<|lI!

CICS Transaction Server for z/OS

Java Applications in CICS

Version 3 Release 1

SC34-6440-03

<|lI!

CICS Transaction Server for z/OS

Java Applications in CICS

Version 3 Release 1

SC34-6440-03

Note!
Before using this information and the product it supports, be sure to read the general information under [Notices” on page]

Fourth edition (September 2006)

This edition applies to Version 3 Release 1 of CICS Transaction Server for z/OS, program number 5655-M15, and
to all subsequent versions, releases, and modifications until otherwise indicated in new editions. Make sure you are
using the correct edition for the level of the product.

© Copyright International Business Machines Corporation 1999, 2006. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Preface. L Xi
What this |nformat|on is about . Xi
Who should read this information . Xi
Summary of Changes . . Xiii
Changes for CICS Transaction Server for z/OS VerS|on 3 Release 1. . Xiii
Changes for CICS Transaction Server for z/OS, Version 2 Release 3. . Xiii
Changes for CICS Transaction Server for z/OS, Version 2 Release 2. . Xiv
Part 1. Java development roadmaps . 1
Chapter 1. JCICS application roadmap. . 3
Chapter 2. CICS IIOP application roadmap . .5
Chapter 3. CICS enterprise beans roadmap . .7
Part 2. Developing Java applications for CICS . 9
Chapter 4. Java applications in CICS . .1
Types of Java application in CICS . .1
Chapter 5. What you need to know about CICS . . 13
CICS transactions. Ce e e . 13
CICS tasks . . . 14
CICS application programs . 14
CICS services . . 14
Chapter 6. Java programming using JCICS .17
The JCICS class library. . . .17
Translation . .17
JavaBeans .17
Library structure . 18
CICS resources . 18
CICS storage requwements .19
Command arguments .19
Serializable classes . .19
System.out and System.err . 20
Threads . 20
JCICS command reference .21
CICS exception handling in Java programs .21
Error handling and abnormal termination . 23
APPC mapped conversations . 24
Basic Mapping Support (BMS) . .24
Channels and containers . . 24
Diagnostic services . .27
Document services .27
Environment services . 28
File services . . 30
Program services . . 33
Scheduling services . . 34
Serialization services. . 34

© Copyright IBM Corp. 1999, 2006

Storage services . . 34
Temporary storage queue services . 34
Terminal services 35
Transient data queue services . . 35
Unit of work (UOW) services . . 36
Web and TCP/IP services . . 36
Unsupported CICS services . .37
JCICS exception mapping . .37
Using JCICS. . 39
Writing the main method . 39
Creating objects . 39
Using objects . 39
Chapter 7. Accessing data from CICS applications written in Java .4
Using Data Access beans . G e . 42
Chapter 8. Using the JCICS sample programs . 43
Building the JCICS sample programs. . 44
Building the Java samples. . 45
Running the JCICS samples . . 46
Running the Hello World samples . . 46
Running the Program Control samples . . 47
Running the TDQ sample . . 48
Running the TSQ sample . . 48
Running the web sample . . 48
Part 3. Setting up Java support and JVMs. . 51
Chapter 9. Setting up Java support . 53
Giving CICS regions access to z/OS UNIX System Serwces and HFS
directories and files 53
Giving CICS regions a z/OS UNIX user |dent|f|er (UID) and group |dent|f|er
(GID) and setting up a home directory . . .54
Giving CICS regions permission to access HFS dlrectones and flles . . 56
Verifying the Java installation using sample programs . 60
Chapter 10. Understanding JVMs . 63
The structure of a JVM . . . 64
Classes in a JVM . . . 64
Where a JVM is constructed 68
JVMs and the z/OS shared library reglon . . 68
Storage heaps in a JVM . . 69
How CICS creates JVMs71
Execution key (EXECKEY attnbute) . .72
JVM profiles (JVMPROFILE attribute) . . 73
How CICS locates the PROGRAM resource def|n|t|on to create a JVM . . 74
How CICS manages JVMs in the JVM pool . 75
How CICS allocates JVMs to applications . . 79
How CICS deals with incoming requests for a JVM . 81
How CICS deals with a queue of requests waiting for a JVM . . 82
The selection mechanism . . 84
How JVMs are reused 85
Continuous JVMs (REUSE= YES) . 86
Resettable JVMs (REUSE=RESET) . . 87
Single-use JVMs (REUSE=NO). . 88
The shared class cache . . 89

Java Applications in CICS

Removal of support for CICS Transaction Server for OS/390, Version 1 Release

BJVMs. L. 92
Chapter 11. Using JVMs e e98
Setting up JVM profiles and JVM propertles flles . P L

Enabling CICS to locate the JVM profiles and JVM propertles flles T 7

Choosing a JVM profile and JVM properties file.96

Customizing or creating JVM profiles and JVM properties frles ... 102
Setting up the shared classcache 106

Defining the shared class cache T (04

Enabling JVMs to use the shared class cache e 0]
Managing the shared classcache 110

Starting the shared class cache . . . e B A

Adjusting the size of the shared class cache A e b 4

Updating classes or JAR files in the shared class cache e e

Terminating the shared class cache. 116

Monitoring the shared classcache 118
Enabling applicationstouseadJv™m.19

Programming for different types of JVM 120

Setting up a PROGRAM resource definition for a Java program to runin a

JVWM 126

Adding application classes to the cIass paths for a JVM 128
ManagingyourJVMs L. L. ... 0132

Monitoring JVM activity . . . T < 2

Terminating or disabling the JVM pooI T RO

Redirecting JVM output T R 15
Problem determination fordVMs139
Controlling tracing for JVMs. o140
Debugging an application that is runnlng ina CICS JVM N B2

Attaching a debuggertoa CICSJVM 144

The CICS JVM plugin mechanism 146

Part4.CICSandllOP.151
Chapter 12. lIOP supportinCics. 158
The Object Request Broker(ORB)158
CICS lIOP applicationmodels 154
Some common CORBA terminology 154
Chapter 13. The IIOP requestflow157
IIOP in a sysplex. . . . P Ko1e)
Workload balancing of [IOP requests A P K¢
Domain Name System (DNS) connection optrmrzatron P [e10)

Connection optimization registraton. 160

Name resolution example . . . e (o2

Resource definition for DNS connect|on opt|m|zat|on e 72t

Avoiding Domain Name System (DNS) problems . e o« o«168
Authentication of IIOP requests T [X

The IIOP user-replaceable security program T (15

CONNECTION authentication165
Chapter 14. Configuring CICS forlioP.167
Setting up the host system forfiop.167

Defining a shelf directory.168

Defining name servers . 168

Enabling JNDI references169

Contents V

Setting up an LDAP server . . 170
If you have an existing LDAP server conflgured for WebSphere . 170
Configuring a new LDAP server . 171
Determining the values for the system propertles and addlng them to your

JVM properties files . . 174

The LDAP namespace structure . . 176
The container root . . 176
The legacy root . . 176
Domains. . 176
Nodes. 77
Security conS|derat|ons 77

Setting up a COS Naming Directory Server . 180

Setting up TCP/IP for IIOP . . . 180
Using DNS connection optimization . . 180

Setting up CICS for IIOP . . . 181
Defining CICS start-up jobstream. . 181
Defining CICS resources . . 183

Chapter 15. Processing IIOP requests . . 189

Obtaining a CICS user ID . 189
Using the IIOP user-replaceable secunty program . 191
Using DFHXOPUS 192

Obtaining a CICS TRANSID . 192
Pattern matching. . . . 193
Name-mangling of the OPERATION f|eld . 194
REQUESTMODEL examples . . 194
Dynamic routing . . 194

Name mangling for Java . . 195
Why mangling is necessary for Java names. . 195
How Java names are mangled . 195
How mangling affects CICS. . 196

Handling IIOP diagnostics . 196

Part 5. Using enterprise beans . 199

Chapter 16. What are enterprise beans? . . 201

Enterprise beans—the big picture . 201

JavaBeans and Enterprise JavaBeans. . 202
Components . 202
JavaBeans . . 203
Enterprise JavaBeans . 203

The EJB server—overview . . 204

The EJB container—overview . . 204
The execution environment . . 205

Enterprise beans—the home and component mterfaces . 205

Enterprise beans—the deployment descriptor . . 206

The EJB server: summary . . 206

Types of enterprise bean. . 207
Session beans . 207
Entity beans . 208
Session beans and entlty beans compared . 209

Enterprise beans—managing transactions . 210

Enterprise beans—security overview .21
Authentication . . 211
Access control. . . . 211
The Java 2 security manager . . 212

Vi

Java Applications in CICS

Enterprise beans—user tasks .
The bean provider . .
The application assembler .
The deployer .
The system admlnlstrator
Deploying enterprise beans—overwew .
Configuring CICS as an EJB server—overview.
Logical servers—enterprise beans in a sysplex
Setting up a logical EJB server .
Enterprise beans—what can a client do W|th a bean’7 .
Get a reference to the bean’s home.
Use the home interface
Use the component interface .
Enterprise beans—what can a bean do’?
Benefits of EJB technology .
Requirements for EJB support.
Hardware .o
Software .

Chapter 17. Setting up an EJB server .

Setting up a single-region EJB server .
Before running the EJB IVP. .
After running the EJB IVP—optional steps

Testing your EJB server . Coe e
Running the EJB IVP .
Using the EJB “Hello World” sample
Using the EJB Bank Account sample .
Using your own enterprise beans.

Setting up a multi-region EJB server

Migrating an EJB server to CICS Transaction Server for z/OS VerS|on 3

Release 1 .

Upgrading a smgle reglon CICS EJB/CORBA server
Upgrading a multi-region CICS EJB/CORBA server .
Migration tips . Ce e e e

Chapter 18. Running the EJB IVP.
Prerequisites for the EJB IVP .
Installing the EJB IVP .
HFS setup .
CICS setup. .
Configuring the cllent .
Running the EJB IVP .

Chapter 19. Running the sample EJB appllcatlons .

The EJB “Hello World” sample application
What the EJB “Hello World” sample does.
Prerequisites for the EJB “Hello World” sample .
Supplied components of the EJB “Hello World” sample.
Installing the EJB “Hello World” sample .
Testing the EJB “Hello World” sample .

The EJB Bank Account sample application .
What the EJB Bank Account sample does
Prerequisites for the EJB Bank Account sample
Supplied components of the EJB Bank Account sample
Security of the EJB Bank Account sample
Installing the EJB Bank Account sample .

Contents

. 212
. 212
. 213
. 213
. 213
. 214
. 216
. 217
. 219
. 223
. 223
. 223
. 224
. 224
. 225
. 226
. 226
. 226

. 229
. 229
. 229
. 235
. 236
. 236
. 236
. 237
. 237
. 237

. 240
. 240
. 241
. 245

. 247
. 247
. 248
. 248
. 248
. 249
. 250

. 253
. 253
. 253
. 254
. 254
. 255
. 257
. 261
. 261
. 262
. 263
. 264
. 268

Vii

viii

Testing the EJB Bank Account sample .
A note about distributed transactions
A note about data conversion .

Chapter 20. Writing enterprise beans
Preparing beans for execution .
Coding a session bean
Coding the home interface .
Coding the remote interface.
Coding the bean implementation .
Compiling the code .
Packaging the code.
Writing the client program .
Creating object references in the namespace .
Using JNDI to obtain bean references .
Writing a Client program to use LDAP .
Writing a client program to use COS Naming . .
Transaction interoperability with web application servers . .
Working with EJB Handles, HomeHandles and EJBMetaData .
Using EDF with enterprise beans. e
Bean-to-bean communication .

Chapter 21. Deploying enterprise beans .

The deployment tools for enterprise beans in a CICS system
The Assembly Toolkit (ATK). .
The resource manager for enterprise beans
CREA. .

Using CICS deployment tools for enterprlse beans .

Chapter 22. Updating enterprise beans in a production region
The problem .o ..
Possible solutions .

Solutions for a single I|stener/AOR .

Solutions for a multi-region EJB server

Other possible solutions .

Chapter 23. The CCI Connector for CICS TS
Overview of the CCI Connector for CICS TS
The background—connectors .
The Common Client Interface .
The CCI Connector for CICSTS
Benefits of the CCI Connector for CICS TS
Sample applications . .
Using the CCI Connector for CICS TS
Which classes to use? . .
Data conversion and the CCI Connector for CICS TS .
Installing the CCI Connector for CICS TS.
Requirements for the CCI Connector for CICS TS
Compiling CCI applications . . o
Running CCI applications on CICS TS

Using the sample utility programs to manage and acquwe a connect|on factory

Installing the publish and retract sample programs

Publishing a connection factory using CICSConnectlonFactoryPubllsh

Looking up a connection factory .

Retracting a connection factory using CICSConnectlonFactoryRetract .

The CCI Connector sample application

Java Applications in CICS

. 271
. 275
. 276

. 277
. 277
. 278
. 278
. 278
. 279
. 281
. 281
. 281
. 281
. 282
. 282
. 285
. 287
. 288
. 289
. 289

. 291
. 291
. 291
. 291
. 291
. 292

. 295
. 295
. 298
. 298
. 302
. 305

. 307
. 307
. 307
. 307
. 309
. 310
.31
. 312
. 313
. 315
. 315
. 315
. 315

. 315
316

. 316
. 317
. 318
. 318
. 319

Requirements for the CCI Connector sample 320

Installing the CCI Connector sample320
Testingthe sample .. .031
Problem determination . . . N oy
CCI Connector for CICS TS messages e 7292
Tracing the CCI Connector for CICS TS 322
Migrating from the CICS Connector for CICS TS to the CCI Connector for
CICSTS. o322
Chapter 24. Dealing with CICS enterprise bean problems82
CICS enterprise bean set-up problems. e e 325
Methods that require multiple request processors N 25
Using EJB server runtime diagnostics 326
CICS enterprise bean errors and messages. 326
JVM trace . . . C e e e B27
Debugging Java appllcatlons in CICS N -y 4
Using EJB client runtime d|agnost|cs N 22
CORBA exceptions . . . NG P22
Class version issues with RMI- IIOP I 110
Using EJB trace and serviceability commands 331
Chapter 25. Managing security for enterprise beans 333
Protecting Java applications in CICS by using the Java 2 securlty pollcy
mechanism 333
Enabling a Java securlty manager and speC|fy|ng pol|cy f|Ies for a JVM 334
Specifying policy files to apply to all JVMs 336
The CICS-supplied enterprise beans policy file, dfjejbpl pol|cy337
Using enterprise bean security.338
Defining file access permissions for enterpnse beans e33
Deriving distinguished names 340
Security roles e 7 ¥ |
Deployed security roIes .o N 7 2]
Enabling and disabling support for secunty roles N C 7 XS
Security role references . . . 7 ¢
Character substitution in deployed securlty roles O 7
Security roles in the deployment descriptor 345
Implementing security roles. . . . N L Y 4
Using the RACF EJBROLE generator ut|I|ty N T v 4
Defining security rolestoRACF349
Chapter 26. CICSPlex SM with enterprisebeans 351
CICSPlex SM support for enterprise beans 351
CICSPlex SM definition support for enterprise beans 351
BAS logical scope considerations352
Migration of enterprise bean components. 353
CICSPlex SM inquiry support for enterprise beans 353
Types of inquiry available for enterprise bean objects 354
Using CICSPlex SM to manage EJB workloads 354
Workload balancing. .355
Workload separation35
CICSPlex SM resource momtonng conS|derat|ons for enterprlse beans. . . . 356
CICSPlex SM real-time analysis considerations for enterprise beans. 356
Part 6. Using stateless CORBA objects359
Chapter 27. Stateless CORBA objects 361

Contents iX

Developing stateless CORBA objects . . 361
Obtaining an interoperable object reference (IOR) . 363
Creating the Interface Definition Language (IDL) . . 364
Developing an IIOP server program . . . 365
IDL example . . 367
Server implementation. . . 367
Resource definition for example . . 367
Developing the IIOP client program . . 368
Client example . 368
Developing an RMI-IIOP stateless CORBA apphcatlon . 369
Stand-alone CICS CORBA client apphcatlons . . 372
CORBA interoperability . . 372
Using non-dava CORBA clients . . 373
Writing a CORBA client to an enterprise bean . . 373
Enterprise beans as CORBA clients. . 373
Code sets . . 374
Chapter 28. Migrating IIOP applications from CICS TS 1.3 . . 375
Chapter 29. Using the IIOP samples . . 377
Setting up the IIOP sample environment . . 377
Running the [IOP HelloWorld sample . . 381
Building the server side HelloWorld appllcatlon . 381
Building the client side HelloWorld application . . 381
Running the HelloWorld sample application . . 382
Running the [IOP BankAccount sample . 382
Creating the VSAM file . . 382
Building the server side BankAccount appllcatlon . . 382
Building the client side BankAccount application . . 382
Running the BankAccount sample application . . 383
Part 7. Appendixes . . 385
Bibliography . . . 387
The CICS Transaction Server for z/OS I|brary . 387
The entitlement set . Coe . 387
PDF-only books . . 387
Other CICS books . . 389
Books from related libraries . . . 389
Determining if a publication is current . . 389
Accessibility . . 391
Index . . 393
Notices . . 401
Trademarks. . 402
Sending your comments to IBM . 403

X

Java Applications in CICS

Preface

What this information is about

This information tells you how to develop and use Java™ applications and
enterprise beans in CICS®.

Who should read this information

This information is intended for:

» Experienced Java application programmers who may have little experience of
CICS, and no great need to know more about CICS than is necessary to develop
and run Java programs.

» Experienced CICS users and system programmers, who need to know about
CICS requirements for Java support.

© Copyright IBM Corp. 1999, 2006 Xi

Xii Java Applications in CICS

Summary of Changes

This information is based on Java Applications in CICS for CICS Transaction Server
for z/OS®, Version 2 Release 3, SC34-6238-00. Changes from that edition are
marked by vertical bars in the left margin.

This part lists briefly the changes that have been made for the following recent
releases:

» |“Changes for CICS Transaction Server for z/OS, Version 3 Release 1’
» |“Changes for CICS Transaction Server for z/OS, Version 2 Release 3’
+ [‘Changes for CICS Transaction Server for z/OS, Version 2 Release 2” on page]

X

Changes for CICS Transaction Server for z/OS, Version 3 Release 1

The more significant changes for this edition are:

» Various small changes have been made, throughout the manual, to document:
— CICS support for the IBM® Software Developer Kit for z/OS, Java 2
Technology Edition, Version 1.4.2
— CICS support for WebSphere® Application Server Version 6

» The chapter entitled “The CICS Connector for CICS TS” has been removed,
because the CICS Connector for CICS TS is not supported in this release.

+ The information about using VisualAge® for Java to create Java program objects,
and the information about Java hot-pooling, has been removed, because run-time
support for Java program objects and Java hot-pooling is withdrawn in this
release. The chapter “VisualAge for Java, ET/390° and the chapter “Java
hot-pooling concepts” have been removed. The CICS Migration Guide explains
the process for migrating Java program objects to run in a JVM.

Changes for CICS Transaction Server for z/OS, Version 2 Release 3

The more significant changes for this edition were:

« [Chapter 7, “Accessing data from CICS applications written in Java,” on page 41|
was a new chapter. It describes the different methods that CICS Java programs,
and enterprise beans, can use to access data.

* The information about the CICS JVM was refreshed. In particular, The CICS JVM
now supports the sharing of a cache of commonly-used class files that are
already loaded, enabling faster JVM startup and reducing the cost of class
loading. See [Chapter 10, “Understanding JVMs,” on page 63 and [Chapter 9|
[‘Setting up Java support,” on page 53|

» CICS now supports Version 1.4.2 of the IBM Software Developer Kit for z/OS,
Java 2 Technology Edition. See |[Chapter 10, “Understanding JVMs,” on page 63

* The CICS Object Request Broker (ORB) now supports Version 2.3 of the
Common Object Request Broker Architecture (CORBA). See [Chapter 12, “lIOP|
support in CICS,” on page 153|and[‘Migrating an EJB server to CICS|
Transaction Server for z/OS, Version 3 Release 1” on page 240

+ |Chapter 23, “The CCI Connector for CICS TS,” on page 307| was a new chapter.
It describes a new CICS connector that is compliant with the industry-standard
Common Client Interface (CCI) defined by the J2EE Connector Architecture
Specification. The connector helps you to build powerful Enterprise JavaBean
(EJB) server components that link to existing (non-Java) CICS programs.

© Copyright IBM Corp. 1999, 2006 xiii

* It is now possible to enable and disable CorbaServer execution environments.
This has led to better ways of updating beans in production regions—see
[Chapter 22, “Updating enterprise beans in a production region,” on page 295

* The information about CICS support for CORBA and CORBA stateless objects
was refreshed. In particular:

— [‘Stand-alone CICS CORBA client applications” on page 372/ was a new
section.
— |‘Name-mangling of the OPERATION field” on page 194 was a new section.

— [Chapter 27, “Stateless CORBA objects,” on page 361 was rewritten. Much
new information was added. [‘Developing an RMI-IIOP stateless CORBA|
[application” on page 369 and ['CORBA interoperability” on page 372/ were new
sections.

+ [‘Class version issues with RMI-IIOP” on page 330| was a new section.

Changes for CICS Transaction Server for z/OS, Version 2 Release 2

Xiv

The more significant changes for this edition were:

+ Parts of [Chapter 14, “Configuring CICS for IIOP,” on page 167)[Chapter 16|
“What are enterprise beans?,” on page 201 |and[Chapter 17, “Setting up an EJB]
server,” on page 229| were rewritten to describe CICS enhanced support for
enterprise beans, including an easier way to install deployed JAR files.

+ [Chapter 18, “Running the EJB IVP,” on page 247| was rewritten to reflect
changes to the EJB Installation Verification Program (IVP).

+ [Chapter 19, “Running the sample EJB applications,” on page 253 was rewritten
to reflect changes to the EJB sample applications.

+ |Chapter 21, “Deploying enterprise beans,” on page 291 and [‘The deployment]

tools for enterprise beans in a CICS system” on page 291| were updated to

reflect the replacement of the EJB deployment tools.

+ Support was added for Java security roles. See [‘Security roles” on page 341 |

» Support was added for a Lightweight Directory Access Protocol (LDAP) name
server. See [‘Setting up an LDAP server” on page 170,

Java Applications in CICS

Part 1. Java development roadmaps

This Part outlines the steps needed to implement different types of Java application
in CICS.

© Copyright IBM Corp. 1999, 2006 1

2 Java Applications in CICS

Chapter 1. JCICS application roadmap

Write a Java application, using the JCICS classes to access CICS services and
resources. See [Chapter 6, “Java programming using JCICS,” on page 17

2. Use the Java Virtual Machine in CICS to execute your application. See
Chapter 10, “Understanding JVMs,” on page 63| and [Chapter 9, “Setting up Javal
support,” on page 53

© Copyright IBM Corp. 1999, 2006 3

4 Java Applications in CICS

Chapter 2. CICS IIOP application roadmap

1. Set up CICS as an IIOP server. See [Chapter 14, “Configuring CICS for 1IOP,]
on page 167.

2. Write your IIOP server application, also known as a “stateless CORBA object”.

See [‘Developing stateless CORBA objects” on page 361 |[‘Creating the Interface]

Definition Language (IDL)” on page 364 and [‘Developing an IIOP servel

program” on page 365.|

3. Write your client program. See [‘Developing the IIOP client program” on page]

© Copyright IBM Corp. 1999, 2006 5

6 Java Applications in CICS

Chapter 3. CICS enterprise beans roadmap
1. Familiarize yourself with CICS support for enterprise beans by reading
[Chapter 16, “What are enterprise beans?,” on page 201

2. Read the overview of the steps involved in setting up a CICS EJB server in
[‘Configuring CICS as an EJB server—overview” on page 216

3. Set up a basic, single-region EJB server and name server—see [‘Setting up a
[single-region EJB server” on page 229

4. Test your single-region EJB server by running the EJB installation verification
program (IVP)—see [Chapter 18, “Running the EJB IVP,” on page 247 |

5. Further test your EJB server by running the EJB sample applications—see
[Chapter 19, “Running the sample EJB applications,” on page 253 |

6. Optionally, expand your single-region EJB server into a multi-region server
capable of load balancing—see [‘Setting up a multi-region EJB server” on page]

7. Implement any security controls required by your system—see |Chapter 25,|
[‘Managing security for enterprise beans,” on page 333

8. Code your session bean. If you are not using an Integrated Development
Environment (IDE), see [‘Coding a session bean” on page 278 |

9. Follow the deployment process described in [Chapter 21, “Deploying enterprise
beans,” on page 291, using the tools as described in[‘Using CICS deploymen
tools for enterprise beans” on page 292

10. Write the client program. See [‘Writing the client program” on page 281 |

© Copyright IBM Corp. 1999, 2006 7

8 Java Applications in CICS

Part 2. Developing Java applications for CICS

This Part tells you what you need to know to develop and use CICS applications
written in Java.

© Copyright IBM Corp. 1999, 2006

10 Java Applications in CICS

Chapter 4. Java applications in CICS

You can write Java application programs that use CICS services and execute under
CICS control, but these programs are handled differently from procedural programs
written in the traditional CICS languages, such as COBOL and C.

The Java language is designed to be portable and architecture-neutral. The
bytecode generated by compilation is portable, but requires a machine-specific
interpreter for execution on different platforms. CICS provides this execution
environment using a Java Virtual Machine (JVM) that is executing under CICS
control.

Types of Java application in CICS
You can write the following types of Java application in CICS:

JCICS applications
You can write Java programs that use the JCICS class library. JCICS allows
you to access CICS resources such as VSAM files, CICS transient data queues
and temporary storage. It also allows you to link to CICS applications written in
other languages. Most of the functions of the EXEC CICS programming
interface are supported. JCICS is supplied in the dfjcics.jar JAR file and can
be downloaded to your workstation. It is also available with some releases of
VisualAge for Java.

JCICS applications are run in the CICS JVM. You can read more about JCICS
in[The JCICS class library” on page 17

Stateless CORBA objects
Stateless CORBA objects are Java server applications that communicate with a
client application using the 1IOP protocol. No state is maintained in object
attributes between successive invocations of methods; state is initialized at the
start of each method call and referenced by explicit parameters.

Stateless CORBA objects can receive inbound requests from a client and can
also make outbound IIOP requests.

Method invocations may participate in Object Transaction Service (OTS)
distributed transactions. If a client calls an [IOP application within the scope
of an OTS transaction, information about the transaction flows as an extra
parameter on the IIOP call. If a target stateless CORBA object implements the
CosTransactions::TransactionalObject interface, the object is treated as
transactional.

Note: An OTS transaction is a distributed unit of work, not a CICS transaction
instance or resource definition.

Stateless CORBA objects can use the JCICS API to interact with CICS.
CICS stateless CORBA objects execute in the CICS JVM.

You can read more about CICS stateless CORBA objects in |Chapter 27,
[‘Stateless CORBA objects,” on page 361 .|

Enterprise beans
Enterprise beans are portable Java components that comply with Sun
Microsystems’ Enterprise JavaBeans™ Specification, Version 1.1. CICS has
implemented these interfaces by mapping them to underlying CICS services.

© Copyright IBM Corp. 1999, 2006 11

12

Enterprise beans can link to other CICS applications using connectors. You
can also develop enterprise beans that use the JCICS class library to access
CICS services or programs directly, but these applications will not be portable to
a non-CICS EJB-compliant server.

The Enterprise JavaBeans (EJB) specification defines transactional distributed
objects that communicate using the Java Remote Method Invocation (RMI)
interface. CICS supports RMI over [IOP, mediated using a CORBA Object
Request Broker (ORB).

Enterprise beans execute in the CICS JVM.

You can read more about Enterprise beans in|Chapter 16, “What are enterprise]
[oeans?,” on page 201 |

shows the features that can be used in the different types of Java
application in CICS:

Table 1. Java application features

Feature Non-lIOP CICS CICS stateless CICS session
appl. CORBA object bean
Qutbound IIOP YES YES YES
Inbound 1IOP NO YES YES
APPC/MRO outbound UOW YES YES YES
APPC/MRO inbound UOW YES NO NO
EXEC CICS SYNCPOINT
UOW YES NO NO
Outbound OTS transaction NO YES YES
Inbound OTS transaction NO YES YES
Containgr managed OTS NO NO YES
transaction
Bean mgnaged oTs NO NO YES
transaction
Factory publication to JNDI NO YES YES
Application Metadata NO NO YES
State managed NO NO YES
Outbound Secure Sockets
Layer (SSL) YES YES YES
Inbound Secure Sockets Layer
(SSL) NO YES YES
Assertions YES YES YES

Java Applications in CICS

Chapter 5. What you need to know about CICS

CICS is a transaction processing subsystem. This means that it provides services
for a user to run applications online, by request, at the same time as many other
users are submitting requests to run the same applications, using the same files
and programs. CICS manages the sharing of resources, integrity of data, and
prioritization of execution, while maintaining fast response times.

A CICS application is a collection of related programs that together perform a
business operation, such as processing a product order or preparing a company
payroll. CICS applications execute under CICS control, using CICS services and
interfaces to access programs and files.

CICS applications are run by submitting a transaction request. The term
transaction has a special meaning in CICS; [‘CICS transactions’| explains the
difference from the more common industry usage. Execution of the transaction
consists of running one or more application programs that implement the required
function. In CICS documentation you may find CICS application programs
sometimes simply called programs, and sometimes the term transaction is used to
imply the processing done by the application programs.

To develop and run CICS applications, you need to understand the relationship
between CICS programs, transactions, and tasks. These terms are used throughout
CICS documentation and appear in many programming commands.

CICS transactions

A transaction is a piece of processing initiated by a single request. The request is
typically made by an end-user at a terminal. However, it could be made from a Web
page, from a remote workstation program, or from an application in another CICS
region; or it might be triggered automatically at a predefined time. The CICS
Internet Guide and the CICS External Interfaces Guide describe different ways of
running CICS transactions.

A single transaction consists of one or more application programs that, when run,
carry out the processing needed.

