = "N".
004600 PERFORM CLOSING-PROCEDURE.
004700
004800 PROGRAM-DONE.
004900 STOP RUN.
005000
005100* OPENING AND CLOSING
005200
005300 OPENING-PROCEDURE.
005400 OPEN EXTEND PHONE-FILE.
005500
005600 CLOSING-PROCEDURE.
005700 CLOSE PHONE-FILE.
005800
005900 ADD-RECORDS.
006000 MOVE "N" TO ENTRY-OK.
006100 PERFORM GET-FIELDS
006200 UNTIL ENTRY-OK = "Y".
006300 PERFORM ADD-THIS-RECORD.
006400 PERFORM GO-AGAIN.
006500
006600 GET-FIELDS.
006700 MOVE SPACE TO PHONE-RECORD.
006800 DISPLAY PROMPT-1 " ? ".
006900 ACCEPT PHONE-LAST-NAME.
007000 DISPLAY PROMPT-2 " ? ".
007100 ACCEPT PHONE-FIRST-NAME.
007200 DISPLAY PROMPT-3 " ? ".

007300 ACCEPT PHONE-NUMBER.
007400 DISPLAY PROMPT-4 " ? ".
007500 ACCEPT PHONE-EXTENSION.
007600 PERFORM VALIDATE-FIELDS.
007700
007800 VALIDATE-FIELDS.
007900 MOVE "Y" TO ENTRY-OK.
008000 IF PHONE-LAST-NAME = SPACE
008100 DISPLAY "LAST NAME MUST BE ENTERED"
008200 MOVE "N" TO ENTRY-OK.
008300
008400 ADD-THIS-RECORD.
008500 WRITE PHONE-RECORD.
008600
008700 GO-AGAIN.
008800 DISPLAY "GO AGAIN?".
008900 ACCEPT YES-NO.
009000 IF YES-NO = "y"
009100 MOVE "Y" TO YES-NO.
009200 IF YES-NO NOT = "Y"
009300 MOVE "N" TO YES-NO.
009400

Here is the output of phnadd02.cbl:

OUTPUT:
Last Name ?
KARENINA
First Name ?
ANA
Number ?
 (818) 555-4567
Extension ?
123
GO AGAIN?
Y
Last Name ?
SMITH
First Name ?
MICHAEL VALENTINE
Number ?
 (415) 555-1234
Extension ?
6065
GO AGAIN?

2. Listing A.14 displays the extra field. Note that the prompts at lines 003000, 003200, 003400,
and 003600 had to be shortened to enable the record to fit on an 80-column screen.

TYPE: Listing A.14. Displaying the extension.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. PHNLST02.
000300*--
000400* This program displays the contents of the
000500* phone file.
000600*--
000700 ENVIRONMENT DIVISION.
000800 INPUT-OUTPUT SECTION.
000900 FILE-CONTROL.
001000 SELECT OPTIONAL PHONE-FILE
001100*or SELECT PHONE-FILE
001200 ASSIGN TO "phone.dat"
001300*or ASSIGN TO "phone"
001400 ORGANIZATION IS SEQUENTIAL.
001500
001600 DATA DIVISION.
001700 FILE SECTION.
001800 FD PHONE-FILE
001900 LABEL RECORDS ARE STANDARD.
002000 01 PHONE-RECORD.
002100 05 PHONE-LAST-NAME PIC X(20).
002200 05 PHONE-FIRST-NAME PIC X(20).
002300 05 PHONE-NUMBER PIC X(15).
002400 05 PHONE-EXTENSION PIC X(5).
002500
002600 WORKING-STORAGE SECTION.
002700
002800* Structure for SCREEN DISPLAY
002900 01 FIELDS-TO-DISPLAY.
003000 05 PROMPT-1 PIC X(4) VALUE "Lst:".
003100 05 DISPLAY-LAST-NAME PIC X(20).
003200 05 PROMPT-2 PIC X(4) VALUE "1st:".
003300 05 DISPLAY-FIRST-NAME PIC X(20).
003400 05 PROMPT-3 PIC X(3) VALUE "NO:".
003500 05 DISPLAY-NUMBER PIC X(15).
003600 05 PROMPT-4 PIC X(4) VALUE "Xtn:".
003700 05 DISPLAY-EXTENSION PIC X(5).
003800
003900 01 END-OF-FILE PIC X.
004000
004100 01 SCREEN-LINES PIC 99.
004200 01 A-DUMMY PIC X.
004300
004400 PROCEDURE DIVISION.
004500 MAIN-LOGIC SECTION.

004600 PROGRAM-BEGIN.
004700
004800 PERFORM OPENING-PROCEDURE.
004900 MOVE ZEROES TO SCREEN-LINES.
005000 MOVE "N" TO END-OF-FILE.
005100 PERFORM READ-NEXT-RECORD.
005200 PERFORM DISPLAY-RECORDS
005300 UNTIL END-OF-FILE = "Y".
005400 PERFORM CLOSING-PROCEDURE.
005500
005600 PROGRAM-DONE.
005700 STOP RUN.
005800
005900 OPENING-PROCEDURE.
006000 OPEN INPUT PHONE-FILE.
006100
006200 CLOSING-PROCEDURE.
006300 CLOSE PHONE-FILE.
006400
006500 DISPLAY-RECORDS.
006600 PERFORM DISPLAY-FIELDS.
006700 PERFORM READ-NEXT-RECORD.
006800
006900 DISPLAY-FIELDS.
007000 IF SCREEN-LINES = 15
007100 PERFORM PRESS-ENTER.
007200 MOVE PHONE-LAST-NAME TO DISPLAY-LAST-NAME.
007300 MOVE PHONE-FIRST-NAME TO DISPLAY-FIRST-NAME.
007400 MOVE PHONE-NUMBER TO DISPLAY-NUMBER.
007500 MOVE PHONE-EXTENSION TO DISPLAY-EXTENSION.
007600 DISPLAY FIELDS-TO-DISPLAY.
007700
007800 ADD 1 TO SCREEN-LINES.
007900
008000 READ-NEXT-RECORD.
008100 READ PHONE-FILE NEXT RECORD
008200 AT END
008300 MOVE "Y" TO END-OF-FILE.
008400
008500 PRESS-ENTER.
008600 DISPLAY "Press ENTER to continue . . ".
008700 ACCEPT A-DUMMY.
008800 MOVE ZEROES TO SCREEN-LINES.
008900

The output of phnlst02.cbl follows:

OUTPUT:

C>pcobrun phnlst01
Personal COBOL version 2.0 from Micro Focus
PCOBRUN V2.0.02 Copyright (C) 1983-1993 Micro Focus Ltd.
Lst:KARENINA 1st:ANA NO:555-4567 Xtn:
Lst:ARBUTHNOT 1st:ARTHUR NO:(515) 555-1234 Xtn:
Lst:BUDLONG 1st:MO NO:(818) 555-4444 Xtn:
Lst:WRIGHT 1st:ORVILLE NO:606-555-7777 Xtn:23
Lst:ZERILDA 1st:MARSHA NO:555-4567 Xtn:
Lst:WAYNE 1st:BOB NO:555-4332 Xtn:
Lst:ADALE 1st:ALAN NO:415-555 6666 Xtn:4466
Lst:NOTTINGHAM 1st:SHERIFF NO:415-555-6789 Xtn:
Lst:TUCK 1st:FRIAR NO:213-5552345 Xtn:
Lst:SCARLET 1st:WILL NO:202-5556789 Xtn:
Lst:PLUM 1st:PROFESSOR NO:202-555-5678 Xtn:802
Lst:RED 1st:ERIC THE NO:424-555-3456 Xtn:
Lst:SCOTT 1st:W.R. NO:616-555-2345 Xtn:297
Lst:BACH 1st:J.S. NO:555-6789 Xtn:
Lst:RUTH 1st:BABE NO:555-9876 Xtn:12
Press ENTER to continue . .

Answers to Day 10, "Printing"

Quiz

Using NEXT-PAGE at the start of the report usually causes a blank page to be fed out of the printer before
the first page of the report is printed. Some modern printers, particularly laser and inkjet/bubble-jet types,
might not eject the initial blank page.

Exercises

1. All the changes are in COLUMN-HEADINGS and DETAIL-LINE, and involve increasing the
FILLER between the headings and the detail fields by 1 (as shown in Listing A.15).

The printer spacing sheet for the modified report is shown in Figure A.1.

Figure A.1.
A printer spacing sheet for the modified report.

TYPE: Listing A.15. Two spaces between fields.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. PHNPRT03.
000300*--
000400* This program prints the contents of the
000500* phone file.
000600*--

file:///D|/Cool Stuff/old/ftp/Sams.Teach.Yourself.Cobol.In.21.Days/Teach Yourself Cobol in 21 Days/apa/01.htm

000700 ENVIRONMENT DIVISION.
000800 INPUT-OUTPUT SECTION.
000900 FILE-CONTROL.
001000 SELECT OPTIONAL PHONE-FILE
001100*or SELECT PHONE-FILE
001200 ASSIGN TO "phone.dat"
001300*or ASSIGN TO "phone"
001400 ORGANIZATION IS SEQUENTIAL.
001500
001600 SELECT PRINTER-FILE
001700 ASSIGN TO PRINTER
001800 ORGANIZATION IS LINE SEQUENTIAL.
001900
002000 DATA DIVISION.
002100 FILE SECTION.
002200 FD PHONE-FILE
002300 LABEL RECORDS ARE STANDARD.
002400 01 PHONE-RECORD.
002500 05 PHONE-LAST-NAME PIC X(20).
002600 05 PHONE-FIRST-NAME PIC X(20).
002700 05 PHONE-NUMBER PIC X(15).
002800 05 PHONE-EXTENSION PIC X(5).
002900
003000 FD PRINTER-FILE
003100 LABEL RECORDS ARE OMITTED.
003200 01 PRINTER-RECORD PIC X(80).
003300
003400 WORKING-STORAGE SECTION.
003500
003600* Structure for printing a title line
003700 01 TITLE-LINE.
003800 05 FILLER PIC X(21) VALUE SPACE.
003900 05 FILLER PIC X(17) VALUE
004000 "PHONE BOOK REPORT".
004100 05 FILLER PIC X(15) VALUE SPACE.
004200 05 FILLER PIC X(5) VALUE "Page:".
004300 05 PRINT-PAGE-NUMBER PIC ZZZZ9.
004400
004500* Structure for printing a column heading
004600 01 COLUMN-HEADINGS.
004700 05 FILLER PIC X(9) VALUE "Last Name".
004800 05 FILLER PIC X(13) VALUE SPACE.
004900 05 FILLER PIC X(10) VALUE "First Name".
005000 05 FILLER PIC X(12) VALUE SPACE.
005100 05 FILLER PIC X(6) VALUE "Number".
005200 05 FILLER PIC X(11) VALUE SPACE.
005300 05 FILLER PIC X(4) VALUE "Ext.".

005400
005500 01 DETAIL-LINE.
005600 05 PRINT-LAST-NAME PIC X(20).
005700 05 FILLER PIC X(2) VALUE SPACE.
005800 05 PRINT-FIRST-NAME PIC X(20).
005900 05 FILLER PIC X(2) VALUE SPACE.
006000 05 PRINT-NUMBER PIC X(15).
006100 05 FILLER PIC X(2) VALUE SPACE.
006200 05 PRINT-EXTENSION PIC X(5).
006300
006400 01 END-OF-FILE PIC X.
006500
006600 01 PRINT-LINES PIC 99.
006700 01 PAGE-NUMBER PIC 9(5).
006800
006900 PROCEDURE DIVISION.
007000 MAIN-LOGIC SECTION.
007100 PROGRAM-BEGIN.
007200
007300 PERFORM OPENING-PROCEDURE.
007400 MOVE ZEROES TO PRINT-LINES
007500 PAGE-NUMBER.
007600 PERFORM START-NEW-PAGE.
007700 MOVE "N" TO END-OF-FILE.
007800 PERFORM READ-NEXT-RECORD.
007900 IF END-OF-FILE = "Y"
008000 MOVE "No records found" TO PRINTER-RECORD
008100 WRITE PRINTER-RECORD BEFORE ADVANCING 1.
008200 PERFORM PRINT-RECORDS
008300 UNTIL END-OF-FILE = "Y".
008400 PERFORM CLOSING-PROCEDURE.
008500
008600 PROGRAM-DONE.
008700 STOP RUN.
008800
008900 OPENING-PROCEDURE.
009000 OPEN INPUT PHONE-FILE.
009100 OPEN OUTPUT PRINTER-FILE.
009200
009300 CLOSING-PROCEDURE.
009400 CLOSE PHONE-FILE.
009500 PERFORM END-LAST-PAGE.
009600 CLOSE PRINTER-FILE.
009700
009800 PRINT-RECORDS.
009900 PERFORM PRINT-FIELDS.
010000 PERFORM READ-NEXT-RECORD.

010100
010200 PRINT-FIELDS.
010300 IF PRINT-LINES NOT < 55
010400 PERFORM NEXT-PAGE.
010500 MOVE PHONE-LAST-NAME TO PRINT-LAST-NAME.
010600 MOVE PHONE-FIRST-NAME TO PRINT-FIRST-NAME.
010700 MOVE PHONE-NUMBER TO PRINT-NUMBER.
010800 MOVE PHONE-EXTENSION TO PRINT-EXTENSION.
010900 MOVE DETAIL-LINE TO PRINTER-RECORD.
011000 WRITE PRINTER-RECORD BEFORE ADVANCING 1.
011100
011200 ADD 1 TO PRINT-LINES.
011300
011400 READ-NEXT-RECORD.
011500 READ PHONE-FILE NEXT RECORD
011600 AT END
011700 MOVE "Y" TO END-OF-FILE.
011800
011900 NEXT-PAGE.
012000 PERFORM END-LAST-PAGE.
012100 PERFORM START-NEW-PAGE.
012200
012300 START-NEW-PAGE.
012400 ADD 1 TO PAGE-NUMBER.
012500 MOVE PAGE-NUMBER TO PRINT-PAGE-NUMBER.
012600 MOVE TITLE-LINE TO PRINTER-RECORD.
012700 WRITE PRINTER-RECORD BEFORE ADVANCING 2.
012800 MOVE COLUMN-HEADINGS TO PRINTER-RECORD.
012900 WRITE PRINTER-RECORD BEFORE ADVANCING 2.
013000 MOVE 4 TO PRINT-LINES.
013100
013200 END-LAST-PAGE.
013300 MOVE SPACE TO PRINTER-RECORD.
013400 WRITE PRINTER-RECORD BEFORE ADVANCING PAGE.
013500 MOVE ZEROES TO PRINT-LINES.
013600

2. Figure A.2 is one example of a possible layout for the customer report.

Figure A.2.
A possible customer report layout.

Answers to Day 11, "Indexed File I/O"

file:///D|/Cool Stuff/old/ftp/Sams.Teach.Yourself.Cobol.In.21.Days/Teach Yourself Cobol in 21 Days/apa/02.htm

Quiz

1. CONTACT-BIRTH-DATE will not be unique. Even with as few as 200 records, the chance of a
duplicate birth date is very high. Once you start putting hundreds of records in a file, birth dates won't
stay unique.

2. The CONTACT-PHONE-NUMBER has a better chance of being unique, but there is still a
possibility of having two contacts at the same phone number. The best solution is to create an
additional numeric field in the record called CONTACT-NUMBER. Each contact added to the file is
assigned a new number.

Exercises

1. Listings A.16 and A.17 present a better way of defining the record, and CONTACT-NUMBER will
be assigned during data entry to ensure that it is unique.

TYPE: Listing A.16. The FD for a contact file.

000900 FD CONTACT-FILE
001000 LABEL RECORDS ARE STANDARD.
001100 01 CONTACT-RECORD.
001200 05 CONTACT-NUMBER PIC 9(5).
001300 05 CONTACT-BIRTH-DATE PIC 9(6).
001400 05 CONTACT-NAME PIC X(20).
001500 05 CONTACT-ADDRESS-1 PIC X(20).
001600 05 CONTACT-ADDRESS-2 PIC X(20).
001700 05 CONTACT-ZIP PIC 9(5).
001800 05 CONTACT-PHONE.
001900 10 CONTACT-AREA-CODE PIC 9(3).
002000 10 CONTACT-PREFIX PIC 9(3).
002200 10 CONTACT-PHONE-NO PIC 9(4).

TYPE: Listing A.17. The SELECT statement for a contact file.

000300 SELECT CONTACT-FILE
000400 ASSIGN TO "contact"
000500 ORGANIZATION IS INDEXED
000600 RECORD KEY IS CONTACT-NUMBER
000700 ACCESS MODE IS DYNAMIC.

2. DISPLAY-NAME is 30 bytes long with an implied picture of X and is therefore a PIC X(30).
Everywhere it is used in the program, it is unaffected by the fact that subordinate variables are within
DISPLAY-NAME. DISPLAY-CITY and DISPLAY-STATE are now within DISPLAY-NAME, and
consequently within DETAIL-LINE, so the move that used to exist at line 014400 is no longer
needed.

3. Listings A.18 and A.19 compare PHNPRT02 and VNDDSP01. I have inserted comments without
line numbers so that they will stand out in the listings. The comments provide the comparisons

between the two programs.

TYPE: Listing A.18. PHNPRT02 compared to VNDDSP01.

 * PHNPRT02 prints records to paper
000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. PHNPRT02.
000300*--
000400* This program prints the contents of the
000500* phone file.
000600*--
000700 ENVIRONMENT DIVISION.
000800 INPUT-OUTPUT SECTION.
000900 FILE-CONTROL.
001000 SELECT OPTIONAL PHONE-FILE
001100*or SELECT PHONE-FILE
001200 ASSIGN TO "phone.dat"
001300*or ASSIGN TO "phone"
001400 ORGANIZATION IS SEQUENTIAL.
001500
001600 SELECT PRINTER-FILE
001700 ASSIGN TO PRINTER
001800 ORGANIZATION IS LINE SEQUENTIAL.
001900
002000 DATA DIVISION.
002100 FILE SECTION.
002200 FD PHONE-FILE
002300 LABEL RECORDS ARE STANDARD.
002400 01 PHONE-RECORD.
002500 05 PHONE-LAST-NAME PIC X(20).
002600 05 PHONE-FIRST-NAME PIC X(20).
002700 05 PHONE-NUMBER PIC X(15).
002800 05 PHONE-EXTENSION PIC X(5).
002900
003000 FD PRINTER-FILE
003100 LABEL RECORDS ARE OMITTED.
003200 01 PRINTER-RECORD PIC X(80).
003300
003400 WORKING-STORAGE SECTION.
003500
003600* Structure for printing a title line
003700 01 TITLE-LINE.
003800 05 FILLER PIC X(21) VALUE SPACE.
003900 05 FILLER PIC X(17) VALUE
004000 "PHONE BOOK REPORT".
004100 05 FILLER PIC X(15) VALUE SPACE.
004200 05 FILLER PIC X(5) VALUE "Page:".

004300 05 PRINT-PAGE-NUMBER PIC ZZZZ9.
004400
004500* Structure for printing a column heading
004600 01 COLUMN-HEADINGS.
004700 05 FILLER PIC X(9) VALUE "Last Name".
004800 05 FILLER PIC X(12) VALUE SPACE.
004900 05 FILLER PIC X(10) VALUE "First Name".
005000 05 FILLER PIC X(11) VALUE SPACE.
005100 05 FILLER PIC X(6) VALUE "Number".
005200 05 FILLER PIC X(10) VALUE SPACE.
005300 05 FILLER PIC X(4) VALUE "Ext.".
005400
005500 01 DETAIL-LINE.
005600 05 PRINT-LAST-NAME PIC X(20).
005700 05 FILLER PIC X(1) VALUE SPACE.
005800 05 PRINT-FIRST-NAME PIC X(20).
005900 05 FILLER PIC X(1) VALUE SPACE.
006000 05 PRINT-NUMBER PIC X(15).
006100 05 FILLER PIC X(1) VALUE SPACE.
006200 05 PRINT-EXTENSION PIC X(5).
006300
006400 01 END-OF-FILE PIC X.
006500
006600 01 PRINT-LINES PIC 99.
006700 01 PAGE-NUMBER PIC 9(5).
006800
006900 PROCEDURE DIVISION.
007000 MAIN-LOGIC SECTION.

 * The main logic at lines 007100 through 007800 is almost
 * identical to the same logic at lines 007600 through
 * 008500 of VNDDSP01.
007100 PROGRAM-BEGIN.
007200
007300 PERFORM OPENING-PROCEDURE.
007400 MOVE ZEROES TO PRINT-LINES
007500 PAGE-NUMBER.
007600 PERFORM START-NEW-PAGE.
007700 MOVE "N" TO END-OF-FILE.
007800 PERFORM READ-NEXT-RECORD.

 * The logic at lines 007900 through 008300 prints a message
 * if no records are found in the file. This is similar to
 * lines 008600 through 009100 in VNDDSP01 which display a
 * message if no records are found.
007900 IF END-OF-FILE = "Y"
008000 MOVE "No records found" TO PRINTER-RECORD

008100 WRITE PRINTER-RECORD BEFORE ADVANCING 1.
008200 PERFORM PRINT-RECORDS
008300 UNTIL END-OF-FILE = "Y".
008400 PERFORM CLOSING-PROCEDURE.
008500
008600 PROGRAM-DONE.
008700 STOP RUN.
008800
008900 OPENING-PROCEDURE.
009000 OPEN INPUT PHONE-FILE.
009100 OPEN OUTPUT PRINTER-FILE.
009200
009300 CLOSING-PROCEDURE.
009400 CLOSE PHONE-FILE.
009500 PERFORM END-LAST-PAGE.
009600 CLOSE PRINTER-FILE.
009700

 * Lines 009800 through 011200 start a new page when needed,
 * print records one at a time and read the next record.
 * VNDDSP01 does the same functions at lines 010500 through
 * 015200. The big difference in VNDDSP01 is that vendor
 * information is displayed on multiple lines.
009800 PRINT-RECORDS.
009900 PERFORM PRINT-FIELDS.
010000 PERFORM READ-NEXT-RECORD.
010100
010200 PRINT-FIELDS.
010300 IF PRINT-LINES NOT < 55
010400 PERFORM NEXT-PAGE.
010500 MOVE PHONE-LAST-NAME TO PRINT-LAST-NAME.
010600 MOVE PHONE-FIRST-NAME TO PRINT-FIRST-NAME.
010700 MOVE PHONE-NUMBER TO PRINT-NUMBER.
010800 MOVE PHONE-EXTENSION TO PRINT-EXTENSION.
010900 MOVE DETAIL-LINE TO PRINTER-RECORD.
011000 WRITE PRINTER-RECORD BEFORE ADVANCING 1.
011100
011200 ADD 1 TO PRINT-LINES.
011300
011400 READ-NEXT-RECORD.
011500 READ PHONE-FILE NEXT RECORD
011600 AT END
011700 MOVE "Y" TO END-OF-FILE.
011800

 * The logic at lines 011900 through 013500 controls what to
 * do when a new page is needed and special processing to

 * handle the last page. VNDDSP01 does the same sort of
 * processing but for the display at lines 016100
 * through 018200.
011900 NEXT-PAGE.
012000 PERFORM END-LAST-PAGE.
012100 PERFORM START-NEW-PAGE.
012200
012300 START-NEW-PAGE.
012400 ADD 1 TO PAGE-NUMBER.
012500 MOVE PAGE-NUMBER TO PRINT-PAGE-NUMBER.
012600 MOVE TITLE-LINE TO PRINTER-RECORD.
012700 WRITE PRINTER-RECORD BEFORE ADVANCING 2.
012800 MOVE COLUMN-HEADINGS TO PRINTER-RECORD.
012900 WRITE PRINTER-RECORD BEFORE ADVANCING 2.
013000 MOVE 4 TO PRINT-LINES.
013100
013200 END-LAST-PAGE.
013300 MOVE SPACE TO PRINTER-RECORD.
013400 WRITE PRINTER-RECORD BEFORE ADVANCING PAGE.
013500 MOVE ZEROES TO PRINT-LINES.
013600

TYPE: Listing A.19. VNDDSP01 compared to PHNPRT02.

 * VNDDSP01 displays records on a screen.
000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. VNDDSP01.
000300*--
000400* Display records in the Vendor File.
000500*--
000600 ENVIRONMENT DIVISION.
000700 INPUT-OUTPUT SECTION.
000800 FILE-CONTROL.
000900
001000 SELECT VENDOR-FILE
001100 ASSIGN TO "vendor"
001200 ORGANIZATION IS INDEXED
001300 RECORD KEY IS VENDOR-NUMBER
001400 ACCESS MODE IS DYNAMIC.
001500
001600 DATA DIVISION.
001700 FILE SECTION.
001800
001900 FD VENDOR-FILE
002000 LABEL RECORDS ARE STANDARD.
002100 01 VENDOR-RECORD.
002200 05 VENDOR-NUMBER PIC 9(5).

002300 05 VENDOR-NAME PIC X(30).
002400 05 VENDOR-ADDRESS-1 PIC X(30).
002500 05 VENDOR-ADDRESS-2 PIC X(30).
002600 05 VENDOR-CITY PIC X(20).
002700 05 VENDOR-STATE PIC X(2).
002800 05 VENDOR-ZIP PIC X(10).
002900 05 VENDOR-CONTACT PIC X(30).
003000 05 VENDOR-PHONE PIC X(15).
003100
003200
003300
003400
003500 WORKING-STORAGE SECTION.
003600
003700
003800
003900 01 DETAIL-LINE.
004000 05 DISPLAY-NUMBER PIC 9(5).
004100 05 FILLER PIC X VALUE SPACE.
004200 05 DISPLAY-NAME PIC X(30).
004300 05 FILLER PIC X VALUE SPACE.
004400 05 DISPLAY-CONTACT PIC X(30).
004500
004600 01 CITY-STATE-DETAIL.
004700 05 DISPLAY-CITY PIC X(20).
004800 05 FILLER PIC X VALUE SPACE.
004900 05 DISPLAY-STATE PIC X(2).
005000
005100 01 COLUMN-LINE.
005200 05 FILLER PIC X(2) VALUE "NO".
005300 05 FILLER PIC X(4) VALUE SPACE.
005400 05 FILLER PIC X(12) VALUE "NAME-ADDRESS".
005500 05 FILLER PIC X(19) VALUE SPACE.
005600 05 FILLER PIC X(17) VALUE "CONTACT-PHONE-ZIP".
005700
005800 01 TITLE-LINE.
005900 05 FILLER PIC X(15) VALUE SPACE.
006000 05 FILLER PIC X(11)
006100 VALUE "VENDOR LIST".
006200 05 FILLER PIC X(15) VALUE SPACE.
006300 05 FILLER PIC X(5) VALUE "PAGE:".
006400 05 FILLER PIC X(1) VALUE SPACE.
006500 05 DISPLAY-PAGE-NUMBER PIC ZZZZ9.
006600
006700 77 FILE-AT-END PIC X.
006800 77 A-DUMMY PIC X.
006900 77 LINE-COUNT PIC 999 VALUE ZERO.

007000 77 PAGE-NUMBER PIC 99999 VALUE ZERO.
007100 77 MAXIMUM-LINES PIC 999 VALUE 15.
007200
007300 77 DISPLAY-RECORD PIC X(79).
007400
007500 PROCEDURE DIVISION.

 * The main logic at lines 007600 through 008500 is almost
 * identical to the same logic at lines 007100 through
 * 007800 of PHNPRT02.
007600 PROGRAM-BEGIN.
007700
007800 PERFORM OPENING-PROCEDURE.
007900 MOVE ZEROES TO LINE-COUNT
008000 PAGE-NUMBER.
008100
008200 PERFORM START-NEW-PAGE.
008300
008400 MOVE "N" TO FILE-AT-END.
008500 PERFORM READ-NEXT-RECORD.

12345678901234567890123456789012345678901234567890123456789012345
 * The logic at lines 008600 through 009100 displays a message
 * if no records are found in the file. This is similar to
 * lines 007900 through 008300 in PHNPRT02 which prints a
 * message if no records are found.
008600 IF FILE-AT-END = "Y"
008700 MOVE "NO RECORDS FOUND" TO DISPLAY-RECORD
008800 PERFORM WRITE-DISPLAY-RECORD
008900 ELSE
009000 PERFORM DISPLAY-VENDOR-FIELDS
009100 UNTIL FILE-AT-END = "Y".
009200
009300 PERFORM CLOSING-PROCEDURE.
009400
009500
009600 PROGRAM-DONE.
009700 STOP RUN.
009800
009900 OPENING-PROCEDURE.
010000 OPEN I-O VENDOR-FILE.
010100
010200 CLOSING-PROCEDURE.
010300 CLOSE VENDOR-FILE.
010400

 * Lines 010500 through 015200 start a new screen's worth

 * of display information when needed,
 * display records one at a time and read the next record.
 * PHNPRT02 does the same functions at lines 009800 through
 * 011200. The big difference in PHNPRT02 is that phone
 * information is printed on a sinlge line.
010500 DISPLAY-VENDOR-FIELDS.
010600 IF LINE-COUNT > MAXIMUM-LINES
010700 PERFORM START-NEXT-PAGE.
010800 PERFORM DISPLAY-THE-RECORD.
010900 PERFORM READ-NEXT-RECORD.
011000
011100 DISPLAY-THE-RECORD.
011200 PERFORM DISPLAY-LINE-1.
011300 PERFORM DISPLAY-LINE-2.
011400 PERFORM DISPLAY-LINE-3.
011500 PERFORM DISPLAY-LINE-4.
011600 PERFORM LINE-FEED.
011700
011800 DISPLAY-LINE-1.
011900 MOVE SPACE TO DETAIL-LINE.
012000 MOVE VENDOR-NUMBER TO DISPLAY-NUMBER.
012100 MOVE VENDOR-NAME TO DISPLAY-NAME.
012200 MOVE VENDOR-CONTACT TO DISPLAY-CONTACT.
012300 MOVE DETAIL-LINE TO DISPLAY-RECORD.
012400 PERFORM WRITE-DISPLAY-RECORD.
012500
012600 DISPLAY-LINE-2.
012700 MOVE SPACE TO DETAIL-LINE.
012800 MOVE VENDOR-ADDRESS-1 TO DISPLAY-NAME.
012900 MOVE VENDOR-PHONE TO DISPLAY-CONTACT.
013000 MOVE DETAIL-LINE TO DISPLAY-RECORD.
013100 PERFORM WRITE-DISPLAY-RECORD.
013200
013300 DISPLAY-LINE-3.
013400 MOVE SPACE TO DETAIL-LINE.
013500 MOVE VENDOR-ADDRESS-2 TO DISPLAY-NAME.
013600 IF VENDOR-ADDRESS-2 NOT = SPACE
013700 MOVE DETAIL-LINE TO DISPLAY-RECORD
013800 PERFORM WRITE-DISPLAY-RECORD.
013900
014000 DISPLAY-LINE-4.
014100 MOVE SPACE TO DETAIL-LINE.
014200 MOVE VENDOR-CITY TO DISPLAY-CITY.
014300 MOVE VENDOR-STATE TO DISPLAY-STATE.
014400 MOVE CITY-STATE-DETAIL TO DISPLAY-NAME.
014500 MOVE VENDOR-ZIP TO DISPLAY-CONTACT.
014600 MOVE DETAIL-LINE TO DISPLAY-RECORD.

014700 PERFORM WRITE-DISPLAY-RECORD.
014800
014900 READ-NEXT-RECORD.
015000 READ VENDOR-FILE NEXT RECORD
015100 AT END MOVE "Y" TO FILE-AT-END.
015200
015300 WRITE-DISPLAY-RECORD.
015400 DISPLAY DISPLAY-RECORD.
015500 ADD 1 TO LINE-COUNT.
015600
015700 LINE-FEED.
015800 MOVE SPACE TO DISPLAY-RECORD.
015900 PERFORM WRITE-DISPLAY-RECORD.
016000

 * The logic at lines 016100 through 018200 controls what to
 * do when a new screen is needed and special processing to
 * handle the last screen. PHNPRT02 does the same sort of
 * processing but for printed pages at lines 011900
 * through 013500.
016100 START-NEXT-PAGE.
016200
016300 PERFORM END-LAST-PAGE.
016400 PERFORM START-NEW-PAGE.
016500
016600 START-NEW-PAGE.
016700 ADD 1 TO PAGE-NUMBER.
016800 MOVE PAGE-NUMBER TO DISPLAY-PAGE-NUMBER.
016900 MOVE TITLE-LINE TO DISPLAY-RECORD.
017000 PERFORM WRITE-DISPLAY-RECORD.
017100 PERFORM LINE-FEED.
017200 MOVE COLUMN-LINE TO DISPLAY-RECORD.
017300 PERFORM WRITE-DISPLAY-RECORD.
017400 PERFORM LINE-FEED.
017500
017600 END-LAST-PAGE.
017700 PERFORM PRESS-ENTER.
017800 MOVE ZERO TO LINE-COUNT.
017900
018000 PRESS-ENTER.
018100 DISPLAY "PRESS ENTER TO CONTINUE. . .".
018200 ACCEPT A-DUMMY.
018300

Answers to Day 12, "More on Indexed Files"

Quiz

The example reproduced in Listing A.20 has a bug at line 003800. The logic is set up so that if a record is
not found, an attempt is made to change the record; and, if the record is found, an attempt is made to add the
record. This is the reverse of what was intended. Line 003800 should read as follows:

003800 IF RECORD-FOUND-FLAG = "Y"

TYPE: Listing A.20. Reading a record in a file.

003200 ADD-OR-UPDATE.
003300 MOVE "Y" TO RECORD-FOUND-FLAG.
003400 MOVE NEW-NUMBER TO VENDOR-NUMBER.
003500 READ VENDOR-RECORD
003600 INVALID KEY
003700 MOVE "N" TO RECORD-FOUND-FLAG.
003800 IF RECORD-FOUND-FLAG = "N"
003900 PERFORM CHANGE-THIS-RECORD
004000 ELSE
004100 PERFORM ADD-THIS-RECORD.
004200
004300 CHANGE-THIS-RECORD.
004400 PERFORM LOAD-RECORD-VALUES.
004500 REWRITE VENDOR-RECORD
004600 INVALID KEY
004700 DISPLAY "ERROR CHANGING THE RECORD".
004800
004900 ADD-THIS-RECORD.
005000 PERFORM LOAD-RECORD-VALUES.
005100 WRITE VENDOR-RECORD
005200 INVALID KEY
005300 DISPLAY "ERROR ADDING THE RECORD".
005400
005500 LOAD-RECORD-VALUES.
005600 MOVE NEW-NAME TO VENDOR-NAME.
005700 MOVE NEW-ADDRESS-1 TO VENDOR-ADDRESS-1.
005800 MOVE NEW-ADDRESS-2 TO VENDOR-ADDRESS-2.
005900 MOVE NEW-CITY TO VENDOR-CITY.
006000 MOVE NEW-STATE TO VENDOR-STATE.
006100 MOVE NEW-ZIP TO VENDOR-ZIP.
006200 MOVE NEW-CONTACT TO VENDOR-CONTACT.
006300 MOVE NEW-PHONE TO VENDOR-PHONE.
006400

Exercises

1. The IF test is wrong, causing the program to attempt to change a record when it doesn't exist and
add a record when it does exist.

2. The correction is shown in Listing A.21.

TYPE: Listing A.21. Correcting the bug.

003200 ADD-OR-UPDATE.
003300 MOVE "Y" TO RECORD-FOUND-FLAG.
003400 MOVE NEW-NUMBER TO VENDOR-NUMBER.
003500 READ VENDOR-RECORD
003600 INVALID KEY
003700 MOVE "N" TO RECORD-FOUND-FLAG.
003800 IF RECORD-FOUND-FLAG = "Y"
003900 PERFORM CHANGE-THIS-RECORD
004000 ELSE
004100 PERFORM ADD-THIS-RECORD.
004200
004300 CHANGE-THIS-RECORD.
004400 PERFORM LOAD-RECORD-VALUES.
004500 REWRITE VENDOR-RECORD
004600 INVALID KEY
004700 DISPLAY "ERROR CHANGING THE RECORD".
004800
004900 ADD-THIS-RECORD.
005000 PERFORM LOAD-RECORD-VALUES.
005100 WRITE VENDOR-RECORD
005200 INVALID KEY
005300 DISPLAY "ERROR ADDING THE RECORD".
005400
005500 LOAD-RECORD-VALUES.
005600 MOVE NEW-NAME TO VENDOR-NAME.
005700 MOVE NEW-ADDRESS-1 TO VENDOR-ADDRESS-1.
005800 MOVE NEW-ADDRESS-2 TO VENDOR-ADDRESS-2.
005900 MOVE NEW-CITY TO VENDOR-CITY.
006000 MOVE NEW-STATE TO VENDOR-STATE.
006100 MOVE NEW-ZIP TO VENDOR-ZIP.
006200 MOVE NEW-CONTACT TO VENDOR-CONTACT.
006300 MOVE NEW-PHONE TO VENDOR-PHONE.
006400

Answers to Day 13, "Deleting Records and Other
Indexed File Operations"

Quiz

1. c. Change, inquire, and delete modes frequently are similar.

2. Change, inquire, and delete modes all require the user to enter a key value of a record that is
looked up in the file. This record must be found before the remainder of the change, inquire, or delete
action is undertaken.

Exercise

Listing A.22 uses COPY directives.

TYPE: Listing A.22. Using COPY directives.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. VNDDSP02.
000300*--
000400* Display records in the Vendor File.
000500*--
000600 ENVIRONMENT DIVISION.
000700 INPUT-OUTPUT SECTION.
000800 FILE-CONTROL.
000900
001000 COPY "SLVND01.CBL".
001100
001200 DATA DIVISION.
001300 FILE SECTION.
001400
001500 COPY "FDVND02.CBL".
001600
001700 WORKING-STORAGE SECTION.
001800
001900 01 DETAIL-LINE.
002000 05 DISPLAY-NUMBER PIC 9(5).
002100 05 FILLER PIC X VALUE SPACE.
002200 05 DISPLAY-NAME PIC X(30).
002300 05 FILLER PIC X VALUE SPACE.
002400 05 DISPLAY-CONTACT PIC X(30).
002500
002600 01 CITY-STATE-DETAIL.
002700 05 DISPLAY-CITY PIC X(20).
002800 05 FILLER PIC X VALUE SPACE.
002900 05 DISPLAY-STATE PIC X(2).

003000
003100 01 COLUMN-LINE.
003200 05 FILLER PIC X(2) VALUE "NO".
003300 05 FILLER PIC X(4) VALUE SPACE.
003400 05 FILLER PIC X(12) VALUE "NAME-ADDRESS".
003500 05 FILLER PIC X(19) VALUE SPACE.
003600 05 FILLER PIC X(17) VALUE "CONTACT-PHONE-ZIP".
003700
003800 01 TITLE-LINE.
003900 05 FILLER PIC X(15) VALUE SPACE.
004000 05 FILLER PIC X(11)
004100 VALUE "VENDOR LIST".
004200 05 FILLER PIC X(15) VALUE SPACE.
004300 05 FILLER PIC X(5) VALUE "PAGE:".
004400 05 FILLER PIC X(1) VALUE SPACE.
004500 05 DISPLAY-PAGE-NUMBER PIC ZZZZ9.
004600
004700 77 FILE-AT-END PIC X.
004800 77 A-DUMMY PIC X.
004900 77 LINE-COUNT PIC 999 VALUE ZERO.
005000 77 PAGE-NUMBER PIC 99999 VALUE ZERO.
005100 77 MAXIMUM-LINES PIC 999 VALUE 15.
005200
005300 77 DISPLAY-RECORD PIC X(79).
005400
005500 PROCEDURE DIVISION.
005600 PROGRAM-BEGIN.
005700
005800 PERFORM OPENING-PROCEDURE.
005900 MOVE ZEROES TO LINE-COUNT
006000 PAGE-NUMBER.
006100
006200 PERFORM START-NEW-PAGE.
006300
006400 MOVE "N" TO FILE-AT-END.
006500 PERFORM READ-NEXT-RECORD.
006600 IF FILE-AT-END = "Y"
006700 MOVE "NO RECORDS FOUND" TO DISPLAY-RECORD
006800 PERFORM WRITE-DISPLAY-RECORD
006900 ELSE
007000 PERFORM DISPLAY-VENDOR-FIELDS
007100 UNTIL FILE-AT-END = "Y".
007200
007300 PERFORM CLOSING-PROCEDURE.
007400
007500
007600 PROGRAM-DONE.

007700 STOP RUN.
007800
007900 OPENING-PROCEDURE.
008000 OPEN I-O VENDOR-FILE.
008100
008200 CLOSING-PROCEDURE.
008300 CLOSE VENDOR-FILE.
008400
008500 DISPLAY-VENDOR-FIELDS.
008600 IF LINE-COUNT > MAXIMUM-LINES
008700 PERFORM START-NEXT-PAGE.
008800 PERFORM DISPLAY-THE-RECORD.
008900 PERFORM READ-NEXT-RECORD.
009000
009100 DISPLAY-THE-RECORD.
009200 PERFORM DISPLAY-LINE-1.
009300 PERFORM DISPLAY-LINE-2.
009400 PERFORM DISPLAY-LINE-3.
009500 PERFORM DISPLAY-LINE-4.
009600 PERFORM LINE-FEED.
009700
009800 DISPLAY-LINE-1.
009900 MOVE SPACE TO DETAIL-LINE.
010000 MOVE VENDOR-NUMBER TO DISPLAY-NUMBER.
010100 MOVE VENDOR-NAME TO DISPLAY-NAME.
010200 MOVE VENDOR-CONTACT TO DISPLAY-CONTACT.
010300 MOVE DETAIL-LINE TO DISPLAY-RECORD.
010400 PERFORM WRITE-DISPLAY-RECORD.
010500
010600 DISPLAY-LINE-2.
010700 MOVE SPACE TO DETAIL-LINE.
010800 MOVE VENDOR-ADDRESS-1 TO DISPLAY-NAME.
010900 MOVE VENDOR-PHONE TO DISPLAY-CONTACT.
011000 MOVE DETAIL-LINE TO DISPLAY-RECORD.
011100 PERFORM WRITE-DISPLAY-RECORD.
011200
011300 DISPLAY-LINE-3.
011400 MOVE SPACE TO DETAIL-LINE.
011500 MOVE VENDOR-ADDRESS-2 TO DISPLAY-NAME.
011600 IF VENDOR-ADDRESS-2 NOT = SPACE
011700 MOVE DETAIL-LINE TO DISPLAY-RECORD
011800 PERFORM WRITE-DISPLAY-RECORD.
011900
012000 DISPLAY-LINE-4.
012100 MOVE SPACE TO DETAIL-LINE.
012200 MOVE VENDOR-CITY TO DISPLAY-CITY.
012300 MOVE VENDOR-STATE TO DISPLAY-STATE.

012400 MOVE CITY-STATE-DETAIL TO DISPLAY-NAME.
012500 MOVE VENDOR-ZIP TO DISPLAY-CONTACT.
012600 MOVE DETAIL-LINE TO DISPLAY-RECORD.
012700 PERFORM WRITE-DISPLAY-RECORD.
012800
012900 READ-NEXT-RECORD.
013000 READ VENDOR-FILE NEXT RECORD
013100 AT END MOVE "Y" TO FILE-AT-END.
013200
013300 WRITE-DISPLAY-RECORD.
013400 DISPLAY DISPLAY-RECORD.
013500 ADD 1 TO LINE-COUNT.
013600
013700 LINE-FEED.
013800 MOVE SPACE TO DISPLAY-RECORD.
013900 PERFORM WRITE-DISPLAY-RECORD.
014000
014100 START-NEXT-PAGE.
014200
014300 PERFORM END-LAST-PAGE.
014400 PERFORM START-NEW-PAGE.
014500
014600 START-NEW-PAGE.
014700 ADD 1 TO PAGE-NUMBER.
014800 MOVE PAGE-NUMBER TO DISPLAY-PAGE-NUMBER.
014900 MOVE TITLE-LINE TO DISPLAY-RECORD.
015000 PERFORM WRITE-DISPLAY-RECORD.
015100 PERFORM LINE-FEED.
015200 MOVE COLUMN-LINE TO DISPLAY-RECORD.
015300 PERFORM WRITE-DISPLAY-RECORD.
015400 PERFORM LINE-FEED.
015500
015600 END-LAST-PAGE.
015700 PERFORM PRESS-ENTER.
015800 MOVE ZERO TO LINE-COUNT.
015900
016000 PRESS-ENTER.
016100 DISPLAY "PRESS ENTER TO CONTINUE. . .".
016200 ACCEPT A-DUMMY.
016300

Answers to Day 14, "A Review of Indexed Files"

Quiz

1. Remember: Write or rewrite a record; do everything else to a file. The correct command for
reading a record in the file is b:

READ CUSTOMER-FILE RECORD
 INVALID KEY MOVE "N" TO RECORD-FOUND.

