

ibm.com/redbooks

Enterprise JavaBeans
for z/OS and OS/390
CICS Transaction Server V2.1

Phil Wakelin
John Blythe Reid

Anthony Elder
Georg Nozicka

Steffen Rost

Understand the CICS EJB Server and
how to deploy enterprise beans

Integrate enterprise beans with
your COBOL applications

Develop session beans in
VisualAge for Java

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization

Enterprise JavaBeans for z/OS and OS/390
CICS Transaction Server V2.1

July 2001

SG24-6284-00

© Copyright International Business Machines Corporation 2001. All rights reserved.
Note to U.S Government Users - Documentation related to restricted rights - Use, duplication or disclosure is subject to restrictions set
forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (July 2001)

This edition applies to CICS Transaction Server for z/OS Version 2 Release 1, for use with the OS/390 Version
2, Release 10 Operating System.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. QXXE Building 80-E2
650 Harry Road
San Jose, California 95120-6099

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in
any way it believes appropriate without incurring any obligation to you.

Take Note! Before using this information and the product it supports, be sure to read the general
information in “Special notices” on page 321.

Contents

Contents . iii

Preface . vii
The CICS evolution continues . vii
The team that wrote this redbook. ix
Special notice .x
IBM trademarks .x
Comments welcome. .x

Part 1. CICS and EJB . 1

Chapter 1. Enterprise JavaBeans: An introduction . 3
1.1 Enterprise JavaBeans . 4

1.1.1 Object orientation . 4
1.1.2 Transactionality . 4
1.1.3 Isolation. 7
1.1.4 Security . 8

1.2 Enterprise beans . 10
1.2.1 Session beans . 10
1.2.2 Entity beans . 15
1.2.3 Database access . 19

1.3 Enterprise bean interoperability . 27
1.3.1 RMI . 27
1.3.2 RMI and EJB . 28
1.3.3 JNDI . 28

Chapter 2. CICS TS V2.1: The EJB Server . 31
2.1 The CICS Java road map . 32
2.2 The Java Virtual Machine . 34

2.2.1 Features of the persistent reusable JVM . 34
2.2.2 Exploitation of the persistent reusable JVM . 37

2.3 IIOP support in CICS. 39
2.3.1 The Object Request Broker . 39

2.4 The CICS EJB Server architecture . 40
2.4.1 Components of the CICS EJB Server . 40
2.4.2 Selecting a new request processor. 47
2.4.3 Object Transaction Service . 49
2.4.4 Workload balancing . 50

Chapter 3. Accessing CICS from servlets and enterprise beans 53
3.1 From a servlet — Using the CICS connectors . 54
3.2 From a session bean — Using the CICS connectors . 57
3.3 From a servlet — Invoking a CICS session bean . 58
3.4 From a session bean — Invoking a CICS session bean . 60

Part 2. CICS TS V2.1: Systems programming . 63

Chapter 4. Installation considerations for CICS TS V2.1 . 65
4.1 Installation and configuration . 66

4.1.1 Initial preparation . 66
© Copyright IBM Corp. 2001 iii

4.1.2 Creating HFS directories and files . 67
4.1.3 Defining OS/390 data sets . 71
4.1.4 Tailoring the CICS startup JCL . 75
4.1.5 Installing CICS resource definitions . 77

4.2 Setting up the workstation tools . 82
4.2.1 WebSphere Application Server . 82
4.2.2 CICS Information Center. 84
4.2.3 CICS JAR development tool and production deployment tool 85
4.2.4 CICS development deployment tool . 86

4.3 Installation verification . 93
4.3.1 Running the IVP OS/390 USS client application. 94
4.3.2 The HelloWorld Web application. 96

Chapter 5. Troubleshooting enterprise beans in CICS TS V2.1 103
5.1 Diagnosing Java problems in CICS . 104

5.1.1 Gathering diagnostic information . 104
5.1.2 The Java Platform Debugger Architecture . 105

5.2 WebSphere diagnostic aids . 115
5.2.1 WebSphere logs . 115
5.2.2 COS Naming Server . 115

5.3 Traditional CICS diagnostic aids . 117
5.3.1 CICS job log and console messages . 117
5.3.2 CICS auxiliary trace . 117
5.3.3 Verifying that the request receiver transaction runs . 118
5.3.4 Using EDF with enterprise beans . 118

5.4 Debugging common errors . 119
5.4.1 Overview of debugging a Web application . 119
5.4.2 Common problems . 122

Part 3. CICS TS V2.1: Enterprise bean scenarios . 133

Chapter 6. Developing a HelloWorld session bean for CICS 135
6.1 Quick start — Invoking HelloWorldBean . 136
6.2 Developing a HelloWorld session bean with VAJ . 137

6.2.1 Developing in VAJ. 137
6.2.2 Testing in VAJ . 142

6.3 Deploying the HelloWorld session bean to CICS . 147
6.3.1 Packaging an undeployed JAR file . 147
6.3.2 Generating a CICS deployed JAR file. 148
6.3.3 Deploying to CICS . 150

6.4 Testing with a Java client application . 159
6.4.1 Writing the client within VAJ . 159
6.4.2 Running the client within VAJ . 162
6.4.3 Running the client from the Windows NT environment . 165
6.4.4 Running the client from the USS environment . 168

6.5 Summary . 170

Chapter 7. Wrapping the Trader application: JCICS link . 171
7.1 Quick start — Invoking TraderBean . 173
7.2 TraderBean development with VisualAge for Java . 174

7.2.1 Define the business methods of the enterprise bean . 174
7.2.2 Design the enterprise bean structure . 175
7.2.3 Implement the interface TraderBackend . 176
7.2.4 Implement CompaniesBean . 177
iv EJB for OS/390 and z/OS, CICS TS V2.1

7.2.5 Implement QuotesBean . 177
7.2.6 Implement TraderBean . 178
7.2.7 Implement TraderBackendJcics . 182

7.3 Deploying the TraderBean to CICS. 191
7.3.1 Exporting the enterprise bean and its related classes . 191
7.3.2 Converting the exported file to a deployed JAR file . 192
7.3.3 Sending the deployed JAR file to OS/390. 193
7.3.4 Defining the DJAR in the CICS system. 193
7.3.5 Sending supporting JAR files to OS/390. 194
7.3.6 Adding the supporting JAR files to the trusted middleware classpath 194
7.3.7 Restarting the CICS JVM environment . 195
7.3.8 Publishing the Trader enterprise bean . 195

7.4 Testing the enterprise bean . 196
7.4.1 Developing a stand-alone test client: TraderTest . 196
7.4.2 Servlet development with VisualAge for Java . 199
7.4.3 Configuring WebSphere Application Server for Windows NT. 207
7.4.4 Configuring WebSphere Application Server for OS/390 211

7.5 Summary . 215

Chapter 8. Wrapping the Trader application: CICS Connector 217
8.1 Quick start — Invoking TraderBean . 219
8.2 Adapting TraderBean for use of the CICS Connector . 220

8.2.1 Implementing TraderBackendCICSConnectorCCF . 220
8.3 Deploying the enterprise bean to WebSphere . 227

8.3.1 Testing the enterprise bean running in WebSphere . 229
8.4 Deploying the enterprise bean to CICS. 230

8.4.1 Testing the enterprise bean running in CICS . 232
8.5 Summary . 233

Chapter 9. Rewriting the COBOL Trader application with JCICS 235
9.1 Quick start — Invoking TraderBean . 236
9.2 Adapting TraderBean to use JCICS . 236

9.2.1 Java Record Framework . 238
9.2.2 Implementing TraderBackendVsam . 241

9.3 Deploying the enterprise bean to CICS. 249
9.3.1 Testing the enterprise bean . 250

9.4 Summary . 251

Chapter 10. Rewriting the Trader session bean using JDBC/SQLJ 253
10.1 Quick start — Invoking TraderBean . 255
10.2 Accessing DB2 using JDBC . 256

10.2.1 Developing the JDBC application . 256
10.2.2 Deploying the enterprise bean to CICS. 271
10.2.3 Setting up the database . 274
10.2.4 Customizing the JDBC runtime environment . 276
10.2.5 Defining a CICS DB2 connection . 280
10.2.6 Granting privileges to the CICS user ID . 282
10.2.7 Testing the JDBC enterprise bean . 282

10.3 Accessing DB2 using SQLJ . 283
10.3.1 Developing the SQLJ application . 284
10.3.2 Deploying the enterprise bean to CICS. 293
10.3.3 Preparing the SQLJ program on OS/390 . 295
10.3.4 Modifying the CICS DB2 connection. 298
10.3.5 Granting privileges to the CICS user ID . 298
 Contents v

10.3.6 Refreshing the DJAR in the CICS region . 299
10.3.7 Testing the SQLJ enterprise bean . 299

10.4 Summary . 300

Part 4. Appendixes . 301

Appendix A. Security customization: DFHXOPUS. 303
Security functions of DFHXOPUS . 304
The sample COBXOPUS . 304
Deploying the sample COBXOPUS . 307
Testing the sample COBXOPUS . 307

Appendix B. The COBOL Trader application . 309
The 3270 Trader COBOL application. 310
CICS resource definitions . 314

Appendix C. Using the additional material . 315
Locating the additional material on the Internet . 315
Using the Web material . 315

System requirements for downloading the Web material . 319
How to use the Web material . 319

Special notices . 321

Related publications . 323
IBM Redbooks . 323

Other resources . 323
Referenced Web sites . 323
How to get IBM Redbooks . 324

IBM Redbooks collections. 324

Abbreviations and acronyms . 325

Index . 327
vi EJB for OS/390 and z/OS, CICS TS V2.1

Preface

Consistent with its 32-year technical evolution, CICS, the IBM Customer Information Control
System, has delivered support for the Enterprise JavaBeans (EJB) technology in its latest
release, CICS Transaction Server for z/OS V2.1.

In this IBM Redbook, we first provide an introduction to both EJB and the way it has been
implemented within the CICS architecture. We also include a summary of the different
configurations in which servlets and enterprise beans can be used to access CICS
applications.

Following this, we document how to set up and configure a CICS region to support enterprise
beans, how to use the various new tools and features required, and how to deploy and test
the product samples. Then we provide information on how to diagnose and fix problems when
deploying and testing enterprise beans in CICS.

Finally, we document five scenarios in which we developed enterprise beans and deployed
them to CICS. We start with the initial step of creating a simple HelloWorld session bean
using the VisualAge for Java Development environment, and then move on to creating a
stateful session bean called TraderBean that wraps the existing pseudo-conversational
COBOL Trader application.

Following this, we provide details on how to develop new Java versions of COBOL
applications using either the JCICS classes, or the SQLJ and JDBC interfaces. We also
provide details on how we developed a sample JSP/servlet application to invoke the
TraderBean and information on how to deploy this in WebSphere Application Server for
Windows NT and WebSphere Application Server for OS/390.

This redbook is part of a two-part series entitled Enterprise JavaBeans for z/OS and OS/390.
The other book in this series covers WebSphere Application Server V4.0 for z/OS and will be
available as SG24-6283.

The CICS evolution continues
CICS first offered on-line transaction processing beginning in 1968, providing support for
traditional procedural programming languages such as COBOL and PL/I to be used in a high
volume, high performance transaction processing environment. Since then, it has continually
enhanced that basic capability in virtually every year of its existence.

In 1972 CICS was one of the first software systems to offer support and exploitation of a new
IBM device for commercial data processing, the 3270 Display Station, which has since
become a legacy synonymous with on-line transaction processing itself. Data management
support with CICS began with standard access methods but today includes the major IBM
offerings of VSAM, DL/I and DB2, plus the use of, and co-existence with, major non-IBM
relational data base management systems.

In the late 1970s, CICS first offered its support for client-server and distributed systems with
the introduction of Intersystem Communication (ISC) and Multi-Region Operation (MRO), and
support for communications protocols such as Advanced Program to Program
Communications (APPC). In the 1990s this evolved into the CICS client support, and became
the basis for today’s high function CICS Universal Client, which runs on a wide variety of
client platforms including Windows, IBM’s AIX, HPUX, and Solaris.
© Copyright IBM Corp. 2001 vii

In the mid-1990s CICS first offered its support for the then-burgeoning Internet, with the
introduction of the CICS Internet Gateway and the CICS Gateway for Java, both of which now
having evolved into the very comprehensive CICS Transaction Gateway. In parallel with the
support of Java, CICS/ESA V4.1 developed the CICS Web Interface, in order to provide a
CICS application with the ability to directly send and receive HTML pages to a Web browser.
This has now itself evolved into the CICS Web support feature of CICS Transaction Server
V1.3, and perhaps unknowingly provided the first step towards EJB connectivity by allowing a
CICS region to process TCP/IP requests.

In addition to all this technical growth and evolution, CICS has exploited other environmental
improvements for the benefit of its customers. CICS offers high availability and high
performance with its support of the S/390 Parallel Sysplex architecture, and allows network
workloads to be dynamically routed to available CICS regions through the use of the MVS
Workload Manager (WLM) and the CICSPlex System Manager (CICSPlex SM).

During its progress through the decades, CICS has evolved to include support for all the
popular programming languages (COBOL, PL/I, Assembler, REXX, C) and now includes
support for object-oriented languages such as C++ and Java. Java, like the Internet, has
been rapidly accepted by the I/T industry as the language of choice. But Java is proving to be
rather more than a programming language, as it is continually expanding from the basis of
many new computing standards the latest of which is Enterprise JavaBeans (EJB).

The EJB specification was first introduced by Sun Microsystems in 1999, and has now been
endorsed and supported by many companies in the computer industry. The EJB specification
addresses the need for transactional capabilities for the Java component technology of
JavaBeans, and provides for transactional services (sharing, integrity, recoverability,
persistence, and so on) unique to the specific platforms. Application developers, using EJB,
can concentrate on the business logic and not the physical environment, and should the
needs of the business change, the enterprise beans can be ported to other environments
which support the EJB standard.

With its tremendous pedigree, the time is now right for CICS to embrace object oriented
technology. Now there is an EJB container that runs within a truly proven transaction
processing environment. Once again, CICS is on the leading edge.

Bob Yelavich, Yelavich Consulting
viii EJB for OS/390 and z/OS, CICS TS V2.1

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world working at the
International Technical Support Organization, San Jose Center.

Phil Wakelin is a Senior IT Specialist at the International Technical Support Organization,
San Jose Center, where he has worked since 1999. He joined IBM in 1990, originally working
in the System Test department of IBM Hursley. He worked on most platforms and versions of
CICS before joining the Installation Support Center, as a pre-sales support specialist for CICS
client-server. He is an IBM Certified Solutions Expert – CICS e-business, and holds a BSc
degree in Applied Biology from the University of Bath, UK.

Georg Nozicka is a Certified IT Architect for IBM Global Services in Austria. He has over 17
years of experience in the industry. He worked for many years in the IBM Vienna Software
Development Laboratory, where he specialized in workstation application development.
Georg was one of the key architects of the IBM workflow manager FlowMark, now known as
MQ Series Workflow. Since 1996, he has worked for IBM Global Services as an IT Architect
in the insurance and banking industries. More recently he has been involved in OS/390
application development projects for e-business enablement. He holds a master’s degree in
Computer Science from the Technical University of Vienna.

Anthony Elder is a Software Engineer with the CICS Change Team at IBM’s Hursley
Laboratory in the UK. He has 14 years experience with IBM mainframes using most of IBM’s
major operating systems and components. He holds a BSc degree in Computer Science from
Auckland University, New Zealand, is a Sun certified Java programmer, and is currently
studying for an MSc in Software Engineering at Oxford University in the UK.

John Blythe Reid is an IT Specialist with IBM UK, working in Software Group Services at
IBM's Hursley Laboratory. He has extensive experience in both software development and
systems programming in the IBM mainframe environment. His area of specialization is in the
area of transaction processing systems and his most recent assignment was to work on the
CICS TS V2.1 beta test. He is currently following a postgraduate software engineering
programme at the Open University in the UK.

Steffen Rost is an IT Specialist working at the IBM zSeries Software Development
Laboratory in Boeblingen. He has 5 years of experience in computer science and application
development. His current areas of expertise include application development with Java and
EJB, and developing e-business solutions using WebSphere and VisualAge for Java. He
holds a degree in Computer Science from the University of Rostock.

Thanks to the following people for their contributions to this project:

Ken Davies, Chris Smith, Geoff Sharman, IBM Hursley UK, for supporting this project.
Becca Loader, Richard Chamberlain, Adrian Colyer, Glyn Normignton, John Tiling, John
Bond, Richard Chamberlain, Chris Backhouse, Noel Sales, Terry Warren, Shane Babey, Paul
Willats, Hilora Munro, Andrew Clement, George Burgess, Daniel McGinnes, Adrian Thomson,
IBM Hursley for technical input.

Christopher Farrar, IBM Silicon Valley Laboratory, for advice on JDBC and SQLJ.

Norm Aaronson, Patricia Healy, David Booz, IBM Poughkeepsie, for technical input.

Dennis Weiand, Leigh Compton, IBM Dallas System Center, for reviewing.

Bob Haimowitz, Rich Conway, ITSO Poughkeepsie, for providing excellent systems support.

Yvonne Lyon, ITSO San Jose, for technical editing support.
 Preface ix

Special notice
This publication is intended to help systems programmers and application developers to build
and deploy enterprise beans in CICS Transaction Server V2.1. The information in this
publication is not intended as the specification of any programming interfaces that are
provided by IBM CICS Transaction Server for z/OS Version 2 or WebSphere Application
Server for z/OS V4. See the PUBLICATIONS section of the IBM Programming
Announcements for more information about what publications are considered to be product
documentation.

IBM trademarks
The following terms are trademarks of the International Business Machines Corporation in the
United States and/or other countries:

Comments welcome
Your comments are important to us!

We want our IBM Redbooks to be as helpful as possible. Send us your comments about this
or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an Internet note to:

redbook@us.ibm.com

� Mail your comments to the address on page ii.

e (logo)®
IBM ®

AIX
CICS
CICS Connection
CICS/ESA
CICSPlex
DB2
FlowMark
Language Environment
OS/390

Redbooks
Redbooks Logo

Parallel Sysplex
RACF
S/390
SupportPac
System/390
VisualAge
VTAM
WebSphere
Wizard
x EJB for OS/390 and z/OS, CICS TS V2.1

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

Part 1 CICS and EJB

In this part we introduce the Enterprise JavaBeans (EJB) technology and provide details of
how this technology has been implemented within the CICS TS V2.1 architecture. We also
provide details on the different scenarios in which CICS applications can now be invoked from
both servlets and enterprise beans.

Part 1
© Copyright IBM Corp. 2001 1

2 EJB for OS/390 and z/OS, CICS TS V2.1

Chapter 1. Enterprise JavaBeans:
An introduction

In this chapter we provide a general description of the Enterprise JavaBeans (EJB)
technology. We describe what enterprise beans are and how they are beneficial to the
application development process; the two types of enterprise beans session beans and entity
beans; and finally the manner in which the enterprise beans may inter-operate. An overview
of how EJB is used by a Java Client is illustrated in Figure 1-1.

Figure 1-1 EJB overview

1

EJB

EJB Server

EJB Container

Response

Request Remote
object

Naming
Server

JNDI

Java
Client
© Copyright IBM Corp. 2001 3

1.1 Enterprise JavaBeans
In this section we take a close look at the EJB technology and how it permits the developer to
create applications without the need to consider certain execution time aspects such as
transactionality and security during the development activity.

1.1.1 Object orientation
Object oriented software engineering brings many advantages to the development process.
Application design more realistically attempts to model the real world by defining classes of
objects which communicate with one another by sending messages. Each object
encapsulates function and has its own state which may only be queried or changed using
formally defined protocols, known as the method signatures.

Object orientation permits easier reusability of existing code by a technique known as
inheritance and increases reliability by hiding the implementation of function and state from
the user of the object.

Developing applications in this component-like way also enhances maintainability. A
component may be internally re-engineered or indeed substituted, and providing its external
protocol is preserved, then the change will be transparent to the remainder of the application.

The re-use of existing components has been particularly successful for the development of
graphical interfaces on the client platform. Libraries of classes defining graphical components
such as buttons, frames and text boxes have been available for some time. The java.awt and
swing classes are examples of these class libraries.

Now the focus is moving to providing these same benefits of re-use on the enterprise platform
by using object-oriented techniques for server-side development. However, the development
of enterprise-wide server-side applications introduces new challenges in areas such as
transaction management, security and scalability. The Enterprise JavaBeans technology is
rapidly becoming an industry standard to address these challenges.

An enterprise bean is a Java component which is written to conform to the Enterprise
JavaBeans specification. It is deployed into an EJB server, and its name is published into a
name space using the Java Naming and Directory Interface (JNDI).

A client program locates the enterprise bean by obtaining its reference from the name server,
asks the container in the EJB server to make the enterprise bean available and then invokes
methods on the bean by sending messages to the object reference returned by the container.
The messages sent to the enterprise bean by the client are intercepted by a component of the
EJB server known as the container which applies transaction management and security rules
to the execution of the enterprise bean’s method. When the enterprise bean’s method
completes execution, a response is returned to the client (see Figure 1-1).

1.1.2 Transactionality
Transaction management is an important aspect of enterprise-wide server-side operation. In
order to maintain the integrity of the information held on possibly dispersed databases, it is
essential that any changes to persistent data are either all committed on successful
termination of a transaction or all rolled back if the transaction fails.

These properties of a transaction are commonly referred to by the acronym ACID,
representing Atomicity, Consistency, Isolation and Durability. The meanings of these terms
in this context are as follows:
4 EJB for OS/390 and z/OS, CICS TS V2.1

Atomicity indicates the coordination of all the participants in a transaction, such as
enterprise beans, database managers, and servlets, so all must complete successfully for
the data to be committed to the database or databases, whereas the failure of any
participant to complete successfully will result in all database changes being rolled back.

Consistency means that the execution of the transaction must always leave the
database in a consistent state upon completion of the transaction. For example, in a
banking application the sum of account balances for a branch must always be equal to
the branch total.

Isolation means that the execution of concurrent transactions must produce the same
results as if the transactions were executed serially.

Durability means that database integrity will be maintained, even in the event of a
system failure during the execution of a transaction.

The transaction management rules which are applied to enterprise bean method invocations
are based on the Object Transaction Service (OTS) which is part of the CORBA specification.

An OTS transaction permits transaction management in a distributed heterogeneous
environment. The instigator of an OTS transaction registers the start of the transaction with
an OTS Transaction Coordinator which returns a transaction context that uniquely identifies
the transaction. The transaction context, which includes a reference to the OTS Transaction
Coordinator responsible, is passed as part of the protocol for method invocations on remote
objects such as enterprise beans.

As shown in Figure 1-2, the transaction context is propagated throughout all method
invocations on any enterprise beans which are involved during the life of the transaction.

Figure 1-2 EJB transaction propagation

That is not to say that the enterprise beans involved necessarily participate in the transaction.
The transaction context which is sent with the method invocations is an invitation to
participate in the transaction, but the invitation may be declined. Whether or not to participate
in a transaction is defined by the operational attributes of the enterprise bean which are held
in an associated deployment descriptor. The transactional attributes of the bean that may be
specified in the deployment descriptor are as follows:

OTS
Coordinator

Enroll in T1

En
ro

ll
in

T1

Start
T1

Com
m

it
T1

R
esp

o
n

se

R
eq

u
est

(T
1)

Response
Request (T1)

Enterprise
Bean 1

Java
Client

Enterprise
Bean 2
Chapter 1. Enterprise JavaBeans: An introduction 5

Mandatory: The enterprise must be invoked with a transaction context. If there is no
transaction context, then an error response is returned.

Never: The enterprise bean must not be invoked with a transaction context. If the method
invocation contains a transaction context, then an error response is returned.

NotSupported: The enterprise bean may be invoked with a transaction context, but it
will be ignored. The transaction will be suspended for the duration of the method.

Supports: The enterprise bean may be invoked with or without a transaction context.
If the method invocation contains a transaction context, then the execution of the
method will form part of the transaction; otherwise the method execution will not
participate in a transaction.

Required: The enterprise bean requires a transaction. If the enterprise bean is
invoked without a transaction context, then a new transaction is started for the
execution of the method. The life of this transaction is the duration of the method
execution. On the other hand, if the enterprise bean was invoked with a transaction
context, then the method will be executed as part of this transaction.

RequiresNew: The enterprise bean will always start a new transaction irrespective of
any transaction context passed with the method invocation. If a transaction context
was passed with the method invocation, then the transaction will be suspended for the
duration of the method execution. A new transaction is started prior to the execution of
the method and this new transaction is terminated upon completion of the method.

It is clear that a key role played in this activity is the OTS Transaction Coordinator. It needs to
be made aware of all participants in any transaction so that it can effect a two phase commit
protocol with the participants upon successful completion, or conversely, notify all the
participants to roll back any database changes.

The OTS Transaction Coordinator is made aware of the participating enterprise beans by the
EJB containers within the EJB servers. The container code which intercepts the enterprise
bean method invocations uses the enterprise bean’s transaction attribute to decide if the
enterprise bean is to participate in an existing transaction. If it is, then the enterprise bean is
registered with the OTS Transaction Coordinator as participating in the transaction. The
container locates the OTS Transaction Coordinator by using the reference to it which is
passed as part of the transaction context in the method invocation.

Bean-managed OTS transactions
As a means of simplifying application development it is recommended that transaction
management be left to the container as described in the previous section. However, an
application programming interface is provided to allow the developer to explicitly set OTS
transaction boundaries. This interface is called the Java Transaction API (JTA).

The Java Transaction API is used by obtaining an instance of the class UserTransaction from
the enterprise bean’s session context and then invoking methods on the instance to request
transaction management services. Here are four of the methods provided by the JTA:

begin() Start a new transaction

commit() Commit the current transaction

getStatus() Retrieve the status of the current transaction

rollback() Roll back the current transaction

Transactions: The term transaction is used to describe a recoverable unit of work. This
equates to the CICS term unit of work, which was previously termed a logical unit of work
in earlier CICS releases.
6 EJB for OS/390 and z/OS, CICS TS V2.1

The fragment of code shown in Figure 1-3 is an example of a bean-managed transaction.

Figure 1-3 An example of a bean-managed transaction

1.1.3 Isolation
Concurrency control is an important part of transaction processing system. Section 1.1.2,
“Transactionality” on page 4 covered the properties of a transaction which ensure that
database integrity is maintained. One of these properties is isolation. The term isolation
refers to the manner in which concurrent access to shared information is controlled.

A problem arises when multiple clients wish to refer to the same item of information and the
information is to be updated.

As an example, consider an enterprise bean that carried out the following:

1. Read A from a database

2. Add 5 to A

3. Write back A to the database

If these actions always take place in this order, then there is no problem. However, in a
multi-threaded system, this cannot always be guaranteed.