However, the term transaction is used in CICS to mean both a single event and all
other transactions of the same type. You describe each transaction-type to CICS
with 2 TRANSACTION resource definition. This definition gives the transaction type
a name (the transaction identifier, or TRANSID) and tells CICS several things about
the work to be done, such as which program to invoke first, and what kind of
authentication is required throughout the execution of the transaction.

You run a transaction by submitting its TRANSID to CICS. CICS uses the
information recorded in the TRANSACTION definition to establish the correct
execution environment, and starts the first program.

The term transaction is now used extensively in the IT industry to describe a unit
of recovery or what CICS calls a unit of work. This is typically a complete logical
operation that is recoverable; it can be committed or backed out as an entirety as a
result of a programmed command or of system failure. In many cases, the scope of
a CICS transaction is also a single unit of work, but you should be aware of the
difference in meaning when reading CICS documentation.

© Copyright IBM Corp. 1999, 2006 13

CICS tasks

You will also see the word task used extensively in CICS documentation. This word
has a specific meaning in CICS. When CICS receives a request to run a
transaction, it starts a new task that is associated with this one instance of the
execution of the transaction type. That is, a CICS task is one execution of a
transaction, with its own private set of data, usually on behalf of a specific user. You
can also consider a task as a thread. Tasks are dispatched by CICS according to
their priority and readiness. When the transaction completes, the task is terminated.

CICS application programs

You write a CICS program in much the same way as you write any other program.

You can use COBOL, C, C++ , Java, PL/I, or assembler language to write CICS

application programs. Most of the processing logic is expressed in standard

language statements, but to request CICS services you must use one of the

following:

+ “EXEC CICS” commands provided by the CICS application programming
interface (API)

* The Java class library for CICS (JCICS)

* The C++ class library for CICS

The use of the “EXEC CICS” API is described in the CICS Application Programming
Reference and the CICS System Programming Reference. It can be used in
COBOL, C, C++, PL/I, or assembler programs. It cannot be used in Java programs.

In Java programs, you can use the JCICS classes to access CICS services and link
to CICS application programs written in other languages. JCICS is described in
[The JCICS class library” on page 17.| (The types of Java program that you can
write are listed in [Types of Java application in CICS” on page 11

You can write enterprise beans that use the interfaces defined in Sun Microsystem’s
Enterprise JavaBeans Specification, Version 1.1. CICS implements this specification
by mapping program requests transparently to underlying CICS services. (You can
also write enterprise beans that use the JCICS classes to call CICS services
directly, but if you do so your beans will not be portable to non-CICS servers.)

CICS services

CICS provides the following services, which Java programs can access through the
JCICS programming interface. CICS services managers traditionally have the word
“control” in their tittes—for example, “terminal control” and “program control”. You
will find these terms used extensively in CICS publications:

Data management services
CICS provides:
* Record-level sharing, with integrity, in accessing Virtual Storage Access
Method (VSAM) datasets. CICS logs activity to support:
— Data backout (in the case of transaction or system failure)
— Forward recovery (in the case of media failure)

Management of VSAM data is provided by CICS File Control.
CICS also implements two proprietary file structures, and provides
commands to manipulate them:

Temporary Storage
Temporary storage (TS) is a means of making data readily available

14 Java Applications in CICS

to multiple transactions. Data is kept in queues, which are created
as required by programs. Queues can be accessed sequentially or
by item number.

Temporary storage queues can reside in main memory, or be written
to a storage device.

A temporary storage queue can be thought of as a named
scratch-pad.

Transient Data
Transient data (TD) is also available to multiple transactions, and is
kept in queues. However, unlike TS queues, TD queues must be
predefined and can only be read sequentially. Each item is removed
from the queue when it is read.

Transient data queues are always written to a dataset. You can
define a transient data queue so that writing a specific number of
items to it acts as a trigger to start a specific transaction. (The
triggered transaction might, for example, process the queue.)

+ Access to data in other databases (including DB2®), through interfaces with
database products.

Communications services
CICS provides commands that give access to a wide range of
terminals—displays, printers, and workstations—using SNA and TCP/IP
protocols. Management of SNA and TCP/IP networks is provided by CICS
terminal control.

You can write programs that use Advanced Program-to-Program
Communication (APPC) commands to start and communicate with other
programs in remote systems, using SNA protocols. CICS APPC implements the
peer-to-peer distributed application model.

CICS also provides an Object Request Broker (ORB) to implement the inbound
and outbound IIOP protocols defined by the Common Object Request Broker
Architecture (CORBA). The ORB supports requests to execute Java stateless
objects and enterprise beans.

The following CICS proprietary communications services are provided:

Function shipping
Program requests to access resources (files, queues, and programs)
that are defined as existing on remote CICS regions are automatically
routed by CICS to the owning region.

Distributed program link (DPL)
Program-link requests for a program defined as existing on a remote
CICS region are automatically routed to the owning region. CICS
provides commands to maintain the integrity of the distributed
application.

Asynchronous processing
CICS provides commands to allow a program to start another
transaction in the same, or in a remote, CICS region and optionally
pass data to it. The new transaction is scheduled independently, in a
new task. This function is similar to the fork operation provided by other
software products.

Transaction routing
Requests to run transactions that are defined as existing on remote

Chapter 5. What you need to know about CICS 15

16

CICS regions are automatically routed to the owning region. Responses
to the end-user are routed back to the region that received the request.

Unit of work services

When CICS creates a new task to run a transaction, a new unit of work (UOW)
is started automatically. (Thus CICS does not provide a BEGIN command,
because one is not required.) CICS transactions are always executed
in-transaction.

CICS provides a SYNCPOINT command to commit or roll back recoverable
work done. When the syncpoint completes, CICS automatically starts another
unit of work. If you terminate your program without issuing a SYNCPOINT
command, CICS takes an implicit syncpoint and attempts to commit the
transaction.

The scope of the commit includes all CICS resources that have been defined as
recoverable, and any other resource managers that have registered an interest
through interfaces provided by CICS.

If you write enterprise beans using transaction services provided by commands
defined by the Java Transaction Service (JTS), these commands (including
BEGIN) are mapped by CICS to its unit of work services.

Program services

CICS provides commands that enable a program to link or transfer control to
another program, and return.

Diagnostic services

CICS provides commands that enable you to trace programs and produce
dumps.

Other services

Java Applications in CICS

CICS provides other services, such as journaling, timer, and storage
management, that are not available through the JCICS interface. These are
described in the CICS Application Programming Guide.

Chapter 6. Java programming using JCICS

You can write Java application programs that use CICS services and execute under
CICS control.

You can write Java programs on a workstation, or in the zZOS UNIX® System
Services shell. You can use any editor of your choice, or a visual composition
environment such as WebSphere Studio Application Developer.

CICS provides a Java class library, known as JCICS, supplied in the dfjcics.jar
JAR file. JCICS is the Java equivalent of the EXEC CICS application programming
interface (API) that you would use with other CICS supported languages, such as
COBOL. It allows you to access CICS resources and integrate your Java programs
with programs written in other languages. Most of the functions of the EXEC CICS
API are supported. For a description of the JCICS API, see [‘The JCICS class|

The Java language is designed to be portable and architecture-neutral. The
bytecode generated by compilation is portable, but requires a machine-specific
interpreter for execution on different platforms. CICS provides this execution
environment by means of a Java Virtual Machine (JVM) that executes under CICS
control. You can read about the CICS JVM in [Chapter 10, “Understanding JVMs,]

The JCICS class library

Translation

JavaBeans

The Java class library for CICS, JCICS, supports most of the functions of the EXEC
CICS APl commands. These are described in['JCICS command reference” on pagel

The JCICS classes are fully documented in JAVADOC that is generated from the
class definitions. This is available through the CICS Information Center, and can be
found in the JCICS Class Reference.

There is no need for a CICS translator for Java programs.

Some of the classes in JCICS may be used as JavaBeans, which means that they
can be customized in an application development tool such as WebSphere Studio

Application Developer, serialized, and manipulated using the JavaBeans API. The

JavaBeans in JCICS are currently:

* Program

- ESDS

+ KSDS

* RRDS
 TDQ

+ TSQ

» Attachlnitiator
* EnterRequest

© Copyright IBM Corp. 1999, 2006 17

These beans do not define any events; they consist of properties and methods.
They can be instantiated at run-time in one of three ways:

1. By calling the new method for the class itself. (This is the recommended way.)

2. By calling Beans.instantiate() for the name of the class, with property values
set manually.

3. By calling Beans.instantiate() of a .ser file, with property values set at design
time.

If either of the first two options are chosen, then the property values, including the
name of the CICS resource, must be set by invoking the appropriate “set” methods
at run-time.

Library structure

Each JCICS library component falls into one of four categories:
* Interfaces

* Classes

» Exceptions

* Errors

Interfaces
Some interfaces are provided to define sets of constants. For example, the
TerminalSendBits interface provides a set of constants that can be used to
construct a java.util.BitSet.

Classes
The supplied classes provide most of the JCICS function. The API class is an
abstract class that provides common initialization for every class that
corresponds to a part of the CICS API, except for ABENDs and exceptions. For
example, the Task class provides a set of methods and variables that
correspond to a CICS task.

Errors and Exceptions
The Java language defines both exceptions and errors as subclasses of the
class Throwable. JCICS defines CicsError as a subclass of Error. CicsError is
the superclass for all the other CICS error classes, which are used for severe
errors.

JCICS defines CicsException as a subclass of Exception. CicsException is the
superclass for all the CICS exception classes (including the
CicsConditionException classes such as InvalidQueueldException, which
represents the CICS QIDERR condition).

See [‘Error handling and abnormal termination” on page 23| for further
information.

CICS resources

18

CICS resources, such as programs or temporary storage queues, are represented
by instances of the appropriate Java class, identified by the values of various
properties such as name and, for some classes, a SYSID (the identifier of the CICS
system that owns the resource).

Resources must be defined to CICS, using the CEDA transaction or CICSPlex® SM
BAS. Seethe CICS Resource Definition Guide or [the CICSPlex System Managel|
[Concepts and Planning manuall for information about defining CICS resources. It is
possible to use implicit remote access by defining a resource locally to point to a
remote resource.

Java Applications in CICS

CICS storage requirements

Memory requirements to run Java programs are higher than for conventional
programs. Therefore:

1. You should ask your CICS system programmer to set the value of the EDSALIM
system initialization parameter to a minimum of 200MB, otherwise a
short-on-storage condition may occur.

Note that you cannot change the value of EDSALIM during CICS execution by
means of CEMT SET commands. Furthermore, dynamic changes to EDSALIM
are cataloged in the local catalog, and the value in the local catalog overrides
the EDSALIM parameter specified in the system initialization table during all
forms of restart: initial,cold, and warm. Therefore, to change EDSALIM, you
must specify it as a system initialization table override or re-initialize the CICS
catalog data sets.

2. Your CICS job should set a minimum REGION value of 400MB.

Command arguments

Many CICS programming commands pass data in a structure known as a
“communications area” (COMMAREA). An alternative, and more flexible, method of
passing data between programs, is to use a channel: channels are described in
[‘Channels and containers” on page 24| The COMMAREA or channel, and any other
parameters, are passed as arguments to the appropriate methods.

Many of the methods are overloaded—that is, they have different versions that take
either a different number of arguments or arguments of a different type. There may
be one method that has no arguments, or the minimum mandatory arguments, and
another that has all of the arguments. For example, there are the following different
1ink() methods in the Program class:

link()
This version does a simple LINK without using a COMMAREA to pass data, nor
any other options.

link(com.ibm.cics.server.CommAreaHolder)
This version does a simple LINK, using a COMMAREA to pass data but without
any other options.

link(com.ibm.cics.server.CommAreaHolder, int)
This version does a distributed LINK, using a COMMAREA to pass data and a
DATALENGTH value to specify the length of the data within the COMMAREA.

link(com.ibm.record.|ByteBuffer)
This version does a LINK using an object that implements the IByteBuffer
interface of the Java Record Framework supplied with VisualAge for Java.

link(com.ibm.cics.server.Channel)
This version does a LINK using a channel to pass data in one or more
containers.

Serializable classes

The following JCICS classes are serializable and so can survive a
Passivate/Activate cycle.

* AddressResource
e Attachlnitiator
e CommAreaHolder

Chapter 6. Java programming using JCICS 19

* EnterRequest

+ ESDS

» File

» KeyedFile

* KSDS

* NameResource

* Program

* RemotableResource
* Resource

* RRDS

+ StartRequest

* SynchronizationResource
* SyncLevel

 TDQ

« TSQ

* TSQType

System.out and System.err

Threads

For each Java-related CICS task, CICS automatically creates two Java
PrintWriters that can be used as standard out and standard error streams. The
standard out and standard error streams are public fields in the Task called out and
err.

If a CICS task is being driven from a terminal (the terminal is called a principal
facility in this case), CICS maps the standard out and standard error streams to
the task’s terminal.

If the task does not have a terminal as its principal facility, the standard out and
standard error streams are sent to System.out and System.err. System.out and
System.err are mapped to the CICS transient data queues CESO and CESE,
respectively. Your CICS system programmer creates these queues, and others used
for CICS messages, during CICS installation. You can access and print or display
these message queues using utility programs such as the DFH$TDWT sample
program described in fthe CICS Customization Guidel DFH$TDWT is supplied with
the CICS pregenerated system in CICSTS31.CICS.CICS.SDFHLOAD.

Only one thread (the initial thread) can access the JCICS API. You can create other
threads but you must route all requests to the JCICS API through the initial thread.
Additionally, you must ensure that all threads other than the original thread have
terminated before doing any of the following:

* link()

* xctl()

+ setNextTransaction(), setNextCOMMAREA()
* commit(), rollback()

» returning an AbendException

20 Java Applications in CICS

JCICS command reference

Many of the options and services available to non-Java programs through the
EXEC CICS API are available to Java programs through JCICS. This section shows
the relationship between EXEC CICS commands and the equivalent JCICS
function. For a full description of the EXEC CICS commands, see the CICS
Application Programming Reference.

JCICS support is described under the following headings:
+ [‘Error handling and abnormal termination” on page 23
+ ['CICS exception handling in Java programs’]

+ YAPPC mapped conversations” on page 24|

+ [‘Basic Mapping Support (BMS)” on page 24|

« [‘Channels and containers” on page 24|

* [‘Diagnostic services” on page 27
+ [‘Document services” on page 27|
+ [‘Environment services” on page 28|

+ [‘File services” on page 30|

+ [‘Program services” on page 33|

+ [‘Scheduling services” on page 34

« [‘Serialization services” on page 34|

+ [‘Storage services” on page 34|

+ [‘Temporary storage queue services” on page 34|
+ [‘Terminal services” on page 35|

« [‘Transient data queue services” on page 35|

+ [‘Unit of work (UOW) services” on page 36|

+ ["'Web and TCP/IP services” on page 36]

+ [‘Unsupported CICS services” on page 37|

CICS exception handling in Java programs

CICS ABENDs and exceptions are integrated into the Java exception-handling
architecture. All regular CICS ABENDs are mapped to a single Java exception,
AbendException, whereas each CICS condition is mapped to a separate Java
exception.

This leads to an ABEND-handling model in Java that is similar to the other
programming languages; a single handler is given control for every ABEND, and the
handler has to query the particular ABEND and then decide what to do.

If the exception representing a condition is caught by CICS itself, it is turned into an
ABEND.

Java exception-handling is fully integrated with the ABEND and condition-handling
in other languages, so that ABENDs can propagate between Java and non-Java
programs, in the standard language-independent way. A condition is mapped to an
ABEND before it leaves the program that caused or detected the condition.

However, there are several differences to the abend-handling model for other
programming languages, resulting from the nature of the Java exception-handling
architecture and the implementation of some of the technology underlying the Java
API:

* ABENDs that are considered unhandleable in other programming languages can
be caught in Java programs. These ABENDs typically occur during SYNCPOINT

Chapter 6. Java programming using JCICS 21

22

processing. To avoid these ABENDs interrupting Java applications, they are
mapped to an extension of an unchecked exception; therefore they do not have
to be declared or caught.

» Several internal CICS events, such as program termination, are also mapped to
Java exceptions and can therefore be caught by a Java application. Again, to
avoid interrupting the normal case, these are mapped to extensions of an
unchecked exception and so do not have to be caught or declared.

Note: CICS requires the Language Environment® product to be installed and active
on your 0S/390® system in order to run Java applications. You should not
specify the Language Environment run-time option TRAP=OFF, because this
will disable abend handling in JCICS.

There are three CICS-related class hierarchies of exceptions:

1. CicsError, which extends java.lang.Error and is the base for AbendError and
UnknownCicsError.

2. CicsRuntimeException, which extends java.lang.RuntimeException and is in
turn extended by:

AbendException
Represents a normal CICS ABEND.

EndOfProgramException
Indicates that a linked-to program has terminated normally.

TransferOfControlException
Indicates that a program has used an xct1() method, the equivalent of the
CICS XCTL command.

3. CicsException, which extends java.lang.Exception and has the subclass:

CicsConditionException.
The base class for all CICS conditions.

CICS error-handling commands

CICS condition handling is integrated into the Java exception architecture as
described above. The way that the equivalent “EXEC CICS” command is supported
in Java is described below:

HANDLE ABEND
To handle an ABEND generated by a program in any CICS-supported language,
use a Java try-catch statement, with AbendException appearing in a catch
clause.

HANDLE CONDITION
To handle a specific condition, such as PGMIDERR, use a catch clause that
names the appropriate exception—in this case InvalidProgramException.
Alternatively, use a catch clause naming CicsConditionException, if all CICS
conditions are to be caught.

IGNORE CONDITION
This command is not relevant in Java applications.

POP and PUSH HANDLE
These commands are not relevant in Java applications. The Java exceptions
used to represent CICS ABENDs and conditions are caught by any catch block
in scope.

Java Applications in CICS

Error handling

CICS conditions
The condition-handling model in Java is different from other CICS programming
languages.

In COBOL, you can define an exception-handling label for each condition. If that
condition occurs during the processing of a CICS command, control transfers to the
label.

In C and C++, you cannot define an exception-handling label for a condition; to
detect a condition, the RESP field in the EIB must be checked after each CICS
command.

In Java, any condition returned by a CICS command is mapped into a Java
exception. You can include all CICS commands in a try-catch block and do specific
processing for each condition, or have a single null catch clause if the particular
exception is not relevant. Alternatively, you can let the condition propagate, to be
handled by a catch clause at a larger scope.

See ['JCICS exception mapping” on page 37| for a description of the relationship
between CICS conditions and Java exceptions.

and abnormal termination

Methods JCICS class EXEC CICS commands
abend(), forceAbend() Task ABEND
ABEND

To initiate an ABEND from a Java program, invoke one of the the Task.abend()
methods. This causes an abend condition to be set in CICS and an
AbendException to be thrown. If the AbendException is not caught within a
higher level of the application object, or handled by an ABEND-handler
registered in the calling program (if any), CICS terminates and rolls back the
transaction.

The different abend() methods are:

e abend(String abcode), which causes an ABEND with the ABEND code
abcode.

* abend(String abcode, boolean dump), which causes an ABEND with the
ABEND code abcode. If the dump parameter is false, no dump is taken.

» abend(), which causes an ABEND with no ABEND code and no dump.

ABEND CANCEL
To initiate an ABEND that cannot be handled, invoke one of the
Task.forceAbend() methods. As described above, this causes an
AbendCancelException to be thrown which can be caught in Java programs. If
you do so, you must re-throw the exception to complete ABEND_CANCEL
processing, so that, when control returns to CICS, CICS will terminate and roll
back the transaction. You should catch AbendCancelException only for
notification purposes and then re-throw it.

The different forceAbend() methods are:

e forceAbend(String abcode), which causes an ABEND CANCEL with the
ABEND code abcode.

Chapter 6. Java programming using JCICS 23

APPC mapped

Basic Mapping

» forceAbend(String abcode, boolean dump), which causes an ABEND
CANCEL with the ABEND code abcode. If the dump parameter is false, no

dump is taken.

e forceAbend(), which causes an ABEND CANCEL with no ABEND code and

no dump.

conversations

APPC unmapped conversation support is not available from the JCICS API.

APPC mapped conversations:

Methods JCICS class EXEC CICS Commands
initiate() Attachlnitiator ALLOCATE, CONNECT PROCESS
converse() Conversation CONVERSE

get*() methods Conversation EXTRACT ATTRIBUTES
get*() methods Conversation EXTRACT PROCESS
free() Conversation FREE

issueAbend() Conversation ISSUE ABEND
issueConfirmation() Conversation ISSUE CONFIRMATION
issueError() Conversation ISSUE ERROR
issuePrepare() Conversation ISSUE PREPARE
issueSignal() Conversation ISSUE SIGNAL

receive() Conversation RECEIVE

send() Conversation SEND

flush() Conversation WAIT CONVID
Support (BMS)

Methods JCICS class EXEC CICS Commands

sendControl()

TerminalPrincipalFacility

SEND CONTROL

sendText()

TerminalPrincipalFacility

SEND Text

Not supported

SEND MAP, RECEIVE MAP

Channels and containers

For introductory information about channels and containers, and guidance about
using channels in non-Java applications, see [the CICS Application Programming|

24

CICS provides the following JCICS classes that CICS Java programs can use to

pass and receive chann
e com.ibm.cics.server
* com.ibm.cics.server
* com.ibm.cics.server
* com.ibm.cics.server
* com.ibm.cics.server
e com.ibm.cics.server

Java Applications in CICS

els:

.CCSIDErrorException

.Channel

.ChannelErrorException

.Container

.ContainerErrorException

.ContainerIterator

Note: You can use channel- and container-related JCICS commands when writing
CICS enterprise beans. However, CICS doesn’t support the transmission of
channels over IIOP request streams. This means that you cannot, for
example, pass a channel to an enterprise bean on a remote region.

lists the classes and methods that implement JCICS support for channels
and containers.

Table 2. JCICS support for channels and containers

Methods JCICS class EXEC CICS Commands

containerlterator() Channel STARTBROWSE CONTAINER

createContainer() Channel

deleteContainer() Channel DELETE CONTAINER CHANNEL

getContainer() Channel

getName() Channel

delete() Container DELETE CONTAINER CHANNEL

get(), getLength() Container GET CONTAINER CHANNEL
[NODATA]

getName() Container

put() Container PUT CONTAINER CHANNEL

getOwner() Containerlterator

hasNext() Containerlterator

next() Containerlterator GETNEXT CONTAINER
BROWSETOKEN

remove() Containerlterator

link() Program LINK

xctl() Program XCTL

setNextChannel() TerminalPrincipalFacility RETURN CHANNEL

issue() StartRequest START CHANNEL

createChannel() Task

getCurrentChannel() Task ASSIGN CHANNEL

containerlterator() Task STARTBROWSE CONTAINER

The CICS condition CHANNELERR results in a ChannelErrorException being
thrown; the CONTAINERERR CICS condition results in a ContainerErrorException;
the CCSIDERR CICS condition results in a CCSIDErrorException.

Creating channels and containers in JCICS
To create a channel, use the createChannel () method of the Task class. For
example:

Task t=Task.getTask();
Channel custData = t.createChannel("Customer Data");

The string supplied to the createChannel method is the name by which the Channel
object is known to CICS. (The name is padded with spaces to 16 characters, to
conform to CICS naming conventions.)

To create a new container in the channel, use the Channel’s createContainer()
method. For example:

Chapter 6. Java programming using JCICS 25

26

Container custRec = custData.createContainer("Customer_Record");

The string supplied to the createContainer() method is the name by which the
Container object is known to CICS. (The name is padded with spaces to 16
characters, if necessary, to conform to CICS naming conventions.) If a container of
the same name already exists in this channel, a ContainerErrorException is
thrown.

Putting data into a container
To put data into a Container object, use the Container.put() method. Data can be
added to a container as a byte array or a string. For example:

String custNo = "00054321";
byte[] custRecIn = custNo.getBytes();
custRec.put(custRecIn);

Or simply:
custRec.put("00054321");

Passing a channel to another program or task
To pass a channel on a program-link or transfer program control (XCTL) call, use
the 1ink() and xct1() methods of the Program class, respectively:

programX.link(custData);

programY.xct1(custData);

To set the next channel on a program-return call, use the setNextChannel () method
of the TerminalPrincipalFacility class:

terminalPF.setNextChannel (custData);

To pass a channel on a START request, use the issue method of the StartRequest
class:

startrequest.issue(custData);

Receiving the current channel
It is not necessary for a program to receive its current channel explicitly—see
[‘Browsing the current channel.”| However, a program can get its current channel
from the current task; this enables it to extract containers by name:
Task t = Task.getTask();
Channel custData = t.getCurrentChannel();
if (custData != null) {
Container custRec = custData.getContainer("Customer_Record");
} else {
System.out.printIn("There is no Current Channel");
1

Getting data from a container
Use the Container.get() method to read the data in a container into a byte array:

byte[] custInfo = custRec.get();

Browsing the current channel

A JCICS program that is passed a channel can access all of the Container objects
without receiving the channel explicitly. To do this, it uses a ContainerIterator
object. (The ContainerIterator class implements the java.util.Iterator
interface.) When a Task object is instantiated from the current task, its
containerIterator() method returns an Iterator for the current channel, or null if
there is no current channel. For example:

Java Applications in CICS

Task t = Task.getTask();
ContainerIterator ci = t.containerIterator();
While (ci.hasNext()) {

}

Container custData = ci.next();
// Process the container...

A JCICS example

Figure 1| shows a Java class called Payrol11 that calls a COBOL server program

named PAYR. The Payrol1 class uses the JCICS com.ibm.cics.server.Channel and

com.ibm.cics.server.Container classes to do the same things that a non-Java

client program would use EXEC CICS commands to do.

import com.ibm.cics.server.x;
public class Payroll {

}

Task t=Task.getTask();

// create the payroll_2004 channel
Channel payroll 2004 = t.createChannel("payrol1-2004");

// create the employee container
Container employee = payroll_2004.createContainer("employee");

// put the employee name into the container
employee.put("John Doe");

// create the wage container
Container wage = payroll 2004.createContainer("wage");

// put the wage into the container
wage.put("2000");

// Link to the PAYROLL program, passing the payroll 2004 channel
Program p = new Program();

p.setName("PAYR");

p.link(payrol1_2004);

// Get the status container which has been returned
Container status = payroll_2004.getContainer("status");

// Get the status information
byte[] payrollStatus = status.get();

Figure 1. Java class that uses the JCICS com.ibm.cics.server.Channel and
com.ibm.cics.server.Container classes to pass a channel to a COBOL server program

Diagnostic services

Methods JCICS class EXEC CICS Commands
Not supported DUMP

enterTrace() EnterRequest ENTER

enableTrace(), disableTrace() |Region, Task TRACE

Document services

This section describes JCICS support for the commands in the DOCUMENT
application programming interface.

Chapter 6. Java programming using JCICS

27

You cannot use document support with the VisualAge for Java, Enterprise Edition
for OS/390, bytecode binder.

Class Document maps to the EXEC CICS DOCUMENT API. Constructors for class
DocumentLocation map to the AT and TO keywords of the EXEC CICS DOCUMENT
API. Setters and getters for class SymbolList map to the SYMBOLLIST, LENGTH,
DELIMITER, and UNESCAPE keywords of the EXEC CICS DOCUMENT API.

Methods JCICS class EXEC CICS Commands
create*() Document DOCUMENT CREATE
append*() Document DOCUMENT INSERT
insert*() Document DOCUMENT INSERT
addSymbol() Document DOCUMENT SET
setSymbolList() Document DOCUMENT SET
retrieve*() Document DOCUMENT RETRIEVE
get*() Document DOCUMENT

Environment services

28

CICS environment services provide access to CICS data areas, parameters, and
resource attributes that are relevant to an application program. The EXEC CICS
commands and options that have equivalent JCICS support are:

» ADDRESS

* ASSIGN

* INQUIRE SYSTEM

* INQUIRE TASK

* INQUIRE TERMINAL/NETNAME

ADDRESS

Seethe CICS Application Programming Reference manuall for information about the
EXEC CICS ADDRESS command. The following support is provided for the
ADDRESS options.

ACEE The Access Control Environment Element (ACEE) is created by an external
security manager when a CICS user signs on. This option not supported in
JCICS.

COMMAREA
A COMMAREA contains user data that is passed with a command. The
COMMAREA pointer is passed automatically to the linked program by the
CommAreaHolder argument . See [‘Command arguments” on page 19| for
more information.

CWA The Common Work Area (CWA) contains global user data, sharable
between tasks. This option is not supported in JCICS.

EIB contains information about the CICS command last executed. Access to EIB
values is provided by methods on the appropriate objects. For example,

eibtrnid
is returned by the getTransactionName() method of the Task class.

eibaid is returned by the getAIDbyte() method of the
TerminalPrincipalFacility class.

Java Applications in CICS

eibcposn

is returned by the getRow() and getColumn() methods of the Cursor

class.
TCTUA

The Terminal Control Table User Area (TCTUA) contains user data
associated with the terminal that is driving the CICS transaction (the
principal facility). This area is used to pass information between application
programs, but only if the same terminal is associated with the application
programs involved. The contents of the TCTUA can be obtained using the
getTCTUA() method of the TerminalPrincipalFacility class.

TWA

The Transaction Work Area (TWA) contains user data that is associated

with the CICS task. This area is used to pass information between
application programs, but only if they are in the same task. A copy of the
TWA can be obtained using the getTWA() method of the Task class.

ASSIGN

See [the CICS Application Programming Reference manuall for information about the

EXEC CICS ASSIGN command. The following support is provided for the ASSIGN

options.
Methods JCICS class EXEC CICS Commands
getABCODE() AbendException ASSIGN ABCODE
getAPPLID() Region ASSIGN APPLID
getCurrentChannel() Task ASSIGN CHANNEL
getCWA() Region ASSIGN CWALENG
getName() TerminalPrincipalFacility or ASSIGN FACILITY
ConversationPrincipalFacility
getFCI() Task ASSIGN FCI
getNetName() TerminalPrincipalFacility or ASSIGN NETNAME
ConversationPrincipalFacility
getPrinSysid() TerminalPrincipalFacility or ASSIGN PRINSYSID
ConversationPrincipalFacility
getProgramName() Task ASSIGN PROGRAM
getQNAME() Task ASSIGN QNAME
getSTARTCODE() Task ASSIGN STARTCODE
getSysid() Region ASSIGN SYSID
getTCTUA() TerminalPrincipalFacility ASSIGN TCTUALENG
getTERMCODE() TerminalPrincipalFacility ASSIGN TERMCODE
getTWA() Task ASSIGN TWALENG

getUserid(), Task.getUSERID()

Task, TerminalPrincipalFacility
or
ConversationPrincipalFacility

ASSIGN USERID

No other ASSIGN options are supported.