2. Remember: Write or rewrite a record; do everything else to a file. The correct command for
writing a new record to the file is a:

WRITE CUSTOMER-RECORD
 INVALID KEY
 DISPLAY "RECORD ALREADY ON FILE".

Exercises

1. Listings A.23, A.24, A.25, and A.26 are each highlighted in bold type for add, change, inquire, and
delete mode, respectively.

TYPE: Listing A.23. Add mode.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. VNDMNT01.
000300*--------------------------------
000400* Add, Change, Inquire and Delete
000500* for the Vendor File.
000600*--------------------------------
000700 ENVIRONMENT DIVISION.
000800 INPUT-OUTPUT SECTION.
000900 FILE-CONTROL.
001000
001100 COPY "SLVND01.CBL".
001200
001300 DATA DIVISION.
001400 FILE SECTION.
001500
001600 COPY "FDVND02.CBL".
001700
001800 WORKING-STORAGE SECTION.
001900
002000 77 MENU-PICK PIC 9.
002100 88 MENU-PICK-IS-VALID VALUES 0 THRU 4.
002200
002300 77 THE-MODE PIC X(7).
002400 77 WHICH-FIELD PIC 9.
002500 77 OK-TO-DELETE PIC X.
002600 77 RECORD-FOUND PIC X.
002700 77 VENDOR-NUMBER-FIELD PIC Z(5).

002800
002900 PROCEDURE DIVISION.
003000 PROGRAM-BEGIN.
003100 PERFORM OPENING-PROCEDURE.
003200 PERFORM MAIN-PROCESS.
003300 PERFORM CLOSING-PROCEDURE.
003400
003500 PROGRAM-DONE.
003600 STOP RUN.
003700
003800 OPENING-PROCEDURE.
003900 OPEN I-O VENDOR-FILE.
004000
004100 CLOSING-PROCEDURE.
004200 CLOSE VENDOR-FILE.
004300
004400
004500 MAIN-PROCESS.
004600 PERFORM GET-MENU-PICK.
004700 PERFORM MAINTAIN-THE-FILE
004800 UNTIL MENU-PICK = 0.
004900
005000*--------------------------------
005100* MENU
005200*--------------------------------
005300 GET-MENU-PICK.
005400 PERFORM DISPLAY-THE-MENU.
005500 PERFORM GET-THE-PICK.
005600 PERFORM MENU-RETRY
005700 UNTIL MENU-PICK-IS-VALID.
005800
005900 DISPLAY-THE-MENU.
006000 PERFORM CLEAR-SCREEN.
006100 DISPLAY " PLEASE SELECT:".
006200 DISPLAY " ".
006300 DISPLAY " 1. ADD RECORDS".
006400 DISPLAY " 2. CHANGE A RECORD".
006500 DISPLAY " 3. LOOK UP A RECORD".
006600 DISPLAY " 4. DELETE A RECORD".
006700 DISPLAY " ".
006800 DISPLAY " 0. EXIT".
006900 PERFORM SCROLL-LINE 8 TIMES.
007000
007100 GET-THE-PICK.
007200 DISPLAY "YOUR CHOICE (0-4)?".
007300 ACCEPT MENU-PICK.
007400 MENU-RETRY.

007500 DISPLAY "INVALID SELECTION - PLEASE RE-TRY.".
007600 PERFORM GET-THE-PICK.
007700 CLEAR-SCREEN.
007800 PERFORM SCROLL-LINE 25 TIMES.
007900
008000 SCROLL-LINE.
008100 DISPLAY " ".
008200
008300 MAINTAIN-THE-FILE.
008400 PERFORM DO-THE-PICK.
008500 PERFORM GET-MENU-PICK.
008600
008700 DO-THE-PICK.
008800 IF MENU-PICK = 1
008900 PERFORM ADD-MODE
009000 ELSE
009100 IF MENU-PICK = 2
009200 PERFORM CHANGE-MODE
009300 ELSE
009400 IF MENU-PICK = 3
009500 PERFORM INQUIRE-MODE
009600 ELSE
009700 IF MENU-PICK = 4
009800 PERFORM DELETE-MODE.
009900
010000*--------------------------------
010100* ADD
010200*--------------------------------
010300 ADD-MODE.
010400 MOVE "ADD" TO THE-MODE.
010500 PERFORM GET-NEW-VENDOR-NUMBER.
010600 PERFORM ADD-RECORDS
010700 UNTIL VENDOR-NUMBER = ZEROES.
010800
010900 GET-NEW-VENDOR-NUMBER.
011000 PERFORM INIT-VENDOR-RECORD.
011100 PERFORM ENTER-VENDOR-NUMBER.
011200 MOVE "Y" TO RECORD-FOUND.
011300 PERFORM FIND-NEW-VENDOR-RECORD
011400 UNTIL RECORD-FOUND = "N" OR
011500 VENDOR-NUMBER = ZEROES.
011600
011700 FIND-NEW-VENDOR-RECORD.
011800 PERFORM READ-VENDOR-RECORD.
011900 IF RECORD-FOUND = "Y"
012000 DISPLAY "RECORD ALREADY ON FILE"
012100 PERFORM ENTER-VENDOR-NUMBER.

012200
012300 ADD-RECORDS.
012400 PERFORM ENTER-REMAINING-FIELDS.
012500 PERFORM WRITE-VENDOR-RECORD.
012600 PERFORM GET-NEW-VENDOR-NUMBER.
012700
012800 ENTER-REMAINING-FIELDS.
012900 PERFORM ENTER-VENDOR-NAME.
013000 PERFORM ENTER-VENDOR-ADDRESS-1.
013100 PERFORM ENTER-VENDOR-ADDRESS-2.
013200 PERFORM ENTER-VENDOR-CITY.
013300 PERFORM ENTER-VENDOR-STATE.
013400 PERFORM ENTER-VENDOR-ZIP.
013500 PERFORM ENTER-VENDOR-CONTACT.
013600 PERFORM ENTER-VENDOR-PHONE.
013700
013800*--------------------------------
013900* CHANGE
014000*--------------------------------
014100 CHANGE-MODE.
014200 MOVE "CHANGE" TO THE-MODE.
014300 PERFORM GET-VENDOR-RECORD.
014400 PERFORM CHANGE-RECORDS
014500 UNTIL VENDOR-NUMBER = ZEROES.
014600
014700 CHANGE-RECORDS.
014800 PERFORM GET-FIELD-TO-CHANGE.
014900 PERFORM CHANGE-ONE-FIELD
015000 UNTIL WHICH-FIELD = ZERO.
015100 PERFORM GET-VENDOR-RECORD.
015200
015300 GET-FIELD-TO-CHANGE.
015400 PERFORM DISPLAY-ALL-FIELDS.
015500 PERFORM ASK-WHICH-FIELD.
015600
015700 ASK-WHICH-FIELD.
015800 DISPLAY "ENTER THE NUMBER OF THE FIELD".
015900 DISPLAY "TO CHANGE (1-8) OR 0 TO EXIT".
016000 ACCEPT WHICH-FIELD.
016100 IF WHICH-FIELD > 8
016200 DISPLAY "INVALID ENTRY".
016300
016400 CHANGE-ONE-FIELD.
016500 PERFORM CHANGE-THIS-FIELD.
016600 PERFORM GET-FIELD-TO-CHANGE.
016700
016800 CHANGE-THIS-FIELD.

016900 IF WHICH-FIELD = 1
017000 PERFORM ENTER-VENDOR-NAME.
017100 IF WHICH-FIELD = 2
017200 PERFORM ENTER-VENDOR-ADDRESS-1.
017300 IF WHICH-FIELD = 3
017400 PERFORM ENTER-VENDOR-ADDRESS-2.
017500 IF WHICH-FIELD = 4
017600 PERFORM ENTER-VENDOR-CITY.
017700 IF WHICH-FIELD = 5
017800 PERFORM ENTER-VENDOR-STATE.
017900 IF WHICH-FIELD = 6
018000 PERFORM ENTER-VENDOR-ZIP.
018100 IF WHICH-FIELD = 7
018200 PERFORM ENTER-VENDOR-CONTACT.
018300 IF WHICH-FIELD = 8
018400 PERFORM ENTER-VENDOR-PHONE.
018500
018600 PERFORM REWRITE-VENDOR-RECORD.
018700
018800*--------------------------------
018900* INQUIRE
019000*--------------------------------
019100 INQUIRE-MODE.
019200 MOVE "DISPLAY" TO THE-MODE.
019300 PERFORM GET-VENDOR-RECORD.
019400 PERFORM INQUIRE-RECORDS
019500 UNTIL VENDOR-NUMBER = ZEROES.
019600
019700 INQUIRE-RECORDS.
019800 PERFORM DISPLAY-ALL-FIELDS.
019900 PERFORM GET-VENDOR-RECORD.
020000
020100*--------------------------------
020200* DELETE
020300*--------------------------------
020400 DELETE-MODE.
020500 MOVE "DELETE" TO THE-MODE.
020600 PERFORM GET-VENDOR-RECORD.
020700 PERFORM DELETE-RECORDS
020800 UNTIL VENDOR-NUMBER = ZEROES.
020900
021000 DELETE-RECORDS.
021100 PERFORM DISPLAY-ALL-FIELDS.
021200 MOVE "X" TO OK-TO-DELETE.
021300
021400 PERFORM ASK-TO-DELETE
021500 UNTIL OK-TO-DELETE = "Y" OR "N".

021600
021700 IF OK-TO-DELETE = "Y"
021800 PERFORM DELETE-VENDOR-RECORD.
021900
022000 PERFORM GET-VENDOR-RECORD.
022100
022200 ASK-TO-DELETE.
022300 DISPLAY "DELETE THIS RECORD (Y/N)?".
022400 ACCEPT OK-TO-DELETE.
022500 IF OK-TO-DELETE = "y"
022600 MOVE "Y" TO OK-TO-DELETE.
022700 IF OK-TO-DELETE = "n"
022800 MOVE "N" TO OK-TO-DELETE.
022900 IF OK-TO-DELETE NOT = "Y" AND
023000 OK-TO-DELETE NOT = "N"
023100 DISPLAY "YOU MUST ENTER YES OR NO".
023200
023300*--------------------------------
023400* Routines shared by all modes
023500*--------------------------------
023600 INIT-VENDOR-RECORD.
023700 MOVE SPACE TO VENDOR-RECORD.
023800 MOVE ZEROES TO VENDOR-NUMBER.
023900
024000 ENTER-VENDOR-NUMBER.
024100 DISPLAY " ".
024200 DISPLAY "ENTER VENDOR NUMBER OF THE VENDOR" .
024300 DISPLAY "TO " THE-MODE " (1-99999)".
024400 DISPLAY "ENTER 0 TO STOP ENTRY".
024500 ACCEPT VENDOR-NUMBER-FIELD.
024600*OR ACCEPT VENDOR-NUMBER-FIELD WITH CONVERSION.
024700
024800 MOVE VENDOR-NUMBER-FIELD TO VENDOR-NUMBER.
024900
025000 GET-VENDOR-RECORD.
025100 PERFORM INIT-VENDOR-RECORD.
025200 PERFORM ENTER-VENDOR-NUMBER.
025300 MOVE "N" TO RECORD-FOUND.
025400 PERFORM FIND-VENDOR-RECORD
025500 UNTIL RECORD-FOUND = "Y" OR
025600 VENDOR-NUMBER = ZEROES.
025700
025800*--------------------------------
025900* Routines shared Add and Change
026000*--------------------------------
026100 FIND-VENDOR-RECORD.
026200 PERFORM READ-VENDOR-RECORD.

026300 IF RECORD-FOUND = "N"
026400 DISPLAY "RECORD NOT FOUND"
026500 PERFORM ENTER-VENDOR-NUMBER.
026600
026700 ENTER-VENDOR-NAME.
026800 DISPLAY "ENTER VENDOR NAME".
026900 ACCEPT VENDOR-NAME.
027000
027100 ENTER-VENDOR-ADDRESS-1.
027200 DISPLAY "ENTER VENDOR ADDRESS-1".
027300 ACCEPT VENDOR-ADDRESS-1.
027400
027500 ENTER-VENDOR-ADDRESS-2.
027600 DISPLAY "ENTER VENDOR ADDRESS-2".
027700 ACCEPT VENDOR-ADDRESS-2.
027800
027900 ENTER-VENDOR-CITY.
028000 DISPLAY "ENTER VENDOR CITY".
028100 ACCEPT VENDOR-CITY.
028200
028300 ENTER-VENDOR-STATE.
028400 DISPLAY "ENTER VENDOR STATE".
028500 ACCEPT VENDOR-STATE.
028600
028700 ENTER-VENDOR-ZIP.
028800 DISPLAY "ENTER VENDOR ZIP".
028900 ACCEPT VENDOR-ZIP.
029000
029100 ENTER-VENDOR-CONTACT.
029200 DISPLAY "ENTER VENDOR CONTACT".
029300 ACCEPT VENDOR-CONTACT.
029400
029500 ENTER-VENDOR-PHONE.
029600 DISPLAY "ENTER VENDOR PHONE".
029700 ACCEPT VENDOR-PHONE.
029800
029900*--------------------------------
030000* Routines shared by Change,
030100* Inquire and Delete
030200*--------------------------------
030300 DISPLAY-ALL-FIELDS.
030400 DISPLAY " ".
030500 PERFORM DISPLAY-VENDOR-NUMBER.
030600 PERFORM DISPLAY-VENDOR-NAME.
030700 PERFORM DISPLAY-VENDOR-ADDRESS-1.
030800 PERFORM DISPLAY-VENDOR-ADDRESS-2.
030900 PERFORM DISPLAY-VENDOR-CITY.

031000 PERFORM DISPLAY-VENDOR-STATE.
031100 PERFORM DISPLAY-VENDOR-ZIP.
031200 PERFORM DISPLAY-VENDOR-CONTACT.
031300 PERFORM DISPLAY-VENDOR-PHONE.
031400 DISPLAY " ".
031500
031600 DISPLAY-VENDOR-NUMBER.
031700 DISPLAY " VENDOR NUMBER: " VENDOR-NUMBER.
031800
031900 DISPLAY-VENDOR-NAME.
032000 DISPLAY "1. VENDOR NAME: " VENDOR-NAME.
032100
032200 DISPLAY-VENDOR-ADDRESS-1.
032300 DISPLAY "2. VENDOR ADDRESS-1: " VENDOR-ADDRESS-1.
032400
032500 DISPLAY-VENDOR-ADDRESS-2.
032600 DISPLAY "3. VENDOR ADDRESS-2: " VENDOR-ADDRESS-2.
032700
032800 DISPLAY-VENDOR-CITY.
032900 DISPLAY "4. VENDOR CITY: " VENDOR-CITY.
033000
033100 DISPLAY-VENDOR-STATE.
033200 DISPLAY "5. VENDOR STATE: " VENDOR-STATE.
033300
033400 DISPLAY-VENDOR-ZIP.
033500 DISPLAY "6. VENDOR ZIP: " VENDOR-ZIP.
033600
033700 DISPLAY-VENDOR-CONTACT.
033800 DISPLAY "7. VENDOR CONTACT: " VENDOR-CONTACT.
033900
034000 DISPLAY-VENDOR-PHONE.
034100 DISPLAY "8. VENDOR PHONE: " VENDOR-PHONE.
034200
034300*--------------------------------
034400* File I-O Routines
034500*--------------------------------
034600 READ-VENDOR-RECORD.
034700 MOVE "Y" TO RECORD-FOUND.
034800 READ VENDOR-FILE RECORD
034900 INVALID KEY
035000 MOVE "N" TO RECORD-FOUND.
035100
035200*or READ VENDOR-FILE RECORD WITH LOCK
035300* INVALID KEY
035400* MOVE "N" TO RECORD-FOUND.
035500
035600*or READ VENDOR-FILE RECORD WITH HOLD

035700* INVALID KEY
035800* MOVE "N" TO RECORD-FOUND.
035900
036000 WRITE-VENDOR-RECORD.
036100 WRITE VENDOR-RECORD
036200 INVALID KEY
036300 DISPLAY "RECORD ALREADY ON FILE".
036400
036500 REWRITE-VENDOR-RECORD.
036600 REWRITE VENDOR-RECORD
036700 INVALID KEY
036800 DISPLAY "ERROR REWRITING VENDOR RECORD".
036900
037000 DELETE-VENDOR-RECORD.
037100 DELETE VENDOR-FILE RECORD
037200 INVALID KEY
037300 DISPLAY "ERROR DELETING VENDOR RECORD".
037400

TYPE: Listing A.24. Change mode.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. VNDMNT01.
000300*--------------------------------
000400* Add, Change, Inquire and Delete
000500* for the Vendor File.
000600*--------------------------------
000700 ENVIRONMENT DIVISION.
000800 INPUT-OUTPUT SECTION.
000900 FILE-CONTROL.
001000
001100 COPY "SLVND01.CBL".
001200
001300 DATA DIVISION.
001400 FILE SECTION.
001500
001600 COPY "FDVND02.CBL".
001700
001800 WORKING-STORAGE SECTION.
001900
002000 77 MENU-PICK PIC 9.
002100 88 MENU-PICK-IS-VALID VALUES 0 THRU 4.
002200
002300 77 THE-MODE PIC X(7).
002400 77 WHICH-FIELD PIC 9.
002500 77 OK-TO-DELETE PIC X.
002600 77 RECORD-FOUND PIC X.

002700 77 VENDOR-NUMBER-FIELD PIC Z(5).
002800
002900 PROCEDURE DIVISION.
003000 PROGRAM-BEGIN.
003100 PERFORM OPENING-PROCEDURE.
003200 PERFORM MAIN-PROCESS.
003300 PERFORM CLOSING-PROCEDURE.
003400
003500 PROGRAM-DONE.
003600 STOP RUN.
003700
003800 OPENING-PROCEDURE.
003900 OPEN I-O VENDOR-FILE.
004000
004100 CLOSING-PROCEDURE.
004200 CLOSE VENDOR-FILE.
004300
004400
004500 MAIN-PROCESS.
004600 PERFORM GET-MENU-PICK.
004700 PERFORM MAINTAIN-THE-FILE
004800 UNTIL MENU-PICK = 0.
004900
005000*--------------------------------
005100* MENU
005200*--------------------------------
005300 GET-MENU-PICK.
005400 PERFORM DISPLAY-THE-MENU.
005500 PERFORM GET-THE-PICK.
005600 PERFORM MENU-RETRY
005700 UNTIL MENU-PICK-IS-VALID.
005800
005900 DISPLAY-THE-MENU.
006000 PERFORM CLEAR-SCREEN.
006100 DISPLAY " PLEASE SELECT:".
006200 DISPLAY " ".
006300 DISPLAY " 1. ADD RECORDS".
006400 DISPLAY " 2. CHANGE A RECORD".
006500 DISPLAY " 3. LOOK UP A RECORD".
006600 DISPLAY " 4. DELETE A RECORD".
006700 DISPLAY " ".
006800 DISPLAY " 0. EXIT".
006900 PERFORM SCROLL-LINE 8 TIMES.
007000
007100 GET-THE-PICK.
007200 DISPLAY "YOUR CHOICE (0-4)?".
007300 ACCEPT MENU-PICK.

007400 MENU-RETRY.
007500 DISPLAY "INVALID SELECTION - PLEASE RE-TRY.".
007600 PERFORM GET-THE-PICK.
007700 CLEAR-SCREEN.
007800 PERFORM SCROLL-LINE 25 TIMES.
007900
008000 SCROLL-LINE.
008100 DISPLAY " ".
008200
008300 MAINTAIN-THE-FILE.
008400 PERFORM DO-THE-PICK.
008500 PERFORM GET-MENU-PICK.
008600
008700 DO-THE-PICK.
008800 IF MENU-PICK = 1
008900 PERFORM ADD-MODE
009000 ELSE
009100 IF MENU-PICK = 2
009200 PERFORM CHANGE-MODE
009300 ELSE
009400 IF MENU-PICK = 3
009500 PERFORM INQUIRE-MODE
009600 ELSE
009700 IF MENU-PICK = 4
009800 PERFORM DELETE-MODE.
009900
010000*--------------------------------
010100* ADD
010200*--------------------------------
010300 ADD-MODE.
010400 MOVE "ADD" TO THE-MODE.
010500 PERFORM GET-NEW-VENDOR-NUMBER.
010600 PERFORM ADD-RECORDS
010700 UNTIL VENDOR-NUMBER = ZEROES.
010800
010900 GET-NEW-VENDOR-NUMBER.
011000 PERFORM INIT-VENDOR-RECORD.
011100 PERFORM ENTER-VENDOR-NUMBER.
011200 MOVE "Y" TO RECORD-FOUND.
011300 PERFORM FIND-NEW-VENDOR-RECORD
011400 UNTIL RECORD-FOUND = "N" OR
011500 VENDOR-NUMBER = ZEROES.
011600
011700 FIND-NEW-VENDOR-RECORD.
011800 PERFORM READ-VENDOR-RECORD.
011900 IF RECORD-FOUND = "Y"
012000 DISPLAY "RECORD ALREADY ON FILE"

012100 PERFORM ENTER-VENDOR-NUMBER.
012200
012300 ADD-RECORDS.
012400 PERFORM ENTER-REMAINING-FIELDS.
012500 PERFORM WRITE-VENDOR-RECORD.
012600 PERFORM GET-NEW-VENDOR-NUMBER.
012700
012800 ENTER-REMAINING-FIELDS.
012900 PERFORM ENTER-VENDOR-NAME.
013000 PERFORM ENTER-VENDOR-ADDRESS-1.
013100 PERFORM ENTER-VENDOR-ADDRESS-2.
013200 PERFORM ENTER-VENDOR-CITY.
013300 PERFORM ENTER-VENDOR-STATE.
013400 PERFORM ENTER-VENDOR-ZIP.
013500 PERFORM ENTER-VENDOR-CONTACT.
013600 PERFORM ENTER-VENDOR-PHONE.
013700
013800*--------------------------------
013900* CHANGE
014000*--------------------------------
014100 CHANGE-MODE.
014200 MOVE "CHANGE" TO THE-MODE.
014300 PERFORM GET-VENDOR-RECORD.
014400 PERFORM CHANGE-RECORDS
014500 UNTIL VENDOR-NUMBER = ZEROES.
014600
014700 CHANGE-RECORDS.
014800 PERFORM GET-FIELD-TO-CHANGE.
014900 PERFORM CHANGE-ONE-FIELD
015000 UNTIL WHICH-FIELD = ZERO.
015100 PERFORM GET-VENDOR-RECORD.
015200
015300 GET-FIELD-TO-CHANGE.
015400 PERFORM DISPLAY-ALL-FIELDS.
015500 PERFORM ASK-WHICH-FIELD.
015600
015700 ASK-WHICH-FIELD.
015800 DISPLAY "ENTER THE NUMBER OF THE FIELD".
015900 DISPLAY "TO CHANGE (1-8) OR 0 TO EXIT".
016000 ACCEPT WHICH-FIELD.
016100 IF WHICH-FIELD > 8
016200 DISPLAY "INVALID ENTRY".
016300
016400 CHANGE-ONE-FIELD.
016500 PERFORM CHANGE-THIS-FIELD.
016600 PERFORM GET-FIELD-TO-CHANGE.
016700

016800 CHANGE-THIS-FIELD.
016900 IF WHICH-FIELD = 1
017000 PERFORM ENTER-VENDOR-NAME.
017100 IF WHICH-FIELD = 2
017200 PERFORM ENTER-VENDOR-ADDRESS-1.
017300 IF WHICH-FIELD = 3
017400 PERFORM ENTER-VENDOR-ADDRESS-2.
017500 IF WHICH-FIELD = 4
017600 PERFORM ENTER-VENDOR-CITY.
017700 IF WHICH-FIELD = 5
017800 PERFORM ENTER-VENDOR-STATE.
017900 IF WHICH-FIELD = 6
018000 PERFORM ENTER-VENDOR-ZIP.
018100 IF WHICH-FIELD = 7
018200 PERFORM ENTER-VENDOR-CONTACT.
018300 IF WHICH-FIELD = 8
018400 PERFORM ENTER-VENDOR-PHONE.
018500
018600 PERFORM REWRITE-VENDOR-RECORD.
018700
018800*--------------------------------
018900* INQUIRE
019000*--------------------------------
019100 INQUIRE-MODE.
019200 MOVE "DISPLAY" TO THE-MODE.
019300 PERFORM GET-VENDOR-RECORD.
019400 PERFORM INQUIRE-RECORDS
019500 UNTIL VENDOR-NUMBER = ZEROES.
019600
019700 INQUIRE-RECORDS.
019800 PERFORM DISPLAY-ALL-FIELDS.
019900 PERFORM GET-VENDOR-RECORD.
020000
020100*--------------------------------
020200* DELETE
020300*--------------------------------
020400 DELETE-MODE.
020500 MOVE "DELETE" TO THE-MODE.
020600 PERFORM GET-VENDOR-RECORD.
020700 PERFORM DELETE-RECORDS
020800 UNTIL VENDOR-NUMBER = ZEROES.
020900
021000 DELETE-RECORDS.
021100 PERFORM DISPLAY-ALL-FIELDS.
021200 MOVE "X" TO OK-TO-DELETE.
021300
021400 PERFORM ASK-TO-DELETE

021500 UNTIL OK-TO-DELETE = "Y" OR "N".
021600
021700 IF OK-TO-DELETE = "Y"
021800 PERFORM DELETE-VENDOR-RECORD.
021900
022000 PERFORM GET-VENDOR-RECORD.
022100
022200 ASK-TO-DELETE.
022300 DISPLAY "DELETE THIS RECORD (Y/N)?".
022400 ACCEPT OK-TO-DELETE.
022500 IF OK-TO-DELETE = "y"
022600 MOVE "Y" TO OK-TO-DELETE.
022700 IF OK-TO-DELETE = "n"
022800 MOVE "N" TO OK-TO-DELETE.
022900 IF OK-TO-DELETE NOT = "Y" AND
023000 OK-TO-DELETE NOT = "N"
023100 DISPLAY "YOU MUST ENTER YES OR NO".
023200
023300*--------------------------------
023400* Routines shared by all modes
023500*--------------------------------
023600 INIT-VENDOR-RECORD.
023700 MOVE SPACE TO VENDOR-RECORD.
023800 MOVE ZEROES TO VENDOR-NUMBER.
023900
024000 ENTER-VENDOR-NUMBER.
024100 DISPLAY " ".
024200 DISPLAY "ENTER VENDOR NUMBER OF THE VENDOR" .
024300 DISPLAY "TO " THE-MODE " (1-99999)".
024400 DISPLAY "ENTER 0 TO STOP ENTRY".
024500 ACCEPT VENDOR-NUMBER-FIELD.
024600*OR ACCEPT VENDOR-NUMBER-FIELD WITH CONVERSION.
024700
024800 MOVE VENDOR-NUMBER-FIELD TO VENDOR-NUMBER.
024900
025000 GET-VENDOR-RECORD.
025100 PERFORM INIT-VENDOR-RECORD.
025200 PERFORM ENTER-VENDOR-NUMBER.
025300 MOVE "N" TO RECORD-FOUND.
025400 PERFORM FIND-VENDOR-RECORD
025500 UNTIL RECORD-FOUND = "Y" OR
025600 VENDOR-NUMBER = ZEROES.
025700
025800*--------------------------------
025900* Routines shared by Add and Change
026000*--------------------------------
026100 FIND-VENDOR-RECORD.

026200 PERFORM READ-VENDOR-RECORD.
026300 IF RECORD-FOUND = "N"
026400 DISPLAY "RECORD NOT FOUND"
026500 PERFORM ENTER-VENDOR-NUMBER.
026600
026700 ENTER-VENDOR-NAME.
026800 DISPLAY "ENTER VENDOR NAME".
026900 ACCEPT VENDOR-NAME.
027000
027100 ENTER-VENDOR-ADDRESS-1.
027200 DISPLAY "ENTER VENDOR ADDRESS-1".
027300 ACCEPT VENDOR-ADDRESS-1.
027400
027500 ENTER-VENDOR-ADDRESS-2.
027600 DISPLAY "ENTER VENDOR ADDRESS-2".
027700 ACCEPT VENDOR-ADDRESS-2.
027800
027900 ENTER-VENDOR-CITY.
028000 DISPLAY "ENTER VENDOR CITY".
028100 ACCEPT VENDOR-CITY.
028200
028300 ENTER-VENDOR-STATE.
028400 DISPLAY "ENTER VENDOR STATE".
028500 ACCEPT VENDOR-STATE.
028600
028700 ENTER-VENDOR-ZIP.
028800 DISPLAY "ENTER VENDOR ZIP".
028900 ACCEPT VENDOR-ZIP.
029000
029100 ENTER-VENDOR-CONTACT.
029200 DISPLAY "ENTER VENDOR CONTACT".
029300 ACCEPT VENDOR-CONTACT.
029400
029500 ENTER-VENDOR-PHONE.
029600 DISPLAY "ENTER VENDOR PHONE".
029700 ACCEPT VENDOR-PHONE.
029800
029900*--------------------------------
030000* Routines shared by Change,
030100* Inquire and Delete
030200*--------------------------------
030300 DISPLAY-ALL-FIELDS.
030400 DISPLAY " ".
030500 PERFORM DISPLAY-VENDOR-NUMBER.
030600 PERFORM DISPLAY-VENDOR-NAME.
030700 PERFORM DISPLAY-VENDOR-ADDRESS-1.
030800 PERFORM DISPLAY-VENDOR-ADDRESS-2.

030900 PERFORM DISPLAY-VENDOR-CITY.
031000 PERFORM DISPLAY-VENDOR-STATE.
031100 PERFORM DISPLAY-VENDOR-ZIP.
031200 PERFORM DISPLAY-VENDOR-CONTACT.
031300 PERFORM DISPLAY-VENDOR-PHONE.
031400 DISPLAY " ".
031500
031600 DISPLAY-VENDOR-NUMBER.
031700 DISPLAY " VENDOR NUMBER: " VENDOR-NUMBER.
031800
031900 DISPLAY-VENDOR-NAME.
032000 DISPLAY "1. VENDOR NAME: " VENDOR-NAME.
032100
032200 DISPLAY-VENDOR-ADDRESS-1.
032300 DISPLAY "2. VENDOR ADDRESS-1: " VENDOR-ADDRESS-1.
032400
032500 DISPLAY-VENDOR-ADDRESS-2.
032600 DISPLAY "3. VENDOR ADDRESS-2: " VENDOR-ADDRESS-2.
032700
032800 DISPLAY-VENDOR-CITY.
032900 DISPLAY "4. VENDOR CITY: " VENDOR-CITY.
033000
033100 DISPLAY-VENDOR-STATE.
033200 DISPLAY "5. VENDOR STATE: " VENDOR-STATE.
033300
033400 DISPLAY-VENDOR-ZIP.
033500 DISPLAY "6. VENDOR ZIP: " VENDOR-ZIP.
033600
033700 DISPLAY-VENDOR-CONTACT.
033800 DISPLAY "7. VENDOR CONTACT: " VENDOR-CONTACT.
033900
034000 DISPLAY-VENDOR-PHONE.
034100 DISPLAY "8. VENDOR PHONE: " VENDOR-PHONE.
034200
034300*--------------------------------
034400* File I-O Routines
034500*--------------------------------
034600 READ-VENDOR-RECORD.
034700 MOVE "Y" TO RECORD-FOUND.
034800 READ VENDOR-FILE RECORD
034900 INVALID KEY
035000 MOVE "N" TO RECORD-FOUND.
035100
035200*or READ VENDOR-FILE RECORD WITH LOCK
035300* INVALID KEY
035400* MOVE "N" TO RECORD-FOUND.
035500

035600*or READ VENDOR-FILE RECORD WITH HOLD
035700* INVALID KEY
035800* MOVE "N" TO RECORD-FOUND.
035900
036000 WRITE-VENDOR-RECORD.
036100 WRITE VENDOR-RECORD
036200 INVALID KEY
036300 DISPLAY "RECORD ALREADY ON FILE".
036400
036500 REWRITE-VENDOR-RECORD.
036600 REWRITE VENDOR-RECORD
036700 INVALID KEY
036800 DISPLAY "ERROR REWRITING VENDOR RECORD".
036900
037000 DELETE-VENDOR-RECORD.
037100 DELETE VENDOR-FILE RECORD
037200 INVALID KEY
037300 DISPLAY "ERROR DELETING VENDOR RECORD".
037400

TYPE: Listing A.25. Inquire mode.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. VNDMNT01.
000300*--------------------------------
000400* Add, Change, Inquire and Delete
000500* for the Vendor File.
000600*--------------------------------
000700 ENVIRONMENT DIVISION.
000800 INPUT-OUTPUT SECTION.
000900 FILE-CONTROL.
001000
001100 COPY "SLVND01.CBL".
001200
001300 DATA DIVISION.
001400 FILE SECTION.
001500
001600 COPY "FDVND02.CBL".
001700
001800 WORKING-STORAGE SECTION.
001900
002000 77 MENU-PICK PIC 9.
002100 88 MENU-PICK-IS-VALID VALUES 0 THRU 4.
002200
002300 77 THE-MODE PIC X(7).
002400 77 WHICH-FIELD PIC 9.
002500 77 OK-TO-DELETE PIC X.

002600 77 RECORD-FOUND PIC X.
002700 77 VENDOR-NUMBER-FIELD PIC Z(5).
002800
002900 PROCEDURE DIVISION.
003000 PROGRAM-BEGIN.
003100 PERFORM OPENING-PROCEDURE.
003200 PERFORM MAIN-PROCESS.
003300 PERFORM CLOSING-PROCEDURE.
003400
003500 PROGRAM-DONE.
003600 STOP RUN.
003700
003800 OPENING-PROCEDURE.
003900 OPEN I-O VENDOR-FILE.
004000
004100 CLOSING-PROCEDURE.
004200 CLOSE VENDOR-FILE.
004300
004400
004500 MAIN-PROCESS.
004600 PERFORM GET-MENU-PICK.
004700 PERFORM MAINTAIN-THE-FILE
004800 UNTIL MENU-PICK = 0.
004900
005000*--------------------------------
005100* MENU
005200*--------------------------------
005300 GET-MENU-PICK.
005400 PERFORM DISPLAY-THE-MENU.
005500 PERFORM GET-THE-PICK.
005600 PERFORM MENU-RETRY
005700 UNTIL MENU-PICK-IS-VALID.
005800
005900 DISPLAY-THE-MENU.
006000 PERFORM CLEAR-SCREEN.
006100 DISPLAY " PLEASE SELECT:".
006200 DISPLAY " ".
006300 DISPLAY " 1. ADD RECORDS".
006400 DISPLAY " 2. CHANGE A RECORD".
006500 DISPLAY " 3. LOOK UP A RECORD".
006600 DISPLAY " 4. DELETE A RECORD".
006700 DISPLAY " ".
006800 DISPLAY " 0. EXIT".
006900 PERFORM SCROLL-LINE 8 TIMES.
007000
007100 GET-THE-PICK.
007200 DISPLAY "YOUR CHOICE (0-4)?".

007300 ACCEPT MENU-PICK.
007400 MENU-RETRY.
007500 DISPLAY "INVALID SELECTION - PLEASE RE-TRY.".
007600 PERFORM GET-THE-PICK.
007700 CLEAR-SCREEN.
007800 PERFORM SCROLL-LINE 25 TIMES.
007900
008000 SCROLL-LINE.
008100 DISPLAY " ".
008200
008300 MAINTAIN-THE-FILE.
008400 PERFORM DO-THE-PICK.
008500 PERFORM GET-MENU-PICK.
008600
008700 DO-THE-PICK.
008800 IF MENU-PICK = 1
008900 PERFORM ADD-MODE
009000 ELSE
009100 IF MENU-PICK = 2
009200 PERFORM CHANGE-MODE
009300 ELSE
009400 IF MENU-PICK = 3
009500 PERFORM INQUIRE-MODE
009600 ELSE
009700 IF MENU-PICK = 4
009800 PERFORM DELETE-MODE.
009900
010000*--------------------------------
010100* ADD
010200*--------------------------------
010300 ADD-MODE.
010400 MOVE "ADD" TO THE-MODE.
010500 PERFORM GET-NEW-VENDOR-NUMBER.
010600 PERFORM ADD-RECORDS
010700 UNTIL VENDOR-NUMBER = ZEROES.
010800
010900 GET-NEW-VENDOR-NUMBER.
011000 PERFORM INIT-VENDOR-RECORD.
011100 PERFORM ENTER-VENDOR-NUMBER.
011200 MOVE "Y" TO RECORD-FOUND.
011300 PERFORM FIND-NEW-VENDOR-RECORD
011400 UNTIL RECORD-FOUND = "N" OR
011500 VENDOR-NUMBER = ZEROES.
011600
011700 FIND-NEW-VENDOR-RECORD.
011800 PERFORM READ-VENDOR-RECORD.
011900 IF RECORD-FOUND = "Y"

012000 DISPLAY "RECORD ALREADY ON FILE"
012100 PERFORM ENTER-VENDOR-NUMBER.
012200
012300 ADD-RECORDS.
012400 PERFORM ENTER-REMAINING-FIELDS.
012500 PERFORM WRITE-VENDOR-RECORD.
012600 PERFORM GET-NEW-VENDOR-NUMBER.
012700
012800 ENTER-REMAINING-FIELDS.
012900 PERFORM ENTER-VENDOR-NAME.
013000 PERFORM ENTER-VENDOR-ADDRESS-1.
013100 PERFORM ENTER-VENDOR-ADDRESS-2.
013200 PERFORM ENTER-VENDOR-CITY.
013300 PERFORM ENTER-VENDOR-STATE.
013400 PERFORM ENTER-VENDOR-ZIP.
013500 PERFORM ENTER-VENDOR-CONTACT.
013600 PERFORM ENTER-VENDOR-PHONE.
013700
013800*--------------------------------
013900* CHANGE
014000*--------------------------------
014100 CHANGE-MODE.
014200 MOVE "CHANGE" TO THE-MODE.
014300 PERFORM GET-VENDOR-RECORD.
014400 PERFORM CHANGE-RECORDS
014500 UNTIL VENDOR-NUMBER = ZEROES.
014600
014700 CHANGE-RECORDS.
014800 PERFORM GET-FIELD-TO-CHANGE.
014900 PERFORM CHANGE-ONE-FIELD
015000 UNTIL WHICH-FIELD = ZERO.
015100 PERFORM GET-VENDOR-RECORD.
015200
015300 GET-FIELD-TO-CHANGE.
015400 PERFORM DISPLAY-ALL-FIELDS.
015500 PERFORM ASK-WHICH-FIELD.
015600
015700 ASK-WHICH-FIELD.
015800 DISPLAY "ENTER THE NUMBER OF THE FIELD".
015900 DISPLAY "TO CHANGE (1-8) OR 0 TO EXIT".
016000 ACCEPT WHICH-FIELD.
016100 IF WHICH-FIELD > 8
016200 DISPLAY "INVALID ENTRY".
016300
016400 CHANGE-ONE-FIELD.
016500 PERFORM CHANGE-THIS-FIELD.
016600 PERFORM GET-FIELD-TO-CHANGE.

016700
016800 CHANGE-THIS-FIELD.
016900 IF WHICH-FIELD = 1
017000 PERFORM ENTER-VENDOR-NAME.
017100 IF WHICH-FIELD = 2
017200 PERFORM ENTER-VENDOR-ADDRESS-1.
017300 IF WHICH-FIELD = 3
017400 PERFORM ENTER-VENDOR-ADDRESS-2.
017500 IF WHICH-FIELD = 4
017600 PERFORM ENTER-VENDOR-CITY.
017700 IF WHICH-FIELD = 5
017800 PERFORM ENTER-VENDOR-STATE.
017900 IF WHICH-FIELD = 6
018000 PERFORM ENTER-VENDOR-ZIP.
018100 IF WHICH-FIELD = 7
018200 PERFORM ENTER-VENDOR-CONTACT.
018300 IF WHICH-FIELD = 8
018400 PERFORM ENTER-VENDOR-PHONE.
018500
018600 PERFORM REWRITE-VENDOR-RECORD.
018700
018800*--------------------------------
018900* INQUIRE
019000*--------------------------------
019100 INQUIRE-MODE.
019200 MOVE "DISPLAY" TO THE-MODE.
019300 PERFORM GET-VENDOR-RECORD.
019400 PERFORM INQUIRE-RECORDS
019500 UNTIL VENDOR-NUMBER = ZEROES.
019600
019700 INQUIRE-RECORDS.
019800 PERFORM DISPLAY-ALL-FIELDS.
019900 PERFORM GET-VENDOR-RECORD.
020000
020100*--------------------------------
020200* DELETE
020300*--------------------------------
020400 DELETE-MODE.
020500 MOVE "DELETE" TO THE-MODE.
020600 PERFORM GET-VENDOR-RECORD.
020700 PERFORM DELETE-RECORDS
020800 UNTIL VENDOR-NUMBER = ZEROES.
020900
021000 DELETE-RECORDS.
021100 PERFORM DISPLAY-ALL-FIELDS.
021200 MOVE "X" TO OK-TO-DELETE.
021300

021400 PERFORM ASK-TO-DELETE
021500 UNTIL OK-TO-DELETE = "Y" OR "N".
021600
021700 IF OK-TO-DELETE = "Y"
021800 PERFORM DELETE-VENDOR-RECORD.
021900
022000 PERFORM GET-VENDOR-RECORD.
022100
022200 ASK-TO-DELETE.
022300 DISPLAY "DELETE THIS RECORD (Y/N)?".
022400 ACCEPT OK-TO-DELETE.
022500 IF OK-TO-DELETE = "y"
022600 MOVE "Y" TO OK-TO-DELETE.
022700 IF OK-TO-DELETE = "n"
022800 MOVE "N" TO OK-TO-DELETE.
022900 IF OK-TO-DELETE NOT = "Y" AND
023000 OK-TO-DELETE NOT = "N"
023100 DISPLAY "YOU MUST ENTER YES OR NO".
023200
023300*--------------------------------
023400* Routines shared by all modes
023500*--------------------------------
023600 INIT-VENDOR-RECORD.
023700 MOVE SPACE TO VENDOR-RECORD.
023800 MOVE ZEROES TO VENDOR-NUMBER.
023900
024000 ENTER-VENDOR-NUMBER.
024100 DISPLAY " ".
024200 DISPLAY "ENTER VENDOR NUMBER OF THE VENDOR" .
024300 DISPLAY "TO " THE-MODE " (1-99999)".
024400 DISPLAY "ENTER 0 TO STOP ENTRY".
024500 ACCEPT VENDOR-NUMBER-FIELD.
024600*OR ACCEPT VENDOR-NUMBER-FIELD WITH CONVERSION.
024700
024800 MOVE VENDOR-NUMBER-FIELD TO VENDOR-NUMBER.
024900
025000 GET-VENDOR-RECORD.
025100 PERFORM INIT-VENDOR-RECORD.
025200 PERFORM ENTER-VENDOR-NUMBER.
025300 MOVE "N" TO RECORD-FOUND.
025400 PERFORM FIND-VENDOR-RECORD
025500 UNTIL RECORD-FOUND = "Y" OR
025600 VENDOR-NUMBER = ZEROES.
025700
025800*--------------------------------
025900* Routines shared Add and Change
026000*--------------------------------

026100 FIND-VENDOR-RECORD.
026200 PERFORM READ-VENDOR-RECORD.
026300 IF RECORD-FOUND = "N"
026400 DISPLAY "RECORD NOT FOUND"
026500 PERFORM ENTER-VENDOR-NUMBER.
026600
026700 ENTER-VENDOR-NAME.
026800 DISPLAY "ENTER VENDOR NAME".
026900 ACCEPT VENDOR-NAME.
027000
027100 ENTER-VENDOR-ADDRESS-1.
027200 DISPLAY "ENTER VENDOR ADDRESS-1".
027300 ACCEPT VENDOR-ADDRESS-1.
027400
027500 ENTER-VENDOR-ADDRESS-2.
027600 DISPLAY "ENTER VENDOR ADDRESS-2".
027700 ACCEPT VENDOR-ADDRESS-2.
027800
027900 ENTER-VENDOR-CITY.
028000 DISPLAY "ENTER VENDOR CITY".
028100 ACCEPT VENDOR-CITY.
028200
028300 ENTER-VENDOR-STATE.
028400 DISPLAY "ENTER VENDOR STATE".
028500 ACCEPT VENDOR-STATE.
028600
028700 ENTER-VENDOR-ZIP.
028800 DISPLAY "ENTER VENDOR ZIP".
028900 ACCEPT VENDOR-ZIP.
029000
029100 ENTER-VENDOR-CONTACT.
029200 DISPLAY "ENTER VENDOR CONTACT".
029300 ACCEPT VENDOR-CONTACT.
029400
029500 ENTER-VENDOR-PHONE.
029600 DISPLAY "ENTER VENDOR PHONE".
029700 ACCEPT VENDOR-PHONE.
029800
029900*--------------------------------
030000* Routines shared by Change,
030100* Inquire and Delete
030200*--------------------------------
030300 DISPLAY-ALL-FIELDS.
030400 DISPLAY " ".
030500 PERFORM DISPLAY-VENDOR-NUMBER.
030600 PERFORM DISPLAY-VENDOR-NAME.
030700 PERFORM DISPLAY-VENDOR-ADDRESS-1.