If the enterprise bean were now invoked by two clients without concurrency control, the
following sequence of operations could occur:

1. Instance 1 reads A from the database. A holds 0.

2. Instance 2 reads A from the database. A holds 0.

3. Instance 1 adds 5 to A and updates the database with A set to 5.

4. Instance 2 adds 5 to A and updates the database with A set to 5.

Because of the switching that occurs between the two threads running the two enterprise
bean instances, the first update of A to the database has been lost.

public void deposit(int amt) throws AccountException{
/* get a user transaction object from the session context */

javax.transaction.UserTransaction userTran = ctx.getUserTransaction();
/* start the transaction */

userTran.begin();
/* update the balance */

balance += amt;
/* code to update the database */
/* commit the transaction */

try{
userTran.commit();

}
catch (Exception e){

throw new accountException("error:"+e.toString());
}

}

Chapter 1. Enterprise JavaBeans: An introduction 7

Transaction management systems prevent this from happening by using a process of locking.
In this example when Instance 1 reads A from the database it would be locked; this lock
would not be released until Instance 1 had updated the database with the new value of A.
Similarly, Instance 2 would request the same lock so that it could read A from the database,
but in this case the lock would already be held by Instance 1. This would result in Instance 2
waiting until Instance 1 released the lock. Having obtained the lock, Instance 2 would update
A and then release the lock, leaving A set to the correct value of 10.

However, there is a certain amount of overhead in managing locks, and contention for shared
resources which are locked causes delays and may cause deadlocks. So the EJB server
should only use locks when they are necessary. An enterprise bean that simply reads an item
from the database and returns it to its client would not need any locks to be set.

The deployment descriptor of the enterprise bean may be used to communicate the isolation
level of the enterprise bean to the EJB server. The isolation levels only apply to enterprise
beans that participate in a transaction. The four isolation levels are:

1. Read uncommitted: This level does not provide any isolation guarantee, and means that
a dirty read is performed. Thus the data read may actually have been changed by another
user, but may not have yet been committed.

2. Read committed: This level ensures that any data item read from the database has been
committed. This prevents accessing data which has been changed by another user, but
has not yet been committed.

3. Repeatable read: This level guarantees that a set of database rows may be read and
that upon re-reading the same set, the same values will be returned. In other words, all of
the rows in the set are locked when first read.

4. Serializable: This level provides full transaction isolation, so that the data is locked
before it is accessed.

The four isolation levels may be specified as applying to the entire enterprise bean or they
may be specified for individual methods.

1.1.4 Security
The secure use of an application involves the following three considerations:

� Authentication: The validation of the identity of the user. The user normally enters a user
identification and a password, and once verified, the user is free to use the application.

� Access Control: The control of what a user may or may not do within the application.

� Secure Communication: This normally involves the use of encryption techniques so
that the information flowing across the communication link cannot be understood by a third
party.

The EJB specification is concerned with access control.

When a user logs on to the system, a process of authentication will take place in order to
establish the user’s security identity for the duration of the session. The security identity as
defined in the EJB specification may be that of an individual user or a role.

A role is a logical security identification which is mapped to real users or user groups in the
environment where the enterprise beans are to be deployed. For example, in the OS/390
environment, the roles could be mapped to RACF group profiles.

When a security identity has been established it will be implicitly passed with the method
invocations.
8 EJB for OS/390 and z/OS, CICS TS V2.1

The EJB 1.1 specification defines the class java.security.Principal to represent the security
identity. This class is used by the EJB access control architecture running in the EJB server to
ensure that method invocations are permitted for the role of the user.

The roles are defined using the XML deployment descriptor. Figure 1-4 shows the definition
of two security roles: Administrator and ReadOnly. At this stage these are simply role names;
they will subsequently be used in permission definitions.

Figure 1-4 Definition of security roles in the XML deployment descriptor

The association between security roles and the enterprise bean methods is defined by using
method-permission tags in the deployment descriptor. Figure 1-5 shows an example of
giving the security role Administrator access to all the methods in an enterprise bean named
Account.

Figure 1-5 Access rights for the administrator role

Figure 1-6 shows the definition of the methods which the role ReadOnly may access. A user
in the ReadOnly role may only invoke the methods getName() and getBalance() on the
Account enterprise bean.

Figure 1-6 Access rights for the ReadOnly role

<security-role>
<description>

A user with this role may access any method.
</description>
<role-name>

Administrator
</role-name>

</security-role>
<security-role>

<description>
A user with this role is not allowed to make changes

</description>
<role-name>

ReadOnly
</role-name>

</security-role>

<method-permission>
<role-name>Administrator</role-name>

<method>
<ejb-name>Account</ejb-name>

<method-name>*</method-name>
</method>

</method-permission>

<method-permission>
<role-name>ReadOnly</role-name>

<method>
<ejb-name>Account</ejb-name>

<method-name>getName</method-name>
<method-name>getBalance</method-name>

</method>
</method-permission>
Chapter 1. Enterprise JavaBeans: An introduction 9

The enforcement of these access rights is performed by interposed code in the EJB container
when the enterprise bean is invoked. This interposed code is generated automatically when
the enterprise bean is deployed into the container. The enterprise bean developer need have
no awareness of the security controls that are assigned when the enterprise bean is
deployed.

If the enterprise bean invokes methods on other enterprise beans, then the security identity is
propagated throughout the entire invocation hierarchy.

Querying security information
The enterprise bean session context object can be queried by the application code to retrieve
security information. This should not be necessary except in special circumstances, as using
this facility introduces security management function into the application code. The following
two methods are provided which return information about the security context:

� isCallerInRole(String s) returns true if the caller is in the security role specified as the
single string argument; otherwise, false is returned.

� getCallerPrincipal() returns an object of the class java.security.Principal which may then
be used to extract more information such as the distinguished name which is associated
with this session.

1.2 Enterprise beans
In this section we look at enterprise beans themselves. There are two types of enterprise
beans: session beans and entity beans, which we shall now describe.

1.2.1 Session beans
Session beans define the business logic of an application. They are effectively an extension
of the client that invokes them. Once instantiated, the client invokes methods on the
enterprise bean in the same way as it would on any other object.

Session beans are server-side business components that can be deployed into any J2EE
compliant EJB server. They are located by looking up their names in a name server using
JNDI. There are two types of sessions beans, stateful and stateless; the differences are
described further, later in this section.

Normally an instance of a session bean will be relatively short-lived. It will provide its service
to the client and then be removed. The life of the session bean instance will typically be the
same duration as the life of the client session, hence the term session bean.

Important: CICS TS V2.1 provides limited support for security as defined in the EJB
specification. In particular, it does not support role base security and therefore the above
method IsCallerInRole() will always return true. The specification will be supported
more fully in a subsequent version of CICS.
10 EJB for OS/390 and z/OS, CICS TS V2.1

The parts of a session bean
A session bean is composed of the following:

� Home interface: This specifies the lifecycle events such as the creation of a session
bean instance.

� Remote interface: This specifies the business methods that are to be exposed to the
clients that will use the bean.

� Bean implementation: This contains the actual implementation of the business logic
together with the implementation of lifecycycle methods that will be invoked by the
container.

� Deployment descriptor: This gives the container operational information about the
enterprise bean, such as security access rules and transactional attributes.

The home interface
The home interface extends the class EJBHome and it must contain at least one create()
method. Figure 1-7 shows the home interface for the enterprise bean Account.

Figure 1-7 Home interface for the enterprise bean Account

The remote interface
The remote interface exposes the methods in the enterprise bean implementation that may
be used by a client. The remote interface extends the EJBObject class. Figure 1-8 is an
example of the remote interface definition for the enterprise bean Account.

Figure 1-8 Remote interface for the enterprise bean Account

The bean implementation
The code that actually carries out the business logic is written as part of the bean
implementation. By convention the name given to this class is the name of the remote
interface with the suffix Bean appended to it. The bean implementation class must implement
the SessionBean interface. This interface defines the methods which are invoked by the
container to notify the enterprise bean of lifecycle events. For example, the method
ejbCreate() is invoked whenever a new instance of the enterprise bean is created. The Java
compiler forces these methods to be implemented in the class. However, if no action is to be
taken on these events, then the methods may be implemented with null method bodies.

public interface AccountHome extends javax.ejb.EJBHome{
public Account create() throws java.rmi.RemoteException,

javax.ejb.CreateException;
}

public interface Account extends javax.ejb.EJBObject{
public int getBalance() throws java.rmi.RemoteException;
public void setBalance(float amount) throws java.rmi.RemoteException;

}

Chapter 1. Enterprise JavaBeans: An introduction 11

Figure 1-9 shows the implementation of the Account enterprise bean.

Figure 1-9 Implementation of the enterprise bean Account

The deployment descriptor
The deployment descriptor provides declarative information to the container about the
enterprise bean. The EJB 1.1 deployment descriptor is an XML document. Typically the
deployment descriptor is generated by the application development tools. The transactional
attributes specified by the deployment descriptor are discussed in 1.1.2, “Transactionality” on
page 4. The security access definitions which may be specified in the deployment descriptor
are discussed in 1.1.4, “Security” on page 8.

For details on how we actually modified the deployment descriptor using the CICS JAR
development tool, refer to Figure 10-17, “CICS JAR development tool, environment properties
for DB2” on page 273.

Session bean deployment
The developer defines the enterprise bean’s home and remote interfaces and the
implementation code for the bean itself (Figure 1-10).

Figure 1-10 Deployed enterprise bean

public class AccountBean implements javax.ejb.SessionBean{
// instance variable to hold the balance
private int balance;
// management methods invoked by the container

public void ejbCreate(){}
public void ejbRemove() {}
public void ejbPassivate(){}
public void ejbActivate() {}
public void setSessionContext(SessionContext ctx){}

// business methods exposed in the remote interface
public int getBalance(){

return balance;
}
public void setBalance(float amount){

balance = amount;
}

}

Home
Interface

EJB
home

Remote
Interface

EJB
object

EJB Server

EJB Container

enterprise
bean
12 EJB for OS/390 and z/OS, CICS TS V2.1

The deployment process generates additional code that is necessary for the execution of the
enterprise bean. The code generated is used both on the client machine and on the EJB
server. The definition of the home interface is used to generate an EJB home stub for the
client and an EJB home class for the EJB server. The definition of the remote interface is
used to generate an EJB object stub for the client and an EJB object class for the EJB server.
The class files for the enterprise bean are packaged into a Java Archive File (JAR) and this
file is used for deploying into the EJB server.

After the enterprise bean has been deployed into an EJB server, one further step is
necessary. The name of the enterprise bean must be published. The EJB server registers the
name of the enterprise bean with a naming server using the Java Naming and Directory
Interface (JNDI).

The name of the bean is registered using the JNDI with a reference to the enterprise bean’s
home interface. The reference is known as an interoperable object reference (IOR). The IOR
includes the precise network location of the enterprise bean, including the server name and
port.

Using a session bean
Figure 1-11 illustrates the control flows that take place in order to locate the session bean, to
ask the container to create an instance of it, and then to invoke methods on the instance.

Figure 1-11 Session bean invocation

� 1 The client program, which may be a Java application, an applet, a servlet, or indeed
another enterprise bean, must first know the name of the enterprise bean. The client
sends the name to a naming service using JNDI in order to locate the enterprise bean. If
the naming service has registered the enterprise bean’s name, the IOR of the enterprise
bean’s home interface is returned to the client.

� 2 Using the IOR, the client has an object reference to the enterprise bean’s home
interface. The create() method is invoked on the enterprise bean’s home interface, which
causes the container to drive the ejbCreate() method to instantiate the bean itself. The

Naming server

EJBS

banking

fundsaccounts

JNDI lo
okup

EJB Container

EJBHome

create()

businessmethods
EJBObject

enterprise
bean

ejbCreate
Java

Client
4444 remove()

2222

1111

3333

ejbRemove
Chapter 1. Enterprise JavaBeans: An introduction 13

container responds with a reference to the enterprise bean’s remote interface. The
reference to the remote interface is an indirect reference to the enterprise bean’s business
methods. This indirect reference points at container code that imposes security and
transactions and then invokes the real business method in the bean implementation.

� 3 The client then invokes the business method (or methods) on the remote interface, to
perform the desired business functions.

� 4 Finally the client calls the remove() method on the home interface; this causes the
container to drive the ejbRemove() method on the enterprise bean itself.

An example of the client code to use the Account enterprise bean is shown in Figure 1-12.

Figure 1-12 Client access to an enterprise bean

As mentioned earlier, there are two different types of session beans, stateful and stateless,
which we will now discuss.

Stateless session beans
Stateless session beans do not preserve any conversational state across method calls. Each
method call acts on the arguments passed and returns a response without saving any state in
its instance variables.

Stateless session beans must complete their transactions within single method invocations;
transactions cannot span method invocations.

As they retain no conversational state, stateless session beans are not tied to any particular
client. This means that any client request can be routed to any stateless session bean. There
is a benefit here in that stateless session bean instances may be pre-created and pooled so
that they are ready when client requests arrive. By eliminating instantiation at the time of the
request, the performance can be improved.

Stateful session beans
A stateful session bean does retain conversational state. The stateful session bean instance
is specific to the client that instantiated it. An OTS transaction may span multiple invocations
to methods in stateful session beans. The stateful session bean instance exists for the
duration of the conversation with the client.

As there is a one-to-one relationship between clients and stateful session bean instances,
this may result in excessive demands on memory if a large number of clients are in session.

/* obtain a JNDI initial context “/
javax.naming.InitialContext jndiCtx = new InitialContext();

/* look up the home interface of the enterprise bean */
Object o = jndiCtx.lookup(“pfx/Account”);

/* convert the object returned to an AccountHome object */
AccountHome anAccountHome = PortableRemoteObject.narrow(o,AccountHome.class);

/* create an instance of the Account enterprise bean */
Account anAccount = anAccountHome.create();

/* invoke the business methods of the enterprise bean */
anAccount.setBalance(5);

System.out.println(“Balance: “+anAccount.getBalance());
/* finished, so remove the instance */

anAccountHome.remove();
14 EJB for OS/390 and z/OS, CICS TS V2.1

To alleviate these memory demands, the conversational state may be written from memory to
auxiliary storage pending the next method invocation on the enterprise bean instance. This is
termed passivation. Different EJB containers can use different algorithms to decide which
bean instances to passivate. The CICS container usually passivates beans at the earliest
opportunity.

The conversation state is read back into memory when the subsequent method invocation is
received. This is termed activation and occurs when another method invocation is received
for the enterprise bean instance.

The enterprise bean is notified by the container when it is about to be passivated by an
invocation of the method ejbPassivate(). In a similar fashion the enterprise bean is notified
by the container when it has just been activated by an invocation of the method
ejbActivate(). If the enterprise bean is an active participant in an OTS transaction it will not
be a candidate for passivation, however, once the OTS transaction has been committed or
rolled back, it again becomes a candidates for passivation.

The conversational state of a stateful session bean is not recoverable. If a system failure
occurs during the lifetime of stateful session bean instance, then the conversational state
would be lost, even if it had been passivated.

1.2.2 Entity beans
An entity bean is an object representation of data such as a customer or an account. Usually
an instance of an entity bean corresponds to a row in a relational database. This allows the
data to be manipulated in a normal object-oriented manner by invoking methods on the entity
bean. Unlike session beans, entity beans live for as long as the data they represent lives.

Entity beans are shared by multiple users. For example, more than one user may wish to
access the same account information simultaneously.

An entity bean is uniquely identified by a primary key.

Bean persistence
Bean persistence means writing the data held in the entity bean to its associated database.

This involves accessing the instance variables in the entity bean and, for example, using
them in an SQL statement to update the database. It is a matter of synchronizing the data in
the entity bean with the data held in the database.

The synchronization of the entity bean and its associated database row may be performed by
either the entity bean itself or by the container running in the EJB server. These alternative
ways are called bean-managed persistence or container-managed persistence.

Entity beans, like session beans, are server-side components that may be deployed into any
EJB server that supports them. They are located by name using a name server and the JNDI.

Attention: Note that passivation and activation do not apply to stateless session beans,
since stateless session beans do not hold state, and so can simply be created and
destroyed rather than passivated or activated.

Restriction: CICS TS V2.1 does not support entity beans. Session beans are a natural
extension to the existing transactional capabilities of CICS; however, entity beans have no
obvious mapping to existing CICS functionality.
Chapter 1. Enterprise JavaBeans: An introduction 15

The parts of an entity bean
An entity bean consists of the following:

� Home interface: This is used by the client to create, find, and destroy entity bean
instances.

� Remote interface: This serves the same purpose as in session beans. It specifies the
business method signatures that are to be exposed to the clients that will use the bean.

� Bean implementation: This is a class which is a model of the persistent data, for
example, a row in a relational database table. It includes methods to manipulate the data
and lifecycle methods that are invoked by the container.

� Primary key class: This class represents a unique identification of the entity bean.

� Deployment descriptor: This provides operational information about the entity bean.

The home interface
The home Interface extends EJBHome and is used by the client to create, find and destroy
entity beans. Unlike session beans, it is not obligatory to have a create() method.

Figure 1-13 shows the home interface for the entity bean Account.

Figure 1-13 Home interface for the entity bean Account

The remote interface
The remote interface exposes the methods that the client may use to manipulate the entity
data. The remote interface extends the EJBObject class.

Figure 1-14 is an example of the Remote interface definition for the entity bean Account.

Figure 1-14 Remote interface for the entity bean Account

The bean implementation
This is a Java class which provides a view into the database table row that it represents.

It must define instance variables for the various elements of data that are to be represented.
These instance variables could correspond to columns in a database table row, although that
is at the discretion of the application designer.

It must define methods which allow its clients to manipulate the instance variable.

public interface AccountHome extends EJBHome{
public Account create(String id, String name)

throws RemoteException,
CreateException;

public Account findByPrimaryKey(AccountPK key)
throws FinderException,

RemoteException;
}

public interface Account extends EJBObject{
public String getName() throws RemoteException;
public void setName(String name) throws RemoteException;
public int getBalance() throws RemoteException;
public void setBalance(int amount) throws RemoteException;

}

16 EJB for OS/390 and z/OS, CICS TS V2.1

The bean implementation class must implement the EntityBean interface, which enforces the
implementation of a series of lifecycle methods that are invoked by the container. Figure 1-15
shows the implementation of the Account entity bean.

Figure 1-15 Implementation of the entity bean Account

Primary key class
This is a class which defines a unique identification for the entity beans. The commonly used
naming convention for this class is the entity bean name suffixed by “PK”. Figure 1-16 shows
the Primary key class for the enterprise bean Account.

Figure 1-16 Primary key class for the enterprise bean Account

/* The Account entity bean implementation with container-managed persistence */
public class AccountBean implements EntityBean{
/* instance variable to hold the persistent data*/

public String accountNumber;
public String accountName;
public int balance;

/* management methods invoked by the container */
public void ejbLoad(){}
public void ejbStore(){}
public void ejbCreate(String id, String name){

accountNumber = id;
accountName = name;
balance = 0;

}
public void ejbPostCreate() {}
public void ejbRemove() {}
public void ejbPassivate(){}
public void ejbActivate() {}
public void setEntityContext(EntityContext ctx){}
public void unsetEntityContext(){}

/* methods to manipulate the persistent data */
/* these methods are exposed in the remote interface */

public int getBalance(){
return balance;

}
public void setBalance(int amount){

balance = amount;
}

}

public class AccountPK implements java.io.Serializable{
public String accountNumber;
public AccountPK(String s){

accountNumber = s;
}
public AccountPK() {}
public String toString(){

return accountNumber;
}

}

Chapter 1. Enterprise JavaBeans: An introduction 17

Deployment descriptor
This is used to pass operational information about the entity bean to the container in the EJB
server. In the Account entity bean example container-managed persistence is used, so the
deployment descriptor also contains object to relational mapping details. How this is done
depends on the container provider. For the Account example, the mapping could be as shown
inTable 1-1.

Table 1-1 Object to relational mapping

Bean managed persistence
In this case, explicit code must be written to transfer data between the entity bean and the
database. If the database is a relational database, then the JDBC API could be used to
achieve this.

How does the entity bean know when to do this? The container tells it by invoking the entity
bean methods ejbLoad() to read the data from the database and ejbStore() to write the data
to the database.

Container managed persistence
This technique permits the relationship between the instance variables in the entity bean and
the columns in the database table to be defined declaratively. This has an advantage for the
developers in that they can concentrate on the business logic without concerning themselves
with how the underlying data is held.

The deployment descriptor is used to provide the mapping between the instance variables
and the database columns. The container refers to the deployment descriptor to know which
database accesses are needed to ensure that the entity bean and its corresponding database
row are kept in synchronization.

Entity bean deployment
The steps necessary to deploy an entity bean are outlined in “Session bean deployment” on
page 12.

Using an entity bean
The client program, which may be a Java application, an applet, a servlet, or indeed another
enterprise bean, must first know the name of the enterprise bean.

The client sends the name to a naming service using JNDI in order to locate the entity bean.
The naming service responds with the IOR of the entity bean’s home interface. Using the
IOR, the client has an object reference to the enterprise bean’s home interface. The entity
bean’s home interface may then be used to create, find or remove entity beans. For example,
the findByPrimaryKey() method responds with a reference to the entity bean’s remote
interface. The reference to the remote interface is an indirect reference to the enterprise
bean’s business methods. This indirect reference points at container code that imposes
security and transactions and then invokes the real business method in the bean
implementation.

Instance variable name Table column name

accountNumber ACCOUNT_NUMBER

accountName NAME

balance BALANCE
18 EJB for OS/390 and z/OS, CICS TS V2.1

The client then invokes the business methods on the remote interface. An example of the
client code to use the Account enterprise bean is shown in Figure 1-17.

Figure 1-17 Client access to an entity bean

1.2.3 Database access
An enterprise bean may access a relational database in three different ways. It may use
JDBC, SQL, or Data Access beans. The following sections describe these techniques. To find
out more about how we used JDBC and SQLJ within a CICS enterprise bean refer to
Chapter 10, “Rewriting the Trader session bean using JDBC/SQLJ” on page 253.

Java Database Connectivity (JDBC)
JDBC is a uniform API for accessing relational databases. It is provided by the java.sql
package which is one of the core APIs provided by the Java SDK, standard edition and the
enterprise bean the JDBC Optional Package API provided by the javax.sql package.

The purpose of JDBC is to allow the developer to issue SQL statements to access a relational
database without the need to code the program in a database specific way. This fits with the
Java style of “write once, run anywhere”.

Using JDBC, the developer is provided with an object-oriented API to access relational data.
A selection of the classes and interfaces supplied with JDBC is shown here:

� Database connections
� SQL statements
� Result sets
� Prepared statements
� Callable statements
� Database drivers
� Driver managers

JDBC comprises a Driver Manager and a specific database driver for each type of database
accessed. Figure 1-18 shows a schematic view of the JDBC structure.

/* obtain a JNDI initial context “/
javax.naming.InitialContext jndiCtx = new InitialContext();

/* look up the home interface of the enterprise bean */
Object o = jndiCtx.lookup(“pfx/Account”);

/* convert the object returned to an AccountHome object */
AccountHome anAccountHome =PortableRemoteObject.narrow(o,AccountHome.class);

/* Obtain a reference to the entity bean for account number 12345*/
Account anAccount = anAccountHome.findByPrimaryKey(new AccountPK(“12345”));

/* invoke the business methods of the enterprise bean */
anAccount.setBalance(5);
System.out.println(“Balance: “+ anAccount.getBalance());
Chapter 1. Enterprise JavaBeans: An introduction 19

Figure 1-18 JDBC structure

It is the JDBC driver that converts the JDBC API request into the format required by the
specific database manager. This may be a direct API call to a local database manager or a
network request to a remote database. There are four types of JDBC drivers:

� Type 1: JDBC-ODBC bridge
� Type 2: Java to native API
� Type 3: Java to network protocol
� Type 4: Java to database protocol

The JDBC driver type that has been used in this redbook project (see Chapter 10, “Rewriting
the Trader session bean using JDBC/SQLJ” on page 253), is a type 2 driver for access to
DB2. This driver type is normally the most efficient, as it uses the Java Native Interface (JNI)
to handle the database requests and responses. However, the use of JNI means that the
driver is platform specific and that the JNI code must be available on the client machine when
database accesses are made.

The steps that the developer must take in order to access a relational database using JDBC
are as follows:

� Register the JDBC driver with the driver manager.
� Obtain a connection to the database.
� Issue an SQL request.
� Process the results of the SQL request.
� Close the connection to the database.

Restriction: DB2 for OS/390 only provides the type 1 and type 2 JDBC drivers; CICS TS
V2.1 only supports the type 2 driver for access to DB2.

Database
B

Database
A

Database
C

JDBC
Driver

JDBC
API

JDBC
Driver Manager

JDBC
Driver

JDBC
Driver

Java
Program
20 EJB for OS/390 and z/OS, CICS TS V2.1

Register the JDBC driver
The JDBC Driver Manager takes charge of all JDBC drivers which are available for use by
JDBC client programs. Each JDBC driver must be loaded and it must register itself with the
JDBC driver manager. In order to load and register a JDBC driver, the static method
forName() of the class Class is invoked. Each JDBC driver is a Java class and so it must be
available in the CLASSPATH when the forName() method is invoked. The following statement
shows the Java code that is needed to load and register the DB2 driver which is used by the
samples in this book:

Class.forName(“COM.ibm.db2os390.sqlj.jdbc.DB2SQLJDriver”);

Obtain a database connection
Before an application can access a database, it must obtain a reference to a database
connection object. It obtains this object from the JDBC Driver Manager using the static
method getConnection(). The application program identifies the specific database it wishes
to access by passing a database URL to the JDBC Driver Manager. The format of the
database URL is as follows:

jdbc:<subprotocol>:<location name>

The meanings of these three URL components are as follows:

jdbc This indicates that the JDBC API is to be used to access the
database.

subprotocol This tells the JDBC Driver Manager which driver to use.

location name This identifies the database to be accessed.

The following is an example of the code required to obtain a connection:

Connection c = DriverManager.getConnection(“jdbc:db2:databaseName”);

Issue an SQL request
An SQL request is issued by first creating a Statement object and then invoking a method on
the Statement object to execute an SQL statement.

The Statement object is obtained by invoking the createStatement() method on the
Connection object.

The Statement object may then be used to execute a database query or a database update.
The following piece of Java code shows an example of a simple database query: The result of
the query is returned in another object, which is an instance of the class ResultSet that is
described in the next section.