Chapter 6. Java programming using JCICS 29

File services

INQUIRE SYSTEM

The following support is provided for the INQUIRE SYSTEM options:

Methods JCICS class EXEC CICS Commands

getAPPLID(), getSYSID() Region INQUIRE SYSTEM

No other INQUIRE SYSTEM options are supported.
INQUIRE TASK

The following support is provided for the INQUIRE TASK options:

Methods JCICS class EXEC CICS Commands

getAPPLID(), getSYSID() Task INQUIRE TASK FACILITY

getSTARTCODE() Task INQUIRE TASK
STARTCODE

get TransactionName() Task INQUIRE TASK
TRANSACTION

getUserid() Task INQUIRE TASK USERID

Notes:

FACILITY

You can find the name of the task’s principal facility by calling the
getName() method on the task’s principal facility, which can in turn
be found by calling the getPrincipalFacility() method on the
current Task object.

FACILITYTYPE
You can determine the type of facility by using the Java instanceof
operator to check the class of the returned object reference.

No other INQUIRE TASK options are supported.
INQUIRE TERMINAL and INQUIRE NETNAME

The following support is provided for INQUIRE TERMINAL and INQUIRE
NETNAME options:

Methods JCICS class EXEC CICS Commands
Terminal.getUser(), | Terminal, INQUIRE TERMINAL USERID
getUserid() ConversationalPrincipalFacility INQUIRE NETNAME USERID

Note: You can also find the USERID value by calling the getUSERID() method on
the current Task object, or on the object representing the task’s principal
facility

No other INQUIRE TERMINAL or NETNAME options are supported.

CICS supports the following types of files:
» Key Sequenced Data Sets (KSDS)

30 Java Applications in CICS

* Entry Sequenced Data Sets (ESDS)
* Relative Record Data Sets (RRDS)

KSDS and ESDS files can have alternate (or secondary) indexes. (CICS does not
support access to an RRDS file through a secondary index.) Secondary indexes are
treated by CICS as though they were separate KSDS files in their own right, which
means they have separate FD entries.

There are a few differences between accessing KSDS, ESDS (primary index), and
ESDS (secondary index) files, which means that you cannot always use a common
interface.

Records can be read, updated, deleted, and browsed in all types of file, with the
exception that records cannot be deleted from an ESDS file.

See [the CICS Application Programming Guidd for more information about datasets.

Java commands that read data support only the equivalent of the SET option on
EXEC CICS commands. The data returned is automatically copied from CICS
storage to a Java object.

The Java interfaces relating to File Control are in five categories:

File The superclass for the other file classes; contains methods common to all
file classes.

KeyedFile
Contains the interfaces common to a KSDS file accessed through the
primary index, a KSDS file accessed through a secondary index, and an
ESDS file accessed through a secondary index.

KSDS Contains the interface specific to KSDS files.

ESDS Contains the interface specific to ESDS files accessed through Relative
Byte Address (RBA—its primary index).

RRDS Contains the interface specific to RRDS files accessed through Relative
Record Number (RRN—its primary index).

For each file, there are two objects that can be operated on—the File object and
the FileBrowse object. The File object represents the file itself and can be used
with methods to perform the following operations:

 DELETE
 READ
 REWRITE
* UNLOCK
 WRITE

+ STARTBR

A File object is created by the user application explicitly instantiating the desired
file class. The FileBrowse object represents a browse operation on a file. (There
can be more than one active browse against a specific file at any time, each
browse being distinguished by a REQID.) Methods can be invoked against a file
browse object to perform the following operations:

« ENDBR

* READNEXT

Chapter 6. Java programming using JCICS 31

« READPREV
+ RESETBR

A FileBrowse object is not instantiated explicitly by the user application; it is created
and returned to the user class by the methods that perform the STARTBR

operation.

The following tables show how the JCICS classes and methods map to the EXEC
CICS commands for each type of CICS file (and index). In these tables, the JCICS
classes and methods are shown in the form class.method(). For example,
KeyedFile.read() refers to the read() method in the KeyedFile class.

This table shows the classes and methods for keyed files:

KSDS primary or secondary
index

ESDS secondary index

CICS File command

KeyedFile.read()

KeyedFile.read()

READ

KeyedFile.readForUpdate()

KeyedFile.readForUpdate()

READ UPDATE

KeyedFile.readGeneric()

KeyedFile.readGeneric()

READ GENERIC

KeyedFile.rewrite() KeyedFile.rewrite() REWRITE
KSDS.write() KSDS.write() WRITE
KSDS.delete() DELETE
KSDS.deleteGeneric() DELETE GENERIC
File.unlock() File.unlock() UNLOCK

KeyedFile.startBrowse()

KeyedFile.startBrowse()

START BROWSE

KeyedFile.startGenericBrowse()

KeyedFile.startGenericBrowse()

START BROWSE

GENERIC
KeyedFileBrowse.next() KeyedFileBrowse.next() READNEXT
KeyedFileBrowse.previous() KeyedFileBrowse.previous() READPREV
KeyedFileBrowse.reset() KeyedFileBrowse.reset() RESET BROWSE
FileBrowse.end() FileBrowse.end() END BROWSE

This table shows the classes and methods for non-keyed files. ESDS and RRDS
are accessed by their primary indexes:

ESDS primary index

RRDS primary index

CICS File command

ESDS.read()

RRDS.read()

READ

ESDS.readForUpdate()

RRDS.readForUpdate()

READ UPDATE

ESDS.rewrite() RRDS.rewrite() REWRITE
ESDS.write() RRDS.write() WRITE
RRDS.delete() DELETE
File.unlock() File.unlock() UNLOCK
ESDS.startBrowse() RRDS.startBrowse() START BROWSE
ESDS_Browse.next() RRDS_Browse.next() READNEXT
ESDS_Browse.previous() RRDS_Browse.previous() READPREV
ESDS_Browse.reset() RRDS_Browse.reset() RESET BROWSE
FileBrowse.end() FileBrowse.end() END BROWSE

Java Applications in CICS

Data to be written to a file must be in a Java byte array.

Data is read from a file into a RecordHolder object; the storage is provided by CICS
and will be automatically released at the end of the program.

The KEYLENGTH does not need to be explicitly specified on any File method; the
length used will be the actual length of the key passed. When a FileBrowse object
is created, it contains the keylength of the key specified on the startBrowse
method, and this length is passed to CICS on subsequent browse requests against
that object.

It is not necessary for the user to provide a REQID for a browse operation; each

browse object will contain a unique REQID which is automatically used for all
subsequent browse requests against that browse object.

Program services

JCICS support for the CICS program control commands is described below:

Methods JCICS class EXEC CICS Commands
link() Program LINK
SetNextTransaction(), TerminalPrincipalFacility RETURN
setNextCOMMAREA(),
setNextChannel()
xctl() Program XCTL

Not supported SUSPEND

LINK and XCTL
You can transfer control to another program that is defined to CICS using the
Tink() and xct1() methods. The target program can be in any language
supported by CICS.

If you use the xct1() method, a TransferOfControlException is thrown to the
issuing program, even if it completes successfully.

RETURN
Only the pseudoconversational aspects of this command are supported. It is not
necessary to make a CICS call simply to return; the application can simply
terminate as normal. The pseudoconversational functions are supported by
methods in the TerminalPrincipalFacility class: setNextTransaction() is
equivalent to using the TRANSID option of RETURN; setNextCOMMAREA () is
equivalent to using the COMMAREA option; while setNextChannel() is
equivalent to using the CHANNEL option. These methods can be invoked at
any time during the running of the program, and take effect when the program
terminates.

Note: The length of the COMMAREA provided is used as the LENGTH value for
CICS. This value may not exceed 32 500 bytes if the COMMAREA is to be
passed between any two CICS servers (for any combination of
product/version/release).

Chapter 6. Java programming using JCICS 33

Scheduling services

Methods JCICS class EXEC CICS Commands
cancel() StartRequest CANCEL

retrieve() Task RETRIEVE

issue() StartRequest START

To define what is to be retrieved by the Task.retrieve() method, use a
java.util.BitSet object. The com.ibm.cics.server.RetrieveBits class defines the
bits which can be set in the BitSet object; they are:

* RetrieveBits.DATA

* RetrieveBits. RTRANSID

* RetrieveBits.RTERMID

* RetrieveBits. QUEUE

These correspond to the options on the EXEC CICS RETRIEVE command.

The Task.retrieve() method retrieves up to four different pieces of information in a
single invocation, depending on the settings of the RetrieveBits. The DATA,
RTRANSID, RTERMID and QUEUE data are placed in a RetrievedData object,
which is held in a RetrievedDataHolder object. The following example retrieves the
data and transid:

BitSet bs = new BitSet();

bs.set(RetrieveBits.DATA, true);
bs.set(RetrieveBits.RTRANSID, true);
RetrievedDataHolder rdh = new RetrievedDataHolder();
t.retrieve(bs, rdh);

byte[] inData = rdh.value.data;

String transid = rdh.value.transld;

Serialization services

Methods JCICS class EXEC CICS Commands
dequeue() SynchronisationResource DEQ
enqueue(), tryEnqueue() SynchronisationResource ENQ

Storage services

No support is provided for explicit storage management using CICS services (such
as EXEC CICS GETMAIN). You should find that the standard Java storage
management facilities are sufficient to meet the needs for task-private storage.

Sharing of data between tasks must be accomplished using CICS resources.

Names are generally represented as Java strings or byte arrays; you must ensure
that these are of the necessary length.

Temporary storage queue services

34

Methods JCICS class EXEC CICS Commands
delete() TSQ DELETEQ TS
readltem(), readNextltem() TSQ READQ TS

Java Applications in CICS

Methods JCICS class EXEC CICS Commands

writeltem(), rewriteltem() TSQ WRITEQ TS
writeltemConditional()
rewriteltemConditional()

JCICS support for the temporary storage commands is described below.

DELETEQ TS
You can delete a temporary storage queue (TSQ) using the delete() method in
the TSQ class.

READQ TS
The CICS INTO option is not supported in Java programs. You can read a
specific item from a TSQ using the readItem() and readNextItem methods in
the TSQ class. These methods take an ItemHolder object as one of their
arguments, which will contain the data read in a byte array. The storage for this
byte array is created by CICS and is garbage-collected at the end of the
program.

WRITEQ TS
You must provide data to be written to a temporary storage queue in a Java
byte array. The writeltem() and rewriteltem() methods suspend if a
NOSPACE condition is detected, and wait until space is available to write the
data to the queue. The writeltemConditional() and rewritelItemConditional()
methods do not suspend in the case of a NOSPACE condition, but return the
condition immediately to the application as a NoSpaceException.

Terminal services

Methods JCICS class EXEC CICS Commands
converse() TerminalPrincipalFacility CONVERSE
Not supported HANDLE AID
receive() TerminaPrincipalFacility RECEIVE
send() TerminaPrincipalFacility SEND
Not supported WAIT TERMINAL

If a task has a terminal as a principal facility, CICS automatically creates two Java
PrintWriters that can be used as standard output and standard error streams.
They are mapped to the task’s terminal. The two streams, called out and err, are
public files in the Task object and can be used just like System.out and System.err.

Data to be sent to a terminal must be provided in a Java byte array. Data is read

from the terminal into a DataHolder object. CICS provides the storage for the
returned data and it will be deallocated when the program ends.

Transient data queue services

Methods JCICS class EXEC CICS Commands
delete() TDQ DELETEQ TD
readData(), readDataConditional() TDQ READQ TD

writeData() TDQ WRITEQ TD

Chapter 6. Java programming using JCICS 35

JCICS support for the transient data commands is described below. All options are
supported except INTO.

DELETEQ TD

You can delete a transient data queue (TDQ) using the delete() method in the

TDQ class.
READQ TD

The CICS INTO option is not supported in Java programs. You can read from a
TDQ using the readData() or the readDataConditional() method in the TDQ
class. These methods take as a parameter an instance of a DataHolder object
that will contain the data read in a byte array. The storage for this byte array is
created by CICS and is garbage-collected at the end of the program.

The readDataConditional () method drives tthe CICS NOSUSPEND logic. If a
QBUSY condition is detected, it is returned to the application immediately as a
QueueBusyException.

The readData() method suspends if it attempts to access a record in use by
another task and there are no more committed records.

WRITEQ TD

You must provide data to be written to a TDQ in a Java byte array.

Unit of work (UOW) services

Methods

JCICS class

EXEC CICS Commands

commit(), rollback()

Task

SYNCPOINT

Web and TCP/IP services

Getters in classes HttpHeader, NameValueData, and FormField return httpheader,
name/value pairs and formfield field values for the appropriate APl commands.

Methods JCICS class EXEC CICS Commands

get*() Certificatelnfo EXTRACT CERTIFICATE / EXTRACT TCPIP
get*() HttpRequest EXTRACT WEB

getHeader() HttpRequest WEB READ HTTPHEADER
getFormField() HttpRequest WEB READ FORMFIELD
getContent() HttpRequest WEB RECEIVE

startBrowseHeader() HttpRequest WEB STARTBROWSE HTTPHEADER
getNextHeader() HttpRequest WEB READNEXT HTTPHEADER
endBrowseHeader() HttpRequest WEB ENDBROWSE HTTPHEADER
startBrowseFormfield() |HttpRequest WEB STARTBROWSE FORMFIELD
getNextFormfield() HttpRequest WEB READNEXT FORMFIELD
endBrowseFormfield() | HttpRequest WEB ENDBROWSE FORMFIELD
writeHeader() HttpResponse WEB WRITE

getDocument() HttpResponse WEB RETRIEVE
getCurrentDocument() | HttpResponse WEB RETRIEVE

sendDocument() HttpResponse WEB SEND

36 Java Applications in CICS

Note: Use the method get HttpRequestInstance() to obtain the HttpRequest
object.

Each incoming HTTP request processed by CICS Web support includes an HTTP

header.

If the request uses the POST HTTP verb it also includes document data.

Each response HTTP request generated by CICS Web support includes an HTTP

header

and document data.

To process this JCICS provides the following Web and TCP/IP services:
HTTP Header

SSL

You can examine the HTTP header using the HttpRequest class. With
HTTP in GET mode, if a client has filled in an HTTP form and selected the
submit button, the query string is submitted.

CICS Web support provides the TcpipRequest class, which is extended by
HttpRequest to obtain more information about which client submitted the
request as well as basic information on the SSL support. If an SSL
certificate is provided, you can use the CertificateInfo class to examine it
in detail.

Documents

If a document is published to the server (HTTP POST), it is provided as a
CICS document. You can access it by calling the getDocument () method on
the HttpRequest class. See [‘Document services” on page 27| for more
information about processing existing documents.

To serve the HTTP client web content resulting from a request, the server
programmer needs to create a CICS document using the Document
Services API and call the sendDocument () method.

For more information on CICS Web support see [the CICS Applicatior]
|Programming Guidel For more information on the JCICS Web classes see
the JCICS Class Reference.

Unsupported CICS services

* APPC unmapped conversations
» CICS Business Transaction Services

« DUM

P services

» Journal services

» Serialization services

« Storage services

» Timer services

» CICS Business Transaction Services

JCICS exception ma

Table 3. Java exception mapping

pping

CICS condition Java Exception CICS condition Java Exception

ALLOCERR AllocationErrorException CBIDERR InvalidControlBlockldException
CCSIDERR CCSIDErrorException CHANNELERR ChannelErrorException
CONTAINERERR ContainerErrorException DISABLED FileDisabledException

DSIDERR FileNotFoundException DSSTAT DestinationStatusChangeException

Chapter 6. Java programming using JCICS 37

Table 3. Java exception mapping (continued)

CICS condition

Java Exception

CICS condition

Java Exception

DUPKEY DuplicateKeyException DUPREC DuplicateRecordException
END EndException ENDDATA EndOfDataException
ENDFILE EndOfFileException ENDINPT EndOfInputindicatorException
ENQBUSY ResourceUnavailableException ENVDEFERR InvalidRetrieveOptionException
EOC EndOfChainIndicatorException EODS EndOfDataSetIndicatorException
EOF EndOfFilelndicatorException ERROR ErrorException

EXPIRED TimeExpiredException FILENOTFOUND FileNotFoundException
FUNCERR FunctionErrorException IGREQID InvalidREQIDPrefixException
IGREQCD InvalidDirectionException ILLOGIC LogicException

INBFMH InboundFMHEXxception INVERRTERM InvalidErrorTerminalException
INVEXITREQ InvalidExitRequestException INVLDC InvalidLDCException
INVMPSZ InvalidMapSizeException INVPARTNSET InvalidPartitionSetException
INVPARTN InvalidPartitionException INVREQ InvalidRequestException
INVTSREQ InvalidTSRequestException IOERR IOErrorException
ISCINVREQ ISCInvalidRequestException ITEMERR ltemErrorException

JIDERR InvalidJournalldException LENGERR LengthErrorException
MAPERROR MapErrorException MAPFAIL MapFailureException
NAMEERROR NameErrorException NODEIDERR InvalidNodeldException
NOJBUFSP NoJournalBufferSpaceException NONVAL NotValidException
NOPASSBKRD NoPassbookReadException NOPASSBKWR NoPassbookWriteException
NOSPACE NoSpaceException NOSPOOL NoSpoolException

NOSTART StartFailedException NOSTG NoStorageException
NOTALLOC NotAllocatedException NOTAUTH NotAuthorisedException
NOTFND RecordNotFoundException NOTOPEN NotOpenException
OPENERR DumpOpenErrorException OVERFLOW MapPageOverflowException
PARTNFAIL PartitionFailureException PGMIDERR InvalidProgramldException
QBUSY QueueBusyException QIDERR InvalidQueueldException
QZERO QueueZeroException RDATT ReadAttentionException
RETPAGE ReturnedPageException ROLLEDBACK RolledBackException
RTEFAIL RouteFailedException RTESOME RoutePartiallyFailedException
SELNERR DestinationSelectionErrorException | SESSBUSY SessionBusyException
SESSIONERR SessionErrorException SIGNAL InboundSignalException
SPOLBUSY SpoolBusyException SPOLERR SpoolErrorException
STRELERR STRELERREXxception SUPPRESSED SuppressedException
SYMBOLERR SymbolErrorException SYSBUSY SystemBusyException
SYSIDERR InvalidSystemIdException TASKIDERR InvalidTaskldException
TCIDERR TCIDERREXxception TEMPLATERR TemplateErrorException
TERMERR TerminalException TERMIDERR InvalidTerminalldException
TOKENERR TokenErrorException

TRANSIDERR InvalidTransactionldException TSIOERR TSIOErrorException

38 Java Applications in CICS

Table 3. Java exception mapping (continued)

CICS condition

Java Exception

CICS condition

Java Exception

UNEXPIN

UnexpectedinformationException

USERIDERR

InvalidUserldException

WRBRK

WriteBreakException

WRONGSTAT

WrongStatusException

Note: NonHttpDataException is thrown by getContent() if the CICS command
WEB RECEIVE indicates that the data received is a non-HTTP message (by
setting TYPE=HTTPNO).

Using JCICS

You use the classes from the JCICS library like normal Java classes. Your
applications declare a reference of the required type and a new instance of a class
is created using the new operator. You name CICS resources using the setName
method to supply the name of the underlying CICS resource.

Once created, you can manipulate objects using standard Java constructs. Methods
of the declared objects may be invoked in the usual way. Full details of the methods
supported for each class are available on-line in the supplied HTML JAVADOC files;
a summary is provided in ['JCICS command reference” on page 21

Writing the main method

For Java programs, CICS attempts to pass control to method main(CommAreaHolder)
in the class specified by the JVMCLASS option of the PROGRAM resource
definition. If this method is not found, CICS tries to invoke method main(String[]).

Creating objects

Using objects

To create an object you need to:

» Declare a reference. For example:
TSQ tsq;

* Use the new operator to create an object:
tsq = new TSQ()

» Use the setName method to give the object a name:
tsq.setName("JCICSTSQ");

The following example shows how you create a TSQ object and invoke the delete
method on the temporary storage queue object you have just created, catching the
exception thrown if the queue is empty:

// Define a package name for the program
package unit_test;

// Import the JCICS package
import com.ibm.cics.server.x;

// Declare a class for a CICS application
public class JCICSTSQ {

// The main method is called when the application runs
public static void main(CommAreaHolder cah) {

try {
// Create and name a Temporary Storage queue object

Chapter 6. Java programming using JCICS 39

H o o H H H H H H H H H HH

TSQ tsq = new TSQ();
tsq.setName ("JCICSTSQ");

// Delete the queue if it exists
try {
tsq.delete();
} catch(InvalidQueueldException e) {
// Absorb QIDERR
System.out.printIn("QIDERR ignored!");
}

// Write an item to the queue

String transaction = Task.getTask().getTransactionName();
String message = "Transaction name is - " + transaction;
tsq.writeltem(message.getBytes());

} catch(Throwable t) {
System.out.printIn("Unexpected Throwable: " + t.toString());
}

// Return from the application
return;

}

Important:

* You are strongly recommended not to use finalizers (final
methods) in CICS Java programs. For an explanation of why
finalizers are not recommended, see the IBM Developer Kit and
Runtime Environment, Java 2 Technology Edition, Version 1.4.2
Diagnostics Guide.

* You are strongly recommended not to end a CICS Java program
by issuing a System.exit() call.

When Java applications are run in CICS, the public static void
main() method is called through the use of another Java program
called the Java wrapper. The use of the wrapper allows CICS to
initialize the environment for Java applications and, more importantly,
to clean up any processes that are used during the life of the
application. Killing the JVM, even with a clean return code of 0, does
not allow this cleanup process to run, and may lead to data
inconsistency. Also, a System.exit() call makes the continuous JVM
mode unusable, because it terminates the JVM instance. The
recommended approach is to allow the program to run to the end of
the public static void main() method and the JVM to terminate
cleanly.

40 Java Applications in CICS

Chapter 7. Accessing data from CICS applications written in

Java

CICS applications written in Java can use a variety of methods to access data. The
methods available depend on the type of data to be accessed.

Accessing relational data

To access relational data, a CICS application written in Java can use any of the
following methods:

A JCICS LINK command, or the CCI Connector for CICS TS, to link to a
program that uses Structured Query Language (SQL) commands to access
the data. For information about using the CCI Connector for CICS TS, see
[Chapter 23, “The CCI Connector for CICS TS,” on page 307

Where a suitable driver is available, use Java Data Base Connectivity
(JDBC) or Structured Query Language for Java (SQLJ) calls to access the
data directly. Suitable JDBC drivers are available for DB2.
tells you how to use the JDBC and SQLJ application programming
interfaces and the DB2-supplied JDBC drivers to access data held in a DB2
database.

Note: To use JDBC or SQLJ from a Java program or enterprise bean with a
Java 2 security policy mechanism active, you must use the JDBC 2.0
driver provided by DB2 Version 7. The JDBC 1.2 driver provided by
DB2 does not support Java 2 security, and will fail with a security
exception. [CICS DB2 Guidetells you how to grant permissions to the
JDBC driver in your Java 2 security policy.

Data Access beans developed using Visual Age for Java. Data Access
beans give you a fast, easy, non-programming way of building SQL queries.
They might have a higher overhead than plain JDBC or SQLJ calls, as you
cannot tailor them so precisely for your application. However, if you are not
experienced in JDBC or SQLJ programming, Data Access beans reduce
application development time and are more convenient to use. Data Access
beans are described in [‘Using Data Access beans” on page 42|

JavaBeans that use JDBC or SQLJ as the underlying access mechanism.
You can use any suitable Java integrated development environment (IDE) to
develop such JavaBeans.

Entity beans. CICS does not support entity beans running under CICS but
does support access to entity beans running on other EJB servers. A CICS
enterprise bean could, for example, use an entity bean running on
WebSphere Application Server to access DB2 on z/OS.

Accessing DL/l data

To access DLI data, a CICS application written in Java can use a JCICS LINK
command, or the CCI Connector for CICS TS, to link to a program that issues
EXEC DLI commands to access the data. For information about using the CCI
Connector for CICS TS, see [Chapter 23, “The CCI Connector for CICS TS,” on|

Accessing VSAM data

To access VSAM data, a CICS application written in Java can use either of the
following methods:

© Copyright IBM Corp. 1999, 2006

Use a JCICS LINK command, or the CCI Connector for CICS TS, to link to a
program that issues CICS File Control commands to access the data. For

41

information about using the CCI Connector for CICS TS, see [Chapter 23,
[The CCI Connector for CICS TS,” on page 307

* Use the JCICS File Control classes to access VSAM directly.

Note:

1. All the above techniques can be used by both CICS enterprise beans
and CICS Java programs.

2. The same data can be accessed by CICS enterprise beans, CICS Java
programs, and (excluding CICS VSAM data) by non-CICS entity beans.

3. For all the above techniques except the use of entity beans, data
integrity is maintained by the CICS recovery manager. When entity beans
are used, you can use CICS and, for example, WebSphere Application
Server’s global transactional support, to maintain data integrity.

4. You can encapsulate JCICS commands in a JavaBean. This makes it
easier to program the enterprise beans that use JCICS to access data.

Using Data Access beans

42

To access relational databases, CICS applications written in Java can use JDBC or
SQLJ calls together with a suitable JDBC driver. However, if you are not
experienced in JDBC or SQLJ programming, you might find it more convenient to
use Data Access beans, which package the native JDBC calls with extra function.
Data Access beans are JavaBeans, not enterprise beans. They are a feature of
VisualAge for Java.

Three Data Access beans provide core function for accessing databases:
» Select bean

* Modify bean

* ProcedureCall bean

Additional beans provide user interfaces to invoke methods on the core beans and
to help display output from the database:

* CellSellector bean

* RowSelector bean

* ColumnSelector bean

» CellRangeSellector bean

All the beans mentioned are non-visual.

The Select, Modify, and ProcedureCall beans have properties that contain
connection aliases and SQL specifications. These properties allow you to connect to
relational databases and access data. You can also use parameterized SQL
statements with the Select, Modify, and ProcedureCall beans.

For detailed programming information about Data Access beans, see the softcopy
document Data Access, supplied with VisualAge for Java Enterprise Edition, Version
4.

Java Applications in CICS

Chapter 8. Using the JCICS sample programs

CICS provides sample programs that demonstrate:
* How to use the JCICS classes
* How to combine Java programs with CICS programs written in other languages

The Java source files, together with makefiles to build the sample programs, are
installed in z/OS UNIX System Services HFS.

The web sample is run using a web browser. The other sample programs are run
by entering a transaction name at a 3270 CICS screen. The following samples are
provided:

“Hello World” samples
Two simple “Hello World” programs are supplied:

* The JHE1 transaction runs a sample that uses only Java services

* The JHE2 transaction runs a sample that uses JCICS. The JCICS sample
demonstrates the use of the JCICS TerminalPrincipalFacility class.

Program Control samples
There are two Program Control samples: the first demonstrates how to use a
COMMAREA and the second how to use a channel.

COMMAREA sample
This sample demonstrates the use of the JCICS Program class to pass a
communications area (COMMAREA) to another program:

1. A transaction, JPC1, invokes a Java class that constructs a
COMMAREA and links to a C program (DFHSLCCA).

2. DFHS$LCCA processes the COMMAREA, updates it, and returns.

3. The Java program checks the data in the COMMAREA and schedules a
pseudoconversational transaction to be started, passing the started
transaction the changed data in its COMMAREA.

4. The started transaction executes another Java class that reads the
COMMAREA and validates it again.

This sample also shows you how to convert ASCII characters in the Java
code to and from the equivalent EBCDIC used by the native CICS program.

Channel sample
This sample demonstrates the use of the JCICS Program class to pass a
channel to another program:

1. A transaction, JPCS3, invokes a Java class that constructs a Channel
object with two Containers, and links to a C program (DFH$LCCC).

2. DFHS$LCCC processes the containers, creates a new response
container, and returns.

3. The Java program checks the data in the response container and
schedules a pseudoconversational transaction to be started, passing the
Channel object to the started transaction.

4. The started transaction executes another Java class that browses the
Channel using a ContainerIterator object, and displays the name of
each container it finds.

TDQ transient data sample
This sample shows you how to use the JCICS TDQ class. It consists of a single

© Copyright IBM Corp. 1999, 2006 43

transaction, JTD1, that invokes a single Java class, TDQ.ClassOne. TDQ.CTassOne
writes some data to a transient data queue, reads it, and then deletes the
queue.

TSQ temporary storage sample

This sample shows you how to use the JCICS TSQ class. It consists of a single
transaction, JTS1, that invokes a single Java class, TSQ.ClassOne, and uses an
auxiliary temporary storage queue.

This sample also shows you how to build a class as a dynamic link library
(DLL) which can be shared with other Java programs.

Web sample

This sample shows you how to use the JCICS Web and Document classes. You
invoke this sample application from a suitable web browser. It obtains
information about the inbound client request, the HTTP headers and the Tcpip
charactistics of the transaction. This information is written to the standard output
stream System.out and inserted into a response document. Information about
the document is also obtained and written to System.out and inserted into the
response document. The response document is then sent to the client.

Building the JCICS sample programs

The Java source and makefiles are stored in the z/OS UNIX System Services HFS
during CICS installation. To build the samples in the z/OS UNIX System Services
environment, you must define three environment variables and install a group. You
can define the environment variables in the profile for zZOS UNIX System Services,
using the export command, or you can enter the export command manually when
z/OS UNIX System Services is running.

44

1.