030800 PERFORM DISPLAY-VENDOR-ADDRESS-2.
030900 PERFORM DISPLAY-VENDOR-CITY.
031000 PERFORM DISPLAY-VENDOR-STATE.
031100 PERFORM DISPLAY-VENDOR-ZIP.
031200 PERFORM DISPLAY-VENDOR-CONTACT.
031300 PERFORM DISPLAY-VENDOR-PHONE.
031400 DISPLAY " ".
031500
031600 DISPLAY-VENDOR-NUMBER.
031700 DISPLAY " VENDOR NUMBER: " VENDOR-NUMBER.
031800
031900 DISPLAY-VENDOR-NAME.
032000 DISPLAY "1. VENDOR NAME: " VENDOR-NAME.
032100
032200 DISPLAY-VENDOR-ADDRESS-1.
032300 DISPLAY "2. VENDOR ADDRESS-1: " VENDOR-ADDRESS-1.
032400
032500 DISPLAY-VENDOR-ADDRESS-2.
032600 DISPLAY "3. VENDOR ADDRESS-2: " VENDOR-ADDRESS-2.
032700
032800 DISPLAY-VENDOR-CITY.
032900 DISPLAY "4. VENDOR CITY: " VENDOR-CITY.
033000
033100 DISPLAY-VENDOR-STATE.
033200 DISPLAY "5. VENDOR STATE: " VENDOR-STATE.
033300
033400 DISPLAY-VENDOR-ZIP.
033500 DISPLAY "6. VENDOR ZIP: " VENDOR-ZIP.
033600
033700 DISPLAY-VENDOR-CONTACT.
033800 DISPLAY "7. VENDOR CONTACT: " VENDOR-CONTACT.
033900
034000 DISPLAY-VENDOR-PHONE.
034100 DISPLAY "8. VENDOR PHONE: " VENDOR-PHONE.
034200
034300*--------------------------------
034400* File I-O Routines
034500*--------------------------------
034600 READ-VENDOR-RECORD.
034700 MOVE "Y" TO RECORD-FOUND.
034800 READ VENDOR-FILE RECORD
034900 INVALID KEY
035000 MOVE "N" TO RECORD-FOUND.
035100
035200*or READ VENDOR-FILE RECORD WITH LOCK
035300* INVALID KEY
035400* MOVE "N" TO RECORD-FOUND.

035500
035600*or READ VENDOR-FILE RECORD WITH HOLD
035700* INVALID KEY
035800* MOVE "N" TO RECORD-FOUND.
035900
036000 WRITE-VENDOR-RECORD.
036100 WRITE VENDOR-RECORD
036200 INVALID KEY
036300 DISPLAY "RECORD ALREADY ON FILE".
036400
036500 REWRITE-VENDOR-RECORD.
036600 REWRITE VENDOR-RECORD
036700 INVALID KEY
036800 DISPLAY "ERROR REWRITING VENDOR RECORD".
036900
037000 DELETE-VENDOR-RECORD.
037100 DELETE VENDOR-FILE RECORD
037200 INVALID KEY
037300 DISPLAY "ERROR DELETING VENDOR RECORD".
037400

TYPE: Listing A.26. Delete mode.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. VNDMNT01.
000300*--------------------------------
000400* Add, Change, Inquire and Delete
000500* for the Vendor File.
000600*--------------------------------
000700 ENVIRONMENT DIVISION.
000800 INPUT-OUTPUT SECTION.
000900 FILE-CONTROL.
001000
001100 COPY "SLVND01.CBL".
001200
001300 DATA DIVISION.
001400 FILE SECTION.
001500
001600 COPY "FDVND02.CBL".
001700
001800 WORKING-STORAGE SECTION.
001900
002000 77 MENU-PICK PIC 9.
002100 88 MENU-PICK-IS-VALID VALUES 0 THRU 4.
002200
002300 77 THE-MODE PIC X(7).
002400 77 WHICH-FIELD PIC 9.

002500 77 OK-TO-DELETE PIC X.
002600 77 RECORD-FOUND PIC X.
002700 77 VENDOR-NUMBER-FIELD PIC Z(5).
002800
002900 PROCEDURE DIVISION.
003000 PROGRAM-BEGIN.
003100 PERFORM OPENING-PROCEDURE.
003200 PERFORM MAIN-PROCESS.
003300 PERFORM CLOSING-PROCEDURE.
003400
003500 PROGRAM-DONE.
003600 STOP RUN.
003700
003800 OPENING-PROCEDURE.
003900 OPEN I-O VENDOR-FILE.
004000
004100 CLOSING-PROCEDURE.
004200 CLOSE VENDOR-FILE.
004300
004400
004500 MAIN-PROCESS.
004600 PERFORM GET-MENU-PICK.
004700 PERFORM MAINTAIN-THE-FILE
004800 UNTIL MENU-PICK = 0.
004900
005000*--------------------------------
005100* MENU
005200*--------------------------------
005300 GET-MENU-PICK.
005400 PERFORM DISPLAY-THE-MENU.
005500 PERFORM GET-THE-PICK.
005600 PERFORM MENU-RETRY
005700 UNTIL MENU-PICK-IS-VALID.
005800
005900 DISPLAY-THE-MENU.
006000 PERFORM CLEAR-SCREEN.
006100 DISPLAY " PLEASE SELECT:".
006200 DISPLAY " ".
006300 DISPLAY " 1. ADD RECORDS".
006400 DISPLAY " 2. CHANGE A RECORD".
006500 DISPLAY " 3. LOOK UP A RECORD".
006600 DISPLAY " 4. DELETE A RECORD".
006700 DISPLAY " ".
006800 DISPLAY " 0. EXIT".
006900 PERFORM SCROLL-LINE 8 TIMES.
007000
007100 GET-THE-PICK.

007200 DISPLAY "YOUR CHOICE (0-4)?".
007300 ACCEPT MENU-PICK.
007400 MENU-RETRY.
007500 DISPLAY "INVALID SELECTION - PLEASE RE-TRY.".
007600 PERFORM GET-THE-PICK.
007700 CLEAR-SCREEN.
007800 PERFORM SCROLL-LINE 25 TIMES.
007900
008000 SCROLL-LINE.
008100 DISPLAY " ".
008200
008300 MAINTAIN-THE-FILE.
008400 PERFORM DO-THE-PICK.
008500 PERFORM GET-MENU-PICK.
008600
008700 DO-THE-PICK.
008800 IF MENU-PICK = 1
008900 PERFORM ADD-MODE
009000 ELSE
009100 IF MENU-PICK = 2
009200 PERFORM CHANGE-MODE
009300 ELSE
009400 IF MENU-PICK = 3
009500 PERFORM INQUIRE-MODE
009600 ELSE
009700 IF MENU-PICK = 4
009800 PERFORM DELETE-MODE.
009900
010000*--------------------------------
010100* ADD
010200*--------------------------------
010300 ADD-MODE.
010400 MOVE "ADD" TO THE-MODE.
010500 PERFORM GET-NEW-VENDOR-NUMBER.
010600 PERFORM ADD-RECORDS
010700 UNTIL VENDOR-NUMBER = ZEROES.
010800
010900 GET-NEW-VENDOR-NUMBER.
011000 PERFORM INIT-VENDOR-RECORD.
011100 PERFORM ENTER-VENDOR-NUMBER.
011200 MOVE "Y" TO RECORD-FOUND.
011300 PERFORM FIND-NEW-VENDOR-RECORD
011400 UNTIL RECORD-FOUND = "N" OR
011500 VENDOR-NUMBER = ZEROES.
011600
011700 FIND-NEW-VENDOR-RECORD.
011800 PERFORM READ-VENDOR-RECORD.

011900 IF RECORD-FOUND = "Y"
012000 DISPLAY "RECORD ALREADY ON FILE"
012100 PERFORM ENTER-VENDOR-NUMBER.
012200
012300 ADD-RECORDS.
012400 PERFORM ENTER-REMAINING-FIELDS.
012500 PERFORM WRITE-VENDOR-RECORD.
012600 PERFORM GET-NEW-VENDOR-NUMBER.
012700
012800 ENTER-REMAINING-FIELDS.
012900 PERFORM ENTER-VENDOR-NAME.
013000 PERFORM ENTER-VENDOR-ADDRESS-1.
013100 PERFORM ENTER-VENDOR-ADDRESS-2.
013200 PERFORM ENTER-VENDOR-CITY.
013300 PERFORM ENTER-VENDOR-STATE.
013400 PERFORM ENTER-VENDOR-ZIP.
013500 PERFORM ENTER-VENDOR-CONTACT.
013600 PERFORM ENTER-VENDOR-PHONE.
013700
013800*--------------------------------
013900* CHANGE
014000*--------------------------------
014100 CHANGE-MODE.
014200 MOVE "CHANGE" TO THE-MODE.
014300 PERFORM GET-VENDOR-RECORD.
014400 PERFORM CHANGE-RECORDS
014500 UNTIL VENDOR-NUMBER = ZEROES.
014600
014700 CHANGE-RECORDS.
014800 PERFORM GET-FIELD-TO-CHANGE.
014900 PERFORM CHANGE-ONE-FIELD
015000 UNTIL WHICH-FIELD = ZERO.
015100 PERFORM GET-VENDOR-RECORD.
015200
015300 GET-FIELD-TO-CHANGE.
015400 PERFORM DISPLAY-ALL-FIELDS.
015500 PERFORM ASK-WHICH-FIELD.
015600
015700 ASK-WHICH-FIELD.
015800 DISPLAY "ENTER THE NUMBER OF THE FIELD".
015900 DISPLAY "TO CHANGE (1-8) OR 0 TO EXIT".
016000 ACCEPT WHICH-FIELD.
016100 IF WHICH-FIELD > 8
016200 DISPLAY "INVALID ENTRY".
016300
016400 CHANGE-ONE-FIELD.
016500 PERFORM CHANGE-THIS-FIELD.

016600 PERFORM GET-FIELD-TO-CHANGE.
016700
016800 CHANGE-THIS-FIELD.
016900 IF WHICH-FIELD = 1
017000 PERFORM ENTER-VENDOR-NAME.
017100 IF WHICH-FIELD = 2
017200 PERFORM ENTER-VENDOR-ADDRESS-1.
017300 IF WHICH-FIELD = 3
017400 PERFORM ENTER-VENDOR-ADDRESS-2.
017500 IF WHICH-FIELD = 4
017600 PERFORM ENTER-VENDOR-CITY.
017700 IF WHICH-FIELD = 5
017800 PERFORM ENTER-VENDOR-STATE.
017900 IF WHICH-FIELD = 6
018000 PERFORM ENTER-VENDOR-ZIP.
018100 IF WHICH-FIELD = 7
018200 PERFORM ENTER-VENDOR-CONTACT.
018300 IF WHICH-FIELD = 8
018400 PERFORM ENTER-VENDOR-PHONE.
018500
018600 PERFORM REWRITE-VENDOR-RECORD.
018700
018800*--------------------------------
018900* INQUIRE
019000*--------------------------------
019100 INQUIRE-MODE.
019200 MOVE "DISPLAY" TO THE-MODE.
019300 PERFORM GET-VENDOR-RECORD.
019400 PERFORM INQUIRE-RECORDS
019500 UNTIL VENDOR-NUMBER = ZEROES.
019600
019700 INQUIRE-RECORDS.
019800 PERFORM DISPLAY-ALL-FIELDS.
019900 PERFORM GET-VENDOR-RECORD.
020000
020100*--------------------------------
020200* DELETE
020300*--------------------------------
020400 DELETE-MODE.
020500 MOVE "DELETE" TO THE-MODE.
020600 PERFORM GET-VENDOR-RECORD.
020700 PERFORM DELETE-RECORDS
020800 UNTIL VENDOR-NUMBER = ZEROES.
020900
021000 DELETE-RECORDS.
021100 PERFORM DISPLAY-ALL-FIELDS.
021200 MOVE "X" TO OK-TO-DELETE.

021300
021400 PERFORM ASK-TO-DELETE
021500 UNTIL OK-TO-DELETE = "Y" OR "N".
021600
021700 IF OK-TO-DELETE = "Y"
021800 PERFORM DELETE-VENDOR-RECORD.
021900
022000 PERFORM GET-VENDOR-RECORD.
022100
022200 ASK-TO-DELETE.
022300 DISPLAY "DELETE THIS RECORD (Y/N)?".
022400 ACCEPT OK-TO-DELETE.
022500 IF OK-TO-DELETE = "y"
022600 MOVE "Y" TO OK-TO-DELETE.
022700 IF OK-TO-DELETE = "n"
022800 MOVE "N" TO OK-TO-DELETE.
022900 IF OK-TO-DELETE NOT = "Y" AND
023000 OK-TO-DELETE NOT = "N"
023100 DISPLAY "YOU MUST ENTER YES OR NO".
023200
023300*--------------------------------
023400* Routines shared by all modes
023500*--------------------------------
023600 INIT-VENDOR-RECORD.
023700 MOVE SPACE TO VENDOR-RECORD.
023800 MOVE ZEROES TO VENDOR-NUMBER.
023900
024000 ENTER-VENDOR-NUMBER.
024100 DISPLAY " ".
024200 DISPLAY "ENTER VENDOR NUMBER OF THE VENDOR" .
024300 DISPLAY "TO " THE-MODE " (1-99999)".
024400 DISPLAY "ENTER 0 TO STOP ENTRY".
024500 ACCEPT VENDOR-NUMBER-FIELD.
024600*OR ACCEPT VENDOR-NUMBER-FIELD WITH CONVERSION.
024700
024800 MOVE VENDOR-NUMBER-FIELD TO VENDOR-NUMBER.
024900
025000 GET-VENDOR-RECORD.
025100 PERFORM INIT-VENDOR-RECORD.
025200 PERFORM ENTER-VENDOR-NUMBER.
025300 MOVE "N" TO RECORD-FOUND.
025400 PERFORM FIND-VENDOR-RECORD
025500 UNTIL RECORD-FOUND = "Y" OR
025600 VENDOR-NUMBER = ZEROES.
025700
025800*--------------------------------
025900* Routines shared Add and Change

026000*--------------------------------
026100 FIND-VENDOR-RECORD.
026200 PERFORM READ-VENDOR-RECORD.
026300 IF RECORD-FOUND = "N"
026400 DISPLAY "RECORD NOT FOUND"
026500 PERFORM ENTER-VENDOR-NUMBER.
026600
026700 ENTER-VENDOR-NAME.
026800 DISPLAY "ENTER VENDOR NAME".
026900 ACCEPT VENDOR-NAME.
027000
027100 ENTER-VENDOR-ADDRESS-1.
027200 DISPLAY "ENTER VENDOR ADDRESS-1".
027300 ACCEPT VENDOR-ADDRESS-1.
027400
027500 ENTER-VENDOR-ADDRESS-2.
027600 DISPLAY "ENTER VENDOR ADDRESS-2".
027700 ACCEPT VENDOR-ADDRESS-2.
027800
027900 ENTER-VENDOR-CITY.
028000 DISPLAY "ENTER VENDOR CITY".
028100 ACCEPT VENDOR-CITY.
028200
028300 ENTER-VENDOR-STATE.
028400 DISPLAY "ENTER VENDOR STATE".
028500 ACCEPT VENDOR-STATE.
028600
028700 ENTER-VENDOR-ZIP.
028800 DISPLAY "ENTER VENDOR ZIP".
028900 ACCEPT VENDOR-ZIP.
029000
029100 ENTER-VENDOR-CONTACT.
029200 DISPLAY "ENTER VENDOR CONTACT".
029300 ACCEPT VENDOR-CONTACT.
029400
029500 ENTER-VENDOR-PHONE.
029600 DISPLAY "ENTER VENDOR PHONE".
029700 ACCEPT VENDOR-PHONE.
029800
029900*--------------------------------
030000* Routines shared by Change,
030100* Inquire and Delete
030200*--------------------------------
030300 DISPLAY-ALL-FIELDS.
030400 DISPLAY " ".
030500 PERFORM DISPLAY-VENDOR-NUMBER.
030600 PERFORM DISPLAY-VENDOR-NAME.

030700 PERFORM DISPLAY-VENDOR-ADDRESS-1.
030800 PERFORM DISPLAY-VENDOR-ADDRESS-2.
030900 PERFORM DISPLAY-VENDOR-CITY.
031000 PERFORM DISPLAY-VENDOR-STATE.
031100 PERFORM DISPLAY-VENDOR-ZIP.
031200 PERFORM DISPLAY-VENDOR-CONTACT.
031300 PERFORM DISPLAY-VENDOR-PHONE.
031400 DISPLAY " ".
031500
031600 DISPLAY-VENDOR-NUMBER.
031700 DISPLAY " VENDOR NUMBER: " VENDOR-NUMBER.
031800
031900 DISPLAY-VENDOR-NAME.
032000 DISPLAY "1. VENDOR NAME: " VENDOR-NAME.
032100
032200 DISPLAY-VENDOR-ADDRESS-1.
032300 DISPLAY "2. VENDOR ADDRESS-1: " VENDOR-ADDRESS-1.
032400
032500 DISPLAY-VENDOR-ADDRESS-2.
032600 DISPLAY "3. VENDOR ADDRESS-2: " VENDOR-ADDRESS-2.
032700
032800 DISPLAY-VENDOR-CITY.
032900 DISPLAY "4. VENDOR CITY: " VENDOR-CITY.
033000
033100 DISPLAY-VENDOR-STATE.
033200 DISPLAY "5. VENDOR STATE: " VENDOR-STATE.
033300
033400 DISPLAY-VENDOR-ZIP.
033500 DISPLAY "6. VENDOR ZIP: " VENDOR-ZIP.
033600
033700 DISPLAY-VENDOR-CONTACT.
033800 DISPLAY "7. VENDOR CONTACT: " VENDOR-CONTACT.
033900
034000 DISPLAY-VENDOR-PHONE.
034100 DISPLAY "8. VENDOR PHONE: " VENDOR-PHONE.
034200
034300*--------------------------------
034400* File I-O Routines
034500*--------------------------------
034600 READ-VENDOR-RECORD.
034700 MOVE "Y" TO RECORD-FOUND.
034800 READ VENDOR-FILE RECORD
034900 INVALID KEY
035000 MOVE "N" TO RECORD-FOUND.
035100
035200*or READ VENDOR-FILE RECORD WITH LOCK
035300* INVALID KEY

035400* MOVE "N" TO RECORD-FOUND.
035500
035600*or READ VENDOR-FILE RECORD WITH HOLD
035700* INVALID KEY
035800* MOVE "N" TO RECORD-FOUND.
035900
036000 WRITE-VENDOR-RECORD.
036100 WRITE VENDOR-RECORD
036200 INVALID KEY
036300 DISPLAY "RECORD ALREADY ON FILE".
036400
036500 REWRITE-VENDOR-RECORD.
036600 REWRITE VENDOR-RECORD
036700 INVALID KEY
036800 DISPLAY "ERROR REWRITING VENDOR RECORD".
036900
037000 DELETE-VENDOR-RECORD.
037100 DELETE VENDOR-FILE RECORD
037200 INVALID KEY
037300 DISPLAY "ERROR DELETING VENDOR RECORD".
037400

a. The routine that is incorrectly placed is GET-VENDOR-RECORD at line 025000 and
FIND-VENDOR-RECORD at line 026100. GET-VENDOR-RECORD is placed in a section that is
commented as a routine used in all modes, but it is not used in add mode. FIND-VENDOR-RECORD
is placed in a section that is commented as a routine used in add and change mode, but it is not used
in add mode.

b. These routines should be below line 030200 in the section for routines used in change, inquire,
and delete modes because they are used in all of those modes.

c. All modes use READ-VENDOR-RECORD.

d. Add mode.

e. Change mode.

f. Delete mode.

2. Listing A.27 highlights in bold type the menu actions in vndmnt01.cbl.

TYPE: Listing A.27. Menu actions.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. VNDMNT01.
000300*--------------------------------
000400* Add, Change, Inquire and Delete
000500* for the Vendor File.
000600*--------------------------------
000700 ENVIRONMENT DIVISION.

000800 INPUT-OUTPUT SECTION.
000900 FILE-CONTROL.
001000
001100 COPY "SLVND01.CBL".
001200
001300 DATA DIVISION.
001400 FILE SECTION.
001500
001600 COPY "FDVND02.CBL".
001700
001800 WORKING-STORAGE SECTION.
001900
002000 77 MENU-PICK PIC 9.
002100 88 MENU-PICK-IS-VALID VALUES 0 THRU 4.
002200
002300 77 THE-MODE PIC X(7).
002400 77 WHICH-FIELD PIC 9.
002500 77 OK-TO-DELETE PIC X.
002600 77 RECORD-FOUND PIC X.
002700 77 VENDOR-NUMBER-FIELD PIC Z(5).
002800
002900 PROCEDURE DIVISION.
003000 PROGRAM-BEGIN.
003100 PERFORM OPENING-PROCEDURE.
003200 PERFORM MAIN-PROCESS.
003300 PERFORM CLOSING-PROCEDURE.
003400
003500 PROGRAM-DONE.
003600 STOP RUN.
003700
003800 OPENING-PROCEDURE.
003900 OPEN I-O VENDOR-FILE.
004000
004100 CLOSING-PROCEDURE.
004200 CLOSE VENDOR-FILE.
004300
004400
004500 MAIN-PROCESS.
004600 PERFORM GET-MENU-PICK.
004700 PERFORM MAINTAIN-THE-FILE
004800 UNTIL MENU-PICK = 0.
004900
005000*--------------------------------
005100* MENU
005200*--------------------------------
005300 GET-MENU-PICK.
005400 PERFORM DISPLAY-THE-MENU.

005500 PERFORM GET-THE-PICK.
005600 PERFORM MENU-RETRY
005700 UNTIL MENU-PICK-IS-VALID.
005800
005900 DISPLAY-THE-MENU.
006000 PERFORM CLEAR-SCREEN.
006100 DISPLAY " PLEASE SELECT:".
006200 DISPLAY " ".
006300 DISPLAY " 1. ADD RECORDS".
006400 DISPLAY " 2. CHANGE A RECORD".
006500 DISPLAY " 3. LOOK UP A RECORD".
006600 DISPLAY " 4. DELETE A RECORD".
006700 DISPLAY " ".
006800 DISPLAY " 0. EXIT".
006900 PERFORM SCROLL-LINE 8 TIMES.
007000
007100 GET-THE-PICK.
007200 DISPLAY "YOUR CHOICE (0-4)?".
007300 ACCEPT MENU-PICK.
007400 MENU-RETRY.
007500 DISPLAY "INVALID SELECTION - PLEASE RE-TRY.".
007600 PERFORM GET-THE-PICK.
007700 CLEAR-SCREEN.
007800 PERFORM SCROLL-LINE 25 TIMES.
007900
008000 SCROLL-LINE.
008100 DISPLAY " ".
008200
008300 MAINTAIN-THE-FILE.
008400 PERFORM DO-THE-PICK.
008500 PERFORM GET-MENU-PICK.
008600
008700 DO-THE-PICK.
008800 IF MENU-PICK = 1
008900 PERFORM ADD-MODE
009000 ELSE
009100 IF MENU-PICK = 2
009200 PERFORM CHANGE-MODE
009300 ELSE
009400 IF MENU-PICK = 3
009500 PERFORM INQUIRE-MODE
009600 ELSE
009700 IF MENU-PICK = 4
009800 PERFORM DELETE-MODE.
009900
010000*--------------------------------
010100* ADD

010200*--------------------------------
010300 ADD-MODE.
010400 MOVE "ADD" TO THE-MODE.
010500 PERFORM GET-NEW-VENDOR-NUMBER.
010600 PERFORM ADD-RECORDS
010700 UNTIL VENDOR-NUMBER = ZEROES.
010800
010900 GET-NEW-VENDOR-NUMBER.
011000 PERFORM INIT-VENDOR-RECORD.
011100 PERFORM ENTER-VENDOR-NUMBER.
011200 MOVE "Y" TO RECORD-FOUND.
011300 PERFORM FIND-NEW-VENDOR-RECORD
011400 UNTIL RECORD-FOUND = "N" OR
011500 VENDOR-NUMBER = ZEROES.
011600
011700 FIND-NEW-VENDOR-RECORD.
011800 PERFORM READ-VENDOR-RECORD.
011900 IF RECORD-FOUND = "Y"
012000 DISPLAY "RECORD ALREADY ON FILE"
012100 PERFORM ENTER-VENDOR-NUMBER.
012200
012300 ADD-RECORDS.
012400 PERFORM ENTER-REMAINING-FIELDS.
012500 PERFORM WRITE-VENDOR-RECORD.
012600 PERFORM GET-NEW-VENDOR-NUMBER.
012700
012800 ENTER-REMAINING-FIELDS.
012900 PERFORM ENTER-VENDOR-NAME.
013000 PERFORM ENTER-VENDOR-ADDRESS-1.
013100 PERFORM ENTER-VENDOR-ADDRESS-2.
013200 PERFORM ENTER-VENDOR-CITY.
013300 PERFORM ENTER-VENDOR-STATE.
013400 PERFORM ENTER-VENDOR-ZIP.
013500 PERFORM ENTER-VENDOR-CONTACT.
013600 PERFORM ENTER-VENDOR-PHONE.
013700
013800*--------------------------------
013900* CHANGE
014000*--------------------------------
014100 CHANGE-MODE.
014200 MOVE "CHANGE" TO THE-MODE.
014300 PERFORM GET-VENDOR-RECORD.
014400 PERFORM CHANGE-RECORDS
014500 UNTIL VENDOR-NUMBER = ZEROES.
014600
014700 CHANGE-RECORDS.
014800 PERFORM GET-FIELD-TO-CHANGE.

014900 PERFORM CHANGE-ONE-FIELD
015000 UNTIL WHICH-FIELD = ZERO.
015100 PERFORM GET-VENDOR-RECORD.
015200
015300 GET-FIELD-TO-CHANGE.
015400 PERFORM DISPLAY-ALL-FIELDS.
015500 PERFORM ASK-WHICH-FIELD.
015600
015700 ASK-WHICH-FIELD.
015800 DISPLAY "ENTER THE NUMBER OF THE FIELD".
015900 DISPLAY "TO CHANGE (1-8) OR 0 TO EXIT".
016000 ACCEPT WHICH-FIELD.
016100 IF WHICH-FIELD > 8
016200 DISPLAY "INVALID ENTRY".
016300
016400 CHANGE-ONE-FIELD.
016500 PERFORM CHANGE-THIS-FIELD.
016600 PERFORM GET-FIELD-TO-CHANGE.
016700
016800 CHANGE-THIS-FIELD.
016900 IF WHICH-FIELD = 1
017000 PERFORM ENTER-VENDOR-NAME.
017100 IF WHICH-FIELD = 2
017200 PERFORM ENTER-VENDOR-ADDRESS-1.
017300 IF WHICH-FIELD = 3
017400 PERFORM ENTER-VENDOR-ADDRESS-2.
017500 IF WHICH-FIELD = 4
017600 PERFORM ENTER-VENDOR-CITY.
017700 IF WHICH-FIELD = 5
017800 PERFORM ENTER-VENDOR-STATE.
017900 IF WHICH-FIELD = 6
018000 PERFORM ENTER-VENDOR-ZIP.
018100 IF WHICH-FIELD = 7
018200 PERFORM ENTER-VENDOR-CONTACT.
018300 IF WHICH-FIELD = 8
018400 PERFORM ENTER-VENDOR-PHONE.
018500
018600 PERFORM REWRITE-VENDOR-RECORD.
018700
018800*--------------------------------
018900* INQUIRE
019000*--------------------------------
019100 INQUIRE-MODE.
019200 MOVE "DISPLAY" TO THE-MODE.
019300 PERFORM GET-VENDOR-RECORD.
019400 PERFORM INQUIRE-RECORDS
019500 UNTIL VENDOR-NUMBER = ZEROES.

019600
019700 INQUIRE-RECORDS.
019800 PERFORM DISPLAY-ALL-FIELDS.
019900 PERFORM GET-VENDOR-RECORD.
020000
020100*--------------------------------
020200* DELETE
020300*--------------------------------
020400 DELETE-MODE.
020500 MOVE "DELETE" TO THE-MODE.
020600 PERFORM GET-VENDOR-RECORD.
020700 PERFORM DELETE-RECORDS
020800 UNTIL VENDOR-NUMBER = ZEROES.
020900
021000 DELETE-RECORDS.
021100 PERFORM DISPLAY-ALL-FIELDS.
021200 MOVE "X" TO OK-TO-DELETE.
021300
021400 PERFORM ASK-TO-DELETE
021500 UNTIL OK-TO-DELETE = "Y" OR "N".
021600
021700 IF OK-TO-DELETE = "Y"
021800 PERFORM DELETE-VENDOR-RECORD.
021900
022000 PERFORM GET-VENDOR-RECORD.
022100
022200 ASK-TO-DELETE.
022300 DISPLAY "DELETE THIS RECORD (Y/N)?".
022400 ACCEPT OK-TO-DELETE.
022500 IF OK-TO-DELETE = "y"
022600 MOVE "Y" TO OK-TO-DELETE.
022700 IF OK-TO-DELETE = "n"
022800 MOVE "N" TO OK-TO-DELETE.
022900 IF OK-TO-DELETE NOT = "Y" AND
023000 OK-TO-DELETE NOT = "N"
023100 DISPLAY "YOU MUST ENTER YES OR NO".
023200
023300*--------------------------------
023400* Routines shared by all modes
023500*--------------------------------
023600 INIT-VENDOR-RECORD.
023700 MOVE SPACE TO VENDOR-RECORD.
023800 MOVE ZEROES TO VENDOR-NUMBER.
023900
024000 ENTER-VENDOR-NUMBER.
024100 DISPLAY " ".
024200 DISPLAY "ENTER VENDOR NUMBER OF THE VENDOR" .

024300 DISPLAY "TO " THE-MODE " (1-99999)".
024400 DISPLAY "ENTER 0 TO STOP ENTRY".
024500 ACCEPT VENDOR-NUMBER-FIELD.
024600*OR ACCEPT VENDOR-NUMBER-FIELD WITH CONVERSION.
024700
024800 MOVE VENDOR-NUMBER-FIELD TO VENDOR-NUMBER.
024900
025000 GET-VENDOR-RECORD.
025100 PERFORM INIT-VENDOR-RECORD.
025200 PERFORM ENTER-VENDOR-NUMBER.
025300 MOVE "N" TO RECORD-FOUND.
025400 PERFORM FIND-VENDOR-RECORD
025500 UNTIL RECORD-FOUND = "Y" OR
025600 VENDOR-NUMBER = ZEROES.
025700
025800*--------------------------------
025900* Routines shared Add and Change
026000*--------------------------------
026100 FIND-VENDOR-RECORD.
026200 PERFORM READ-VENDOR-RECORD.
026300 IF RECORD-FOUND = "N"
026400 DISPLAY "RECORD NOT FOUND"
026500 PERFORM ENTER-VENDOR-NUMBER.
026600
026700 ENTER-VENDOR-NAME.
026800 DISPLAY "ENTER VENDOR NAME".
026900 ACCEPT VENDOR-NAME.
027000
027100 ENTER-VENDOR-ADDRESS-1.
027200 DISPLAY "ENTER VENDOR ADDRESS-1".
027300 ACCEPT VENDOR-ADDRESS-1.
027400
027500 ENTER-VENDOR-ADDRESS-2.
027600 DISPLAY "ENTER VENDOR ADDRESS-2".
027700 ACCEPT VENDOR-ADDRESS-2.
027800
027900 ENTER-VENDOR-CITY.
028000 DISPLAY "ENTER VENDOR CITY".
028100 ACCEPT VENDOR-CITY.
028200
028300 ENTER-VENDOR-STATE.
028400 DISPLAY "ENTER VENDOR STATE".
028500 ACCEPT VENDOR-STATE.
028600
028700 ENTER-VENDOR-ZIP.
028800 DISPLAY "ENTER VENDOR ZIP".
028900 ACCEPT VENDOR-ZIP.

029000
029100 ENTER-VENDOR-CONTACT.
029200 DISPLAY "ENTER VENDOR CONTACT".
029300 ACCEPT VENDOR-CONTACT.
029400
029500 ENTER-VENDOR-PHONE.
029600 DISPLAY "ENTER VENDOR PHONE".
029700 ACCEPT VENDOR-PHONE.
029800
029900*--------------------------------
030000* Routines shared by Change,
030100* Inquire and Delete
030200*--------------------------------
030300 DISPLAY-ALL-FIELDS.
030400 DISPLAY " ".
030500 PERFORM DISPLAY-VENDOR-NUMBER.
030600 PERFORM DISPLAY-VENDOR-NAME.
030700 PERFORM DISPLAY-VENDOR-ADDRESS-1.
030800 PERFORM DISPLAY-VENDOR-ADDRESS-2.
030900 PERFORM DISPLAY-VENDOR-CITY.
031000 PERFORM DISPLAY-VENDOR-STATE.
031100 PERFORM DISPLAY-VENDOR-ZIP.
031200 PERFORM DISPLAY-VENDOR-CONTACT.
031300 PERFORM DISPLAY-VENDOR-PHONE.
031400 DISPLAY " ".
031500
031600 DISPLAY-VENDOR-NUMBER.
031700 DISPLAY " VENDOR NUMBER: " VENDOR-NUMBER.
031800
031900 DISPLAY-VENDOR-NAME.
032000 DISPLAY "1. VENDOR NAME: " VENDOR-NAME.
032100
032200 DISPLAY-VENDOR-ADDRESS-1.
032300 DISPLAY "2. VENDOR ADDRESS-1: " VENDOR-ADDRESS-1.
032400
032500 DISPLAY-VENDOR-ADDRESS-2.
032600 DISPLAY "3. VENDOR ADDRESS-2: " VENDOR-ADDRESS-2.
032700
032800 DISPLAY-VENDOR-CITY.
032900 DISPLAY "4. VENDOR CITY: " VENDOR-CITY.
033000
033100 DISPLAY-VENDOR-STATE.
033200 DISPLAY "5. VENDOR STATE: " VENDOR-STATE.
033300
033400 DISPLAY-VENDOR-ZIP.
033500 DISPLAY "6. VENDOR ZIP: " VENDOR-ZIP.
033600

033700 DISPLAY-VENDOR-CONTACT.
033800 DISPLAY "7. VENDOR CONTACT: " VENDOR-CONTACT.
033900
034000 DISPLAY-VENDOR-PHONE.
034100 DISPLAY "8. VENDOR PHONE: " VENDOR-PHONE.
034200
034300*--------------------------------
034400* File I-O Routines
034500*--------------------------------
034600 READ-VENDOR-RECORD.
034700 MOVE "Y" TO RECORD-FOUND.
034800 READ VENDOR-FILE RECORD
034900 INVALID KEY
035000 MOVE "N" TO RECORD-FOUND.
035100
035200*or READ VENDOR-FILE RECORD WITH LOCK
035300* INVALID KEY
035400* MOVE "N" TO RECORD-FOUND.
035500
035600*or READ VENDOR-FILE RECORD WITH HOLD
035700* INVALID KEY
035800* MOVE "N" TO RECORD-FOUND.
035900
036000 WRITE-VENDOR-RECORD.
036100 WRITE VENDOR-RECORD
036200 INVALID KEY
036300 DISPLAY "RECORD ALREADY ON FILE".
036400
036500 REWRITE-VENDOR-RECORD.
036600 REWRITE VENDOR-RECORD
036700 INVALID KEY
036800 DISPLAY "ERROR REWRITING VENDOR RECORD".
036900
037000 DELETE-VENDOR-RECORD.
037100 DELETE VENDOR-FILE RECORD
037200 INVALID KEY
037300 DISPLAY "ERROR DELETING VENDOR RECORD".
037400

Answers to Day 15, "Data Integrity"

Quiz

1. a. Data always should be validated before it is put in a data file.

2. INSPECT CONVERTING can be used to convert a field to uppercase.

3. A field could be converted to lowercase by reversing the compare field and the replace field.

If Listing A.28 converts DATA-FIELD to uppercase, Listing A.29 will convert DATA-FIELD to
lowercase.

TYPE: Listing A.28. Converting to uppercase.

010300 INSPECT DATA FIELD
010400 CONVERTING LOWER-ALPHA
010500 TO UPPER-ALPHA.

TYPE: Listing A.29. Converting to lowercase.

010300 INSPECT DATA FIELD
010400 CONVERTING UPPER-ALPHA
010500 TO LOWER-ALPHA.

Exercises

1. The routine in Listing A.30 is one way of entering and converting the vendor name.

TYPE: Listing A.30. Entering, validating, and converting a VENDOR-NAME.

ENTER-VENDOR-NAME.
 PERFORM ACCEPT-VENDOR-NAME.
 PERFORM RE-ACCEPT-VENDOR-NAME
 UNTIL VENDOR-NAME NOT = SPACES.

ACCEPT-VENDOR-NAME.
 DISPLAY "ENTER VENDOR NAME".
 ACCEPT VENDOR-NAME.

INSPECT VENDOR-NAME
 CONVERTING LOWER-ALPHA
 TO UPPER-ALPHA.

RE-ACCEPT-VENDOR-NAME.
 DISPLAY "VENDOR NAME MUST BE ENTERED".
 PERFORM ACCEPT-VENDOR-NAME.

2. Figure A.3 compares ENTER-VENDOR-NAME to a standard field-entry routine.

Figure A.3.
ENTER-VENDOR-NAME as a standard field-entry routine.

file:///D|/Cool Stuff/old/ftp/Sams.Teach.Yourself.Cobol.In.21.Days/Teach Yourself Cobol in 21 Days/apa/03.htm

Answers to Day 16, "Using Look Up and Arrays"

Quiz

1. SET VENDOR-INDEX UP BY 1.

2. STATE-INDEX will contain 14.

3. TABLE-STATE-CODE(STATE-INDEX) will contain "XX".

Exercises

1. Listing A.31 would be a suitable table for 100 vendor records.

TYPE: Listing A.31. 100 vendors.

002000 01 TABLE-VENDOR-RECORD OCCURS 100 TIMES
002000 INDEXED BY VENDOR-INDEX.
002100 05 TABLE-VENDOR-NUMBER PIC 9(5).
002200 05 TABLE-VENDOR-NAME PIC X(30).
002300 05 TABLE-VENDOR-ADDRESS-1 PIC X(30).
002400 05 TABLE-VENDOR-ADDRESS-2 PIC X(30).
002500 05 TABLE-VENDOR-CITY PIC X(20).
002600 05 TABLE-VENDOR-STATE PIC X(2).
002700 05 TABLE-VENDOR-ZIP PIC X(10).
002800 05 TABLE-VENDOR-CONTACT PIC X(30).
002900 05 TABLE-VENDOR-PHONE PIC X(15).

2. The size of the vendor table in exercise 1 would be 100 times the length of a single record. The
record is 172 bytes long, so the whole table is 17,200 bytes.

Answers to Day 17, "Alternate Keys"

Quiz

1. OMEGA MANUFACTURING. The value "LINCOLN" in the VENDOR-NAME would not be
matched by any vendor name on the file. The next key that is equal to or greater than "LINCOLN" is
OMEGA MANUFACTURING.

2. The keys to the PART-FILE are the following:

PART-NUMBER
PART-VENDOR
PART-DEPARTMENT
PART-VENDOR-NUMBER

PART-NUMBER is the primary key.

3. Duplicate keys are allowed in the following:

PART-VENDOR
PART-DEPARTMENT

Duplicate keys are not allowed in the following:

PART-NUMBER
PART-VENDOR-NUMBER

Exercise

Listing A.32 defines the necessary keys.

TYPE: Listing A.32. Multiple keys for the customer file.

000400 SELECT CUSTOMER-FILE
000500 ASSIGN TO "CUST"
000600 ORGANIZATION IS INDEXED
000700 RECORD KEY IS CUSTOMER-NUMBER
000800 ALTERNATE KEY IS CUSTOMER-NAME WITH DUPLICATES
000900 ALTERNATE KEY IS CUSTOMER-ZIP WITH DUPLICATES
001000 ACCESS MODE IS DYNAMIC.
001100

Answers to Day 18, "Calling Other Programs"

Quiz

1. b. It remains in memory, but waits for the calling program to complete.

2. a. EXIT PROGRAM.

Exercises

1. Listing A.33 is a code fragment that includes all the changes you need to create vnddsp03.cbl.

TYPE: Listing A.33. Changes to vnddsp03.cbl.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. VNDDSP03.
000300*--
000400* Display records in the Vendor File.
000500*--
000600 ENVIRONMENT DIVISION.
000700 INPUT-OUTPUT SECTION.
000800 FILE-CONTROL.
000900
001000 COPY "SLVND02.CBL".