Statement stmt = c.createStatement();
ResultSet rs = stmt.executeQuery("select a, b, c FROM Table1”};

An SQL statement can also be pre-compiled and used multiple times by the use of a
PreparedStatement object. Due to their being pre-compiled, PreparedStatement objects are
much more efficient than normal Statement objects. The SQL statement encapsulated by a
PreparedStatement object may also contain variables which can be set each time that this
object is used. Figure 1-19 shows an example of the use of a PreparedStatement object:
Chapter 1. Enterprise JavaBeans: An introduction 21

Figure 1-19 PreparedStatement object

Process the results of the SQL request
The ResultSet object returned by the executeQuery() method of the ResultSet instance
contains the set of database rows that satisfied the selection criteria in the query. A cursor is
maintained by the ResultSet object which is initially positioned just before the first row. Each
row is retrieved by invoking the next() method on the ResultSet object. The individual
column values of the current are retrieved by invoking getxxx() methods on the ResultSet
object. The following Java code illustrates this:

while (rs.next()) {
System.out.println(rs.getString(“a”));
System.out.println(rs.getString(“b”));
System.out.println(rs.getString(“c”));

}

Close the connection to the database
When no further access to the database is required the connection and its associated objects
should be closed by invoking the close() on each of the objects. For example:

stmt.close(); // close statement and result set objects
c.close(); // close connection

The following Java code (Figure 1-20) shows a complete example of making a query to DB2
on OS/390:

Figure 1-20 Full JDBC query example

/* create a PreparedStatement ? indicates variable */
PreparedStatement insert = c.prepareStatement(

“insert into cars(car_id,make,model,size) values(?,?,?,?)”);
/* set variable 1 to 4 then update the database */

insert.setString(1,regNumber);
insert.setString(2.manufacturer);
insert.setString(3,carModel);
insert.setInt(4,cubicCapacity);
insert.executeUpdate(); /* insert the row into the database */

try {
/* load and register the driver, then get connection object */
Class.forName(“COM.ibm.db2os390.sqlj.jdbc.DB2SQLJDriver”);
String url = “jdbc:db2os390sqlj:”;
Connection c = DriverManager.getConnection(url);
/* get statement object and execute a query */
Statement stmt = c.createStatement();
ResultSet rs = stmt.executeQuery(“select name,balance from Table1”);
/* display the values in the result set */
while (rs.next()){

String name = rs.getString(1);
int balance = rs.getInt(2);
System.out.println(name + “ “ + balance);

}
/* close the statement and connection */
stmt.close();
c.close();

} catch (Exception e){
System.out.println(e.getMessage());

}

22 EJB for OS/390 and z/OS, CICS TS V2.1

Note that in this example, the getxxx() methods which are used to retrieve the value of the
columns in the result set, are invoked with a numeric argument to identify the database
column. This is an alternative to using the column names. The number refers to the index of
the column in the result set, where an index value of one represents the first column.

SQLJ
JDBC is a means of accessing a relational database using dynamic SQL whereas with SQLJ
the database is accessed using static SQL, which is also known as embedded SQL.

A program written using static SQL contains SQL statements embedded in the program code.
Before compilation the source program is passed through a translator which replaces the
SQL statements with standard language statements to call the database services. The
translated program is then compiled in the normal way. This is the way that static SQL is
normally handled in other languages such as COBOL and PL/I.

One advantage with SQLJ is that type checking can be done during the program preparation
process to determine whether table columns are compatible with Java host expressions.
SQLJ also provides the advantages of static SQL authorization checking. With SQLJ, the
authorization ID under which SQL statements execute is the plan or package owner. The
database manager checks table privileges at bind time.

When the SQL statements can be pre-determined, which is the normal case in enterprise
system application design, then the precompilation inherent in embedded SQL allows for
faster execution at runtime and reduces program size and complexity.

The statements in a Java program which are to be expanded by the translator are identified
by the token #sqlj.

The basic steps that the developer must take when accessing a database using SQLJ are as
follows:

� Register the DB2 driver.

� Obtain a connection.

� Create a SQLJ connection context.

� Issue an SQL request

� Process the results of the SQL request.

� Close the connection to the database.

Registering the driver and obtaining and closing a connection are the same as with JDBC,
They are described in “Java Database Connectivity (JDBC)” on page 19.

Create a SQLJ connection context.
Each embedded SQL statement is issued within a SQLJ connection context. This is either
specified on the SQL statement itself or a default connection context is taken. In order to
create a connection context the connection object returned from the driver manager is passed
to the SQLJ connection context constructor as follows:

// declare context class, this will be expanded by the translator
#sql context ctx
// load and register driver then get a connection
Class.forName(“COM.ibm.db2os390.sqlj.jdbc.DB2SQLJDriver”);
Connection c = DriverManager.getConnection(“jdbc:db2:databaseName”);
// get sqlj connection context
ivConCtx = new ctx(c);
Chapter 1. Enterprise JavaBeans: An introduction 23

Issue an SQL request
The SQL statement is embedded in the Java code using the #sql token to show that it has to
be translated. An example of a SQL SELECT statement follows:

#sql [ivConCtx] i={SELECT c_name FROM trader_company};

Note that in this example the SQLJ connection context is explicitly specified as ivConCtx. The
set of rows returned is placed into an object called an iterator which in this example is
referenced by the variable i.

Process the results of the SQL request
The result set of an SQL request is placed into an iterator. To define an iterator the following
construct is used:

#sql public static iterator iter_selectCompany (String c_name);

The translator generates a class to hold the returned set of the column named c_name. The
class contains a method with the name c_name() which is used to retrieve the value of
c_name at each position in the set. An implicit cursor is associated with the iterator object
which is initially positioned immediately before the first row. The next() method is used to
step through the rows in the iterator object. The next() method returns false if there are no
more rows in the iterator object.

This example displays the set returned by the SELECT statement in the previous section:

while (i.next())
System.out.println(i.c_name());

The following Java code shows a complete example of making a SQLJ query to DB2 on
OS/390.

Figure 1-21 Full SQLJ query example

#sql context ctx
#sql public static iterator iter_selectCompany (String c_name);
try {

// load and register the driver for DB2
Class.forName(“COM.ibm.db2os390.sqlj.jdbc.DB2SQLJDriver”);
// get a connection object
String url = “jdbc:db2os390sqlj:”;
Connection c = DriverManager.getConnection(url);
// create SQLJ connection context
ctx sqljCtx = new ctx(c);
// issue a SQL SELECT statement
iter_selectCompany i;
#sqlj [sqljCtx] i={SELECT c_name FROM trader_company};
// display the values returned in the iterator object
while (i.next())

System.out.println(i.c_name());
 // close the iterator and the SQLJ connection context

i.close();
sqljCtx.close();

} catch (Exception e){
System.out.println(e.getMessage());

}

24 EJB for OS/390 and z/OS, CICS TS V2.1

Program preparation
The actions required to prepare a program containing SQLJ statements for execution are
shown in Figure 1-22

Figure 1-22 SQLJ program preparation

1. Translate the source code to produce modified Java source code and serialized profiles

2. Compile the modified Java source code to produce Java bytecodes

3. Customize the serialized profiles to produce DBRMs

4. Bind the DBRMs into packages and bind the packages into a plan, or bind the DBRMs
directly into a plan

Data Access beans
Data Access beans are a level of abstraction for accessing data in relational databases. They
are an alternative to using JDBC classes to access relational data. In effect Data Access
beans wrap JDBC classes providing more function and making them easier to use. Data
Access beans are JavaBeans not enterprise beans. They are a feature of VisualAge for Java.

The following types of Data Access beans are provided:

Select bean Used to query relational data.

Modify bean Used to modify relational data.

ProcedureCall bean Used to run a database stored procedure.

The Select, Modify and ProcedureCall beans have properties that contain connection aliases
and SQL specifications. These properties allow the user to connect to relational databases
and access the data.

bind package

bind plan

SQLJ translator

customize
compile

.java

Modified
Source

.class

Java
bytecode

.sqlj

Source
program

DBRMs

.ser

Serialized
Profile

Package

Plan

1

2 3

4

4

Chapter 1. Enterprise JavaBeans: An introduction 25

Figure 1-23 illustrates a method in an CICS session bean using a Data Access bean to
access relational data.

Figure 1-23 An enterprise bean using a Data Access bean to access relational data

The invocation of the methods on the Data Access bean are normal Java method invocations
within the same Java Virtual Machine and so take place within the same transaction context
as that of the enterprise bean. The resultant JDBC method invocations issued by the Data
Access bean are converted by CICS into requests to the attached DB2 database and flow
between CICS and DB2 using the CICS DB2 Attachment Facility. This facility uses a two
phase commit protocol between CICS and DB2.

If an OTS transaction is in force, then all other participants in the transaction will be
coordinated with any database updates made via the Data Access bean. The participating
enterprise beans may be dispersed over multiple EJB servers.

In summary the use of Data Access beans to access relational data has the following
advantages:

� They are more convenient to use than the JDBC classes.

� They function as part of the enterprise bean that calls them so they fall into its transaction
context.

The following considerations apply when using Data Access beans in CICS:

� The installation of Visual Age for Java is a pre-requisite for their use as they are a feature
of this product.

� There are special considerations for the use of Data Access beans in CICS. For further
information refer to the CICS TS V2.1 supplied readme file
/usr/lpp/cicsts/cicsts21/doc/HOWTO/Data-Access-Beans-HOWTO.

Session
Bean

EJB Container

CICS TS 2.1

Data Access
Bean
26 EJB for OS/390 and z/OS, CICS TS V2.1

1.3 Enterprise bean interoperability
This section examines interoperability in a distributed object world. We discuss the
mechanism for invoking methods on remote objects and the way that directories are used to
locate them.

1.3.1 RMI
Remote Method Invocation (RMI) is the Java language’s native mechanism for performing
simple, powerful networking. RMI allows you to write distributed objects in Java, enabling
objects to communicate in memory, across Java Virtual Machines, and across physical
devices.

A remote procedure call (RPC) is a procedural invocation from a process on one machine to
a process on another machine. A remote invocation in Java takes the RPC concept one step
further and allows for distributed object communications. RMI allows you to invoke methods
on remote objects. You can build your networked code as full objects. This yields the benefits
of object oriented programming, such as inheritance, encapsulation, and polymorphism.

RMI has to deal with following issues:

� Marshalling and unmarshalling:

To solve the problem that machines often have different data representations, it is
necessary to encode and decode the data in such a way, that it can be passed between
distributed machines. Marshalling and unmarshalling is the process of packing and
unpacking parameters so that they are usable in two heterogeneous environments.

� Parameter passing conventions

RMI supports pass-by-value as well as pass-by-reference when calling a method.

� Distributed garbage collection

The Java language itself has a built-in garbage collection of objects. But in a distributed
object system, garbage collection of remote objects cannot be done by the local JVM.
Therefore, it is necessary to have RMI handle this issue.

� Downloadable implementations

Since RMI supports the pass-by-value calling convention, objects (not just references)
need to be brought from the local to the remote machine. However, it is possible that the
class definition of that object is not available on the target machine. RMI allows for such
class files to be automatically downloaded behind the scenes.

� Security

RMI has support to restrict possible hostile implementations and grant system level
access only to authenticated implementations.

� Activation:

If a method on a remote object that is not in memory is invoked, RMI contains measures to
automatically bring the object into memory so that it can service method calls.
Chapter 1. Enterprise JavaBeans: An introduction 27

1.3.2 RMI and EJB
Enterprise beans are made available for remote clients by using Java RMI. Enterprise beans
are wrapped in RMI-aware shells, called EJB objects. EJB objects are the remote objects
clients invoke. Therefore, when a client calls an EJB object, it delegates the remote call to the
enterprise bean as illustrated in Figure 1-24.

Figure 1-24 Invocation of an enterprise bean

Each enterprise bean must have a remote interface which duplicates every method signature
which should be visible to the client. The remote interface has following characteristics:

� An EJB remote interface derives indirectly from java.rmi.Remote.

� Each method in an EJB remote interface must throw a java.rmi.RemoteException.

Each of the parameters of the remote interface’s methods must be Java primitives,
serializable, or remote objects in order to be valid types for Java RMI. By doing this you can
control if the parameter is passed by value or passed by reference. In this manner remote
object are passed by reference and Java primitives or serializable parameters are passed by
value.

Each EJB object implements the remote interface which is automatically generated by the
EJB container tools. This is because EJB objects must contain proprietary logic to:

� Interact with the container itself

� Implement fault tolerance for the case the bean crashes.

� Deal with marshalling and de-marshalling

1.3.3 JNDI
The Java Naming and Directory Interface (JNDI) is a standard Java extension which provides
a common API to access naming and directory services. In a similar fashion to the abstraction
offered by JDBC when accessing relational databases, JNDI allows the application developer
to use the same API irrespective of that used by the underlying naming or directory service.

The actual underlying naming server provider can be any name service that provides an
interface to the JNDI. CICS uses the CORBA Object Services (COS) naming service, as
provided by WebSphere Application Server Advanced Edition, for this purpose, but other EJB
implementations use the Lightweight Directory Access Protocol (LDAP) or a simple directory
system. Furthermore, the underlying directory services may be interlinked heterogeneously,
but JNDI still presents a common facade to the developer (Figure 1-25).

EJB Container/Server

enterprise
bean

EJB object <<delegate>>

Client code <<invoke>>
28 EJB for OS/390 and z/OS, CICS TS V2.1

Figure 1-25 JNDI architecture

The structure of JNDI as shown in Figure 1-25 demonstrates that there is one client API
which is the view that the client always sees together with a Service Provider Interface and
multiple Server Provider plug-ins. The directory service providers write plug-in code compliant
with the Service Provider Interface to couple their systems into JNDI. JNDI has already been
extended in this way to support all the main directory service providers.

Any distributed object environment needs a way for servers to make known the objects that
are available for use and for the clients to locate those objects. The Enterprise JavaBeans
technology specifies that JNDI is the system to be used for enterprise beans.

When an enterprise bean is published by an EJB server its external name is associated with
its home object reference. This process of association is known as binding into the directory
structure. The EJB server sends a bind request to JNDI passing the external name and home
object reference as arguments. JNDI then delegates the request to the underlying directory
services such as the COS Naming service.

When a client wishes to use an enterprise bean it must first obtain a reference to the
enterprise bean’s home object. It does this by passing the bean’s external name to the JNDI
server and receiving the home object reference in response. The home object is then used to
create an instance of the bean as covered in previous chapters.

The request to JNDI is passed using a Context object which tells JNDI where to find the
naming server by specifying its URL, and what type of naming server it is by specifying an
initial context factory. Figure 1-26 shows the Java code to use JNDI to obtain the reference to
the home object for the Account enterprise bean.

COS Service
Provider

LDAP Service
Provider

Other Service
Provider

Service Provider API

JNDI Client API

Java
Client
Chapter 1. Enterprise JavaBeans: An introduction 29

Figure 1-26 Locating an enterprise bean using JNDI

The example code shown in Figure 1-26 shows how to create a JNDI Context object by
passing the service provider URL and initial context factory from values stored in a hash
table. To avoid hard coding these values in application code these properties may also be
specified as an applet parameter, a system property, or in an application resource file. For
example, the same result as the code in Figure 1-26 may be achieved by adding the following
two lines to the JVM system properties file:

java.naming.provider.url=iiop://hostname:900
java.naming.factory.initial=com.sun.jndi.cosnaming.CNCtxFactory

Then the code relating to the Hashtable can be removed and the Context object created with
the default constructor with no arguments.

Context ctx =new InitialContext();

In addition, the defalt constructor can also be used if an enterprise bean within a container
wishes to invoke methods on another enterprise bean within the same container (such as two
beans within the same CICS CorbaServer). It is only necessary to explicitly code a name
server if you need to invoke methods on an enterprise bean with a home interface located in
a different naming server.

//Use JNDI to get home object ref for Account enterprise bean
Hashtable h = new Hashtable();

//Specify the URL of the name server
h.put(Context.PROVIDER.URL,”iiop://hostname:900 ”);

//Specify the type of name server as COS naming server
h.put(Context.INITIAL.CONTEXT.FACTORY, “com.sun.jndi.cosnaming.CNCtxFactory ”);

//Do the lookup
try {
Context ctx = new InitialContext(h);
Object o =ctx.lookup(“Account ”);
AccountHome a =PortableRemoteObject.narrow(o,AccountHome);

}
catch (NamingException e){

System.err.println(“jndi lookup failed ”);
System.exit(1);

}

30 EJB for OS/390 and z/OS, CICS TS V2.1

Chapter 2. CICS TS V2.1: The EJB Server

In this chapter we provide an overview of the EJB Server as provided by CICS Transaction
Server for z/OS V2.1 (CICS TS V2.1). We first describe the CICS road map, from recent
years to the near future. Then we explain how the Java Virtual Machine (JVM) has been
exploited to fulfill the special needs for high performance Java in a CICS environment. Next,
we show how CICS supports IIOP. Finally, we explain the CICS EJB Server architecture and
take a closer look at all its components.

2

© Copyright IBM Corp. 2001 31

2.1 The CICS Java road map
Java and the Internet have created a wonderful challenge for CICS customers. Many
customers see the Internet as the way to directly reach their customers, and they see Java as
the language of the future with a very real possibility that the “write once, run anywhere”
motto will reduce programming costs and give them the freedom to deploy their applications
on any platform.

Many CICS customers see a need to evolve from the 3270 procedural COBOL world to a
Web-based, object-oriented Java world. The challenge is to evolve from where they are today
to the future. They must effect this transition as quickly as practical in order to maintain their
competitive advantage. But all the while they must maintain their current applications without
sacrificing any of their mission critical attributes. CICS, the one constant in this transition, is
transforming itself to enable customers to evolve (Figure 2-1).

Figure 2-1 From 3270 access to J2EE

CICS TS V1.3, which became generally available in March 1999, already supports Web
access to CICS programs, and 3270 transactions either directly through the facilities of CICS
Web support (CWS) or through the CICS Transaction Gateway (CTG). It also supports
access to CICS programs from CORBA clients using the standard IIOP protocol. Both HTTP
and IIOP can exploit SSL for network privacy and integrity and, optionally, for client
authentication.

In addition, CICS applications can be written in Java. The Java bytecodes can be interpreted
by the standard OS/390 JVM or they can be compiled to S/390 machine code by the HPJ
compiler that is provided with VisualAge for Java Enterprise Edition. The CICS Java
programs can access CICS services and LINK to CICS programs in other languages, by
means of the provided JCICS classes.

Server Java Applications
and Java Bean support

CICS EJB Support

Further
J2EE Support

Transaction Gateway
(Integrated CCF Connectors)

Java/CORBA Client Access

Web/Java Client Access

3270 Access

Today
Time

E
n

ab
le

m
en

t
C

o
m

p
o

n
en

t

32 EJB for OS/390 and z/OS, CICS TS V2.1

These facilities, combined with CICS scalability, availability and systems management have
enabled many CICS customers to quickly Web-enable many of their applications and put
them into production.

IBM’s strategy is to transform CICS into an Enterprise Server for Java. By this we mean an
e-business application server supporting, among other programming models, Enterprise
JavaBean (EJB). In addition, support is given for Enterprise Java APIs and Common
Connector Framework (CCF) connectors to important existing data sources and application
servers. IBM intends to achieve this transformation, allowing customers to leverage their
existing applications and retain all the mission critical characteristics CICS customers expect.

The first step along the path is to Web-enable applications, possibly on an intranet initially, to
get the benefit of a familiar end user interface on a standard thin client.

CICS TS offers a number of ways to access CICS applications from a Web browser. It offers
direct access to CICS without use of a Gateway or intermediate Web server. And it offers
indirect access via the CICS Transaction Gateway for those customers who prefer a 3-tier
solution.

CICS TS continues to evolve, constantly adding to its repertoire those aspects of the new
technologies that are valuable to customers and that it can support well. Version 2 of CICS
TS delivers a production ready implementation of an enterprise Java server, together with
further support for TCP/IP connectivity, 3270 application reuse, and Parallel Sysplex
technology. And, further down the road, the strategy is to support additional aspects of J2EE
that are natural extensions for CICS TS (Figure 2-2).

Figure 2-2 CICS e-business roadmap

Client
access

Start simple... Grow fast

XML

TCP/IP
SNA

CORBA
IIOP

Client-side component
model

Server-side component
model

Business-to-Business
Chapter 2. CICS TS V2.1: The EJB Server 33

2.2 The Java Virtual Machine
The main reason why it is possible to fulfill the “write once, run everywhere” paradigm of Java
is the use of a Java Virtual Machine (JVM). A Java program is compiled with a Java compiler
to a bytecode which is then interpreted by a JVM. Therefore, if you have a JVM for a specific
operating system running on a dedicated hardware, you can in most cases run your Java
program on that machine without adapting it to that platform.

A Java program is a long-running task, which means, at least a couple of seconds, but usually
minutes to hours or days. Therefore, the time used to start up and initialize a JVM is relatively
little in contrast to the time the actual Java program is running.

For enterprise beans, this behavior is different, especially in a CICS environment. Traditionally
CICS is used as a high performance system handling hundreds to thousands of transactions
per second. To accomplish this behavior, CICS applications should be designed in such a way
that they perform their work in a minimum amount of time. Therefore, it is important to have as
small as possible an overhead to run a CICS transaction. This behavior is in marked contrast
to the Java programming model, because it would take longer just to start and initialize a JVM
than to run the typical business logic of a CICS transaction.

A way to avoid a full JVM initialization every time is to reuse the JVM on subsequent
invocations. This means that multiple transactions are executed serially in a single
long-running JVM. This can be achieved because enterprise beans run as part of one
transaction and do not interfere with any other transaction. This transaction isolation allows
scaling to high volume workloads while retaining high levels of system integrity. This is the
CICS quality of service. But to achieve transaction isolation for enterprise beans, each
enterprise bean must be presented with a “clean” environment when it is run. This is provided
by the OS/390 persistent reusable JVM which is the subject of the following section.

2.2.1 Features of the persistent reusable JVM
High performance Java is achieved with the following concepts:

� The serial reuse of a JVM for multiple transactions, while resetting the JVM to a known
state between each transaction. This provides isolation without paying the high cost of a
full JVM initialization for each transaction.

� An optimized garbage collection scheme, enabled by the clean separation of short-lived
application objects from the long-lived classes, objects and native code (that is, non-Java
or C language).

Serial reuse of JVMs
A JVM is dedicated to each CICS program for the lifetime of the CICS transaction. Initializing
a JVM for each CICS transaction is very expensive, so the JVM is serially reused. There is
only one transaction using a JVM at any one time. But when the transaction terminates, the
JVM is made available for reuse by another transaction, for the same or a different end user
and for the same or different CICS program.

From the application's perspective, the JVM appears to be short-lived even though it lives on
to be reused by another Java program. In fact, the instances are isolated into separate
Language Environment (LE) enclaves to eliminate interference between them and to enable
hardware transaction isolation at some time in the future.
34 EJB for OS/390 and z/OS, CICS TS V2.1

Serial reuse of a JVM is enabled by dividing the classes contained in the JVM into three parts:

� The OS/390 JVM code, which provides the base services in the JVM.

� The middleware, which provides services that access resources. These include the JCICS
interfaces classes, JDBC, JNDI, and the enterprise bean runtime environment.

� The user application code.

Middleware classes have privileges that are not available to the application, and which enable
optimizations through the caching of state (loading of classes and native libraries, for
example) to be used by multiple applications. However, middleware is also responsible to
reset itself correctly at the end of a transaction and, if necessary, to reinitialize at the
beginning of a new transaction in order to isolate different applications from each other.

The trusted middleware class path property is built automatically by CICS from the paths
specified on the CICS_DIRECTORY, JAVA_HOME, TMPREFIX, and TMSUFFIX parameters
defined in the JVM profile (see the CICS System Definition Guide, SC34-5725 for details of
these parameters and the trusted middleware class path). Generally speaking, only classes
supplied by IBM, or your chosen middleware vendor, should be placed in the trusted
middleware class path.

The reusable JVM manages run-time storage in several segregated heaps. The
characteristics of these heaps differ considerably, as follows:

� The transient heap:

The transient heap contains objects constructed by application classes. It also contains
any non-shared application classes including their static data; non-shared application
classes are those loaded from the CLASSPATH. This heap is subject to JVM garbage
collection, which involves clearing the heap when the application completes. This is much
quicker than traditional garbage collection.

� The middleware heap:

This heap contains objects constructed by classes defined in the trusted middleware
classpath. The objects in this heap are subject to normal garbage collection when no
longer used. Note, however, that middleware code is designed to have a minimum of
garbage collection; for example, object instances are pooled rather than used and
discarded.

� The system heap:

This is composed of two distinct heaps, both of which are never garbage collected:

– Main system heap:

This is composed of system classes, and classes loaded from the trusted middleware
classpath.

– Application class system heap:

The application class system heap, or (shareable application system heap) contains
classes loaded from the ibm.jvm.shareable.application.class.path and all classes
loaded from the deployed JAR file. Since this is never garbage collected, this means
that applications do not have to be reloaded from the HFS if they are subsequently
reused by another CICS transaction that reuses the JVM.

Each JVM heap has its own set of tuning parameters; these parameters can be used to
balance storage usage and garbage collection for each heap. For further details, refer to the
CICS System Definition Guide, SC34-5725.
Chapter 2. CICS TS V2.1: The EJB Server 35

JVM garbage collection
Optimized garbage collection is performed in such a way that the middleware heap and
system heaps are reset and the transient heap is garbage collected. Not all applications are
able to exploit serial reuse, so that the JVM cannot be reused. For example, this can happen
when the application performs one of the following actions:

� It modifies the state of the JVM in a way that cannot be safely reset, such as:

– Changing system properties
– Closing the standard output stream
– Loading a native library

� It uses multithreading.

Note that the EJB V1.1 specification restricts use of these functions and the following
additional functions:

� Utilizing read/write static fields
� AWT functions
� Utilizing the java.io package to access files and directories
� Socket operations
� Accessing information about other classes

For a full list of these restrictions, refer “Programming restrictions” in the Enterprise
JavaBeans Specification, V1.1, available from http://www.javasoft.com/products/ejb/.

If an unsafe operation does occur, the storage used by the JVM is recovered and a new JVM
is initialized to provide a safe environment for subsequent applications. The JVM monitors the
use of interfaces that prevent safe resetting, and the events that prevent reuse are logged.
Reinitializing the whole JVM rather than simply resetting the middleware heap and system
heap is slower overall and costs performance. Enterprise beans and CICS Java programs
that execute on a single Java thread using interfaces defined by the EJB specification, or by
the JCICS classes, are normally able to exploit serial reuse of the JVM.

Figure 2-3 summarizes the heap management in the persistent reusable JVM.

Figure 2-3 Heap management for the persistent reusable JVM

Application object Instances
Non shared application classes

Before JVM Reset
(At CICS transaction end)

Middleware bytecode
Shared Application bytecode
Middleware classes

Transient Heap

Middleware Heap
Middleware object instances

System Heap

After JVM Reset
(When new CICS transaction

reuses the JVM)

Transient Heap

Middleware Heap

System Heap

Middleware object instances

Middleware classes

Classes: discarded
Objects: discarded
Heap: cleared

Classes: none
Objects: reset
Heap: can be garbage
collected

Classes: reset
Objects: none
Heap: unchanged

Application Class
System Heap

Classes: reset
Objects: none
Heap: unchanged

Shared application classes Shared application classes

Application Class
System Heap

Source

CLASSPATH

LIBPATH
CLASSPATH
JAVA_HOME
TMSUFFIX/TMPREFIX

DJAR
ibm.jvm.shareable.
application.class.path

Middleware classes
36 EJB for OS/390 and z/OS, CICS TS V2.1

http://java.sun.com
http://www.javasoft.com/products/ejb

2.2.2 Exploitation of the persistent reusable JVM
CICS exploits the persistent reusable JVM using the following features:

� JVM pools
� JVM selection
� JVM pool management

We shall look at each of these in the following sections.

JVM pools
CICS exploits the persistent reusable JVM by managing a pool of pre-initialized JVMs and
selecting an appropriate JVM from the pool when a Java program is invoked. Each JVM is
essentially single threaded and runs under its own Open Transaction Environment (OTE)
TCB. CICS controls the numbers of TCBs of each type and adjusts the number in response to
the work load. You should adjust the MAXOPENTCBS setting according to the amount of
storage below 16M that is available in your system.