Java Applications in CICS

PATH is the zZ/OS UNIX System Services search path. Define the PATH
environment variable by adding:

Jusr/1pp/javal42/J1.4/bin

where java142/J1.4 is the install location that was set up when you installed the
IBM Software Developer Kit for z/OS, Java 2 Technology Edition, Version 1.4.2.
This is the path for the Java executables. You can use the export command to
add the path as follows:

export /usr/1pp/javal4d2/Jd1.4/bin:$PATH

CICS_HOME is the installation directory prefix of CICS Transaction Server for
z/OS. Define the CICS_HOME environment variable as follows:

Jusr/1pp/cicsts/cicsts3l

where cicsts31 is defined by the USSDIR installation parameter when you
installed CICS TS (cicsts31 is the default). You can use the export command to
set the directory prefix as follows:

export CICS_HOME=/usr/lpp/cicsts/cicsts3l
The $CICS_HOME/samples/dfjcics directory contains the makefiles.
The $CICS_HOME/samples/dfjcics/examples directory contains the Java source.

JAVA_HOME specifies the path to the IBM Software Developer Kit for z/OS,
Java 2 Technology Edition, Version 1.4.2 subdirectories. Define the
JAVA_HOME environment variable as follows:

Jusr/1pp/javal42/Jdl.4/

where java142/J1.4/ is the install location that was set up when you installed the
IBM Software Developer Kit for z/OS, Java 2 Technology Edition, Version 1.4.2

4. Install the group DFH$JVM in order to run the samples. CICS resource
definitions for all the sample programs and transactions are supplied in this
group.

5. If you want to run the Web sample program, which is invoked via a browser,
you need to follow the instructions in fthe CICS Internet Guidd, Use the web
sample application DFH$WB1A to confirm that CICS web support is configured
correctly.

6. Follow the instructions in [‘Building the Java samples.”|
Related concepts
[Chapter 6, “Java programming using JCICS,” on page 17
[The JCICS class library” on page 17|
Related tasks
[Chapter 8, “Using the JCICS sample programs,” on page 43
[‘Building the Java samples’|
[‘Running the JCICS samples” on page 46|
Related reference
['JCICS command reference” on page 21|

Building the Java samples

To build the Java samples, you need write permission for the HFS directory in
which the samples are stored and for its subdirectories. These directories are part
of the directory structure that includes the other CICS files which have been
installed on HFS. If you do not want users to have write permission for these
directories, you should copy the samples directory and its subdirectories to another
location on HFS before building the samples.

If you use OMVS to perform this task, note that you might need to increase the size
of your TSO region when you are using the IBM Software Developer Kit for z/OS,
Java 2 Technology Edition, Version 1.4.2.

Build the samples as follows:

1. Change directory to samples/dfjcics.

2. Type make jvm to build all the samples, or alternatively:
make -f <sample_name>.mak jvm
where sample_name is the name of the specific sample you want to build.
The makefiles invoke javac and store the output files in the

$CICS_HOME/samples/dfjcics/examples/sample_name HFS directory, where
sample_name is the name of the sample program.

The following CICS C language programs are stored in SDFHSAMP during CICS
installation. They are linked by the Program Control and one of the “Hello World”
Java sample programs. You need to compile and translate these supplied C
programs, link them into a load library in the CICS DFHRPL concatenation, and
define them to CICS as described in [‘Defining CICS resources” on page 46 |

+ DFHS$LCCA

* DFH$JSAM

+ DFH$LCCC

Note:

Chapter 8. Using the JCICS sample programs 45

1. In the names of sample programs and files described in this book, the
dollar symbol ($) is used as a national currency symbol and is assumed
to be assigned the EBCDIC code point X’5B’. In some countries a
different currency symbol, for example the pound symbol (£), or the yen
symbol (¥), is assigned the same EBCDIC code point. In these countries,
the appropriate currency symbol should be used instead of the dollar
symbol.

2. DFH$LCCA and DFH$JSAM are standard CICS programs that could be
written in any of the CICS-supported languages. If, for example, you do
not have a C compiler, you could write COBOL versions of the supplied
programs and use them in place of the supplied C versions.

Defining CICS resources
Install the group DFH$JVM in order to run the samples. CICS resource definitions
for all the sample programs and transactions are supplied in this group.

Running the JCICS samples
You must build the JCICS samples before trying to run them. See [‘Building the

CICS sample programs” on page 44

1.

Add $CICS_HOME/samples/dfjcics to the end of the Java classpath,
ibm.jvm.shareable.application.class.path, in the default JVM properties file,
dfjjvmpr.file.

Follow the appropriate procedure to run each sample:

+ [‘Running the Hello World samples’|

+ [‘Running the Program Control samples” on page 47|

* ['Running the TDQ sample” on page 48
* [‘Running the TSQ sample” on page 48
+ [Running the web sample” on page 48|

Running the Hello World samples
There are two “Hello World” samples:

HelloWorld

46 Java Applications in CICS

This is the standard Java application that uses only Java services. It uses the
following Java class:

* HelloWorld (PROGRAM name DFJ$JHE1)

and the following C language CICS program:
+ DFH$JSAM

Note: DFH$JSAM is a standard CICS program that could be written in any of
the CICS-supported languages. If, for example, you do not have a C
compiler, you could write a COBOL version of DFH$JSAM and use it in
place of the supplied C version. Alternatively, you could bypass
DFH$JSAM altogether by changing the JHE1 TRANSACTION definition
to run program DFJ$JHE1. However, if you do this bear in mind that the
Java program does not write anything to the terminal; so your only
indication that the application has run successfully is the message in the
stdout file.

Run the JHE1 CICS transaction to execute the Java standard application. You
should receive the following message from JHE1 on System.out:

Hello from a regular Java application

HelloCICSWorld
This is the JCICS application. It uses the following Java class:

* HelloCICSWorld (PROGRAM name DFJ$JHE?2)

Run the JHE2 transaction to execute the JCICS application. You should receive
the following message from JHE2 on Task.out:

Hello from a Java CICS application

Running the Program Control samples
The COMMAREA sample

This sample uses the following Java classes:
* ProgramControl.ClassOne (PROGRAM name DFJ$JPC1)
e ProgramControl.ClassTwo (PROGRAM name DFJ$JPC2)

and the following C language program:
+ DFH$LCCA

Run the JPC1 CICS transaction to execute the sample. You should receive the
following messages on Task.out:

Entering ProgramControlClassOne.main()
About to link to C program
Leaving ProgramControlClassOne.main()

If you now clear the screen, you should see:

Entering ProgramControlClassTwo.main()
data received correctly
Leaving ProgramControlClassTwo.main()

The channel sample
This sample uses the following Java classes:

* ProgramControl.ClassThree (PROGRAM name DFJ$JPC3)
* ProgramControl.ClassFour (PROGRAM name DFJ$JPC4)

and the following C language program:
+ DFHS$LCCC

Run the JPC3 CICS transaction to execute the sample. You should receive the
following messages on Task.out:
Entering ProgramControlClassThree.main()

About to link to C program
Leaving ProgramControlClassThree.main()

If you now clear the screen, you should see:

Entering ProgramControlClassFour.main()
ProgramControlClassFour invoked with Container "IntData "
ProgramControlClassFour invoked with Container "StringData "
ProgramControlClassFour invoked with Container "Response "
Leaving ProgramControlClassFour.main()

Note that the messages that list the containers may appear in a different order
from that shown above.

Note: DFH$LCCA and DFH$LCCC are standard CICS programs that could be
written in any of the CICS-supported languages. If, for example, you do not
have a C compiler, you could write COBOL versions of DFH$LCCA and
DFH$LCCC and use them in place of the supplied C versions.

Chapter 8. Using the JCICS sample programs 47

Running the TDQ sample

This sample uses the following Java class:
* TDQ.ClassOne (PROGRAM name DFJ$JTD1)

Run the JTD1 CICS transaction to execute the sample. You should receive the
following messages on Task.out:

Entering examples.TDQ.ClassOne.main()
Entering writeFixedData()

Leaving writeFixedData()

Entering writeFixedData()

Leaving writeFixedData()

Entering readFixedData()

Leaving readFixedData()

Entering readFixedDataConditional()
Leaving readFixedDataConditional()
Leaving examples.TDQ.ClassOne.main()

Running the TSQ sample

This sample uses the following Java classes:
e TSQ.ClassOne (PROGRAM name DFJ$JTS1)
* TSQ.Common (PROGRAM name DFJ$JTSC)

Run the JTS1 CICS transaction to execute the sample. You should receive the
following messages on Task.out:

Entering TSQ.ClassOne.main()

Entering TSQ_Common.writeFixedData()

Leaving TSQ_Common.writeFixedData()

Entering TSQ_Common.serializeObject()

Leaving TSQ_Common.serializeObject()

Entering TSQ_Common.updateFixedData()

Leaving TSQ_Common.updateFixedData()

Entering TSQ_Common.writeConditionalFixedData()
Leaving TSQ_Common.writeConditionalFixedData()
Entering TSQ_Common.updateConditionalFixedData()
Leaving TSQ_Common.updateConditionalFixedData()
Entering TSQ_Common.readFixedData()

Leaving TSQ_Common.readFixedData()

Entering TSQ_Common.deserializeObject()

Leaving TSQ_Common.deserializeObject()

Entering TSQ_Common.readFixedConditionalData()
Number of items returned is 3

Leaving TSQ_Common.readFixedConditionalData()
Entering TSQ_Common.deleteQueue()

Leaving TSQ_Common.deleteQueue()

Leaving TSQ.ClassOne.main()

Running the web sample
This sample uses the Java class: Web.Samplel (PROGRAM name DFJ$JWB1)

To invoke this sample, start your web browser and enter a URL that connects to
CICS Web support with the absolute path /CICS/CWBA/DFJ$JWB1

The browser should display the following response document::
Web Samplel

Inbound Client Request Information:

48 Java Applications in CICS

Method: GET

Version: HTTP/1.1

Path: /cics/cwba/jcicxsal

Request Type: HTTPYES

Query String: null

HTTP headers:

Value for HTTP header User-Agent is 'Mozilla/4.75 €en€ (WinNT; U)'
Browse of HTTP Headers started

Name: Host Value: winmvs2d.hursley.ibm.com:27361

Name: Connection Value: Keep-Alive, TE

Name: Accept Value: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, image/png,

[
Name: Accept-Encoding Value: gzip
Name: Accept-Language Value: en
Name: Accept-Charset Value: is0-8859-1,*,utf-8
Name: Cookie Value: PBC NLSP=en_US
Name: TE Value: chunked
Name: Via Value: HTTP/1.0 spl5cel8.hursley.ibm.com (IBM-PROXY-WTE-US)
Name: User-Agent Value: Mozilla/4.75 €en€ (WinNT; U)
Browse of HTTP Headers completed
TCPIP Information:
Client Name: spl5cel8.hursley.ibm.com
Server Name: winmvs2d.hursley.ibm.com
Client Address: 9.20.136.28
ClientAddrNu: 9.20.136.28
Server Address: 9.20.101.8
ServerAddrNu: 9.20.101.8
Clientauth: NO
SSL: NO
TcpipService: HTTPNSSL
PortNumber: 27361
Document Information:
Doctoken: 33 92 112 0 0 0 0 1 64 64 64 64 64 64 64 64

Docsize: 2762

Chapter 8. Using the JCICS sample programs 49

The sample also writes information messages to standard output stream System.out
and error messages to the standard output stream System.err.

Here is an example of the output written to the System.out output stream:

Samplel started

Method: GET (3)

Version: HTTP/1.1 (8)

Path: /cics/cwba/jcicxsal (19)

Request Type: HTTPYES

Value for HTTP header User-Agent is 'Mozilla/4.75 en (WinNT; U)'
HTTP headers:

Name: Host (4)

Value: winmvs2d.hursley.ibm.com:27361 (30)

Name: Connection (10)

Value: Keep-Alive, TE (14)

Name: Accept (6)

Value: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, image/png, */* (67)
Name: Accept-Encoding (15)

Value: gzip (4)

Name: Accept-Language (15)

Value: en (2)

Name: Accept-Charset (14)

Value: is0-8859-1,%,utf-8 (18)

Name: Cookie (6)

Value: PBC_NLSP=en_US (14)

Name: TE (2)

Value: chunked (7)

Name: Via (3)

Value: HTTP/1.0 spl5cel8.hursley.ibm.com (IBM-PROXY-WTE-US) (52)
Name: User-Agent (10)

Value: Mozilla/4.75 en (WinNT; U) (28)

Client Name: spl5cel8.hursley.ibm.com (24)

Server Name: winmvs2d.hursley.ibm.com (24)

Client Address: 9.20.136.28 (11)

ClientAddrNu: 9.20.136.28

Server Address: 9.20.101.8 (10)

ServerAddrNu: 9.20.101.8

Clientauth: NO

SSL: NO

TcpipService: HTTPNSSL

PortNumber: 27361

Doctoken: Doctoken: 33 92 112 0 0 0 0 1 64 64 64 64 64 64 64 64
Docsize: 2762

Samplel complete

50 Java Applications in CICS

Part 3. Setting up Java support and JVMs

This Part tells you what you need to know to set up Java support and Java Virtual
Machines (JVMs) in CICS.

© Copyright IBM Corp. 1999, 2006 51

52 Java Applications in CICS

Chapter 9. Setting up Java support

The following steps tell you how to verify your Java installation and set up JVMs in
your CICS system using the supplied Java sample programs.

1. Verify that your Java components are installed correctly using the supplied
checklist in[The CICS Transaction Server for z/OS Installation Guide

2. Give your CICS region permission to access the resources held in the
hierarchical file store (HFS).

In order to create JVMs, CICS requires access to directories and files that z/OS
UNIX System Services holds in HFS. [‘Giving CICS regions access to z/0OS|
[UNIX System Services and HFS directories and files”| tells you how to do this.

3. Run the Java sample programs to verify that Java works in your region.
[Verifying the Java installation using sample programs” on page 60| contains a
task list that describes how to set up and run the supplied sample programs.

When you have run the supplied Java sample programs, read through the
[Chapter 10, “Understanding JVMs,” on page 63| section for conceptual information
on how to use JVMs in CICS. Then read the section [Chapter 11, “Using JVMs,” on|
to find out how to create and customize your JVM profiles and properties
files, manage the shared class cache and perform tasks such as monitoring and
debugging your Java applications.

Giving CICS regions access to z/0S UNIX System Services and HFS
directories and files

CICS requires access to z/0OS UNIX System Services, and to directories and files in
the hierarchical file store (HFS), for the purposes of:

* Creating JVMs.
» Using HFS files in connection with CICS Web support.

One possible method to achieve this is as follows:

1. Choose a RACF® group that all your CICS regions can use to access z/OS
UNIX, and give a z/OS UNIX group identifier (GID) to this RACF group. Give a
z/OS UNIX user identifier (UID) to each CICS region user ID, and make sure
that each CICS region user ID connects to the RACF group that you chose.
During this process, set up a home directory on HFS for each of your CICS
regions. [‘Giving CICS regions a z/OS UNIX user identifier (UID) and group|
identifier (GID) and setting up a home directory” on page 54| tells you how to do
all this.

2. ldentify the files that each CICS region needs, and the HFS directories that
contain the files. For each directory and file, specify the group for the directory
and file as the RACF group that the CICS regions use, and give the group the
appropriate permissions. [‘Giving CICS regions permission to access HFS
[directories and files” on page 56|tells you how to do this. You will need to repeat
this task when you tell a CICS region to use any other files or HFS directories.

If you need more general information about RACF facilities for controlling access to
z/OS UNIX System Services, see the z/OS Security Server RACF Security
Administrator’s Guide, SA22-7683. If you need more general information about the
UNIX facilities that you can use to control access to HFS files and directories, see
z/OS UNIX System Services Planning, GA22-7800.

© Copyright IBM Corp. 1999, 2006 53

| Giving CICS regions a z/0S UNIX user identifier (UID) and group
| identifier (GID) and setting up a home directory

54

When a CICS region requests a z/OS UNIX function for the first time, RACF:

» Verifies that the user (the CICS region user ID) is defined as a z/OS UNIX user.
» Verifies that the user’s current connect group is defined as a z/ZOS UNIX group.
* Initializes the control blocks needed for subsequent security checks.

You need to ensure that each CICS region meets these security requirements, by
assigning a z/OS UNIX user identifier (UID) to the CICS region user ID, and
assigning a z/OS UNIX group identifier (GID) to a RACF group to which the CICS
region user ID connects. The identifiers will also be needed to give each CICS
region permission to access the HFS directories and files that it needs. During this
process, you also need to set up a home directory for each CICS region. This home
directory can then be used, if you wish, as the work directory for Java-related
activities and for output from JVMs, or as the location for HFS files used by CICS
Web support.

The UID and GID are numbers that can be in the range 0 to 16 777 216. (0 is a
superuser ID.) Give some thought to naming conventions, and to any existing UIDs
and GIDs in your z/OS UNIX system. z/OS UNIX System Services Planning,
GA22-7800, explains how to manage the UIDs and GIDs for your z/OS UNIX
system.

To assign a z/OS UNIX UID and GID for your CICS regions and set up a home
directory:

1. Choose a RACF group that can be used by all your CICS regions. For example,
you could use a RACF group that is defined as the default group of your CICS
region user IDs, or you could set up a RACF group to be used only for access
to JVM-related directories and files or CICS Web support directories and files. If
you use this RACF group for giving file access permissions, following the
procedure described in [‘Giving CICS regions permission to access HFS|
[directories and files” on page 56,[the RACF group’s z/OS UNIX group identifier
(GID) will be associated with the HFS directories and files. This means that the
owner of these directories and files, and anyone who is not the owner but needs
to carry out operations with these files, will need to have this group as his or her
group or one of their supplementary groups. ['‘RACF group profiles” in the CICS
[RACF Security Guidd explains how RACF groups work.

2. Choose a suitable z/OS UNIX group identifier (GID) for the RACF group, and
assign the GID to the RACF group. To assign a GID, specify the GID value in
the OMVS segment of the RACF group profile. For example, if the RACF group
is CICSTSAB, and the GID you want to assign is 9, use the command:

ALTGROUP CICSTSAB OMVS(GID(9))

3. Choose a suitable z/OS UNIX user identifier (UID) for each CICS region. Assign
the UID to each of your CICS region user IDs. (‘Specifying the CICS region|
[userid” in the CICS RACF Security Guidd explains how the region user ID under
which CICS executes is specified when CICS is run as a started task, as a
started job, or as a job.) To assign UIDs, specify the UID value in the OMVS
segment of the RACF user profile for each CICS region user ID. Also specify
the name of a home directory for each CICS region using the HOME option.
The directory name should be in the format /u/CICS region userid.
[user profiles” in the CICS RACF Security Guidd tells you how to update a RACF

Java Applications in CICS

user profile using the ALTUSER command. For example, if the CICS region
user ID is CICSHT##, and the UID you want to assign is 2001, use the
command:

ALTUSER CICSHT## OMVS(UID(2001) HOME('/u/cicsht##'))

If you want to know about the other information that can be specified in an
OMVS segment parameter in a user profile besides the UID and home directory,
see the z/OS Security Server RACF Command Language Reference,
SA22-7687.

Note: It is possible to assign the same UID to more than one CICS region user
ID. If all your CICS regions need to use the same HFS files (for example,
the supplied sample files for JVMs), you could give all the CICS regions
the same UID, and then you could assign permissions to that UID, rather
than to the GID. However, bear in mind that:

a. The sharing of UIDs allows each CICS region to access all of the
z/OS UNIX resources that the other CICS regions with that shared
user ID can access, and this might not be appropriate in your system.

b. The sharing of UIDs is not normally recommended in a z/OS UNIX
system.

c. If you do choose to share UIDs, note that the z/OS UNIX System
Services parameter MAXPROCUSER limits the maximum number of
processes that a single user (that is, with the same UID) can have
concurrently active. zZ0S UNIX System Services Planning,
GA22-7800, has more information about this parameter.

Set up each of the directories that you have specified as a home directory for
one of your CICS regions. To do this:

a. If you are not using an automount facility, use the mkdir command to create
the HFS directories. For example, issuing the UNIX command

mkdir /u/cicsht##

creates the HFS directory /u/cicsht##. (If you are using the TSO command,
the directory name must be enclosed in single quotes.)

b. Whether or not you are using an automount facility, allocate an HFS data
set for each directory. z/0S UNIX System Services Planning, GA22-7800,
tells you how to do this.

c. If you are not using an automount facility, mount the data set that you have
allocated. Again, z/OS UNIX System Services Planning, GA22-7800, tells
you how to do this.

Note that the HFS data set that you allocate for a CICS region’s home directory
has a finite size, and if a particular CICS region is using the home directory
extensively, you might need to increase the amount of space that the region has
available.

Make sure that each of your CICS region user IDs connects to the RACF group
to which you assigned a z/OS UNIX group identifier (GID). If your CICS region
user IDs need to connect to more than one RACF group, RACF list of groups
must be active in your system.

To check the UID and GID details for a user, use the id command in the UNIX
environment. For example, issuing the id command for our example CICS region
user ID CICSHT## would give the following result:

uid=2001(CICSHT##) gid=9(CICSTSAB)

Chapter 9. Setting up Java support 55

Now that each CICS region user ID has a UID and is connected to a group with a
GID, it can use z/OS UNIX functions and access z/OS UNIX files. Next, identify the
files that each CICS region needs, and the HFS directories that contain the files,
and use the group name or GID to give the CICS region permission to access
these directories and files. [‘Giving CICS regions permission to access HFS|
[directories and files] tells you how to do this.

Giving CICS regions permission to access HFS directories and files

56

Because your CICS regions have a z/OS UNIX user identifier (UID), and their
connect group (the RACF group) has a z/OS UNIX group identifier (GID), z/OS
UNIX System Services treats each CICS region as a UNIX user. There are four
ways to grant a user permissions to access HFS directories and files:

» Set the “other” permissions for the directory or file so that every user has access.
This would give access to all the CICS regions, but it would also give access to
every other HFS user, so this option might not be suitable for use in your
production environment.

* Make the user the owner of the directory or file, with the appropriate owner
permissions. This option can only be used for one user (so one CICS region) at
a time. This is a good solution to use for the home directory for each CICS
region, but it is not such a good solution to use for directories and files that are
needed by more than one CICS region (for JVMs, this would include the
CICS-supplied JAR files and the IBM persistent reusable JVM code). As
mentioned in [‘Giving CICS regions a z/0S UNIX user identifier (UID) and group|
lidentifier (GID) and setting up a home directory” on page 54 it is possible to
assign the same UID to all your CICS regions, and then you can make that UID
the owner of the directories and files. However, bear in mind the points noted in
that section about the disadvantages associated with the sharing of UIDs.

» Associate the directory or file with a RACF group that has been assigned a z/OS
UNIX group identifier (GID), give the RACF group the appropriate group
permissions, and connect the users (the CICS regions) to this RACF group. This
might often be the safest option for a production environment, so this topic
explains how to do it. If this method is not the most suitable for your
environment, then you might prefer to give CICS access to the files using owner
permissions or “other” permissions, or perhaps a combination of the three types
of permission, depending on the level of security that you require for each type of
directory or file.

» With z/OS Version 1 Release 3 or later, you can use access control lists (ACLS)

to control access to files and directories by individual UIDs and GIDs. With ACLs,
you can give more than one group permissions for directories or files on HFS, so
you do not need to ensure that all your CICS regions connect to the same RACF
group. ACLs are created and checked by RACF, so if you are using a different

security product, check its documentation to see if ACLs are supported. For more

information about using ACLs, see z/0OS UNIX System Services Planning,
GA22-7800.

To check the permissions for files and directories in a path, go to the directory
where you want to start, and issue the following UNIX command:

1s -la

For example, if this command is issued in the z/OS UNIX System Services shell
environment when the current directory is the home directory of CICSHT##, a list
such as the following is displayed:

Java Applications in CICS

/u/cicsht##:>1s -la

total 256

drwxr-xr-x 2 CICSHT## CICSTS31 8192 Mar 15 2004 .

drwx------ 4 CICSHT## CICSTS31 8192 Jul 4 16:14 ..
“PW--mmm - 1 CICSHT## CICSTS31 2976 Dec 5 2004 Snap000l.trc
-rW-r--r-- 1 CICSHT## CICSTS31 1626 Jul 16 11:15 dfhjvmerr
-rW-r--r-- 1 CICSHT## CICSTS31 0 Mar 15 2004 dfhjvmin
-rw-r--r-- 1 CICSHT## CICSTS31 458 Oct 9 14:28 dfhjvmout
-rw-r--r-- 1 CICSHT## CICSTS31 64175 May 11 18:00 event.log

Ju/cicsht##:>

Permissions are indicated, in three sets, by the letters r, w, x and -. These
represent READ, WRITE, EXECUTE, and NONE respectively, and are shown in the
left-hand column of the display, starting with the second character. The first set are
the owner permissions, the second the group permissions, and the third “other”
permissions. In all these examples, the owner has read and write permissions, but
the group and all others have only read.

Note: The name of the file owner (CICSHT## in the example) is displayed in the
list, but owner permissions are actually associated with the UID. If other
CICS region user IDs have been assigned the same UID, they have the
same permissions as CICSHT##. Remember that this practice is not
normally recommended in a z/OS UNIX system.

You need to give each CICS region permission to access the HFS directories and
files that it uses. To give your CICS regions permissions, you must be either a
superuser on z/OS UNIX, or the owner of the directories and files. For directories
and files supplied by CICS or by the IBM JVM, the owner is initially set as the UID
of the system programmer who installs the product. Also, if you are giving CICS
access using group permissions, the owner of the directories and files must be
connected to the RACF group that you chose for all your CICS regions to access
z/OS UNIX. The owner could have that RACF group as their default group
(DLFTGRP) or be connected to it as one of their supplementary groups.

When you need to change the permissions for directories and files, use the UNIX
command chmod. zZOS UNIX System Services Command Reference, SA22-7802,
and z/0OS UNIX System Services User’s Guide, SA22-7801, has information about
using this command. The following examples should help:
chmod -R g=rwx directory

sets the group permissions for the named directory and its

subdirectories and files to read, write and execute

(-R applies permissions Recursively to all

subdirectories and files)
chmod g+rx filename

sets the group permissions for the named file to read and execute
chmod g-w filename filename

sets the group write permission off for the two named files

u is for user (owner) permissions, g is for group permissions,
o is for other permissions

HFS permissions for CICS Web support
When you use HFS files to provide static responses to requests from Web clients, a
CICS region which receives those requests and provides the responses needs read

access to the HFS files and to the directories containing them.

If you have stored all the files relevant to each CICS region in a directory structure
below the home directory for the CICS region, you can make the CICS region the

Chapter 9. Setting up Java support 57

H o o H H H H H

58

owner of each directory and file (with the appropriate owner permissions). If some
HFS files are used by more than one CICS region, you will need to use one of the
other solutions described in this topic, such as group permissions or access control
lists (ACLs). In the procedure described below for Java support, the first step gives
examples of how to set up group permissions for HFS directories and files used by
multiple CICS regions. The use of “other” permissions, which would give access to
every HFS user, is not recommended for CICS Web support in a production
environment.

HFS permissions for Java support

When you are setting up Java support in a CICS region, the required directories
and files fall into three categories:

1. The directories and files that every CICS region needs to create JVMs.

2. The working directory that you have specified for input, output and messages
from the JVMs in each individual CICS region. (This might be the home
directory for the CICS region.)

3. Any other directories and files that you have told a CICS region to use in the
process of creating JVMs, or in support of CORBA applications and enterprise
beans. This includes any directories and files that you have changed from their
original locations, for example, JVM profiles that you have moved to a different
directory. It also includes any directories and files that you have added to be
used with JVMs or for CORBA applications and enterprise beans, for example,
your own application classes, or classes that you have added to the trusted
middleware class path.

If you want to give CICS access to the files required for Java support using group
permissions, you can use the following procedure to grant the appropriate
permissions. If you want to give CICS access using another type of permission, or a
combination of the different permissions depending on the level of security that you
require for each type of directory or file, then you can use the following procedure,
but substitute an alternative type of permission (“other” or owner) as appropriate for
the different types of directory or file.

1. The directories and files that every CICS region needs to create JVMs are
set up when you install CICS, and when you install the IBM Software Developer
Kit for z/OS, Java 2 Technology Edition, Version 1.4.2. These directories and
files are:

* Most of the files in the /usr/1pp/cicsts/cicsts31 directory and its
subdirectories. The cicsts31 directory name is a user-defined value that you
chose for the CICS_DIRECTORY variable used by the DFHIJVMJ job during
CICS installation; cicsts31 is the default. The files in this directory and its
subdirectories include the supplied sample JVM profiles and JVM properties
files, the CICS-supplied JAR files such as dfjcics.jar and dfjcsi.jar, and
some of the files that CICS includes on the trusted middleware class path.

* Some of the files in the /usr/1pp/javald2/J1.4/bin and
/usr/1pp/javald2/J1.4/bin/classic directories that contain the IBM
persistent reusable JVM code. The java142/J1.4 directory names are the
default values when you install the IBM Software Developer Kit for z/OS,
Java 2 Technology Edition, Version 1.4.2.

Each CICS region requires read and execute access to these directories and
files. To grant this access:

a. Display the directories and files as described earlier in this topic, and check
that the group permissions for the directories and files give the correct

Java Applications in CICS

access to the group (the second set of permissions). If you need to change
the permissions, use the UNIX command chmod, as described earlier in this
topic.

b. Assign to the RACF group that all your CICS regions can use, the group
permissions for the /usr/1pp/cicsts/cicsts31 directory and its
subdirectories, and for the files in them. To do this, issue the UNIX
command

chgrp -R GID /usr/l1pp/cicsts/cicsts31

where GID is the numeric z/OS UNIX group identifier (GID) which you
assigned to the RACF group that all your CICS regions can use. The -R in
the command means that the group is changed for not only the cicsts31
directory, but also all the subdirectories, and all the files in the directory and
subdirectories. Because your CICS region user IDs are connected to this
group, the CICS regions now have read and execute permission for all
these directories and files.

c. Assign to the same RACF group, the group permissions for the
/usr/1pp/javald2/J1l.4/bin directory and its subdirectories, and the files in
them. To do this, issue the UNIX command
chgrp —R GID /usr/1pp/javald2/J1.4/bin

as you did above for the /usr/1pp/cicsts/cicsts31 directory. Your CICS
regions now have read and execute permission for all these directories and
files.