001100
001200 DATA DIVISION.
001300 FILE SECTION.
001400
001500 COPY "FDVND04.CBL".
001600
001700 WORKING-STORAGE SECTION.
001800
001900 01 DETAIL-LINE.
002000 05 DISPLAY-NUMBER PIC 9(5).
002100 05 FILLER PIC X VALUE SPACE.
002200 05 DISPLAY-NAME PIC X(30).
002300 05 FILLER PIC X VALUE SPACE.
002400 05 DISPLAY-CONTACT PIC X(30).
002500
002600 01 CITY-STATE-DETAIL.
002700 05 DISPLAY-CITY PIC X(20).
002800 05 FILLER PIC X VALUE SPACE.
002900 05 DISPLAY-STATE PIC X(2).
003000
003100 01 COLUMN-LINE.
003200 05 FILLER PIC X(2) VALUE "NO".
003300 05 FILLER PIC X(4) VALUE SPACE.
003400 05 FILLER PIC X(12) VALUE "NAME-ADDRESS".
003500 05 FILLER PIC X(19) VALUE SPACE.
003600 05 FILLER PIC X(17) VALUE "CONTACT-PHONE-ZIP".
003700
003800 01 TITLE-LINE.
003900 05 FILLER PIC X(15) VALUE SPACE.
004000 05 FILLER PIC X(11)
004100 VALUE "VENDOR LIST".
004200 05 FILLER PIC X(15) VALUE SPACE.
004300 05 FILLER PIC X(5) VALUE "PAGE:".
004400 05 FILLER PIC X(1) VALUE SPACE.
004500 05 DISPLAY-PAGE-NUMBER PIC ZZZZ9.
004600
004700 77 FILE-AT-END PIC X.
004800 77 A-DUMMY PIC X.
004900 77 LINE-COUNT PIC 999 VALUE ZERO.
005000 77 PAGE-NUMBER PIC 99999 VALUE ZERO.
005100 77 MAXIMUM-LINES PIC 999 VALUE 15.
005200
005300 77 DISPLAY-RECORD PIC X(79).
005400
005500 PROCEDURE DIVISION.
005600 PROGRAM-BEGIN.
005700

005800 PERFORM OPENING-PROCEDURE.
005900 MOVE ZEROES TO LINE-COUNT
006000 PAGE-NUMBER.
006100
006200 PERFORM START-NEW-PAGE.
006300
006400 MOVE "N" TO FILE-AT-END.
006500 PERFORM READ-NEXT-RECORD.
006600 IF FILE-AT-END = "Y"
006700 MOVE "NO RECORDS FOUND" TO DISPLAY-RECORD
006800 PERFORM WRITE-DISPLAY-RECORD
006900 ELSE
007000 PERFORM DISPLAY-VENDOR-FIELDS
007100 UNTIL FILE-AT-END = "Y".
007200
007300 PERFORM CLOSING-PROCEDURE.
007400
007500 PROGRAM-EXIT.
007600 EXIT PROGRAM.
007700
007800 PROGRAM-DONE.
007900 STOP RUN.
008000

2. Listing A.34 includes the changes for this exercise and the next.

3. Listing A.34 includes the changes for this exercise and the preceding one.

TYPE: Listing A.34. Changes for vndmnt05.cbl.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. VNDMNT05.
000300*--------------------------------
000400* Add, Change, Inquire and Delete
000500* for the Vendor File.
000600* This includes Inquire by name
000700* The vendor report, and the vendor
000800* report in name order.
000900* Added Display all records.
001000*--------------------------------
001100 ENVIRONMENT DIVISION.
001200 INPUT-OUTPUT SECTION.
001300 FILE-CONTROL.
001400
001500 COPY "SLVND02.CBL".
001600
001700 COPY "SLSTATE.CBL".
001800

001900 DATA DIVISION.
002000 FILE SECTION.
002100
002200 COPY "FDVND04.CBL".
002300
002400 COPY "FDSTATE.CBL".
002500
002600 WORKING-STORAGE SECTION.
002700
002800 77 MENU-PICK PIC 9.
002900 88 MENU-PICK-IS-VALID VALUES 0 THRU 8.
003000
003100 77 THE-MODE PIC X(7).
003200 77 WHICH-FIELD PIC 9.
003300 77 OK-TO-DELETE PIC X.
003400 77 VENDOR-RECORD-FOUND PIC X.
003500 77 STATE-RECORD-FOUND PIC X.
003600 77 A-DUMMY PIC X.
003700
003800 77 VENDOR-NUMBER-FIELD PIC Z(5).
003900
004000 77 ERROR-MESSAGE PIC X(79) VALUE SPACE.
004100
004200 COPY "WSCASE01.CBL".
004300
004400 PROCEDURE DIVISION.
004500 PROGRAM-BEGIN.
004600 PERFORM OPENING-PROCEDURE.
004700 PERFORM MAIN-PROCESS.
004800 PERFORM CLOSING-PROCEDURE.
004900
005000 PROGRAM-EXIT.
005100 EXIT PROGRAM.
005200
005300 PROGRAM-DONE.
005400 STOP RUN.
005500
005600 OPENING-PROCEDURE.
005700 OPEN I-O VENDOR-FILE.
005800 OPEN I-O STATE-FILE.
005900
006000 CLOSING-PROCEDURE.
006100 CLOSE VENDOR-FILE.
006200 CLOSE STATE-FILE.
006300
006400 MAIN-PROCESS.
006500 PERFORM GET-MENU-PICK.

006600 PERFORM MAINTAIN-THE-FILE
006700 UNTIL MENU-PICK = 0.
006800
006900*--------------------------------
007000* MENU
007100*--------------------------------
007200 GET-MENU-PICK.
007300 PERFORM DISPLAY-THE-MENU.
007400 PERFORM ACCEPT-MENU-PICK.
007500 PERFORM RE-ACCEPT-MENU-PICK
007600 UNTIL MENU-PICK-IS-VALID.
007700
007800 DISPLAY-THE-MENU.
007900 PERFORM CLEAR-SCREEN.
008000 DISPLAY " PLEASE SELECT:".
008100 DISPLAY " ".
008200 DISPLAY " 1. ADD RECORDS".
008300 DISPLAY " 2. CHANGE A RECORD".
008400 DISPLAY " 3. LOOK UP A RECORD".
008500 DISPLAY " 4. DELETE A RECORD".
008600 DISPLAY " 5. LOOK UP BY NAME".
008700 DISPLAY " 6. PRINT RECORDS".
008800 DISPLAY " 7. PRINT IN NAME ORDER".
008900 DISPLAY " 8. DISPLAY ALL RECORDS".
009000 DISPLAY " ".
009100 DISPLAY " 0. EXIT".
009200 PERFORM SCROLL-LINE 8 TIMES.
009300
009400 ACCEPT-MENU-PICK.
009500 DISPLAY "YOUR CHOICE (0-8)?".
009600 ACCEPT MENU-PICK.
009700
009800 RE-ACCEPT-MENU-PICK.
009900 DISPLAY "INVALID SELECTION - PLEASE RE-TRY.".
010000 PERFORM ACCEPT-MENU-PICK.
010100
010200 CLEAR-SCREEN.
010300 PERFORM SCROLL-LINE 25 TIMES.
010400
010500 SCROLL-LINE.
010600 DISPLAY " ".
010700
010800 MAINTAIN-THE-FILE.
010900 PERFORM DO-THE-PICK.
011000 PERFORM GET-MENU-PICK.
011100
011200 DO-THE-PICK.

011300 IF MENU-PICK = 1
011400 PERFORM ADD-MODE
011500 ELSE
011600 IF MENU-PICK = 2
011700 PERFORM CHANGE-MODE
011800 ELSE
011900 IF MENU-PICK = 3
012000 PERFORM INQUIRE-MODE
012100 ELSE
012200 IF MENU-PICK = 4
012300 PERFORM DELETE-MODE
012400 ELSE
012500 IF MENU-PICK = 5
012600 PERFORM INQUIRE-BY-NAME
012700 ELSE
012800 IF MENU-PICK = 6
012900 PERFORM PRINT-VENDOR-REPORT
013000 ELSE
013100 IF MENU-PICK = 7
013200 PERFORM PRINT-BY-NAME
013300 ELSE
013400 IF MENU-PICK = 8
013500 PERFORM DISPLAY-ALL.
013600
013700*--------------------------------
013800* ADD
013900*--------------------------------
014000 ADD-MODE.
014100 MOVE "ADD" TO THE-MODE.
014200 PERFORM GET-NEW-RECORD-KEY.
014300 PERFORM ADD-RECORDS
014400 UNTIL VENDOR-NUMBER = ZEROES.
014500
014600 GET-NEW-RECORD-KEY.
014700 PERFORM ACCEPT-NEW-RECORD-KEY.
014800 PERFORM RE-ACCEPT-NEW-RECORD-KEY
014900 UNTIL VENDOR-RECORD-FOUND = "N" OR
015000 VENDOR-NUMBER = ZEROES.
015100
015200 ACCEPT-NEW-RECORD-KEY.
015300 PERFORM INIT-VENDOR-RECORD.
015400 PERFORM ENTER-VENDOR-NUMBER.
015500 IF VENDOR-NUMBER NOT = ZEROES
015600 PERFORM READ-VENDOR-RECORD.
015700
015800 RE-ACCEPT-NEW-RECORD-KEY.
015900 DISPLAY "RECORD ALREADY ON FILE"

016000 PERFORM ACCEPT-NEW-RECORD-KEY.
016100
016200 ADD-RECORDS.
016300 PERFORM ENTER-REMAINING-FIELDS.
016400 PERFORM WRITE-VENDOR-RECORD.
016500 PERFORM GET-NEW-RECORD-KEY.
016600
016700 ENTER-REMAINING-FIELDS.
016800 PERFORM ENTER-VENDOR-NAME.
016900 PERFORM ENTER-VENDOR-ADDRESS-1.
017000 PERFORM ENTER-VENDOR-ADDRESS-2.
017100 PERFORM ENTER-VENDOR-CITY.
017200 PERFORM ENTER-VENDOR-STATE.
017300 PERFORM ENTER-VENDOR-ZIP.
017400 PERFORM ENTER-VENDOR-CONTACT.
017500 PERFORM ENTER-VENDOR-PHONE.
017600
017700*--------------------------------
017800* CHANGE
017900*--------------------------------
018000 CHANGE-MODE.
018100 MOVE "CHANGE" TO THE-MODE.
018200 PERFORM GET-EXISTING-RECORD.
018300 PERFORM CHANGE-RECORDS
018400 UNTIL VENDOR-NUMBER = ZEROES.
018500
018600 CHANGE-RECORDS.
018700 PERFORM GET-FIELD-TO-CHANGE.
018800 PERFORM CHANGE-ONE-FIELD
018900 UNTIL WHICH-FIELD = ZERO.
019000 PERFORM GET-EXISTING-RECORD.
019100
019200 GET-FIELD-TO-CHANGE.
019300 PERFORM DISPLAY-ALL-FIELDS.
019400 PERFORM ASK-WHICH-FIELD.
019500
019600 ASK-WHICH-FIELD.
019700 PERFORM ACCEPT-WHICH-FIELD.
019800 PERFORM RE-ACCEPT-WHICH-FIELD
019900 UNTIL WHICH-FIELD < 9.
020000
020100 ACCEPT-WHICH-FIELD.
020200 DISPLAY "ENTER THE NUMBER OF THE FIELD".
020300 DISPLAY "TO CHANGE (1-8) OR 0 TO EXIT".
020400 ACCEPT WHICH-FIELD.
020500
020600 RE-ACCEPT-WHICH-FIELD.

020700 DISPLAY "INVALID ENTRY".
020800 PERFORM ACCEPT-WHICH-FIELD.
020900
021000 CHANGE-ONE-FIELD.
021100 PERFORM CHANGE-THIS-FIELD.
021200 PERFORM GET-FIELD-TO-CHANGE.
021300
021400 CHANGE-THIS-FIELD.
021500 IF WHICH-FIELD = 1
021600 PERFORM ENTER-VENDOR-NAME.
021700 IF WHICH-FIELD = 2
021800 PERFORM ENTER-VENDOR-ADDRESS-1.
021900 IF WHICH-FIELD = 3
022000 PERFORM ENTER-VENDOR-ADDRESS-2.
022100 IF WHICH-FIELD = 4
022200 PERFORM ENTER-VENDOR-CITY.
022300 IF WHICH-FIELD = 5
022400 PERFORM ENTER-VENDOR-STATE.
022500 IF WHICH-FIELD = 6
022600 PERFORM ENTER-VENDOR-ZIP.
022700 IF WHICH-FIELD = 7
022800 PERFORM ENTER-VENDOR-CONTACT.
022900 IF WHICH-FIELD = 8
023000 PERFORM ENTER-VENDOR-PHONE.
023100
023200 PERFORM REWRITE-VENDOR-RECORD.
023300
023400*--------------------------------
023500* INQUIRE
023600*--------------------------------
023700 INQUIRE-MODE.
023800 MOVE "DISPLAY" TO THE-MODE.
023900 PERFORM GET-EXISTING-RECORD.
024000 PERFORM INQUIRE-RECORDS
024100 UNTIL VENDOR-NUMBER = ZEROES.
024200
024300 INQUIRE-RECORDS.
024400 PERFORM DISPLAY-ALL-FIELDS.
024500 PERFORM GET-EXISTING-RECORD.
024600
024700*--------------------------------
024800* DELETE
024900*--------------------------------
025000 DELETE-MODE.
025100 MOVE "DELETE" TO THE-MODE.
025200 PERFORM GET-EXISTING-RECORD.
025300 PERFORM DELETE-RECORDS

025400 UNTIL VENDOR-NUMBER = ZEROES.
025500
025600 DELETE-RECORDS.
025700 PERFORM DISPLAY-ALL-FIELDS.
025800
025900 PERFORM ASK-OK-TO-DELETE.
026000
026100 IF OK-TO-DELETE = "Y"
026200 PERFORM DELETE-VENDOR-RECORD.
026300
026400 PERFORM GET-EXISTING-RECORD.
026500
026600 ASK-OK-TO-DELETE.
026700 PERFORM ACCEPT-OK-TO-DELETE.
026800
026900 PERFORM RE-ACCEPT-OK-TO-DELETE
027000 UNTIL OK-TO-DELETE = "Y" OR "N".
027100
027200 ACCEPT-OK-TO-DELETE.
027300 DISPLAY "DELETE THIS RECORD (Y/N)?".
027400 ACCEPT OK-TO-DELETE.
027500 INSPECT OK-TO-DELETE
027600 CONVERTING LOWER-ALPHA TO UPPER-ALPHA.
027700
027800 RE-ACCEPT-OK-TO-DELETE.
027900 DISPLAY "YOU MUST ENTER YES OR NO".
028000 PERFORM ACCEPT-OK-TO-DELETE.
028100
028200*--------------------------------
028300* Routines shared by all modes
028400*--------------------------------
028500 INIT-VENDOR-RECORD.
028600 MOVE SPACE TO VENDOR-RECORD.
028700 MOVE ZEROES TO VENDOR-NUMBER.
028800
028900 ENTER-VENDOR-NUMBER.
029000 DISPLAY " ".
029100 DISPLAY "ENTER VENDOR NUMBER OF THE VENDOR" .
029200 DISPLAY "TO " THE-MODE " (1-99999)".
029300 DISPLAY "ENTER 0 TO STOP ENTRY".
029400 ACCEPT VENDOR-NUMBER-FIELD.
029500*OR ACCEPT VENDOR-NUMBER-FIELD WITH CONVERSION.
029600
029700 MOVE VENDOR-NUMBER-FIELD TO VENDOR-NUMBER.
029800
029900*--------------------------------
030000* INQUIRE BY NAME

030100*--------------------------------
030200 INQUIRE-BY-NAME.
030300 PERFORM CLOSING-PROCEDURE.
030400 CALL "VNINNM03".
030500 PERFORM OPENING-PROCEDURE.
030600
030700*--------------------------------
030800* PRINT
030900*--------------------------------
031000 PRINT-VENDOR-REPORT.
031100 PERFORM CLOSING-PROCEDURE.
031200 DISPLAY "VENDOR REPORT IN PROGRESS".
031300 CALL "VNDRPT04".
031400 PERFORM OPENING-PROCEDURE.
031500
031600*--------------------------------
031700* PRINT BY NAME
031800*--------------------------------
031900 PRINT-BY-NAME.
032000 PERFORM CLOSING-PROCEDURE.
032100 DISPLAY " REPORT BY NAME IN PROGRESS".
032200 CALL "VNBYNM02".
032300 PERFORM OPENING-PROCEDURE.
032400
032500*--------------------------------
032600* DISPLAY ALL
032700*--------------------------------
032800 DISPLAY-ALL.
032900 PERFORM CLOSING-PROCEDURE.
033000 CALL "VNDDSP03".
033100 DISPLAY "DISPLAY COMPLETE".
033200 DISPLAY "PRESS ENTER TO CONTINUE".
033300 ACCEPT A-DUMMY.
033400 PERFORM OPENING-PROCEDURE.
033500
033600*--------------------------------
033700* Routines shared Add and Change
033800*--------------------------------
033900 ENTER-VENDOR-NAME.
034000 PERFORM ACCEPT-VENDOR-NAME.
034100 PERFORM RE-ACCEPT-VENDOR-NAME
034200 UNTIL VENDOR-NAME NOT = SPACE.
034300
034400 ACCEPT-VENDOR-NAME.
034500 DISPLAY "ENTER VENDOR NAME".
034600 ACCEPT VENDOR-NAME.
034700 INSPECT VENDOR-NAME

034800 CONVERTING LOWER-ALPHA
034900 TO UPPER-ALPHA.
035000
035100 RE-ACCEPT-VENDOR-NAME.
035200 DISPLAY "VENDOR NAME MUST BE ENTERED".
035300 PERFORM ACCEPT-VENDOR-NAME.
035400
035500 ENTER-VENDOR-ADDRESS-1.
035600 PERFORM ACCEPT-VENDOR-ADDRESS-1.
035700 PERFORM RE-ACCEPT-VENDOR-ADDRESS-1
035800 UNTIL VENDOR-ADDRESS-1 NOT = SPACE.
035900
036000 ACCEPT-VENDOR-ADDRESS-1.
036100 DISPLAY "ENTER VENDOR ADDRESS-1".
036200 ACCEPT VENDOR-ADDRESS-1.
036300 INSPECT VENDOR-ADDRESS-1
036400 CONVERTING LOWER-ALPHA
036500 TO UPPER-ALPHA.
036600
036700 RE-ACCEPT-VENDOR-ADDRESS-1.
036800 DISPLAY "VENDOR ADDRESS-1 MUST BE ENTERED".
036900 PERFORM ACCEPT-VENDOR-ADDRESS-1.
037000
037100 ENTER-VENDOR-ADDRESS-2.
037200 DISPLAY "ENTER VENDOR ADDRESS-2".
037300 ACCEPT VENDOR-ADDRESS-2.
037400 INSPECT VENDOR-ADDRESS-2
037500 CONVERTING LOWER-ALPHA
037600 TO UPPER-ALPHA.
037700
037800 ENTER-VENDOR-CITY.
037900 PERFORM ACCEPT-VENDOR-CITY.
038000 PERFORM RE-ACCEPT-VENDOR-CITY
038100 UNTIL VENDOR-CITY NOT = SPACE.
038200
038300 ACCEPT-VENDOR-CITY.
038400 DISPLAY "ENTER VENDOR CITY".
038500 ACCEPT VENDOR-CITY.
038600 INSPECT VENDOR-CITY
038700 CONVERTING LOWER-ALPHA
038800 TO UPPER-ALPHA.
038900
039000 RE-ACCEPT-VENDOR-CITY.
039100 DISPLAY "VENDOR CITY MUST BE ENTERED".
039200 PERFORM ACCEPT-VENDOR-CITY.
039300
039400 ENTER-VENDOR-STATE.

039500 PERFORM ACCEPT-VENDOR-STATE.
039600 PERFORM RE-ACCEPT-VENDOR-STATE
039700 UNTIL VENDOR-STATE NOT = SPACES AND
039800 STATE-RECORD-FOUND = "Y".
039900
040000 ACCEPT-VENDOR-STATE.
040100 DISPLAY "ENTER VENDOR STATE".
040200 ACCEPT VENDOR-STATE.
040300 PERFORM EDIT-CHECK-VENDOR-STATE.
040400
040500 RE-ACCEPT-VENDOR-STATE.
040600 DISPLAY ERROR-MESSAGE.
040700 PERFORM ACCEPT-VENDOR-STATE.
040800
040900 EDIT-CHECK-VENDOR-STATE.
041000 PERFORM EDIT-VENDOR-STATE.
041100 PERFORM CHECK-VENDOR-STATE.
041200
041300 EDIT-VENDOR-STATE.
041400 INSPECT VENDOR-STATE
041500 CONVERTING LOWER-ALPHA
041600 TO UPPER-ALPHA.
041700
041800 CHECK-VENDOR-STATE.
041900 PERFORM VENDOR-STATE-REQUIRED.
042000 IF VENDOR-STATE NOT = SPACES
042100 PERFORM VENDOR-STATE-ON-FILE.
042200
042300 VENDOR-STATE-REQUIRED.
042400 IF VENDOR-STATE = SPACE
042500 MOVE "VENDOR STATE MUST BE ENTERED"
042600 TO ERROR-MESSAGE.
042700
042800 VENDOR-STATE-ON-FILE.
042900 MOVE VENDOR-STATE TO STATE-CODE.
043000 PERFORM READ-STATE-RECORD.
043100 IF STATE-RECORD-FOUND = "N"
043200 MOVE "STATE CODE NOT FOUND IN CODES FILE"
043300 TO ERROR-MESSAGE.
043400
043500 ENTER-VENDOR-ZIP.
043600 PERFORM ACCEPT-VENDOR-ZIP.
043700 PERFORM RE-ACCEPT-VENDOR-ZIP
043800 UNTIL VENDOR-ZIP NOT = SPACE.
043900
044000 ACCEPT-VENDOR-ZIP.
044100 DISPLAY "ENTER VENDOR ZIP".

044200 ACCEPT VENDOR-ZIP.
044300 INSPECT VENDOR-ZIP
044400 CONVERTING LOWER-ALPHA
044500 TO UPPER-ALPHA.
044600
044700 RE-ACCEPT-VENDOR-ZIP.
044800 DISPLAY "VENDOR ZIP MUST BE ENTERED".
044900 PERFORM ACCEPT-VENDOR-ZIP.
045000
045100 ENTER-VENDOR-CONTACT.
045200 DISPLAY "ENTER VENDOR CONTACT".
045300 ACCEPT VENDOR-CONTACT.
045400 INSPECT VENDOR-CONTACT
045500 CONVERTING LOWER-ALPHA
045600 TO UPPER-ALPHA.
045700
045800 ENTER-VENDOR-PHONE.
045900 PERFORM ACCEPT-VENDOR-PHONE.
046000 PERFORM RE-ACCEPT-VENDOR-PHONE
046100 UNTIL VENDOR-PHONE NOT = SPACE.
046200
046300 ACCEPT-VENDOR-PHONE.
046400 DISPLAY "ENTER VENDOR PHONE".
046500 ACCEPT VENDOR-PHONE.
046600 INSPECT VENDOR-PHONE
046700 CONVERTING LOWER-ALPHA
046800 TO UPPER-ALPHA.
046900
047000 RE-ACCEPT-VENDOR-PHONE.
047100 DISPLAY "VENDOR PHONE MUST BE ENTERED".
047200 PERFORM ACCEPT-VENDOR-PHONE.
047300
047400*--------------------------------
047500* Routines shared by Change,
047600* Inquire and Delete
047700*--------------------------------
047800 GET-EXISTING-RECORD.
047900 PERFORM ACCEPT-EXISTING-KEY.
048000 PERFORM RE-ACCEPT-EXISTING-KEY
048100 UNTIL VENDOR-RECORD-FOUND = "Y" OR
048200 VENDOR-NUMBER = ZEROES.
048300
048400 ACCEPT-EXISTING-KEY.
048500 PERFORM INIT-VENDOR-RECORD.
048600 PERFORM ENTER-VENDOR-NUMBER.
048700 IF VENDOR-NUMBER NOT = ZEROES
048800 PERFORM READ-VENDOR-RECORD.

048900
049000 RE-ACCEPT-EXISTING-KEY.
049100 DISPLAY "RECORD NOT FOUND"
049200 PERFORM ACCEPT-EXISTING-KEY.
049300
049400 DISPLAY-ALL-FIELDS.
049500 DISPLAY " ".
049600 PERFORM DISPLAY-VENDOR-NUMBER.
049700 PERFORM DISPLAY-VENDOR-NAME.
049800 PERFORM DISPLAY-VENDOR-ADDRESS-1.
049900 PERFORM DISPLAY-VENDOR-ADDRESS-2.
050000 PERFORM DISPLAY-VENDOR-CITY.
050100 PERFORM DISPLAY-VENDOR-STATE.
050200 PERFORM DISPLAY-VENDOR-ZIP.
050300 PERFORM DISPLAY-VENDOR-CONTACT.
050400 PERFORM DISPLAY-VENDOR-PHONE.
050500 DISPLAY " ".
050600
050700 DISPLAY-VENDOR-NUMBER.
050800 DISPLAY " VENDOR NUMBER: " VENDOR-NUMBER.
050900
051000 DISPLAY-VENDOR-NAME.
051100 DISPLAY "1. VENDOR NAME: " VENDOR-NAME.
051200
051300 DISPLAY-VENDOR-ADDRESS-1.
051400 DISPLAY "2. VENDOR ADDRESS-1: " VENDOR-ADDRESS-1.
051500
051600 DISPLAY-VENDOR-ADDRESS-2.
051700 DISPLAY "3. VENDOR ADDRESS-2: " VENDOR-ADDRESS-2.
051800
051900 DISPLAY-VENDOR-CITY.
052000 DISPLAY "4. VENDOR CITY: " VENDOR-CITY.
052100
052200 DISPLAY-VENDOR-STATE.
052300 PERFORM VENDOR-STATE-ON-FILE.
052400 IF STATE-RECORD-FOUND = "N"
052500 MOVE "**Not found**" TO STATE-NAME.
052600 DISPLAY "5. VENDOR STATE: "
052700 VENDOR-STATE " "
052800 STATE-NAME.
052900
053000 DISPLAY-VENDOR-ZIP.
053100 DISPLAY "6. VENDOR ZIP: " VENDOR-ZIP.
053200
053300 DISPLAY-VENDOR-CONTACT.
053400 DISPLAY "7. VENDOR CONTACT: " VENDOR-CONTACT.
053500

053600 DISPLAY-VENDOR-PHONE.
053700 DISPLAY "8. VENDOR PHONE: " VENDOR-PHONE.
053800
053900*--------------------------------
054000* File I-O Routines
054100*--------------------------------
054200 READ-VENDOR-RECORD.
054300 MOVE "Y" TO VENDOR-RECORD-FOUND.
054400 READ VENDOR-FILE RECORD
054500 INVALID KEY
054600 MOVE "N" TO VENDOR-RECORD-FOUND.
054700
054800*or READ VENDOR-FILE RECORD WITH LOCK
054900* INVALID KEY
055000* MOVE "N" TO VENDOR-RECORD-FOUND.
055100
055200*or READ VENDOR-FILE RECORD WITH HOLD
055300* INVALID KEY
055400* MOVE "N" TO VENDOR-RECORD-FOUND.
055500
055600 WRITE-VENDOR-RECORD.
055700 WRITE VENDOR-RECORD
055800 INVALID KEY
055900 DISPLAY "RECORD ALREADY ON FILE".
056000
056100 REWRITE-VENDOR-RECORD.
056200 REWRITE VENDOR-RECORD
056300 INVALID KEY
056400 DISPLAY "ERROR REWRITING VENDOR RECORD".
056500
056600 DELETE-VENDOR-RECORD.
056700 DELETE VENDOR-FILE RECORD
056800 INVALID KEY
056900 DISPLAY "ERROR DELETING VENDOR RECORD".
057000
057100 READ-STATE-RECORD.
057200 MOVE "Y" TO STATE-RECORD-FOUND.
057300 READ STATE-FILE RECORD
057400 INVALID KEY
057500 MOVE "N" TO STATE-RECORD-FOUND.

4. Listing A.35 includes the changes needed to create bilmnu02.cbl.

TYPE: Listing A.35. The changes for bilmnu02.cbl.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. BILMNU02.
000300*--------------------------------

000400* Menu for the bill payment system.
000500*--------------------------------
000600 ENVIRONMENT DIVISION.
000700 INPUT-OUTPUT SECTION.
000800 FILE-CONTROL.
000900
001000 DATA DIVISION.
001100 FILE SECTION.
001200
001300 WORKING-STORAGE SECTION.
001400
001500 77 MENU-PICK PIC 9.
001600 88 MENU-PICK-IS-VALID VALUES 0 THRU 2.
001700
001800 PROCEDURE DIVISION.
001900 PROGRAM-BEGIN.
002000 PERFORM OPENING-PROCEDURE.
002100 PERFORM MAIN-PROCESS.
002200 PERFORM CLOSING-PROCEDURE.
002300
002400 PROGRAM-EXIT.
002500 EXIT PROGRAM.
002600
002700 PROGRAM-DONE.
002800 STOP RUN.
002900
003000 OPENING-PROCEDURE.
003100
003200 CLOSING-PROCEDURE.
003300
003400 MAIN-PROCESS.
003500 PERFORM GET-MENU-PICK.
003600 PERFORM DO-THE-PICK
003700 UNTIL MENU-PICK = 0.
003800
003900*--------------------------------
004000* MENU
004100*--------------------------------
004200 GET-MENU-PICK.
004300 PERFORM DISPLAY-THE-MENU.
004400 PERFORM ACCEPT-MENU-PICK.
004500 PERFORM RE-ACCEPT-MENU-PICK
004600 UNTIL MENU-PICK-IS-VALID.
004700
004800 DISPLAY-THE-MENU.
004900 PERFORM CLEAR-SCREEN.
005000 DISPLAY " PLEASE SELECT:".

005100 DISPLAY " ".
005200 DISPLAY " 1. STATE CODE MAINTENANCE".
005300 DISPLAY " 2. VENDOR MAINTENANCE".
005400 DISPLAY " ".
005500 DISPLAY " 0. EXIT".
005600 PERFORM SCROLL-LINE 8 TIMES.
005700
005800 ACCEPT-MENU-PICK.
005900 DISPLAY "YOUR CHOICE (0-2)?".
006000 ACCEPT MENU-PICK.
006100
006200 RE-ACCEPT-MENU-PICK.
006300 DISPLAY "INVALID SELECTION - PLEASE RE-TRY.".
006400 PERFORM ACCEPT-MENU-PICK.
006500
006600 CLEAR-SCREEN.
006700 PERFORM SCROLL-LINE 25 TIMES.
006800
006900 SCROLL-LINE.
007000 DISPLAY " ".
007100
007200 DO-THE-PICK.
007300 IF MENU-PICK = 1
007400 PERFORM STATE-MAINTENANCE
007500 ELSE
007600 IF MENU-PICK = 2
007700 PERFORM VENDOR-MAINTENANCE.
007800
007900 PERFORM GET-MENU-PICK.
008000
008100*--------------------------------
008200* STATE
008300*--------------------------------
008400 STATE-MAINTENANCE.
008500 CALL "STCMNT04".
008600
008700*--------------------------------
008800* VENDOR
008900*--------------------------------
009000 VENDOR-MAINTENANCE.
009100 CALL "VNDMNT05".
009200

Answers to Day 19, "Complex Data Entry Problems"

Quiz

1. The variable represents six bytes of memory.

2. TIME-HHMMSS is six bytes long and will hold numeric data.

3. TIME-HH is two bytes long and will hold numeric data.

4. TIME-MM is two bytes long and will hold numeric data.

5. TIME-SS is two bytes long and will hold numeric data.

Exercises

1. Figure A.4 highlights the differences between a simple maintenance module such as
stcmnt04.cbl and a control-file maintenance module such as ctlmnt01.cbl. Both of these
listings had to be rewritten here to allow them to fit side by side within the 80-column limit of this
book's layout. The new programs, stcmntxx.cbl and ctlmntxx.cbl, function in the same way
as the originals, but the lines and line breaks have been extensively shifted to squeeze everything into
the side-by-side format. You will recognize all the parts of the original programs as you review these
two programs.

Figure A.4.
Comparing stcmntxx.cbl and ctlmntxx.cbl.

2. Listing A.36 makes it possible to directly test DATE-CCYY for a value, as shown in Listing A.37.

TYPE: Listing A.36. REDEFINES within a REDEFINES.

003200 01 DATE-CCYYMMDD PIC 9(8).
003300 01 FILLER REDEFINES DATE-CCYYMMDD.
003400 05 DATE-CCYY PIC 9999.
003500 05 FILLER REDEFINES DATE-CCYY.
003600 10 DATE-CC PIC 99.
003700 10 DATE-YY PIC 99.
003800 05 DATE-MM PIC 99.
003900 05 DATE-DD PIC 99.

TYPE: Listing A.37. Testing the whole year.

021500 MOVE "Y" TO VALID-DATE-FLAG.
021600 IF DATE-CCYYMMDD = ZEROES
021700 IF ZERO-DATE-IS-OK = "Y"
021800 MOVE "0" TO VALID-DATE-FLAG
021900 ELSE

file:///D|/Cool Stuff/old/ftp/Sams.Teach.Yourself.Cobol.In.21.Days/Teach Yourself Cobol in 21 Days/apa/04.htm

022000 MOVE "N" TO VALID-DATE-FLAG
022100 ELSE
 IF DATE-CCYY < 1920 OR DATE-CCYY > 2150
 MOVE "N" TO VALID-DATE-FLAG
 ELSE
022200 IF DATE-MM < 1 OR DATE-MM > 12
022300 MOVE "N" TO VALID-DATE-FLAG
022400 ELSE
022500 IF DATE-DD < 1 OR DATE-DD > 31
022600 MOVE "N" TO VALID-DATE-FLAG
022700 ELSE
022800 IF (DATE-DD > 30) AND
022900 (DATE-MM = 2 OR 4 OR 6 OR 9 OR 11)
023000 MOVE "N" TO VALID-DATE-FLAG
023100 ELSE
023200 IF DATE-DD > 29 AND DATE-MM = 2
023300 MOVE "N" TO VALID-DATE-FLAG
023400 ELSE
023500 IF DATE-DD = 29 AND DATE-MM = 2
.
.
024100

3. One answer is shown in the following two listings, A.38 and A.39. A CHECK-TIME routine would
use WORKING-STORAGE as in Listing A.38. Create this file and name it WSTIME01.CBL. The
logic for checking the time is in Listing A.39, which you should create and call PLTIME01.CBL.

TYPE: Listing A.38. WORKING-STORAGE for CHECK-TIME.

000100*--------------------------------
000200* Fields for CHECK-TIME
000300*--------------------------------
000400 77 VALID-TIME-FLAG PIC X.
000500 88 TIME-IS-INVALID VALUE "N".
000600 88 TIME-IS-VALID VALUE "Y".
000700
000800 01 TIME-HHMMSS PIC 9(6).
000900 01 FILLER REDEFINES TIME-HHMMSS.
001000 05 TIME-HH PIC 99.
001100 05 TIME-MM PIC 99.
001200 05 TIME-SS PIC 99.
001300

TYPE: Listing A.39. The CHECK-TIME routine.

000100*--------------------------------
000200* USAGE:
000300* MOVE TIME(hhmmss) TO TIME-HHMMSS.

000400* PERFORM CHECK-TIME.
000500*
000600* RETURNS:
000700* TIME-IS-VALID (VALID)
000800* TIME-IS-INVALID (BAD TIME)
000900*
001000* Assume that the time is good, then
001100* test the time in the following
001200* steps. The routine stops if any
001300* of these conditions is true,
001400* and sets the valid time flag to "N".
001500* 1. Hours > 23
001600* 2. Minutes > 59
001700* 3. Seconds > 59
001800*--------------------------------
001900 CHECK-TIME.
002000 MOVE "Y" TO VALID-TIME-FLAG.
002100 IF TIME-HH > 23
002200 MOVE "N" TO VALID-TIME-FLAG
002300 ELSE
002400 IF TIME-MM > 59
002500 MOVE "N" TO VALID-TIME-FLAG
002600 ELSE
002700 IF TIME-SS > 59
002800 MOVE "N" TO VALID-TIME-FLAG.
002900

You can use Listing A.40 to check your logic.

TYPE: Listing A.40. TIME01 testing time logic.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. TIME01.
000300*--------------------------------
000400* Testing CHECK-TIME
000500*--------------------------------
000600 ENVIRONMENT DIVISION.
000700 INPUT-OUTPUT SECTION.
000800 FILE-CONTROL.
000900
001000 DATA DIVISION.
001100 FILE SECTION.
001200
001300 WORKING-STORAGE SECTION.
001400
001500 77 ANY-TIME PIC 9(6) VALUE ZEROES.
001600
001700 77 TIME-FIELD PIC Z(6).

001800
001900 COPY "WSTIME01.CBL".
002000
002100 PROCEDURE DIVISION.
002200 PROGRAM-BEGIN.
002300 PERFORM OPENING-PROCEDURE.
002400 PERFORM MAIN-PROCESS.
002500 PERFORM CLOSING-PROCEDURE.
002600
002700 PROGRAM-EXIT.
002800 EXIT PROGRAM.
002900
003000 PROGRAM-DONE.
003100 STOP RUN.
003200
003300 OPENING-PROCEDURE.
003400
003500 CLOSING-PROCEDURE.
003600
003700 MAIN-PROCESS.
003800 PERFORM GET-A-TIME.
003900 PERFORM DISPLAY-AND-GET-TIME
004000 UNTIL ANY-TIME = 000001.
004100
004200 GET-A-TIME.
004300 PERFORM ACCEPT-A-TIME.
004400 PERFORM RE-ACCEPT-A-TIME
004500 UNTIL TIME-IS-VALID.
004600 MOVE TIME-HHMMSS TO ANY-TIME.
004700
004800 ACCEPT-A-TIME.
004900 DISPLAY "ENTER A TIME (HHMMSS)"
005000 ACCEPT TIME-FIELD.
005100 PERFORM EDIT-CHECK-TIME.
005200
005300 RE-ACCEPT-A-TIME.
005400 DISPLAY "INVALID TIME"
005500 PERFORM ACCEPT-A-TIME.
005600
005700 EDIT-CHECK-TIME.
005800 PERFORM EDIT-TIME.
005900 PERFORM CHECK-TIME.
006000
006100 EDIT-TIME.
006200 MOVE TIME-FIELD TO TIME-HHMMSS.
006300
006400 DISPLAY-AND-GET-TIME.

006500 PERFORM DISPLAY-THE-TIME.
006600 PERFORM GET-A-TIME.
006700
006800 DISPLAY-THE-TIME.
006900 DISPLAY "ANY TIME IS " ANY-TIME.
007000
007100 COPY "PLTIME01.CBL".
007200

Answers to Day 20, "More Complex Data Entry"

Quiz

The original routine prevented the entry of values greater than VOUCHER-AMOUNT by using this logic:

025600 ENTER-VOUCHER-PAID-AMOUNT.
025700 PERFORM ACCEPT-VOUCHER-PAID-AMOUNT.
025800 PERFORM RE-ACCEPT-VOUCHER-PAID-AMOUNT
025900 UNTIL VOUCHER-PAID-AMOUNT NOT = ZEROES
026000 AND VOUCHER-PAID-AMOUNT NOT > VOUCHER-AMOUNT.

The new logic prevents only a zero amount from being entered:

025600 ENTER-VOUCHER-PAID-AMOUNT.
025700 PERFORM ACCEPT-VOUCHER-PAID-AMOUNT.
025800 PERFORM RE-ACCEPT-VOUCHER-PAID-AMOUNT
025900 UNTIL VOUCHER-PAID-AMOUNT NOT = ZEROES.
026000

The user can enter any amount other than zero for the voucher paid amount.

Exercise

Listing A.41 implements the changes from the quiz question.1.

TYPE: Listing A.41. Allowing overpayment.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. VCHPAY02.
000300*--------------------------------
000400* Change only.
000500* User can request a voucher.
000600* If the voucher is already paid,
000700* the user is asked whether
000800* to clear the payment
000900* and reopen the voucher.
001000* If the voucher is not paid,
001100* the user is required to enter

001200* a payment date, amount and check
001300* number.
001400* Only maintains PAID-DATE
001500* CHECK-NO and PAID-AMOUNT.
001600*--------------------------------
001700 ENVIRONMENT DIVISION.
001800 INPUT-OUTPUT SECTION.
001900 FILE-CONTROL.
002000
002100 COPY "SLVND02.CBL".
002200
002300 COPY "SLVOUCH.CBL".
002400
002500 COPY "SLCONTRL.CBL".
002600
002700 DATA DIVISION.
002800 FILE SECTION.
002900
003000 COPY "FDVND04.CBL".
003100
003200 COPY "FDVOUCH.CBL".
003300
003400 COPY "FDCONTRL.CBL".
003500
003600 WORKING-STORAGE SECTION.
003700
003800 77 WHICH-FIELD PIC 9.
003900 77 OK-TO-PROCESS PIC X.
004000 77 FULL-PAYMENT PIC X.
004100 77 NEW-VOUCHER PIC X.
004200
004300 77 VOUCHER-RECORD-FOUND PIC X.
004400 77 VENDOR-RECORD-FOUND PIC X.
004500 77 CONTROL-RECORD-FOUND PIC X.
004600 77 VOUCHER-NUMBER-FIELD PIC Z(5).
004700 77 AN-AMOUNT-FIELD PIC ZZZ,ZZ9.99-.
004800 77 CHECK-NO-FIELD PIC Z(6).
004900
005000 77 PROCESS-MESSAGE PIC X(79) VALUE SPACE.
005100
005200 77 SAVE-VOUCHER-RECORD PIC X(103).
005300
005400 COPY "WSDATE01.CBL".
005500
005600 COPY "WSCASE01.CBL".
005700
005800 PROCEDURE DIVISION.

005900 PROGRAM-BEGIN.
006000 PERFORM OPENING-PROCEDURE.
006100 PERFORM MAIN-PROCESS.
006200 PERFORM CLOSING-PROCEDURE.
006300
006400 PROGRAM-EXIT.
006500 EXIT PROGRAM.
006600
006700 PROGRAM-DONE.
006800 STOP RUN.
006900
007000 OPENING-PROCEDURE.
007100 OPEN I-O VOUCHER-FILE.
007200 OPEN I-O VENDOR-FILE.
007300 OPEN I-O CONTROL-FILE.
007400
007500 CLOSING-PROCEDURE.
007600 CLOSE VOUCHER-FILE.
007700 CLOSE VENDOR-FILE.
007800 CLOSE CONTROL-FILE.
007900
008000 MAIN-PROCESS.
008100 PERFORM CHANGE-MODE.
008200
008300*--------------------------------
008400* CHANGE
008500*--------------------------------
008600 CHANGE-MODE.
008700 PERFORM GET-EXISTING-RECORD.
008800 PERFORM CHANGE-RECORDS
008900 UNTIL VOUCHER-NUMBER = ZEROES.
009000
009100 CHANGE-RECORDS.
009200 PERFORM DISPLAY-ALL-FIELDS.
009300 IF VOUCHER-PAID-DATE = ZEROES
009400 PERFORM CHANGE-TO-PAID
009500 ELSE
009600 PERFORM CHANGE-TO-UNPAID.
009700
009800 PERFORM GET-EXISTING-RECORD.
009900
010000*--------------------------------
010100* Ask if the user wants to pay this
010200* voucher and if so:
010300* Change the voucher to paid status
010400* by getting PAID-DATE, PAID-AMOUNT
010500* and CHECK-NO.