You should also restrict the number of active transactions in the system to maintain a JVM
pool that always has Java Virtual Machines free to satisfy new requests. CICS reduces the
number of active JVMs automatically if the work load does not require them. One side-effect
of this implementation is, that it enables improved multiprocessor utilization in a single CICS
region.

How CICS maintains a pool of JVMs, in which JVMs may be in use or available for reuse is
shown in Figure 2-4.

Figure 2-4 The reuse optimization from a JVM pool

In the figure, two of the JVMs shown are in use and contain application objects in the
transient heap, which is separated from long-lived objects in system and middleware heaps.
The third JVM contains only long-lived objects and is available for reuse.

Free JVM available for
reuse, having been reset

Transient heap
(short lifetime)

Middleware and system
heaps

(long lifetime)

Transient heap
(short lifetime)

Middleware and system
heaps

(long lifetime)

Empty
Transient heap

Middleware and system
heaps

(long lifetime)

Pool of JVMs
Chapter 2. CICS TS V2.1: The EJB Server 37

JVM selection
JVMs are allocated to a CICS transaction that requests execution of a Java program. The
JVMs in the pool are not necessarily identical because they may have been initialized with
different parameters, such as different heap sizes or debugging capability. These
characteristics required by the Java program are defined by naming a JVM profile on the
CICS PROGRAM resource definition, which also indicates the static main method that is the
entry point of the application program. In the case of enterprise beans, the entry point is the
CICS request processor (DFHIIRP).

The initialization parameters are specified in a member in the DFHJVM PDS named by the
JVMPROFILE parameter on a PROGRAM definition. All JVMs initialized with the parameters
from a particular JVMPROFILE file are identical.

When a program is invoked, CICS selects from the pool a JVM that was initialized using the
JVMPROFILE file specified on the program definition. If no such JVM is available, one of the
other JVMs will be reinitialized with the parameters specified in the JVMPROFILE file. If there
are no free JVMs, the transaction will wait for a JVM to become free.

Selecting a JVM from the pool to match a request is illustrated in Figure 2-5.

Figure 2-5 Selecting a JVM from the pool to match a request

JVM management
Functions are provided to manage the pool of JVMs. In particular, if it becomes necessary to
reinstall the JVMs, because some of the pre-loaded classes have been modified, then the
current JVM instances in the pool can be phased out. This means that as the transactions the
JVMs are running terminate, the JVMs are reinitialized so that they reload the latest version of
the classes. This action can be performed using the command CEMT SET JVM PHASEOUT.

Create CICS Transaction

JVMs configured
by profile B

JVMs configured
by profile A

Request Java program execution

Select JVM
based on JVM profile name
38 EJB for OS/390 and z/OS, CICS TS V2.1

2.3 IIOP support in CICS
The Internet Inter-ORB protocol (IIOP) is a TCP/IP based implementation of the General
Inter-ORB Protocol (GIOP) that defines formats and protocols for distributed applications. It is
part of the Common Object Request Broker Architecture (CORBA). Both client and server
systems require a CORBA Object Request Broker (ORB) to implement IIOP interoperability.

CORBA was defined by a consortium of over 500 information technology organizations called
the Object Management Group (OMG). CORBA is OMG's open, vendor-independent
specification for an architecture and infrastructure that computer applications use to work
together over networks. Interoperability results from two key parts of the specification: OMG
Interface Definition Language (OMG IDL), and the standardized protocols GIOP and IIOP.
These allow a CORBA-based program from any vendor, on almost any computer, operating
system, programming language, and network, to interoperate with a CORBA-based program.
This CORBA-based program can be from the same or another vendor, on almost any other
computer, operating system, programming language, and network. You can read the CORBA
architecture and specification document at http://www.omg.org/, their Web site. CICS
provides an ORB and support for IIOP defined by the CORBA 2.1 specification.

2.3.1 The Object Request Broker
An Object Request Broker or ORB is the facilitator by which objects on the CORBA network
can communicate. An ORB enables disparate applications to communicate without being
aware of the underlying communication mechanism. In this way, the ORB provides
interoperability between applications on different machines in heterogeneous distributed
environments, and interconnects multiple object systems.

Object Request Brokers have the following main responsibilities:

� To allow objects to dynamically discover each other
� To allow objects to call methods on each other
� To handle the passing of parameters to objects
� To return results

The client does not need to know where the object is located, its programming language, its
operating system, or any other system aspects that are not part of the object’s interface. The
broker chooses the best server to meet the client’s request and separates the interface that
the client sees from the implementation of the server.

The CICS ORB
The CICS ORB implements the following level of function:

� Support for the CORBA 2.1 API, except for Dynamic Invocation Interface (DII)

� Dynamic Skeleton Interface (DSI), and GIOP fragments

� Support for IIOP 1.1

� Support for both inbound and outbound IIOP requests; IIOP applications can act as both
client and server

� Support for transactional objects

CICS TS V2.1 method invocations may participate in Object Transaction Service (OTS)
distributed transactions. If a client calls an IIOP application in the scope of an OTS
transaction, information about the transaction flows as an extra parameter on the IIOP
call. If the client ORB sends an OTS Transaction Service Context and the target stateless
CORBA object implements CosTransactions::TransactionalObject, then the object is
treated as transactional.
Chapter 2. CICS TS V2.1: The EJB Server 39

http://www.omg.org/

2.4 The CICS EJB Server architecture
This section describes the architecture of the CICS EJB server.

2.4.1 Components of the CICS EJB Server
A CICS EJB Server is made up of following components:

� TCP/IP listener
� Request receiver
� Request models
� Request stream
� Request stream directory
� Request processor
� EJB container
� Object store
� CorbaServers
� Java Virtual Machine
� Deployed JAR files

The flow of data through the components is illustrated in Figure 2-6, and the relationship
between the different resources is shown in Figure 2-7.

Each of the components is discussed further in the following sections.

Figure 2-6 Data flow through the CICS EJB server

IIOP
request

IIOP
reply

TCP/IP
listener

Security
URM

DFHXOPUS

Region boundary
(optional)

Request
Processor

EJB
Container

CIRP

invoke
enterprise

bean

Request
Receiver

CIRR

DFHIIRRS
DFJIIRP

CICS Java
environment

CICS Sockets
domain

Request
processing
(non Java)

Request Stream

bean

Request stream
directory

DFHEJDIR
Ojbect Store

DFHEJOS

REQUESTMODEL

matching

activation

CORBASERVER

DJAR

passivation
40 EJB for OS/390 and z/OS, CICS TS V2.1

Figure 2-7 The CICS EJB server — how resources fit together

TCP/IP listener
The CICS TCP/IP listener monitors specified ports for inbound requests. You specify IIOP
ports and configure the listener by defining and installing TCPIPSERVICE resources.

For a TCPIPSERVICE, you define:

� The port number to listen on.

� The protocol, which must be set to IIOP for enterprise beans.

� The transaction ID of the request receiver. The default transaction ID is CIRR.

� Whether SSL is enabled or not. If SSL is enabled, you can choose between client and
server authentication, or server authentication only.

� The name of the user replaceable security module. The default module is DFHXOPUS.

� The name of the DNS connection optimization group for workload management (optional).

The TCP/IP listener receives the incoming request and starts the transaction specified. For
IIOP services, this corresponding transaction resource definition must have the program
attribute set to DFHIIRRS, the request receiver program.

Request receiver
The request receiver transaction (CIRR) is attached by the IIOP domain and invokes the
program DFHIIRRS. The request receiver retrieves the incoming message and examines the
contents of the IIOP formatted message stream. If a message is processed, a response is
sent to the client. The request receiver transaction stays running while the IIOP connection is
open, and terminates when it has no further work to do.

TCPIPSERVICE
PROTOCOL:IIOP
PORT:

CORBASERVER

DJAR:
 HFSFILE

/u
/cicsts21

/shelf
/<region>

/<CorbaServer>
 <bean>.jar

/work/
/<region>
dfhjvmout.<region>..xx.yy.txt
dfhjvmerr.<region>.aa.bb.txt

java.naming.provider.url

/props
/dfjjvmpr.props

REQUESTMODEL
CORBASERVER
JNDIPREFIX
TRANSID

OS/390 HFS

DFHJVMPR

WORK_DIR=/u/cicsts21/work/&APPLID;
JVMPROPS= /u/cicsts21/props/dfjjvmpr.props
STDOUT=djhjvmout
STDERR=djhjvmerr

CICS TCP/IP listener

Request Receiver

TRANSACTION: CIRR
PROGRAM: DFHIIRRS

TRANSACTION: CIRP
PROGRAM: DFJIIRP

JVMPROFILE:

Request Processor

COS Naming Server
Chapter 2. CICS TS V2.1: The EJB Server 41

In order to process the request, the request receiver must set a CICS user ID to be used as
the security context. This user ID can be determined in the following two ways:

� Through the use of Secure Sockets Layer (SSL) client certificates

� By calling a CICS User Replaceable Module (URM) specified in the TCPIPSERVICE
resource definition, for which CICS supplies the sample DFHXOPUS

A request is passed to a request processor using an associated request stream. A request
stream is a new task-to-task communication mechanism in CICS and is explained in more
detail in “Request stream” on page 43.

If it is a new request for the server, a request processor is determined and passed the
associated request stream. If it is a follow-on request, the existing request processor is
determined and passed the existing request stream. Once the request is forwarded to a
request processor, the request receiver waits for the return of data on the request stream.

Request models
To associate the incoming IIOP formatted request with a CICS transaction, you need to
provide and install REQUESTMODEL resource definitions for all the possible requests that
CICS can process. CICS compares fields in the method request against values defined in the
REQUESTMODELs, to find the best match.

A request model is required for:

� Each method in the bean’s remote interface, including the methods inherited from the
EJBObject interface

� Each method in the bean’s home interface, including methods inherited from the
EJBHome interface

A request model specifies:

� The CorbaServer for matching DJAR files.

� Bean names for matching enterprise beans. Bean names can also be generic.

� Operation patterns to match against a bean method name. These patterns can also be
generic.

� Interface type. Valid types are Home, Remote, or Both.

� The CICS transaction to be started when a matching request is received. The default is
CIRP, which specifies the default request processor, DFJIIRP. If you choose to use your
own transaction definition, you should base it on CIRP.

Some IIOP and EJB requests are processed using an existing request processor transaction.
This is the case when a request is processed which belongs to an open OTS transaction, and
one of the previous requests of this open OTS transaction has also been processed by this
EJB server. Such requests run in existing JVM environments, even if a REQUESTMODEL
matches the requests. The transaction ID in any matching REQUESTMODEL is used only
when a new request processor transaction is required.

For further details on request model selection refer to Section 2.4.2, “Selecting a new request
processor” on page 47.

Note: If you do not define a REQUESTMODEL, CICS uses the default request model,
which always maps to transaction ID CIRP.
42 EJB for OS/390 and z/OS, CICS TS V2.1

Request stream
Requests are passed from the request receiver to the request processor using an associated
request stream. Request streams are a new task-to-task communication mechanism in CICS.
They are used in the distributed routing of method requests for enterprise beans. The request
receiver and request processor can either be:

� In the same CICS region
� On different CICS regions in the same OS/390 system
� On different CICS regions in different OS/390 systems

To achieve scalability, the different transport protocols used for these topologies are
dynamically selected as shown in Table 2-1.

Table 2-1 Transport protocols for request streams

Request stream directory (DFHEJDIR)
Request streams are stored in the request stream directory, DFHEJDIR. This is a recoverable
VSAM KSDS file and must be shared among all application-owning regions (AORs) in the
logical EJB Server. It can be shared using one of the following options:

� VSAM RLS
� Function shipping
� Coupling facility data tables

It contains a table of OTS TIDs and object keys, mapped to public IDs (Figure 2-8). The OTS
TID and the object key in the request determine if the request must be sent to an existing
processor. If the request is not found in the request stream directory, then the request must be
the first request for the EJB server concerning a specific OTS transaction and object key. In
this case, a new request stream is created and passed to a request processor.

Figure 2-8 Lookup of request stream

Topology Transport type

Same CICS region Within region

Different CICS regions, same OS/390 system MRO/XM

Different CICS regions, different OS/390 system MRO/XCF

Request Receiver

Request Receiver

- Look up bean
- Find existing

request stream

Request
Processor

Insert new key
in request stream
directory

method1()

method2()

Create
request
stream

Jo
in

re
q

u
es

t
st

re
am

1111
2222

3333

Request stream
Directory

DFHEJDIR

- Look up bean
- Not found

4444

5555
Chapter 2. CICS TS V2.1: The EJB Server 43

If the request stream is found in the request stream directory, then a previous request has
been processed previously by this EJB server concerning the specific OTS transaction and
object key. The existing request stream key is taken and passed to the specified existing
request processor. At the end of the OTS transaction, the entry is removed from the request
stream directory.

Request processor
The request processor manages the execution of the IIOP request and is responsible for:

� Locating the object identified by the request

� Calling the container to process the bean method for an enterprise bean request

� Processing the request itself for a request for a stateless CORBA object (although the
transaction service may also be involved)

The request processor instance that handles each IIOP request is configured by a
CORBASERVER resource definition in CICS. Its default transaction ID is CIRP and has the
default program DFJIIRP associated. DFJIIRP must specify the JVMClass
com.ibm.cics.iiop.RequestProcessor.

When the request processor receives a request stream, it locates the object identified by the
object key of the request. If it identifies an enterprise bean, it calls the container to process
the bean method. If it is a stateless CORBA object, it invokes the method directly.

The request processor waits for the return of the method call and passes the result back to
the request receiver. Because all method invocations of one specific enterprise bean within
one OTS transaction must be processed by the same request processor, the request
processor’s lifetime is the same as the OTS transaction lifetime. For a bean having the
transaction attribute RequiresNew set, a new request processor task is used.

EJB container
Whereas desktop JavaBeans usually run within a visual container such as an applet or JVM
application, an enterprise bean runs within a container provided by the enterprise Java
server. The EJB container creates and manages enterprise bean instances at run-time, and
isolates the enterprise beans from direct client access.

The EJB container supports a number of implicit services, including lifecycle, state
management, security, transaction management, and persistence. These services are
required by each enterprise bean running in the container.

Lifecycle: Individual enterprise beans do not need to manage process allocation, thread
management, object activation, or object passivation explicitly. The EJB container
automatically manages the object lifecycle on behalf of the enterprise bean.

State management: Individual enterprise beans do not need to save or restore object state
between method calls explicitly. The EJB container automatically manages object state on
behalf of the enterprise bean.

Security: Individual enterprise beans do not need to authenticate users or check
authorization levels explicitly. The EJB container can automatically perform all security
checking on behalf of the enterprise bean.

Note: To utilize a user-defined request processor, you will need to specify the new request
processor transaction ID in a REQUESTMODEL definition. For further details on how a
request processor is selected, refer to 2.4.2, “Selecting a new request processor” on
page 47.
44 EJB for OS/390 and z/OS, CICS TS V2.1

Transaction management: Individual enterprise beans do not need to specify transaction
demarcation code to participate in distributed transactions. The EJB container can
automatically manage the start, enrollment, commitment, and rollback of transactions on
behalf of the enterprise bean.

Persistence: Individual enterprise beans do not need to retrieve or store persistent data
from a database explicitly. The EJB container can automatically manage persistent data on
behalf of the enterprise bean.

Object store (DFHEJOS)
The object store is a non-recoverable shared file used by CICS to store stateful session
beans that have been passivated. In CICS enterprise beans are passivated at the earliest
opportunity, which will occur for all enterprise beans which are not within an OTS transaction
and have finished executing method requests.

The object store can be a VSAM file or a coupling facility data table, but must be shared
between all regions (both listener regions and AORs) in a CICS EJB Server. Each object
store is logically divided up into many stores. Each store is associated with a named
CorbaServer. The contents of the object store are not deleted upon request. Instead, the
entries are marked as deletable, but not actually removed until an internal garbage collection
operation is performed. The garbage collection operation is initiated by CICS and is not
tunable. However, garbage collection is controlled by an adaptive mechanism that ensures
optimum performance.

CICS supplies sample JCL to help you create this file, in the DFHDEFDS member of the
SDFHINST library.

CorbaServer
Before enterprise beans can be deployed into an EJB server, their execution environment
must be configured. In CICS, this is achieved by installing a CORBASERVER resource
definition. A CORBASERVER defines an execution environment for enterprise beans and
CORBA stateless objects. For convenience, we shall refer to the execution environment
defined by a CORBASERVER definition as a CorbaServer.

The CORBASERVER resource defines the following attributes:

� The name of the CorbaServer

� The JNDI prefix

� The session bean timeout

� The shelf directory, this is a HFS directory where deployed JAR files can be stored

� Server ORB attributes, which are published to the COS Naming Server and are used by a
client application to connect to CICS TCP/IP listener, therefore, it is important, that these
settings match with the settings of the TCPIPSERVICE controlling the TCP/IP listener:

– IPaddress
– PortNumber
– SSL (flag for SSL client or server authentication)

� The SSL certificate to use for outbound messages.

Restriction: CICS TS V2.1 does not support entity beans and so does not support the
persistence of enterprise beans.
Chapter 2. CICS TS V2.1: The EJB Server 45

You can think of a CorbaServer as a means to logically group enterprise beans in a CICS EJB
server. The following rules apply to CorbaServers:

� A CICS EJB server may contain more than one CorbaServer.

� A CorbaServer may contain more than one enterprise bean.

� An enterprise bean cannot be deployed multiple times into the same CorbaServer.

� An enterprise bean can be deployed multiple times to different CorbaServers per region.

There are several reasons why you might want to have more than one CorbaServer in an
EJB server, which are as follows:

� To deploy the same enterprise bean with different characteristics to your CICS EJB server.
These different characteristics could be:

– Different deployment descriptor attributes, such as transaction attributes
– Different timeout settings
– Different SSL settings
– Different JNDI prefixes; allows two CorbaServers containing the same enterprise bean

� To implement application separation. You might want to separate enterprise beans in
different CorbaServers based on application criteria.

Java Virtual Machine
A new persistent-reusable JVM has been introduced for OS/390, designed to for high-volume
execution of Java. To read more about the JVM, refer to 2.2, “The Java Virtual Machine” on
page 34.

Deployed JAR files
A DJAR resource defines the file location of a CICS deployed JAR file. A CICS-deployed JAR
file is an EJB-JAR file, containing enterprise beans, on which code generation has been
performed and which has been stored in the HFS used by the CICS region.

The DJAR resource defines the following attributes:

� The name of the DJAR resource.
� The CORBASERVER into which to install the DJAR.
� The location of the DJAR file in the HFS.

When the DJAR resource definitions are installed into a CICS region, this will cause CICS to:

� Copy the deployed JAR file (and the classes it contains) to the CICS shelf directory in the
HFS.

� Read the deployed JAR from the shelf, parse its XML deployment descriptor, and store
the information it contains.
46 EJB for OS/390 and z/OS, CICS TS V2.1

2.4.2 Selecting a new request processor
Request models are used to set the properties of the execution environment for enterprise
beans. In CICS terms, they set the CICS request processor transaction that will be used to
execute the function within a JVM which has the required properties. Their function is
illustrated in Figure 2-9.

The actual transaction ID selection part of a request model is not very important for the
function of the enterprise bean. Whatever transaction is used, the bean will be executed. The
real benefit that it provides is the ability to use standard CICS tuning, measurement, and
resource control on a JVM execution. This transaction ID selection can also be used to route
request to CICS regions, using the DFHDSRP user-replaceable module.

Figure 2-9 Relation between CorbaServers, DJARs, and request models

The transaction ID of the request processor that will be used to process an incoming method
request is determined by matching the method request with the request model definitions
installed in that region. The bean name, the interfacetype (home or remote), the CorbaServer
name, and the operation (method) are all matched against the information in the request
stream. The rules for request model matching are as follows:

� A more specific match overrides a generic match.

� The order of precedence is:

a. CorbaServer
b. Bean name
c. Interface type
d. Operation

Request without
matching

request model

Transaction
TRAX

Transaction
TRAX

Transaction
CIRP

Request model: TRAX
BEANNAME: TraderBean
OPERATION: *
CORBASERVER: COR2
TRANSID: TRAX

Request model: TRAG

CorbaServer: COR2

JNDIPrefix: ITSO/COR2

DJAR: Trader

TraderBean

CorbaServer: COR1

JNDIPrefix: ITSO/COR1

DJAR: HelloWorld

HelloWorld

HelloWorld.sayhello() TraderBean.logon() TraderBean.getQuote()

BEANNAME: TraderBean
OPERATION: get*
CORBASERVER: COR2
TRANSID: TRAX

Request
Processor
Chapter 2. CICS TS V2.1: The EJB Server 47

If you want your bean to be executed with another JVM profile, you have two options:

1. You can define a new request model and specify a different CorbaServer, bean name or
transaction ID. This is useful for two reasons:

– You can allow different method requests to invoke different CICS transactions, which is
very useful for CICS monitoring purposes. If so you would also need to define the new
request processor transaction and associated request processor program.

– You can cause different method requests to run in different Java environments, since
the request processor specifies the name of the JVM profile in the program definition.

2. You can specify another JVM profile in the CICS program definition for DFJIIRP. This is
not the preferred method, because all other beans which match to the default request
model will also be executed with this new profile.

In Figure 2-9 on page 47 the two request models TRAX and TRAG are used to separate the
different method requests on the TraderBean into two request processor transactions, TRAX,
and TRAG. This is achieved by specifying get* in the Operation field of the request model
TRAG, so that methods getQuote(), getUserID(), and getCompany() will run under a
separate request processor transaction, which could use a different JVM environment.
However, the actual TraderBean is only defined in the one DJAR Trader, which is defined in
the COR2 CorbaServer, so both request processor transactions will invoke methods in the
same DJAR.

Other requests such as the sayhello() method invoked on the HelloWorld bean, will not
match request models TRAX or TRAG and so will use the default request processor, CIRP.
Executing the bean with another JVM profile.

For further details on how we defined a new REQUESTMODEL for our Trader bean, refer to
Figure 4-8, “REQUESTMODEL resource definition” on page 80.

Tip: Always end the method name in the REQUESTMODEL operation field with a “*”. This
is because this setting includes name-mangling so that a given method with parameter
over-loading can be selective.

Tip: A good way of achieving a distinct set of properties for a set of CorbaServers is to
associate a unique request model with each CorbaServer and then use distinct DFHJVM
members and HFS files to set the JVM properties. Doing this creates a simple one-to-one
mapping and permits easy changes to the environment.
48 EJB for OS/390 and z/OS, CICS TS V2.1

2.4.3 Object Transaction Service
An Object Transaction Service (OTS) transaction is a distributed unit of work. Method
invocations may participate in OTS transactions or bean-managed OTS transactions. The
setting of a method’s transaction attribute determines whether or not the CICS task under
which the method executes makes its own unit of work, or is part of a wider, distributed OTS
transaction.

Transaction attributes are specified in the enterprise bean’s deployment descriptor. Table 2-2
illustrates how CICS behaves for a specific attribute.

Table 2-2 Transaction attributes

Attribute If client has OTS transaction If client has no OTS transaction

Mandatory
Bean must execute within
context of client’s OTS
transaction

CICS registers interest in the transaction
with the coordinator.

CICS throws TransactionRequired
exception.

Never
Bean must not been invoked in
context of an OTS transaction.

CICS throws RemoteException
exception.

CICS starts a unit of work, and commits
at end of method.

Equivalent to SYNCONRETURN
behavior.

NotSupported
Bean cannot execute within
context of an OTS transaction.

OTS transaction is suspended for
duration of the method call. CICS starts a
unit of work and commits at end of
method. OTS transaction is resumed
when method is completed.

Equivalent to SYNCONRETURN
behavior.

CICS starts a unit of work and commits
at end of method.

Equivalent to SYNCONRETURN
behavior.

Supports
Bean can execute with or without
an OTS transaction context.

CICS registers interest in the transaction
with the coordinator.

CICS starts a unit of work and commits
at end of method.

Equivalent to SYNCONRETURN
behavior.

Required
Bean must execute within
context of an OTS transaction.

CICS registers interest in the transaction
with the coordinator.

Container starts a new OTS
transaction; CICS functions as the OTS
coordinator and commits or rolls back
the OTS transaction when the bean
method ends.

RequiresNew
Bean must execute with context
of a new OTS transaction.

OTS transaction is suspended for
duration of the method call. Container
starts a new OTS transaction. CICS
functions as the OTS coordinator and
commits or rolls back the OTS
transaction when the bean method ends.
OTS transaction is resumed when
method is completed.

Container starts a new OTS
transaction; CICS functions as the OTS
coordinator and commits or rolls back
the OTS transaction when the bean
method ends.
Chapter 2. CICS TS V2.1: The EJB Server 49

2.4.4 Workload balancing
You can implement a CICS EJB server in a single CICS region. However, in a sysplex
environment you can create a CICS EJB server consisting of multiple CICS regions, which
behave like one logical server. Using multiple regions makes failure of a single region less
critical and enables you to balance work across the multiple systems in the sysplex, thus
providing for greater throughput than a single system could offer.

Typically, a CICS logical server consists of:

� A set of cloned listener regions defined by identical TCPIPSERVICE definitions to listen
for incoming IIOP requests. These listener regions do not need to be Java-enabled since
only the request receiver (CIRR) runs within the listener region and routes the request
stream to the request processor in the AORs. Therefore such listener regions do not need
configuring with a JVMProfile or JVM TCBs.

� A set of cloned application-owning regions (AORs), each of which supports an identical
set of IIOP applications or enterprise bean classes in an identically-defined CorbaServer.
Multiple methods for the same OTS transaction are directed to the same AOR.

Workload balancing of IIOP requests
To workload balance IIOP requests in CICS there are two options. First you can balance
incoming IIOP connections across listener regions. Second you can use CICSPlex SM or use
your own CICS distributed routing program to balance OTS transactions across a set of
cloned AORs.

Balancing client connections across listener regions
To balance clients across listener regions you have the following four options:

1. Sysplex Distributor

This technique offers effective distribution of workload throughout a Parallel Sysplex
without requiring any non-OS/390 technology. Sysplex Distributor is provided in OS/390
Communications Server V2R10 and combines XCF and VIPA functions to provide new
levels of availability and workload balancing in a Parallel Sysplex. A new sysplex-wide
VIPA address enables workload distribution to multiple server instances without requiring
changes to clients or networking hardware, and without delays in connection setup.
Sysplex Distributor resides in the Parallel Sysplex and has the ability to factor “real-time”
information; including server status, quality of server (QoS), and Policy information
(provided by the Service Policy Agent). Combining real-time factors with the information
obtained from MVS WLM, uniquely ensures that the best destination server instance is
chosen for a particular client and that Service Level Agreements are maintained.

2. DNS connection optimization

Connection optimization is a technique that uses the OS/390 dynamic DNS server in
conjunction with MVS WLM to balance IP connections in a sysplex domain. With DNS
connection optimization, multiple CICS systems in different OS/390 systems can be
started to listen for IIOP requests using the same generic hostname and port. Each region
is automatically registered with MVS WLM which provides information to the OS/390
dynamic DNS server, which resolves client IIOP request containing the generic host name
and port number to the IP address of the least loaded CICS system. This function is
implemented in OS/390 V2R5.
50 EJB for OS/390 and z/OS, CICS TS V2.1

3. TCP/IP port sharing

TCP/IP port sharing is a feature of OS/390 Communications Server V2R5, that allows
multiple regions in the same OS/390 system to listen for incoming IP requests on the
same IP socket. It can be used to easily and efficiently balance requests across multiple
listener regions in the same LPAR. The balancing of IP requests across regions is based
on the number of socket connections both active and in the backlog.