2. The working directories that you have specified for input, output and

messages from the JVMs in each individual CICS region are specified on
the WORK_DIR option in the JVM profiles used in the CICS region, and also in
any Java class that you have specified on the USEROUTPUTCLASS option to
redirect stdout and stderr output from JVMs. The default working directories are
as follows:

* For the WORK_DIR option, the default working directory as specified in the
supplied sample JVM profiles is the home directory of the CICS region user
ID (that is, the directory /u/CICS region userid), which you should have
created while following the procedure described in[‘Giving CICS regions al
z/0S UNIX user identifier (UID) and group identifier (GID) and setting up al
home directory” on page 54 If the CICS region user ID does not have this
home directory, /tmp is used by default as the working directory.

* For the USEROUTPUTCLASS option, if you are using the CICS-supplied
sample class com.ibm.cics.server.SJMergedStream, the default working
directory is the directory specified on the WORK_DIR option in the JVM
profile. If you are using the alternative CICS-supplied sample class
com.ibm.cics.server.SJTaskStream, the default working directories are
/work_dir/applid/stdout and /work dir/applid/stderr, where work dir is
the directory specified on the WORK_DIR option in the JVM profile, and
applid is the applid of the CICS region. The USEROUTPUTCLASS option is
not active in the supplied sample JVM profiles.

If you have specified a different directory on the WORK_DIR option, or used the
USEROUTPUTCLASS option to specify a Java class, in any of the JVM profiles
in your CICS region, find out the names of the HFS directories that are used by
the WORK_DIR option or the Java class.

Each CICS region requires read, write and execute access to the HFS
directories that you have identified as being used as a working directory or for
output from JVMs in that region. If a directory is unique to a CICS region (for
example, if it is based on a unique home directory that you created for the

Chapter 9. Setting up Java support 59

region, or if it was created using the special symbol &applid; and so includes
the CICS region’s unique applid), then you can make the CICS region’s UID the
owner of the directory and its subdirectories, and use the owner permissions to
give the appropriate permissions to the CICS region. However, if more than one
CICS region uses a particular directory, then you need to use group permissions
so that all the CICS regions have access to the directory. For each directory
that is used by more than one CICS region, follow the same procedure that you
carried out for the directories and files that every CICS region needs to create
JVMs, ensuring that you give the group write access (w) as well as read and
execute access.

Other directories and files that you have told a CICS region to use in the
process of creating JVMs, or in support of CORBA applications and
enterprise beans need the correct permissions applied too. If you are starting
to set up JVMs in a CICS region for the first time, you probably do not have any
other directories and files at this stage. You will have other directories and files
if:

* You add directory paths to the CLASSPATH option in a JVM profile or to the
ibm.jvm.shareable.application.class.path system property in a JVM
properties file, so that the JVM will search those directories for your own
application classes.

* You add directory paths to the TMPREFIX or TMSUFFIX options on a JVM
profile, so that they will be part of the trusted middleware class path.

* You add directory paths to the LIBPATH, which contains the directories that
are searched for native C dynamic link library (DLL) files that are used by the
JVM, including those required to run the JVM and additional native libraries
loaded by trusted code.

* You create your own JVM profiles or JVM properties files, or move the
supplied JVM profiles or JVM properties files to a directory that is not under
the /usr/Tpp/cicsts/cicsts31 directory. (You can use the EXEC CICS
[[NQUIRE JVMPROFILE| command to find the HFS directory that contains a
JVM profile, provided that the JVM profile has been used during the lifetime
of the CICS region. The HFS directory for a JVM properties file is specified
by the JVMPROPS option on the JVM profiles that reference it.)

* You move any of the files that every CICS region needs to create JVMs, that
is, the files in the /usr/1pp/cicsts/cicsts31 directory, or the
/usr/1pp/javald2/J1.4/bin and /usr/1pp/javald2/Jl.4/bin/classic
directories.

* You set up a shelf directory or a deployed JAR file directory (also known as a
pickup directory) to support CORBA applications or enterprise beans.

Each CICS region requires read and execute access to all the HFS directories
and files that you have identified in this category. If you have already set up any
of these items, make sure that you have set the correct permissions for the
directories and files involved, and given your CICS regions permission to access
them. When you set up these items later on, return to this topic and for each
directory or file, follow the same procedure that you carried out for the
directories and files that every CICS region needs to create JVMs.

Java Applications in CICS

Verifying the Java installation using sample programs

This topic describes how to run the "Hello World” and "Hello CICS World” sample
programs to verify that Java has been successfully installed and set up in a CICS
region.

Before you begin to run the Java sample programs, verify that the Java supplied
components are correctly installed in your CICS region. Use the checklist provided
in[The CICS Transaction Server for z/OS Installation Guide,

To verify your Java installation, follow the steps below to set up and run the
supplied sample programs.
1. Build the sample programs using the following steps:

a. Define the environment variables PATH, CICS_HOME and JAVA_HOME.

Instructions on what to define for each variable are described in
fthe JCICS sample programs” on page 44|

b. Install the group DFH$JVM in order to run the samples.
c. Build the Java samples, as described in [‘Building the Java samples” on|
2. Add $CICS_HOME/samples/dfjcics to the end of the Java classpath,

ibm.jvm.shareable.application.class.path, in the default JVM properties file,
dfjjvmpr.file.

3. Run the Hello World samples using the steps outlined in [‘Running the Hello|
[World samples” on page 46|

If you have any problems running the Java sample programs, do the following:

Chapter 9. Setting up Java support 61

62 Java Applications in CICS

Chapter 10. Understanding JVMs

CICS provides the support you need to run a Java program in a z/OS Java Virtual
Machine (JVM) executing under the control of a CICS region. CICS support for
JVMs allows you to run CICS application programs written in the Java language
and compiled to bytecode by any standard Java compiler. You can find information
about Java on the z/OS platform at http://www.ibm.com/servers/eserver/zseries/
software/java/

CICS TS 3.1 supports the JVM provided by the IBM Software Developer Kit for
z/OS, Java 2 Technology Edition, Version 1.4.2 .

Note: There are two versions of the IBM Software Developer Kit for z/OS, Java 2
Technology Edition Version 1.4, a 31-bit and a 64-bit version. CICS TS 3.1
supports only the 31-bit version, which must be at the 1.4.2 level.

This JVM features persistent reusable JVM technology and includes several

optimizations designed for the execution of CICS transactions. These optimizations

are:

» The ability for JVMs to share a cache of commonly-used class files that are
already loaded, enabling faster JVM startup and reducing the cost of class
loading. When a new JVM that shares the class cache is initialized, it can use
these pre-loaded classes instead of reading them from the file system. Also, if
the JVM performs just-in-time (JIT) compilation for any of the classes, it can write
the results back to the shared class cache, and other JVMs can then use the
compiled classes. All the heap data (objects and static variables) are owned by
the individual JVMs; this maintains the isolation between the applications being
processed in the JVMs.

» The serial reuse of a JVM for multiple Java programs, avoiding most of the
initialization costs. Serial reuse might or might not involve resetting the state of
the JVM between uses.

* An optimized garbage-collection scheme, enabled by the clean separation of

short-lived application objects from long-lived classes, objects, and native state
(that is, non-Java or C language state), which are reset.

[The structure of a JVM” on page 64]tells you what you need to know about the
structure of a JVM in order to use JVMs with CICS.

CICS performs the following management tasks relating to JVMs:

+ CICS creates JVMs. This process is described in[‘How CICS creates JVMs” on|
-pae 71.

» CICS manages the pool of JVMs that it has created. This process is described in
[‘How CICS manages JVMs in the JVM pool” on page 75,

» CICS allocates JVMs to applications that need to run a Java program. This
process is described in ['How CICS allocates JVMs to applications” on page 79|

* Most JVMs can be reused once an application has finished using them to run a
Java program. There are three levels of reusability. JVMs might be reset and
reused (resettable JVMs), or they might be reused without being reset
(continuous JVMs), or they might be thrown away after use (single-use JVMs).
[‘How JVMs are reused” on page 85| explains the difference between these types
of JVM.

© Copyright IBM Corp. 1999, 2006 63

» CICS creates a shared class cache so that some of the JVMs in the CICS region
can share commonly-used class files and compiled classes. CICS also provides
an interface so that you can manage the shared class cache. [‘The shared class]
lcache” on page 89| describes this.

[Chapter 9, “Setting up Java support,” on page 53| tells you how to set up and use
JVMs in your CICS system.

Java programs that ran under CICS Transaction Server for z/OS, Version 2 Release
2 or CICS Transaction Server for z/OS, Version 2 Release 3 can also run under
CICS Transaction Server for z/OS, Version 3 Release 1. CICS Transaction Server
for z/OS, Version 2 supported the JVM created by the IBM Developer Kit for
0S/390 Java 2 Technology Edition Version 1.3.1s, which also featured the
persistent reusable JVM technology. However, the older type of JVM that was
introduced in CICS Transaction Server for OS/390, Version 1 Release 3, which was
not reusable, is no longer supported. Any Java programs that ran under CICS
Transaction Server for OS/390, Version 1 Release 3 must be migrated to Java 2 to
run under the JVM provided by the IBM Software Developer Kit for z/OS, Java 2
Technology Edition, Version 1.4.2. [‘/Removal of support for CICS Transaction Server|
ffor 0S/390, Version 1 Release 3 JVMs” on page 92/ has more information about
this.

The structure of a JVM

This topic summarizes what you need to know about the structure of a JVM in order
to use JVMs with CICS. You can find more detailed information about the structure
of a JVM in the document Persistent Reusable Java Virtual Machine User’s Guide,
SC34-6201.

This topic covers:

+ [‘Classes in a JVM|

+ ['Where a JVM is constructed” on page 68

+ [‘Storage heaps in a JVM” on page 69

+ ['JVMs and the z/OS shared library region” on page 68|

Classes in a JVM

64

There are three types of class in a JVM:

1. The z/OS JVM code, which provides the base services in the JVM. These
classes are system classes and standard extension classes, which are known
collectively as primordial classes. They have a special status that allows the
objects created from them to be associated with middleware or the application,
depending on the kind of class that invokes their construction.

2. The middleware, which provides services that access resources. This includes
the JCICS interfaces classes, JDBC, JNDI, and so on. These classes are
known as middleware classes. Middleware is trusted by the JVM to manage its
own state between one use of a JVM and the next, and it can therefore operate
without restrictions, and is trusted to make changes to the JVM environment,
even if the JVM is resettable. This enables optimizations through the caching of
state (classes and native libraries, for example) to be used by multiple
applications. However, middleware is responsible for resetting itself correctly at
the end of a transaction and, if necessary, for reinitializing at the beginning of a
new transaction, in order to isolate different applications from each other.
Persistent Reusable Java Virtual Machine User’s Guide, SC34-6201 explains
how middleware should be written.

Java Applications in CICS

3. The classes for the user application. These classes are known as application
classes.

» Application classes can be shareable, meaning that when they have been
loaded, they are kept across JVM reuses and resets, so that they can be
used by other transactions. If the JVM is reset, they are re-initialized.

» Alternatively, application classes can be nonshareable, if they are placed on
the standard class path. In a resettable JVM, nonshareable application
classes are discarded when the JVM is reset, and must be reloaded each
time they are required. In a continuous JVM, however, they are not
discarded, and are kept intact for subsequent reuses of the JVM.

* When a JVM is defined as resettable, if application classes perform actions
that change the JVM environment, these actions are noted and the JVM is
destroyed after the application has finished using it. In a continuous JVM, this
restriction does not apply, and application classes are permitted to make
changes to the JVM environment. (‘How JVMs are reused” on page 85|
explains more about resettable and continuous JVMs.)

The classes in a JVM, and the objects that they create, are placed in different
storage heaps in the JVM according to their expected lifetime. For example,
nonshareable application classes (on the standard class path) are placed in the
transient heap in a resettable JVM, because this heap is deleted if the JVM is reset
between uses. [‘Storage heaps in a JVM” on page 69 explains how the classes and
objects are arranged in storage heaps.

The JVM can identify the correct type for each class because of the class path on
which the class is included. The class path determines how the class is loaded by
the JVM, where it is stored, and how it is treated. So, for example, any class that is
included on the shareable application class path is loaded by the shareable
application class loader, stored in the application-class system heap, kept across
JVM reuses and resets, and re-initialized if the JVM is reset. Persistent Reusable
Java Virtual Machine User’s Guide, SC34-6201 explains more about the process of
loading classes.

The class paths for a JVM are defined by options in the JVM profile, and in the
JVM properties file that the JVM profile references. (‘How CICS creates JVMs” on|
explains JVM profiles and JVM properties files.) Generally speaking, when
you are preparing Java applications that will run in a JVM, you need to ensure that
all the middleware and application classes required by the application are included
on the class paths defined by the JVM profile and JVM properties file that are
requested by the application. You also need to ensure that any native C dynamic
link library (DLL) files that are required for the application (which have the extension
.s0 in zZ/OS UNIX) are included on the library path in the JVM profile. You do not
need to include the system classes and standard extension classes (the primordial
classes) on a class path, because they are already included on the boot class path
in the JVM.

Note that although for convenience we refer to “including a class on a class path”,
the name of the class itself (including the name of the package, if the program has
been built as a package) is not actually specified in the JVM profile or JVM
properties file. The options in the JVM profile or JVM properties file specify the path
to the class—that is, the full path of the HFS directory in which a class loader will
be able to find the class or the package containing the class. Where classes or
packages have been placed in JAR files (with the extension .jar), the name of the
JAR file is included on the class path as if it were the name of a directory.
[application classes to the class paths for a JVM” on page 128| explains more about
this.

Chapter 10. Understanding JVMs 65

66

Int

he JVM provided by the IBM Software Developer Kit for z/OS, Java 2

Technology Edition, Version 1.4.2, which features the persistent reusable JVM
technology, the four class paths on which classes or native libraries can be included

are
1.

Java Applications in CICS

as follows:

The library path is for native C dynamic link library (DLL) files that are used by
the JVM (which have the extension .so in z/OS UNIX), including those required
to run the JVM and additional native libraries loaded by trusted code. This might
include the DLL files needed to use the DB2 JDBC drivers, or any native code
associated with a class that you are using to redirect JVM output (named on the
USEROUTPUTCLASS option in the JVM profile).

The library path is defined by the LIBPATH option in the JVM profile.
[application classes to the class paths for a JVM” on page 128|tells you how to
include items on the library path. Note that if the JVM is to use the shared class
cache (see [‘The shared class cache” on page 89), you will need to include the
DLL files in the JVM profile for the master JVM that initializes the shared class
cache, rather than in the JVM profile for the JVM where the application will run.
The master and worker JVMs use the same library path to ensure that they are
using the same versions of these files. However, note that the files are not
loaded into the shared class cache. Unless they are shared through another
z/OS facility (such as the shared library region), a copy is loaded into each
worker JVM.

The trusted middleware class path is for middleware classes, that is, classes
that are trusted by the JVM to manage their own state across a JVM-reset.
Trusted middleware classes are permitted to change the JVM environment even
if the JVM is resettable, so for this reason you should not normally place your
own application classes on the trusted middleware class path. However, you
might need to add classes for middleware supplied by IBM or by another
vendor, which are not included in the standard JVM setup for CICS. For
example, to use the DB2-supplied JDBC drivers with Java programs and
enterprise beans, you need to add a DB2-supplied zip file to the trusted
middleware class path.

In CICS, the trusted middleware class path is built automatically from the paths
that you specify using the CICS_DIRECTORY, TMPREFIX, and TMSUFFIX
options in the JVM profile. [‘Options in JVM profiles” in the CICS System
[Definition Guidd has more details about these options. There is a corresponding
system property, ibm.jvm.trusted.middTeware.class.path, in the JVM
properties file, but you cannot use this system property for CICS. |“Adding|
[application classes to the class paths for a JVM” on page 128|tells you how to
include classes on the trusted middleware class path. Note that if the JVM is to
use the shared class cache (see [‘The shared class cache” on page 89), you will
need to include the middleware classes in the JVM profile for the master JVM
that initializes the shared class cache, rather than in the JVM profile for the JVM
where the application will run.

The shareable application class path is for shareable application classes, that
is, application classes that you want to be cached, either in the JVM or in the
shared class cache. Defining the JVM as a resettable JVM subjects these
classes to restrictions which mean that they cannot affect or pass state to
subsequent transactions that use the JVM. When you add a class to this class
path:

+ If the JVM uses the shared class cache (see[The shared class cache” on|
page 89), the classes are obtained from the shared class cache, rather than
being loaded by each individual JVM.

« |f the JVM does not use the shared class cache but is resettable, the classes
are cached in the JVM, and are reinitialized when the JVM is reset.

« If the JVM does not use the shared class cache and is a continuous JVM, the
classes are cached in the JVM, and are kept across reuses, but are not
reinitialized.

Adding application classes to this class path, rather than to the standard class
path, produces the best performance, and it should be your normal choice for
loading application classes in a production environment.

The shareable application class path is defined by a system property,
ibm.jvm.shareable.application.class.path, in the JVM properties fiIe
[application classes to the class paths for a JVM” on page 128|tells you how to
include classes on the shareable application class path. Note that if the JVM is
to use the shared class cache, you will need to include the shareable
application classes in the JVM properties file for the master JVM that initializes
the shared class cache, rather than in the JVM properties file for the JVM where
the application will run.

The standard class path is for nonshareable application classes, that is,
application classes that you do not want to be shared by other JVMs or across
JVM resets. Like shareable application classes, defining the JVM as a
resettable JVM subjects these classes to restrictions which mean that they
cannot affect or pass state to subsequent transactions that use the JVM. When
you add a class to this class path:

+ If the JVM uses the shared class cache (see[The shared class cache” on|
, the standard class path is the only class path that is taken from the
JVM profile for the JVM itself, rather than from the JVM profile for the master
JVM that initialises the shared class cache. The classes are loaded by the
individual JVM, and are not stored in the shared class cache.

» If the JVM is resettable, classes on this class path are discarded when the
JVM is reset, and reloaded from HFS files each time the JVM is reused.

* If the JVM is a continuous JVM, nonshareable application classes are kept
intact from one JVM reuse to the next.

You should not normally place application classes on the standard class path
without a good reason for doing so, as it causes a degradation in performance
in a resettable JVM, and for worker JVMs (both resettable and continuous) it
uses more storage than having a single copy of the classes in the master JVM.
Some possible reasons for choosing this class path, instead of the shareable
application class path, are:

* In a non-production environment, you might use this class path during
application development if your JVMs are resettable, because it means you
do not have to phase out the JVM pool in order to update class definitions. (If
your JVMs are continuous, you still need to phase out the JVM pool.)

» If a particular class is used infrequently, you might use this class path if you
prefer to incur the performance cost of reloading the class each time it is
required, rather than the storage cost of keeping the class in the JVM or in
the shared class cache.

The standard class path is defined by the CLASSPATH option in the JVM
profile. There is a corresponding system property, java.class.path, in the JVM
properties file, but you cannot use this system property for CICS. |“Adding|
[application classes to the class paths for a JVM” on page 128|tells you how to
include classes on the standard class path.

Enterprise beans are a special case. You do not need to add the deployed JAR
files (DJARSs) for your enterprise beans to the class path. CICS manages the
loading of the classes included in these files by means of the DJAR definitions.
However, if your enterprise beans use any classes, such as classes for utilities, that

Chapter 10. Understanding JVMs 67

are not included in the deployed JAR file, you do need to include these classes on
the shareable application class path that will be used by the JVM for the request

processor program. [‘Adding application classes to the class paths for a JVM” on|
tells you how to do this.

Compiled classes

Java programs can execute in a JVM running on any supported platform through
the ability of the JVM to interpret Java bytecode. You create Java bytecode class
files using a Java compiler, such as VisualAge for Java or WebSphere Studio
Application Developer, and these classes can be executed by a JVM without the
need for any further translation.

This mode of executing Java classes is by interpretation, but a more efficient
method in terms of performance is to convert the Java bytecode into zZOS machine
code, like load modules. The JIT-compile function of the JVM provides this service.
It produces JIT-compiled versions of frequently used Java methods, normally at
variable times during the usage of the methods. The JIT-compiling process incurs
additional CPU time and uses extra Language Environment storage, but provides
more efficient executable code. The CPU cost of the Java applications reduces after
the JIT-compiled code is produced.

Where a JVM is constructed

Each JVM that CICS creates is constructed in its own Language Environment
enclave, to ensure isolation between JVMs running in parallel. The Language
Environment enclave is created using the Language Environment preinitialization
module, CEEPIPI, and the JVM runs as a z/OS UNIX process. The JVM therefore
uses MVS™ Language Environment services rather than CICS Language
Environment services. The storage used for a JVM is MVS storage, obtained by
calls to MVS Language Environment services. This storage resides within the CICS
address space, but is not included in the CICS dynamic storage areas (DSAs).

The Language Environment enclave for a JVM can expand, depending on the
storage needs of the JVM. The Language Environment run-time options used by
CICS for a Language Environment enclave control the initial size of, and
incremental additions to, the Language Environment enclave heap storage. Within
this overall allocation of storage, a JVM’s storage heaps are created according to
the settings in the JVM profile for the JVM. [‘Storage heaps in a JVM” on page 69|
explains how these storage heaps are arranged.

You can tune the run-time options that CICS uses for a Language Environment
enclave, so that the amount of storage CICS requests for the enclave is as close as
possible to the amount of storage specified by your JVM profiles. This makes the
most efficient use of MVS storage. [‘Tuning Language Environment enclave storage]
ffor JVMs” in the CICS Performance Guidetells you how to do this.

JVMs and the z/OS shared library region

68

The shared library region is a z/OS feature that enables address spaces to share
dynamic link library (DLL) files. This feature enables your CICS regions to share the
DLLs that are needed for JVMs, rather than each region having to load them
individually. This can greatly reduce the amount of real storage used by MVS, and
the time it takes for the regions to load the files.

The storage that is reserved for the shared library region is allocated in each CICS
region when the first JVM is started in the region. (This might be the master JVM
that initializes the shared class cache.) The amount of storage that is allocated is

Java Applications in CICS

controlled by the SHRLIBRGNSIZE parameter in z/OS. ['Tuning the z/OS shared|
[ibrary region” in the CICS Performance Guidetells you how to tune the amount of
storage that is allocated for the shared library region.

Storage heaps in a JVM

A JVM manages run-time storage in several segregated heaps. The classes
described in [‘Classes in a JVM” on page 64,and the objects created by those
classes, are grouped in these storage heaps according to their expected lifetime.
The size of the storage heaps is determined by options in the JVM profile for a
JVM. The level of reusability that you choose for the JVM affects the structure of
the storage heaps in the JVM.

The storage heaps in a JVM are:

System heap
The main system heap contains the class definitions for all the system classes
and standard extension classes, and for the middleware classes. It also
contains the pooled string constant data, and it might contain some system
class objects that persist for the lifetime of the JVM. For continuous JVMs and
single-use JVMs, the system heap is also used for items that would be
contained in the application-class system heap for a resettable JVM.
WVMs are reused” on page 85| explains the differences between these types of
JVM.)

Application-class system heap
The application-class system heap, or ACS heap, is intended to contain objects
which persist for the lifetime of the JVM (that is, they are kept across JVM
reuses) and which are reinitialized if the JVM is reset. Continuous JVMs and
single-use JVMs do not have an application-class system heap, because these
types of JVM are not reset after each use; only resettable JVMs have an
application-class system heap.

If the JVM has an application-class system heap, that heap contains the class
definitions for application classes on the shareable application class path; that
is, those specified by the ibm. jvm.shareable.application.class.path system
property (see [‘Classes in a JVM” on page 64). It also contains class objects
that represent the shareable application classes. However, it does not contain
nonshareable application classes on the standard class path, that is, those
specified by the CLASSPATH option in the JVM profile.

Nonsystem heap
This storage heap comprises two other storage heaps of variable size:

Middleware heap
The middleware heap contains objects constructed by middleware classes,
and any objects constructed by system classes as a result of calls from
middleware classes. It also contains static data for the middleware classes
and the system classes, and other string constant data. The objects in this
storage heap have a lifetime that is greater than a single transaction, so
they are kept across JVM resets. For continuous JVMs and single-use
JVMs, the middleware heap is also used for items that would be contained
in the transient heap for a resettable JVM.

Transient heap
The objects in this storage heap are intended to have a lifetime that is the
same as the transaction using the JVM. Continuous JVMs and single-use
JVMs do not have a transient heap, because these types of JVM are not
reset after each use; only resettable JVMs have a transient heap.

Chapter 10. Understanding JVMs 69

70

If the JVM has a transient heap, that heap contains objects constructed by
shareable and nonshareable application classes, and any objects
constructed by system classes as a result of calls from application classes.
It also contains the class definitions and static data for any application
classes on the standard class path; that is, classes that are specified by the
CLASSPATH option in the JVM profile. The transient heap is completely
deleted when the reset takes place. If subsequent transactions in the
resettable JVM want to use the application classes that were in this heap,
they must reload them from HFS files. In a continuous JVM, which does not
have a transient heap, nonshareable application classes are kept intact
from one JVM reuse to the next.

[Figure 2 on page 71| shows how the storage heaps in a resettable JVM are
allocated from the Language Environment enclave heap storage, depending on the
options specified in the JVM profile for the JVM.

The system heap’s initial storage allocation is set by the Xinitsh option in a JVM
profile. The application-class system heap’s initial storage allocation is set by the
Xinitacsh option in a JVM profile. These two heaps do not have a specified
maximum size; they can grow until they run out of space within the Language
Environment enclave.

The nonsystem heap works differently. The nonsystem heap’s maximum total size is
set by the Xmx option in a JVM profile. From this maximum total, storage is allocated
to the transient heap and to the middleware heap. The transient heap’s initial
storage allocation is set by the Xinitth option in a JVM profile, and the middleware
heap’s initial storage allocation is set by the Xms option in a JVM profile. Both heaps
can grow. The middleware heap is allocated from low storage in the nonsystem
heap and expands upwards; the transient heap is allocated from high storage in the
nonsystem heap, and expands down towards low storage. They can expand only
until the two heaps meet—their combined total size cannot exceed the maximum
size set for the nonsystem heap (the Xmx option).

Continuous and single-use JVMs do not have an application-class system heap or a
transient heap, because these types of JVM are not reset after each use. For these
types of JVM, the nonsystem heap consists only of the middleware heap, and
therefore the Xmx option only limits the maximum size of the middleware heap.

Java Applications in CICS

Language Environment enclave storage

Transient
heap
(Xinitth)

T

|

I

I

|

I

i
v

Middleware
heap
(Xms)

i

Non-system
heap
(Xmx)

Application-class System
system heap heap
(Xinitacsh) (Xinitsh)

Figure 2. JVM storage heap allocations within a Language Environment enclave

Persistent Reusable Java Virtual Machine User’s Guide, SC34-6201, has more
detailed information about the storage heaps in a JVM.

You can tune the size of the storage heaps to achieve optimum performance for
your JVMs. [Tuning storage for individual JVMs” in the CICS Performance Guide
tells you how to do this.

How CICS creates JVMs

A JVM is created by the CICS launcher program for JVMs. Persistent Reusable
Java Virtual Machine User’'s Guide, SC34-6201, explains what a launcher program
does. CICS requests storage from MVS, sets up a Language Environment enclave
for the JVM, and launches the JVM in the Language Environment enclave.

CICS creates JVMs in response to requests to run a Java program. JVMs are
created to fit the needs of a particular Java program. You specify the program’s
needs using the PROGRAM resource definition, just as you would for a non-Java
program. (The CICS Resource Definition Guide has full details about the
PROGRAM resource definition.) Requests to run a Java program can be made in

Chapter 10. Understanding JVMs 71

various ways; ['How CICS locates the PROGRAM resource definition to create a
VM on page 74| explains how CICS finds the PROGRAM resource definition in
each case.

To create a JVM for a Java program, CICS needs to obtain the following information
from the PROGRAM resource definition:

» The fact that the program needs a JVM. This is specified in the JVM attribute.

* The execution key (user key or CICS key) for the Java program, which
determines the execution key for the JVM. See [‘Execution key (EXECKEY|

attribute).”

* The main class in the Java program (the Java class whose public static main
method is to be invoked). This is specified in the JVMCLASS attribute.

* The JVM profile for the JVM, which determines various characteristics of the
JVM. See ['JVM profiles (JVMPROFILE attribute)” on page 73

[‘Enabling applications to use a JVM” on page 119|tells you how to specify all these
items using the PROGRAM resource definition for the Java program. Note that
CORBA stateless objects and enterprise beans do not have a PROGRAM resource
definition as such. The PROGRAM resource definition that is relevant to CORBA
stateless objects and enterprise beans is that for the request processor program.

Execution key (EXECKEY attribute)

72

A Java program needs to run in a JVM that is in the correct execution key. JVMs
can be in one of two execution keys: user key or CICS key. Running applications in
user key extends CICS storage protection, so most of your Java programs should
run in a JVM in user key. However, if a Java program is part of a transaction that
specifies TASKDATAKEY(CICS), the program needs to run in a JVM in CICS key.

When you set the EXECKEY parameter on the PROGRAM resource definition for a
Java program to USER, CICS gives the program a JVM that is in user key. A J9
TCB is used to run the JVM, and MVS storage is obtained in user key. When you
set the EXECKEY parameter to CICS, CICS gives the program a JVM that is in
CICS key. A J8 TCB is used to run the JVM, and MVS storage is obtained in CICS
key. (‘How CICS manages JVMs in the JVM pool” on page 75| explains how JVMs
and TCBs are related.)

The default for the EXECKEY parameter is USER. Before CICS Transaction Server
for z/OS, Version 2 Release 3, the EXECKEY parameter was ignored for Java
programs. CICS always made them run in JVMs in CICS key, because user key
was not available for JVMs. You might find that in most cases, the PROGRAM
resource definitions for Java programs that you created for earlier releases of CICS
are still set to the default of EXECKEY(USER). For CORBA stateless objects and
enterprise beans, CIRP (the default transaction for REQUESTMODEL definitions)
specifies TASKDATAKEY(USER), and the PROGRAM resource definition for
DFJIIRP (the default request processor program) specifies EXECKEY(USER), so by
default CORBA stateless objects and enterprise beans run in user key.