010600*--------------------------------
010700 CHANGE-TO-PAID.
010800 PERFORM ASK-OK-TO-PAY.
010900 IF OK-TO-PROCESS = "Y"
011000 PERFORM CHANGE-ALL-FIELDS.
011100
011200 ASK-OK-TO-PAY.
011300 MOVE "PROCESS THIS VOUCHER AS PAID (Y/N)?"
011400 TO PROCESS-MESSAGE.
011500 PERFORM ASK-OK-TO-PROCESS.
011600
011700 CHANGE-ALL-FIELDS.
011800 PERFORM CHANGE-THIS-FIELD
011900 VARYING WHICH-FIELD FROM 1 BY 1
012000 UNTIL WHICH-FIELD > 3.
012100
012200 PERFORM REWRITE-VOUCHER-RECORD.
012300
012400 IF NEW-VOUCHER = "Y"
012500 PERFORM GENERATE-NEW-VOUCHER.
012600
012700 CHANGE-THIS-FIELD.
012800 IF WHICH-FIELD = 1
012900 PERFORM ENTER-VOUCHER-PAID-DATE.
013000 IF WHICH-FIELD = 2
013100 PERFORM ENTER-VOUCHER-PAYMENT.
013200 IF WHICH-FIELD = 3
013300 PERFORM ENTER-VOUCHER-CHECK-NO.
013400
013500*--------------------------------
013600* Ask if the user wants to re-open
013700* this voucher and if so:
013800* Move zeroes to PAID-DATE,
013900* PAID-AMOUNT and CHECK-NO.
014000*--------------------------------
014100 CHANGE-TO-UNPAID.
014200 PERFORM ASK-OK-TO-OPEN.
014300 IF OK-TO-PROCESS = "Y"
014400 PERFORM CLEAR-PAID-AND-REWRITE
014500 DISPLAY "VOUCHER HAS BEEN REOPENED".
014600
014700 CLEAR-PAID-AND-REWRITE.
014800 PERFORM CLEAR-PAID-FIELDS.
014900 PERFORM REWRITE-VOUCHER-RECORD.
015000
015100 CLEAR-PAID-FIELDS.
015200 MOVE ZEROES TO VOUCHER-PAID-DATE

015300 VOUCHER-PAID-AMOUNT
015400 VOUCHER-CHECK-NO.
015500
015600 ASK-OK-TO-OPEN.
015700 MOVE "RE-OPEN THIS VOUCHER (Y/N)?" TO PROCESS-MESSAGE.
015800 PERFORM ASK-OK-TO-PROCESS.
015900
016000*--------------------------------
016100* This routine is used by both
016200* ASK-OK-TO-PAY which is part of
016300* the CHANGE-TO-PAID logic, and
016400* ASK-OK-TO-OPEN which is part
016500* of the CHANGE-TO-UNPAID LOGIC.
016600*--------------------------------
016700 ASK-OK-TO-PROCESS.
016800 PERFORM ACCEPT-OK-TO-PROCESS.
016900
017000 PERFORM RE-ACCEPT-OK-TO-PROCESS
017100 UNTIL OK-TO-PROCESS = "Y" OR "N".
017200
017300 ACCEPT-OK-TO-PROCESS.
017400 DISPLAY PROCESS-MESSAGE.
017500 ACCEPT OK-TO-PROCESS.
017600 INSPECT OK-TO-PROCESS
017700 CONVERTING LOWER-ALPHA TO UPPER-ALPHA.
017800
017900 RE-ACCEPT-OK-TO-PROCESS.
018000 DISPLAY "YOU MUST ENTER YES OR NO".
018100 PERFORM ACCEPT-OK-TO-PROCESS.
018200
018300*--------------------------------
018400* Field entry routines.
018500*--------------------------------
018600 ENTER-VOUCHER-PAID-DATE.
018700 MOVE "N" TO ZERO-DATE-IS-OK.
018800 MOVE "ENTER PAID DATE(MM/DD/YYYY)?"
018900 TO DATE-PROMPT.
019000 MOVE "A VALID PAID DATE IS REQUIRED"
019100 TO DATE-ERROR-MESSAGE.
019200 PERFORM GET-A-DATE.
019300 MOVE DATE-CCYYMMDD TO VOUCHER-PAID-DATE.
019400
019500*--------------------------------
019600* Voucher payment is entered by
019700* asking if the payment is for the
019800* the exact amount of the voucher.
019900* If it is, VOUCHER-AMOUNT is

020000* moved in to VOUCHER-PAID-AMOUNT.
020100* If it is not, then the user is
020200* asked to enter the amount
020300* to be paid.
020400* If the paid amount is less than
020500* the voucher amount, the user
020600* is also asked if a new voucher
020700* should be generated for the
020800* the balance. This allows
020900* for partial payments.
021000*--------------------------------
021100 ENTER-VOUCHER-PAYMENT.
021200 MOVE "N" TO NEW-VOUCHER.
021300 PERFORM ASK-FULL-PAYMENT.
021400 IF FULL-PAYMENT = "Y"
021500 MOVE VOUCHER-AMOUNT TO VOUCHER-PAID-AMOUNT
021600 ELSE
021700 PERFORM ENTER-VOUCHER-PAID-AMOUNT
021800 IF VOUCHER-PAID-AMOUNT < VOUCHER-AMOUNT
021900 PERFORM ASK-NEW-VOUCHER.
022000
022100 ASK-FULL-PAYMENT.
022200 PERFORM ACCEPT-FULL-PAYMENT.
022300 PERFORM RE-ACCEPT-FULL-PAYMENT
022400 UNTIL FULL-PAYMENT = "Y" OR "N".
022500
022600 ACCEPT-FULL-PAYMENT.
022700 MOVE VOUCHER-AMOUNT TO AN-AMOUNT-FIELD.
022800 DISPLAY "PAY THE EXACT AMOUNT "
022900 AN-AMOUNT-FIELD
023000 " (Y/N)?".
023100 ACCEPT FULL-PAYMENT.
023200 INSPECT FULL-PAYMENT
023300 CONVERTING LOWER-ALPHA TO UPPER-ALPHA.
023400
023500 RE-ACCEPT-FULL-PAYMENT.
023600 DISPLAY "YOU MUST ENTER YES OR NO".
023700 PERFORM ACCEPT-FULL-PAYMENT.
023800
023900 ASK-NEW-VOUCHER.
024000 PERFORM ACCEPT-NEW-VOUCHER.
024100 PERFORM RE-ACCEPT-NEW-VOUCHER
024200 UNTIL NEW-VOUCHER = "Y" OR "N".
024300
024400 ACCEPT-NEW-VOUCHER.
024500 MOVE VOUCHER-AMOUNT TO AN-AMOUNT-FIELD.
024600 DISPLAY "GENERATE A NEW VOUCHER".

024700 DISPLAY " FOR THE BALANCE (Y/N)?".
024800 ACCEPT NEW-VOUCHER.
024900 INSPECT NEW-VOUCHER
025000 CONVERTING LOWER-ALPHA TO UPPER-ALPHA.
025100
025200 RE-ACCEPT-NEW-VOUCHER.
025300 DISPLAY "YOU MUST ENTER YES OR NO".
025400 PERFORM ACCEPT-NEW-VOUCHER.
025500
025600 ENTER-VOUCHER-PAID-AMOUNT.
025700 PERFORM ACCEPT-VOUCHER-PAID-AMOUNT.
025800 PERFORM RE-ACCEPT-VOUCHER-PAID-AMOUNT
025900 UNTIL VOUCHER-PAID-AMOUNT NOT = ZEROES.
026000
026100
026200 ACCEPT-VOUCHER-PAID-AMOUNT.
026300 DISPLAY "ENTER AMOUNT PAID".
026400 ACCEPT AN-AMOUNT-FIELD.
026500 MOVE AN-AMOUNT-FIELD TO VOUCHER-PAID-AMOUNT.
026600
026700 RE-ACCEPT-VOUCHER-PAID-AMOUNT.
026800 MOVE VOUCHER-AMOUNT TO AN-AMOUNT-FIELD.
026900 DISPLAY "A PAYMENT MUST BE ENTERED".
027000 DISPLAY "AGAINST " AN-AMOUNT-FIELD.
027100 PERFORM ACCEPT-VOUCHER-PAID-AMOUNT.
027200
027300 ENTER-VOUCHER-CHECK-NO.
027400 PERFORM ACCEPT-VOUCHER-CHECK-NO.
027500
027600 ACCEPT-VOUCHER-CHECK-NO.
027700 DISPLAY "ENTER THE CHECK NUMBER".
027800 DISPLAY "ENTER 0 FOR CASH PAYMENT".
027900 ACCEPT CHECK-NO-FIELD.
028000 MOVE CHECK-NO-FIELD TO VOUCHER-CHECK-NO.
028100
028200*--------------------------------
028300* A new voucher is generated by
028400* 1. Saving the existing voucher
028500* record.
028600* 2. Locating a new voucher number
028700* that is not in use by using
028800* the control file and attempting
028900* to read a voucher with the
029000* number offered by the control
029100* file.
029200* 3. Restoring the saved voucher record
029300* but using the new voucher number.

029400* 4. Setting the new voucher amount
029500* to the original amount minus
029600* the amount paid.
029700* 5. Resetting the paid date,
029800* paid amount and check number
029900* 6. Setting the selected flag to "N".
030000* 7. Writing this new record.
030100*--------------------------------
030200 GENERATE-NEW-VOUCHER.
030300 MOVE VOUCHER-RECORD TO SAVE-VOUCHER-RECORD.
030400 PERFORM GET-NEW-RECORD-KEY.
030500 PERFORM CREATE-NEW-VOUCHER-RECORD.
030600 PERFORM DISPLAY-NEW-VOUCHER.
030700
030800 CREATE-NEW-VOUCHER-RECORD.
030900 MOVE SAVE-VOUCHER-RECORD TO VOUCHER-RECORD.
031000 MOVE CONTROL-LAST-VOUCHER TO VOUCHER-NUMBER.
031100 SUBTRACT VOUCHER-PAID-AMOUNT FROM VOUCHER-AMOUNT.
031200 MOVE "N" TO VOUCHER-SELECTED.
031300 PERFORM CLEAR-PAID-FIELDS.
031400 PERFORM WRITE-VOUCHER-RECORD.
031500
031600 DISPLAY-NEW-VOUCHER.
031700 MOVE VOUCHER-NUMBER TO VOUCHER-NUMBER-FIELD.
031800 MOVE VOUCHER-AMOUNT TO AN-AMOUNT-FIELD.
031900 DISPLAY "VOUCHER " VOUCHER-NUMBER-FIELD
032000 " CREATED FOR " AN-AMOUNT-FIELD.
032100
032200*--------------------------------
032300* Standard change mode routines to
032400* get a voucher number, read the
032500* voucher record.
032600*--------------------------------
032700 GET-NEW-RECORD-KEY.
032800 PERFORM ACCEPT-NEW-RECORD-KEY.
032900 PERFORM RE-ACCEPT-NEW-RECORD-KEY
033000 UNTIL VOUCHER-RECORD-FOUND = "N".
033100
033200
033300
033400 ACCEPT-NEW-RECORD-KEY.
033500 PERFORM INIT-VOUCHER-RECORD.
033600 PERFORM RETRIEVE-NEXT-VOUCHER-NUMBER.
033700
033800 PERFORM READ-VOUCHER-RECORD.
033900
034000 RE-ACCEPT-NEW-RECORD-KEY.

034100 PERFORM ACCEPT-NEW-RECORD-KEY.
034200
034300 RETRIEVE-NEXT-VOUCHER-NUMBER.
034400 PERFORM READ-CONTROL-RECORD.
034500 ADD 1 TO CONTROL-LAST-VOUCHER.
034600 MOVE CONTROL-LAST-VOUCHER TO VOUCHER-NUMBER.
034700 PERFORM REWRITE-CONTROL-RECORD.
034800
034900 GET-EXISTING-RECORD.
035000 PERFORM ACCEPT-EXISTING-KEY.
035100 PERFORM RE-ACCEPT-EXISTING-KEY
035200 UNTIL VOUCHER-RECORD-FOUND = "Y" OR
035300 VOUCHER-NUMBER = ZEROES.
035400
035500 ACCEPT-EXISTING-KEY.
035600 PERFORM INIT-VOUCHER-RECORD.
035700 PERFORM ENTER-VOUCHER-NUMBER.
035800 IF VOUCHER-NUMBER NOT = ZEROES
035900 PERFORM READ-VOUCHER-RECORD.
036000
036100 RE-ACCEPT-EXISTING-KEY.
036200 DISPLAY "RECORD NOT FOUND".
036300 PERFORM ACCEPT-EXISTING-KEY.
036400
036500 ENTER-VOUCHER-NUMBER.
036600 DISPLAY "ENTER VOUCHER NUMBER TO PROCESS".
036700 ACCEPT VOUCHER-NUMBER.
036800
036900*--------------------------------
037000* Standard routines to display
037100* voucher fields.
037200*--------------------------------
037300 DISPLAY-ALL-FIELDS.
037400 DISPLAY " ".
037500 PERFORM DISPLAY-VOUCHER-NUMBER.
037600 PERFORM DISPLAY-VOUCHER-VENDOR.
037700 PERFORM DISPLAY-VOUCHER-INVOICE.
037800 PERFORM DISPLAY-VOUCHER-FOR.
037900 PERFORM DISPLAY-VOUCHER-AMOUNT.
038000 PERFORM DISPLAY-VOUCHER-DATE.
038100 PERFORM DISPLAY-VOUCHER-DUE.
038200 PERFORM DISPLAY-VOUCHER-DEDUCTIBLE.
038300 PERFORM DISPLAY-VOUCHER-SELECTED.
038400 PERFORM DISPLAY-VOUCHER-PAID-DATE.
038500 PERFORM DISPLAY-VOUCHER-PAID-AMOUNT.
038600 PERFORM DISPLAY-VOUCHER-CHECK-NO.
038700 DISPLAY " ".

038800
038900 DISPLAY-VOUCHER-NUMBER.
039000 DISPLAY " VOUCHER NUMBER: " VOUCHER-NUMBER.
039100
039200 DISPLAY-VOUCHER-VENDOR.
039300 PERFORM VOUCHER-VENDOR-ON-FILE.
039400 IF VENDOR-RECORD-FOUND = "N"
039500 MOVE "**Not found**" TO VENDOR-NAME.
039600 DISPLAY " VENDOR: "
039700 VOUCHER-VENDOR " "
039800 VENDOR-NAME.
039900
040000 DISPLAY-VOUCHER-INVOICE.
040100 DISPLAY " INVOICE: " VOUCHER-INVOICE.
040200
040300 DISPLAY-VOUCHER-FOR.
040400 DISPLAY " FOR: " VOUCHER-FOR.
040500
040600 DISPLAY-VOUCHER-AMOUNT.
040700 MOVE VOUCHER-AMOUNT TO AN-AMOUNT-FIELD.
040800 DISPLAY " AMOUNT: " AN-AMOUNT-FIELD.
040900
041000 DISPLAY-VOUCHER-DATE.
041100 MOVE VOUCHER-DATE TO DATE-CCYYMMDD.
041200 PERFORM FORMAT-THE-DATE.
041300 DISPLAY " INVOICE DATE: " FORMATTED-DATE.
041400
041500 DISPLAY-VOUCHER-DUE.
041600 MOVE VOUCHER-DUE TO DATE-CCYYMMDD.
041700 PERFORM FORMAT-THE-DATE.
041800 DISPLAY " DUE DATE: " FORMATTED-DATE.
041900
042000 DISPLAY-VOUCHER-DEDUCTIBLE.
042100 DISPLAY " DEDUCTIBLE: " VOUCHER-DEDUCTIBLE.
042200
042300 DISPLAY-VOUCHER-SELECTED.
042400 DISPLAY " SELECTED FOR PAYMENT: " VOUCHER-SELECTED.
042500
042600 DISPLAY-VOUCHER-PAID-DATE.
042700 MOVE VOUCHER-PAID-DATE TO DATE-CCYYMMDD.
042800 PERFORM FORMAT-THE-DATE.
042900 DISPLAY "1. PAID ON: " FORMATTED-DATE.
043000
043100 DISPLAY-VOUCHER-PAID-AMOUNT.
043200 MOVE VOUCHER-PAID-AMOUNT TO AN-AMOUNT-FIELD.
043300 DISPLAY "2. PAID: " AN-AMOUNT-FIELD.
043400

043500 DISPLAY-VOUCHER-CHECK-NO.
043600 DISPLAY "3. CHECK: " VOUCHER-CHECK-NO.
043700
043800*--------------------------------
043900* File activity Routines
044000*--------------------------------
044100 INIT-VOUCHER-RECORD.
044200 MOVE SPACE TO VOUCHER-INVOICE
044300 VOUCHER-FOR
044400 VOUCHER-DEDUCTIBLE
044500 VOUCHER-SELECTED.
044600 MOVE ZEROES TO VOUCHER-NUMBER
044700 VOUCHER-VENDOR
044800 VOUCHER-AMOUNT
044900 VOUCHER-DATE
045000 VOUCHER-DUE
045100 VOUCHER-PAID-AMOUNT
045200 VOUCHER-PAID-DATE
045300 VOUCHER-CHECK-NO.
045400
045500 READ-VOUCHER-RECORD.
045600 MOVE "Y" TO VOUCHER-RECORD-FOUND.
045700 READ VOUCHER-FILE RECORD
045800 INVALID KEY
045900 MOVE "N" TO VOUCHER-RECORD-FOUND.
046000
046100*or READ VOUCHER-FILE RECORD WITH LOCK
046200* INVALID KEY
046300* MOVE "N" TO VOUCHER-RECORD-FOUND.
046400
046500*or READ VOUCHER-FILE RECORD WITH HOLD
046600* INVALID KEY
046700* MOVE "N" TO VOUCHER-RECORD-FOUND.
046800
046900 WRITE-VOUCHER-RECORD.
047000 WRITE VOUCHER-RECORD
047100 INVALID KEY
047200 DISPLAY "RECORD ALREADY ON FILE".
047300
047400 REWRITE-VOUCHER-RECORD.
047500 REWRITE VOUCHER-RECORD
047600 INVALID KEY
047700 DISPLAY "ERROR REWRITING VENDOR RECORD".
047800
047900 VOUCHER-VENDOR-ON-FILE.
048000 MOVE VOUCHER-VENDOR TO VENDOR-NUMBER.
048100 PERFORM READ-VENDOR-RECORD.

048200
048300 READ-VENDOR-RECORD.
048400 MOVE "Y" TO VENDOR-RECORD-FOUND.
048500 READ VENDOR-FILE RECORD
048600 INVALID KEY
048700 MOVE "N" TO VENDOR-RECORD-FOUND.
048800
048900 READ-CONTROL-RECORD.
049000 MOVE 1 TO CONTROL-KEY.
049100 MOVE "Y" TO CONTROL-RECORD-FOUND.
049200 READ CONTROL-FILE RECORD
049300 INVALID KEY
049400 MOVE "N" TO CONTROL-RECORD-FOUND
049500 DISPLAY "CONTROL FILE IS INVALID".
049600
049700 REWRITE-CONTROL-RECORD.
049800 REWRITE CONTROL-RECORD
049900 INVALID KEY
050000 DISPLAY "ERROR REWRITING CONTROL RECORD".
050100
050200*--------------------------------
050300* General utility routines
050400*--------------------------------
050500 COPY "PLDATE01.CBL".
050600

The output of vchpay02.cbl allows overpayment:

OUTPUT:
ENTER VOUCHER NUMBER TO PROCESS
2

VOUCHER NUMBER: 00002
VENDOR: 00002 ABC PRINTING
INVOICE: CX-1407
FOR: BUSINESS CARDS
AMOUNT: 98.97
INVOICE DATE: 1/22/1994
DUE DATE: 2/22/1994
DEDUCTIBLE: Y
SELECTED FOR PAYMENT: N
1. PAID ON: 0/00/0000
2. PAID: 0.00
3. CHECK: 000000

PROCESS THIS VOUCHER AS PAID (Y/N)?
y
ENTER PAID DATE(MM/DD/YYYY)?

01/27/1994
PAY THE EXACT AMOUNT 98.97 (Y/N)?
n
ENTER AMOUNT PAID
105
ENTER THE CHECK NUMBER
ENTER 0 FOR CASH PAYMENT
207
ENTER VOUCHER NUMBER TO PROCESS
2

VOUCHER NUMBER: 00002
VENDOR: 00002 ABC PRINTING
INVOICE: CX-1407
FOR: BUSINESS CARDS
AMOUNT: 98.97
INVOICE DATE: 1/22/1994
DUE DATE: 2/22/1994
DEDUCTIBLE: Y
SELECTED FOR PAYMENT: N
1. PAID ON: 1/27/1994
2. PAID: 105.00
3. CHECK: 000207

RE-OPEN THIS VOUCHER (Y/N)?

Answers to Day 21, "Selecting, Sorting, and
Reporting"

Quiz

1. The SORT command is used to sort a file on a field that is not a key to the file.

2. b. Closed.

Exercises

1. Listing A.42 is deduct01.cbl, a report on paid bills that are tax-deductible.

TYPE: Listing A.42. Deductibles report.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. DEDUCT01.
000300*--------------------------------
000400* Deductibles Report
000500*--------------------------------

000600 ENVIRONMENT DIVISION.
000700 INPUT-OUTPUT SECTION.
000800 FILE-CONTROL.
000900
001000 COPY "SLVOUCH.CBL".
001100
001200 COPY "SLVND02.CBL".
001300
001400 COPY "SLSTATE.CBL".
001500
001600 SELECT WORK-FILE
001700 ASSIGN TO "WORK"
001800 ORGANIZATION IS SEQUENTIAL.
001900
002000 SELECT SORT-FILE
002100 ASSIGN TO "SORT".
002200
002300 SELECT PRINTER-FILE
002400 ASSIGN TO PRINTER
002500 ORGANIZATION IS LINE SEQUENTIAL.
002600
002700 DATA DIVISION.
002800 FILE SECTION.
002900
003000 COPY "FDVOUCH.CBL".
003100
003200 COPY "FDVND04.CBL".
003300
003400 COPY "FDSTATE.CBL".
003500
003600 FD WORK-FILE
003700 LABEL RECORDS ARE STANDARD.
003800 01 WORK-RECORD.
003900 05 WORK-NUMBER PIC 9(5).
004000 05 WORK-VENDOR PIC 9(5).
004100 05 WORK-INVOICE PIC X(15).
004200 05 WORK-FOR PIC X(30).
004300 05 WORK-AMOUNT PIC S9(6)V99.
004400 05 WORK-DATE PIC 9(8).
004500 05 WORK-DUE PIC 9(8).
004600 05 WORK-DEDUCTIBLE PIC X.
004700 05 WORK-SELECTED PIC X.
004800 05 WORK-PAID-AMOUNT PIC S9(6)V99.
004900 05 WORK-PAID-DATE PIC 9(8).
005000 05 WORK-CHECK-NO PIC 9(6).
005100
005200 SD SORT-FILE.

005300
005400 01 SORT-RECORD.
005500 05 SORT-NUMBER PIC 9(5).
005600 05 SORT-VENDOR PIC 9(5).
005700 05 SORT-INVOICE PIC X(15).
005800 05 SORT-FOR PIC X(30).
005900 05 SORT-AMOUNT PIC S9(6)V99.
006000 05 SORT-DATE PIC 9(8).
006100 05 SORT-DUE PIC 9(8).
006200 05 SORT-DEDUCTIBLE PIC X.
006300 05 SORT-SELECTED PIC X.
006400 05 SORT-PAID-AMOUNT PIC S9(6)V99.
006500 05 SORT-PAID-DATE PIC 9(8).
006600 05 SORT-CHECK-NO PIC 9(6).
006700
006800 FD PRINTER-FILE
006900 LABEL RECORDS ARE OMITTED.
007000 01 PRINTER-RECORD PIC X(80).
007100
007200 WORKING-STORAGE SECTION.
007300
007400 77 OK-TO-PROCESS PIC X.
007500
007600 COPY "WSCASE01.CBL".
007700
007800 01 DETAIL-LINE.
007900 05 PRINT-NUMBER PIC ZZZZ9.
008000 05 FILLER PIC X(3) VALUE SPACE.
008100 05 PRINT-NAME PIC X(30).
008200 05 FILLER PIC X(1) VALUE SPACE.
008300 05 PRINT-DUE-DATE PIC Z9/99/9999.
008400 05 FILLER PIC X(1) VALUE SPACE.
008500 05 PRINT-AMOUNT PIC ZZZ,ZZ9.99.
008600 05 FILLER PIC X(1) VALUE SPACE.
008700 05 PRINT-INVOICE PIC X(15).
008800
008900 01 TOTAL-THRU.
009000 05 FILLER PIC X(20) VALUE SPACE.
009100 05 FILLER PIC X(10) VALUE "TOTAL THRU".
009200
009300 01 COLUMN-LINE.
009400 05 FILLER PIC X(7) VALUE "VOUCHER".
009500 05 FILLER PIC X(1) VALUE SPACE.
009600 05 FILLER PIC X(10) VALUE "VENDOR/For".
009700 05 FILLER PIC X(23) VALUE SPACE.
009800 05 FILLER PIC X(8) VALUE "DATE".
009900 05 FILLER PIC X(1) VALUE SPACE.

010000 05 FILLER PIC X(10) VALUE " AMOUNT".
010100 05 FILLER PIC X(1) VALUE SPACE.
010200 05 FILLER PIC X(7) VALUE "INVOICE".
010300
010400 01 TITLE-LINE.
010500 05 FILLER PIC X(31) VALUE SPACE.
010600 05 FILLER PIC X(11)
010700 VALUE "DEDUCTIBLES".
010800 05 FILLER PIC X(19) VALUE SPACE.
010900 05 FILLER PIC X(5) VALUE "PAGE:".
011000 05 FILLER PIC X(1) VALUE SPACE.
011100 05 PRINT-PAGE-NUMBER PIC ZZZ9.
011200
011300 77 WORK-FILE-AT-END PIC X.
011400 77 VENDOR-RECORD-FOUND PIC X.
011500
011600 77 LINE-COUNT PIC 999 VALUE ZERO.
011700 77 PAGE-NUMBER PIC 9999 VALUE ZERO.
011800 77 MAXIMUM-LINES PIC 999 VALUE 55.
011900
012000 77 RECORD-COUNT PIC 9999 VALUE ZEROES.
012100
012200 77 SAVE-PAID-DATE PIC 9(8).
012300
012400 77 RUNNING-TOTAL PIC S9(6)V99.
012500
012600 COPY "WSDATE01.CBL".
012700
012800 PROCEDURE DIVISION.
012900 PROGRAM-BEGIN.
013000
013100 PERFORM OPENING-PROCEDURE.
013200 PERFORM MAIN-PROCESS.
013300 PERFORM CLOSING-PROCEDURE.
013400
013500 PROGRAM-EXIT.
013600 EXIT PROGRAM.
013700
013800 PROGRAM-DONE.
013900 STOP RUN.
014000
014100 OPENING-PROCEDURE.
014200 OPEN I-O VENDOR-FILE.
014300
014400 OPEN OUTPUT PRINTER-FILE.
014500
014600 MAIN-PROCESS.

014700 PERFORM GET-OK-TO-PROCESS.
014800 IF OK-TO-PROCESS = "Y"
014900 PERFORM SORT-DATA-FILE
015000 PERFORM PRINT-THE-REPORT.
015100
015200 CLOSING-PROCEDURE.
015300 CLOSE VENDOR-FILE.
015400 PERFORM END-LAST-PAGE.
015500 CLOSE PRINTER-FILE.
015600
015700 GET-OK-TO-PROCESS.
015800 PERFORM ACCEPT-OK-TO-PROCESS.
015900 PERFORM RE-ACCEPT-OK-TO-PROCESS
016000 UNTIL OK-TO-PROCESS = "Y" OR "N".
016100
016200 ACCEPT-OK-TO-PROCESS.
016300 DISPLAY "PRINT DEDUCTIBLES REPORT (Y/N)?".
016400 ACCEPT OK-TO-PROCESS.
016500 INSPECT OK-TO-PROCESS
016600 CONVERTING LOWER-ALPHA
016700 TO UPPER-ALPHA.
016800
016900 RE-ACCEPT-OK-TO-PROCESS.
017000 DISPLAY "YOU MUST ENTER YES OR NO".
017100 PERFORM ACCEPT-OK-TO-PROCESS.
017200
017300*--------------------------------
017400* Sorting logic
017500*--------------------------------
017600 SORT-DATA-FILE.
017700 SORT SORT-FILE
017800 ON ASCENDING KEY SORT-PAID-DATE
017900 USING VOUCHER-FILE
018000 GIVING WORK-FILE.
018100
018200 PRINT-THE-REPORT.
018300 OPEN INPUT WORK-FILE.
018400 PERFORM START-ONE-REPORT.
018500 PERFORM PROCESS-VOUCHERS.
018600 PERFORM END-ONE-REPORT.
018700 CLOSE WORK-FILE.
018800
018900 START-ONE-REPORT.
019000 PERFORM INITIALIZE-REPORT.
019100 PERFORM START-NEW-PAGE.
019200 MOVE ZEROES TO RUNNING-TOTAL.
019300

019400 INITIALIZE-REPORT.
019500 MOVE ZEROES TO LINE-COUNT PAGE-NUMBER.
019600
019700 END-ONE-REPORT.
019800 IF RECORD-COUNT = ZEROES
019900 MOVE "NO RECORDS FOUND" TO PRINTER-RECORD
020000 PERFORM WRITE-TO-PRINTER.
020100
020200 PROCESS-VOUCHERS.
020300 PERFORM READ-FIRST-VALID-WORK.
020400 PERFORM PROCESS-ALL-DATES
020500 UNTIL WORK-FILE-AT-END = "Y".
020600
020700 PROCESS-ALL-DATES.
020800 PERFORM START-ONE-DATE.
020900
021000 PERFORM PROCESS-ALL-VOUCHERS
021100 UNTIL WORK-FILE-AT-END = "Y"
021200 OR WORK-PAID-DATE NOT = SAVE-PAID-DATE.
021300
021400 PERFORM END-ONE-DATE.
021500
021600 START-ONE-DATE.
021700 MOVE WORK-PAID-DATE TO SAVE-PAID-DATE.
021800
021900 END-ONE-DATE.
022000 PERFORM PRINT-RUNNING-TOTAL.
022100
022200 PRINT-RUNNING-TOTAL.
022300 MOVE SPACE TO DETAIL-LINE.
022400 MOVE SAVE-PAID-DATE TO DATE-CCYYMMDD.
022500 PERFORM CONVERT-TO-MMDDCCYY.
022600 MOVE DATE-MMDDCCYY TO PRINT-DUE-DATE.
022700 MOVE RUNNING-TOTAL TO PRINT-AMOUNT.
022800 MOVE TOTAL-THRU TO PRINT-NAME.
022900 MOVE DETAIL-LINE TO PRINTER-RECORD.
023000 PERFORM WRITE-TO-PRINTER.
023100 PERFORM LINE-FEED 2 TIMES.
023200
023300 PROCESS-ALL-VOUCHERS.
023400 PERFORM PROCESS-THIS-VOUCHER.
023500 PERFORM READ-NEXT-VALID-WORK.
023600
023700 PROCESS-THIS-VOUCHER.
023800 ADD 1 TO RECORD-COUNT.
023900 IF LINE-COUNT > MAXIMUM-LINES
024000 PERFORM START-NEXT-PAGE.

024100 PERFORM PRINT-THE-RECORD.
024200 ADD WORK-PAID-AMOUNT TO RUNNING-TOTAL.
024300
024400 PRINT-THE-RECORD.
024500 PERFORM PRINT-LINE-1.
024600 PERFORM PRINT-LINE-2.
024700 PERFORM LINE-FEED.
024800
024900 PRINT-LINE-1.
025000 MOVE SPACE TO DETAIL-LINE.
025100 MOVE WORK-NUMBER TO PRINT-NUMBER.
025200
025300 MOVE WORK-VENDOR TO VENDOR-NUMBER.
025400 PERFORM READ-VENDOR-RECORD.
025500 IF VENDOR-RECORD-FOUND = "Y"
025600 MOVE VENDOR-NAME TO PRINT-NAME
025700 ELSE
025800 MOVE "*VENDOR NOT ON FILE*" TO PRINT-NAME.
025900
026000 MOVE WORK-PAID-DATE TO DATE-CCYYMMDD.
026100 PERFORM CONVERT-TO-MMDDCCYY.
026200 MOVE DATE-MMDDCCYY TO PRINT-DUE-DATE.
026300
026400 MOVE WORK-PAID-AMOUNT TO PRINT-AMOUNT.
026500 MOVE WORK-INVOICE TO PRINT-INVOICE.
026600
026700 MOVE DETAIL-LINE TO PRINTER-RECORD.
026800 PERFORM WRITE-TO-PRINTER.
026900
027000 PRINT-LINE-2.
027100 MOVE SPACE TO DETAIL-LINE.
027200 MOVE WORK-FOR TO PRINT-NAME.
027300 MOVE DETAIL-LINE TO PRINTER-RECORD.
027400 PERFORM WRITE-TO-PRINTER.
027500
027600 WRITE-TO-PRINTER.
027700 WRITE PRINTER-RECORD BEFORE ADVANCING 1.
027800 ADD 1 TO LINE-COUNT.
027900
028000 LINE-FEED.
028100 MOVE SPACE TO PRINTER-RECORD.
028200 PERFORM WRITE-TO-PRINTER.
028300
028400 START-NEXT-PAGE.
028500 PERFORM END-LAST-PAGE.
028600 PERFORM START-NEW-PAGE.
028700

028800 START-NEW-PAGE.
028900 ADD 1 TO PAGE-NUMBER.
029000 MOVE PAGE-NUMBER TO PRINT-PAGE-NUMBER.
029100 MOVE TITLE-LINE TO PRINTER-RECORD.
029200 PERFORM WRITE-TO-PRINTER.
029300 PERFORM LINE-FEED.
029400 MOVE COLUMN-LINE TO PRINTER-RECORD.
029500 PERFORM WRITE-TO-PRINTER.
029600 PERFORM LINE-FEED.
029700
029800 END-LAST-PAGE.
029900 PERFORM FORM-FEED.
030000 MOVE ZERO TO LINE-COUNT.
030100
030200 FORM-FEED.
030300 MOVE SPACE TO PRINTER-RECORD.
030400 WRITE PRINTER-RECORD BEFORE ADVANCING PAGE.
030500
030600*--------------------------------
030700* Read first, read next routines
030800*--------------------------------
030900 READ-FIRST-VALID-WORK.
031000 PERFORM READ-NEXT-VALID-WORK.
031100
031200 READ-NEXT-VALID-WORK.
031300 PERFORM READ-NEXT-WORK-RECORD.
031400 PERFORM READ-NEXT-WORK-RECORD
031500 UNTIL WORK-FILE-AT-END = "Y"
031600 OR (WORK-PAID-DATE NOT = ZEROES AND
031700 WORK-DEDUCTIBLE = "Y").
031800
031900 READ-NEXT-WORK-RECORD.
032000 MOVE "N" TO WORK-FILE-AT-END.
032100 READ WORK-FILE NEXT RECORD
032200 AT END MOVE "Y" TO WORK-FILE-AT-END.
032300
032400*--------------------------------
032500* Other File IO routines
032600*--------------------------------
032700 READ-VENDOR-RECORD.
032800 MOVE "Y" TO VENDOR-RECORD-FOUND.
032900 READ VENDOR-FILE RECORD
033000 INVALID KEY
033100 MOVE "N" TO VENDOR-RECORD-FOUND.
033200
033300*--------------------------------
033400* Utility Routines

033500*--------------------------------
033600 COPY "PLDATE01.CBL".
033700

2. The sample output of deduct01.cbl lists paid bills that were flagged as tax- deductible:

OUTPUT:
DEDUCTIBLES PAGE: 1

VOUCHER VENDOR/For DATE AMOUNT INVOICE

2 ABC PRINTING 1/27/1994 105.00 CX-1407
BUSINESS CARDS

11 ABC PRINTING 1/27/1994 51.03 CX-1407
BUSINESS CARDS

12 ABC PRINTING 1/27/1994 6.03 CX-1407
BUSINESS CARDS

TOTAL THRU 1/27/1994 162.06

3. Study the report from DEDUCT01. Frequently, an entry screen will be used to allow the user to
print the same basic information in a variety of ways. For example, when the user runs a report
program, the user could be asked SHOW ONLY UNPAID ITEMS (Y/N)? followed by SHOW
ONLY DEDUCTIBLE ITEMS (Y/N)? After criteria such as these are added in to the report, the
READ-NEXT-VALID logic can become complicated. In the following example, the next record is
read and if no select criteria has been requested, the logic returns with the record just read. Otherwise,
it tries to match one or the other of the selected criteria.

031200 READ-NEXT-VALID-WORK.
031300 PERFORM READ-NEXT-WORK-RECORD.
031400 IF SHOW-ONLY-UNPAID-ITEMS = "Y" OR
031500 SHOW-ONLY-DEDUCTIBLE-ITEMS = "Y"
031600 PERFORM READ-NEXT-WORK-RECORD
031700 UNTIL WORK-FILE-AT-END = "Y"
031800 OR (WORK-PAID-DATE NOT = ZEROES AND
031700 SHOW-ONLY-UNPAID-ITEMS = "Y").
031900 OR (WORK-DEDUCTIBLE = "Y" AND
032000 SHOW-ONLY-DEDUCTIBLE = "Y").
032100

Answers to Bonus Day 1, "Control Breaks"

Quiz

1. A control break is a break inserted into the normal processing of a program (usually a report
program) to cause groups of records to be processed together as one unit. The interruption of the
normal printing of a report program to print a total or subtotal would be a control break or level
break.

2. The control break field or control field is the field in the record that causes a control break to occur
when the record changes.

3. The control break current value or control current value is a field created in WORKING-STORAGE
that holds a copy of the control break field. The control break current value is filled in at the
beginning of a control break level with the value in the control break field. As the processing
continues, the control break field is compared to the control break current value to determine whether
a control break has occurred.

4. Control break accumulators or control accumulators are variables used for summing or counting
values within a control break.

5. A level 1 break varies from any other break because there is no true control break current value.
The level 1 break starts at the beginning of the file and completes at the end of the file. The logic to
start level 1 begins by executing a read-first valid record.

The end of a level 1 break does not add accumulators to the next higher level because there is no next
higher level.

Exercises

1. Listing A.43 is slsrpt02.cbl, modified from slsrpt01.cbl. The lines that were moved
have been commented out, and the changes are highlighted in the listing.

TYPE: Listing A.43. The changes needed to create slsrpt02.cbl.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. SLSRPT02.
000300*--------------------------------
000400* Generate test sales data
000500*--------------------------------
000600 ENVIRONMENT DIVISION.
000700 INPUT-OUTPUT SECTION.
000800 FILE-CONTROL.
000900
001000*--------------------------------
001100* SLSALES.CBL
001200*--------------------------------
001300 SELECT SALES-FILE
001400 ASSIGN TO "SALES"

001500 ORGANIZATION IS SEQUENTIAL.
001600
001700 SELECT WORK-FILE
001800 ASSIGN TO "WORK"
001900 ORGANIZATION IS SEQUENTIAL.
002000
002100 SELECT SORT-FILE
002200 ASSIGN TO "SORT".
002300
002400 SELECT PRINTER-FILE
002500 ASSIGN TO PRINTER
002600 ORGANIZATION IS LINE SEQUENTIAL.
002700
002800 DATA DIVISION.
002900 FILE SECTION.
003000
003100*--------------------------------
003200* FDSALES.CBL
003300* Temporary daily sales file.
003400*--------------------------------
003500 FD SALES-FILE
003600 LABEL RECORDS ARE STANDARD.
003700 01 SALES-RECORD.
003800 05 SALES-STORE PIC 9(2).
003900 05 SALES-DIVISION PIC 9(2).
004000 05 SALES-DEPARTMENT PIC 9(2).
004100 05 SALES-CATEGORY PIC 9(2).
004200 05 SALES-AMOUNT PIC S9(6)V99.
004300
004400 FD WORK-FILE
004500 LABEL RECORDS ARE STANDARD.
004600 01 WORK-RECORD.
004700 05 WORK-STORE PIC 9(2).
004800 05 WORK-DIVISION PIC 9(2).
004900 05 WORK-DEPARTMENT PIC 9(2).
005000 05 WORK-CATEGORY PIC 9(2).
005100 05 WORK-AMOUNT PIC S9(6)V99.
005200
005300 SD SORT-FILE
005400 LABEL RECORDS ARE STANDARD.
005500 01 SORT-RECORD.
005600 05 SORT-STORE PIC 9(2).
005700 05 SORT-DIVISION PIC 9(2).
005800 05 SORT-DEPARTMENT PIC 9(2).
005900 05 SORT-CATEGORY PIC 9(2).
006000 05 SORT-AMOUNT PIC S9(6)V99.
006100

006200 FD PRINTER-FILE
006300 LABEL RECORDS ARE OMITTED.
006400 01 PRINTER-RECORD PIC X(80).
006500
006600 WORKING-STORAGE SECTION.
006700
006800 77 OK-TO-PROCESS PIC X.
006900
007000 COPY "WSCASE01.CBL".
007100
007200 01 LEGEND-LINE.
007300 05 FILLER PIC X(6) VALUE "STORE:".
007400 05 FILLER PIC X(1) VALUE SPACE.
007500 05 PRINT-STORE PIC Z9.
007600
007700 01 DETAIL-LINE.
007800 05 FILLER PIC X(3) VALUE SPACE.
007900 05 PRINT-DIVISION PIC Z9.
008000 05 FILLER PIC X(4) VALUE SPACE.
008100 05 FILLER PIC X(3) VALUE SPACE.
008200 05 PRINT-DEPARTMENT PIC Z9.
008300 05 FILLER PIC X(6) VALUE SPACE.
008400 05 FILLER PIC X(3) VALUE SPACE.
008500 05 PRINT-CATEGORY PIC Z9.
008600 05 FILLER PIC X(4) VALUE SPACE.
008700 05 PRINT-AMOUNT PIC ZZZ,ZZ9.99-.
008800
008900 01 COLUMN-LINE.
009000 05 FILLER PIC X(8) VALUE "DIVISION".
009100 05 FILLER PIC X(1) VALUE SPACE.
009200 05 FILLER PIC X(10) VALUE "DEPARTMENT".
009300 05 FILLER PIC X(1) VALUE SPACE.
009400 05 FILLER PIC X(8) VALUE "CATEGORY".
009500 05 FILLER PIC X(1) VALUE SPACE.
009600 05 FILLER PIC X(4) VALUE SPACE.
009700 05 FILLER PIC X(6) VALUE "AMOUNT".
009800
009900 01 TITLE-LINE.
010000 05 FILLER PIC X(30) VALUE SPACE.
010100 05 FILLER PIC X(12)
010200 VALUE "SALES REPORT".
010300 05 FILLER PIC X(16) VALUE SPACE.
010400 05 FILLER PIC X(5) VALUE "PAGE:".
010500 05 FILLER PIC X(1) VALUE SPACE.
010600 05 PRINT-PAGE-NUMBER PIC ZZZ9.
010700
010800 01 TOTAL-LINE.

010900 05 FILLER PIC X(11) VALUE SPACE.
011000 05 TOTAL-TYPE PIC X(8).
011100 05 FILLER PIC X(1) VALUE SPACE.
011200 05 TOTAL-NUMBER PIC Z9.
011300 05 FILLER PIC X(1) VALUE SPACE.
011400 05 TOTAL-LITERAL PIC X(5) VALUE "TOTAL".
011500 05 FILLER PIC X(1) VALUE SPACE.
011600 05 PRINT-TOTAL PIC ZZZ,ZZ9.99-.
011700
011800 77 GRAND-TOTAL-LITERAL PIC X(8) VALUE " GRAND".
011900 77 STORE-TOTAL-LITERAL PIC X(8) VALUE " STORE".
012000 77 DIVISION-TOTAL-LITERAL PIC X(8) VALUE "DIVISION".
012100 77 DEPARTMENT-TOTAL-LITERAL PIC X(8) VALUE " DEPT".
012200
012300 77 WORK-FILE-AT-END PIC X.
012400
012500 77 LINE-COUNT PIC 999 VALUE ZERO.
012600 77 PAGE-NUMBER PIC 9999 VALUE ZERO.
012700 77 MAXIMUM-LINES PIC 999 VALUE 55.
012800
012900 77 RECORD-COUNT PIC 9999 VALUE ZEROES.
013000
013100* Control break current values for store, division
013200* department.
013300 77 CURRENT-STORE PIC 99.
013400 77 CURRENT-DIVISION PIC 99.
013500 77 CURRENT-DEPARTMENT PIC 99.
013600
013700* Control break accumulators
013800* GRAND TOTAL is the level 1 accumulator for the whole file
013900* STORE TOTAL is the level 2 accumulator
014000* DIVISION TOTAL is the level 3 accumulator
014100* DEPARTMENT TOTAL is the level 4 accumulator.
014200 77 GRAND-TOTAL PIC S9(6)V99.
014300 77 STORE-TOTAL PIC S9(6)V99.
014400 77 DIVISION-TOTAL PIC S9(6)V99.
014500 77 DEPARTMENT-TOTAL PIC S9(6)V99.
014600
014700 PROCEDURE DIVISION.
014800 PROGRAM-BEGIN.
014900
015000 PERFORM OPENING-PROCEDURE.
015100 PERFORM MAIN-PROCESS.
015200 PERFORM CLOSING-PROCEDURE.
015300
015400 PROGRAM-EXIT.
015500 EXIT PROGRAM.