4. Network Dispatcher

IBM Network Dispatcher is the load balancing component of IBM WebSphere Edge Server
and can run on a variety of platforms including Windows NT, AIX, and Solaris. For OS/390,
a version of Network Dispatcher can also be deployed within the 2216 router.

Network Dispatcher provides one network visible cluster address to which all IP requests
are routed. The dispatcher then intercepts packets sent to this cluster address and routes
them to a destination host based on the current load information.

You can read more about workload balancing TCP/IP requests in Workload Management for
Web Access to CICS, SG24-6118.

Distributed routing
Distributed routing is used to balance method call invocations from listener regions across
CICS application owning regions (AORs). The dynamic selection of the target can be made
automatically using CICSPlex SM Workload Management, or using a customized CICS
dynamic routing program. CICS invokes the distributed routing program, DFHDSRP, for
method requests that will run under a new OTS transaction, or outside the scope of an OTS
transaction. However, requests that will run under an existing OTS transaction are not
dynamically routed; these are directed automatically to the AOR in which the existing OTS
transaction is already running.

For further information on writing a customized distributed routing program, refer to the CICS
Customization Guide, SC34-5706. For further information on CICSPlex SM Workload
Management refer to the manual CICSPlex System Manager Managing Workloads,
SC34-5735.

The diagram illustrated in Figure 2-10 shows a CICS logical EJB server. Sysplex distributor or
DNS connection optimization could be used to balance client connections across the listener
regions, and distributed routing is used to balance request streams across the AORs.

Figure 2-10 Workload balancing in a sysplex

Listener Regions

Client
IIOP

Distributed
Routing

AORs
CICS EJB Server

Request
Receiver
(CIRR)

Request
Processor

(CIRP)

Request
streams
Chapter 2. CICS TS V2.1: The EJB Server 51

52 EJB for OS/390 and z/OS, CICS TS V2.1

Chapter 3. Accessing CICS from servlets
and enterprise beans

In this chapter we provide a summary of the different configurations in which servlets and
enterprise beans can be used to access CICS applications on OS/390. For each scenario we
give a brief outline of the configuration and provide a discussion of the pertinent issues when
using this configuration.

In this chapter we shall consider the following IBM products, all of which provide an EJB
container for the running of enterprise beans:

� IBM WebSphere Application Server, V3.5 Advanced Edition (available for Windows NT,
AIX, and Solaris)

� IBM WebSphere Application Server for z/OS and OS/390, V4.0

� CICS Transaction Server for z/OS, V2.1

In addition, we consider the following IBM Web application servers which provide a servlet
engine for the execution of servlets and JSPs:

� IBM WebSphere Application Server, V3.5 Standard Edition (available for Windows NT,
AIX, and Solaris)

� IBM WebSphere Application Server Standard Edition for OS/390 V3.02

� IBM WebSphere Application Server Standard Edition for OS/390 V3.5

3

© Copyright IBM Corp. 2001 53

3.1 From a servlet — Using the CICS connectors
All versions of IBM’s WebSphere Application Server include an environment for the execution
of servlets, the servlet engine. A CICS application program may be executed from a servlet
using the CICS connector facilities. A typical use of a servlet is to access information held on
OS/390 by invoking a CICS application program and then to pass the data returned to a Java
Server Page (JSP). The JSP constructs the contents of the dynamic Web page to be returned
to the browser.

The CICS Transaction Gateway (CTG) Java classes ECIRequest and EPIRequest may be
used to invoke the CICS application program programmatically, or the connection and
invocation may be defined to the CTG using the Common Connector Framework (CCF).

The CICS application may be a COMMAREA based program, in which case the CICS
External Call Interface (ECI) is used; or it may be a 3270 data stream based program, in
which case the External Presentation Interface (EPI) is used. In order to use the EPI, the
CICS Transaction Gateway (CTG) must to be run on a distributed platform. There is a also
third interface to CICS, the External Security Interface (ESI). This allows the client program to
request security information from CICS, such as verifying or modifying passwords.

WebSphere (distributed platform)
The versions of WebSphere that run on distributed platforms are WebSphere Application
Server Standard Edition and WebSphere Application Server Advanced Edition. With both of
these versions of WebSphere the CTG V3.1 may be used to connect to a CICS application
running on OS/390.

Figure 3-1 illustrates a servlet on a distributed platform making an ECI call to invoke a CICS
COMMAREA based application program using either a CTG running on OS/390 or on the
distributed platform.

Figure 3-1 Servlet, distributed platform — using CICS connector

The Common Connector Framework (CCF) is an IBM specification supported by the CTG
which provides a Java based infrastructure for providing access to existing Enterprise
Information Systems such as CICS. The Enterprise Access Builder of Visual age for Java
assists the developer in using the CCF.

WebSphere Application Server
Advanced Edition

CICS TS

CICS
Transaction

Gateway

EXCI

OS/390

CICS
connector

servlet

COMMAREA

CICS
application

Distributed Platform

CICS
Transaction

Gateway
TCP62

or APPC

ECI or EPI

TCP
54 EJB for OS/390 and z/OS, CICS TS V2.1

There is no transactional co-ordination between the servlet and the execution of the
application program in CICS. A CICS logical unit of work is created at the start of execution of
the application program and this logical unit of work is committed at successful completion or
rolled back (aborted) if the program fails. In the event of a failure, status information is
returned to the servlet, which may take appropriate action. However, there is no automatic
system action.

In summary, using the CICS connector from WebSphere Application Server on a distributed
platform provides the following useful features:

� Ability to use the ECI, EPI, and ESI.

� Ability to communicate with CICS/ESA V4.1 and CICS VSE region as well as CICS TS V1
and CICS TS V2 regions on OS/390.

� Ability to develop a servlet on a distributed platform and subsequently move it to
WebSphere on OS/390.

The following limitations of using the CICS connector from a servlet should also be
considered:

� The CICS logical unit of work is not coordinated with the servlet if it is running in
WebSphere V3.02 or V3.5.

� Using the servlet on a distributed platform requires the use of a TCP62 or SNA connection
if you wish to use the EPI or ESI interfaces.

WebSphere (OS/390 and z/OS)
There are three versions of WebSphere that are currently are available on OS/390. They are
WebSphere Application Server V3.02 and V3.5 Standard Edition, and WebSphere
Application Server V4.

Figure 3-2 illustrates a servlet in WebSphere Application Server for OS/390 V3.02 or V3.5
invoking a COMMAREA based CICS application program using the CICS connector as
provided by CTG for OS/390. As the protocol is specified as local: by the servlet, a local
CTG is used, and the CTG Java classes are invoked within the WebSphere Application
Server address space.

Figure 3-2 Servlet, OS/390 — using CICS connector

WebSphere Application
Server V3.02 or V3.5

OS/390

EXCI

CICS TS

COMMAREA

CICS
application

CICS
connector

CICS
Transaction

Gateway

servlet

local:
Chapter 3. Accessing CICS from servlets and enterprise beans 55

A servlet running on either version of WebSphere connects to a CICS application program in
the same way as it would on a distributed platform, using the CTG and either the CCF or an
ECIRequest object.

As on the distributed platform, there is no transactional coordination between the servlet and
the program running in CICS. However, if both WebSphere and CICS are running in the same
OS/390 LPAR, the CTG V3.1.2 can exploit transactional EXCI with MVS Resource Recovery
Service (RRS) as the coordinator and therefore participate in a global unit of work with CICS.

A feature of WebSphere V4.0 is a new connector to CICS which is compliant with the
Common Client Interface of the J2EE Connector Architecture specification. This feature is
called the WebSphere/390 CICSEXCI connector. It does not use the CTG to connect to
CICS, but uses its own interface to the External CICS Interface (EXCI) and can provide
transactional coordination between WebSphere and CICS if the CICS region and WebSphere
are in the same OS/390 image. Note that this feature is provided as a beta in WebSphere
V4.0 and will be replaced by the CICS connector in CTG V4.1 when it becomes available for
OS/390. CTG V4.1 will be compliant with the J2EE Connector Architecture specification.

Figure 3-3 illustrates a servlet in WebSphere Application Server V4.0 invoking a COMMAREA
based CICS application program using the WebSphere/390 CICSEXCI connector.

Figure 3-3 Servlet, OS/390 — using WebSphere/390 CICSEXCI connector

In summary, using the CTG or the WebSphere/390 CICSEXCI connector from a servlet
running in WebSphere Application Server on OS/390 provides the following useful features:

� Ability to develop to the J2EE connector architecture and then deploy to any Web
application server that has J2EE connector runtime support.

� Ability to develop a servlet on a distributed platform and subsequently move it to
WebSphere on OS/390.

The following limitations of using the CTG or the WebSphere/390 CICSEXCI CICS connector
from a servlet should also be considered:

� The CICS logical unit of work is not coordinated with the servlet if it is running in
WebSphere V3.02 or V3.5.

� The EPI and ESI interfaces are not supported, so only COMMAREA based CICS
applications can be invoked.

J2EE Connector architecture: The J2EE Connector architecture is an industry wide
standard for connecting the J2EE to heterogeneous Enterprise Information Systems. The
CTG V4 and Visual Age for Java V3.5.3 will support the J2EE Connectors.

WebSphere Application
Server V4

CICS TS or
CICS/ESA V4.1

EXCI

OS/390

WebSphere/390
CICS EXCI
connector

COMMAREA

CICS
application

servlet
56 EJB for OS/390 and z/OS, CICS TS V2.1

3.2 From a session bean — Using the CICS connectors
IBM’s WebSphere Application Server Advanced Edition provides a container for the
deployment of enterprise beans. The CICS connector classes provided by CTG can be used
within enterprise beans to invoke applications in a connected CICS region. If the CTG runs on
a distributed platform, then both EPI and ECI calls can be made to invoke COMMAREA or
3270 based CICS applications. If the CTG runs on OS/390, then only the ECI can be used.

Figure 3-4 illustrates a session bean making an ECI call to invoke a CICS COMMAREA
based COBOL application, using a CTG running on OS/390. The CTG on OS/390 makes an
EXCI call to the CICS region, which can be either a CICS TS V1 or V2 system.

Figure 3-4 Session bean, distributed platform — using CICS connector

Although an enterprise bean runs in the transactional environment provided by the container
of the Enterprise Java Server, the work requested in CICS does not participate in the same
logical unit of work (or transaction in Java terminology) as the enterprise bean. Both EPI and
ECI calls work the same as when used in any Java program. An enterprise bean can be
involved in a logical unit of work, but an ECI call (or series of extended ECI calls) to CICS
causes a different logical unit of work to start in CICS.

If the called CICS program abends, the logical unit of work in CICS will be terminated, and the
abend information will be sent back to the enterprise bean. However, the enterprise bean
transaction is separate from the abended CICS logical unit of work, so it will not be
automatically influenced by the outcome of the CICS unit of work.

This is also true if the transactional EXCI feature of the OS/390 CTG is used, since this only
provides the ability for extending the logical unit of work across multiple extended ECI calls
from the CTG to CICS.

WebSphere Application Server
Advanced Edition

CICS TS

EXCI

OS/390

TCP

Distributed Platform

CICS
connector

CICS
Transaction

Gateway

COMMAREA

CICS
application

session
bean
Chapter 3. Accessing CICS from servlets and enterprise beans 57

Figure 3-5 illustrates a session bean running in WebSphere V4.0 using the WebSphere/390
CICSEXCI connector to invoke a COMMAREA based program in CICS.

Figure 3-5 Session bean, WebSphere V4.0 — using WebSphere/390 CICSEXCI connector

In summary, using the CICS connector from an enterprise bean provides the following useful
features:

� Ability to communicate with CICS/ESA V4.1 (if using a distributed CTG), as well as CICS
TS V1 and CICS TS V2 regions.

� Ability to develop the enterprise bean on a distributed platform and then deploy it to
WebSphere Application Server on OS/390 or CICS Transaction Server V2.1 if required.

The following limitations of using the CICS connector from an enterprise bean should also be
considered:

� The use of the ECI or EXCI limits the maximum data transfer size to 32K as defined in a
CICS COMMAREA.

� The CICS logical-unit of work is not coordinated with the enterprise bean transaction,
unless the WebSphere/390 CICSEXCI connector is used.

� Using the CTG on a distributed platform requires the use of a TCP62 or SNA connection if
you wish to use the EPI or ESI interfaces.

3.3 From a servlet — Invoking a CICS session bean
All versions of IBM’s WebSphere Application Server include an environment for the execution
of servlets, a servlet engine. A servlet may act as a client to locate, instantiate and execute a
session bean in CICS TS V2.1. The session bean could be a self-contained application or it
could invoke an existing CICS application. To invoke an existing CICS application program
the session bean could use either the CICS connector or the JCICS classes.

The servlet locates the session bean in CICS by using the Java Naming and Directory
Interface (JNDI) to obtain a reference to the home interface of the session bean. This
reference is then used to create an instance of the session bean and the client is then able to
invoke business logic methods on that instance. The Java code used to locate, instantiate
and invoke methods on a session bean is not platform specific; the Java code required is the
same for both WebSphere on a distributed platform and WebSphere on OS/390.

WebSphere Application
Server V4

OS/390

WebSphere/390
CICS EXCI
connector

COMMAREA

CICS
application

CICS TS

EXCIsession
bean
58 EJB for OS/390 and z/OS, CICS TS V2.1

If the session bean needs to access an existing CICS application program, it can link to it
using either the JCICS link() method or the new CICS connector for CICS TS which
provides both a CCF interface or the ECIRequest object. All of these options use a CICS
LINK call, rather than the EXCI, to access the back-end server program. Both local links and
distributed program link (DPL) calls are supported.

Figure 3-6 illustrates a servlet invoking a session bean in CICS TS V2.1. The protocol used to
communicate with the session bean is RMI over IIOP.

Figure 3-6 Servlet, any platform — invoking a session bean in CICS

In summary, invoking a session bean from a Servlet provides the following useful features:

� This offers the ability to execute a business component by reference to its external name
only. There is no need to know where it is in the network.

� The Servlet is portable; it may be developed on one application server and deployed on
any server which supports the Java Servlet specification.

The following limitation of invoking a session bean in CICS should also be considered:

� When using servlets, there is no transaction coordination between the Servlet and the
session bean running in CICS, as the transactional environment is provided by the EJB
container in an Enterprise Java Server.

WebSphere Application
Server

OS/390

EJB Container

CICS TS 2.1

Naming
Server

JNDI

RMI
IIOP

JNDI

servlet session
bean
Chapter 3. Accessing CICS from servlets and enterprise beans 59

3.4 From a session bean — Invoking a CICS session bean
WebSphere Application Server Advanced Edition, WebSphere Application Server for OS/390
V4.0 and CICS TS V2.1 all provide containers for the deployment of enterprise beans. A
session bean can be deployed in any of these environments and invoke another session bean
which may be located in any EJB server.

To invoke a method on another bean, the Java Naming and Directory Interface (JNDI) is
called to obtain a reference to the home interface of the required session bean. This
reference is then used to create an instance of the session bean. Method invocations are then
made on the session bean instance.

Each session bean called may in turn instantiate other session beans and invoke methods on
them. If an Object Transaction Services (OTS) transaction is started, then all the enterprise
beans called may participate in the transaction. Full transaction coordination among all
enterprise beans involved takes place using a two-phase commit protocol.

If the session bean needs to access an existing CICS application program, it can link to it
using either the JCICS link() method or the new CICS connector for CICS TS which
provides both a CCF interface or the ECIRequest object. All of these options use a CICS
LINK call, rather than the EXCI, to access the back-end server program. Both local links and
distributed program link (DPL) calls are supported

Figure 3-7 illustrates a session bean running in WebSphere Application Server for OS/390
V4.0 invoking a method on a session bean running in CICS TS V2.1.

Figure 3-7 Session bean, WebSphere V4.0 — invoking session bean in CICS TS V2.1

WebSphere Application
Server V4

OS/390

EJB Container

Naming
Server

JNDI

RMI
IIOP

session
bean

EJB Container

CICS TS V2.1

session
bean

JNDI
60 EJB for OS/390 and z/OS, CICS TS V2.1

The method calls between the enterprise beans use the communication protocol RMI over
IIOP. The transaction context is passed in the IIOP header on a method call, and this is used
by the enterprise bean container to notify the transaction coordinator of transactional events.

In summary, invoking a session bean in CICS from a session bean in WebSphere provides
the following useful features:

� Adherence to the standard J2EE component model is ensured.

� Full two-phase commit protocol between all resource managers is provided.

� Invocations may be in both directions from WebSphere to CICS and from CICS to
WebSphere. Furthermore, a session bean in CICS may invoke either a session bean or an
entity bean in WebSphere.

The following limitations of invoking enterprise beans in CICS from a session bean in
WebSphere must also be considered:

� The CICS region must be at version CICS TS V2.1 or later.

� Only session beans may be invoked in CICS; entity beans are not supported.
Chapter 3. Accessing CICS from servlets and enterprise beans 61

62 EJB for OS/390 and z/OS, CICS TS V2.1

Part 2 CICS TS V2.1:
Systems
programming

In this part we detail how to set up and configure the enterprise bean support in a CICS TS
V2.1 region, how to use the various new tools and features required, and how to deploy and
test the product samples. Following this, we provide information on how to diagnose and fix
problems when deploying and testing enterprise beans in CICS.

Part 2
© Copyright IBM Corp. 2001 63

64 EJB for OS/390 and z/OS, CICS TS V2.1

Chapter 4. Installation considerations for
CICS TS V2.1

This chapter describes how we installed and configured the EJB support in CICS Transaction
Server for z/OS V2.1. It is divided into two sections, the first section describing how we
defined and configured the various components required for EJB support, and the second
section explaining how we verified that each component was functioning correctly.

The various components of the CICS EJB server are illustrated in Figure 4-1.

Figure 4-1 Overview of the CICS TS V2.1 EJB components

4

CICS EJB Server

JVM

CSD

readinstall

deployment
enterprise

bean
development

ejb-jar

client

COS
Naming
Server

JDBC

JN
DI

DB2

= DATAFLOW

bind
lookup

IIOP connection

deployed
JAR

HFS
© Copyright IBM Corp. 2001 65

4.1 Installation and configuration
CICS TS V2.1 as an EJB server makes use of the following components:

� Traditional OS/390 resources such as partitioned data sets (PDS) and VSAM data sets.

� UNIX System Services (USS) resources for files and directories, the persistent, reusable
Java Virtual Machine (JVM) and TCP/IP.

� WebSphere Application Server for Windows NT for running the COS Naming Server, and
for running Web applications such as the CICS development deployment tool.

� Individual development workstations requiring the CICS deployment tool and an
integrated development environment such as provided by VisualAge for Java.

Therefore, in order to successfully install and configure CICS TS V2.1, along with the
traditional OS/390 based skills, it is helpful to also have basic UNIX skills, familiarity with
Windows NT, and knowledge of WebSphere Application Server administration.

In this chapter we show you how to come to grips with these various components from the
point of view of a traditional CICS systems programer who may have less skill in the areas
outside of OS/390.

We do not describe how to install the CICS base product from scratch, but assume that the
base code has already been installed and that a basic CICS system is operational.

The following list summarizes the tasks we completed to enable EJB support in CICS, each of
which is described in the sections that follow:

1. Do the initial preparation.

2. Create HFS directories and files.

3. Define MVS VSAM and PDS data sets.

4. Tailor the CICS startup JCL.

5. Install CICS resource definitions.

6. Build a COS Naming Server.

7. Set up the deployment tools.

4.1.1 Initial preparation
Before beginning the installation process we did some initial preparation.

We made sure that we had the following resources available:

� OS/390 V2.8 configured with UNIX System Services and TCP/IP. Note that OS/390
includes as base elements many products required by CICS TS. See the Program
Directory for CICS Transaction Server for z/OS, GI10-2525, for information on the
requirements for running CICS TS V2.1.

� The IBM Developer Kit for OS/390 Java 2 Technology Edition installed.

� A Windows NT workstation with Service pack 6 installed to be used to run WebSphere
Application Server for the COS Naming Server and the Web applications.

� The CICS supplied CD-ROMs for WebSphere Application Server, the CICS deployment
tools, and the CICS Information Center.
66 EJB for OS/390 and z/OS, CICS TS V2.1

We established the following information about the environment and its configuration
parameters that we would need to use during the configuration (Table 4-1).

Table 4-1 Information needed prior to starting installation

4.1.2 Creating HFS directories and files
This section describes how we defined a new HFS to OS/390 UNIX System Services, and
how we used this HFS for the directories and files needed by CICS.

Creating a new HFS
CICS requires several HFS directories. We allocated a new HFS dataset called
OMVS.SC69.CICSTS21 and mounted this at the directory /u/cicsts21.

The dataset for the HFS can be created from the TSO ISHELL environment. Select the
File_systems pull-down menu and choose option 2, see Figure 4-2 and Figure 4-3.

Figure 4-2 Creating an HFS with TSO ISHELL — 1

OS/390 Workstation value we used

CICS_HOME
(CICS install location)

/usr/lpp/cicsts/cicsts21

JAVA_HOME
(Java install location)

/usr/lpp/java213d/J1.3

CICS user home
(CICS working directory)

/u/cicsts21

OS/390 TCP/IP Hostname wtsc690e.itso.ibm.com

TCP/IP free ports 10500-10599

CICS APPLID SCSCPJA5

TCP/IP Host Name hecate.almaden.ibm.com

Important: We allocated a single underlying dataset for the HFS for our CICS user home
directory /u/cicsts21, which was therefore shared among all our CICS regions. In a more
active environment, consideration should be given to having separate datasets for
individual regions, and also for the work subdirectory (which can contain numerous stdout
and stderr files) in order to prevent a full HFS affecting multiple CICS regions.
Chapter 4. Installation considerations for CICS TS V2.1 67

Figure 4-3 Creating an HFS with TSO ISHELL — 2

Once the HFS data set has been allocated, you must mount it at a mount point (an HFS
directory), either with a TSO MOUNT command, or by using option 3 from the ISHELL
File_systems menu. The mount point should be an empty directory, otherwise its contents will
be hidden (but not deleted). We used the USS mkdir command to create the directory
/u/cicsts21 and mounted our HFS at this directory using the ISHELL File_systems menu
option 3, as shown in Figure 4-4.

Figure 4-4 Mounting an HFS with TSO ISHELL

To have the mounted HFS file systems available after the OS/390 system is IPLed, a MOUNT
statement needs to be added to the BPXPRMXX member in SYS1.PARMLIB. Our additions
to BPXPRMXX were as follows:

MOUNT FILESYSTEM(‘OMVS.SC69.CICSTS21’)
 TYPE(HFS)
 MODE(RDWR)
 MOUNTPOINT(‘/u/cicsts21’)

Tip: The USS shell command df -k can be used to provide a list of mounted file systems,
and also provides a useful display of space utilization in 1KB blocks.
68 EJB for OS/390 and z/OS, CICS TS V2.1

Defining the CICS HFS directories
Within this newly created HFS we created several subdirectories for use by CICS. We used
the TSO OMVS command to enter a USS shell and used the UNIX mkdir command to create
the directories. We also copied the CICS supplied JVM system property file, dfjjvmpr.props,
from the CICS install directory to our newly defined props subdirectory. This default CICS
installation directory is /usr/lpp/cicsts/cicsts21/props.This is shown in Example 4-1.

Example 4-1 Defining the CICS HFS directories

CICSRS1 @ SC69:/u/cicsrs1>cd /u/cicsts21
CICSRS1 @ SC69:/u/cicsts21>mkdir props
CICSRS1 @ SC69:/u/cicsts21>mkdir work
CICSRS1 @ SC69:/u/cicsts21>mkdir shelf
CICSRS1 @ SC69:/u/cicsts21>mkdir lib
CICSRS1 @ SC69:/u/cicsts21>mkdir djars
CICSRS1 @ SC69:/u/cicsts21>ls
djar lib props shelf work
CICSRS1 @ SC69:/u/cicsts21>cd work
CICSRS1 @ SC69:/u/cicsts21/work>mkdir SCSCPJA5
CICSRS1 @ SC69:/u/cicsts21/work>ls
SCSCPJA5
CICSRS1 @ SC69:/u/cicsts21/work>cd ../props
CICSRS1 @ SC69:/u/cicsts21/work>cp /usr/lpp/cicsts/cicsts21/props/dfjjvmpr.props
/u/cicsts21/props
CICSRS1 @ SC69:/u/cicsts21/props>ls
dfjjvmpr.props
CICSRS1 @ SC69:/u/cicsts21/props>exit
>>>> FSUM2331 The session has ended. Press <Enter> to end OMVS.

These different directories are used as follows:

cicsts21/props This is used to hold the JVM system properties files; for further
details, see “JVM system properties files” on page 69.

cicsts21/work This has a subdirectory for each CICS region’s APPLID, where the
java stdin, stdout, and stderr files are stored. It is referenced in
the WORK_DIR parameter in the JVM system properties file as
shown in Example 4-5 on page 74.

cicsts21/shelf CICS automatically creates a subdirectory in the shelf named after
the region’s APPLID. and within that directory a subdirectory for
each CorbaServer. This is used primarily for storing deployed JAR
files, but can also be used to store an enterprise beans’s
Interoperable Object Reference (IRO) in place of a Naming Server.

cicsts21/lib We used this directory to hold the utility JAR files required by the
applications we developed later in this book. For example we
copied here the Common Connector framework JAR file ccf.jar,
for the example we used later in the redbook.

cicsts21/djars This is where we kept the CICS-deployed JAR files for our
enterprise beans.

JVM system properties files
The dfjjvmpr.props file defines the basic information that the JVM needs to know about its
environment. Since the CICS default installation only allows system administrator user IDs to
update the supplied file /usr/lpp/cicsts/cicsts21/props/dfjjvmpr.props, we created a
copy to be shared by all of our regions by copying this /u/cicsts21/props/dfjjvmpr.props.
Chapter 4. Installation considerations for CICS TS V2.1 69

For now, the only change we need to make to the system properties file is to add the URL of
our WebSphere COS Naming Server (iiop://hecate.almaden.ibm.com:900) which will be
used for storing the IORs of the enterprise bean we publish to the COS Naming server. We
add the following line to our file dfjjvmpr.props:

java.naming.provider.url=iiop://hecate.almaden.ibm.com:900

CICS security authorization to HFS files
The CICS region user ID needs to be given access to the various HFS files and directories.
On our system we ran CICS as a started task, so CICS ran under the user ID STC. User STC
was in the same RACF CICS group name as the user we used to define the directories
therefore, we were able to give CICS access to our HFS directories with a single command
as follows:

chmod -R 775 /u/cicsts21

Chapter 21, “Managing security for enterprise beans” in Java applications in CICS,
SC34-5881, gives more complete information on security considerations. A diagram of the
completed directory hierarchy and file locations of our HFS is shown in Figure 4-5.