You do not need to make any other changes if you change the EXECKEY
parameter for a Java program. CICS can use the same JVM profile to create JVMs
in both execution keys. A single CICS task can include Java programs running in
CICS key, and Java programs running in user key. However, bear in mind that a
JVM can only be reused by programs that specify the same execution key and JVM
profile on their PROGRAM resource definition. If most of your JVMs are created in
the same execution key, CICS has more opportunities for giving a program an

Java Applications in CICS

existing JVM to reuse, rather than creating a new JVM. ['How CICS allocates JVMs|
fto applications” on page 79| explains why reusing existing JVMs is more
economical.

JVM profiles (JVMPROFILE attribute)

CICS can use various options when creating a JVM. You can create different sets
of options, known as JVM profiles, that produce JVMs that are suitable for different
applications. The JVM profiles contain the Java launcher options, and also
reference a JVM properties file containing the system properties for the JVM.
(System properties are key name and value pairs that contain basic information
about the JVM and its environment.) Among other things, the JVM properties file
determines the security properties of the JVM. CICS supplies sample JVM profiles
and JVM properties files, and in many cases, you may find that you can use these
unchanged.

When CICS receives a request to run a Java program, a JVM profile is named on
the PROGRAM resource definition for the Java program. (‘How CICS locates thel
[PROGRAM resource definition to create a JVM” on page 74| explains how CICS
locates the PROGRAM resource definition for different types of request.) CICS
creates a JVM using the options given in this JVM profile, and the system
properties given in the JVM properties file that the JVM profile references.
Alternatively, CICS finds a free JVM that it has already created with these options
and system properties.

A JVM profile specifies, among other things:

* The library path, for native C dynamic link library (DLL) files that are used by the
JVM, including those required to run the JVM and additional native libraries
loaded by trusted code.

» The middleware class path, for classes that are to be treated as trusted
middleware classes (see [‘Classes in a JVM” on page 64).

* The standard class path, for nonshareable application classes that are to be
discarded if the JVM is reset (see [‘Classes in a JVM” on page 64).

* The initial size of the storage heaps in the JVM, and how far they can expand
(see [‘Storage heaps in a JVM” on page 69).

* The maximum size of the stacks for Java code and C code.

* The level of reusability for the JVM: whether it can be reset and reused
(resettable JVMSs), or reused without being reset (continuous JVMs), or thrown
away after use (single-use JVMs). ['How JVMs are reused” on page 85| explains
more about this.

« Whether the JVM uses the shared class cache, so is a worker JVM (see [The]
[shared class cache” on page 89).

* The destinations for messages from JVM internals and for output from Java
applications running in the JVM. (“‘Redirecting JVM output” on page 135|tells you
more about these options.)

* The level of messages that the JVM should issue about its activities.

* Whether the JVM should perform additional checks on certain activities.

» The settings for assertion checking for system classes and application classes.

* Whether the JVM should support debugging.

* The path to the JVM properties file containing the system properties for the JVM.

[The CICS System Definition Guide has the full list of options that you can specify
using a JVM profile.

Chapter 10. Understanding JVMs 73

Note: In some earlier versions of CICS, you could use the -Xquickstart option

(specified using the Xservice option) in a JVM profile to reduce the startup
time for the JVM. However, with improvements in JVM technology, the
-Xquickstart option is now permanently enabled, and specifying
-Xquickstart in a JVM profile has no effect.

A JVM properties file specifies, among other things:

on page 64).

The shareable application class path, for application classes that are to be kept
across JVM reuses and reinitialized if the JVM is reset (see [‘Classes in a JVM|

The name server to be used for JNDI references.
Security information for access to an LDAP name server.

The names of the JDBC drivers supplied by DB2, and also the DataSource
interface, so that your Java applications running in CICS can access DB2 data.

“Using JDBC and SQLJ to access DB2 data from Java programs and enterprise]

beans written for CICS” in the CICS DB2 Guide has more information about this.

The name of the Java security manager to be used, and the names of security
policy files that define the security properties for the JVM. Setting these system
properties enables the Java 2 security policy mechanism for the JVM.
(‘Protecting Java applications in CICS by using the Java 2 security policy]|

[mechanism” on page 333 has more information about this.)

The working directory.
Whether event logging should be enabled.

[The CICS System Definition Guide has the full list of options that you can specify

using a JVM properties file.

[‘Setting up JVM profiles and JVM properties files” on page 94| tells you how to set

up suitable JVM profiles and JVM properties files to meet the needs of your
applications.

How CICS locates the PROGRAM resource definition to create a JVM

When an application starts a Java program, CICS obtains the information it requires
to create the JVM from the CICS PROGRAM resource definition that applies to the
request. The request could be one of the following:

74

A 3270 or EXEC CICS START request that specifies a transaction identifier.

An EXEC CICS LINK request, or an ECI or EXCI call that names the Java
program directly.

An entry in a program list table (PLT).

A method request for an enterprise bean or CORBA stateless object. This is
matched to a request model, which specifies a transaction identifier.

Enterprise beans and CORBA stateless objects do not have their own
PROGRAM resource definitions. A method request for an enterprise bean or
CORBA stateless object involves a JVM, because the request processor that
handles it executes in a JVM. (A request processor is a program that manages
the execution of an IIOP request, including calling the container to process the
method.) When CICS receives the method request, it compares it to installed
REQUESTMODEL resource definitions, finds the one that best matches the
request, and uses the transaction identifier from that request model to determine
the PROGRAM resource definition. The default transaction for REQUESTMODEL
definitions is CIRP, which specifies the PROGRAM resource definition for the
default request processor program DFJIIRP.

Java Applications in CICS

Sometimes, IIOP requests are processed using an existing request processor
transaction, that already has a JVM assigned to it. CICS only looks at the
transaction identifier in any matching request model when a new request
processor transaction is required.

For EXEC CICS LINK requests or ECI or EXCI calls, and for entries in a program
list table, CICS is given the name of the PROGRAM resource definition directly.
However, for 3270 or START requests, and for method requests for an enterprise
bean or CORBA stateless object, CICS determines the PROGRAM resource
definition by looking at the transaction identifier. CICS can then obtain the
information from the PROGRAM resource definition that it needs to create the JVM:
the name of the JVM profile, the main class in the Java program, and the execution
key for the Java program and the JVM. shows this process.

”Iéeguest A t Request B Request C Reg;ggt D
. reques Request model Request model
without matching 'EJBY 'EJB3’ or
request model EXEC CICS START

3 3 ¥ ¥ Request E
Transaction Transaction Transaction Transaction Plg?jgl_ramlgglr,
CIRP T1 T2 T3 or
request
A A 4 A 4
PROGRAM PROGRAM PROGRAM
resource definition: resource definition: resource definition:
DFJIIRP USERORB1 PROGH1
JVM profile: JVM profile: JVM profile:
DFHJVMCD USERJVM1 USERJVM2
Execution key: Execution key: Execution key:
User User CICS
A Y Y
JVMClass JVMClass

com.ibm.cics.iiop.RequestProcessor com.user.app1

Figure 3. How CICS finds the PROGRAM resource definition

How CICS manages JVMs in the JVM pool

CICS uses the open transaction environment (OTE) to run JVMs. Each JVM runs
on an MVS TCB, which is allocated from a pool of J8- and J9-mode open TCBs,
managed by CICS in the CICS address space. This pool of open TCBs is called the
JVM pool. The priority of the J8- and J9-mode open TCBs in the JVM pool is set
lower than that of the main CICS QR TCB, to ensure that J8- and J9-mode activity
does not affect the main CICS workload that is being processed on the CICS QR
TCB.

Chapter 10. Understanding JVMs 75

76

When the CICS dispatcher allocates a TCB for a new JVM to run on, it associates
the name of the JVM profile with the TCB, so the TCB and the JVM are linked
together. However, this linkage only lasts for the lifetime of the JVM. If CICS
destroys the JVM (perhaps because an unresettable event has occurred in a
resettable JVM, or because CICS needs the space to create a different type of
JVM), then the TCB remains in the JVM pool, and it can be reallocated for a
different JVM to run on.

CICS creates JVMs and TCBs as they are needed. The [CEMT INQUIRE JVMPOOL]
command (or the equivalent EXEC CICS command) tells you how many JVMs
CICS currently has.

The total number of TCBs that CICS can create for JVMs is limited by the

system initialization parameter. This parameter therefore limits the
number of JVMs that you can have in the JVM pool in your CICS region. The
default value for MAXJVMTCBS is 5. The minimum permitted value is 1, meaning
that CICS is always able to create at least 1 TCB in the JVM pool. (JM TCBs, used
for the master JVM that initializes the shared class cache, do not count towards the
MAXJVMTCBS limit. [‘The shared class cache” on page 89| explains more about JM
TCBs.)

The JVMs that CICS creates can be in one of two execution keys: user key or
CICS key. You can use the [CEMT INQUIRE JVM| command (or the equivalent
EXEC CICS command) to find out the protection key in which a JVM has been
created. JVMs that are in user key—that is, JVMs intended for programs that
specify EXECKEY(USER) on their PROGRAM resource definition—need to run on
a J9 TCB. JVMs that are in CICS key—that is, JVMs intended for programs that
specify EXECKEY(CICS) on their PROGRAM resource definition—need to run on a
J8 TCB. You cannot specify the proportions of J8 and J9 TCBs that are in the JVM
pool. The MAXJVMTCBS system initialization parameter specifies the maximum
total number of J8 and J9-mode TCBs in the JVM pool, and CICS decides how
many of them should be J8 TCBs and how many should be J9 TCBs, according to
the number of requests that specify each execution key. Statistics are collected
separately for each of the modes, so you can see what proportions of each mode
are in the JVM pool.

Each JVM runs in its own Language Environment enclave, and uses MVS storage.
For this reason, you need to choose a MAXJVMTCBS limit for your CICS region
that takes into account not just the processor time used by the JVMs, but also:

* The amount of MVS storage used by each of your JVMs.
* The amount of MVS storage available for the use of the region.

If you set a MAXJVMTCBS limit that is too high, CICS might attempt to create too
many JVMs for the available MVS storage, resulting in an MVS storage constraint.

CICS has a storage monitor for MVS storage, which notifies it when MVS storage is
constrained or severely constrained, so that it can take short-term action to reduce
the number of JVMs in the JVM pool. (The storage monitor uses exits in Language
Environment routines; it is not a monitoring transaction.) However, the action that
CICS takes when MVS storage is constrained only solves the problem on a
temporary basis. When you receive operator messages relating to MVS storage
constraints, to provide a long-term solution, you need to work out an appropriate
MAXJVMTCBS limit that will prevent the problem from recurring.|i he CIC§
[Performance Guidd explains more about the action CICS takes to deal with MVS
storage constraints, and tells you how to work out an appropriate setting for the
MAXJVMTCBS system initialization parameter.

Java Applications in CICS

In the JVM pool, at any one time, some JVMs and their TCBs might be currently
allocated to tasks—that is, transactions are using them to run Java programs. When
a JVM has finished running a Java program, CICS does not discard it immediately,
unless it is a single-use JVM. Instead, CICS keeps the JVM in the pool in case it
can be reused to run another Java program. The JVM is either reset (if it is defined
as a resettable JVM), or simply kept in the pool without a reset (if it is defined as a
continuous JVM). ['How JVMs are reused” on page 85| explains the difference
between these levels of reusability. So the JVM pool might also contain some JVMs
and their TCBs that are not currently allocated to tasks, but are waiting to be
reused.

[Figure 4 on page 78| shows an example JVM pool. The MAXJVMTCBS limit for this

JVM pool is 5, and the JVM pool contains 5 JVMs, so CICS has already created

the maximum possible number of JVMs in this JVM pool. The JVM pool contains:

* A JVM (JVM 1) created with the JVM profile DFHJVMPR, in CICS key (so
running on a J8 TCB)

* AJVM (JVM 2) created with the JVM profile USERJVM1, in user key (so running
on a J9 TCB)

* AJVM (JVM 3) created with the JVM profile DFHJVMCD, the JVM profile for the
default request processor program, in user key (so running on a J9 TCB)

* AJVM (JVM 4) created with the JVM profile USERJVM1, in CICS key (so
running on a J8 TCB)

* AJVM (JVM 5) created with the JVM profile DFHJVMPR, in user key (so running
on a J9 TCB)

JVMs 1, 4 and 5 are currently allocated to tasks, but JVMs 2 and 3 are waiting to
be reused.

Chapter 10. Understanding JVMs 77

JVM pool
MAXJVMTCBS=5

JVM 5 JVM 1 N
/// DFHJVMPR DFHJVMPR N
/ User key CICS key \
/ @ Allocated @ Allocated \

to task to task

J9 TCB J8 TCB
! JVM 4 JVM 2 |
\ USERJVM1 USERJVM1 i
\ CICS key User key i

@ Allocated Available
to task for reuse
. JVM 3 /

\ J8 TCB J9TCB /!
DFHJVMCD
User key

Available
for reuse

Figure 4. An example JVM pool

CICS reduces the number of active JVMs automatically if the workload does not
require them. If a JVM is inactive for 30 minutes, it is discarded. You can also
terminate all the JVMs in the JVM pool (by using the [CEMT SET JVMPOOL|
Phaseout, Purge or Forcepurge command, or the equivalent EXEC CICS
command), or disable the JVM pool so that it cannot service new requests (by
using the CEMT SET JVMPOOL DISABLED command, or the equivalent EXEC
CICS command).

You can use the EXEC CICS command or the [CEMT INQUIRE JVM|
command to identify and report the status of each JVM in the JVM pool. Using the
EXEC CICS INQUIRE JVM command, you can inquire on a specific JVM, or you
can browse through all the JVMs in the JVM pool. Using the CEMT INQUIRE JVM
command, you can list all the JVMs in the JVM pool, or inquire on all JVMs in a
specified state. The commands tell you about:

* The JVM profile and execution key of the JVMs in the pool.

* Which of the JVMs in the pool use the shared class cache.

* The age of each JVM.

* The task to which a JVM is allocated, and the time it has been allocated to the
task.

« JVMs that are being phased out as a result of a CEMT SET JVMPOOL
PHASEOUT, PURGE or FORCEPURGE command or CEMT PERFORM
CLASSCACHE PHASEOUT, PURGE or FORCEPURGE command (or the
equivalent EXEC CICS commands).

78 Java Applications in CICS

[‘Managing your JVMs” on page 132|tells you more about managing the JVM pool.

When an application requests execution of a Java program, CICS first sees if the
Java program can reuse one of the existing JVMs in the JVM pool that is not
currently allocated to a task. If the application can reuse an existing JVM, CICS has
saved the cost of creating a new JVM. If a suitable JVM is not available, and the
limit set by the MAXJVMTCBS system initialization parameter has not yet been
reached, CICS allocates a new open TCB in the correct mode (J8 or J9), and
creates a new JVM. When the limit set by the MAXJVMTCBS system initialization
parameter has been reached, and no more JVMs can be created, CICS decides
how best to allocate the JVMs in the pool to the applications that request them.
['How CICS allocates JVMs to applications’| explains how CICS decides whether an
application can reuse an available JVM, and how it allocates JVMs to applications
when it cannot create any more JVMs.

How CICS allocates JVMs to applications

When an application requests execution of a Java program, CICS first tries to find a
suitable JVM that is available for reuse in the JVM pool. An application can reuse
an available JVM if the JVM was created using the JVM profile and the execution
key (USER or CICS) that are specified in the Java program’s PROGRAM resource
definition. If a suitable JVM is available, CICS assigns the JVM to the request.

If a suitable JVM, with the correct JVM profile and execution key, is not available,
and the limit set by the system initialization parameter has not yet
been reached, and MVS storage is not severely constrained, CICS creates a new
JVM for the Java program. The new JVM has the correct profile and execution key
for the program.

If CICS cannot find a suitable JVM, and a new JVM cannot be created because the
MAXJVMTCBS limit has been reached, or because MVS storage is severely
constrained and CICS is acting as though the MAXJVMTCBS limit had been
reached, then CICS must decide on the best way to provide the application with a
JVM. This involves assessing the need of the application for a JVM, against the
need for different types of JVM in the CICS region. CICS can fulfil an application’s
request for a JVM by:

» Taking a free JVM that has the right execution key but the wrong profile for the
request, destroying the JVM, and re-initializing (that is, re-creating) the JVM on
the old JVM’s TCB, with the correct profile. This is called a mismatch.

» Destroying a free JVM and its TCB that are in the wrong execution key, and
replacing it with a JVM and TCB in the correct execution key. This situation is
known as a steal, or stealing, as the TCB has been “stolen” from one TCB mode
(J8 or J9) to another TCB mode.

Both a mismatch and a steal are expensive, so before taking one of these courses
of action, CICS tries to decide if it is worthwhile. In terms of the need for different
types of JVM in the CICS region, it might be more economical for overall system
performance for CICS to make the application wait until a suitable JVM is available,
and to keep the free JVMs for requests that can benefit more from them. CICS has
a selection mechanism to make this decision.

[Figure 5 on page 80| shows this process happening. Our example JVM pool is in
the state shown above in [Figure 4 on page 78, with a MAXJVMTCBS limit of 5, and
5 JVMs in the pool. CICS receives two of the requests described above in[Figure 3

Chapter 10. Understanding JVMs 79

Request B specifies the PROGRAM resource definition for the default request
processor program DFJIIRP, which names the JVM profile DFHJVMCD, and the
execution key USER. CICS checks the JVM pool, and finds that JVM 3 has the
correct JVM profile and execution key to match the request, and it is available for
reuse. CICS assigns JVM 3 to Request B.

Request D specifies the PROGRAM resource definition for PROG1, which names
the JVM profile USERJVM2, and the execution key CICS. CICS checks the JVM
pool. There is a free JVM, JVM 2, but it has the wrong profile and execution key for
Request D. As the MAXJVMTCBS limit has been reached, CICS cannot create a
new JVM for Request D. So CICS must use the selection mechanism to decide if it
should destroy JVM 2 and its TCB, and replace it with a JVM and TCB that
matches Request D; or if it should make Request D wait, and keep JVM 2 for a
request that can benefit more from it. If Request D is made to wait, it is queued
along with any other requests that are waiting for a JVM.

Request B

PROGRAM
resource definition:
DFJIIRP
JVM profile:
DFHJVMCD
- . Execution key:

JVM pool
MAXJVMTCBS=5

AN User
DFHJVMPR
User key

@ Allocated

DFHJVMPR
CICS key

@ Allocated

Suitable
to task

/ JOTCB

to task
J8 TCB

| JVM 4

USERJVM1
CICS key

@ Allocated
to task

JVM 3

DFHJVMCD
User key

Available
for reuse

\ J8 TCB

JVM 2

USERJVM1
User key

Available
for reuse

JVM available

Request D

PROGRAM
resource definition:
PROG1
JVM profile:
USERJVM2
Execution key:
CICS

v

No suitable
JVM available

Destroy
and replace
JVM 2 ?

Queue

Figure 5. Dealing with requests for JVMs: example

Now let’s look in more detail at the whole process. CICS makes its decision to
assign a JVM to an application in two stages:

» It takes one set of actions to deal with incoming requests for a JVM

80 Java Applications in CICS

|t takes another set of actions when it has a queue of requests waiting for a JVM.

How CICS deals with incoming requests for a JVM

To deal with incoming requests for a JVM, CICS takes the actions summarized in
-Fiure 6

Request for
JVM

Assign free Allocate TCB,
JVM to request create new JVM
Yes True

MAXJVMTCBS
not reached
and MVS
storage not
constrained

Free JVM
with correct
profile and
EXECKEY?

False

Mismatch Request Rqustszfa?t"“'d Selection
(re-create EXECKEY mechanism /" Anyfree
JVM on Yes =free JVM compares . Yes JVM?
same TCB) EXECKEY? demand and
supply

No

i

Steal (re-create
JVM and TCB)

No

l

Add request

Request to queue
should wait

Figure 6. Dealing with incoming requests for JVMs

1.

2.

When CICS receives a request for a JVM, and a JVM of the correct profile and
execution key is free, CICS assigns the JVM to the incoming request.

If CICS receives a request for a JVM when either:
* there are no free JVMs

 there are free JVMs, but they are not of the correct profile and execution key
for the request

and CICS is able to create more JVMs (because the MAXJVMTCBS limit has
not been reached and MVS storage is not severely constrained), then a TCB is
allocated and a new JVM is created for the request.

If CICS receives a request when there are free JVMs, but they are not of the
correct profile and execution key, and CICS is not able to create more JVMs
(because the MAXJVMTCBS limit has been reached or MVS storage is severely
constrained), the selection mechanism is used. The selection mechanism
decides whether the request should wait for a suitable JVM, or whether it should
receive one of the free JVMs.

Chapter 10. Understanding JVMs 81

a.

If the request receives one of the free JVMs, there will be either a mismatch
or a steal, and the JVM and possibly the TCB will need to be re-initialized,
so the selection mechanism avoids this where it makes sense to do so. If
the selection mechanism does decide that the request should receive one of
the free JVMs, CICS checks whether the execution key specified by the
request matches the execution key of the JVM. If the execution key does
not match, the JVM and its TCB are destroyed and reinitialized (a steal). If
the execution key does match, and only the JVM profile is incorrect, the
JVM is reinitialized on the same TCB (a mismatch).

If the selection mechanism decides that the request should wait rather than
receiving one of the free JVMs, the request is placed on the queue to wait
for a suitable JVM to become free.

4. If CICS receives a request when there are no free JVMs, and CICS is not able
to create more JVMs (because the MAXJVMTCBS limit has been reached or
MVS storage is severely constrained), the request is placed on the queue to
wait for a JVM to become free.

How CICS deals with a queue of requests waiting for a JVM

When CICS has a queue of requests waiting for a JVM, it takes the actions
summarized in [Figure 7 on page 83}

82

Java Applications in CICS

Assign free

’ JVM to request

Yes Yes

Request has
waited longer than
critical period?

Requests are on
queue, JVM
becomes free

Request matches
JVM's profile
and EXECKEY?

Any more
requests to
check

Yes

A

‘Any more Request Selection G .
Keep JVM free to ¢ No requests to should wait mechanism 0 back to first
await suitable use ey compares request in queue
demand and

supply

Request should
not wait

Request
EXECKEY
=free JVM
EXECKEY?

Mismatch (re-create
JVM on same TCB)

A

|4— Yes

No

B T

Steal (re-create
JVM and TCB)

Figure 7. Dealing with a queue of requests waiting for a JVM

1. If any request that is waiting for a JVM to become free has been waiting longer
than a critical period (which CICS determines), CICS gives it the next available
JVM, whatever the profile and execution key of the JVM. This applies both to
requests that have been placed on the queue because no JVMs are free, and
requests that have been placed on the queue because the free JVMs have the
wrong profile or execution key. There will be either a mismatch or a steal, and
the JVM and possibly the TCB are likely to be re-initialized (unless the request
is in a queue and the next free JVM happens to have the correct profile and
execution key), but the action is worth taking, as the request should not wait
any longer.

2. If requests are queueing and a JVM becomes free, but no requests have been
waiting longer than the critical period, CICS scans through the queue to find the
longest-waiting request that requires a JVM with that profile and execution key.
It gives the free JVM to the longest-waiting request that specifies the correct
profile and execution key. So in this situation, the JVM does not need to be
re-initialized, and a mismatch or steal is avoided.

3. If CICS cannot find a request that matches the profile and execution key of the
free JVM, it scans through the queue again and uses the selection mechanism

Chapter 10. Understanding JVMs 83

to look for a request where it will be an advantage to destroy and re-initialize
the free JVM, and re-initialize it as a JVM with the profile and execution key that
the request needs. A mismatch or a steal occurs, but the selection mechanism
ensures that it occurs for a deserving request.

4. If CICS does not find a request in the queue where it will be an advantage to
destroy and re-initialize the free JVM, the JVM is kept free to await a more
appropriate use. For example, CICS might receive a request that needs a JVM
with the profile and execution key of the free JVM; or the first request in the
queue might wait longer than the critical period, and so be given the free JVM;
or CICS might receive a request where it is an advantage to destroy and
re-initialize the free JVM.

The selection mechanism

84

Let’s look at how the selection mechanism works. As we saw, the mechanism is
used when CICS needs to know if an incoming request should wait for a more
suitable JVM, or when CICS has a queue of requests that do not match a free JVM,
and needs to know if one of them deserves to take, destroy and re-initialize the
JVM. In these situations, the mechanism looks at the complete picture of the need
for different types of JVM in the CICS region. It compares the demand for, and
supply of, JVMs with each profile and execution key, by looking at:

» The historical data relating to recent requests for each type of JVM (the
demand).

* The number of each type of JVM in the pool, and the time for which tasks kept
these JVMs (the supply).

The selection mechanism uses this data to work out whether a given request
should wait for a JVM of the correct profile and execution key, or whether it should
be given a free JVM. The same answer is valid for a request that is waiting in a
queue for a JVM to become free, or for a request that is made when there are free
JVMs but they are not of the correct profile or execution key. In both cases, a
request is made to wait if the data indicates that the demand for the type of JVM
(that is, a JVM with that profile and execution key) which the request wants, is
generally lower than the supply, and so it is not worth destroying and re-creating the
free JVM as a JVM of that type. When the selection mechanism is examining a
queue of requests, it continues down the queue until it reaches a request where the
data indicates that the demand for the type of JVM that the request wants is
generally higher than the supply. For this request, the selection mechanism decides
that because JVMs of that type are needed in the CICS region, it is worth
destroying and re-creating the free JVM as a JVM of that type, and assigns the free
JVM to the request. If the free JVM had the wrong profile but the correct execution
key, this is a mismatch, and the JVM is re-initialized. If the free JVM had the wrong
execution key, this is a steal, and both the TCB and JVM are destroyed and
re-created. So although the overhead of re-initializing the JVM, and if necessary
re-creating the TCB, has still been incurred, the selection mechanism has ensured
that the new JVM and TCB are of a type that is likely to be used in the future.

Under certain circumstances, there could be an unusually large number of requests
for JVMs that have been waiting longer than the critical period. For example, this
could happen when a system dump has just been taken, which delays all
processing. In this case, rather than abandon matching and give each of the waiting
requests the next available JVM, as would normally happen when a request has
been waiting longer than the critical period, CICS temporarily increases the critical
period value for the JVM pool. This enables it to perform matching for the waiting
requests, and avoids incurring abnormal overhead. Once the situation has passed,
CICS lowers the critical period value again.

Java Applications in CICS

How JVMs are reused

Every Java program that is run in CICS, runs in a JVM that has been assigned to
run that program alone. This ensures that every transaction involving a JVM is
isolated from every other concurrent transaction involving a JVM. However, when a
Java program has finished using its JVM, the JVM can be reassigned to another,
subsequent program and reused for that program.

The JVM provided by the IBM Software Developer Kit for z/OS, Java 2 Technology
Edition, Version 1.4.2, which features the persistent reusable JVM technology, can
be reused many times by Java applications in CICS, either by a different Java
program in the same transaction, or by another transaction. This model is suited to
CICS transaction processing, which is characterized by short, repetitive
transactions, usually processed in high volumes. The earlier JVM supported by
CICS in CICS TS 1.3, which was provided by the IBM Developer Kit for the Java
Platform 1.1.8, was a single-use JVM, which had to be initialized afresh for every
application. This model typically had high startup overheads. JVM reuse is the
preferred method for running all Java applications in CICS, and provides the only
way to run Java applications comprising enterprise beans or which are started by
IIOP requests.

CICS provides three levels of reusability for JVMs, which you can select depending
on the needs of your applications. The level of reusability for a JVM is controlled by
the REUSE option in the JVM profile for the JVM. The characteristics of the three
levels of reusability can be summarized as follows:

Table 4. Reuse and reset characteristics of JVM types

JVM type (and REUSE option | Compatible Are program Are programs Performance
action between |in profile with the invocations allowed to
JVM uses) shared class allowed to pass change
cache? state to characteristics of

subsequent the JVM?

invocations?
Continuous (JVM |REUSE= YES |Yes' Yes Yes Highest (JVM not
reused without initialized or reset
reset) for each use)
Resettable (JVM | REUSE= Yes' No (JVM storage No (JVM Medium (JVM reset,
reused and reset) | RESET cleaned up after destroyed if this but not initialized for

each use) occurs) each use)
Single-use (JVM | REUSE= NO No No (JVM destroyed) |Yes Lowest (JVM
destroyed) initialized for each

use)

Note:

1. The worker JVMs in a CICS region all have the same level of reusability as the master JVM in that region, so you
cannot mix resettable worker JVMs and continuous worker JVMs in a CICS region.

The following sections discuss each of these types of JVM in more detail:

+ [‘Continuous JVMs (REUSE=YES)” on page 86|

+ [‘Resettable JVMs (REUSE=RESET)” on page 87|

+ ['Single-use JVMs (REUSE=NO)” on page 88|

Chapter 10. Understanding JVMs 85

Continuous JVMs (REUSE=YES)

86

The continuous JVM is kept in the JVM pool for reuse. It is initialized once, and is
reused many times, but it is not reset after each Java program has completed. A
continuous JVM has the option REUSE=YES in its JVM profile.

Compared to the resettable JVM, the continuous JVM has a greater transaction
throughput and lower CPU usage, because it is not performing a reset. The
behavior of the continuous JVM is also more consistent with the behavior of JVMs
on platforms other than CICS, which can be an advantage when executing Java
programs designed for use in a generic reusable Java environment.

Programs that run in a continuous JVM are fully isolated from concurrent activity
elsewhere in CICS. However, because there is no JVM reset after each Java
program, the application code that runs in the next Java program or transaction is
not isolated from the actions of the previous program invocation. Because of this,
you can create persistent items that might be of use to future executions of the
same application in the same JVM. (In a resettable JVM, this is not possible.) You
do need to ensure that programs do not change the state of a continuous JVM in
undesirable ways, or leave any unwanted state in the JVM.