015600
015700 PROGRAM-DONE.
015800 STOP RUN.
015900
016000 OPENING-PROCEDURE.
016100
016200 OPEN OUTPUT PRINTER-FILE.
016300
016400 MAIN-PROCESS.
016500 PERFORM GET-OK-TO-PROCESS.
016600 PERFORM PROCESS-THE-FILE
016700 UNTIL OK-TO-PROCESS = "N".
016800
016900 CLOSING-PROCEDURE.
017000 CLOSE PRINTER-FILE.
017100
017200 GET-OK-TO-PROCESS.
017300 PERFORM ACCEPT-OK-TO-PROCESS.
017400 PERFORM RE-ACCEPT-OK-TO-PROCESS
017500 UNTIL OK-TO-PROCESS = "Y" OR "N".
017600
017700 ACCEPT-OK-TO-PROCESS.
017800 DISPLAY "PRINT SALES REPORT (Y/N)?".
017900 ACCEPT OK-TO-PROCESS.
018000 INSPECT OK-TO-PROCESS
018100 CONVERTING LOWER-ALPHA
018200 TO UPPER-ALPHA.
018300
018400 RE-ACCEPT-OK-TO-PROCESS.
018500 DISPLAY "YOU MUST ENTER YES OR NO".
018600 PERFORM ACCEPT-OK-TO-PROCESS.
018700
018800 PROCESS-THE-FILE.
018900 PERFORM START-THE-FILE.
019000 PERFORM PRINT-ONE-REPORT.
019100 PERFORM END-THE-FILE.
019200
019300* PERFORM GET-OK-TO-PROCESS.
019400 MOVE "N" TO OK-TO-PROCESS.
019500
019600 START-THE-FILE.
019700 PERFORM SORT-DATA-FILE.
019800 OPEN INPUT WORK-FILE.
019900
020000 END-THE-FILE.
020100 CLOSE WORK-FILE.
020200

020300 SORT-DATA-FILE.
020400 SORT SORT-FILE
020500 ON ASCENDING KEY SORT-STORE
020600 ASCENDING KEY SORT-DIVISION
020700 ASCENDING KEY SORT-DEPARTMENT
020800 ASCENDING KEY SORT-CATEGORY
020900 USING SALES-FILE
021000 GIVING WORK-FILE.
021100
021200* LEVEL 1 CONTROL BREAK
021300 PRINT-ONE-REPORT.
021400 PERFORM START-ONE-REPORT.
021500 PERFORM PROCESS-ALL-STORES
021600 UNTIL WORK-FILE-AT-END = "Y".
021700 PERFORM END-ONE-REPORT.
021800
021900 START-ONE-REPORT.
022000 PERFORM READ-FIRST-VALID-WORK.
022100 MOVE ZEROES TO GRAND-TOTAL.
022200
022300 PERFORM START-NEW-REPORT.
022400
022500 START-NEW-REPORT.
022600 MOVE SPACE TO DETAIL-LINE.
022700 MOVE ZEROES TO LINE-COUNT PAGE-NUMBER.
022800
022900 END-ONE-REPORT.
023000 IF RECORD-COUNT = ZEROES
023100 MOVE "NO RECORDS FOUND" TO PRINTER-RECORD
023200 PERFORM WRITE-TO-PRINTER
023300 ELSE
023400 PERFORM PRINT-GRAND-TOTAL.
023500
023600 PERFORM END-LAST-PAGE.
023700
023800 PRINT-GRAND-TOTAL.
023900 MOVE SPACE TO TOTAL-LINE.
024000 MOVE GRAND-TOTAL TO PRINT-TOTAL.
024100 MOVE GRAND-TOTAL-LITERAL TO TOTAL-TYPE.
024200 MOVE "TOTAL" TO TOTAL-LITERAL.
024300 MOVE TOTAL-LINE TO PRINTER-RECORD.
024400 PERFORM WRITE-TO-PRINTER.
024500 PERFORM LINE-FEED 2 TIMES.
024600 MOVE SPACE TO DETAIL-LINE.
024700
024800* LEVEL 2 CONTROL BREAK
024900 PROCESS-ALL-STORES.

025000 PERFORM START-ONE-STORE.
025100
025200 PERFORM PROCESS-ALL-DIVISIONS
025300 UNTIL WORK-FILE-AT-END = "Y"
025400 OR WORK-STORE NOT = CURRENT-STORE.
025500
025600 PERFORM END-ONE-STORE.
025700
025800 START-ONE-STORE.
025900 MOVE WORK-STORE TO CURRENT-STORE.
026000 MOVE ZEROES TO STORE-TOTAL.
026100 MOVE WORK-STORE TO PRINT-STORE.
026200
026300 PERFORM START-NEXT-PAGE.
026400
026500 END-ONE-STORE.
026600 PERFORM PRINT-STORE-TOTAL.
026700 ADD STORE-TOTAL TO GRAND-TOTAL.
026800
026900 PRINT-STORE-TOTAL.
027000 MOVE SPACE TO TOTAL-LINE.
027100 MOVE STORE-TOTAL TO PRINT-TOTAL.
027200 MOVE CURRENT-STORE TO TOTAL-NUMBER.
027300 MOVE STORE-TOTAL-LITERAL TO TOTAL-TYPE.
027400 MOVE "TOTAL" TO TOTAL-LITERAL.
027500 MOVE TOTAL-LINE TO PRINTER-RECORD.
027600 PERFORM WRITE-TO-PRINTER.
027700 PERFORM LINE-FEED.
027800 MOVE SPACE TO DETAIL-LINE.
027900
028000* LEVEL 3 CONTROL BREAK
028100 PROCESS-ALL-DIVISIONS.
028200 PERFORM START-ONE-DIVISION.
028300
028400 PERFORM PROCESS-ALL-DEPARTMENTS
028500 UNTIL WORK-FILE-AT-END = "Y"
028600 OR WORK-STORE NOT = CURRENT-STORE
028700 OR WORK-DIVISION NOT = CURRENT-DIVISION.
028800
028900 PERFORM END-ONE-DIVISION.
029000
029100 START-ONE-DIVISION.
029200 MOVE WORK-DIVISION TO CURRENT-DIVISION.
029300 MOVE ZEROES TO DIVISION-TOTAL.
029400* MOVE WORK-DIVISION TO PRINT-DIVISION.
029500
029600 END-ONE-DIVISION.

029700 PERFORM PRINT-DIVISION-TOTAL.
029800 ADD DIVISION-TOTAL TO STORE-TOTAL.
029900
030000 PRINT-DIVISION-TOTAL.
030100 MOVE SPACE TO TOTAL-LINE.
030200 MOVE DIVISION-TOTAL TO PRINT-TOTAL.
030300 MOVE CURRENT-DIVISION TO TOTAL-NUMBER.
030400 MOVE DIVISION-TOTAL-LITERAL TO TOTAL-TYPE.
030500 MOVE "TOTAL" TO TOTAL-LITERAL.
030600 MOVE TOTAL-LINE TO PRINTER-RECORD.
030700 PERFORM WRITE-TO-PRINTER.
030800 PERFORM LINE-FEED.
030900 MOVE SPACE TO DETAIL-LINE.
031000
031100* LEVEL 4 CONTROL BREAK
031200 PROCESS-ALL-DEPARTMENTS.
031300 PERFORM START-ONE-DEPARTMENT.
031400
031500 PERFORM PROCESS-ALL-CATEGORIES
031600 UNTIL WORK-FILE-AT-END = "Y"
031700 OR WORK-STORE NOT = CURRENT-STORE
031800 OR WORK-DIVISION NOT = CURRENT-DIVISION
031900 OR WORK-DEPARTMENT NOT = CURRENT-DEPARTMENT.
032000
032100 PERFORM END-ONE-DEPARTMENT.
032200
032300 START-ONE-DEPARTMENT.
032400 MOVE WORK-DEPARTMENT TO CURRENT-DEPARTMENT.
032500 MOVE ZEROES TO DEPARTMENT-TOTAL.
032600* MOVE WORK-DEPARTMENT TO PRINT-DEPARTMENT.
032700
032800 END-ONE-DEPARTMENT.
032900 PERFORM PRINT-DEPARTMENT-TOTAL.
033000 ADD DEPARTMENT-TOTAL TO DIVISION-TOTAL.
033100
033200 PRINT-DEPARTMENT-TOTAL.
033300 MOVE SPACE TO TOTAL-LINE.
033400 MOVE DEPARTMENT-TOTAL TO PRINT-TOTAL.
033500 MOVE CURRENT-DEPARTMENT TO TOTAL-NUMBER.
033600 MOVE DEPARTMENT-TOTAL-LITERAL TO TOTAL-TYPE.
033700 MOVE "TOTAL" TO TOTAL-LITERAL.
033800 MOVE TOTAL-LINE TO PRINTER-RECORD.
033900 PERFORM WRITE-TO-PRINTER.
034000 PERFORM LINE-FEED.
034100 MOVE SPACE TO DETAIL-LINE.
034200
034300* PROCESS ONE RECORD LEVEL

034400 PROCESS-ALL-CATEGORIES.
034500 PERFORM PROCESS-THIS-CATEGORY.
034600 ADD WORK-AMOUNT TO DEPARTMENT-TOTAL.
034700 ADD 1 TO RECORD-COUNT.
034800 PERFORM READ-NEXT-VALID-WORK.
034900
035000 PROCESS-THIS-CATEGORY.
035100 IF LINE-COUNT > MAXIMUM-LINES
035200 PERFORM START-NEXT-PAGE.
035300 PERFORM PRINT-THE-RECORD.
035400
035500 PRINT-THE-RECORD.
035600 MOVE WORK-DIVISION TO PRINT-DIVISION.
035700 MOVE WORK-DEPARTMENT TO PRINT-DEPARTMENT.
035800 MOVE WORK-CATEGORY TO PRINT-CATEGORY.
035900
036000 MOVE WORK-AMOUNT TO PRINT-AMOUNT.
036100
036200 MOVE DETAIL-LINE TO PRINTER-RECORD.
036300 PERFORM WRITE-TO-PRINTER.
036400 MOVE SPACE TO DETAIL-LINE.
036500
036600* PRINTING ROUTINES
036700 WRITE-TO-PRINTER.
036800 WRITE PRINTER-RECORD BEFORE ADVANCING 1.
036900 ADD 1 TO LINE-COUNT.
037000
037100 LINE-FEED.
037200 MOVE SPACE TO PRINTER-RECORD.
037300 PERFORM WRITE-TO-PRINTER.
037400
037500 START-NEXT-PAGE.
037600 PERFORM END-LAST-PAGE.
037700 PERFORM START-NEW-PAGE.
037800
037900 START-NEW-PAGE.
038000 ADD 1 TO PAGE-NUMBER.
038100 MOVE PAGE-NUMBER TO PRINT-PAGE-NUMBER.
038200 MOVE TITLE-LINE TO PRINTER-RECORD.
038300 PERFORM WRITE-TO-PRINTER.
038400 PERFORM LINE-FEED.
038500 MOVE LEGEND-LINE TO PRINTER-RECORD.
038600 PERFORM WRITE-TO-PRINTER.
038700 PERFORM LINE-FEED.
038800 MOVE COLUMN-LINE TO PRINTER-RECORD.
038900 PERFORM WRITE-TO-PRINTER.
039000 PERFORM LINE-FEED.

039100
039200 END-LAST-PAGE.
039300 IF PAGE-NUMBER > 0
039400 PERFORM FORM-FEED.
039500 MOVE ZERO TO LINE-COUNT.
039600
039700 FORM-FEED.
039800 MOVE SPACE TO PRINTER-RECORD.
039900 WRITE PRINTER-RECORD BEFORE ADVANCING PAGE.
040000
040100*--------------------------------
040200* Read first, read next routines
040300*--------------------------------
040400 READ-FIRST-VALID-WORK.
040500 PERFORM READ-NEXT-VALID-WORK.
040600
040700 READ-NEXT-VALID-WORK.
040800 PERFORM READ-NEXT-WORK-RECORD.
040900
041000 READ-NEXT-WORK-RECORD.
041100 MOVE "N" TO WORK-FILE-AT-END.
041200 READ WORK-FILE NEXT RECORD
041300 AT END MOVE "Y" TO WORK-FILE-AT-END.
041400

The output of slsrpt02.cbl shows full detail on each line:

OUTPUT:
 SALES REPORT PAGE: 1

STORE: 1

DIVISION DEPARTMENT CATEGORY AMOUNT

1 1 1 237.57
1 1 2 475.14
DEPT 1 TOTAL 712.71

1 2 3 712.71
1 2 4 50.28
DEPT 2 TOTAL 762.99

DIVISION 1 TOTAL 1,475.70

2 3 5 287.85
2 3 6 525.42
DEPT 3 TOTAL 813.27

2 4 7 762.99
2 4 8 100.56
DEPT 4 TOTAL 863.55

DIVISION 2 TOTAL 1,676.82

3 5 9 338.13
3 5 10 575.70
DEPT 5 TOTAL 913.83

3 6 11 86.73-
3 6 12 150.84
DEPT 6 TOTAL 64.11

DIVISION 3 TOTAL 977.94

STORE 1 TOTAL 4,130.46

----------------------<page break>--------------------------------

 SALES REPORT PAGE: 2

STORE: 2

DIVISION DEPARTMENT CATEGORY AMOUNT

1 1 1 388.41
1 1 2 625.98
DEPT 1 TOTAL 1,014.39

1 2 3 36.45-
1 2 4 201.12
DEPT 2 TOTAL 164.67

DIVISION 1 TOTAL 1,179.06

2 3 5 438.69
2 3 6 676.26
DEPT 3 TOTAL 1,114.95

2 4 7 13.83
2 4 8 251.40
DEPT 4 TOTAL 265.23

DIVISION 2 TOTAL 1,380.18

3 5 9 488.97
3 5 10 726.54
DEPT 5 TOTAL 1,215.51

3 6 11 64.11
3 6 12 301.68
DEPT 6 TOTAL 365.79

DIVISION 3 TOTAL 1,581.30

STORE 2 TOTAL 4,140.54

----------------------<page break>--------------------------------

 SALES REPORT PAGE: 3

STORE: 3

DIVISION DEPARTMENT CATEGORY AMOUNT

1 1 1 539.25
1 1 2 776.82
DEPT 1 TOTAL 1,316.07

1 2 3 114.39
1 2 4 351.96
DEPT 2 TOTAL 466.35

DIVISION 1 TOTAL 1,782.42

2 3 5 589.53
2 3 6 72.90-
DEPT 3 TOTAL 516.63

2 4 7 164.67
2 4 8 402.24
DEPT 4 TOTAL 566.91

DIVISION 2 TOTAL 1,083.54

3 5 9 639.81
3 5 10 22.62-
DEPT 5 TOTAL 617.19

3 6 11 214.95

3 6 12 452.52
DEPT 6 TOTAL 667.47

DIVISION 3 TOTAL 1,284.66

STORE 3 TOTAL 4,150.62

----------------------<page break>--------------------------------

 SALES REPORT PAGE: 4

STORE: 4

DIVISION DEPARTMENT CATEGORY AMOUNT

1 1 1 690.09
1 1 2 27.66
DEPT 1 TOTAL 717.75

1 2 3 265.23
1 2 4 502.80
DEPT 2 TOTAL 768.03

DIVISION 1 TOTAL 1,485.78

2 3 5 740.37
2 3 6 77.94
DEPT 3 TOTAL 818.31

2 4 7 315.51
2 4 8 553.08
DEPT 4 TOTAL 868.59

DIVISION 2 TOTAL 1,686.90

3 5 9 790.65
3 5 10 128.22
DEPT 5 TOTAL 918.87

3 6 11 365.79
3 6 12 603.36
DEPT 6 TOTAL 969.15

DIVISION 3 TOTAL 1,888.02

STORE 4 TOTAL 5,060.70

----------------------<page break>--------------------------------

 SALES REPORT PAGE: 5

STORE: 5

DIVISION DEPARTMENT CATEGORY AMOUNT

1 1 1 59.07-
1 1 2 178.50
DEPT 1 TOTAL 119.43

1 2 3 416.07
1 2 4 653.64
DEPT 2 TOTAL 1,069.71

DIVISION 1 TOTAL 1,189.14

2 3 5 8.79-
2 3 6 228.78
DEPT 3 TOTAL 219.99

2 4 7 466.35
2 4 8 703.92
DEPT 4 TOTAL 1,170.27

DIVISION 2 TOTAL 1,390.26

3 5 9 41.49
3 5 10 279.06
DEPT 5 TOTAL 320.55

3 6 11 516.63
3 6 12 754.20
DEPT 6 TOTAL 1,270.83

DIVISION 3 TOTAL 1,591.38

STORE 5 TOTAL 4,170.78

----------------------<page break>--------------------------------

 SALES REPORT PAGE: 6

STORE: 6

DIVISION DEPARTMENT CATEGORY AMOUNT

1 1 1 91.77
1 1 2 329.34
DEPT 1 TOTAL 421.11

1 2 3 566.91
1 2 4 95.52-
DEPT 2 TOTAL 471.39

DIVISION 1 TOTAL 892.50

2 3 5 142.05
2 3 6 379.62
DEPT 3 TOTAL 521.67

2 4 7 617.19
2 4 8 45.24-
DEPT 4 TOTAL 571.95

DIVISION 2 TOTAL 1,093.62

3 5 9 192.33
3 5 10 429.90
DEPT 5 TOTAL 622.23

3 6 11 667.47
3 6 12 5.04
DEPT 6 TOTAL 672.51

DIVISION 3 TOTAL 1,294.74

STORE 6 TOTAL 3,280.86

GRAND TOTAL 24,933.96

2. Listing A.44 removes all detail printing and prints only the control breaks. All changes are
highlighted, but only the change of removing (by commenting out) lines 035300 through 036200
was necessary to remove the printing of the detail lines.

The key cosmetic change is the removal of lines 038600 through 038800, which print the column
line. All other highlighted changes are the removal of things not needed for a summary version of the
report, or small cosmetic changes such as the title of the report.

TYPE: Listing A.44. Printing control breaks only.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. SLSSUM01.
000300*--------------------------------
000400* Generate test sales data
000500*--------------------------------
000600 ENVIRONMENT DIVISION.
000700 INPUT-OUTPUT SECTION.
000800 FILE-CONTROL.
000900
001000*--------------------------------
001100* SLSALES.CBL
001200*--------------------------------
001300 SELECT SALES-FILE
001400 ASSIGN TO "SALES"
001500 ORGANIZATION IS SEQUENTIAL.
001600
001700 SELECT WORK-FILE
001800 ASSIGN TO "WORK"
001900 ORGANIZATION IS SEQUENTIAL.
002000
002100 SELECT SORT-FILE
002200 ASSIGN TO "SORT".
002300
002400 SELECT PRINTER-FILE
002500 ASSIGN TO PRINTER
002600 ORGANIZATION IS LINE SEQUENTIAL.
002700
002800 DATA DIVISION.
002900 FILE SECTION.
003000
003100*--------------------------------
003200* FDSALES.CBL
003300* Temporary daily sales file.
003400*--------------------------------
003500 FD SALES-FILE
003600 LABEL RECORDS ARE STANDARD.
003700 01 SALES-RECORD.
003800 05 SALES-STORE PIC 9(2).
003900 05 SALES-DIVISION PIC 9(2).
004000 05 SALES-DEPARTMENT PIC 9(2).
004100 05 SALES-CATEGORY PIC 9(2).
004200 05 SALES-AMOUNT PIC S9(6)V99.
004300
004400 FD WORK-FILE
004500 LABEL RECORDS ARE STANDARD.
004600 01 WORK-RECORD.
004700 05 WORK-STORE PIC 9(2).

004800 05 WORK-DIVISION PIC 9(2).
004900 05 WORK-DEPARTMENT PIC 9(2).
005000 05 WORK-CATEGORY PIC 9(2).
005100 05 WORK-AMOUNT PIC S9(6)V99.
005200
005300 SD SORT-FILE
005400 LABEL RECORDS ARE STANDARD.
005500 01 SORT-RECORD.
005600 05 SORT-STORE PIC 9(2).
005700 05 SORT-DIVISION PIC 9(2).
005800 05 SORT-DEPARTMENT PIC 9(2).
005900 05 SORT-CATEGORY PIC 9(2).
006000 05 SORT-AMOUNT PIC S9(6)V99.
006100
006200 FD PRINTER-FILE
006300 LABEL RECORDS ARE OMITTED.
006400 01 PRINTER-RECORD PIC X(80).
006500
006600 WORKING-STORAGE SECTION.
006700
006800 77 OK-TO-PROCESS PIC X.
006900
007000 COPY "WSCASE01.CBL".
007100
007200 01 LEGEND-LINE.
007300 05 FILLER PIC X(6) VALUE "STORE:".
007400 05 FILLER PIC X(1) VALUE SPACE.
007500 05 PRINT-STORE PIC Z9.
007600
007700*01 DETAIL-LINE.
007800* 05 FILLER PIC X(3) VALUE SPACE.
007900* 05 PRINT-DIVISION PIC Z9.
008000* 05 FILLER PIC X(4) VALUE SPACE.
008100* 05 FILLER PIC X(3) VALUE SPACE.
008200* 05 PRINT-DEPARTMENT PIC Z9.
008300* 05 FILLER PIC X(6) VALUE SPACE.
008400* 05 FILLER PIC X(3) VALUE SPACE.
008500* 05 PRINT-CATEGORY PIC Z9.
008600* 05 FILLER PIC X(4) VALUE SPACE.
008700* 05 PRINT-AMOUNT PIC ZZZ,ZZ9.99-.
008800
008900*01 COLUMN-LINE.
009000* 05 FILLER PIC X(8) VALUE "DIVISION".
009100* 05 FILLER PIC X(1) VALUE SPACE.
009200* 05 FILLER PIC X(10) VALUE "DEPARTMENT".
009300* 05 FILLER PIC X(1) VALUE SPACE.
009400* 05 FILLER PIC X(8) VALUE "CATEGORY".

009500* 05 FILLER PIC X(1) VALUE SPACE.
009600* 05 FILLER PIC X(4) VALUE SPACE.
009700* 05 FILLER PIC X(6) VALUE "AMOUNT".
009800
009900 01 TITLE-LINE.
010000 05 FILLER PIC X(30) VALUE SPACE.
010100 05 FILLER PIC X(13)
010200 VALUE "SALES SUMMARY".
010300 05 FILLER PIC X(15) VALUE SPACE.
010400 05 FILLER PIC X(5) VALUE "PAGE:".
010500 05 FILLER PIC X(1) VALUE SPACE.
010600 05 PRINT-PAGE-NUMBER PIC ZZZ9.
010700
010800 01 TOTAL-LINE.
010900 05 FILLER PIC X(11) VALUE SPACE.
011000 05 TOTAL-TYPE PIC X(8).
011100 05 FILLER PIC X(1) VALUE SPACE.
011200 05 TOTAL-NUMBER PIC Z9.
011300 05 FILLER PIC X(1) VALUE SPACE.
011400 05 TOTAL-LITERAL PIC X(5) VALUE "TOTAL".
011500 05 FILLER PIC X(1) VALUE SPACE.
011600 05 PRINT-TOTAL PIC ZZZ,ZZ9.99-.
011700
011800 77 GRAND-TOTAL-LITERAL PIC X(8) VALUE " GRAND".
011900 77 STORE-TOTAL-LITERAL PIC X(8) VALUE " STORE".
012000 77 DIVISION-TOTAL-LITERAL PIC X(8) VALUE "DIVISION".
012100 77 DEPARTMENT-TOTAL-LITERAL PIC X(8) VALUE " DEPT".
012200
012300 77 WORK-FILE-AT-END PIC X.
012400
012500 77 LINE-COUNT PIC 999 VALUE ZERO.
012600 77 PAGE-NUMBER PIC 9999 VALUE ZERO.
012700 77 MAXIMUM-LINES PIC 999 VALUE 55.
012800
012900 77 RECORD-COUNT PIC 9999 VALUE ZEROES.
013000
013100* Control break current values for store, division
013200* department.
013300 77 CURRENT-STORE PIC 99.
013400 77 CURRENT-DIVISION PIC 99.
013500 77 CURRENT-DEPARTMENT PIC 99.
013600
013700* Control break accumulators
013800* GRAND TOTAL is the level 1 accumulator for the whole file
013900* STORE TOTAL is the level 2 accumulator
014000* DIVISION TOTAL is the level 3 accumulator
014100* DEPARTMENT TOTAL is the level 4 accumulator.

014200 77 GRAND-TOTAL PIC S9(6)V99.
014300 77 STORE-TOTAL PIC S9(6)V99.
014400 77 DIVISION-TOTAL PIC S9(6)V99.
014500 77 DEPARTMENT-TOTAL PIC S9(6)V99.
014600
014700 PROCEDURE DIVISION.
014800 PROGRAM-BEGIN.
014900
015000 PERFORM OPENING-PROCEDURE.
015100 PERFORM MAIN-PROCESS.
015200 PERFORM CLOSING-PROCEDURE.
015300
015400 PROGRAM-EXIT.
015500 EXIT PROGRAM.
015600
015700 PROGRAM-DONE.
015800 STOP RUN.
015900
016000 OPENING-PROCEDURE.
016100
016200 OPEN OUTPUT PRINTER-FILE.
016300
016400 MAIN-PROCESS.
016500 PERFORM GET-OK-TO-PROCESS.
016600 PERFORM PROCESS-THE-FILE
016700 UNTIL OK-TO-PROCESS = "N".
016800
016900 CLOSING-PROCEDURE.
017000 CLOSE PRINTER-FILE.
017100
017200 GET-OK-TO-PROCESS.
017300 PERFORM ACCEPT-OK-TO-PROCESS.
017400 PERFORM RE-ACCEPT-OK-TO-PROCESS
017500 UNTIL OK-TO-PROCESS = "Y" OR "N".
017600
017700 ACCEPT-OK-TO-PROCESS.
017800 DISPLAY "PRINT SALES SUMMARY (Y/N)?".
017900 ACCEPT OK-TO-PROCESS.
018000 INSPECT OK-TO-PROCESS
018100 CONVERTING LOWER-ALPHA
018200 TO UPPER-ALPHA.
018300
018400 RE-ACCEPT-OK-TO-PROCESS.
018500 DISPLAY "YOU MUST ENTER YES OR NO".
018600 PERFORM ACCEPT-OK-TO-PROCESS.
018700
018800 PROCESS-THE-FILE.

018900 PERFORM START-THE-FILE.
019000 PERFORM PRINT-ONE-REPORT.
019100 PERFORM END-THE-FILE.
019200
019300* PERFORM GET-OK-TO-PROCESS.
019400 MOVE "N" TO OK-TO-PROCESS.
019500
019600 START-THE-FILE.
019700 PERFORM SORT-DATA-FILE.
019800 OPEN INPUT WORK-FILE.
019900
020000 END-THE-FILE.
020100 CLOSE WORK-FILE.
020200
020300 SORT-DATA-FILE.
020400 SORT SORT-FILE
020500 ON ASCENDING KEY SORT-STORE
020600 ASCENDING KEY SORT-DIVISION
020700 ASCENDING KEY SORT-DEPARTMENT
020800 ASCENDING KEY SORT-CATEGORY
020900 USING SALES-FILE
021000 GIVING WORK-FILE.
021100
021200* LEVEL 1 CONTROL BREAK
021300 PRINT-ONE-REPORT.
021400 PERFORM START-ONE-REPORT.
021500 PERFORM PROCESS-ALL-STORES
021600 UNTIL WORK-FILE-AT-END = "Y".
021700 PERFORM END-ONE-REPORT.
021800
021900 START-ONE-REPORT.
022000 PERFORM READ-FIRST-VALID-WORK.
022100 MOVE ZEROES TO GRAND-TOTAL.
022200
022300 PERFORM START-NEW-REPORT.
022400
022500 START-NEW-REPORT.
022600* MOVE SPACE TO DETAIL-LINE.
022700 MOVE ZEROES TO LINE-COUNT PAGE-NUMBER.
022800
022900 END-ONE-REPORT.
023000 IF RECORD-COUNT = ZEROES
023100 MOVE "NO RECORDS FOUND" TO PRINTER-RECORD
023200 PERFORM WRITE-TO-PRINTER
023300 ELSE
023400 PERFORM PRINT-GRAND-TOTAL.
023500

023600 PERFORM END-LAST-PAGE.
023700
023800 PRINT-GRAND-TOTAL.
023900 MOVE SPACE TO TOTAL-LINE.
024000 MOVE GRAND-TOTAL TO PRINT-TOTAL.
024100 MOVE GRAND-TOTAL-LITERAL TO TOTAL-TYPE.
024200 MOVE "TOTAL" TO TOTAL-LITERAL.
024300 MOVE TOTAL-LINE TO PRINTER-RECORD.
024400 PERFORM WRITE-TO-PRINTER.
024500 PERFORM LINE-FEED 2 TIMES.
024600* MOVE SPACE TO DETAIL-LINE.
024700
024800* LEVEL 2 CONTROL BREAK
024900 PROCESS-ALL-STORES.
025000 PERFORM START-ONE-STORE.
025100
025200 PERFORM PROCESS-ALL-DIVISIONS
025300 UNTIL WORK-FILE-AT-END = "Y"
025400 OR WORK-STORE NOT = CURRENT-STORE.
025500
025600 PERFORM END-ONE-STORE.
025700
025800 START-ONE-STORE.
025900 MOVE WORK-STORE TO CURRENT-STORE.
026000 MOVE ZEROES TO STORE-TOTAL.
026100 MOVE WORK-STORE TO PRINT-STORE.
026200
026300 PERFORM START-NEXT-PAGE.
026400
026500 END-ONE-STORE.
026600 PERFORM PRINT-STORE-TOTAL.
026700 ADD STORE-TOTAL TO GRAND-TOTAL.
026800
026900 PRINT-STORE-TOTAL.
027000 MOVE SPACE TO TOTAL-LINE.
027100 MOVE STORE-TOTAL TO PRINT-TOTAL.
027200 MOVE CURRENT-STORE TO TOTAL-NUMBER.
027300 MOVE STORE-TOTAL-LITERAL TO TOTAL-TYPE.
027400 MOVE "TOTAL" TO TOTAL-LITERAL.
027500 MOVE TOTAL-LINE TO PRINTER-RECORD.
027600 PERFORM WRITE-TO-PRINTER.
027700 PERFORM LINE-FEED.
027800* MOVE SPACE TO DETAIL-LINE.
027900
028000* LEVEL 3 CONTROL BREAK
028100 PROCESS-ALL-DIVISIONS.
028200 PERFORM START-ONE-DIVISION.

028300
028400 PERFORM PROCESS-ALL-DEPARTMENTS
028500 UNTIL WORK-FILE-AT-END = "Y"
028600 OR WORK-STORE NOT = CURRENT-STORE
028700 OR WORK-DIVISION NOT = CURRENT-DIVISION.
028800
028900 PERFORM END-ONE-DIVISION.
029000
029100 START-ONE-DIVISION.
029200 MOVE WORK-DIVISION TO CURRENT-DIVISION.
029300 MOVE ZEROES TO DIVISION-TOTAL.
029400* MOVE WORK-DIVISION TO PRINT-DIVISION.
029500
029600 END-ONE-DIVISION.
029700 PERFORM PRINT-DIVISION-TOTAL.
029800 ADD DIVISION-TOTAL TO STORE-TOTAL.
029900
030000 PRINT-DIVISION-TOTAL.
030100 MOVE SPACE TO TOTAL-LINE.
030200 MOVE DIVISION-TOTAL TO PRINT-TOTAL.
030300 MOVE CURRENT-DIVISION TO TOTAL-NUMBER.
030400 MOVE DIVISION-TOTAL-LITERAL TO TOTAL-TYPE.
030500 MOVE "TOTAL" TO TOTAL-LITERAL.
030600 MOVE TOTAL-LINE TO PRINTER-RECORD.
030700 PERFORM WRITE-TO-PRINTER.
030800 PERFORM LINE-FEED.
030900* MOVE SPACE TO DETAIL-LINE.
031000
031100* LEVEL 4 CONTROL BREAK
031200 PROCESS-ALL-DEPARTMENTS.
031300 PERFORM START-ONE-DEPARTMENT.
031400
031500 PERFORM PROCESS-ALL-CATEGORIES
031600 UNTIL WORK-FILE-AT-END = "Y"
031700 OR WORK-STORE NOT = CURRENT-STORE
031800 OR WORK-DIVISION NOT = CURRENT-DIVISION
031900 OR WORK-DEPARTMENT NOT = CURRENT-DEPARTMENT.
032000
032100 PERFORM END-ONE-DEPARTMENT.
032200
032300 START-ONE-DEPARTMENT.
032400 MOVE WORK-DEPARTMENT TO CURRENT-DEPARTMENT.
032500 MOVE ZEROES TO DEPARTMENT-TOTAL.
032600* MOVE WORK-DEPARTMENT TO PRINT-DEPARTMENT.
032700
032800 END-ONE-DEPARTMENT.
032900 PERFORM PRINT-DEPARTMENT-TOTAL.

033000 ADD DEPARTMENT-TOTAL TO DIVISION-TOTAL.
033100
033200 PRINT-DEPARTMENT-TOTAL.
033300 MOVE SPACE TO TOTAL-LINE.
033400 MOVE DEPARTMENT-TOTAL TO PRINT-TOTAL.
033500 MOVE CURRENT-DEPARTMENT TO TOTAL-NUMBER.
033600 MOVE DEPARTMENT-TOTAL-LITERAL TO TOTAL-TYPE.
033700 MOVE "TOTAL" TO TOTAL-LITERAL.
033800 MOVE TOTAL-LINE TO PRINTER-RECORD.
033900 PERFORM WRITE-TO-PRINTER.
034000 PERFORM LINE-FEED.
034100* MOVE SPACE TO DETAIL-LINE.
034200
034300* PROCESS ONE RECORD LEVEL
034400 PROCESS-ALL-CATEGORIES.
034500 PERFORM PROCESS-THIS-CATEGORY.
034600 ADD WORK-AMOUNT TO DEPARTMENT-TOTAL.
034700 ADD 1 TO RECORD-COUNT.
034800 PERFORM READ-NEXT-VALID-WORK.
034900
035000 PROCESS-THIS-CATEGORY.
035100 IF LINE-COUNT > MAXIMUM-LINES
035200 PERFORM START-NEXT-PAGE.
035300* PERFORM PRINT-THE-RECORD.
035400
035500*PRINT-THE-RECORD.
035600* MOVE WORK-CATEGORY TO PRINT-CATEGORY.
035700*
035800* MOVE WORK-AMOUNT TO PRINT-AMOUNT.
035900*
036000* MOVE DETAIL-LINE TO PRINTER-RECORD.
036100* PERFORM WRITE-TO-PRINTER.
036200* MOVE SPACE TO DETAIL-LINE.
036300
036400* PRINTING ROUTINES
036500 WRITE-TO-PRINTER.
036600 WRITE PRINTER-RECORD BEFORE ADVANCING 1.
036700 ADD 1 TO LINE-COUNT.
036800
036900 LINE-FEED.
037000 MOVE SPACE TO PRINTER-RECORD.
037100 PERFORM WRITE-TO-PRINTER.
037200
037300 START-NEXT-PAGE.
037400 PERFORM END-LAST-PAGE.
037500 PERFORM START-NEW-PAGE.
037600

037700 START-NEW-PAGE.
037800 ADD 1 TO PAGE-NUMBER.
037900 MOVE PAGE-NUMBER TO PRINT-PAGE-NUMBER.
038000 MOVE TITLE-LINE TO PRINTER-RECORD.
038100 PERFORM WRITE-TO-PRINTER.
038200 PERFORM LINE-FEED.
038300 MOVE LEGEND-LINE TO PRINTER-RECORD.
038400 PERFORM WRITE-TO-PRINTER.
038500 PERFORM LINE-FEED.
038600* MOVE COLUMN-LINE TO PRINTER-RECORD.
038700* PERFORM WRITE-TO-PRINTER.
038800* PERFORM LINE-FEED.
038900
039000 END-LAST-PAGE.
039100 IF PAGE-NUMBER > 0
039200 PERFORM FORM-FEED.
039300 MOVE ZERO TO LINE-COUNT.
039400
039500 FORM-FEED.
039600 MOVE SPACE TO PRINTER-RECORD.
039700 WRITE PRINTER-RECORD BEFORE ADVANCING PAGE.
039800
039900*--------------------------------
040000* Read first, read next routines
040100*--------------------------------
040200 READ-FIRST-VALID-WORK.
040300 PERFORM READ-NEXT-VALID-WORK.
040400
040500 READ-NEXT-VALID-WORK.
040600 PERFORM READ-NEXT-WORK-RECORD.
040700
040800 READ-NEXT-WORK-RECORD.
040900 MOVE "N" TO WORK-FILE-AT-END.
041000 READ WORK-FILE NEXT RECORD
041100 AT END MOVE "Y" TO WORK-FILE-AT-END.
041200

The output of slssum01.cbl prints only the control breaks and no detail lines:

OUTPUT:
 SALES SUMMARY PAGE: 1

STORE: 1

DEPT 1 TOTAL 712.71

DEPT 2 TOTAL 762.99

DIVISION 1 TOTAL 1,475.70

DEPT 3 TOTAL 813.27

DEPT 4 TOTAL 863.55

DIVISION 2 TOTAL 1,676.82

DEPT 5 TOTAL 913.83

DEPT 6 TOTAL 64.11

DIVISION 3 TOTAL 977.94

STORE 1 TOTAL 4,130.46

----------------------<page break>--------------------------------

 SALES SUMMARY PAGE: 2

STORE: 2

DEPT 1 TOTAL 1,014.39

DEPT 2 TOTAL 164.67

DIVISION 1 TOTAL 1,179.06

DEPT 3 TOTAL 1,114.95

DEPT 4 TOTAL 265.23

DIVISION 2 TOTAL 1,380.18

DEPT 5 TOTAL 1,215.51

DEPT 6 TOTAL 365.79

DIVISION 3 TOTAL 1,581.30

STORE 2 TOTAL 4,140.54

----------------------<page break>--------------------------------

 SALES SUMMARY PAGE: 3

STORE: 3

DEPT 1 TOTAL 1,316.07

DEPT 2 TOTAL 466.35

DIVISION 1 TOTAL 1,782.42

DEPT 3 TOTAL 516.63

DEPT 4 TOTAL 566.91

DIVISION 2 TOTAL 1,083.54

DEPT 5 TOTAL 617.19

DEPT 6 TOTAL 667.47

DIVISION 3 TOTAL 1,284.66

STORE 3 TOTAL 4,150.62

----------------------<page break>--------------------------------

 SALES SUMMARY PAGE: 4

STORE: 4

DEPT 1 TOTAL 717.75

DEPT 2 TOTAL 768.03

DIVISION 1 TOTAL 1,485.78

DEPT 3 TOTAL 818.31

DEPT 4 TOTAL 868.59

DIVISION 2 TOTAL 1,686.90

DEPT 5 TOTAL 918.87

DEPT 6 TOTAL 969.15

DIVISION 3 TOTAL 1,888.02

STORE 4 TOTAL 5,060.70

----------------------<page break>--------------------------------

 SALES SUMMARY PAGE: 5

STORE: 5

DEPT 1 TOTAL 119.43

DEPT 2 TOTAL 1,069.71

DIVISION 1 TOTAL 1,189.14

DEPT 3 TOTAL 219.99

DEPT 4 TOTAL 1,170.27

DIVISION 2 TOTAL 1,390.26

DEPT 5 TOTAL 320.55

DEPT 6 TOTAL 1,270.83

DIVISION 3 TOTAL 1,591.38

STORE 5 TOTAL 4,170.78

----------------------<page break>--------------------------------

 SALES SUMMARY PAGE: 6

STORE: 6

DEPT 1 TOTAL 421.11

DEPT 2 TOTAL 471.39

DIVISION 1 TOTAL 892.50

DEPT 3 TOTAL 521.67

DEPT 4 TOTAL 571.95

DIVISION 2 TOTAL 1,093.62

DEPT 5 TOTAL 622.23

DEPT 6 TOTAL 672.51

DIVISION 3 TOTAL 1,294.74

STORE 6 TOTAL 3,280.86

GRAND TOTAL 24,933.96

Answers to Bonus Day 2, "Miscellaneous COBOL
Syntax"

Quiz

1. The output will be the last name, a comma, a space, the first name, a space, and the middle name:

JONES, JOHN PAUL

2. FIRST-NAME will contain JANE with spaces to the end of the field. LAST-NAME will contain
JOHANSEN with spaces to the end of the field.

Exercise

Listing A.45 is an example of how such a program might work.

TYPE: Listing A.45. A subroutine to get YES or NO.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. YESORNO.
000300*--------------------------------
000400* Force user to enter yes or no
000500*--------------------------------
000600 ENVIRONMENT DIVISION.
000700 INPUT-OUTPUT SECTION.
000800 FILE-CONTROL.
000900
001000 DATA DIVISION.
001100 FILE SECTION.
001200
001300 WORKING-STORAGE SECTION.
001400
001500 LINKAGE SECTION.
001600*--------------------------------

001700* Field is filled in and returned
001800* to the calling program
001900*--------------------------------
002000 77 YES-OR-NO PIC X.
002100
002200 PROCEDURE DIVISION
002300 USING YES-OR-NO.
002400
002500 PROGRAM-BEGIN.
002600 PERFORM OPENING-PROCEDURE.
002700 PERFORM MAIN-PROCESS.
002800 PERFORM CLOSING-PROCEDURE.
002900
003000 PROGRAM-EXIT.
003100 EXIT PROGRAM.
003200
003300 PROGRAM-DONE.
003400 STOP RUN.
003500
003600 OPENING-PROCEDURE.
003700
003800 CLOSING-PROCEDURE.
003900
004000 MAIN-PROCESS.
004100 PERFORM GET-YES-OR-NO.
004200
004300 GET-YES-OR-NO.
004400 PERFORM ACCEPT-YES-OR-NO.
004500 PERFORM RE-ACCEPT-YES-OR-NO
004600 UNTIL YES-OR-NO = "Y" OR "N".
004700
004800 ACCEPT-YES-OR-NO.
004900 DISPLAY "ENTER YES OR NO (Y/N)?".
005000
005100 ACCEPT YES-OR-NO.
005200
005300 PERFORM EDIT-CHECK-YES-OR-NO.
005400
005500 RE-ACCEPT-YES-OR-NO.
005600 DISPLAY "YOU MUST ENTER `Y' OR `N'".
005700
005800 PERFORM ACCEPT-YES-OR-NO.
005900
006000 EDIT-CHECK-YES-OR-NO.
006100 PERFORM EDIT-YES-OR-NO.
006200 PERFORM CHECK-YES-OR-NO.
006300 PERFORM FORMAT-YES-OR-NO.

006400
006500 EDIT-YES-OR-NO.
006600 IF YES-OR-NO = "y"
006700 MOVE "Y" TO YES-OR-NO.
006800
006900 IF YES-OR-NO = "n"
007000 MOVE "N" TO YES-OR-NO.
007100
007200 CHECK-YES-OR-NO.
007300* NO CHECKING NEEDED
007400
007500 FORMAT-YES-OR-NO.
007600* NO FORMATTING NEEDED.
007700

You can use listing A.46 to test yesorno.cbl. Code, compile, and link, if necessary, both
programs. Then run yntest01.cbl.

TYPE: Listing A.46. Testing yesorno.cbl.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. YNTEST01.
000300*--------------------------------
000400* Testing YESORNO Entry
000500*--------------------------------
000600 ENVIRONMENT DIVISION.
000700 INPUT-OUTPUT SECTION.
000800 FILE-CONTROL.
000900
001000 DATA DIVISION.
001100 FILE SECTION.
001200
001300 WORKING-STORAGE SECTION.
001400
001500 77 YES-NO PIC X.
001600
001700 PROCEDURE DIVISION.
001800 PROGRAM-BEGIN.
001900 PERFORM OPENING-PROCEDURE.
002000 PERFORM MAIN-PROCESS.
002100 PERFORM CLOSING-PROCEDURE.
002200
002300 PROGRAM-EXIT.
002400 EXIT PROGRAM.
002500
002600 PROGRAM-DONE.
002700 STOP RUN.
002800

002900 OPENING-PROCEDURE.
003000
003100 CLOSING-PROCEDURE.
003200
003300 MAIN-PROCESS.
003400 PERFORM DO-WE-CONTINUE.
003500
003600 IF YES-NO = "Y"
003700 DISPLAY "YOU DO WANT TO CONTINUE"
003800 ELSE
003900 DISPLAY "YOU DON'T WANT TO CONTINUE".
004000
004100 DO-WE-CONTINUE.
004200 DISPLAY "SHALL I CONTINUE?".
004300 CALL "YESORNO" USING YES-NO.
004400

The output of yntest01.cbl and yesorno.cbl is marked to indicate which program is
producing which part of the display:

OUTPUT:
SHALL I CONTINUE? <- yntest01.cbl
ENTER YES OR NO (Y/N)? <- yesorno.cbl
X <- user entry in yesorno.cbl
YOU MUST ENTER `Y' OR `N' <- yesorno.cbl
ENTER YES OR NO (Y/N)? <- yesorno.cbl
Y <- user entry in yesorno.cbl
YOU DO WANT TO CONTINUE <- yntest01.cbl

Answers to Bonus Day 3, "Full- Screen I/O"

Quiz

1. Lines 008300 and 008500 will create display fields that are not modifiable.

2. Line 008400 will create a display field that is modifiable.

Exercise

Listing A.47 will maintain the state code file using full screens.