Figure 4-5 The OS/390 HFS directory structure

/usr/lpp

cicsts

cicsts21 CICS installation directory

docs

lib

props

samples

System property files
 dfjjvmpr.props
 dfjjvmps.props

EJB samples
helloWorld
bank account

/u

cicsts21

djars CICS-deployed jar files

lib Additional libraries

props Customized system properties files

shelf Deployed JAR files

work

SCSCPJAS Java stdin/stdout/stderr files

J1.3 Java installation directory

java213
70 EJB for OS/390 and z/OS, CICS TS V2.1

4.1.3 Defining OS/390 data sets
The following sections describe the changes we made to the following OS/390 data sets:

� CICS System Definition File
� EJB Object Store
� EJB Directory
� DJAR mapping data set
� JVM Profile PDS

The CICS System Definition (CSD) file
With CICS TS V2.1 the CSD file maximum record size has been increased from 500 to 2000
bytes. This is to accommodate the new resources, such as CORBASERVER and
REQUESTMODEL, which can have parameters containing HFS paths. As each HFS path
can be up to 255 bytes long, the CICS TS V1.3 CSD record size cannot accommodate these
resources.

As we wanted to reuse the CSD from our previous CICS TS V1.3 systems, this meant we had
to define a new VSAM CSD data set with the larger record size, copy the old CSD into the
new data set, and then run a DFHCSDUP UPGRADE against this new data set. The JCL we
used to do this is shown in Example 4-2.

Example 4-2 JCL to migrate a CICS TS V1.3 CSD to CICS TS V2.1

//CICSRS1C JOB (999,POK),NOTIFY=&SYSUID,
// CLASS=A,MSGCLASS=T,MSGLEVEL=(1,1),TIME=1440
//* CREATE A NEW CSD FOR CICS TS 2.1
//ALTERDEF EXEC PGM=IDCAMS,REGION=0M
//SYSPRINT DD SYSOUT=*
//AMSDUMP DD SYSOUT=*
//SYSIN DD *
 DELETE CICSSYSF.CICSTS21.DFHCSD
 DEFINE CLUSTER (-
 NAME(CICSSYSF.CICSTS21.DFHCSD) -
 VOLUMES(TOTCI3) -
 KEYS(22 0) -
 INDEXED -
 RECORDS(6000 1000) -
 RECORDSIZE(200 2000) -
 FREESPACE(10 10) -
 SHAREOPTIONS(2)) -
DATA -
 (NAME(CICSSYSF.CICSTS21.DFHCSD.DATA) -
 CONTROLINTERVALSIZE(8192)) -
 INDEX -
 (NAME(CICSSYSF.CICSTS21.DFHCSD.INDEX))
/*
//* COPY THE OLD CICS TS1.3 CSD CONTENTS INTO THE NEW FILE
//REPROCSD EXEC PGM=IDCAMS,REGION=0M,COND=(5,LT,ALTERDEF)
//SYSPRINT DD SYSOUT=*
//AMSDUMP DD SYSOUT=*
//SYS01 DD DSN=CICSSYSF.CICSTS13.DFHCSD,DISP=SHR
//SYSIN DD *
 REPRO INFILE(SYS01) -
 OUTDATASET(CICSSYSF.CICSTS21.DFHCSD)
/*
//* UPGRADE THE NEW CSD FOR CICS TS 2.1
//CSDUP EXEC PGM=DFHCSDUP,REGION=4M
//STEPLIB DD DISP=SHR,DSN=CICSTS21.CICS.SDFHLOAD
//DFHCSD DD DISP=SHR,DSN=CICSSYSF.CICSTS21.DFHCSD
Chapter 4. Installation considerations for CICS TS V2.1 71

//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 UPGRADE REPLACE
/*

The EJB object store and EJB data sets
There are two VSAM data sets, DFHEJOS and DFHEJDIR used by CICS to internally
manage the running of enterprise beans. The function of these data sets is described in detail
in 2.4, “The CICS EJB Server architecture” on page 40.

DFHEJOS and DFHEJDIR are VSAM KSDS data sets that require no initialization. CICS
supplies JCL to create these files in member DFHDEFDS of the XDFHINST data set. We
copied these supplied definition statements to our own job, which is shown in Example 4-3,
the only change being to modify the VOLUME ID to match our systems. In other
environments some consideration may need to be given the DFHEJOS record size, for
details see Chapter 15, “Defining the EJB data sets”, in the CICS System Definition Guide,
SC34-5725.

Example 4-3 JCL to define the DFHEJOS and DFHEJDIR VSAM data sets

//EJBFILES JOB (999,POK),'CICSTS21',MSGCLASS=T,CLASS=A,
// NOTIFY=&SYSUID
//EJBDEF EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 /* DEFINE EJB DIRECTORY */
 DELETE CICSSYSF.CICS610.PJA5.DFHEJDIR
 DEFINE -
 CLUSTER(NAME(CICSSYSF.CICS610.PJA5.DFHEJDIR) -
 INDEXED -
 LOG(UNDO) -
 CYL(2 1) -
 VOLUME(TOTCI3) -
 RECORDSIZE(1017 1017) -
 KEYS(16 0) -
 FREESPACE (10 10) -
 SHAREOPTIONS(2 3)) -

DATA (NAME(CICSSYSF.CICS610.PJA5.DFHEJDIR.DATA) -
 CONTROLINTERVALSIZE(1024)) -
 INDEX (NAME(CICSSYSF.CICS610.PJA5.DFHEJDIR.INDEX))
 /* DEFINE EJB OBJECT STORE */
 DELETE CICSSYSF.CICS610.PJA5.DFHEJOS
 DEFINE -
 CLUSTER(NAME(CICSSYSF.CICS610.PJA5.DFHEJOS)-
 INDEXED -
 LOG(NONE) -
 CYL(2 1) -
 VOLUME(TOTCI3) -
 RECORDSIZE(8185 8185) -
 KEYS(16 0) -
 FREESPACE (10 10) -
 SHAREOPTIONS(2 3)) -
 DATA (NAME(CICSSYSF.CICS610.PJA5.DFHEJOS.DATA) -

CONTROLINTERVALSIZE(8192)) -

Note: Even with this increase in CSD record size, it is still possible to share a CICS TS
V2.1 format CSD with earlier CICS releases. See Chapter 3, “Resource Definition (online)
changes”, of the CICS Migration Guide, GC34-5699, for instructions on how to do this.
72 EJB for OS/390 and z/OS, CICS TS V2.1

 INDEX (NAME(CICSSYSF.CICS610.PJA5.DFHEJOS.INDEX))
/*
//*

The DFHADJM data set (optional)
DFHADJM is used by the CICS development deployment tool as the DJAR mapping dataset.
It is used to store mappings between the CICS DJAR resource definitions created by the
CICS development deployment tool, and the JAR files on HFS. It is only required in a CICS
region where the CICS development deployment tool will be used to deploy enterprise beans.

As we were using the CICS development deployment tool in our CICS region, we defined this
data set as shown in Example 4-4. The VOLID parameter is the only change from the
installation supplied definition, and no initialization of the data set is required.

Example 4-4 JCL to define the DFHADJM data set

//EJBFILES JOB (999,POK),'CICSTS21',MSGCLASS=T,CLASS=A,
// NOTIFY=&SYSUID
//EJBDEF EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
/*DEFINE A JAR MAPPING DATA SET */
 DELETE CICSSYSF.CICS610.PJA5.DFHADJM
 DEFINE -
 CLUSTER(NAME(CICSSYSF.CICS610.PJA5.DFHADJM)-
 INDEXED -
 LOG(NONE) -
 VOLUME(TOTCI3) -
 RECORDSIZE(263 263) -
 RECORDS(12000 00) -
 KEYS(8 0) -
 SHAREOPTIONS(2 3)) -
 DATA (NAME(CICSSYSF.CICS610.PJA5.DFHADJM.DATA) -
 CONTROLINTERVALSIZE(1024)) -

INDEX (NAME(CICSSYSF.CICS610.PJA5.DFHADJM.INDEX))
/*
//*

DFHJVM and JVM profiles
The DFHJVM data set contains members (JVM profiles) that are referenced by the
JVMPROFILE attribute of a CICS PROGRAM resource definition. All CICS Java programs
require a valid JVM profile. JVM profiles can be shared by CICS Java programs or individual
profiles can be defined for different purposes such as debugging and production.

The CICS install image provides the CICSTS21.CICS.XDFHENV data set, which contains
sample JVM profile members. Since this data set will be overwritten on a CICS refresh, we
used ISPF 3.2 to allocate a new data set CICSSYSF.CICS610.DFHJVM and copied the
samples to our new data set.

Important: The JVMPROFILE name determine if a Java program can reuse an existing
CICS JVM. If many different JVMPROFILES are defined, much of the performance
benefits of the persistent reusable JVM may be lost.
Chapter 4. Installation considerations for CICS TS V2.1 73

We then tailored the following parameters of the supplied profile member, DFHJVMPR, to
match the HFS directories we created in 4.1.2, “Creating HFS directories and files” on
page 67, and the information we gathered in Table 4-1 on page 67. Our DFHJVMPR member
after tailoring is shown in Example 4-5 with the changes we made in bold type. Note that
other profile members can be defined as required, for example, we define a profile for use
when debugging an enterprise bean in Chapter 5, “Troubleshooting enterprise beans in CICS
TS V2.1” on page 103.

Example 4-5 Our tailored DFHJVMPR member

WORK_DIR=/u/cicsts21/work/&APPLID;
INVOKE_DFHJVMAT=NO
JVMPROPS=/u/cicsts21/props/dfjjvmpr.props
#VMPROPS=/usr/lpp/cicsts/cicsts21/samples/ejb/helloworld/IVP.properties
LIBPATH=\
 /usr/lpp/cicsts/cicsts21/lib: /usr/lpp/cicsts/cicsts21/ctg:\
 /usr/lpp/java213d/J1.3/bin:/usr/lpp/java213d/J1.3/bin/classic

STDIN=dfhjvmin
STDOUT=dfhjvmout -generate
STDERR=dfhjvmerr -generate
CICS_DIRECTORY=/usr/lpp/cicsts/cicsts21
JAVA_HOME=/usr/lpp/java213d/J1.3
SHOWVERSION=YES
VERBOSE=NO
CLASSPATH=/u/cicsts21/lib

Xcheck=NO
Xdebug=NO
Xms=1M
Xmx=32M
Xnoagent=NO
Xnoclassgc=NO
Xoss=4M
Xss=512K
Xresettable=YES
Xverify=none

In later chapters we customize this profile further by adding supporting files to the trusted
middleware classpath using the TMSUFFIX parameter. For further details refer to:

� 7.3.6, “Adding the supporting JAR files to the trusted middleware classpath” on page 194
for details on adding the classes for the Java Record Framework and Enterprise Access
builder.

� “TMSUFFIX” on page 280, for details on adding the files for DB2 and SQLJ support.

Attention: You should be careful when modifying the DFHJVMPR profile, as it is used by
CICS internal functions. A better approach is to copy this and use a new
REQUESTMODEL definition to point the required method invocations at this JVM profile.

Tip: Note you should ensure that the LIBPATH, CLASSPATH or TMSUFFIX paths do not
contain a space character before a trailing continuation character (\) — otherwise, the
subsequent directories will not be found.
74 EJB for OS/390 and z/OS, CICS TS V2.1

4.1.4 Tailoring the CICS startup JCL
We made several changes to our existing CICS startup JCL to enable EJB support. These
included increasing the CICS region size, tailoring the storage limits, adding DD statements
for the new data sets, and several changes to the CICS SIT overrides.

The CICS region size
Using a JVM within CICS considerably increases the region size required. It is recommended
that as a minimum, a region size of 1000M is used. To accommodate this, we used
REGION=0M in our CICS startup JCL, which ensures that MVS gives all available private
storage to the job.

Adding DD statements
The new data sets created in the previous steps need DD statements added to the CICS JCL.
We added DD statements for all the new data sets to our JCL as follows:

//DFHJVM DD DSN=CICSSYSF.CICS610.DFHJVM,DISP=SHR
//DFHEJDIR DD DSN=CICSSYSF.CICS610.PJA5.DFHEJDIR,DISP=SHR
//DFHEJOS DD DSN=CICSSYSF.CICS610.PJA5.DFHEJOS,DISP=SHR
//DFHADJM DD DSN=CICSSYSF.CICS610.PJA5.DFHADJM,DISP=SHR

In a more complex environment with separate development and production regions, and with
production regions split into listener regions and AORs, then the following would apply:

� All regions running Java programs require DFHJVM.
� All listener regions require DFHEJDIR.
� All AORs require DFHEJOS.
� Only regions using the CICS development deployment tool require DFHADJM.

Our complete CICS startup JCL is shown in Example 4-6.

Example 4-6 Our CICS startup JCL

//CICSTSEJB PROC START='INITIAL',REG='0M',OUTC='*'
// COMMAND 'V NET,ACT,ID=APCPJA5,ALL'
//CICS610 EXEC PGM=DFHSIP,REGION=®,TIME=1440,
// PARM=('START=&START','SYSIN')
//STEPLIB DD DSN=CICSTS21.CICS.SDFHAUTH,DISP=SHR
//SYSABEND DD SYSOUT=&OUTC
//SYSIN DD DSN=CICSSYSF.CICSTS21.SYSIN(PJA5SIT),DISP=SHR
//DFHRPL DD DSN=CICSSYSF.APPL61.LOADLIB,DISP=SHR
// DD DSN=CICSTS21.CICS.SDFHLOAD,DISP=SHR
// DD DSN=CEE.SCEECICS,DISP=SHR
// DD DSN=CEE.SCEERUN,DISP=SHR
// DD DSN=CICSSYSF.APPL61.LOADLIB,DISP=SHR
//DFHCXRF DD SYSOUT=&OUTC
//DFHAUXT DD DISP=SHR,DCB=BUFNO=5,
// DSN=CICSSYSF.CICS610.PJA5.DFHAUXT
//DFHBUXT DD DISP=SHR,DCB=BUFNO=5,
// DSN=CICSSYSF.CICS610.PJA5.DFHBUXT
//DFHDMPA DD DSN=CICSSYSF.CICS610.PJA5.DFHDMPA,DISP=SHR
//DFHDMPB DD DSN=CICSSYSF.CICS610.PJA5.DFHDMPB,DISP=SHR
//DFHINTRA DD DSN=CICSSYSF.CICS610.PJA5.DFHINTRA,DISP=SHR
//DFHTEMP DD DSN=CICSSYSF.CICS610.PJA5.DFHTEMP,DISP=SHR
//DFHGCD DD DSN=CICSSYSF.CICS610.PJA5.DFHGCD,DISP=SHR
//DFHLCD DD DSN=CICSSYSF.CICS610.PJA5.DFHLCD,DISP=SHR
//DFHLRQ DD DSN=CICSSYSF.CICS610.PJA5.DFHLRQ,DISP=SHR
//DFHCSD DD DSN=CICSSYSF.CICSTS21.DFHCSD,DISP=SHR
//DFHJVM DD DSN=CICSSYSF.CICS610.DFHJVM,DISP=SHR
//DFHEJDIR DD DSN=CICSSYSF.CICS610.PJA5.DFHEJDIR,DISP=SHR
Chapter 4. Installation considerations for CICS TS V2.1 75

//DFHEJOS DD DSN=CICSSYSF.CICS610.PJA5.DFHEJOS,DISP=SHR
//DFHADJM DD DSN=CICSSYSF.CICS610.PJA5.DFHADJM,DISP=SHR
//DFHCMACD DD DSN=CICSSYSF.CICSTS21.DFHCMACD,DISP=SHR

SIT parameter changes
We made the following changes to our CICS system initialization parameters:

� EDSALIM=500M: This is the recommended minimum value.

� TCPIP=YES: This is mandatory for EJB support.

� MAXOPENTCBS=10: This is the recommended maximum value.

We also had to remove the DCT parameter, as this is no longer supported in CICS TS V2.1.

Our complete SIT overrides member is shown in Example 4-7.

Example 4-7 CICS TS V2.1 SIT overrides

AICONS=YES, AUTOINSTALL FOR CONSOLES
AKPFREQ=1000,
APPLID=SCSCPJA5
AUXTR=OFF,
AUXTRSW=NEXT,
CMDPROT=NO,
CSDBUFND=6,
CSDBUFNI=5,
CSDDISP=SHR,
CSDDSN=CICSSYSF.CICSTS21.DFHCSD,
CSDFRLOG=NO,
CSDINTEG=UNCOMMITTED,
CSDJID=NO,
CSDLSRNO=NONE,
CSDRECOV=BACKOUTONLY,
CSDRLS=NO,
CSDSTRNO=4,
DSRTPGM=NONE, DISTRIBUTED ROUTING PROGAM
DB2CONN=YES,
EDSALIM=500M,
FCT=NO,
FTIMEOUT=30,
IRCSTRT=YES,
ISC=YES,
GMTEXT='SCSCPJA5 CICS610 SG24-6284',
GRPLIST=(DFHLIST,TS21LIST,PJALIST,PJA5LIST),
MAXOPENTCBS=10,
MN=ON,
MNCONV=YES,
MNPER=ON,
MNEVE=ON,
MROLRM=YES,
MNSUBSYS=PJA1,
MXT=200,
PGAIPGM=ACTIVE,
RENTPGM=NOPROTECT,
RLS=YES,
RRMS=YES,
SEC=NO,
SIT=6$,
SPOOL=YES,
STNTR=ALL,
76 EJB for OS/390 and z/OS, CICS TS V2.1

SYSIDNT=PJA5
GTFTR=OFF,
STATRCD=OFF,
TCPIP=YES,
TST=NO,
XLT=NO,
XRF=NO,
START=INITIAL,
.END

4.1.5 Installing CICS resource definitions
There are several supplied resource definitions groups that are required for EJB support.
However, to start with, we brought up CICS as it was, and installed the groups discussed
below manually using the command CEDA INS GROUP. Later, having verified that everything
worked as we expected, we added the groups to a list specified in our SIT GRPLIST
parameter to automate the installs on subsequent cold starts.

CICS EJB support resource definitions
The transaction and program resource definitions required for EJB support are included in the
supplied group DFHIIOP. This group is included in the default list DFHLIST, so the resources
will be installed automatically if DFHLIST is used.

The EJB object store and directory data sets need file definitions in CICS. Three groups are
supplied with default definitions depending on how the files need to be shared. These are
DFHEJVS, DFHEJVR, and DFHEJCF. As we were building a single region CICS EJB server
we used group DFHEJVS. See “Defining EJB directory and object store data sets” in Chapter
15 of the CICS System Definition Guide, SC34-5725, for information on which group to use
for a multi-region EJB server.

We installed the DFHEJVS group without making any modifications to it with the following
command:

CEDA INS GROUP(DFHEJVS)

We then added it to one of our lists specified in the SIT GRPLIST parameter, using the
following command:

CEDA ADD GROUP(DFHEJVS) LIST(PJALIST)
Chapter 4. Installation considerations for CICS TS V2.1 77

TCPIPSERVICE resource definition
Enterprise beans running in CICS need a TCPIPSERVICE, to enable the CICS region to
listen for incoming IIOP method requests and pass them on to the request receiver
transaction, CIRR. We defined the TCPIPSERVICE PJA5IIOP for our CICS region
(Figure 4-6), that we shared among all the CORBASERVER definitions in the region.

Figure 4-6 TCPIPSERVICE resource definition

The important parameters in the TCPIPSERVICE are as follows:

� TCpipservice is the name of this resource definition.

� POrtnumber (10500) was chosen from one of the spare ports documented 4.1.1, “Initial
preparation” on page 66.

� PRotocol must specify IIOP.

� TRansaction should specify CIRR (or an alias of CIRR), which is the CICS supplied
transaction for receiving requests.

� Ipaddress we left as blank, meaning the default of INADDR_ANY will be used. This
signifies that the TCPIPSERVICE will listen on all of the IP addresses known to TCP/IP for
this OS/390 host. This has the advantage that the TCPIPSERVICE definition is not
specific to a CICS region and can be shared among CICS regions on different OS/390
hosts.

It is possible to have multiple TCPIPSERVICE definitions installed within a CICS region at the
same time. This can allow you to use different request receiver transactions for different
ports, or to use different security levels for different ports. Security is controlled on each
TCP/IP listener by the user exit DFHXOPUS; for further details refer to Appendix A, “Security
customization: DFHXOPUS” on page 303.

 OVERTYPE TO MODIFY CICS RELEASE = 0610
 CEDA ALter TCpipservice(PJA5)
 TCpipservice : PJA5
 GROup : PJA5IIOP
 DEscription ==> SHARED TCPIPSERVICE FOR SCSCPJA5
 Urm ==>
 POrtnumber ==> 10500 1-65535
 STatus ==> Open Open | Closed
 PRotocol ==> Iiop Iiop | Http
 TRansaction ==> CIRR
 Backlog ==> 00005 0-32767
 TSqprefix ==>
 Ipaddress ==>
 SOcketclose ==> No No | 0-240000 (HHMMSS)
 SECURITY
 SSl ==> No Yes | No | Clientauth
 Certificate ==>
 Authenticate ==> No No | Basic | Certificate | AUTORegister
+ | AUTOMatic

 SYSID=PJA5 APPLID=SCSCPJA5

PF 1 HELP 2 COM 3 END 6 CRSR 7 SBH 8 SFH 9 MSG 10 SB 11 SF 12 CNCL
78 EJB for OS/390 and z/OS, CICS TS V2.1

CORBASERVER
The CORBASERVER resource describes the execution environment for enterprise beans
and stateless CORBA objects. We defined the CORBASERVER PJA5; see Figure 4-7.

We used several CORBASERVER resources, one for each person developing enterprise
beans, and a shared one for the CICS region that we all deployed our enterprise beans to
after we had finished testing them. This allowed us avoid naming conflicts when deploying
different enterprise beans of the same name within the same CICS region. This works by
defining a unique JNDI prefix for each CORBASERVER.

Figure 4-7 CORBASERVER resource definition

The important CORBASERVER parameters are as follows:

� CORbaserver is name of this resource definition.

� Jndiprefix should match the JNDI prefix defined for the enterprise bean in the client code.
We used the prefix ITSO/ followed by the CORBASERVER name PJA5.

� Sessbeantime is the time-out for stateful session beans that have been passivated, and
for which no remove() method has yet been invoked. You should always code a time-out
value to prevent the CICS object store from inadvertently filling up.

� Host is the OS/390 TCP/IP hostname.

� Port must match the port defined in the TCPIPSERVICE definition.

Tip: The CEOT transaction has been changed with CICS TS V2.1 to aid the entering of
lower case characters in HFS path parameters on CICS resource definitions. We used the
command CEOT TRANID before entering the CEDA panels to allow us to easily enter lower
case characters. See the manual CICS Supplied Transactions, SC34-5724, for more
details.

OVERTYPE TO MODIFY CICS RELEASE = 0610
 CEDA ALter CORbaserver(PJA5)
 CORbaserver : PJA5
 Group : PJA5IIOP
 Description ==> SHARED CORBASERVER FOR SCSCPJA5
 Jndiprefix ==> ITSO/PJA5
 ==>
 ==>
 SEssbeantime ==> 00 , 00 , 10 0-99 (Days,Hours,Mins)
 SHelf ==> /u/cicsts21/shelf
 ==>
 SERVER ORB ATTRIBUTES
 Host ==> wtsc69oe.itso.ibm.com
 ==>
 Port ==> 10500 1-65535
 SSL ==> No Yes | No | Clientcert
 SSLPort ==> No No | 1-65535
 CLIENT ORB ATTRIBUTES
 Certificate ==>

 SYSID=PJA5 APPLID=SCSCPJA5
Chapter 4. Installation considerations for CICS TS V2.1 79

REQUESTMODEL
The REQUESTMODEL resource maps incoming requests to a particular request processor
transaction ID. The CORBASERVER and REQUESTMODEL resources are described in
more detail in Chapter 2, “CICS TS V2.1: The EJB Server” on page 31.

For each of the CORBASERVER resources we defined an associated REQUESTMODEL
resource. We defined the REQUESTMODEL PJA5REQ associated with the PJA5
CORBASERVER resource (Figure 4-8).

Figure 4-8 REQUESTMODEL resource definition

The parameters we defined for our REQUESTMODEL PJA5REQ are described bellow:

� Requestmodel is name of this resource definition.

� Corbaserver is the CORBASERVER resource this REQUESTMODEL is associated with.

� TYpe specifies if this REQUESTMODEL is used for CORBA requests, EJB requests, or
both types of requests. We use the value Ejb, note that this value defaults to Generic, and
if left to default, the CORBA parameters Module and Interface must also be specified.

� Beanname specifies which enterprise beans this REQUESTMODEL is applicable to. An
asterisk(*) means all enterprise beans.

� INTFacetype specifies if this REQUESTMODEL applies to the enterprise beans Home
interface, Remote interface, or both types of interface.

� OPeration specifies which operation (or Java methods) that this REQUESTMODEL
applies to. A asterisk(*) means all methods.

� TRansid is the CICS transaction to run as the request processor if this REQUESTMODEL
matches the incoming IIOP request. We used 5IRP which was defined as an alias of CIRP.

 OVERTYPE TO MODIFY CICS RELEASE = 0610
 CEDA DEFine Requestmodel(PJA5REQ)
 Requestmodel : PJA5REQ
 Group : PJA5IIOP
 Description ==>
 Corbaserver ==> PJA5
 TYpe ==> Ejb Corba | Ejb | Generic
 EJB PARAMETERS
 Beanname ==> *
 ==>
 INTFacetype ==> Both Both | Home | Remote
 CORBA PARAMETERS
 Module ==>
 ==>
 INTErface ==>
 ==>
 COMMON PARAMETERS
 OPeration ==> *
 ==>
 TRANSACTION ATTRIBUTES
 TRansid ==> 5IRP

 SYSID=PJA5 APPLID=SCSCPJA5
 PF 1 HELP 2 COM 3 END 6 CRSR 7 SBH 8 SFH 9 MSG 10 SB 11 SF 12 CNCL
80 EJB for OS/390 and z/OS, CICS TS V2.1

Request processor aliases
The REQUESTMODEL maps an incoming IIOP request to a request processor transaction.
CICS defines a default request processor transaction, CIRP. CIRP runs the default request
processor Java program DFJIIRP.

We defined individual aliases for the CIRP transaction and the DFJIIRP program for each of
our CORBASERVERs. The reason for this is that it then allows each program alias to use a
different JVMPROFILE. Each developer can then change the JVMPROFILE to point to their
own profile, for example, to specify a different CLASSPATH or for specifying debugging
options. See “DFHJVM and JVM profiles” on page 73 for more information on the
JVMPROFILE.

We created these aliases by copying the supplied CIRP and DFJIIRP resource definitions
with the commands:

CEDA COPY PROG(DFJIIRP) GROUP(DFHIIOP) TO(PJA5IIOP) AS(PJA5IIOP)
CEDA COPY TRANS(CIRP) GROUP(DFHIIOP) TO(PJA5IIOP) AS(5IRP)

The only change to these definitions is then to change the new transaction, 5IRP, to use the
new program by changing its PROGram attribute to PJA5IIOP.

CICS development deployment tool resource definitions
The following groups are only required for regions using the CICS development deployment
tool. The two groups DFHADPD and DFHADFD require no modifications and can be installed
as is. The group DFHADBD incudes definitions for a TCPIPSERVICE and CORBASERVER
pair which need tailoring to match the environment.