Both middleware classes and application classes are permitted to perform actions in
a continuous JVM which would cause a resettable JVM to be marked unresettable
and destroyed. The application classes are trusted to reset themselves as required
between transactions, and the JVM is not destroyed after use if these events take
place. [‘Resettable JVMs (REUSE=RESET)” on page 87| explains how a resettable
JVM deals with unresettable actions.

A continuous JVM maintains the content of its storage heaps between one program
invocation and the next. [‘Storage heaps in a JVM” on page 69| explains the storage
heaps that the JVM uses for different categories of objects. Static or dynamic state
persist in a continuous JVM’s storage heaps, and threads that are not quiesced will
persist, along with their related storage. Shareable application classes are not
reinitialized, and nonshareable application classes are kept intact, instead of being
discarded and reloaded. The application can choose to clean up any unwanted
items and retain any desirable items. Also, a continuous JVM does not invoke the
ibmJvmTidyUp method to request the middleware classes to perform cleanup; this
cleanup will only take place if the middleware classes perform it in the course of
their normal actions. (The CICS-supplied middleware does perform cleanup without
a request from the JVM.)

A continuous JVM can use the shared class cache (that is, it can be a worker JVM).
JVMs that use the shared class cache start up more quickly, and have lower
storage requirements, than JVMs that do not. The worker JVMs in a CICS region all
have the same level of reusability as the master JVM in that region, so you cannot
mix resettable worker JVMs and continuous worker JVMs in a CICS region; you
need to choose one level of reusability for your worker JVMs.

[shared class cache” on page 106|has more information about this.

[‘Programming considerations for continuous JVMs” on page 121| explains the
programming considerations for applications that run in a continuous JVM.

Java Applications in CICS

Resettable JVMs (REUSE=RESET)

The resettable JVM is kept in the JVM pool for reuse. The JVM is initialized once,
and is reused many times. It can be reset to a known state between uses. A
resettable JVM has the option REUSE=RESET in its JVM profile (or the older
option Xresettable=YES).

The resettable JVM is normally reset between transactions; that is, after the
application code has terminated for one transaction and before the application code
starts for the next transaction. If more than one Java program is used in a
transaction, the resettable JVM is reset after each Java program has completed.
This level of reusability is equivalent to specifying the -Xresettable option for a
JVM.

The JVM reset isolates invocations of Java programs from changes made by
previous invocations of programs in the same JVM. This means that programs
cannot create persistent items that might be of use to future executions of the same
program, but it also means that programs cannot leave unwanted state in the JVM,
or change the state of the JVM. However, the time and CPU usage required for a
JVM reset reduce the performance of a resettable JVM compared to the
performance of a continuous JVM. An application that has been coded with
attention to the state of the JVM and to the items in static storage can operate
safely without the JVM reset, so it can run in a continuous JVM to achieve
performance enhancements.

There are two stages in the process of resetting a JVM:

1. The resettable JVM checks whether there have been any unresettable events
since the last reset of the JVM. A frequent cause of an unresettable event is
that the Java program that just ran in the JVM has performed an unresettable
action. An unresettable action is when a program uses Java interfaces that
modify the state of a JVM in a way that cannot be properly reset, such as
changing system properties or loading a native library. The Persistent Reusable
Java Virtual Machine User’s Guide, SC34-6201, has more information about
unresettable actions. Another possible cause of an unresettable event is if a
cross-heap reference in the JVM has been found, in the course of a
trace-for-unresettability check, to be still in scope (rather than in garbage).
Unresettable events can also occur if there is an error in the JVM code.

If one or more unresettable events are detected during the execution of a user’s
Java program, the JVM is marked unresettable, and CICS destroys the JVM
when the Java program has finished using it. The storage used by the JVM is
recovered, and a new JVM is initialized. The events that prevent reuse are
logged, provided that the appropriate event logging system properties are
specified in the JVM properties file for the JVM.

Middleware classes, that is, classes specified on the trusted middleware class
path for the JVM, are permitted to perform unresettable actions without the JVM
being marked unresettable. This is because they are trusted by the JVM to
perform the actions necessary to reset themselves between transactions. You
should use the application class paths for your own application classes, to
ensure that if they do perform an unresettable action in a resettable JVM, the
JVM is destroyed. [‘Classes in a JVM” on page 64] explains more about the
different classes and class paths in a JVM.

2. Aresettable JVM cleans up its storage heaps after each use, meaning that state
cannot persist from one program invocation to the next. [‘Storage heaps in
[JVM” on page 69| explains the storage heaps that the JVM uses for different
categories of objects. In a resettable JVM, the transient heap (which contains

Chapter 10. Understanding JVMs 87

objects constructed by the user’s application classes) is completely deleted
during the reset, and the user’s shareable application classes that are kept in
the application-class system heap are reinitialized during the reset. The
middleware heap, which contains objects constructed by the middleware
classes, is not cleaned up by the JVM during the reset. Instead, the JVM
requests the middleware classes to perform their own cleanup, and the
middleware classes are trusted to reset the objects they have constructed.

A resettable JVM can use the shared class cache (that is, it can be a worker JVM).
JVMs that use the shared class cache start up more quickly, and have lower
storage requirements, than JVMs that do not.

[‘Programming considerations for resettable JVMs” on page 123 explains the
programming considerations for applications that run in a resettable JVM.

Single-use JVMs (REUSE=NO)

88

The single-use JVM is not kept in the JVM pool for reuse. With this type of JVM,
the JVM is initialized, is used to run a single Java program, and then is
automatically destroyed. A single-use JVM has the option REUSE=NO (or the older
option Xresettable=N0) in its JVM profile.

The single-use JVM is like the earlier JVM that was supported by CICS in CICS TS
1.3, for which support was removed in CICS TS 2.3 (see [‘Removal of support for|
[CICS Transaction Server for 0S/390, Version 1 Release 3 JVMs” on page 92). If
you use a single-use JVM, you can invoke the user-replaceable program
DFHJVMAT to change options in the JVM profile, as you could in CICS TS 1.3. This
user-replaceable program cannot be invoked for a continuous JVM or for a
resettable JVM.

The single-use JVM has the lowest performance of any of the JVM types in terms
of transaction throughput, because the JVM must be initialized for each use. Some
time is saved by the absence of a reset, but this is less than the time used to
initialize the JVM.

The single-use JVM is not recommended for running Java applications in a
production environment, and it should not be used for Java applications comprising
enterprise beans or which are started by IIOP requests. It is only beneficial for Java
applications that were originally designed to run in a single-use JVM, and have not
been made suitable for running in a JVM that is intended for reuse. To improve
performance, you should redesign these Java programs as soon as you can, so
that unresettable actions are eliminated, and the programs can run in a continuous
JVM or a resettable JVM.

A single-use JVM cannot use the shared class cache (that is, it cannot be a worker
JVM). Because it cannot use the shared class cache, a single-use JVM has a
longer startup time and higher storage requirements than a resettable or continuous
JVM that is using the shared class cache, as well as incurring the startup costs
each time the JVM is used.

[‘Programming considerations for single-use JVMs” on page 125| explains the
programming considerations for applications that run in a single-use JVM.

Java Applications in CICS

The shared class cache

CICS includes a shared class cache facility for the JVM. The shared class cache is
created using the JVM'’s -Xjvmset option. Multiple JVMs can share a single cache
of class files that have already been loaded, including some that have been
optimized by compilation. The shared class cache replaces the system heap and
the application-class system heap for those JVMs, and it can contain middleware
and application classes. JVMs that use the shared class cache start up more
quickly, and have lower storage requirements, than JVMs that don’t.

The shared class cache is initialized by a JVM referred to as the master JVM. The
master JVM cannot be used to run Java applications; it exists only to initialize and
own the shared class cache. The master JVM obtains shared memory in which its
system heap is allocated. The system heap contains class files (including those that
have been optimized by compilation) which can be shared by all the worker JVMs,
and the rest of the shared memory contains other information that is common to the
master and worker JVMs, such as the class loading paths needed to load classes
into the shared class cache. The master JVM can be defined as a resettable JVM,
with the option REUSE=RESET or the older option Xresettable=YES in its JVM
profile, or as a continuous JVM, with the option REUSE=YES in its JVM profile. If
none of these options is included, CICS assumes that the master JVM is resettable.
The master JVM runs on its own open TCB, the JM TCB. JM TCBs are not used for
any other purpose. They do not count towards the MAXJVMTCBS limit, and they
cannot be reused like the J8 and J9 TCBs in the JVM pool.

The JVMs that share the class cache are referred to as worker JVMs, and they can
be used to run Java applications. The worker JVMs use the classes loaded in the
shared class cache, instead of having to load these classes from the file system.
Although the worker JVMs share the class cache, each worker JVM owns all the
working data (objects and static variables) for the applications that run in it. This
helps to maintain the isolation between the Java applications being processed in
the system.

The worker JVMs in a CICS region all have the same level of reusability as the
master JVM. [‘How JVMs are reused” on page 85| explains the levels of reusability
for JVMs. If the master JVM is a resettable JVM, the worker JVMs are also
resettable, and if the master JVM is a continuous JVM, the worker JVMs are also
continuous. (Single-use JVMs cannot use the shared class cache.) If the REUSE or
Xresettable options are included in the JVM profile for a worker JVM, they are
ignored.

CICS supports one active shared class cache in each region. (A region might also
contain old shared class caches that are being phased out.) The shared class
cache can support the majority of the JVMs in each region. Some of the JVMs in
the region might not be suited to sharing the class cache, because they are debug
JVMs used for problem diagnosis, or because they have an inappropriate level of
reusability. These JVMs can still run as standalone JVMs, and have their own cache
of classes in their storage heaps.

The shared class cache contains:

* The IBM-supplied middleware that you need to run enterprise beans and Java
applications, and any other middleware classes that you have specified (on the
trusted middleware class path).

Chapter 10. Understanding JVMs 89

90

* Any application classes that are loaded by shared application class loaders,
including classes on the shareable application class path, and classes that are
loaded from a DJAR.

The master and worker JVMs use the same library path, which is the path for native
C dynamic link library (DLL) files that are used by the JVM, to ensure that they are
using the same versions of these files. However, these files are not loaded into the
shared class cache. Unless they are shared through another z/OS facility (such as
the shared library region), a copy is loaded into each worker JVM.

The library path and trusted middleware class path for the shared class cache are
defined in the JVM profile for the master JVM, and the shareable application class
path for the shared class cache is defined in the JVM properties file for the master
JVM. For a worker JVM, CICS ignores these class paths if they are specified in the
worker’s own JVM profile and JVM properties file, and instead uses the values
specified for these class paths in the JVM profile and JVM properties file for the
master JVM.

This means that for a worker JVM, items on the library path, middleware classes,
and shareable application classes must be included in the class paths in the JVM
profile and JVM properties file for the master JVM that initializes the shared class
cache, rather than in the JVM profile and JVM properties file for the JVM where the
application will run. The library path is defined by the LIBPATH option in the JVM
profile, and the trusted middleware class path is defined by the CICS_DIRECTORY,
TMPREFIX, and TMSUFFIX options in the JVM profile. The shareable application
class path is defined by the ibm.jvm.shareable.application.class.path system
property in the JVM properties file.

The standard class path (defined by the CLASSPATH option in the JVM profile) is
the only class path that is taken from the profile for the worker JVM itself, rather
than from the profile for the master JVM. Classes on this class path are loaded into
the individual worker JVMs, and are not cached in the shared class cache. Adding
classes to this class path is detrimental to performance for a resettable worker JVM,
because the classes are reloaded every time the JVM is reset. For a continuous
worker JVM, these classes are kept intact from one JVM reuse to the next, so there
is no need to reload them, but having the classes in every JVM uses more storage
than having a single copy in the master JVM. For these reasons, you should avoid
using the standard class path for worker JVMs in a production environment.

Any worker JVM can modify the shared class cache. When worker JVMs perform
just-in-time (JIT) compilation of classes that are in the shared class cache, they
write the results of the compilation to the shared class cache, so that other worker
JVMs can use the compiled classes. The master JVM that initializes the shared
class cache is invoked in user key, so that worker JVMs that were invoked in user
key can read and write to the shared class cache. Even if all the worker JVMs that
share the class cache are invoked in CICS key, the master JVM and the shared
class cache are still in user key.

[Figure 8 on page 91| shows an example JVM pool when a shared class cache has
been introduced for the CICS region. The JVM pool contains:

* Two worker JVMs (JVMs 6 and 7) created with the JVM profile DFHJVMPC, in
user key (so running on a J9 TCB). DFHJVMPC is the CICS-supplied sample
JVM profile for a worker JVM.

Java Applications in CICS

* A worker JVM (JVM 9) created with the JVM profile USERJVM1, in CICS key (so
running on a J8 TCB). When the shared class cache was introduced, the JVM
profile USERJVM1 was changed to state that JVMs with that profile use the
shared class cache.

* A standalone JVM (JVM 8) created with the JVM profile DFHJVMPR, in user key
(so running on a J9 TCB). As the JVM was created with DFHJVMPR, it does not
use the shared class cache.

* A standalone JVM (JVM 10) created with the JVM profile USERJVMZ2, in CICS
key. The JVM profile USERJVM2 was not changed when the shared class cache
was introduced, and JVMs with that profile do not use the shared class cache.

The shared class cache, shown on the right of the diagram, is initialized by a
master JVM created with the JVM profile DFHJVMCC, which is the CICS-supplied
default JVM profile for a master JVM, and the execution key USER. The master
JVM runs on a JM TCB. The worker JVMs (6, 7 and 9) are using the shared class
cache, but the standalone JVMs (8 and 10) are not.

JVM pool
MAXJVMTCBS=5

JVM 10 JVM 6
USERJVM2 DFHJVMPC \\ . | Shared -----
// CICS key User key class cache
/ Available @ Allocated e
/ for reuse to task

/! J8TCB

J9TCB

Master

| JVM 9 JVM
\ CICS key \/ DFHJVMPC \/
‘\ User key |
\ @ Allocated /
\ to task Available /0 UMTCB
N\ JVM 8 for reuse /
\ J8 TCB /
N\ DFHJVMPR /
\\\ ///
@ Allocated

to task

Figure 8. Example JVM pool with a shared class cache

[‘Setting up the shared class cache” on page 106|tells you how to set up a shared
class cache in a CICS region, and how to enable JVMs to use it.

You can manage the shared class cache using CICS commands. You can prevent
the shared class cache from starting automatically, start it manually, adjust its size,
update the classes or JAR files that it contains, or terminate it. You can also monitor
its status. ['Managing the shared class cache” on page 110|tells you how to operate
the shared class cache.

Chapter 10. Understanding JVMs 91

Removal of support for CICS Transaction Server for 0S/390, Version 1
Release 3 JVMs

92

The JVM introduced in CICS TS 1.3 is not supported. Any Java programs that ran
under CICS TS 1.3, and were not previously migrated for CICS Transaction Server
for z/OS, Version 2 Release 2, should be migrated to Java 2 to run under the JVM
provided by the IBM Software Developer Kit for z/OS, Java 2 Technology Edition,
Version 1.4.2 or later, which features the persistent reusable JVM technology.
Application migration issues are discussed at:
http://java.sun.com/j2se/1.4.2/compatibility.dital
http://java.sun.com/j2se/1.4/compatibility.dital
http://java.sun.com/products/jdk/1.3/compatibility.dital#incompatibilitiesl.3

and

http://java.sun.com/products/jdk/1.2/compatibility.dital

Support for the JVM provided by the IBM Software Developer Kit for z/OS, Java 2
Technology Edition, Version 1.4.2 or later, completely replaces the JVM support
provided in CICS TS 1.3. However, you can modify a JVM to run as a single-use
JVM and not attempt serial reuse. A single-use JVM is initialized, is used to run a
single Java program, and then is automatically destroyed without attempting a JVM
reset. The single-use JVM is like the earlier JVM that was supported by CICS in
CICS TS 1.3. New Java applications should not be developed in such a way that
they can only run in a single-use JVM.

You can modify a JVM to be a single-use JVM by specifying either REUSE=NO, or
the older option Xresettable=NO0, in the JVM profile. This might be necessary to run
programs that use Java interfaces, such as multi-threading, that make JVMs
unresettable. [‘Single-use JVMs (REUSE=NO)” on page 88| has more information
about the appropriate use of single-use JVMs.

For a single-use JVM, you can, if you want, invoke the user-replaceable program
DFHJVMAT to change JVM options. [The CICS Customization Guide] tells you how
to use DFHJVMAT. DFHJVMAT cannot be used with any type of JVM other than the
single-use JVM. If you need to change JVM options for other types of JVM, do so

by customizing the JVM profile and JVM properties file for the JVM.
VM profiles and JVM properties files” on page 94| explains how to do this.

Java Applications in CICS

Chapter 11. Using JVMs

This section tells you how to customize JVM profiles and properties files; manage
your JVMs and shared class cache; and explains how to idenitfy problems with your
Java applications and JVMs.

Before you begin, verify that the Java components are correctly installed using the
tasks outlined in [Setting up Java support]

1. Set up a JVM profile and JVM properties file to create a JVM for your Java
application.

JVM profiles allow you to specify options that produce different JVMs depending
on iour application requirements. [Setting up JVM profiles and JVM properties|

tells you how to choose suitable options for your Java applications, how to
use the supplied sample files, and how to customize these samples or set up
your own files.

2. Set up and customize a shared class cache for your CICS region, so that the
JVMs can start up faster.

a. [Setting up the shared class cache]tells you how to set up a shared class
cache, and how to enable JVMs to use it. Most JVMs can use the shared
class cache, but if you do not want certain JVMs to use it, you can set them
to run independently as standalone JVMs.

b. |[Managing the shared class cache|tells you how to alter the shared class
cache in your CICS region while CICS is running. You can customize the
shared class cache to prevent it from starting automatically, adjust its size,
update the classes or JAR files that it contains, or terminate it.

Your CICS region is now ready to create JVMs and run Java applications in
them.

3. Enable your application to use a JVM.

a. Set the appropriate Java attributes on the PROGRAM resource definition for
the Java program.

b. Add the classes for the application to the class paths for the JVM, which are
set by using the options in the JVM profiles and JVM properties file for the
JVM.

[Enabling applications to use a JVM|tells you how to perform both of these
steps.

4. You can monitor the JVMs in your JVM pool, and make tuning adjustments to
achieve optimum performance. ['Managing your JVMs” on page 132 tells you
how to monitor your JVMs, how to redirect the output from the JVMs, and how
to tune your JVM pool.

5. If you have any problems with your JVMs or Java applications, there are a
number of facilities you can use to identify the cause.

a. [‘Problem determination for JVMs” on page 139| gives an overview of the
facilities that you can use to identify any problems with your JVMs, and
[‘Controlling tracing for JVMs” on page 140| tells you how to control tracing
for your JVMs

b. If a Java application is causing problems, or if you are developing new Java
applications, you can use debugging tools to examine and debug an
application while it is running in a JVM. [‘Debugging an application that is|
[running in a CICS JVM” on page 142|tells you how to set up a JVM for
debugging, and how you can use debugging tools and plugins with a JVM.

© Copyright IBM Corp. 1999, 2006 93

Note that the older type of JVM that was introduced in CICS Transaction Server for
08S/390, Version 1 Release 3 is no longer supported. Any Java programs that ran
under CICS Transaction Server for OS/390, Version 1 Release 3, and were not
previously migrated for CICS Transaction Server for z/OS, Version 2, must be
migrated to Java 2 to run under the persistent reusable JVM. [‘Removal of support]
ffor CICS Transaction Server for 0S/390, Version 1 Release 3 JVMs” on page 92|
has more information about this.

Setting up JVM profiles and JVM properties files

The JVM is started by the CICS Java launcher, which uses a set of options known
as a JVM profile. A JVM profile determines the characteristics of a JVM, and
applications specify the JVM profile that they want their assigned JVM to have. In
the JVM profiles used by CICS, you can specify standard options that are
supported in the persistent reusable JVM runtime environment, and also some
non-standard options that are subject to change in future releases of the Java
language specification. You can set up several JVM profiles that use different
options to cater for the needs of different applications.

JVM profiles are text files stored on HFS, and they list the Java launcher options.
Each JVM profile references a JVM properties file, which is another text file
containing the system properties for the JVM. (System properties are key name and
value pairs that contain basic information about the JVM and its environment, such
as the operating system in which the application is running.) Among other things,
the JVM properties file determines the security properties of the JVM. You can edit
JVM profiles and JVM properties files using any standard text editor. CICS supplies
sample JVM profiles and JVM properties files to help you get started.

[‘How CICS creates JVMs” on page 71| explains how CICS uses JVM profiles, and
gives an overview of the options that you can specify using JVM profiles and their
associated JVM properties files.

To set up JVM profiles and JVM properties files suitable for your applications, follow
the instructions in:

+ [‘Enabling CICS to locate the JVM profiles and JVM properties files’|
+ [‘Choosing a JVM profile and JVM properties file” on page 96|
+ [‘Customizing or creating JVM profiles and JVM properties files” on page 102|

As well as determining the characteristics of a JVM, the JVM profiles and JVM
properties files are used to specify the class paths, that is, the directories that the
JVM searches for the application classes and resources that are needed for your
applications. When you have set up your JVM profiles and JVM properties files, you
will need to add classes to the class paths for each application that uses the JVM
profiles and JVM properties files. ['Enabling applications to use a JVM” on page 119
tells you how to do this.

Enabling CICS to locate the JVM profiles and JVM properties files

94

When an application requests a JVM, CICS needs to find the JVM profile for that
JVM, and the JVM properties file that it references, on HFS. If you alter the location
or the name of either of these items, you need to let CICS know. This section tells
you how to do this.

As JVM profiles and JVM properties files are HFS files, case is important. When
you use the name of a JVM profile or JVM properties file anywhere in CICS, you
must enter it using the same combination of upper and lower case characters that

Java Applications in CICS

is present in the HFS file name. The CEDA panels accept mixed case input for a
JVM profile name irrespective of your terminal’s UCTRAN setting. However, this
does not apply when the name of a JVM profile is entered on the CEDA command
line, or in another CICS transaction such as CEMT or CECI. If you need to enter
the name of a JVM profile in mixed case when you use CEDA from the command
line or when you use any other CICS transaction, ensure that the terminal you use
is correctly configured, with upper case translation suppressed.

Locating the JVM profiles

When an application requests a JVM and names a particular JVM profile for CICS
to use, CICS looks in the HFS directory that is specified by the JVMPROFILEDIR]
system initialization parameter, and loads the JVM profile from that directory.

When you install CICS, the CICS-supplied sample JVM profiles are placed in the
directory /usr/1pp/cicsts/cicsts31/JVMProfiles, where cicsts3l is the value that
you chose for the CICS_DIRECTORY variable used by the DFHIJVMJ job during
CICS installation. The default value of JYVMPROFILEDIR is set as
/usr/1pp/cicsts/cicsts31/JVMProfiles, so the supplied setting for
JVMPROFILEDIR points to the default directory for the sample JVM profiles. If you
chose a different name during CICS installation for the directory containing the
sample JVM profiles (that is, if you chose a non-default value for the
CICS_DIRECTORY variable used by the DFHIJVMJ job), and you plan to use the
CICS-supplied sample JVM profiles, change the value of JYVMPROFILEDIR to
specify the correct directory name.

If you are using the CICS-supplied sample JVM profiles, and only changing them by
adding your own classes to the class paths, then you can leave JVMPROFILEDIR
to point to the directory containing the sample JVM profiles. However, if

* you create customized versions of the sample JVM profiles and change their
behaviour, but want to keep the original versions for reference

* you create your own JVM profiles

then you might want to keep these JVM profiles in a directory other than the
samples directory, and tell CICS to load the JVM profiles from the directory that you
have used.

If you want CICS to load the JVM profiles from a directory other than the

Jusr/1pp/cicsts/cicsts31/JVMProfiles directory, you need to do one of the

following:

+ Change the value of the JVMPROFILEDIR| system initialization parameter to
specify your preferred directory. (The value that you specify can be up to 240
characters long.)

* Link to your JVM profiles from the directory specified by JYMPROFILEDIR, by
means of UNIX soft links. (This method enables you to store your JVM profiles in
any place in the HFS file system.)

You also need to ensure that CICS has read and execute access on HFS for your
JVM profiles and the directory containing them. [‘Giving CICS regions permission to|
[access HFS directories and files” on page 56] tells you how to do this.

Note that the JVM profiles DFHJVMPR and DFHJVMCD, and their associated JVM
properties files, must always be available to CICS. DFHJVMPR is used if a Java
program is defined as using a JVM but no JVM profile is specified, and it is used for
sample programs. DFHJVMCD is used by CICS-supplied system programs,
including the default request processor program (DFJIIRP) and the program that
CICS uses to publish and retract deployed JAR files (DFJIIRQ, the CICS-key

Chapter 11. Using JVMs 95

equivalent of DFJIIRP). Both these JVM profiles must therefore either be present in
the directory that is specified by JVMPROFILEDIR, or linked to by means of UNIX
soft links from that directory.

If you need to locate a particular JVM profile in HFS, you can use the EXEC CICS
[[INQUIRE JVMPROFILE| command to find the full path name of the HFS file for the
JVM profile, provided that the JVM profile has been used during the lifetime of the
CICS region. (Note that there is no CEMT equivalent for this command.)

Locating the JVM properties files

When you install CICS, the CICS-supplied sample JVM properties files are placed
in the directory /usr/1pp/cicsts/cicsts31/props/, where cicsts31 is the value that
you chose for the CICS_DIRECTORY variable used by the DFHIJVMJ job during
CICS installation.

The JVMPROPS option on a JVM profile references a JVM properties file by using
its full path name. The CICS-supplied sample JVM profiles reference the sample
JVM properties files as follows:

JVMPROPS=/usr/Tpp/cicsts/cicsts31/props/dfjjvmpx.props

where dfjjvmpx.props is the name of the sample JVM properties file that matches
with the sample JVM profile.

If you are using the CICS-supplied sample JVM properties files, and only changing
them by adding classes to the class paths, then you can leave this reference as it
is. However, if you change the name or location of a JVM properties file, or create
your own JVM properties file, you need to change the JVMPROPS option to specify
the correct path name in all the JVM profiles that reference that JVM properties file.
You also need to ensure that CICS has read and execute access on HFS for the
JVM properties file and the directory containing it. [‘Giving CICS regions permission|
fto access HFS directories and files” on page 56 tells you how to do this.

Choosing a JVM profile and JVM properties file

96

To help you get started, CICS supplies several sample JVM profiles and JVM
properties files. [Table 5 on page 97| describes these files.

Java Applications in CICS

Table 5. CICS-supplied sample JVM profiles and JVM properties files

JVM profile

Associated JVM
properties file

Comments

DFHJVMPR

dfjjvmpr. props

Profile DFHJVMPR is the default if no JVM profile is
specified in a Java program’s resource definition. It
specifies REUSE=RESET, which causes CICS to
reset the JVM and make it available for reuse for
another task, after the JVM finishes running each
Java program. JVMs created with the profile
DFHJVMPR do not use the shared class cache (the
profile specifies CLASSCACHE=NO). So JVMs
created with DFHJVMPR are resettable standalone
JVMs.

You can specify this profile for JVMs that are to be
used by your own applications. DFHJVMPR and
DFHJVMPC are the recommended profiles for
defining your own JVMs that are to be used by
enterprise beans.

DFHJVMPR is the default if no other JVM profile is
specified, and it is used for sample programs, so
make sure that it is set up correctly for your CICS
region.

DFHJVMPC

dfjjvmpc.props

DFHJVMPC is similar to the default JVM profile,
DFHJVMPR, except that it specifies
CLASSCACHE=YES, and omits the options that are
not required when CLASSCACHE=YES is specified.
JVMs with this profile do use the shared class cache,
so they are resettable worker JVMs. This JVM profile
is compatible with the shared class cache defined by
DFHJVMCC.

You can specify this profile for JVMs that are to be
used by your own applications. DFHJVMPR and
DFHJVMPC are the recommended profiles for
defining your own JVMs that are to be used by
enterprise beans. Single-use JVMs, and JVMs that
are configured for debug, cannot use the shared
class cache.

DFHJVMPS

dfjjvmps. props

DFHJVMPS specifies REUSE=NO, which causes
CICS to make each JVM available for use by a single
Java program only— it is a single-use JVM. JVMs
created with the profile DFHJVMPS do not use the
shared class cache.

You can specify this profile for JVMs that are to be
used by your own applications. However, this profile
is not recommended for JVMs that are to be used by
enterprise beans. DFHJVMPS is only beneficial for
Java applications that were originally designed to run
in a single-use JVM, and have not been made
suitable for running in a JVM that is intended for
reuse. ['How JVMs are reused” on page 85| has more
information about this.

Chapter 11. Using JVMs 97

- - - - - - - - - = H*xHH— " — — —

98

Table 5. CICS-supplied sample JVM profiles and JVM properties files (continued)

JVM profile

Associated JVM
properties file

Comments

DFHJVMCC

dfjjvmcc.props

DFHJVMCC is the default profile used to configure
the master JVM that initializes the shared class
cache. It defines a shared class cache suitable for
use by JVMs in which enterprise beans can be
executed. This JVM profile is the default for the
EVMCCPROFILE| system initialization
parameter‘Setting up the shared class cache” on|
|Eage 106| has more information about this.

Do not specify this profile for JVMs that are to be
used by your own applications.

DFHJVMCD
(reserved for the
use of CICS)

dfjjvmecd.props

CICS-supplied system programs have their own JVM
profile, DFHJVMCD, to make them independent of
any changes you make to the default JVM profile
DFHJVMPR. In particular, the PROGRAM resource
definition for the default request processor program,
DFJIIRP, specifies DFHJVMCD. The CICS-supplied
default is that JVMs created with the profile
DFHJVMCD do not use the shared class cache (the
profile specifies CLASSCACHE=NO), but you can
change that. DFHJVMCD also specifies
REUSE=YES, which gives a continuous JVM, but
you can change that as well.