TYPE: Listing A.47. State code maintenance.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. STCMNT05.
000300*--------------------------------
000400* Add, Change, Inquire and Delete

000500* for the State Codes File.
000600* Calls the state codes report
000700* Uses full screen IO
000800*--------------------------------
000900 ENVIRONMENT DIVISION.
001000 INPUT-OUTPUT SECTION.
001100 FILE-CONTROL.
001200
001300 COPY "SLSTATE.CBL".
001400
001500 DATA DIVISION.
001600 FILE SECTION.
001700
001800 COPY "FDSTATE.CBL".
001900
002000 WORKING-STORAGE SECTION.
002100
002200 77 MENU-PICK PIC 9 VALUE ZERO.
002300 88 MENU-PICK-IS-VALID VALUES 0 THRU 5.
002400
002500 77 STATE-RECORD-FOUND PIC X.
002600
002700 77 SCREEN-ERROR PIC X.
002800 77 ERROR-MESSAGE PIC X(79) VALUE SPACE.
002900
003000 77 CONTINUE-MESSAGE PIC X(40) VALUE SPACE.
003100 77 OK-TO-CONTINUE PIC X.
003200
003300 01 FOOTER-FIELD.
003400 05 FOOTER-1-FIELD PIC X(40) VALUE SPACE.
003500 05 FOOTER-2-FIELD PIC X(39) VALUE SPACE.
003600
003700 COPY "WSCASE01.CBL".
003800
003900 SCREEN SECTION.
004000 01 MENU-SCREEN.
004100 05 BLANK SCREEN.
004200 05 LINE 2 COLUMN 30 VALUE "STATE CODE MAINTENANCE".
004300 05 LINE 6 COLUMN 20 VALUE "PLEASE SELECT:".
004400 05 LINE 8 COLUMN 25 VALUE "1. ADD RECORDS".
004500 05 LINE 9 COLUMN 25 VALUE "2. CHANGE A RECORD".
004600 05 LINE 10 COLUMN 25 VALUE "3. LOOK UP A RECORD".
004700 05 LINE 11 COLUMN 25 VALUE "4. DELETE A RECORD".
004800 05 LINE 12 COLUMN 25 VALUE "5. PRINT RECORDS".
004900 05 LINE 14 COLUMN 25 VALUE "0. EXIT".
005000 05 LINE 20 COLUMN 1 VALUE "YOUR SELECTION? ".
005100 05 LINE 20 COLUMN 17 PIC Z USING MENU-PICK.

005200 05 LINE 24 COLUMN 1 PIC X(79) FROM ERROR-MESSAGE.
005300
005400 01 KEY-SCREEN.
005500 05 BLANK SCREEN.
005600 05 LINE 8 COLUMN 20 VALUE "STATE CODE:".
005700 05 LINE 8 COLUMN 40 PIC XX USING STATE-CODE.
005800 05 LINE 22 COLUMN 1 PIC X(79) FROM FOOTER-FIELD.
005900 05 LINE 24 COLUMN 1 PIC X(79) FROM ERROR-MESSAGE.
006000
006100 01 ENTRY-SCREEN.
006200 05 BLANK SCREEN.
006300 05 LINE 8 COLUMN 20 VALUE "STATE CODE:".
006400 05 LINE 8 COLUMN 40 PIC XX FROM STATE-CODE.
006500 05 LINE 10 COLUMN 20 VALUE "STATE NAME: ".
006600 05 LINE 10 COLUMN 40 PIC X(20) USING STATE-NAME.
006700 05 LINE 22 COLUMN 1 PIC X(79) FROM FOOTER-FIELD.
006800 05 LINE 23 COLUMN 1 PIC X(40) FROM CONTINUE-MESSAGE.
006900 05 LINE 23 COLUMN 41 PIC X USING OK-TO-CONTINUE.
007000 05 LINE 24 COLUMN 1 PIC X(79) FROM ERROR-MESSAGE.
007100
007200 01 DISPLAY-SCREEN.
007300 05 BLANK SCREEN.
007400 05 LINE 8 COLUMN 20 VALUE "STATE CODE:".
007500 05 LINE 8 COLUMN 40 PIC XX FROM STATE-CODE.
007600 05 LINE 10 COLUMN 20 VALUE "STATE NAME: ".
007700 05 LINE 10 COLUMN 40 PIC X(20) FROM STATE-NAME.
007800 05 LINE 23 COLUMN 1 PIC X(40) FROM CONTINUE-MESSAGE.
007900 05 LINE 23 COLUMN 41 PIC X USING OK-TO-CONTINUE.
008000 05 LINE 24 COLUMN 1 PIC X(79) FROM ERROR-MESSAGE.
008100
008200 PROCEDURE DIVISION.
008300 PROGRAM-BEGIN.
008400 PERFORM OPENING-PROCEDURE.
008500 PERFORM MAIN-PROCESS.
008600 PERFORM CLOSING-PROCEDURE.
008700
008800 PROGRAM-EXIT.
008900 EXIT PROGRAM.
009000
009100 PROGRAM-DONE.
009200 STOP RUN.
009300
009400 OPENING-PROCEDURE.
009500 OPEN I-O STATE-FILE.
009600
009700 CLOSING-PROCEDURE.
009800 CLOSE STATE-FILE.

009900
010000 MAIN-PROCESS.
010100 PERFORM GET-MENU-PICK.
010200 PERFORM MAINTAIN-THE-FILE
010300 UNTIL MENU-PICK = 0.
010400
010500*--------------------------------
010600* MENU
010700*--------------------------------
010800 GET-MENU-PICK.
010900 PERFORM INITIALIZE-MENU-PICK.
011000 PERFORM DISPLAY-ACCEPT-MENU.
011100 PERFORM RE-DISPLAY-ACCEPT-MENU
011200 UNTIL MENU-PICK-IS-VALID.
011300
011400 INITIALIZE-MENU-PICK.
011500 MOVE 0 TO MENU-PICK.
011600
011700 DISPLAY-ACCEPT-MENU.
011800 DISPLAY MENU-SCREEN.
011900 ACCEPT MENU-SCREEN.
012000 MOVE SPACE TO ERROR-MESSAGE.
012100
012200 RE-DISPLAY-ACCEPT-MENU.
012300 MOVE "INVALID SELECTION - PLEASE RE-TRY."
012400 TO ERROR-MESSAGE.
012500 PERFORM DISPLAY-ACCEPT-MENU.
012600
012700 MAINTAIN-THE-FILE.
012800 PERFORM DO-THE-PICK.
012900 PERFORM GET-MENU-PICK.
013000
013100 DO-THE-PICK.
013200 IF MENU-PICK = 1
013300 PERFORM ADD-MODE
013400 ELSE
013500 IF MENU-PICK = 2
013600 PERFORM CHANGE-MODE
013700 ELSE
013800 IF MENU-PICK = 3
013900 PERFORM INQUIRE-MODE
014000 ELSE
014100 IF MENU-PICK = 4
014200 PERFORM DELETE-MODE
014300 ELSE
014400 IF MENU-PICK = 5
014500 PERFORM PRINT-STATE-REPORT.

014600
014700*--------------------------------
014800* ADD
014900*--------------------------------
015000 ADD-MODE.
015100 PERFORM INITIALIZE-ADD-MODE.
015200 PERFORM GET-NEW-RECORD-KEY.
015300 PERFORM ADD-RECORDS
015400 UNTIL STATE-CODE = "ZZ".
015500
015600 INITIALIZE-ADD-MODE.
015700 MOVE "ENTER THE STATE CODE TO ADD"
015800 TO FOOTER-1-FIELD.
015900
016000 GET-NEW-RECORD-KEY.
016100 PERFORM ACCEPT-NEW-RECORD-KEY.
016200 PERFORM RE-ACCEPT-NEW-RECORD-KEY
016300 UNTIL STATE-CODE = "ZZ"
016400 OR STATE-RECORD-FOUND = "N".
016500
016600 ACCEPT-NEW-RECORD-KEY.
016700 PERFORM INITIALIZE-STATE-FIELDS.
016800 PERFORM ENTER-STATE-CODE.
016900 PERFORM ENTER-STATE-CODE
017000 UNTIL STATE-CODE NOT = SPACE.
017100 IF STATE-CODE NOT = "ZZ"
017200 PERFORM READ-STATE-RECORD.
017300
017400 RE-ACCEPT-NEW-RECORD-KEY.
017500 MOVE "RECORD ALREADY ON FILE" TO ERROR-MESSAGE.
017600 PERFORM ACCEPT-NEW-RECORD-KEY.
017700
017800 ADD-RECORDS.
017900 PERFORM INITIALIZE-TO-ADD-FIELDS.
018000 PERFORM ENTER-REMAINING-FIELDS.
018100 IF OK-TO-CONTINUE = "Y"
018200 PERFORM WRITE-STATE-RECORD.
018300 PERFORM GET-NEW-RECORD-KEY.
018400
018500 INITIALIZE-TO-ADD-FIELDS.
018600 MOVE "ADD NEW FIELDS" TO FOOTER-FIELD.
018700 MOVE "CONTINUE WITH ADDITIONS (Y/N)?"
018800 TO CONTINUE-MESSAGE.
018900 MOVE "Y" TO OK-TO-CONTINUE.
019000
019100*--------------------------------
019200* CHANGE

019300*--------------------------------
019400 CHANGE-MODE.
019500 PERFORM INITIALIZE-CHANGE-MODE.
019600 PERFORM GET-EXISTING-RECORD.
019700 PERFORM CHANGE-RECORDS
019800 UNTIL STATE-CODE = "ZZ".
019900
020000 INITIALIZE-CHANGE-MODE.
020100 MOVE "ENTER THE STATE CODE TO CHANGE"
020200 TO FOOTER-1-FIELD.
020300
020400 CHANGE-RECORDS.
020500 PERFORM INITIALIZE-TO-CHANGE-FIELDS.
020600 PERFORM ENTER-REMAINING-FIELDS.
020700 IF OK-TO-CONTINUE = "Y"
020800 PERFORM REWRITE-STATE-RECORD.
020900 PERFORM GET-EXISTING-RECORD.
021000
021100 INITIALIZE-TO-CHANGE-FIELDS.
021200 MOVE "CHANGE FIELDS" TO FOOTER-FIELD.
021300 MOVE "CONTINUE WITH CHANGES (Y/N)?"
021400 TO CONTINUE-MESSAGE.
021500 MOVE "Y" TO OK-TO-CONTINUE.
021600
021700*--------------------------------
021800* INQUIRE
021900*--------------------------------
022000 INQUIRE-MODE.
022100 PERFORM INITIALIZE-INQUIRE-MODE.
022200 PERFORM GET-EXISTING-RECORD.
022300 PERFORM INQUIRE-RECORDS
022400 UNTIL STATE-CODE = "ZZ".
022500
022600 INITIALIZE-INQUIRE-MODE.
022700 MOVE "ENTER THE STATE CODE TO DISPLAY"
022800 TO FOOTER-1-FIELD.
022900
023000 INQUIRE-RECORDS.
023100 PERFORM INITIALIZE-TO-INQUIRE.
023200 PERFORM DISPLAY-ACCEPT-ALL-FIELDS.
023300 PERFORM GET-EXISTING-RECORD.
023400
023500 INITIALIZE-TO-INQUIRE.
023600 MOVE "PRESS ENTER TO CONTINUE" TO CONTINUE-MESSAGE.
023700 MOVE SPACE TO OK-TO-CONTINUE.
023800
023900*--------------------------------

024000* DELETE
024100*--------------------------------
024200 DELETE-MODE.
024300 PERFORM INITIALIZE-DELETE-MODE.
024400 PERFORM GET-EXISTING-RECORD.
024500 PERFORM DELETE-RECORDS
024600 UNTIL STATE-CODE = "ZZ".
024700
024800 INITIALIZE-DELETE-MODE.
024900 MOVE "ENTER THE STATE CODE TO DELETE"
025000 TO FOOTER-1-FIELD.
025100
025200 DELETE-RECORDS.
025300 PERFORM INITIALIZE-TO-DELETE-RECORD.
025400 PERFORM ASK-OK-TO-DELETE.
025500 IF OK-TO-CONTINUE = "Y"
025600 PERFORM DELETE-STATE-RECORD.
025700 PERFORM GET-EXISTING-RECORD.
025800
025900 INITIALIZE-TO-DELETE-RECORD.
026000 MOVE "OK TO DELETE(Y/N)?" TO CONTINUE-MESSAGE.
026100 MOVE "N" TO OK-TO-CONTINUE.
026200
026300 ASK-OK-TO-DELETE.
026400 PERFORM DISPLAY-ACCEPT-ALL-FIELDS.
026500 PERFORM RE-DISPLAY-ACCEPT-ALL-FIELDS
026600 UNTIL OK-TO-CONTINUE = "Y" OR "N".
026700
026800 RE-DISPLAY-ACCEPT-ALL-FIELDS.
026900 MOVE "YOU MUST ENTER YES OR NO"
027000 TO ERROR-MESSAGE.
027100 PERFORM DISPLAY-ACCEPT-ALL-FIELDS.
027200
027300*--------------------------------
027400* Routines shared by all modes
027500*--------------------------------
027600 INITIALIZE-STATE-FIELDS.
027700 MOVE SPACE TO STATE-RECORD.
027800
027900 ENTER-STATE-CODE.
028000 MOVE "ENTER `ZZ' TO QUIT" TO FOOTER-2-FIELD.
028100 DISPLAY KEY-SCREEN.
028200 ACCEPT KEY-SCREEN.
028300 MOVE SPACE TO ERROR-MESSAGE.
028400
028500 INSPECT STATE-CODE
028600 CONVERTING LOWER-ALPHA

028700 TO UPPER-ALPHA.
028800
028900 IF STATE-CODE = SPACE
029000 MOVE "YOU MUST ENTER STATE CODE"
029100 TO ERROR-MESSAGE.
029200
029300*--------------------------------
029400* Routines shared Add and Change
029500*--------------------------------
029600 ENTER-REMAINING-FIELDS.
029700 PERFORM DISPLAY-ACCEPT-ENTRY-SCREEN.
029800 PERFORM DISPLAY-ACCEPT-ENTRY-SCREEN
029900 UNTIL SCREEN-ERROR = "N"
030000 OR OK-TO-CONTINUE = "N".
030100
030200 DISPLAY-ACCEPT-ENTRY-SCREEN.
030300 DISPLAY ENTRY-SCREEN.
030400 ACCEPT ENTRY-SCREEN.
030500 MOVE SPACE TO ERROR-MESSAGE.
030600
030700 INSPECT OK-TO-CONTINUE
030800 CONVERTING LOWER-ALPHA TO UPPER-ALPHA.
030900
031000 IF OK-TO-CONTINUE = "Y"
031100 PERFORM EDIT-CHECK-FIELDS.
031200
031300 EDIT-CHECK-FIELDS.
031400 MOVE "N" TO SCREEN-ERROR.
031500 PERFORM EDIT-CHECK-STATE-NAME.
031600
031700 EDIT-CHECK-STATE-NAME.
031800 INSPECT STATE-NAME
031900 CONVERTING LOWER-ALPHA
032000 TO UPPER-ALPHA.
032100
032200 IF STATE-NAME = SPACES
032300 MOVE "Y" TO SCREEN-ERROR
032400 MOVE "STATE NAME MUST BE ENTERED"
032500 TO ERROR-MESSAGE.
032600
032700*--------------------------------
032800* Routines shared by Change,
032900* Inquire and Delete
033000*--------------------------------
033100 GET-EXISTING-RECORD.
033200 PERFORM INITIALIZE-STATE-FIELDS.
033300 PERFORM ACCEPT-EXISTING-KEY.

033400 PERFORM RE-ACCEPT-EXISTING-KEY
033500 UNTIL STATE-RECORD-FOUND = "Y" OR
033600 STATE-CODE = "ZZ".
033700
033800 ACCEPT-EXISTING-KEY.
033900 PERFORM ENTER-STATE-CODE.
034000 PERFORM ENTER-STATE-CODE
034100 UNTIL STATE-CODE NOT = SPACE.
034200 IF STATE-CODE NOT = "ZZ"
034300 PERFORM READ-STATE-RECORD.
034400
034500 RE-ACCEPT-EXISTING-KEY.
034600 MOVE "RECORD NOT FOUND" TO ERROR-MESSAGE.
034700 PERFORM ACCEPT-EXISTING-KEY.
034800
034900*--------------------------------
035000* Routines shared by delete and inquire
035100*--------------------------------
035200 DISPLAY-ACCEPT-ALL-FIELDS.
035300 DISPLAY DISPLAY-SCREEN.
035400 ACCEPT DISPLAY-SCREEN.
035500 MOVE SPACE TO ERROR-MESSAGE.
035600 INSPECT OK-TO-CONTINUE
035700 CONVERTING LOWER-ALPHA TO UPPER-ALPHA.
035800
035900*--------------------------------
036000* File I-O Routines
036100*--------------------------------
036200 WRITE-STATE-RECORD.
036300 WRITE STATE-RECORD
036400 INVALID KEY
036500 DISPLAY "RECORD ALREADY ON FILE".
036600
036700 REWRITE-STATE-RECORD.
036800 REWRITE STATE-RECORD
036900 INVALID KEY
037000 DISPLAY "ERROR REWRITING STATE RECORD".
037100
037200 DELETE-STATE-RECORD.
037300 DELETE STATE-FILE RECORD
037400 INVALID KEY
037500 DISPLAY "ERROR DELETING STATE RECORD".
037600
037700 READ-STATE-RECORD.
037800 MOVE "Y" TO STATE-RECORD-FOUND.
037900 READ STATE-FILE RECORD
038000 INVALID KEY

038100 MOVE "N" TO STATE-RECORD-FOUND.
038200
038300*--------------------------------
038400* CALLS TO OTHER PROGRAMS
038500*--------------------------------
038600
038700*--------------------------------
038800* PRINT
038900*--------------------------------
039000 PRINT-STATE-REPORT.
039100 PERFORM CLOSING-PROCEDURE.
039200 DISPLAY "REPORT IN PROGRESS".
039300 CALL "STCRPT02".
039400 PERFORM OPENING-PROCEDURE.
039500

Sample output from stcmnt05.cbl illustrates some of the screens created by the program:

OUTPUT:
 STATE CODE MAINTENANCE

 PLEASE SELECT:

 1. ADD RECORDS
 2. CHANGE A RECORD
 3. LOOK UP A RECORD
 4. DELETE A RECORD
 5. PRINT RECORDS

 0. EXIT

YOUR SELECTION?

------------------------------<next screen>------------------------

 STATE CODE: __

ENTER THE STATE CODE TO CHANGE ENTER `ZZ' TO QUIT

------------------------------<next screen>------------------------

 STATE CODE: wx

ENTER THE STATE CODE TO CHANGE ENTER `ZZ' TO QUIT

RECORD NOT FOUND

Answers to Bonus Day 4, "Using a Symbolic
Debugger"

Quiz

The value in A-NUMBER before Line 018500 will be 10. The value before line 018600 will be 11.

Exercises

1. No answer, just practice with the debugger.

2. No answer, just practice with the debugger.

Answers to Bonus Day 5, "Intrinsic Functions and
the Year 2000"

Quiz

The value in RESULT will be the remainder of 15 divided by 4, which is 3.

Exercise

Listing A.48 is the original DATE-CHECK routine from PLDATE01.CBL. Listing A.49 is an alternative
routine using the REM function. Listing A.50 provides another solution. In Listing A.50 the REM function is
used directly to return a numeric value, and the DATE-REMAINDER field is not needed in
WORKING-STORAGE.

TYPE: Listing A.48. The original CHECK-DATE routine.

021400 CHECK-DATE.
021500 MOVE "Y" TO VALID-DATE-FLAG.
021600 IF DATE-CCYYMMDD = ZEROES
021700 IF ZERO-DATE-IS-OK = "Y"
021800 MOVE "0" TO VALID-DATE-FLAG
021900 ELSE
022000 MOVE "N" TO VALID-DATE-FLAG
022100 ELSE
022200 IF DATE-MM < 1 OR DATE-MM > 12
022300 MOVE "N" TO VALID-DATE-FLAG
022400 ELSE
022500 IF DATE-DD < 1 OR DATE-DD > 31
022600 MOVE "N" TO VALID-DATE-FLAG
022700 ELSE
022800 IF (DATE-DD > 30) AND

022900 (DATE-MM = 2 OR 4 OR 6 OR 9 OR 11)
023000 MOVE "N" TO VALID-DATE-FLAG
023100 ELSE
023200 IF DATE-DD > 29 AND DATE-MM = 2
023300 MOVE "N" TO VALID-DATE-FLAG
023400 ELSE
023500 IF DATE-DD = 29 AND DATE-MM = 2
023600 DIVIDE DATE-CCYY BY 400 GIVING DATE-QUOTIENT
023700 REMAINDER DATE-REMAINDER
023800 IF DATE-REMAINDER = 0
023900 MOVE "Y" TO VALID-DATE-FLAG
024000 ELSE
024100 DIVIDE DATE-CCYY BY 100 GIVING DATE-QUOTIENT
024200 REMAINDER DATE-REMAINDER
024300 IF DATE-REMAINDER = 0
024400 MOVE "N" TO VALID-DATE-FLAG
024500 ELSE
024600 DIVIDE DATE-CCYY BY 4 GIVING DATE-QUOTIENT
024700 REMAINDER DATE-REMAINDER
024800 IF DATE-REMAINDER = 0
024900 MOVE "Y" TO VALID-DATE-FLAG
025000 ELSE
025100 MOVE "N" TO VALID-DATE-FLAG.

TYPE: Listing A.49. CHECK-DATE using the REM Function.

021400 CHECK-DATE.
021500 MOVE "Y" TO VALID-DATE-FLAG.
021600 IF DATE-CCYYMMDD = ZEROES
021700 IF ZERO-DATE-IS-OK = "Y"
021800 MOVE "0" TO VALID-DATE-FLAG
021900 ELSE
022000 MOVE "N" TO VALID-DATE-FLAG
022100 ELSE
022200 IF DATE-MM < 1 OR DATE-MM > 12
022300 MOVE "N" TO VALID-DATE-FLAG
022400 ELSE
022500 IF DATE-DD < 1 OR DATE-DD > 31
022600 MOVE "N" TO VALID-DATE-FLAG
022700 ELSE
022800 IF (DATE-DD > 30) AND
022900 (DATE-MM = 2 OR 4 OR 6 OR 9 OR 11)
023000 MOVE "N" TO VALID-DATE-FLAG
023100 ELSE
023200 IF DATE-DD > 29 AND DATE-MM = 2
023300 MOVE "N" TO VALID-DATE-FLAG
023400 ELSE

023500 IF DATE-DD = 29 AND DATE-MM = 2
023600 COMPUTE DATE-REMAINDER = FUNCTION REM(DATE-CCYY, 400)
023700
023800 IF DATE-REMAINDER = 0
023900 MOVE "Y" TO VALID-DATE-FLAG
024000 ELSE
024100 COMPUTE DATE-REMAINDER = FUNCTION REM(DATE-CCYY,100)
024200
024300 IF DATE-REMAINDER = 0
024400 MOVE "N" TO VALID-DATE-FLAG
024500 ELSE
024600 COMPUTE DATE-REMAINDER =
024700 FUNCTION REM(DATE-CCYY,100)
024800 IF DATE-REMAINDER = 0
024900 MOVE "Y" TO VALID-DATE-FLAG
025000 ELSE
025100 MOVE "N" TO VALID-DATE-FLAG.

TYPE: Listing A.50. Another version of CHECK-DATE.

021400 CHECK-DATE.
021500 MOVE "Y" TO VALID-DATE-FLAG.
021600 IF DATE-CCYYMMDD = ZEROES
021700 IF ZERO-DATE-IS-OK = "Y"
021800 MOVE "0" TO VALID-DATE-FLAG
021900 ELSE
022000 MOVE "N" TO VALID-DATE-FLAG
022100 ELSE
022200 IF DATE-MM < 1 OR DATE-MM > 12
022300 MOVE "N" TO VALID-DATE-FLAG
022400 ELSE
022500 IF DATE-DD < 1 OR DATE-DD > 31
022600 MOVE "N" TO VALID-DATE-FLAG
022700 ELSE
022800 IF (DATE-DD > 30) AND
022900 (DATE-MM = 2 OR 4 OR 6 OR 9 OR 11)
023000 MOVE "N" TO VALID-DATE-FLAG
023100 ELSE
023200 IF DATE-DD > 29 AND DATE-MM = 2
023300 MOVE "N" TO VALID-DATE-FLAG
023400 ELSE
023500 IF DATE-DD = 29 AND DATE-MM = 2
023600 IF FUNCTION REM(DATE-CCYY, 400) = 0
023700 MOVE "Y" TO VALID-DATE-FLAG
023800 ELSE
023900 IF FUNCTION REM(DATE-CCYY,100) = 0
024000 MOVE "N" TO VALID-DATE-FLAG

024100 ELSE
024200 IF FUNCTION REM(DATE-CCYY,100) = 0
024300 MOVE "Y" TO VALID-DATE-FLAG
024400 ELSE
024500 MOVE "N" TO VALID-DATE-FLAG.

Answers to Bonus Day 6, "Dates and the Year 2000"

Quiz

1. Lilian and ANSI days dating both use a base date and calculate dates as a number of days from the
base date. Lilian uses Friday, October 15, 1582 as day 1; ANSI uses Monday, January 1, 1601 as day
1.

2. The remainder of 15 divided by 4 is 3, the value that will be stored in RESULT.

3. A year is a leap year if it is

Evenly divisible by 4❍

But not if it is evenly divisible by 100❍

Unless it is also evenly divisible by 400.❍

4. 1996, 2000, and 1600 are all leap years. 1700, 1901, and 1955 are not.

Exercise

Listing A.51 shows DDIF.CBL is one possible solution to the day difference problem.

TYPE: Listing A.51. DDIF.CBL calculating the number of days between two dates.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. DDIF.
000300 AUTHOR. MO BUDLONG.
000400 INSTALLATION.
000500 DATE-WRITTEN. 09/07/96.
000600 DATE-COMPILED.
000700 SECURITY. NONE
000800 ENVIRONMENT DIVISION.
000900 INPUT-OUTPUT SECTION.
001000 FILE-CONTROL.
001100 DATA DIVISION.
001200 FILE SECTION.
001300 WORKING-STORAGE SECTION.
001400
001500 01 LARGER-DATE PIC 9(8).

001600 01 SMALLER-DATE PIC 9(8).
001700 01 LARGER-ANSI PIC 9(8).
001800 01 SMALLER-ANSI PIC 9(8).
001900 01 DAYS-DIFF PIC S9(5).
002000 01 FORMAT-DAYS-DIFF PIC ZZZZ9-.
002100
002200 01 DUMMY PIC X.
002300
002400 PROCEDURE DIVISION.
002500 MAIN-LOGIC SECTION.
002600 PROGRAM-BEGIN.
002700
002800 PERFORM OPENING-PROCEDURE.
002900 PERFORM MAIN-PROCESS.
003000 PERFORM CLOSING-PROCEDURE.
003100
003200 EXIT-PROGRAM.
003300 EXIT PROGRAM.
003400 STOP-RUN.
003500 STOP RUN.
003600
003700
003800 THE-OTHER SECTION.
003900
004000 OPENING-PROCEDURE.
004100 CLOSING-PROCEDURE.
004200 MAIN-PROCESS.
004300 MOVE 1 TO LARGER-DATE, SMALLER-DATE.
004400 PERFORM ENTER-PARAMETERS.
004500 PERFORM TEST-DDIF UNTIL
004600 LARGER-DATE = 0
004700 OR SMALLER-DATE = 0.
004800
004900 ENTER-PARAMETERS.
005000 DISPLAY "ENTER LARGER DATE AS YYYYMMDD(0 TO QUIT)".
005100 ACCEPT LARGER-DATE.
005200 IF LARGER-DATE NOT = 0
005300 DISPLAY "ENTER SMALLER DATE AS YYYYMMDD (0 TO QUIT)"
005400 ACCEPT SMALLER-DATE.
005500
005600 TEST-DDIF.
005700 COMPUTE LARGER-ANSI =
005800 FUNCTION INTEGER-OF-DATE(LARGER-DATE).
005900 COMPUTE SMALLER-ANSI =
006000 FUNCTION INTEGER-OF-DATE(SMALLER-DATE).
006100
006200 COMPUTE DAYS-DIFF = LARGER-ANSI - SMALLER-ANSI.

006300 MOVE DAYS-DIFF TO FORMAT-DAYS-DIFF.
006400 DISPLAY
006500 "DIFFERENCE BETWEEN " LARGER-DATE
006600 " AND " SMALLER-DATE
006700 " IS " FORMAT-DAYS-DIFF.
006800
006900 PERFORM ENTER-PARAMETERS.
007000

The following is a sample output screen from the program, showing that the answer is still correct
even if the user enters the information incorrectly.

OUTPUT:
* Accepted - CONFIRM
ENTER LARGER DATE AS YYYYMMDD(0 TO QUIT)
19970112
ENTER SMALLER DATE AS YYYYMMDD (0 TO QUIT)
19970110
DIFFERENCE BETWEEN 19970112 AND 19970110 IS 2
ENTER LARGER DATE AS YYYYMMDD(0 TO QUIT)
19970112
ENTER SMALLER DATE AS YYYYMMDD (0 TO QUIT)
19970114
DIFFERENCE BETWEEN 19970112 AND 19970114 IS 2-
ENTER LARGER DATE AS YYYYMMDD(0 TO QUIT)

Previous chapter Next chapter Contents

Macmillan Computer Publishing USA

© Copyright, Macmillan Computer Publishing. All rights reserved.

Teach Yourself COBOL in 21 days,
Second Edition

Previous chapter Next chapter Contents

- B -
ASCII

ASCII (American Standard Code for Information Interchange) uses 128 numbers to represent the
characters of the alphabet, the digits, punctuation characters, and some special characters that are used to
control printers, terminals, and other computer devices. The 128 values are numbered beginning with
zero, so the numbers used are 0 through 127.

The ASCII character set includes all the digits, the upper- and lowercase letters of the alphabet, and
punctuation characters. All the printable characters (letters, digits, and punctuation) have values between
32 and 126. The values 0 through 31 and 127 are used for control characters.

Table B.1 is a brief ASCII chart with the decimal value of each entry, and its ASCII name or character.
Several of the ASCII codes represent nonprintable characters, and these are represented by their names.
You might be familiar with some of these.

Table B.1. ASCII chart with decimal values.

0 NUL 32 SP 64 @ 96 `
1 SOH 33 ! 65 A 97 a
2 STX 34 " 66 B 98 b
3 ETX 35 # 67 C 99 c
4 EOT 36 $ 68 D 100 d
5 ENQ 37 % 69 E 101 e
6 ACK 38 & 70 F 102 f
7 BEL 39 ` 71 G 103 g
8 BS 40 (72 H 104 h
9 HT 41) 73 I 105 i
10 LF 42 * 74 J 106 j

11 VT 43 + 75 K 107 k
12 FF 44 , 76 L 108 l
13 CR 45 - 77 M 109 m
14 SO 46 . 78 N 110 n
15 SI 47 / 79 O 111 o
16 DLE 48 0 80 P 112 p
17 DC1 49 1 81 Q 113 q
18 DC2 50 2 82 R 114 r
19 DC3 51 3 83 S 115 s
20 DC4 52 4 84 T 116 t
21 NAK 53 5 85 U 117 u
22 SYN 54 6 86 V 118 v
23 ETB 55 7 87 W 119 w
24 CAN 56 8 88 X 120 x
25 EM 57 9 89 Y 121 y
26 SUB 58 : 90 Z 122 z
27 ESC 59 ; 91 [123 {
28 FS 60 < 92 \ 124 |
29 GS 61 = 93] 125 }
30 RS 62 > 94 ^ 126 ~
31 US 63 ? 95 _ 127 DEL

A control character is a single character that can be sent to a computer device, such as a printer or
monitor, that controls the behavior of the device (rather than printing an actual character). For example,
the value 13 (CR) is a carriage return. This value sent to a printer causes the print head to return to
column 1. A CR also is the code usually sent by the Return or Enter key on the keyboard. Value 7 (BEL),
when sent by the computer to the terminal, usually causes a beep or rings an alarm.

The following are some of the other control characters: HT (Horizontal Tab) value 9. This character, sent
to a printer or a screen, causes the cursor or print head to advance to the next column. SO (Shift Out) and
SI (Shift In), values 14 and 15. Many printers are set up with two built-in fonts. Sending an SI causes the
printer to shift to the second font. Sending an SO causes the printer to shift back to the first font. The
values from 32 through 126 are printable characters. Value 32 (SP) is a space. Whether a space is
actually a "printable" character is a debatable issue. A space does not usually put ink on the paper;
instead, it places a character containing no image. Some printers create this by simply advancing the print
head one position.

The characters in the range below 32 are used extensively in telecommunications. For example, 02 and
03 (STX and ETX) are often used at the start and end of a block of transmitted information. 06 and 21
(ACK and NAK) are often used by a receiving computer to signal acknowledgement (ACK for
well-received) or a negative acknowledgement (NAK for not well-received, please retransmit).

For a detailed and excellent description of ASCII, read The C Programmer's Guide to Serial

Communications, Second Edition, by Joe Campbell (Sams Publishing). Chapter 1 on ASCII alone makes
the book worth the cover price.

Previous chapter Next chapter Contents

Macmillan Computer Publishing USA

© Copyright, Macmillan Computer Publishing. All rights reserved.

Teach Yourself COBOL in 21 days,
Second Edition

Previous chapter Next chapter Contents

- C -
Editing, Compiling, and Linking

To use this book effectively, you need to set up an area on your computer's disks where you can do your
work and become familiar with your tools.

Setting up includes installing the COBOL compiler and creating a directory where you can do the lessons
and experiment with ideas you might have while studying. The tools you need to become familiar with
are an editor, the COBOL compiler, and perhaps a linker. You also need to learn how to run the
completed program.

You'll perform this edit-compile-run sequence many times before you complete this book. Get
comfortable with these steps. Without them, you will be unable to see your programs running, and your
study will become an exercise in theory without practice.

This appendix explains the steps you need to take to set up a development area for various different
COBOL compilers and computer systems, and how to use the tools to edit, compile, and link your
program. If you use Micro Focus Personal COBOL or Acucobol, refer to the installation instructions
distributed with your package. If the system you are using is not included, you have to consult the
COBOL manual, editor manual, and system administrator or course instructor to work out this process.

Installation
First, install the COBOL compiler and associated software. If you will be working on a system that
already has a COBOL compiler installed, you can skip installation.

Workspace
On almost any system, the workspace is a directory.

Windows

Under Windows, most of the compilers that you use will run within an MS-DOS Window. For Windows
3.x, double-click the group named Main, and double-click the MS-DOS icon. For Windows 95, click the
Start button and select Programs. Within the programs listed, you will find one for MS-DOS Prompt.
Click this selection.

When you are running MS-DOS under Windows, the MS-DOS window might appear as a smaller
window on the main screen, or it might fill the entire screen, replacing the Windows desktop with a blank
MS-DOS screen. After you have an MS-DOS screen or window open, you may type commands in that
window or screen as if you were in MS-DOS. Follow the directions in the section "MS-DOS." When you
are finished with your MS-DOS or COBOL programming session, type exit at the prompt to close the
MS-DOS window or screen and return to the Windows desktop.

MS-DOS

On an MS-DOS system, change to the root directory by entering the following:

cd \

Then create a working directory by entering the following:

mkdir cobol21

This creates a directory in which you can do all your development. Whenever you are ready to work on a
lesson, start by changing to that directory by entering the following:

cd \cobol21

UNIX

If you work on a UNIX-based operating system, change to your home directory by entering the
following:

cd

Then create a directory in which you can do all your development by entering the following:

mkdir cobol21

Whenever you are ready to work on a lesson, change to that directory by entering the following:

cd $HOME
cd cobol21

or

cd $HOME/cobol21

VAX VMS
Log on to the system so that you are in your home directory. Create a directory in which you can do all
your development by entering the following:

CREATE /DIR [.COBOL21]

Whenever you plan to work on a lesson, change to that directory by entering the following:

SET DEFAULT [.COBOL21]

Editing
The editor is your most important tool when you are programming. It is important to become familiar
with it and to be able to use it easily.

If you are working with ACUCOBOL COBOL under MS-DOS, I recommend that you use the
editor that is now being distributed with MS-DOS called EDIT.

●

If you are working on a UNIX system, I recommend that you learn how to use vi. It is a cranky
editor, but it is available on all UNIX systems and therefore gives you access to editing on all
systems.

●

VAX VMS comes with a number of editors: EDIT, EDT, TPU, and others. Pick one that you like
and stick with it. EMACS is another popular editor that is freely available for many computer
systems.

●

For any editor, make sure that you can create a new file, add text to it, and save it. Practice the following
steps, using the correct name of your editor:

1. Change to your working directory.

2. Start the editor on a new text file. For example, for MS-DOS, type the following:

EDIT new.txt

3. After the screen comes up, type a couple of lines and then save the results.

Open an existing file (such as new.txt) that you already have created, make changes, and save it.

These are editor basics. As you work through the lessons, if you are not familiar with your editor, have
the editor manual or a crib sheet handy so that you gradually can learn how to work with it (cutting and
pasting, searching for text, and so on). The more you know about your editor, the easier the job of
programming is; programmers spend 90% of their programming time working with a source code file (a
text file) in the editor.

Filenames
Some versions of COBOL require that your COBOL source code files have a particular extension. Under
VAX VMS, all COBOL source code files must be created with the extension .COB. The source code for
a program called MATH is created with the following command:

EDIT MATH.COB

ACUCOBOL does not care what extension you use, but it is common to use .cob or .cbl for COBOL
source code files to make them easier to identify. The ACUCOBOL examples in this book use the
extension .cbl. The math program source code is edited with a command such as the following:

EDIT math.cbl

Compiling
After you create or edit a program, you must compile it. Unless you have a programming environment
that enables you to compile from within the editor, you have to exit the editor and start the compiler as a
separate action by doing the following:

For ACUCOBOL, enter the following:●

ccbl -o progname progname.cbl

This compiles progname.cbl and creates a file called progname, where progname is the
name of your program. The -o in the command name is called a switch or command-line option.
ACUCOBOL comes with several options.

●

For VAX VMS, enter the following:●

COBOL PROGNAME.COB

This compiles and creates a file named PROGNAME.OBJ.●

Linking
No linking is required for ACUCOBOL. Under VAX VMS, type the following:

LINK /EXE=PROGNAME PROGNAME.OBJ

This creates a program named PROGNAME.EXE.

Running
ACUCOBOL uses a runtime program, runcbl, that must be named on the command line. To execute
the program, enter the following:

runcbl progname

On VAX VMS, enter the following:

RUN PROGNAME

Previous chapter Next chapter Contents

Macmillan Computer Publishing USA

© Copyright, Macmillan Computer Publishing. All rights reserved.

Teach Yourself COBOL in 21 days,
Second Edition

Previous chapter Next chapter Contents

- D -
Handling Compiler Errors

One of the difficulties of COBOL is dealing with compiler error messages. COBOL is very fussy about
the syntax of the program. Some simple errors can produce problems that are difficult to find.

Rules for Locating Errors
The following are two rules to remember at all times:

Check for spelling errors. Check that you haven't misspelled IDENTIFICATION DIVISION or
any of the other divisions. Check that you haven't omitted or added a period. Check that you
haven't typed a zero when you meant to type the letter O.

●

If the error that the compiler gives you doesn't seem to make sense after checking the line that
contains the error, look earlier in the code for an error.

●

General Problem Areas
The following are general procedural and typing errors to watch for and avoid:

Misspelling the name of a DIVISION. In Micro Focus Personal COBOL, misspelling
IDENTIFICATION DIVISION produces an error of PROCEDURE DIVISION MISSING.
This is a devil to locate because everything around PROCEDURE DIVISION might look good.
You have to go all the way back to the top of the program to locate the error.

●

Misspelling the name of a required SECTION.●

Misspelling the name of any required PARAGRAPH.●

Starting a DIVISION, SECTION, or PARAGRAPH outside of Area A. Area A is columns 8-11.●

Leaving a period off the end of a DIVISION, SECTION, or PARAGRAPH.●

Adding an unnecessary hyphen to a DIVISION or SECTION name. For example,
IDENTIFICATION-DIVISION or WORKING-STORAGE-SECTION is wrong.

●

Specific Errors for Different Compilers
The following is a list of some errors that are hard to catch:

Any type of error with a whole DIVISION. For example, the compiler might print a message such
as the following:

●

MISSING PROCEDURE DIVISION●

or●

Expected DATA DIVISION but found something else.●

If the DIVISION is in the program and seems to be okay, the error is in an earlier DIVISION.
Check the spelling and punctuation.

●

An unexpected end-of-file error message. This error can happen with some compilers when you
omit the period from the last statement in the program.

●

The compiler error indicates that a paragraph name or data name is invalid, but when you inspect
the name there doesn't seem to be anything wrong with it.

●

This error can be caused by using the same name for a paragraph and a variable. For example, this
type of error can occur if you have a variable with a name such as

●

01 SAVE-THE-TOTAL PIC 9999.

and in the program you have a paragraph named the following:●

SAVE-THE-TOTAL.
 PERFORM DO-SOMETHING.

When this occurs, compilers do not always provide a clear description of the error. Paragraph and
data names should be unique.

●

The compiler produces an error indicating that a variable name is ambiguous, such as the
following:

●

MOVE 12 TO ANOTHER-NUMBER

Error: Destination is ambiguous

This error is caused by having two different variables with the same name. There is another way to
get around this problem, but it is much simpler if every variable has a unique name. Bonus Day 2,
"Miscellaneous COBOL Syntax," covers the use of qualified data names and explains how you can
use variables with the same name when it is necessary.

●

One common error in COBOL is accidentally typing a 0 (zero) when you intended an O
(uppercase letter O). For example, the following might cause the compiler to generate strange
errors:

●

MOVE 10 T0 THE-NUMBER

The error might look like the following:●

OPERAND not declared.

Upon inspection, THE-NUMBER is found to be declared, so what's the problem? On closer
inspection, the T0 is spelled with a zero, so the compiler error message just confuses the issue.

●

The program seems to keep running when it should have stopped.●

This problem is produced by a combination of errors. First, the compiler usually is one that does
not care about sentences and paragraphs starting in the correct positions. Second, the command to
stop the program, STOP RUN, has been typed incorrectly as STOP-RUN, with a hyphen.

●

When the compiler sees something like the following, it does not see this as a paragraph
containing the sentence STOP RUN:

●

005500 PROGRAM-DONE.
005600 STOP-RUN.\

Instead, it sees it as a paragraph named PROGRAM-DONE containing no sentences and a paragraph
named STOP-RUN containing no sentences.

●

An unusual problem that produces oddball compiler errors is surprising reserved words. I ran into
one while writing this book. In one program, I had created variables named DISPLAY-1,
DISPLAY-2, DISPLAY-3, and DISPLAY-4. This program compiled and ran fine under
ACUCOBOL, but produced a very strange error when compiled under Micro Focus Personal
COBOL. It turned out that DISPLAY-1 is a reserved word in Micro Focus Personal COBOL, and
its use as a variable name made the compiler a bit nuts.

●

Previous chapter Next chapter Contents

Macmillan Computer Publishing USA

© Copyright, Macmillan Computer Publishing. All rights reserved.