We first copied the resources in the DFHADBD group to our own group with the command:

CEDA COPY GR(DFHADBD) TO(PJA5ADBD)

Then we changed the PORTNUMBER, HOST, and SHELF attributes as described previously
in , “CORBASERVER” on page 79. We used the value 10599 for the PORTNUMBER,
wtsc69oe.itso.ibm.com as the HOST, and /u/cicsts21/shelf as the SHELF.

We then installed the groups with the commands:

CEDA INS GROUP(DFHADPD)
CEDA INS GROUP(DFHADFD)
CEDA INS GROUP(PJA5ADBD)

We then added them to a list in our CICS GRPLIST as follows:

CEDA ADD GROUP(DFHADPD) LIST(PJA5LIST)
CEDA ADD GROUP(DFHADFD) LIST(PJA5LIST)
CEDA ADD GROUP(PJA5ADBD) LIST(PJA5LIST)

Finally, the DJAR resource defined within the PJA5ADBD group must be published to the
COS Naming Server with the command:

CEMT PERFORM DJAR(DFHADJAR) PUBLISH

Attention: At this stage it is possible to skip forward to 4.3.1, “Running the IVP OS/390
USS client application” on page 94 in order to test the basic CICS EJB server
configuration. The CICS deployment tools are optional utilities and the COS Naming
Server is not required to run the IVP, as the enterprise beans can be published to the HFS
shelf directory.
Chapter 4. Installation considerations for CICS TS V2.1 81

4.2 Setting up the workstation tools
CICS TS V2.1 supplies a set of workstation tools on CD-ROMs that accompany the product.
The workstation tools comprise the following components:

� WebSphere Application Server Advanced Edition for Windows NT.

This provides the COS Naming Server and also the servlet engine for the use of the CICS
development deployment tool.

� The CICS Information Center

� The CICS JAR development tool for EJB Technology

� The CICS production deployment tool for EJB Technology

� The CICS development deployment tool for EJB Technology

4.2.1 WebSphere Application Server
CICS requires a COS Naming Server, which it uses to publish references to the home
interfaces of enterprise beans. A CD-ROM containing WebSphere Application Server
Advanced Edition for Windows NT Version 3.5.3 is shipped with CICS TS V2.1 for this
purpose.

Inserting the CD-ROM should bring up the WebSphere InstallShield window as shown in
Figure 4-9. We chose the Full Installation option and accepted all other defaults.

Figure 4-9 WebSphere InstallShield screen

It is recommended that the latest fixpack is applied to WebSphere Application Server after the
install has completed. We applied fixpack 3, which is available for download from:

http://www.ibm.com/software/webservers/appserv/efix.html
82 EJB for OS/390 and z/OS, CICS TS V2.1

http://www.ibm.com/software/webservers/appserv/efix.html

To successfully apply the Fixpack, we had to first stop several WebSphere services in
Windows NT. To do this from the Start button, choose Start -> Settings -> Control Panel,
then double-click on the Services icon. In the Services window, we stopped the following
three services:

� IBM HTTP Administration
� IBM HTTP Server
� IBM WS AdminServer

We then extracted the Fixpack files from the downloaded Zip file and ran the Install.bat file.
This opens a Windows command prompt which asks several questions about the location of
the WebSphere and HTTP directories, and then installs the fixes. An abbreviated listing of
this is shown in Example 4-8 with our answers in bold, which match the locations used if all
the defaults are taken during the WebSphere installation.

Example 4-8 Applying the WebSphere Fixpack

Enter the directory where WebSphere Application Server is installed:
c:\WebSphere\AppServer
...
Do you wish to upgrade the WebSphere Application Server samples?(Yes/No)
yes
In order to update the WebSphere Application Server Samples
the currently configured WebServer's doc root must be specified
Eg. C:\IBM HTTP Server\htdocs
Please enter your webserver's doc root path:
c:\IBM HTTP Server\htdocs
c:\IBM HTTP Server\htdocs
Is this correct?(Yes/No)
yes
142 File(s) copied
...
WARNING: If you install IBM HTTP Server PTF, you may not be able to uninstall
it cleanly.
Do you wish to upgrade the IBM HTTP Server 1.3.12:(Yes/No)
Yes
Enter the directory where the IBM HTTP Server 1.3.12 is installed:
c:\IBM HTTP Server
Upgrading IHS
...
2001/03/19 13:15:50
2001/03/19 13:15:50 Installation completed with no errors.
2001/03/19 13:15:50 Please view the activity log for details.
Press any key to continue . . .
241 File(s) copied
IBM WebSphere Application Server V3.5.3 Advanced Fixpack install
complete

After WebSphere was installed and the Fixpack applied, there was no configuration required
to activate the COS Naming Server. The COS Naming Server function is provided by the
WebSphere Admin Server component of WebSphere. This is an NT service that by default is
set to be started manually. This behavior can be changed by changing Startup Type to
Automatic from Manual for the IBM WS AdminServer Windows NT service.
Chapter 4. Installation considerations for CICS TS V2.1 83

http://www.ibm.com/software/webservers/appserv/efix.html

As there is no tool provided with WebSphere to verify that the COS Naming Server is really
being used when enterprise beans are published, we wrote a small Java utility program,
JNDIList, that uses the Java Naming and Directory Interface (JNDI) to interrogate the COS
Naming Server and display the results. This utility is described in more detail in 5.2,
“WebSphere diagnostic aids” on page 115, and further details on how to obtain the code are
provided in Appendix C, “Using the additional material” on page 315.

The first three of these tools are to be installed on development workstations. The last tool,
the CICS development deployment tool, should be installed on a WebSphere Application
Server and also requires definitions within the CICS region.

4.2.2 CICS Information Center
The CICS Information Center is a set of searchable online resources including all the product
documentation for CICS TS V2.1. It is supplied with CICS on a single CD-ROM labeled CICS
TS V2.1 Publications.

Running the setup.exe program on the CD-ROM starts the InstallShield Wizard, which
prompts for:

� User information
� Install location (locally or on a server)
� The target installation directory

We install it locally on each of our workstations, letting all the options default. The default
install directory is C:\Program Files\IBM\CICS TS 2.1 Tools.

After the Install has completed, the CICS Information Center can be started by choosing
Start -> Programs -> CICS TS 2.1 Tools -> CICS Information Center. This starts your Web
browser at the Information Center home page, as shown in Figure 4-10.

Figure 4-10 The CICS Information Center
84 EJB for OS/390 and z/OS, CICS TS V2.1

4.2.3 CICS JAR development tool and production deployment tool
One of the CD-ROMs supplied with CICS is labeled CICS TS V2.1 PC Tools. This includes
the CICS JAR development tool, the CICS development deployment tool, and the CICS
production deployment tool.

We installed the CICS JAR development tool and the CICS production deployment tool on
each workstation we were using for development. From the CD-ROM we ran the setup.exe
program which starts the InstallShield Wizard. We chose the Custom install option, and
excluded the CICS development deployment tool from being installed, leaving the other two
tools selected. We then completed the install taking all the default options (Figure 4-11).

Figure 4-11 Installing the CICS workstation tools

CICS JAR development tool
The CICS JAR develop tool provides a useful graphical interface to the CICS code generation
utility, and as such can be used to easily convert an undeployed JAR file into a deployed JAR
file that can be used within a CICS EJB server. It can also be used to edit the deployment
descriptor and to add CICS specific information about transaction IDs. For further details on
how we used this tool, refer to 6.3.2, “Generating a CICS deployed JAR file” on page 148.

CICS production deployment tool
The CICS production deployment tool provides a mechanism for automating the creation of
multiple CICS resource definitions when deploying enterprise beans into a CICS region. This
is achieved by producing CICS resource definitions that can be used as input to the off-line
utility DFHCSDUP or the CICSPlex SM BATCHREP utility. Resource definitions can either be
added manually or can be input from the CICS-deployed JAR file output by the CICS
development deployment tool.

Tip: If you have just a few enterprise beans and are familiar with CICS systems
programming, you may find it easier to deploy enterprise beans manually into CICS, by
just defining the required resource definitions using CEDA and then manually transferring
the deployed JAR file (output from the CICS JAR development tool) to the OS/390 system.
For details on how we used this technique, refer to “Deploying manually” on page 150.
Chapter 4. Installation considerations for CICS TS V2.1 85

4.2.4 CICS development deployment tool
The CICS development deployment tool is a servlet based Web application for workstation
developers to allow beans developed on a workstation to be deployed into a CICS test
environment, without knowledge of OS/390 or CICS system programming.

An HTML form is used to logon to the CICS development deployment tool Web page,
where the developer can enter details about the JAR file they wish to deploy. The CICS
development deployment tool then automatically transfers the deployed JAR file to the HFS
on OS/390, deploys the JAR file to CICS, and creates the necessary CICS definitions through
using EXEC CICS CREATE CICS System Programming Interface (SPI) commands. This
means a CICS region must be auto-started to retain these definitions, since the definitions will
be lost on a cold start.

Note: The CICS development deployment tool can only work with one CICS region at a time,
as it can only be configured with one JNDI prefix which references the bean deployed in a
specific CorbaServer. Further information on how we used the tool to deploy our HelloWorld
bean is provided in 6.3, “Deploying the HelloWorld session bean to CICS” on page 147.

We have already defined the CICS VSAM file (DHFADJM) required by the CICS development
deployment tool in the previous sections in this chapter. We now need to define the CICS
development deployment tool’s WebSphere components. We made these definitions on the
same WebSphere Application Server workstation that we used for our COS Naming server.

Install the CICS tools software
We installed the CICS TS V2.1 tools on to the WebSphere workstation as described on page
85, but this time we took the complete install option to install all of the component tools. By
default, the CICS development deployment tool files are installed into the directory
C:\WebSphere\AppServer\hosts\default_host\CICS_EJB. A diagram of the layout of the
directories and files is shown in Figure 4-12.

Figure 4-12 CICS development deployment tool directory structure

Tip: The transaction ID definitions created by the CICS JAR development tool will be
processed by the CICS development deployment tool to create CICS REQUESTMODEL
definitions. These definitions are stored in the cics-ejb-jar-ext.xmi file in the deployed
JAR file and can be used as input to the CICS production deployment tool in order to
create definitions in the CICS CSD.

c:\WebSphere\AppServer

hosts

default_host

CICS_EJB CICS development deployment tool Web application

dcf

servlets

Web

config files
 DCF_SCSCPJA5.xml

servlet files
 dfjadwas.jar
 CicsEjbAd.servlet
 SCSCPJA5.servlet

Web html and jsp's
 index.html

...etc.
86 EJB for OS/390 and z/OS, CICS TS V2.1

The steps required to configure the CICS development deployment tool are as follows:

1. Create an XML deployment configuration file (DCF)

2. Define the Web application in WebSphere

3. Create a servlet for the Web application

4. Copy the .servlet file

5. Tailor the index.html file

6. Test the CICS development deployment tool

Create an XML deployment configuration file
The CICS development deployment tool is controlled by a deployment configuration file
(DCF). The DCF is an XML file which defines the Host system, userids, and
CORBASERVERS associated with each userid.

DCF sample files are provided with the CICS development deployment tool in the
C:\WebSphere\AppServer\hosts\default_host\CICS_EJB\dcf subdirectory. We copied the
DCF_sample.xml file to a new file named DCF_SCSCPJA5.xml and then used the Windows
Notepad editor to modify it.

Our DCF file is shown in Example 4-9 with the changes we made in bold type.

Example 4-9 Deployment configuration file for the SCSCPJA5 region

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE DeploymentConfig SYSTEM "DCF.DTD">
<DeploymentConfig>
 <ConfigDefaults MaxJARSize="1000" LocalJARBase="C:/WebSphere/DJARS"
 AdminContact="ant" MasterTrace="OFF"
 TraceLogPath="C:/WebSphere/AppServer/hosts/default_host/CICS_EJB/logfile.log"
 MaxActionWaitPeriod="600"/>
 <OS390Server DeployJarBase="/u/cicsts21/djars"
 ServerName="wtsc69oe.itso.ibm.com" UserIDIgnoreCase="true" FTPPort="21"
 NamingServiceURL="iiop://hecate.almaden.ibm.com:900/" JNDIPrefix="DFHD"/>
 <CorbaServers>
 <CorbaServer CICSName="PJA5"
 FriendlyName="Shared CORBASERVER on SCSCPJA5 (PJA5)" TransID="5IRP"/>
 <CorbaServer CICSName="ANT"
 FriendlyName="Ants CORBASERVER on SCSCPJA5 (ANT)" TransID="AIRP"/>
 <CorbaServer CICSName="GEOR"
 FriendlyName="Georgs CORBASERVER on SCSCPJA5 (GEOR)" TransID="GIRP"/>
 <CorbaServer CICSName="JOHN"
 FriendlyName="Johns CORBASERVER on SCSCPJA5 (JOHN)" TransID="JIRP"/>
 <CorbaServer CICSName="PHIL"
 FriendlyName="Phils CORBASERVER on SCSCPJA5 (PHIL)" TransID="PIRP"/>
 <CorbaServer CICSName="STEF"
 FriendlyName="Steffens CORBASERVER on SCSCPJA5 (STEF)" TransID="SIRP"/>
 </CorbaServers>
 <Users>
 <User Userid="CICSRS1" Trace="ALL">
 <CorbaServerRef Name="ANT"/>
 <CorbaServerRef Name="PJA5"/>
 </User>
 <User Userid="CICSRS2" Trace="ALL">
 <CorbaServerRef Name="GEOR"/>
 <CorbaServerRef Name="PJA5"/>
 </User>
 <User Userid="CICSRS3" Trace="ALL">
 <CorbaServerRef Name="STEF"/>
Chapter 4. Installation considerations for CICS TS V2.1 87

 <CorbaServerRef Name="PJA5"/>
 </User>
 <User Userid="CICSRS4" Trace="ALL">
 <CorbaServerRef Name="JOHN"/>
 <CorbaServerRef Name="PJA5"/>
 </User>
 <User Userid="CICSRS5" Trace="ALL">
 <CorbaServerRef Name="PHIL"/>
 <CorbaServerRef Name="PJA5"/>
 </User>
 </Users>
 <Bindings>
 <ResourceMapping LogicalName="Resource1" Value="jdbc/Resource1"/>
 <ResourceMapping LogicalName="Resource2" Value="jdbc/Resource2"/>
 </Bindings>
</DeploymentConfig>

The following are descriptions of the parameters we changed in our DCF file:

� LocalJARBase

This is the path name of the directory used to hold the uploaded JAR files on the
WebSphere machine. This directory needs to be defined on the WebSphere machine. We
created the directory C:\WebSphere\DJARS.

� DeployJarBase

This is the path name of the base directory used to hold the uploaded JAR files on
OS/390. This path name is extended by the Web application to include additional
directories based on the CorbaServer, user ID and APPLID of the CICS region (this is the
djars subdirectory from “Defining the CICS HFS directories” on page 69).

� ServerName

This is the hostname of the OS/390 system on which the CICS region is running. This is
the OS/390 TCP/IP hostname from Table 4-1 on page 67.

� NamingServiceURL

This is the URL of the COS Naming Server used to look up the location of the beans used
by this tool. This must be the Naming Server used when the bean is published from CICS.
This is the URL we also defined in our dfjjvmpr.props file.

� CorbaServers

This includes details of all the CORBASERVERs into which beans can be deployed.
We defined all the CORBASERVER resources that we had defined to CICS in
“CORBASERVER” on page 79.

� Users

This contains the list of users able to use the CICS development deployment tool. These
user IDs are used to FTP the JAR file from the workstation to OS/390, so the user IDs
must also be defined to RACF on OS/390.
88 EJB for OS/390 and z/OS, CICS TS V2.1

Create the Web Application
The WebSphere Admin Server must be started before a Web Application can be created. If
the IBM WS AdminServer service is not already running it can be started using Start ->
Programs -> IBM WebSphere -> Application Server V3.5 -> Start Admin Server.

Now the Admin Server GUI can be run with Start -> Programs -> IBM WebSphere ->
Application Server V3.5 -> Administrator’s console. Once the WebSphere Administrator
console is open, perform the following steps to create the CICS development deployment tool
application:

1. Select Console -> Tasks -> Create a Web Application. Enter ‘CICS Dev Deployment
Tool’ as the Web Application Name, select the Enable JSP .91 radio button, and click
Next. This is shown in Figure 4-13.

Figure 4-13 Creating the Web application — 1

2. The next window is used to choose the WebSphere servlet engine for the Web
application. Expand all the nodes to get to the Default Servlet Engine node, click on this to
select it, then click Next. This is shown in Figure 4-14.

Figure 4-14 Creating the Web application — 2
Chapter 4. Installation considerations for CICS TS V2.1 89

3. Next, you will name the Web application and specify the path (URL) for invoking it.
Change the Web Application Web Path to contain /CICS_EJB and click Next (Figure 4-15).

Figure 4-15 Creating the Web application — 3

4. The next window is used to set the Document Root and Classpath. Change the Document
Root to contain the following directory:

C:\WebSphere\AppServer\hosts\default_host\CICS_EJB\web

Also change the Classpath to contain the following five directories:

C:\WebSphere\AppServer\hosts\default_host\CICS_EJB\servlets
C:\WebSphere\AppServer\hosts\default_host\CICS_EJB\servlets\dfjadwas.jar
C:\Program Files\IBM\CICS TS 2.1 Tools\Common\xml4j.jar
C:\Program Files\IBM\CICS TS 2.1 Tools\Common\log.jar
C:\Program Files\IBM\CICS TS 2.1 Tools\Common\j2ee.jar

Once the Classpath is updated, click Finish. This is shown in Figure 4-16.

Figure 4-16 Creating the Web application — 4
90 EJB for OS/390 and z/OS, CICS TS V2.1

Creating a servlet for the Application
1. From the WebSphere Administrative console menu bar choose Console -> Tasks -> Add

a Servlet. In the pop-up window select Yes and then click Next.

2. The next window asks ‘Please select a Web App to contain this servlet’. Expand all the
nodes until ‘CICS Dev Deployment Tool’ is shown, select it, and click Next. (Figure 4-17).

Figure 4-17 Creating the servlet — 1

3. In the next window, click Browse to open the file chooser dialog, select the dfjadwas.jar
file in the directory C:\WebSphere\AppServer\hosts\default_host\CICS_EJB\servlets,
click Select to return to the select jar window, and then click Next.

4. The next window is to specify the type of servlet. Choose the Create User-Defined
Servlet radio button, and then click Next.

5. The next window is used to set the servlet name and class. We set the servlet name to the
APPLID of our CICS region, SCSCPJA5. The class name should be
com.ibm.cics.addeploy.servlet.CicsEjbAdServlet. Click Add, and in the Add Web Path to
Servlet window, change the Servlet Path to be /CICS_EJB/SCSCPJA5. Now click OK,
which returns you to the Servlet Name and Class window shown in Figure 4-18.

Figure 4-18 Creating the servlet — 2
Chapter 4. Installation considerations for CICS TS V2.1 91

6. Click Next to go to the Servlet Initial parameters window. In the Init Parm Name field, enter
configDefLoc, and in the Init Parm Value field enter the path to the DCF file, we used the
value C:\WebSphere\AppServer\hosts\default_host\CICS_EJB\dcf\DCF_SCSCPJA5.xml.
Click Finish. This is shown in Figure 4-19.

Figure 4-19 Creating the servlet — 3

Copy the servlet file
The servlet we created, SCSCPJA5, must have a .servlet file of the same name in the
servlets directory. This .servlet file defines the various components that make up the servlet.
A default file is supplied which just needs to be copied. In the directory
C:\WebSphere\AppServer\hosts\default_hosts\CICS_EJB\servlets, copy the
CicsEjbAd.servlet file to SCSCPJA5.servlet in the same directory.

Tailor the index.html file
The index.html file now needs to be tailored to match the servlet name. Use Notepad to edit
the file C:\WebSphere\AppServer\hosts\default_hosts\CICS_EJB\web\index.html and
change the line:

<frame src="CicsEjbAd" name="servlet">

Change it to be:

<frame src="SCSCPJA5" name="servlet">

Test the CICS development deployment tool
To start up the application server, in the left panel of the WebSphere Administrator console,
right click on Default Server, and select Start.

Now, on a Web browser, enter the URL of the WebSphere machine appended with the servlet
name. We used http://hecate.almaden.ibm.com/CICS_EJB, which displayed the CICS
development deployment tool login page, as shown in Figure 4-20.
92 EJB for OS/390 and z/OS, CICS TS V2.1

Figure 4-20 CICS development deployment tool login page

More information on how we used the CICS development deployment tool can be found in
6.3, “Deploying the HelloWorld session bean to CICS” on page 147, and in Chapter 17,
“Installing and configuring CICS deployment tools for EJB technology”, Java applications in
CICS, SC34-5881. For help with common problems, refer to “CICS development deployment
tool application problems” on page 124.

4.3 Installation verification
CICS provides an Installation Verification Program (IVP) to test the CICS TS V2.1 EJB server
configuration. This is a simple HelloWorld enterprise bean that returns the string that a client
passes it. This is provided as a set of ready to use JAR files with no compiling or editing of
deployment descriptors required. This makes it very easy to install and run even for someone
without Java programing skills.

There are two clients provided for use with the CICS HelloWorld enterprise bean sample:

1. A stand-alone Java application that runs from the OS/390 USS command prompt

2. A Web application that runs as a servlet initiated from a Web browser

The stand-alone client is the easiest to set up and use, but it does not use WebSphere
Application Server or verify that the COS Naming Server is working. The Web application
client provides more complete function verification, but as it requires setting up a servlet
application in WebSphere, it is more time-consuming to configure.
Chapter 4. Installation considerations for CICS TS V2.1 93

4.3.1 Running the IVP OS/390 USS client application
For someone with OS/390 skills, probably the simplest way to test the CICS EJB server is to
to run the IVP test client (runEJBIVP) from the OS/390 USS environment. This allows you to
call the HelloWorld enterprise bean in CICS without using the COS Naming Server, as the
bean is published to the CICS shelf. To run the client, perform the following steps:

1. Modify the CICS JVM profile member

2. Define the CICS resources

3. Modify the USS runEJBIVP script

4. Run the runEJBIVP script

To publish an enterprise bean to the CICS shelf rather than the COS Naming Server requires
special parameters to be set in the JVM system properties file. A file named IVP.properties
is supplied for this purpose, in the CICS samples directory,
/usr/lpp/cicsts/cicsts21/samples/ejb/helloworld.

When using this system properties file, publishing an enterprise bean causes the IOR to be
written to the CICS shelf directory (which is an OS/390 HFS directory) instead of the COS
Naming Server. The USS client program can then access the IOR in the shelf, bypassing the
COS Naming Server.

To use this system properties file requires the default JVM profile member to be changed to
point to this system properties file. In “DFHJVM and JVM profiles” on page 73, we described
how to create a DFHJVMPR JVM profile. We changed the JVMPROPS parameter of this
member to point at the HelloWorld system properties file, which is:

JVMPROPS=/usr/lpp/cicsts/cicsts21/samples/ejb/helloworld/IVP.properties

In order to pick up the change to JVMPROFPS, we then reset all the CICS JVMs using the
command CEMT SET JVM PHASEOUT.

Define the CICS resources
The HelloWorld sample requires TCPIPSERVICE, CORBASERVER, and DJAR resource
definitions. Samples are supplied in group DFH$EJB. We copied this group to our own group
with the command:

CEDA COPY GROUP(DFH$EJB) TO(IVP$EJB)

We then made the following changes to the resources:

� CORBASERVER

SHelf ==> /u/cicsts21/shelf
Host ==> wtsc69oe.itso.ibm.com
Port ==> 10555

� DJAR

Hfsfile ==> /usr/lpp/cicsts/cicsts21/samples/ejb/helloworld/HelloWorld
==> EJB.jar

� TCPIPSERVICE

POrtnumber ==> 10555
STatus ==> Open

We then installed the group and published the enterprise bean to the HFS shelf with the
following commands:

CEDA INS GROUP(IVP$EJB)
CEMT PERFORM DJAR(HELLO) PUBLISH
94 EJB for OS/390 and z/OS, CICS TS V2.1

Modify the USS runEJBIVP script
CICS provides a USS shell script called runEJBIVP to automate running the USS HelloWorld
client. This needs tailoring to define the path of the Java install, and the path to the CICS
shelf.

We used the TSO ISHELL command to locate and edit the runEJBIVP. This script can be
found in /usr/lpp/cicsts/cicsts21/samples/ejb/helloworld/runEJBIVP. The relevant modifications to this
script are highlighted in Example 4-10.

Example 4-10 modified runEJBIVP script

CICS EJB IVP run script

Modify the following to match your IBM SDK 1.3 installation directory:
JAVA_HOME=/usr/lpp/java130s/J1.3

Modify the following to match your CICS TS 2.1 installation directory:
CICS_HOME=/usr/lpp/cicsts/cicsts21
#
Modify the following to match your CICS region shelf directory, region
name and sample CORBASERVER name:
CICS_SHELF=/u/cicsts21/shelf/SCSCPJA5/EJB1

#--

CLASSPATH=./HelloWorldCLI.jar:$JAVA_HOME/standard/ejb/1_1/ejb11.jar

echo "CICS EJB IVP: Querying the Java SDK level"
if $JAVA_HOME/bin/java -version
then
else echo "CICS EJB IVP: Failed, possible cause:"
 echo " Java support not found at $JAVA_HOME"
 echo " Check the JAVA_HOME setting in the runEJBIVP script"
 exit
fi

echo ""
echo "CICS EJB IVP: Starting the EJB client program"
if $JAVA_HOME/bin/java -classpath $CLASSPATH HelloWorldIVP $CICS_SHELF
then echo "CICS EJB IVP: Completed successfully"
else echo "CICS EJB IVP: Failed"
 echo " Check the JAVA_HOME, CICS_SHELF and CLASSPATH settings in the runEJBIVP"
 echo " script, and the CICS server installation steps of the EJB IVP."
fi

Attention: Note that this script will be overwritten if the CICS install is refreshed. In order
to preserve the customization, it should be copied to a different user directory before any
changes are made.
Chapter 4. Installation considerations for CICS TS V2.1 95

Executing the runEJBIVP script
We started a USS shell with the TSO OMVS command, changed to the CICS samples
directory, and ran the runEJBIVP script; the output is shown in Example 4-3.

Example 4-11 runEJBIVP script output

CICSRS5 @ SC69:/u/cicsrs5>cd /usr/lpp/cicsts/cicsts21/samples/ejb/helloworld
CICSRS5 @ SC69:/usr/lpp/cicsts/cicsts21/samples/ejb/helloworld>runEJBIVP
CICS EJB IVP: Querying the Java SDK level
java version "1.3.0"
Java(TM) 2 Runtime Environment, Standard Edition (build 1.3.0)
Classic VM (build 1.3.0, J2RE 1.3.0 IBM OS/390 Persistent Reusable VM build
CICS EJB IVP: Starting the EJB client program
HelloWorld client program started
Located home interface for HelloWorld bean
You said: Hello from CICS EJB IVP client
HelloWorld client program ended
CICS EJB IVP: Completed successfully
CICSRS5 @ SC69:/usr/lpp/cicsts/cicsts21/samples/ejb/helloworld>

4.3.2 The HelloWorld Web application
In this section we describe how we used the CICS supplied HelloWorld sample Web
application to verify both the CICS EJB Server and the WebSphere COS Naming Server.