Do not specify this profile in PROGRAM resource
definitions that you set up for your own applications.
However, because DFHJVMCD is used by
CICS-supplied system programs, you do need to
make sure that it is set up correctly for your CICS
region. Only make the changes to DFHJVMCD that
are necessary to run applications, as described in
‘Customizing or creating JVM profiles and JVM|
roperties files” on page 102

The sample files are defined with JVMPROPS, LIBPATH, CLASSPATH, and
WORK_DIR parameters that use the symbols &CICS_DIRECTORY, &JAVA_HOME,
and &APPLID. As part of the CICS installation process, you will have run the
DFHIJVMJ job, which is described in the |CICS Transaction Server for z/0§

[Installation Guidg The DFHIJVMJ job substitutes your own values for the symbol

names, and produces sample files that are tailored for your system.

If you are following a procedure to set up IIOP support or support for enterprise
beans, and you want to use the default request processor transaction CIRP and the
default request processor program DFJIIRP to process requests for CORBA
stateless objects or enterprise beans, then you will be using the JVM profile
DFHJVMCD. When you have specific CORBA stateless objects or enterprise beans
to run, you will need to add classes required by your CORBA stateless objects or
enterprise beans to the appropriate class path for DFHJVMCD, as described in

[‘Enabling applications to use a JVM” on page 119 If you do not want to customize

this JVM profile at this point, and you are sure that the settings in the profile are
suitable for your system, you can return to the procedure [‘Setting up the host]

system for IIOP” on page 167 or|Chapter 17, “Setting up an EJB server,” on page]

Java Applications in CICS

229.| If you think that you might want to customize DFHJVMCD, or if you want to

select a JVM profile for an alternative request processor program definition that you
plan to set up, carry on reading this section.

If you are setting up standard Java programs or your own request processor
program definition, in many cases you may find that you can use the sample JVM
profiles and JVM properties files with most of the options that are already set in
them, and just add your own application classes to the class paths. Simply select
the appropriate JVM profile for your application’s needs by using the information in
[Table 5 on page 97} The JVM profile that you select references the relevant sample
JVM properties file. The two main questions to ask are:

1. Whether you want the JVM to use the shared class cache (DFHJVMPC) or to
run independently as a standalone JVM (DFHJVMPR). ['The shared class|
[cache” on page 89| explains the advantages for JVMs in using the shared class
cache, and what the implications are. Single-use JVMs and JVMs that are
configured for debug cannot use the shared class cache. Because DFHJVMPR
(where JVMs do not use the shared class cache) is the default, if you do want
JVMs to use the shared class cache, ensure that you specify DFHJVMPC as
the JVM profile for those JVMs.

2. Whether you want CICS to attempt to reset the JVM after it finishes running
each Java program (a resettable JVM), or to make it available for reuse without
resetting it (a continuous JVM), or to destroy the JVM without attempting to
reset it (a single-use JVM)[‘Setting a level of reusability’] explains how this can
be specified.

In some cases, you might find that the options in the sample JVM profiles and JVM
properties files need to be changed to fit the needs of a particular application, or of
your CICS region. ['‘Changes that you could make” on page 100| has information
about the circumstances in which you might want to make these changes.

Setting a level of reusability
The level of reusability for a JVM is specified by the REUSE option in the JVM
profile.

The levels of reusability for a JVM are:

» Continuous (option REUSE=YES)

* Resettable (option REUSE=RESET)

» Single-use (option REUSE=NO)

[‘How JVMs are reused” on page 85| explains the three levels of reusability, the

situations for which each level of reusability is appropriate, and the relative
performance of each level of reusability.

JVMs that use the shared class cache, known as worker JVMs, inherit their level of
reusability from the REUSE option that you specify in the JVM profile for the master
JVM. If you include the REUSE option in the profile for a worker JVM, the option is
ignored. [‘Defining the shared class cache” on page 107| explains what to consider
when choosing a level of reusability for the master and worker JVMs.

For standalone JVMs that do not use the shared class cache, the REUSE option in
the JVM profile determines the level of reusability. REUSE=RESET, which produces
a resettable JVM, is the default if no REUSE option is specified.

The older option Xresettable is also accepted for migration purposes. If this option
is present in the JVM profile and specified as Xresettable=YES, the JVM is
resettable. If Xresettable=NO0 is specified, the JVM is single-use. The Xresettable
option cannot be used to specify a continuous JVM. If the Xresettable option and

Chapter 11. Using JYMs 99

100

the REUSE option are both present in the JVM profile and they conflict, the REUSE
option overrides the Xresettable option, and an information message is issued. It is
advisable to remove the Xresettable option if both the options are present.

The CICS-supplied sample JVM profiles have the following levels of reusability:

 DFHJVMPR specifies REUSE=RESET, which gives a resettable JVM, but you
can change this to REUSE=YES to make a continuous JVM. [‘Programming for|
[different types of JVM” on page 120| explains the considerations for application
design and development for Java programs that will run in each type of JVM.
Bear in mind that DFHJVMPR is the default if no JVM profile is specified in a
PROGRAM resource definition.

 DFHJVMPS is a profile for a single-use JVM, specifying REUSE=NO. lts use is
only beneficial for Java applications that were originally designed to run in a
single-use JVM, and have not been made suitable for running in a continuous
JVM or a resettable JVM. You should not attempt to convert any of the other
CICS-supplied sample JVM profiles for this purpose.

* DFHJVMCC, the default profile for the master JVM that initializes the shared
class cache, specifies REUSE=RESET. This means that all the worker JVMs are
resettable. You can change this to REUSE=YES to make all the worker JVMs
continuous. (Note that you cannot mix resettable worker JVMs and continuous
worker JVMs in a CICS region.)

* DFHJVMPC does not contain a REUSE option, because worker JVMs inherit
their level of reusability from the master JVM, so you can change this by
changing the setting in DFHJVMCC.

+ DFHJVMCD specifies REUSE=YES, which gives a continuous JVM.

When you are specifying JVM profiles for continuous JVMs, bear in mind that if
more than one application uses the same JVM profile that creates a continuous
JVM, the applications could see each other’s persistent state. If you need to ensure
that an application that uses a continuous JVM does not have any contact with the
persistent state from another application, you should create separate JVM profiles
for the applications to use. (The JVM profiles can be identical in content, provided
that they have different eight-character names.)

Changes that you could make

In some cases, you might find that the options in the sample JVM profiles and JVM
properties files need to be changed to fit the needs of a particular application, or of
your CICS region.

['JVM profiles (JVMPROFILE attribute)” on page 73| gives an overview of the options
that are available for you to change in the JVM profiles and JVM properties files.
Note that if any changes are required to fit with the setup of your CICS region (for
example, if you are required to enable Java 2 security), you need to make the same
changes to the supplied sample JVM profiles DFHJVMPR and DFHJVMCD and
their associated JVM properties files. DFHJVMPR is used if a Java program is
defined as using a JVM but no JVM profile is specified, and it is used for sample
programs. DFHJVMCD is used by CICS-supplied system programs, including the
default request processor program (DFJIIRP) and the program that CICS uses to
publish and retract deployed JAR files (DFJIIRQ, the CICS-key equivalent of
DFJIIRP). Both these JVM profiles therefore need to be configured so that they can
be used in your CICS region.

Among other things, you might want to make the following changes:

* Enable Java 2 security for the JVM. The Java 2 security policy mechanism
protects Java applications running in a JVM, and particularly enterprise beans,

Java Applications in CICS

from performing a potentially unsafe action. You can enable Java 2 security by
changing the JVM properties file to name a security manager (using the
java.security.manager system property), and to state the location of one or
more security policy files that the security manager will use to determine the
security policy for the JVM (using the java.security.policy system property). The
CICS-supplied sample JVM properties files do not enable Java 2 security.
“Protecting Java applications in CICS by using the Java 2 security policy|
mechanism” on page 333 tells you what changes you need to make to the
sample JVM properties files to enable Java 2 security, how to set up a security
policy file, and about the CICS-supplied sample security policy file
dfjejbpl.policy, which defines security properties that are suitable for JVMs
that are used by enterprise beans.

Change the amount of storage available for the application’s use, by changing
the size of the middleware and transient storage heaps in the JVM (using the
Xmx= option in the JVM profile). The value specified in the supplied sample JVM
profiles is usually 32M, which should be adequate for most purposes. If you have
large Java applications, you might want to increase this value.
[Performance Guidd has more information about the storage-related JVM options,
and how to determine suitable values for them.

Change the destination for messages from JVM internals and for output from
Java applications running in the JVM (using the USEROUTPUTCLASS= option
in the JVM profile). [‘Redirecting JVM output” on page 135|tells you more about
this option.

Change your work directory (using the WORK_DIR= option in the JVM profile).
This HFS directory is used for the stdin, stdout and stderr files for JVMs. The
default is the user directory of the CICS region user ID. If you are not using the
USEROUTPUTCLASS= option to redirect the output from your JVMs elsewhere,
you might want to change the work directory to a location that is more convenient
for you.

Set up the JDBC drivers supplied by DB2, and also the DataSource interface, so
that your Java applications can access DB2 data. [‘Using JDBC and SQLJ to|
access DB2 data from Java programs and enterprise beans written for CICS” in|
the CICS DB2 Guide explains how you can do this.You need to use various
options in the JVM profile and JVM properties file, which are described in that
topic.

Enable or disable assertion checking at runtime. An assertion is a statement in
the Java programming language that enables you to test your assumptions about
your program. Using the ENABLEASSERTIONS, DISABLEASSERTIONS and
SYSTEMASSERTIONS options in the JVM profile, you can enable or disable
assertion checking for system classes, all application classes, a package, or an
individual class. You can find more information about programming with
assertions at http://java.sun.com/j2se/1.4.2/docs/guide/lang/assert.dital.

For CORBA stateless objects and enterprise beans, specify the information that
is necessary to configure the name server to be used for JNDI references (using
the com.ibm.cics.ejs.nameserver system property), and further information that
is necessary if you are using an LDAP name server. The procedures described in
[Chapter 14, “Configuring CICS for IIOP,” on page 167|tell you how to do this.

Note: In some previous versions of CICS, you could use the -Xquickstart option

(specified using the Xservice option) in a JVM profile to reduce the startup
time for the JVM. However, with improvements in JVM technology, the
-Xquickstart option is now permanently enabled, and specifying
-Xquickstart in a JVM profile has no effect.

Chapter 11. Using JyMs 101

For further information, fthe CICS System Definition Guidd has the full lists of
options that you can specify using JVM profiles and JVM properties files, andlﬂl
[sample JVM profiles and JVM properties files” in the CICS System Definition Guide]
gives the full text of the CICS-supplied sample files.

If you want to change any of the options in the JVM profiles or JVM properties files,
you can either customize the CICS-supplied sample files, or create your own JVM

profiles or JVM properties files. [‘Customizing or creating JVM profiles and JVM|
properties files| tells you how to do this.

If you do not want to change any of the options specified in the JVM profiles or
JVM properties files, and you have specific applications (standard Java programs,
CORBA stateless objects or enterprise beans) to run, [‘Enabling applications to use
[a JVM” on page 119|tells you how to set up applications to use a JVM profile, and
how to add the classes for the application to the class paths. If you are following a
procedure to set up IIOP support or support for enterprise beans, and you do not
yet have any specific applications to run, you can return to the procedure |“Setting|
up the host system for IIOP” on page 167| or [Chapter 17, “Setting up an EJB]|
server,” on page 229 |

Customizing or creating JVM profiles and JVM properties files

The DFHIJVMJ job places the sample JVM profiles in the HFS directory
Jusr/1pp/cicsts/cicsts31/JVMProfiles

where cicsts31 is your chosen value for the CICS_DIRECTORY variable used by
the DFHIJVMJ job during CICS installation.

The sample JVM properties files are in the HFS directory
/usr/1pp/cicsts/cicsts31/props

If you want to change any of the options specified in the JVM profiles or JVM
properties files, you can either customize the CICS-supplied sample files, or create
your own JVM profiles or JVM properties files. ['JVM profiles (JVMPROFILE]|
[attribute)” on page 73| gives an overview of the options that are available for you to
change in the JVM profiles and JVM properties files.

Security caution:

1. You should ensure that the JVM properties files are secure,
with update authority restricted to system administrators.
This is because the JVM properties files are typically used to
define sensitive JVM configuration options, such as the
security policy file and the trusted middleware class path.

2. In particular, if you specify that a secure LDAP server is to
be used, by coding java.naming.security.authentication
in the JVM properties files, you also need to specify
java.naming.security.principal and
java.naming.security.credentials. These properties hold
the UserID and password that CICS requires to access the
secure LDAP service, so you need to give particular
attention to the access controls in force at your installation
for the JVM properties files, and any other copies of this
information that you have.

The full list of options that you can specify in JVM profiles and JVM properties files,
and their possible values, are documented in the CICS System Definition Guide,

Java Applications in CICS

Also, if you want to enable Java 2 security, [‘Protecting Java applications in CICS byl
[using the Java 2 security policy mechanism” on page 333/tells you what options
you need to specify to achieve this. Some options in JVM profiles and JVM
properties files are ignored for JVMs that share the class cache (those with
CLASSCACHE=YES in their JVM profile, known as worker JVMs), or for the master
JVM that initializes the shared class cache, and some options might or might not be
relevant depending on whether the JVM is a resettable JVM, a continuous JVM, or
a single-use JVM (REUSE=RESET, YES or NO). The information in the full list of
options tells you where these exclusions apply.

For single-use JVMs (that is, with a JVM profile that specifies the option
REUSE=NO), instead of customizing the JVM profile, you can override the options
in it, using the user-replaceable program DFHJVMAT. This program is called at JVM
initialization if you specify INVOKE_DFHJVMAT=YES as an option on the JVM
profile that you want to override. DFHJVMAT cannot be used with any type of JVM
other than the single-use JVM. Normally, a JVM profile provides sufficient flexibility
to configure a JVM as required. If you find that you need to make unusual
modifications, fthe CICS Customization Guideg has more information about using
DFHJVMAT. Resettable and continuous JVMs are more economical than single-use
JVMs, so it is generally best to customize a JVM profile rather than using
DFHJVMAT to override it.

Customizing DFHJVMCD

The JVM profile DFHJVMCD is reserved for use by CICS-supplied system
programs, in particular the default request processor program DFJIIRP (used by the
CICS-supplied CIRP request processor transaction) and its CICS-key equivalent
DFJIIRQ, to make them independent of any changes you make to the default JVM
profile DFHJVMPR. DFHJVMCD has an associated JVM properties file,
dfjjvmcd.props. Do not specify this profile in PROGRAM resource definitions that
you set up for your own applications.

You need to make sure that DFHJVMCD is set up correctly for your CICS region,
but you should customize it only where necessary. Only make the changes to
DFHJVMCD and dfjjvmcd.props that are necessary to run applications, or that are
required for the correct operation of these JVMs in your system. [‘Options in JVM|
[profiles” and [‘'System properties for JVMs|in the CICS System Definition Guide tell
you the circumstances in which these changes might be necessary. The comments
in the HFS file DFHJVMCD tell you which options can and cannot be changed, and
dfjjvmed.props includes only those system properties which you might need to
change. Follow the instructions in [‘Customizing the supplied sample JVM profiles|
fand JVM properties files’| to make these changes. Do not make any other changes
to DFHJVMCD and dfjjvmcd.props.

Customizing the supplied sample JVM profiles and JVM
properties files

Follow this procedure if you want to keep the existing name for the JVM profile or
JVM properties file that you are customizing. When you keep the existing name for
the file, applications that are already set up to use that JVM profile or JVM
properties file will use your customized file right away. If you want to change the
name of the file, follow the procedure in [‘Creating your own JVM profiles and JVM|
[properties files” on page 105} if you do this, applications will not use your new JVM
profile or JVM properties file unless you make further changes to inform the
applications of the new file name. If you are customizing DFHJVMPR, bear in mind
that DFHJVMPR is the default if no JVM profile is specified in a PROGRAM
resource definition, and it is used by sample programs. Either make sure that all
your Java programs which specify DFHJVMPR, or no JVM profile, in their

Chapter 11. Using JyMs 103

104

PROGRAM resource definitions are suited to the changes that you are making, or
copy DFHJVMPR and change its name before carrying out any customization.

To customize the supplied sample files, keeping the file names the same, follow this
procedure:

1. Open the JVM profile or JVM properties file in a standard text editor, and
change the options that you want to change, using the lists of options in
[CICS System Definition Guidd for reference. Each parameter or property is
specified on a separate line, and the parameter or property value is delimited by
the end of the line. Follow the coding rules inlthe CICS System Definition]

2. If you want to enable Java 2 security, you need to specify some options in the
JVM properties file, and set up one or more security policy files to define
security properties for the JVM. [‘Protecting Java applications in CICS by using|
[the Java 2 security policy mechanism” on page 333]tells you what options you
need to specify in the JVM properties file, how to set up a security policy file,
and about the CICS-supplied sample security policy file dfjejbp1.policy, which
defines security properties that are suitable for JVMs that are used by enterprise
beans.

3. For JVM profiles, store the customized JVM profile in the HFS directory that is
specified by the JVMPROFILEDIR| system initialization parameter. CICS loads
the JVM profiles from this directory. [‘Enabling CICS to locate the JVM profiles|
fand JVM properties files” on page 94| explains how to identify and change this
directory. If this directory is set to be the directory containing the supplied
sample JVM profiles, you can simply store your customized profiles in the
samples directory, replacing the supplied samples. (If you do this, keep a copy
of the original supplied sample JVM profiles in another folder for future
reference.) Ensure that CICS has read and execute access on HFS for your
JVM profile and the directory containing it. [‘Giving CICS regions permission to|
[access HFS directories and files” on page 56| tells you how to do this.

4. For JVM properties files, it is simplest to store the customized JVM properties
file in the HFS directory /usr/1pp/cicsts/cicsts31/props, where the supplied
sample JVM properties files were placed at installation. (Keep a copy of the
original supplied sample JVM properties files in another folder.) You need to
specify the full path name for the JVM properties file, using the JYMPROPS
option, in all the JVM profiles that reference that JVM properties file. For
example, a JVM profile that states JVMPROPS=/usr/1pp/cicsts/cicsts31/props/
dfjjvmpr.props references the JVM properties file dfjjvmpr.props in the
directory that contains the supplied sample JVM properties files. If you place the
customized JVM properties file back in its original directory, the correct path
name will already be specified in the JVM profiles. If you prefer to store your
customized JVM properties file in a different directory, change the JYMPROPS
option on all the relevant JVM profiles to state the new path name for the file.
Also ensure that CICS has read and execute access on HFS for your JVM
properties file and the directory containing it. [‘Giving CICS regions permission to|
[access HFS directories and files” on page 56|tells you how to do this.

Now that you have customized the JVM profiles or JVM properties files, if you have
specific applications (standard Java programs, CORBA stateless objects or
enterprise beans) to run, [‘Enabling applications to use a JVM” on page 119|tells
you how to set up applications to use a JVM profile, and how to add the classes for
the application to the class paths. If you are following a procedure to set up IIOP
support or support for enterprise beans, and you do not yet have any specific
applications to run, you can return to the procedure [‘Setting up the host system for
[IOP” on page 167|or|Chapter 17, “Setting up an EJB server,” on page 229

Java Applications in CICS

Creating your own JVM profiles and JVM properties files

Follow this procedure if you want to create a JVM profile or JVM properties file with
a different name to the supplied sample files. When you create a file with a new
name:

* For JVM profiles, you will need to specify the profile name in the PROGRAM
resource definition for any applications that you want to use your new JVM
profile.

* For JVM properties files, you will need to specify the file name in any JVM
profiles that you want to reference your new JVM properties file.

To minimize administration, if you want to set up JVM profiles and JVM properties
files that are to be used by most of your applications, you might prefer to customize
the supplied sample files and keep their existing names, following the procedure in

“Customizing the supplied sample JVM profiles and JVM properties files” on page]

@ However, if you want to set up a JVM profile or JVM properties file that is to
be used by a small number of applications, or if you want to ensure that the default
JVM profile DFHJVMPR is not affected by your modifications, you might want to
create a file with a new name.

To create your own JVM profiles and JVM properties files, follow this procedure:

1. Base your JVM profile or JVM properties file on one of the supplied sample
JVM profiles or JVM properties files. ['Choosing a JVM profile and JVM|
[properties file” on page 96| lists and describes these files. Note that the supplied
sample JVM profile DFHJVMPS is not recommended for use with new Java
applications and especially enterprise beans, so if you are creating a profile for
a JVM in which these applications will execute, do not base it on DFHJVMPS.

2. Create the JVM profile or JVM properties file in a standard text editor, using the
lists of options in the CICS System Definition Guidd for reference. Each
parameter or property is specified on a separate line, and the parameter or
property value is delimited by the end of the line. Follow the coding rules inm
[CICS System Definition Guidel

3. If you want to enable Java 2 security, you need to include some system
properties in the JVM properties file, and set up one or more security policy files
to define security properties for the JVM. [‘Protecting Java applications in CICS|
[by using the Java 2 security policy mechanism” on page 333|tells you what
system properties you need to include in the JVM properties file, how to set up
a security policy file, and about the CICS-supplied sample security policy file
dfjejbpl.policy, which defines security properties that are suitable for JVMs
that are used by enterprise beans.

4. Give your JVM profile or JVM properties file a suitable name. The name of a
JVM profile can be up to 8 characters in length. The name of a JVM properties
file can be any length, but for ease of use, choose either the name of the JVM
profile that references it, or another short name.

The name of a JVM profile or JVM properties file can include the following
characters:

A-Z a-z0-90@# .-_%8&¢?2!:v"=,;<>
When creating your own JVM profile or JVM properties file, do not give it a

name beginning with DFH, because these characters are reserved for use by
CICS.

As JVM profiles and JVM properties files are HFS files, case is important.
Remember that when you use the name of a JVM profile or JVM properties file
anywhere in CICS, you need to enter it using the same combination of upper
and lower case characters that is present in the HFS file name. Although the

Chapter 11. Using JyMs 105

CEDA panels accept mixed case input for a JVM profile name irrespective of
your terminal’s UCTRAN setting, this does not apply when the name of a JVM
profile is entered on the CEDA command line, or in another CICS transaction
such as CEMT or CECI. Bear this in mind when choosing a name for your JVM
profile or JVM properties file.

5. For JVM profiles:

a. Store your JVM profile in the HFS directory that is specified by the
WVMPROFILEDIR| system initialization parameter. CICS loads the JVM
profiles from this directory. [‘Enabling CICS to locate the JVM profiles and|
VM properties files” on page 94] explains how to identify and change this
directory. Ensure that CICS has read and execute access on HFS for your
JVM profile and the directory containing it. [‘Giving CICS regions permission|
fto access HFS directories and files” on page 56| tells you how to do this.

b. Specify the name of your JVM profile on the JVMPROFILE option of the
PROGRAM resource definitions for the Java programs that you want to use
this JVM profile. (‘Enabling applications to use a JVM” on page 119 tells you
more about doing this.) Alternatively, you can use a|CEMT SET PROGRAM|
JVMPROFILE command (or the equivalent EXEC CICS command) to
change the JVM profile from that specified on the installed PROGRAM
resource definitions. However you specify the JVM profile, ensure that you
use the same combination of upper and lower case characters that is
present in the HFS file name of the JVM profile.

6. For JVM properties files:

a. Store your JVM properties file in any HFS directory. Ensure that CICS has
read and execute access on HFS for your JVM properties file and the
directory containing it. [‘Giving CICS regions permission to access HFS|
[directories and files” on page 56| tells you how to do this.

b. Specify the full path name for the JVM properties file, using the JVMPROPS
option, in all the JVM profiles that you want to reference that JVM properties
file. For example, a JVM profile that states JYMPROPS=/usr/1pp/cicsts/
cicsts31/myprops/myjvm.props references the JVM properties file
myjvm.props, in the directory /usr/1pp/cicsts/cicsts31/myprops. Ensure
that you use the same combination of upper and lower case characters that
is present in the HFS file name of the JVM properties file.

Now that you have created your own JVM profiles or JVM properties files, if you
have specific applications (standard Java programs, CORBA stateless objects or
enterprise beans) to run, [‘Enabling applications to use a JVM” on page 119tells
you how to set up applications to use a JVM profile, and how to add the classes for
the application to the class paths. If you are following a procedure to set up IIOP
support or support for enterprise beans, and you do not yet have any specific
applications to run, you can return to the procedure [‘Setting up the host system for|
[HOP” on page 167|or|Chapter 17, “Setting up an EJB server,” on page 229

Setting up the shared class cache

106

[‘The shared class cache” on page 89| explains how the shared class cache works,
and how JVMs benefit from using it.

CICS supports one active shared class cache in each region. This enables you to
support the majority of the JVMs in each region. Some of the JVMs in the region
might not be suited to sharing the class cache, because they have an inappropriate

Java Applications in CICS

level of reusability, or because they are debug JVMs used for problem diagnosis.
These JVMs can still run as standalone JVMs, and have their own cache of classes
in their storage heaps.

Before setting up the shared class cache, you need to check the options for
semaphores that you have set in the BPXPRMxx members of SYS1.PARMLIB. The
master JVM that initializes the shared class cache uses a single semaphore ID, and
requests a set of 32 semaphores, so you need to:

* Ensure that the MNIDS value is enough for the maximum number of semaphore
IDs that are in use at one time, including the shared class cache. Depending on
the frequency with which you expect to reload the shared class cache, you might
want to allow two or possibly three semaphore IDs for the shared class cache.
One semaphore ID would be used by the master JVM that controls the active
shared class cache, and the remainder would be used by a master JVM that
controls a shared class cache that is being phased out, or by a new master JVM
that controls a shared class cache that is being loaded. It is unlikely that you
would need more than two semaphore IDs for the shared class cache, except in
a CICS region that is being heavily used for development and testing.
(‘Managing your JVM pool for performance” in the CICS Performance Guidd has
more information about the usage that could be expected in a production system
or in a development system.) If you need to change the MNIDS value, you can
do this by using the IPCSEMNIDS parameter that is in the BPXPRMxx members
of SYS1.PARMLIB.

* Ensure that the MNSEMS value is enough for the maximum number of
semaphores that the master JVM requests in a semaphore set—the value must
be 32 or greater. If you need to change the MNIDS value, you can do this by
using the IPCSEMNSEMS parameter that is in the BPXPRMxx members of
SYS1.PARMLIB.

See z/0S UNIX System Services Planning, GA22-7800, in the topic “Customizing
the BPXPRMxx parmlib members”, and z/OS MVS Initialization and Tuning
Reference, SA22-7592, in the topic “BPXPRMxx (z/OS UNIX System Services
parameters)”, for more information about adjusting these parameters.
[Transaction Server for z/OS Installation Guide has information about other
parameters in the BPXPRMxx members of SYS1.PARMLIB that need to be
changed to use JVMs in a CICS environment.

Now that you have set up a shared class cache in your CICS region,

[shared class cache” on page 110| tells you how to manage it.

Defining the shared class cache

Use the system initialization parameter to specify the initial size of the
shared class cache. The size of the shared class cache determines the number of
classes that it can contain. The default size is 24MB. You can change the size of
the shared class cache while CICS is running; [‘Adjusting the size of the shared|
[class cache” on page 112|tells you how.

Besides JVMCCSIZE, the shared class cache is mainly defined through the JVM
profile that is used for the master JVM that initializes the shared class cache.

The JVM profile for a master JVM is similar to the JVM profile for any other JVM.
The CLASSCACHE_MSGLOG option can be specified to name the file for
messages from the master JVM (the default is dfhjvmccmsg.1og). Some options (for
example, the Xdebug option) are not appropriate for a master JVM, and if they are
specified in the JVM profile that is used for the master JVM, CICS ignores them.

Chapter 11. Using JyMs 107

108

[The CICS System Definition Guideg has information about the options that are not
appropriate in the JVM profile for a master JVM. As for any other JVM profile, you
need to ensure that the settings in the profile are suitable for your system.

The JVM properties file for a master JVM omits most of the system properties that
would be specified for a normal JVM, because the master JVM is not used to run
Java applications. The only system property that needs to be specified is
ibm.jvm.shareable.application.class.path, which you should use to specify the
shareable application classes for all the applications that will run in worker JVMs
that use the shared class cache.|[The CICS System Definition Guidel has more
information about other system properties that you might also want to specify in the
JVM properties file for a master JVM.

One important decision to make about the master JVM is whether to define it as a
resettable JVM, or as a continuous JVM. (It cannot be defined as a single-use
JVM.) ['How JVMs are reused” on page 85| explains the levels of reusability for
JVMs.

The worker JVMs in a CICS region all inherit their level of reusability from the
REUSE option specified in the JVM profile for the master JVM in that region. (If you
include the REUSE option in the profile for a worker JVM, the option is ignored.) If
you specify the option REUSE=RESET or the older option Xresettable=YES in the
JVM profile for the master JVM, the master JVM and all the worker JVMs are
resettable. If you specify the option REUSE=YES in the JVM profile for the master
JVM, the master JVM and all the worker JVMs are continuous. If none of these
options is included, CICS assumes that the master JVM is resettable.

If your worker JVMs are continuous JVMs, they have a greater transaction
throughput and lower CPU usage than if they are resettable JVMs. If you choose to
make your master JVM and worker JVMs into continuous JVMs, you need to note
the considerations for programming and for application design which are described
in [‘Programming for different types of JVM” on page 120,

You cannot mix resettable worker JVMs and continuous worker JVMs in a CICS
region; you need to choose one level of reusability for your worker JVMs. If you
have some applications that need to run in a resettable JVM and some that need to
run in a continuous JVM, and you want both types to use the shared class cache,
then you could set up a master JVM and worker JVMs with either level of
reusability in separate CICS regions. If you require both resettable and continuous
JVMs in a single CICS region that has a shared class cache, you need to choose
which type should be able to use the shared class cache, and which type should be
standalone. Single-use JVMs are always standalone JVMs.

By default, the supplied sample JVM profile DFHJVMCC is used for the master
JVM that initializes the shared class cache. DFHJVMCC specifies the option
REUSE=RESET, so the master JVM and worker JVMs are resettable. You can
modify DFHJVMCC to change this setting or other settings in the JVM profile, or
you