Teach Yourself COBOL in 21 days,
Second Edition

Previous chapter Next chapter Contents

- E -
Summary of COBOL Syntax

This appendix presents a working summary of the syntax for various commands covered in this book.
This summary is neither the whole syntax for a command nor is it all the commands supported by
COBOL; however, it is enough to work with the command. For a full description of the syntax, consult
the manual for your COBOL compiler.

Defining General Terms in Syntax Listings

Syntax Term Description

... (ellipsis) Indicates that the preceding item might be repeated a number of times.

[] (brackets) An optional clause in the syntax.

| (vertical bar)
Two or more words separated by a vertical bar indicates that one of the
values can be used.

alphanumeric variable An alphanumeric variable defined in WORKING-STORAGE

arithmetic expression
An expression representing one or more addition, subtraction,
multiplication, or division operations involving numeric values.

condition
An expression representing one or more comparisons between values
optionally joined by AND or OR.

constant
For alphanumeric values, a set of characters enclosed in quotes, such as
"ABC". For numeric values, an expression representing a number, such
as 1296.54.

do something Any COBOL command.

file-field-name
A COBOL variable that is a field in a record of a file described in an
FD or SD (sort descriptor).

file-name The name of a file described in an FD.

file-record A COBOL variable that is the record of a file described in an FD.

index
A variable defined in WORKING-STORAGE used as an index for a
table or array.

mode
One of the four open modes for a file: OUTPUT, EXTEND, I-O, or
INPUT.

numeric value A numeric constant or a numeric variable.

numeric variable A numeric variable defined in WORKING-STORAGE.

paragraph A paragraph name in the COBOL program.

procedure A paragraph or section.

program-name A COBOL program name.

sort-file The name of a file described in an SD.

value A constant or a variable.

variable A variable defined in WORKING-STORAGE.

Command Syntax
The following syntax might not exactly match your chosen compiler. You should consult the COBOL
reference manual distributed with your compiler.

ACCEPT

Syntax:
ACCEPT variable
 [WITH CONVERSION]
ACCEPT variable
 [CONVERT]

Some versions of COBOL do not use the WITH CONVERSION or CONVERT option.

Examples:
ACCEPT NUMERIC-ENTRY-FIELD
 WITH CONVERSION
ACCEPT ENTRY-FIELD

ADD

Syntax:
ADD numeric value TO
 numeric value
 GIVING variable [ROUNDED]

 [ON SIZE ERROR

 do something]

ADD numeric value TO
 numeric variable [ROUNDED]
 [ON SIZE ERROR

 do something]

Examples:
ADD 17.5 TO THE-VALUE
 GIVING THE-SUM ROUNDED
 ON SIZE ERROR

 DISPLAY "Add - overflow"

ADD 1.17 TO THE-VALUE ROUNDED
 ON SIZE ERROR

 DISPLAY "Add - overflow"

BEGIN TRANSACTION

Syntax:
BEGIN TRANSACTION
REWRITE file-record
 [INVALID KEY
 do something]
[REWRITE file-record
 [INVALID KEY
 do something]]

COMMIT|ROLLBACK TRANSACTION

Examples:
BEGIN TRANSACTION
REWRITE VENDOR-RECORD
 INVALID KEY
 MOVE "E" TO TRANSACTION-FLAG

WRITE VENDOR-LOG-RECORD
 INVALID KEY
 MOVE "E" TO TRANSACTION-FLAG

IF TRANSACTION-FLAG = "E"
 ROLLBACK TRANSACTION

ELSE

 COMMIT TRANSACTION

CALL

Syntax:
CALL "program-name"

CALL "program-name"

 USING variable . . .

Examples:
CALL "VNDRPT03"

CALL "MYPROG"

 USING NUMERIC-DATA, DATE-FIELD.

CLOSE

Syntax:
CLOSE file-name

Examples:
CLOSE PHONE-FILE

COMPUTE

Syntax:
COMPUTE numeric variable
 [ROUNDED] =
 arithmetic expression
 [ON SIZE ERROR

 do something else]

Examples:
COMPUTE THE-RESULT ROUNDED =
 (BASE-VALUE * 10) +
 (A-VALUE / 50)
 ON SIZE ERROR

 DISPLAY "Warning Size error."

COPY

Syntax:
COPY "filename.ext".

Examples:
COPY "FDVENDOR.CBL".

DELETE

Syntax:
DELETE file-name RECORD
 [INVALID KEY
 so something]

Examples:
DELETE VOUCHER-FILE RECORD
 INVALID KEY
 DISPLAY "ERROR DELETING"

DISPLAY

Syntax:
DISPLAY value

Examples:
DISPLAY "HELLO WORLD".
DISPLAY ERROR-MESSAGE.

DIVIDE

Syntax:
DIVIDE value
 INTO variable [ROUNDED]
 [ON SIZE ERROR

 do something]

DIVIDE value BY value
 GIVING variable [ROUNDED]
 [ON SIZE ERROR

 do something]

DIVIDE value BY value

 GIVING variable [ROUNDED]
 REMAINDER variable
 [ON SIZE ERROR

 do something]

DIVIDE value INTO value
 GIVING variable [ROUNDED]
 [ON SIZE ERROR

 do something]

DIVIDE value INTO value
 GIVING variable [ROUNDED]
 REMAINDER variable
 [ON SIZE ERROR

 do something]

Examples:
DIVIDE 56.2
 INTO THE-VALUE ROUNDED
 ON SIZE ERROR

 DISPLAY "Divide-error"

DIVIDE 56.2 BY THE-VALUE
 GIVING THE-QUOTIENT ROUNDED
 ON SIZE ERROR

 DISPLAY "Divide-error"

DIVIDE 15 BY 7
 GIVING THE-QUOTIENT ROUNDED
 REMAINDER THE-REMAINDER
 ON SIZE ERROR

 DISPLAY "Divide-error"

DIVIDE 56.2 INTO THE-VALUE
 GIVING THE-QUOTIENT ROUNDED
 ON SIZE ERROR

 DISPLAY "Divide-error"

DIVIDE 15 INTO THE-VALUE

 GIVING THE-QUOTIENT ROUNDED
 REMAINDER THE-REMAINDER
 ON SIZE ERROR

 DISPLAY "Divide-error"

EXIT

Syntax:
EXIT PROGRAM

Examples:
PROGRAM-EXIT.
 EXIT PROGRAM.

GO TO

Syntax:
GO TO paragraph

Examples:
GO TO PROGRAM-EXIT.

IF ELSE

Syntax:
IF condition
 do something
 do something
ELSE
 do something

Examples:
IF RECORD-FOUND = "N"
 DISPLAY "RECORD NOT FOUND"
 MOVE "ERROR" TO ERROR-CODE
ELSE
 PERFORM DISPLAY-RECORD

INSPECT

Syntax:
INSPECT variable
 CONVERTING compare list
 TO replace list

Examples:
INSPECT ENTRY-FIELD
 CONVERTING LOWER-ALPHA
 TO UPPER-ALPHA

MOVE

Syntax:
MOVE value TO variable
 [variable . . .]

Examples:
MOVE 19 TO THE-VALUE
 ANOTHER-VALUE
 YET-ANOTHER-VALUE

MULTIPLY

Syntax:
MULTIPLY value
 BY variable [ROUNDED]
 [ON SIZE ERROR

 do something]

MULTIPLY value BY value
 GIVING variable [ROUNDED]
 [ON SIZE ERROR

 do something]

Examples:
MULTIPLY 1.17
 BY THE-VALUE ROUNDED
 ON SIZE ERROR

 DISPLAY "Multiply-overflow"

MULTIPLY 17.5 BY THE-VALUE
 GIVING THE-PRODUCT ROUNDED
 ON SIZE ERROR

 DISPLAY "Multiply-overflow"

OPEN

Syntax:
OPEN mode file-name

Examples:
OPEN OUTPUT PHONE-FILE
OPEN EXTEND PHONE-FILE
OPEN INPUT PHONE-FILE
OPEN I-O PHONE-FILE

PERFORM

Syntax:
PERFORM paragraph
 VARYING variable
 FROM value
 BY value
 UNTIL condition

PERFORM paragraph

PERFORM paragraph

 value TIMES

PERFORM paragraph

 UNTIL condition

Examples:
PERFORM CALCULATE-AND-DISPLAY
 VARYING THE-MULTIPLIER
 FROM INITIAL-VALUE
 BY 1

 UNTIL THE-MULTIPLIER > 12.

PERFORM CALCULATE-AND-DISPLAY

PERFORM CALCULATE-AND-DISPLAY

 12 TIMES

PERFORM CALCULATE-AND-DISPLAY

 THE-COUNT TIMES

PERFORM CALCULATE-AND-DISPLAY

 UNTIL THE-MULTIPLIER > 12

READ

Syntax:
READ file-name [NEXT] RECORD
 AT END
 do something

For a SEQUENTIAL file, READ and READ NEXT RECORD are identical:

READ file-name RECORD
 INVALID KEY
 do something

Examples:
READ PHONE-FILE NEXT RECORD
 AT END
 MOVE "Y" TO END-OF-FILE
READ VENDOR-FILE RECORD
 INVALID KEY
 MOVE "N" TO RECORD-FOUND.

REWRITE

Syntax:
REWRITE file-record
 [INVALID KEY
 do something]

Examples:
REWRITE VENDOR-RECORD
 INVALID KEY
 DISPLAY "REWRITE ERROR"

SEARCH

Syntax:
SEARCH table name
 [AT END
 do something]

 WHEN condition

 do something

Examples:
SET STATE-INDEX TO 1.
SEARCH TABLE-STATE-RECORD
 AT END
 PERFORM SEARCH-FAILED
 WHEN
 VENDOR-STATE =
 TABLE-STATE-CODE(STATE-INDEX)
 PERFORM SEARCH-SUCCEEDED

SET

Syntax:
SET index
 UP|DOWN BY value
SET index variable TO value

Examples:
SET STATE-INDEX UP BY 1.

SET STATE-INDEX
 DOWN BY LAST-VALUE.
SET STATE-INDEX TO 1
SET STATE-INDEX TO LAST-VALUE.

SORT

Syntax:
SORT sort-file
 ON ASCENDING KEY sort-field
 USING input-file
 GIVING output-file

Examples:
SORT SORT-FILE
 ON ASCENDING KEY SORT-DATE
 USING VOUCHER-FILE
 GIVING WORK-FILE.

START

Syntax:
START file name
 KEY NOT < key name
 [INVALID KEY
 do something]

START file name
 KEY > key name
 [INVALID KEY

 do something]

START file name
 KEY EQUALS|NOT <|GREATER THAN
 key name
 [INVALID KEY

 do something]

Examples:
MOVE SPACE TO VENDOR-NAME.
START VENDOR-FILE
 KEY NOT < VENDOR-NAME
 INVALID KEY
 MOVE "Y" TO FILE-AT-END.
MOVE "AZZZZZZZZZZZZZZZZZZZ"
 TO VENDOR-NAME.
START VENDOR-FILE
 KEY > VENDOR-NAME
 INVALID KEY

 MOVE "Y" TO FILE-AT-END.
MOVE "JONES AND SONS"
 TO VENDOR-NAME.
START VENDOR-FILE
 KEY EQUALS VENDOR-NAME
 INVALID KEY

 MOVE "N" TO RECORD-FOUND.

MOVE SPACE
 TO VENDOR-NAME.
START VENDOR-FILE
 KEY NOT < VENDOR-NAME

 INVALID KEY

 MOVE "N" TO RECORD-FOUND.

SUBTRACT

Syntax:
SUBTRACT value
 FROM variable [ROUNDED]
 [ON SIZE ERROR

 do something]

SUBTRACT value FROM value
 GIVING variable [ROUNDED]
 [ON SIZE ERROR
 do something]

Examples:
SUBTRACT 1.17
 FROM THE-VALUE ROUNDED
 ON SIZE ERROR

 DISPLAY "Subtract - overflow"

SUBTRACT 17.5 FROM THE-VALUE
 GIVING THE-SUM ROUNDED
 ON SIZE ERROR

 DISPLAY "Subtract-overflow"

WRITE

Syntax:
WRITE file-record
 [FROM variable]
 [INVALID KEY
 do something]

WRITE file-record
 AFTER|BEFORE
 ADVANCING

 PAGE|value LINES

Examples:

WRITE PHONE-RECORD
WRITE PHONE-RECORD
 FROM WORK-DATA
WRITE VENDOR-RECORD
 INVALID KEY
 MOVE "Y" TO DUPLICATE-FLAG

WRITE PRINTER-RECORD
 BEFORE ADVANCING 1 LINE
WRITE PRINTER-RECORD

 AFTER ADVANCING PAGE

Previous chapter Next chapter Contents

Macmillan Computer Publishing USA

© Copyright, Macmillan Computer Publishing. All rights reserved.

Teach Yourself COBOL in 21 days,
Second Edition

Previous chapter Next chapter Contents

- F -
Transaction Processing

Transaction processing is an additional area of COBOL that you should know something about.

The Basics of Transaction Processing
Transactions are used to force a group of two or more writes, rewrites, or deletes to one or more files to
be treated as a single group in which all of the file updates must occur successfully.

In general terms, a transaction consists of the input data, the existing data in the file that is being
changed, the transfer of the data from the input computer to the computer where it will be stored, locking
the records to be changed, changing the records and recording the changes, releasing locks on records,
and logging the changes.

The Steps of a Transaction
The steps of a transaction are generally as follows:

1. Inputting the data frequently involves keying in the information at a terminal. Sometimes it
involves inputting information from another source, such as a floppy disk containing payroll
information to be processed.

2. Temporarily saving the existing data is a significant step if the input data is making changes to
already existing information. Existing data must be preserved in such a way that a partial update
does not occur. A transaction is an all-or-nothing proposition, and the simple rule is either all of
the requested new data is written or rewritten to the file, or none of it is.

3. Transferring the data from source to destination can be a complex step in a distributed
environment. You can key in information at a PC or other terminal, and then send it as a packet of

information to a remote computer. Some transaction systems are responsible for ensuring that the
information travels from source to destination without data corruption.

4. Locking or holding the records to be changed prevents multiuser corruption. For example, if two
users are both updating purchase order number 12345, whose information is actually written to the
disk? A transaction processing system allows one user in and locks the other user out.

5. Changing the records is the core of a transaction processing system. The whole point of a
transaction is to make some change to the information in a file or files. Recording the information
to be written to the disk is the task of making the changes permanent and involves ensuring that all
changes are recorded or none is recorded. In this step, either the new information is recorded, or
the existing information saved in a previous step might be restored because of a failure to record
the new data.

6. Releasing locks on records is done so that other users can now have access to and can update the
same information.

7. Logging the changes is done by all transaction processing systems. In some systems, the logged
information can be accessed by special programs that can be used by a system programmer or
system administrator who is trying to trace a problem, or by a security administrator who is trying
to track down a security breach. More commonly, the transaction system logs the information
internally and uses it in the processing of the previous steps.

The Need for Transactions
At least two very good reasons exist for using transactions in processing data. Multiple users might be
trying to update the same information at the same time, and a transaction might involve more than one
file.

When multiple users are trying to update the same information, there is no guarantee that they are
entering the same data. Two users entering information for the same employee, but entering different
addresses, could cause a data disaster, unless there were some mechanism to ensure that only one user at
a time can update the information.

When multiple files are involved, there is the risk of a system problem as information is being updated.
Take the case of an invoice file that is actually made up of two separate files. One file might contain the
name and address of the customer, the invoice number, and the total amount of the invoice. The second
file might contain several records, including one line for each of the items being purchased on the invoice
and the amount for each item. If the invoice is changed, it is essential that the invoice and invoice lines
all be updated simultaneously, or the total amount will no longer correctly reflect the sum of all the
invoice lines. A mechanism is needed here to ensure that updates occur for both files or for neither file.

The mechanism that ensures this process is transaction processing.

COBOL Transactions
COBOL transaction processing is implemented in different ways by different versions of COBOL, but
the following is a fairly common set of steps used in COBOL transaction processing:

1. Signal the beginning of a transaction. This usually uses the following syntax:

BEGIN TRANSACTION

2. Issue one or more writes or rewrites to a file. This usually involves standard COBOL file I-O
syntax, such as

REWRITE CUSTOMER-RECORD
 INVALID KEY
 MOVE "E" TO TRANSACTION-FLAG.

WRITE PO-RECORD
 INVALID KEY
 MOVE "E" TO TRANSACTION-FLAG.

3. Complete the transaction or abort the transaction. These usually use the keyword COMMIT to
signal that the transaction is completed successfully, or the keyword ROLLBACK to indicate that
the transaction is to be aborted. The following is the syntax:

IF TRANSACTION-FLAG = "E"
 ROLLBACK TRANSACTION
ELSE
 COMMIT TRANSACTION.

All file writes or rewrites are saved up from the point that a BEGIN TRANSACTION is executed until a
COMMIT or a ROLLBACK is executed. At that point, all writes and rewrites are either executed or
abandoned, causing an all-or-nothing update to the disk drives.

Designing with Transactions
Designing a system with transaction processing involves careful planning of what constitutes a complete
transaction.

Beginners frequently bundle large numbers of file writes and rewrites together and call these a
transaction, which causes performance problems and prevents other users from being able to update the
same files.

A more disastrous error is that of starting a transaction but never finishing it. This can happen when a
COMMIT or ROLLBACK is not executed because of an error in the flow of the program that somehow
skips the statements. A GO TO that skips over a crucial piece of code or placing the COMMIT or
ROLLBACK in a separate paragraph and then neglecting to perform it are examples of possible errors.

Be sure that each transaction is as small as it can be while ensuring the integrity of the information in the
files.

Previous chapter Next chapter Contents

Macmillan Computer Publishing USA

© Copyright, Macmillan Computer Publishing. All rights reserved.

Teach Yourself COBOL in 21 days,
Second Edition
Previous chapter Contents

- G -
Glossary

accounts-payable system: A system that tracks your bills, their due dates, and what has been paid. It
sometimes gives you information on future cash requirements needed to pay bills as they come due.

address: A numeric value representing a location in a computer's memory.

aggregate: A COBOL data type composed of one or more basic COBOL data types. Arrays and
structures are both aggregates. Aggregate is the opposite of atomic when applied to COBOL data types.
In the following code fragment, SOME-VALUES is an aggregate, and VALUE-1 and VALUE-2 are
atomic:

01 SOME-VALUES.
 05 VALUE-1 PIC 9(4).
 05 VALUE-2 PIC 9(3).

alphanumeric: Any of the printable characters, A to Z, a to z, 0 to 9, and punctuation marks such as
spaces, quotes, exclamation marks, and so on. An alphanumeric variable of four characters could hold
any of the values "ABCD", "12XY", "1234", or "(**)" because these are all printable characters.

alternate index: An alternate index is an additional index in an indexed file that defines an alternative
path along which records can be retrieved.

alternate key: See alternate index.

area: One of the five areas in a COBOL program in ANSI format. The areas of a COBOL program are
arranged in columns. The sequence area includes columns 1 through 6 and can be used for line
numbering.

The indicator area is column 7. Single characters in this column cause different behavior.

The * character causes the remainder of the line to be ignored, effectively creating a comment.

The / character is similar to *, but additionally causes the printer to form feed when the listing of the
program is being printed.

The D character indicates that the line is compiled only when compiling for debugging.

The - character indicates a continuation for a literal that was too long to fit on the preceding line.

Area A is columns 8 through 11. Various parts of the COBOL program must begin in Area A, including
division names, section names, paragraph names, and data items having a level number of 01, 77, SD,
and FD.

Area B is columns 12 through 72. Sentences and data items having levels other than 01, 77, SD, and FD
are expected to begin and end in Area B.

The modification area includes columns 73 through 80. The area is used for modification codes by
tradition, although the area is not officially designated for this use.

Area A: See area.

Area B: See area.

array: 1. An area of memory that has been set aside and organized in such a way that it can hold
multiple occurrences of the same type of information. 2. A variable that contains a repeated occurrence
of the same type of data. The following fragment defines an array of 6 numeric variables:

01 A-VALUE PIC 9(5) OCCURS 6 TIMES.

ASCII: American Standard Code for Information Interchange. A code used by computers to represent
the letters of the alphabet, spaces, tabs, and other control information for terminals and printers. See
Appendix B, "ASCII."

ASCII collating sequence: The sequence in which the characters are defined in the ASCII chart. (See
Appendix B.)

atomic: This term generally refers to something that cannot be broken into smaller parts. In COBOL,
atomic variables are given pictures. They cannot be reduced to smaller parts. Arrays and structures are
not atomic because they are composed of smaller data types. Atomic is the opposite of aggregate when
applied to data types. In the following code fragment, SOME-VALUES is an aggregate, and VALUE-1
and VALUE-2 are atomic:

01 SOME-VALUES.
 05 VALUE-1 PIC 9(4).
 05 VALUE-2 PIC 9(3).

bar code reader: An input device that reads a bar code and transmits the information to the computer.
Bar codes are extensively used to encode part numbers on goods in retail stores.

binary: A numbering system using only 0 and 1 as digits in base 2.

block mode screen: Most computers operate a terminal on a character-by-character basis, sending each
character to the screen one at a time and accepting one character at a time from the keyboard. Block

mode screens such as the IBM 3270 send and receive complete screens (usually 1920 characters) at a
time. This usually affects the way a series of DISPLAY verbs are displayed.

called program: A program that has been called to be executed by another program.

calling program: A program that calls another program and executes it.

carriage control: Any commands sent to a printer that control the positioning of the print head, such as a
carriage return or line feed command.

carriage return: 1. See CR. 2. A command sent to a printer that causes the print head to return to the
leftmost margin of the paper. Starting a new line on a printer usually involves sending a carriage return
command followed by a line feed command. See line feed.

CD-ROM: Compact disc-read-only memory. A read-only storage device that uses optical disks to store
data.

central processing unit: The heart of the computer, which performs addition, subtraction,
multiplication, and division. It also moves data from one location to another. This is abbreviated CPU.

COBOL: Common Business Oriented Language, a computer programming language designed and used
primarily for business applications.

comparison operator: The symbols used between two values when the values are being compared. The
short and long versions of COBOL comparison operators are as follows:

Short Long

= IS EQUAL

NOT = IS NOT EQUAL

> IS GREATER THAN

NOT > IS NOT GREATER THAN

< IS LESS THAN

NOT < IS NOT LESS THAN

compiler: A program that takes a source code file, processes it, and generates a translated version of the
source code that the computer can understand. This translation is called an object and is usually saved in
an object file.

compiler directive: A command to the compiler, telling it to do something while it is compiling the
source code file, or telling the compiler to change the way it would normally behave. The COPY
command is not a programming command. It is a command to the compiler to tell it to pull the pieces of
different files together into one file, and then compile the resulting file. The COPY command is
sometimes called the COPY directive, and it looks like this:

001100 COPY "FDVENDOR.CBL".

computer: A machine that can add, subtract, multiply, divide, move, and perform other mathematical
and logical functions on numbers.

control break: A break inserted into the normal processing of a program (usually a report program) to
cause groups of records to be processed together as one unit. The interruption of the normal printing of a
report program to print a total or subtotal would be a control break or level break. In the following
example, the report breaks at the end of each vendor and prints a subtotal for that vendor. Then it breaks
at the end of the report and prints a total for the report.

Vendor DUE DATE AMOUNT
ABC Printing 1/23/1994 27.95
ABC Printing 1/31/1994 15.54
ABC Printing 2/16/1994 10.17
 Total 53.66

GTE 1/17/1994 34.97
GTE 1/24/1994 17.54
 Total 52.51

 Grand Total 106.17

CPU: See central processing unit.

CR: ASCII name for a carriage return character. This has a value of 13 (hex 0D) and causes terminals
and printers to move the cursor or print head to the leftmost column of the display or page.

CR-LF: A carriage return and line feed pair. These characters are used to end a line of text in a text file
on an MS-DOS computer. They also are the standard behavior of a cursor or print head at the end of a
line. See CR and LF.

DATA DIVISION: The DATA DIVISION describes the data used by the program. The DATA
DIVISION and the PROCEDURE DIVISION are the most important divisions in a COBOL program
and do 95 percent of the work. See DIVISION.

data name: The variable name assigned to each field, record, and file in a COBOL program.

data validation: Any technique used to decrease the errors in data entered into the computer.

debug: To test a program to eliminate errors.

default: A condition, value, or action that is executed or set up without having to be requested.

desk checking: Checking source code created with an editor before compiling it to check for
typographical and other errors.

DIVISION: One of the four divisions in a COBOL program--IDENTIFICATION DIVISION,
ENVIRONMENT DIVISION, DATA DIVISION, and PROCEDURE DIVISION.

edited numeric variable: A numeric variable that contains an editing character. Edited numeric
variables should be used only to display values and cannot be used in calculations. There are other
editing characters, but these are the main ones. The following is an example:

01 DISPLAY-VALUE PIC ZZZ,ZZ9.99-.

editing characters: The characters minus (-), decimal point (.), comma (,) and Z are called editing
characters when used in a PICTURE. See edited numeric variable.

element: An individual variable in an array of the same type of variables, or an individual variable in a
structure that might contain dissimilar variables.

end of file: A condition that exists when the last record has been read from a file.

ENVIRONMENT DIVISION: The ENVIRONMENT DIVISION describes the physical environment in
which the program is running. The main use of the ENVIRONMENT DIVISION is to describe the
physical structure of files that will be used in the program. The following is an example:

000300 ENVIRONMENT DIVISION.

executable: A file containing an executable program that has been created by linking one or more
objects.

explicit: A way of stating something in a computer language so that a value or action is apparent by
content. In the following example, EMP-NUMBER has an explicit picture of PIC 9999, and
EMP-HOURLY has an explicit picture of PIC Z9.99. Compare this with the definition of implicit.

000900 01 EMPLOYEE-DATA.
001000 05 FILLER PIC X(4)
001100 VALUE "Emp ".
001200 05 EMP-NUMBER PIC 9999.
001300 05 FILLER PIC X(7)
001400 VALUE " earns ".
001500 05 EMP-HOURLY PIC Z9.99.

FD: See file description.

field: A field or data field is one piece of data contained in a record. In the customer file, the customer
name is one field, and the customer phone number is one field. COBOL data files are organized as one or
more records containing the same fields in each record. For example, a record for a personal phone book
might contain fields for a last name, a first name, and a phone number. See also file and record.

file: In a COBOL program, a file is a collection of related units of data within a category of data. For
example, a file might contain all the data (related units of data) about customers (category of data) for a
company. This customer file would contain information on each customer and is usually called a data file
or a logical file. In order for it to exist at all, a physical file must be on the disk, but when this file is
logically arranged so that a COBOL program can access the information, it becomes a data file to a
COBOL program. See also field and record.

file at end: See end of file.

file description: Entries used to describe a file, its records, and its fields.

file descriptor: See file description.

FILE SECTION: A reserved name for the section of the DATA DIVISION that is used to define files
used in a program.

FILE-CONTROL: A reserved name for a paragraph in the INPUT-OUTPUT section of the
ENVIRONMENT DIVISION that is used to define physical files used in a program.

FILLER: A COBOL reserved word that reserves space in memory for a field that will not be accessed in
the program.

flag: A variable in working in storage that is used to indicate the presence or absence of some condition
in the program. For example, a FILE-AT-END might be used as a flag to indicate that the last record of
the data file has been read.

flowchart: A graphic representation of the logic or steps in a program or system. A flowchart represents
how a program or activity moves through various processes or program routines. It uses symbols to
represent the activities, and it uses arrows to represent the direction of activity through the processes.
Flowcharts can be used to define the behavior of a single program or a system (a combination of
programs).

form feed: A command sent to a printer that causes the printer to eject the last sheet of paper and ready
itself to start printing at the top of a new sheet.

hexadecimal: A numbering system using 16 digits--0 through 9 and A, B, C, D, E, and F in base 16.

hierarchy of operators: See precedence.

I-O-CONTROL: A reserved name for a paragraph in the INPUT-OUTPUT section of the
ENVIRONMENT DIVISION that is used to define what areas of memory will be used by the files while
they are being processed. This paragraph is used to cut down on memory usage when memory is at a
premium.

IDENTIFICATION DIVISION: The IDENTIFICATION DIVISION marks the beginning of a
COBOL program and serves to name and comment the program.

implicit: Implied by context, or the rules of a computer language, but not stated. In the following
example, EMPLOYEE-DATA has an implicit (implied but not stated) picture of PIC X(20). See also
explicit.

000900 01 EMPLOYEE-DATA.
001000 05 FILLER PIC X(4)
001100 VALUE "Emp ".
001200 05 EMP-NUMBER PIC 9999.
001300 05 FILLER PIC X(7)
001400 VALUE " earns ".
001500 05 EMP-HOURLY PIC Z9.99.

implied decimal: A decimal point that does not explicitly appear in a number, but the existence of the
decimal and its position are recorded elsewhere. In the following example, EMP-HOURLY contains an
explicit decimal and EMP-WAGE contains an implicit decimal:

001300 05 EMP-WAGE PIC 9999V99.
001400
001500 05 EMP-HOURLY PIC Z9.99.

index variable: When you define a table (array), you also can define a variable that is specifically
intended to be used as the index for that table. It is called an index variable. In the following example,
STATE-INDEX is an index variable for the TABLE-STATE-RECORD array:

01 TABLE-STATE-RECORD OCCURS 50 TIMES
 INDEXED BY STATE-INDEX.
 05 TABLE-STATE-CODE PIC XX.
 05 TABLE-STATE-NAME PIC X(20).

indexed file: A file containing one or more indexes that allow records to be retrieved by a specific value
or in a particular sort order.

indicator area: Character position 7 is called the indicator area. This seventh position is usually blank.
If an asterisk is placed in this column, everything else on that line is ignored by the compiler. This is used
as a method to include comments in a source code file. Other single characters in this column cause
different behavior: The / character is similar to *, but it additionally causes the printer to form feed
when the listing of the program is being printed.

The D character indicates that the line is compiled only when compiling for debugging. The - character
indicates a continuation for a literal that was too long to fit on the preceding line.

infinite loop: An error condition in a program that causes a processing loop to be performed forever.
Caused by incorrectly setting or testing loop-control variables.

initialize: Set a variable to a starting value.

input device: A device that allows input of information to a computer. The most common input device is
a keyboard. Other devices for input include bar code readers, optical character readers, scanners, and
telecommunications input devices such as modems. Modems are used to input data from other
computers.

INPUT-OUTPUT SECTION: A reserved name for the section of the ENVIRONMENT DIVISION that
is used to define physical files used in a program and what areas of memory will be used by the files
while they are being processed.

ISAM: Indexed Sequential Access Method. Originally a method of creating and accessing indexed files
that allowed record storage and retrieval by a key value in the record. The term tends to be used loosely
to refer to any method of storing and retrieving indexed records.

K: An abbreviation for kilobytes.

key path: The natural sorted order of records as they are returned from the file using a particular key.

kilobyte: 1,024 bytes.

level break: See control break.

level number: A number from 01 to 49 indicating the hierarchy of data in a structure variable. Levels
above 49 are reserved for special uses in COBOL.

LF: The ASCII name for a line feed character. This has a value of 10 (hex 0A) and causes terminals and
printers to move the cursor or print head to the next line on the display or page.

line feed: See LF. A command sent to a printer that causes the print head to move down one line.
Starting a new line on a printer usually involves sending a carriage return command followed by a line
feed command. See carriage return.

listing file: A report produced by the compiler on the program that it has just compiled. This can be sent
directly to the printer, or it can be created as a separate file that can be displayed or sent to the printer.
Sometimes called a listing.

loop: A series of one or more commands executed a number of times or until a certain condition is met in
the program.

M: An abbreviation for megabyte.

main memory: This is a storage area inside the computer that is used as a giant scratch pad for programs
to load and use data. Main memory is usually built from random access memory (RAM) chips.

maintenance program: A program that allows a user to add, change, delete, or look up records in a file.

megabyte: 1,048,576 bytes.

menu: A program that offers the user a number of choices, each of which executes a different program
or different part or screen of the current program.

mod code: See modification code.

modem: Computers transmit data using high and low voltages in a kind of Morse code used to represent
computer bytes. A modem is used to translate high and low voltages from a computer into tones (sounds)
that can be transmitted on a telephone line.

modification area: COBOL was designed as an 80-column language, but there is no formal definition of
character positions 73 through 80. This area is left to the designer of the COBOL editor to use as needed.
COBOL editors on large computers usually allow you to define an eight-character modification code. If
you edit a line of an existing program, or insert lines, these are added to the source code file with the
modification code placed in positions 73 through 80. This is a handy way of tagging all the changes
made to a program for a specific purpose. This method of modification code marking usually depends on
a specific editor being set up for COBOL and having the capability to insert these modification codes
automatically. You probably won't see modification codes using COBOL on a PC. The modification area
includes columns 73 through 80. The area is used for modification codes by tradition, although the area
is not officially designated for this use.

modification code: COBOL editors on large computers usually allow you to define an eight-character
modification code. If you edit a line of an existing program, or insert lines, these are added to the source
code file with the modification code placed in positions 73 through 80. This is a handy way of tagging all
the changes made to a program for a specific purpose. This method of modification code marking usually
depends on a specific editor being set up for COBOL and having the capability to insert these
modification codes automatically.

MS-DOS: Microsoft-Disk Operating System. An operating system developed by the Microsoft
Corporation for IBM-compatible computers. See also operating system.

NUL: The ASCII name for the character that has a value of zero.

object file: A file containing codes that can be understood by a computer, and created by compiling a
source code file. See also compiler and source code.

online processing: See transaction processing.

operating system: A master program that controls a computer's basic functions and allows other
programs to access the computer's resources such as disk drive, printer, keyboard, and screen.

optical character reader: A device similar to a scanner (see scanner) that reads a document, but either
transmits the information to the computer as readable text, or sends the graphic image to the computer to
be interpreted back to the original text by a program.

order of operators: See precedence.

output device: Devices that allow output of information from a computer. The most common output
devices are monitors and printers. Other output devices include telecommunications devices such as
modems, which are used to output data to another computer.

paragraph: A subdivision of a COBOL program containing sentences.

pass by address: A method of passing a variable to a function by passing the address of the variable in
memory. If the called program modifies the variable by using the address to locate the variable and
changing the value, then the value is changed in both the called program and the calling program.
Sometimes called pass by reference.

pass by copy: See pass by value.

pass by reference: See pass by address.

pass by value: A method of passing a variable to a program by making a copy of the variable and giving
it to the called program. If the called program changes the variable, it does not affect the value of the
variable in the calling program. Sometimes called pass by copy.

precedence: The order in which operators are applied to an expression or a statement. Usually called
precedence of operators. Also called order of operators or hierarchy of operators. In the expression

COMPUTE VALUE-X = 1 + 3 * 4.

the * operator has a higher precedence than the + operator. The * operator, multiplication operator, is
applied first. The expression is evaluated as

COMPUTE VALUE-X = 1 + (3 * 4).

rather than

COMPUTE VALUE-X = (1 + 3) * 4.

which sets VALUE-X to 13 and not 16.

primary key: In a COBOL indexed file, one field must be designed so that it will contain a unique value
for each record. This field is then set up as the primary index for the file. This primary index is called the
primary key or simply the key. See also alternate key.

primary memory: See main memory.

primary storage: See main memory.

print queue manager: See spooler.

printer layout chart: See printer spacing chart.

printer spacing chart: A layout tool similar to graph paper used to work out the spacing of values on a
printed report.

PROCEDURE DIVISION: The PROCEDURE DIVISION contains the COBOL statements that the
program executes. The PROCEDURE DIVISION is the real workhorse of a COBOL program. It
includes all the commands that actually do something.

processing loop: One or more paragraphs or sections of a program that are executed over and over.

program: A series of steps to be executed by a computer.

programming language: A computer tool that allows a programmer to write commands in a format that
is more easily understood or remembered by a person, and in such a way that they can be translated into
codes that the computer can understand and execute.

prompt: Something indicating to the user that the computer is waiting for user input. Some sample
prompts are the blinking cursor, a question mark, or a question or request displayed on the screen.

RAM: See random access memory.

random access memory: The primary working memory of a computer that can be used for rapid storage
and retrieval characters or bytes of information. See also main memory.

real-time processing: 1. A computer system that functions in such a way that information entered at a
terminal must be responded to by the computer within a short period of time. An airline reservation
system that must respond with available seats on a flight, or a point of sale system that must quickly look
up stock availability and prices; these are two examples of real-time systems. 2. By extension of this
concept, real-time in modern usage has come to be used to describe a very fast response computer system
such as one that might be used to control factory processes. A real-time system might have a sensor that
reads the temperature of a vat of chemicals, and a method of sending signals to the heater for the vat. As
the temperature rises or falls slightly, the computer switches the heater on and off to keep a consistent
temperature in the vat.

record: See structure, file, and field.

record selection: Any process that reads through records in a file, accepting or rejecting records for
processing based on testing conditions for each record.

relational operator: An operator that is used to compare two expressions usually used in an if

statement. The following are some COBOL relational operators:

IF VALUE-X IS NOT EQUAL VALUE-Y
IF VALUE-X IS EQUAL VALUE-Y
IF VALUE-X IS LESS THAN VALUE-Y

COBOL usually includes one or two variations of the same relational operator so that comparisons can
be written with words or with symbols:

IF VALUE-X NOT = VALUE-Y
IF VALUE-X = VALUE-Y
IF VALUE-X < VALUE-Y is less than

reserved word: In any programming language, certain words have special meanings in the language. In
COBOL, DISPLAY "Hello" causes the word Hello to be displayed on the screen. DISPLAY has a
special meaning in COBOL. It tells the computer to put the next thing on the screen. Also in COBOL, the
words DATA and DIVISION appearing together mean that the section of the program where data is
defined is beginning. The words DATA DIVISION and DISPLAY are called reserved words because
they are reserved in the language to have a special meaning, and the programmer cannot use these words
for some other purpose. For example, it is incorrect to name a program DISPLAY, like this:

PROGRAM-ID. DISPLAY.

If you attempt this, the compiler probably will complain of an invalid program name, because DISPLAY
is reserved for a special meaning in COBOL.

routine: Any set of instructions designed to perform a specific task. In COBOL programs, a routine
consists of one or more paragraphs.

scanner: A device that can input data to a computer by scanning a graphic image and sending signals
representing the graphic image to the computer. A scanner works somewhat like a photocopying
machine, but instead of sending the pulses of lightness and darkness of the input document to be copied
to another page of paper, the pulses are transmitted to the computer.

SD: See sort description.

secondary storage: Secondary storage is permanent after power is gone. Common secondary storage
devices are diskettes, hard drives, and tapes. CD-ROM is becoming popular as a very large secondary
storage device. There are many newer forms of secondary storage becoming available, such as memory
cards that contain 10 year batteries.

sentence: One or more COBOL commands ending with a period.

sequence area: Columns 1 through 6 of a COBOL program are the sequence area and can be used for
line numbering.

sort description: Entries used to describe a sort file, its records, and its sort keys. Also called a sort
descriptor.

source code: A text file containing statements in a programming language. Also called source, source
file, and source program.

spooler: A program, usually on a multiuser system, that queues print files for one or more printers and
sends them to the printer one at a time. Sometimes called a print queue manager.

statement: A single instruction or command.

string: A sequence of characters, usually printable. In COBOL, strings are set off by double quotes, like
this:

"Hello World," and "123-Z55" are strings.

structure: When variables will be used as a group, they can be combined into a single variable called a
structure or a record. A structure or record is a variable containing one or more COBOL variables. In the
following example, the variable named THE-WHOLE-MESSAGE contains the three variables
THE-NUMBER, A-SPACE, and THE-MESSAGE. THE-WHOLE-MESSAGE is a structure.

01 THE-WHOLE-MESSAGE.
 05 THE-NUMBER PIC 9(2).
 05 A-SPACE PIC X(1).
 05 THE-MESSAGE PIC X(50).

subscript: A number in parentheses that identifies one element of an array:

01 A-VALUE PIC 99 OCCURS 4 TIMES.
 MOVE 16 TO A-VALUE(2)

The 2 is a subscript identifying a single element of the data array.

suppressing zeroes: See zero suppression.

symbolic debugger: A debugger enables a programmer to execute a program in small increments
(usually one line at a time) and watch the program as it is being executed. A symbolic debugger also
enables a programmer to display the lines of the original source code file, and the values of variables by
referencing the variable name. It is called a symbolic debugger because variables and paragraphs are
accessed by using the names given to them in the source code file.

syntax: The rules that specify how a command or instruction should be given to a computer so that the
computer can understand how to execute the instruction.

syntax error: A programming error caused by a violation of the rules that specify how a command or
instruction should be given to a computer.

table: See array.

transaction processing: The process of adding, changing, deleting, or looking up a record in a data file
by entering the data at a terminal. Most transaction processing systems also include a method of ensuring
that all the information entered as a transaction is simultaneously saved to disk.

variable: A named area of memory in a computer program that can contain data that changes as the
program runs.

vendor: Someone who sells you goods or services and to whom you end up paying money for those
goods or services. The vendor file is one of the main files in an accounts payable system.

voucher number: In a bills paying system, each new invoice that is received for payment is assigned a
tracking number. This tracking number is the key to the voucher file or bills file, and the number is
usually called a voucher number.

white space: Spaces between words in a program. Some languages allow tabs as white space; traditional
COBOL allows only the space character.

WORKING-STORAGE SECTION: A reserved name for the section of the DATA DIVISION that is used
to define data used in a program.

X: The X in a picture indicates that it can be used for alphanumeric values. The picture XXXX indicates
that four characters can be stored in this variable. A variable with a picture of XXXX could hold any of
the values "ABCD", "12XY", "1234", or "(**)" because they are all printable characters. The
variable also holds the values "A", "12X", and "aa" because they are also alphanumeric and small
enough to fit in a four-character space.

zero suppression: Editing of a numeric field so that leading zeroes are replaced with spaces in
displaying or printing the field.

Previous chapter Contents

Macmillan Computer Publishing USA

© Copyright, Macmillan Computer Publishing. All rights reserved.

Teach Yourself COBOL in 21 days,
Second Edition

Next chapter

©Copyright, Macmillan Computer Publishing. All rights reserved.

No part of this book may be used or reproduced in any form or by any means, or stored in a
database or retrieval system without prior written permission of the publisher except in the case of
brief quotations embodied in critical articles and reviews.

For information, address Macmillan Publishing, 201 West 103rd Street, Indianapolis, IN 46290.

This material is provided "as is" without any warranty of any kind.

Next chapter

© Copyright, Macmillan Computer Publishing. All rights reserved.

	Teach Yourself COBOL in 21 days Second Edition
	Scroll down to the Underground
	Table of Contens
	Introduction
	Week 1 At a Glance
	- Day 1 -Your First COBOL Program
	- Day 2 -Using Variables and Constants
	- Day 3 -A First Look at Structured COBOL
	- Day 4 -Decision Making
	- Day 5 -Using PERFORM, GO TO, and IF to Control Programs
	- Day 6 -Using Data and COBOL Operators
	- Day 7 -Basics of Design
	Week 1 In Review

	Week 2 At a Glance
	- Day 8 -Structured Data
	- Day 9 -File I/O
	- Day 10 -Printing
	- Day 11 -Indexed File I/O
	- Day 12 -More on Indexed Files
	- Day 13 -Deleting Records and Other Indexed File Operations
	- Day 14 -A Review of Indexed Files
	Week 2 In Review

	Week 3 At a Glance
	- Day 15 -Data Integrity
	- Day 16 -Using Look Up and Arrays
	- Day 17 -Alternate Keys
	- Day 18 -Calling Other Programs
	- Day 19 -Complex Data Entry Problems
	- Day 20 -More Complex Data Entry
	- Day 21 -Selecting, Sorting, and Reporting
	Week 3 In Review

	- Bonus Day 1 -Control Breaks
	- Bonus Day 2 -Miscellaneous COBOL Syntax
	- Bonus Day 3 -Full- Screen I/O
	- Bonus Day 4 -Using a Symbolic Debugger
	- Bonus Day 5 -Intrinsic Functions and the Year 2000
	- Bonus Day 6 -Dates and the Year 2000
	- A -Answers
	- B -ASCII
	- C -Editing, Compiling, and Linking
	- D -Handling Compiler Errors
	- E -Summary of COBOL Syntax
	- F -Transaction Processing
	- G -Glossary
	©Copyright, Macmillan Computer Publishing. All rights reserved.