The steps we used to install and run this sample were these:

1. FTP the sample files from OS/390 to the WebSphere workstation.

2. Copy the sample files into the correct WebSphere directories.

3. Define the sample Web Application to WebSphere.

4. Create a servlet for the Web application.

5. Install the required CICS resource definitions.

6. Test using by invoking the configured servlet from a Web browser.

FTP the sample files from OS/390 to the WebSphere workstation
CICS supplies three JAR files for the HelloWorld sample in the CICS samples subdirectory.
We used the Windows NT FTP program to copy these files to our WebSphere workstation.
This is shown in Example 4-12.

Example 4-12 FTP the HelloWorld sample jar files to the workstation

C:\TEMP>mkdir HelloWorld
C:\TEMP>cd helloWorld
C:\TEMP\HelloWorld>ftp wtsc69oe.itso.ibm.com
Connected to wtsc69oe.itso.ibm.com.
220-FTPDOE1 IBM FTP CS V2R10 at wtsc69oe.itso.ibm.com, 00:34:34 on 2001-03-16.
220 Connection will not timeout.
User (wtsc69oe.itso.ibm.com:(none)): cicsrs1
331 Send password please.
230 CICSRS1 is logged on. Working directory is "/u/cicsrs1".
ftp> cd /usr/lpp/cicsts/cicsts21/samples/ejb/helloworld
250 HFS directory /usr/lpp/cicsts/cicsts21/samples/ejb/helloworld is the current working
directory

Tip: Further details on running the HelloWorld Web application sample can be found in the
HFS file /usr/lpp/cicsts/cicsts21/samples/ejb/helloworld/readme.txt
96 EJB for OS/390 and z/OS, CICS TS V2.1

ftp> bin
200 Representation type is Image
ftp> get HelloWorldCLI.jar
200 Port request OK.
125 Sending data set /usr/lpp/cicsts/cicsts21/samples/ejb/helloworld/HelloWorldCLI.jar
250 Transfer completed successfully.
9093 bytes received in 0.36 seconds (25.19 Kbytes/sec)
ftp> get HelloWorldEJB.jar
200 Port request OK.
125 Sending data set /usr/lpp/cicsts/cicsts21/samples/ejb/helloworld/HelloWorldEJB.jar
250 Transfer completed successfully.
34844 bytes received in 0.75 seconds (46.40 Kbytes/sec)
ftp> get HelloWorldWeb.jar
200 Port request OK.
125 Sending data set /usr/lpp/cicsts/cicsts21/samples/ejb/helloworld/HelloWorldWeb.jar
250 Transfer completed successfully.
5887 bytes received in 0.23 seconds (25.60 Kbytes/sec)
ftp> bye
221 Quit command received. Goodbye.
C:\TEMP\HelloWorld>

Copy the sample files into the correct WebSphere directories
Within the C:\WebSphere\AppServer\hosts\default_host subdirectory we created a directory
call cicshello, and extracted the files from the HelloWorldWeb.jar file into this directory. We
used Winzip to extract the files and this created two subdirectories within the cicshello
directory called web, and servlets. The servlets subdirectory contains further subdirectories
for the servlet classes.

We then also copied the HelloWorldCLI.jar file from OS/390 into the cicshello\servlets
subdirectory on our Windows NT machine. The servlet also uses the j2ee.jar which
contains classes required for EJB support. This is installed on the workstation as part of the
CICS tools installation. We copied it from the tools install directory C:\Program
Files\IBM\CICS TS V2.1 Tools\Common into the cicshello\sevlets subdirectory.
The resulting directory structure and file locations are shown in the diagram in Figure 4-21.

Figure 4-21 The HelloWorld sample directory structure

c:\WebSphere\AppServer

hosts

default_host

cicshello The HelloWorld Web application

servlets

cics

sample

Servlet files
DataBean_class
HelloWorldServlet.class
HelloWorldServlet.servlet

Web page files
HelloWorldError.jsp
HelloWorldResults.jsp
index.html

web

Servlet jar files
j2ee.jar
HelloWorldCLI.jar
Chapter 4. Installation considerations for CICS TS V2.1 97

Define the sample Web Application to WebSphere
We now created a Web application and servlet within WebSphere Application Server for
Windows NT. This is done in a manner similar to the Web application defined for the CICS
development deployment tool in 4.2.4, “CICS development deployment tool” on page 86.

We started the WebSphere Admin Server GUI with Start -> Programs -> IBM WebSphere ->
Application Server V3.5 -> Administrator’s console. Once the WebSphere Advanced
Administrator console opened, we defined a Web application and then added a servlet to it
with the following steps:

Create a cicshello web application
1. From the WebSphere Advanced Administrator Console menu bar, select Console ->

Tasks -> Create a Web Application. This opens the Create Web Application window.
Enter cicshello as the Web Application Name, select Enable File Servlet, Serve Servlets
By Classname, and Enable JSP 1.0. Click Next. This is shown in Figure 4-22.

Figure 4-22 Creating the HelloWorld Web Application — 1

2. In the Choose a Parent Servlet Engine window, expand the tree of Nodes until Default
Servlet Engine is reached. Select this, and click Next.

3. Next is the Name the Web Application window. Change the Web Application Web Path to
/cicshello, and click Finish. This is shown in Figure 4-23.
98 EJB for OS/390 and z/OS, CICS TS V2.1

Figure 4-23 Creating the HelloWorld Web Application — 2

A dialog box is now displayed saying that “Command WebApplication.create completed
successfully”. The next step is now to define a servlet for the Web application.

Create a servlet for the Web application
1. In the left of the WebSphere Advanced Administrator console expand the tree of nodes to

show the new cicshello application beneath the Default Servlet Engine node. Right-click
on cicshello, and select Create -> Servlet.

2. In the Create Servlet window that opens, set the Servlet Name field to Hello, and the
Servlet Class Name to cics.sample.HelloWorldServlet. Click Add.

3. In the Add Web Path to Servlet, set the Servlet Path to /cicshello/Hello. Click OK.
The resulting window is shown in Figure 4-24.

Figure 4-24 Creating the HelloWorld servlet

A dialog box is displayed saying that the “Command Servlet.create completed successfully”.
The Web application is now complete. To enable it for use, in the left of the WebSphere
Administrator console right click on cicshello and select Restart Web App.
Chapter 4. Installation considerations for CICS TS V2.1 99

Install the required CICS resource definitions
The CICS resource definitions we defined in earlier in “Define the CICS resources” on
page 94 can be used in this scenario with no changes. However, since we had previously
changed the JVM profile in “Running the IVP OS/390 USS client application” on page 94 we
first undid that change by setting JVMPROPS parameter back to the following value:

JVMPROPS=/u/cicsts21/props/dfjjvmpr.props

Test the cicshello sample
To test the HelloWorld Web application, on our Web browser we entered the URL,
http://hecate.almaden.ibm.com/cicshello and were presented with the HTML form shown
in Figure 4-25.

Figure 4-25 HelloWorld Web application, initial screen

We entered the following parameters:

Hello String Hello CICS

Provider URL iiop://hecate.almaden.ibm.com:900

JNDI Name HelloWorld

We left the Name Service parameter to default and clicked Submit. The HelloWorld
enterprise bean then replied with the output shown in Figure 4-26.

Note: After changing the JVMPROPS parameter, we recommended that all the JVMs are
re-initialized in order to be sure that the new JVM properties file is used. This can be
achieved using the command CEMT SET JVM PHASEOUT.
100 EJB for OS/390 and z/OS, CICS TS V2.1

Figure 4-26 HelloWorld Web application, output

Installation completed
We have now completed the configuration and verification of the EJB Server supplied with
CICS TS V2.1.

For further information on trouble-shooting errors within CICS TS V2.1, refer to Chapter 5,
“Troubleshooting enterprise beans in CICS TS V2.1” on page 103.

For further practical examples on using the CICS JAR development tool, the CICS production
deployment tool, and the CICS development deployment tool refer to Chapter 6, “Developing
a HelloWorld session bean for CICS” on page 135.

Following on from this, the chapters in Part 3,on page 133 describe details on how to write
and deploy various enterprise beans for use within CICS.

Graphic not yet ready
Chapter 4. Installation considerations for CICS TS V2.1 101

102 EJB for OS/390 and z/OS, CICS TS V2.1

Chapter 5. Troubleshooting enterprise
beans in CICS TS V2.1

This chapter describes the various options and tools available for diagnosing problems with
an application which uses enterprise beans in CICS. We first give an overview of the various
tools and facilities available for capturing diagnostic information at various points. This is
followed by some debugging scenarios using the sample applications developed in this book.

Compared with debugging a regular 3270 CICS COBOL application, debugging a Web
application using enterprise beans in CICS can seem complicated. When something goes
wrong there are several systems in the path from the browser to the enterprise bean which
can make it difficult to know where to look to find the problem. Knowing where to look for
diagnostic information can make all the difference.

This chapter does not give in-depth information on how to debug all the systems in the path of
a Web application. Rather, we attempt to give enough information on where to find diagnostic
information to get the sample programs described in this book running and overcome some of
the more common problems.

5

© Copyright IBM Corp. 2001 103

5.1 Diagnosing Java problems in CICS
This section covers what options are available for collecting information and debugging
problems relating to the execution of Java code within CICS.

First we explain where diagnostic information is output by the JVM and how to control what
information is recorded.

We then describe the Java Platform Debugger Architecture and discuss how to use this to
debug a Java program running in CICS.

5.1.1 Gathering diagnostic information
The JVM records information in several places which are controlled by options in the JVM
profile and the system properties file. The following are options that we found useful while we
developed the applications in this redbook.

For more information about these and other JVM parameters, see Chapter 18, “Defining the
JVM initialization options” in the CICS System Definition Guide, SC34-5725.

The Java stdin/stdout/stderr files
These standard Java files are in located in the directory specified by the WORK_DIR
parameter of the JVM profile. For our installation, they were written to the directory
/u/cicsts21/work/SCSCPJA5 which we specified as our WORK_DIR in our JVMProfile.

When a Java program calls one of the System.out class print methods, such as
System.out.println(), the output is written to a stdout file. This file will be located in the
directory specified by the WORK_DIR parameter in the JVM profile. This is one of the most
common ways of debugging a Java program, and we used it frequently while developing the
sample programs in this book. A new stderr file is created each time a JVM is initialized.
These are unique from other files, since the timestamp is appended to the file name. This
makes it easy to locate the most recent file, as it will be at the bottom of a TSO ISHELL
directory list. Note, however, that since JVMs can be reused this means the files can contain
information relating to the execution of a previous program.

Any un-caught exceptions that are thrown while executing a Java program cause a stack
trace to be written to the stderr file located in the WORK_DIR directory. This is one of the first
places we checked when we had unexpected problems with a program. The stack trace
provides an easy way to see which class and method is having a problem.

The system properties event logging file
The system properties file specifies where to write event logging information with the
ibm.jvm.events.output parameter. Setting this system property enables event logging in the
JVM.

Note: To have the next execution of a Java program or enterprise bean create new
stdin/stderr files, the command CEMT SET JVM PHASEOUT can be used. This marks all
JVMs for deletion, causing the next request to initialize a new JVM. Also, Chapter 21 of the
CICS Customization Guide, SC34-5706 describes how to use the user-replaceable
program DFHJVMAT to create unique stdout and stderr files by appending the task
number to the files name.
104 EJB for OS/390 and z/OS, CICS TS V2.1

It defines whether the text records describing the event are stored in a file described by its full
path name, or whether the events are logged in the stderr or stdout files. Our system
properties file is described in “JVM system properties files” on page 69, and in we use the
value:

ibm.jvm.events.output=ure.log

This creates the file named ure.log in our work directory, which is defined by the WORK_DIR
parameter, and on our system is at /u/cicsts21/work/SCSCPJA5.

The ure.log file is written to when a JVM is initialized. It contains useful information about the
parameters being used for the JVM initialization, such as the Java build level, the class and
lib paths, and the trusted middleware class path that is generated by CICS.

We used this information to verify that the JVM was using the profiles and system properties
file we expected and that the various directory paths were being built correctly.

The JVM profile VERBOSE parameter
This parameter indicates whether or not the JVM should issue messages containing
information about its activities. The information gets written to the Java stderr file.

Our JVM profile is described in “DFHJVM and JVM profiles” on page 73, and has VERBOSE
set to NO because requesting this information can produce a lot of output.

We did occasionally use VERBOSE=class to aid with diagnosing some problems. This
causes messages to be written as each class is loaded and initialized and any error
information such as class not found messages. It can sometimes help with locating precisely
where a problem is occurring.

The system properties JVM trace
The ibm.dg.trc.external parameter of the system property file enables the internal JVM
trace facility to aid in the diagnosis of problems within the Java Virtual Machine itself.

Our system properties file is described in “JVM system properties files” on page 69, and it
has the ibm.dg.trc.external parameter commented out. This is because JVM tracing should
only be used under the direction of IBM support personnel as it can have a major impact on
performance and produce huge amounts of output.

5.1.2 The Java Platform Debugger Architecture
In this section we describe the Java Platform Debugger Architecture (JPDA). We first give an
overview of what JPDA is and how it works, followed by instruction on how to configure CICS
for the JPDA. We then describe how to debug an enterprise bean using a remote JPDA client.

Overview of JPDA
JPDA is the standard debugging mechanism of the Java 2 Platform. It enables a debugger
client program on a remote workstation to control the execution of a client application’s Java
classes in the CICS JVM. Breakpoints can be set at individual method calls or line numbers
within the code, and variables can be displayed or altered. This all happens in real time, as
the CICS JVM is actually executing the Java byte code.

A diagram of how this works is shown in Figure 5-1.
Chapter 5. Troubleshooting enterprise beans in CICS TS V2.1 105

Figure 5-1 Overview of the CICS JVM and JPDA

� An incoming request starts a request processor alias transaction. That alias transaction
specifies a request processor PROGRAM with a JVMPROFILE attribute that has special
debug options causing a Debug JVM to start.

� The JVM starts debug threads to manage the debugging session. These threads use the
Java Virtual Machine Debug Interface (JVMDI) to communicate with the JVM and control
the execution of the application threads.

� A remote client uses the Java Debug Interface (JDI) to communicate with the debugging
threads within the JVM. The actual communication between the debugger client and the
remote JVM uses the Java Debug Wire Protocol (JDWP).

The examples we used in this section are for debugging with the Trader application. They
should also apply to debugging with any other enterprise bean; only the names of the JARs,
beans, and methods need to be changed.

Configuring CICS for JPDA
Configuring CICS to use JPDA requires three things:

� A JVM profile specifying the correct debug options

� A request processor transaction alias that uses the debugging JVM profile

� A REQUESTMODEL resource definition that maps incoming request to use this
transaction.

JVM profile debugging options
A JVM profile needs to be created that specifies various Java options to enable JPDA. One of
these parameters specifies the TCP/IP port number that CICS uses to communicate with the
remote debugger client. Because only one client can connect to this port at a time, as many
profiles are needed as there are developers using JPDA. Each of these profiles must specify
a different port number.

Debug JVM

Server application
(CICS Java
program)

Java debug
interface

(JDI)

Remote debugger

CICS server

JDWP over
TCP/IP

connection

J
V
M
D
I

Debug listener
thread

Debug event
handler
threads
106 EJB for OS/390 and z/OS, CICS TS V2.1

In “DFHJVM and JVM profiles” on page 73 we described how we used the PDS data set
CICSSYSF.CICS610.DFHJVM to store our JVM profiles and by default used the profile member
name DFHJVMPR. We now copied this default member to a member with a new name for each
of us wanting to use JPDA, for example ANTJVMDB, and then set the various debug options
in the new member.

An extract of one of our debugging profiles is shown in Example 5-1, with the changes we
made to enable debugging in bold.

Example 5-1 Extract of our JVM profile used for JPDA debugging

********* Java non-standard options **********
Xdebug=YES
Xnoagent=YES
Xresettable=NO
Xrunjdwp=(transport=dt_socket,server=y,address=10177)
Xcheck=NO
Xms=1M
Xmx=192M
Xnoclassgc=NO
Xoss=4M
Xss=512K
Xverify=none

Each of these parameters is now described:

� Xdebug=YES specifies that the JVM should be started in debug mode

� Xnoagent=YES disables Java 1.1 compatibility which is not available when the JVM is in
debug mode

� Xresettable=NO ensures that the JVM is discarded after use, since JVMs which have
been used in debug mode are not eligible for reuse.

� Xrunjdwp=(transport=dt_socket,server=y,address=10177) defines the protocol to
communicate with the debugger client (transport=dtsocket), if CICS initiates the
communication (server=n) or waits for the debugger client to connect (server=y), and the
TCP/IP port (address=port) that the remote debugger must user for this connection.

Note: The Xrunjdwp parameter we specified in the profile causes CICS to stop after initializing
the JVM and wait for the remote debugger client to initiate a debugging session.

CICS definitions for using JPDA
In “Request processor aliases” on page 81 we described how to define aliases for the request
processor transaction, CIRP, and the request processor program, DFJIIRP. We now copied
these TRANSACTION and PROGRAM definitions to use as an alias transaction which uses a
debugging JVM profile.

As with the debugging JVM profile, there needs to be a separate request processor alias
transaction and program for each developer using JPDA.

We created these aliases by copying the supplied CIRP and DFJIIRP resource definitions
with the commands:

CEDA COPY PROG(DFJIIRP) GROUP(DFHIIOP) TO(PJA5IIOP) AS(ANTDIIRP)
CEDA COPY TRANS(CIRP) GROUP(DFHIIOP) TO(PJA5IIOP) AS(ADRP)

The only change to these definitions is to set the PROGRAM attribute of the new transaction
definition, ADRP, to use the new program ANTDIIRP, and to set the JVMPROFILE attribute of
the new program ANTDIIRP to use the new JVM profile, ANTJVMDB.
Chapter 5. Troubleshooting enterprise beans in CICS TS V2.1 107

To use these new request processor alias transactions requires a REQUESTMODEL
resource definition to map incoming requests to the new transactions. This can be done
automatically by the CICS development deployment tool, or they could be defined manually
as described in “REQUESTMODEL” on page 80.

Using the CICS development deployment tool with JPDA
The CICS development deployment tool will automatically generate a REQUESTMODEL
resource definition when deploying a JAR file. By changing the DCF configuration file, these
can be used to map a request to a debugging request processor transaction.

The changes required are to add CORBASERVER statements to the DCF configuration file
specifying the new transactions. The DCF configuration file is described in 4.2.4, “CICS
development deployment tool” on page 86. An extract of our configuration file with these
changes in bold, is shown in Example 5-2.

Example 5-2 DCF configuration file extract showing JPDA debugging definitions

...
 <CorbaServers>
 <CorbaServer CICSName="PJA5"
 FriendlyName="SCSCPJA5 (PJA5)" TransID="5IRP"/>
 <CorbaServer CICSName="PJA5"
 FriendlyName="Debugging SCSCPJA5 (PJA5)" TransID="5DRP"/>
 <CorbaServer CICSName="ANT"
 FriendlyName="SCSCPJA5 (ANT)" TransID="AIRP"/>
 <CorbaServer CICSName="ANT"
 FriendlyName="Debugging SCSCPJA5 (ANT)" TransID="ADRP"/>
 </CorbaServers>
...

When not using the CICS development deployment tool we manually created
REQUESTMODEL definitions for debugging. For example, to use JPDA to debug the Trader
sample program, we used the command:

CEDA DEFINE REQ(TRADDBG) GROUP(TRADDBG)

This is shown in Figure 5-2 with the attributes we added in bold.

Note: The only difference between the new CorbaServers definition for debugging, and the
existing CorbaServers definition, is the TransID parameter. As both definitions have the
same CICSName parameter, any User definition that already specifies this name in its
CorbaServerRef statement will pick up both definitions.
108 EJB for OS/390 and z/OS, CICS TS V2.1

Figure 5-2 REQUESTMODEL for using JPDA with the Trader bean

The description of these parameters is as follows:

� Corbaserver specifies which CORBASERVER resource definition this request model
applies to. Our Trader bean DJAR is defined in the PJA5 CORBASERVER, so that is the
name we define here.

� TYpe specifies which request types this request model applies to. We only used EJB
requests, so that is what we defined here.

� Beanname is the name of the bean that this request applies to. We want to debug the
Trader sample bean, so this is the name we use here.

� OPeration defines the method requests that this request model applies to; an asterisk(*)
can be used alone or with a prefix for generic method names. In this example we use a
generic pattern matching all methods starting with logon. If a specific method name is
used we also recommend appending it with an asterisk(*) to avoid problems with
name-mangling. Note also that for stateful session beans, the REQUESTMODEL is only
used for the first request in an OTS transaction.

� TRansid specifies the name of the transaction to be used when an incoming request
matches all the previously defined parameters. This is the name of a request processor
transaction we just defined that uses a debugging JVM profile.

After these changes are complete, CICS is ready to use a remote JPDA debugger client to
debug an enterprise bean running within CICS.

Debugging an enterprise bean using JPDA
This section describes how to use JPDA to debug an enterprise bean running within CICS.
The steps necessary to debug the Java program are as follows:

� Compile the Java program to be debugged with the debug option.

� Deploy the enterprise bean JAR file to CICS specifying a request processor program
which has a JVM profile with the special debug options.

� Make the Java source code of the class to be debugged available to the debugger.

� Use a JPDA debugger client to connect to CICS and debug the program.

CEDA DEF REQ(TRADDBG) GR(TRADDBG)
 OVERTYPE TO MODIFY CICS RELEASE = 0610
 CEDA ALter Requestmodel(TRADDBG)
 Requestmodel : TRADDBG
 Group : TRADDBG
 Description ==>
 Corbaserver ==> PJA5
 TYpe ==> Ejb Corba | Ejb | Generic
 EJB PARAMETERS
 Beanname ==> Trader
 INTFacetype ==> Remote Both | Home | Remote
COMMON PARAMETERS
 OPeration ==> logon*
 ==>
 TRANSACTION ATTRIBUTES
 TRansid ==> ADRP

SYSID=PJA5 APPLID=SCSCPJA5
PF 1 HELP 2 COM 3 END 6 CRSR 7 SBH 8 SFH 9 MSG 10 SB 11 SF 12 CNCL
Chapter 5. Troubleshooting enterprise beans in CICS TS V2.1 109

Compiling programs with the debug option
The Java compile debug option tells the compiler to store extra symbol table information
within the class file it produces. Without this extra information, the class can still be debugged
using JPDA, but some things are not available to the remote debugging client, such as
access to the classes local variables.

When using the command line Java compiler, the debug option is specified by the -g
parameter. For example:

javac -g HelloWorld.java

If using VisualAge for Java, the debug option is specified when exporting the class files.
This can be set by using the VAJ Export SmartGuide FILE -> Export and selecting Include
debug attributes in .class file. This is shown in Figure 5-3.

Figure 5-3 Exporting classes from VisualAge with the debug attributes

Deploying a JAR file to be debugged in CICS
We deployed our JAR files for debugging in CICS using the CICS development deployment
tool that we set up in “Configuring CICS for JPDA” on page 106. All that is required is to logon
to the tool, specify the JAR file name, and select the debugging CORBASERVER. This is
shown in Figure 5-4.
110 EJB for OS/390 and z/OS, CICS TS V2.1

Figure 5-4 Deploying a JAR to a debugging CorbaServer

If the CICS development deployment tool is not being used, the enterprise bean needs to be
deployed to CICS as normal, and then the new REQUESTMODEL should be installed.

The Trader application is described in Chapter 7, “Wrapping the Trader application: JCICS
link” on page 171. We then installed our debugging REQUESTMODEL with:

CEDA INS GROUP(TRADDBG)

Now all requests for the trader bean will run under the ADRP request processor transaction,
which uses a JVM with the debugging options.

To stop using the debugging request processor transaction, the REQUESTMODEL can be
deleted with the command:

CEMT DISC REQ(TRADDBG)

The CEDA INS command and CEMT DISC command can be used to toggle back and forth
between debugging and normal operation.

JPDA debugging clients and debugging a program
The strategic IBM debugging tools for the CICS EJB server are the IBM Distributed Debugger
and object-level trace.

Attention: At the time of writing this redbook, the IBM Distributed Debugger did not
support Java 1.3 and the JPDA, so we could not use it with CICS TS V2.1. However,
subsequent to this redbook project, we found that CICS TS V 2.1 does work with V9.1.4 (or
later) of the IBM distributed debugger. Version 9.1.4 and subsequent versions of the IBM
Distributed debugger offer support for JPDA debugging.
Chapter 5. Troubleshooting enterprise beans in CICS TS V2.1 111

Other debugging clients are available which do support Java 1.3 and JPDA. The standard
Java installation comes with a command line debugger called jdb which works with the CICS
TS V2.1. There are also commercial or Open Source debug clients available which support
JPDA and provide a more friendly GUI than the jdb command line interface. Simply entering
JPDA client on your favorite Internet search engine should provide links to more information
on these.

Our examples here are shown using the jdb command line client but as all the clients use the
JPDA architecture, all will have very similar commands and capabilities.

Making the Java source code available to the debugger
While debugging a program the debugger client can display the lines of source code as it
steps through them. This can make it much easier to see what is going on in the program
being debugged. To do this the Java source must be available to the debugger.

In the example that follows we show jdb running from the root directory of the workstation C:
drive, so to debug the Trader application we put the source code here. We used Winzip to
extract all the files from the TraderAll.jar file provided with this Redbook (see Appendix C,
“Using the additional material” on page 315 for information about how to obtain this file).
Winzip preserves the directory structure of the JAR file which is required as the debugger
client uses the package name of a class to locate the source code.

Using jdb
We now describe a simple debugging session using the jdb client to debug the Trader client
we deployed in the previous section.

We first start the Trader Web application as described in “Testing the Trader servlet” on
page 212 and click on the Logon button. This should hang as the CICS JVM waits for a
remote debugger to connect. Running the CEMT transaction to show the active tasks should
verify that the correct request processor transaction (ADRP) has indeed been started; this is
shown in Figure 5-5.

Figure 5-5 CEMT I TAS showing the waiting request processor transaction ADRP

The jdb client is started from a Windows command prompt on a workstation with Java
installed and in the workstations PATH. It is started by entering jdb followed by the various
startup parameters.

I TAS
 STATUS: RESULTS - OVERTYPE TO MODIFY
 Tas(0000037) Tra(CIRR) Sus Tas Pri(001)
 Sta(U) Use(CICSUSER) Uow(B5A4E62CB94FB1C4) Hty(SOCBNOTI)
 Tas(0000038) Tra(ADRP) Run Tas Pri(001)
 Sta(U) Use(CICSUSER) Uow(B5A4E62CB9D47302)
 Tas(0000041) Tra(CEMT) Fac(TC44) Run Ter Pri(255)
 Sta(TO) Use(CICSUSER) Uow(B5A4E63D410783C2)

 SYSID=PJA5 APPLID=SCSCPJA5
 RESPONSE: NORMAL TIME: 00.41.47 DATE: 04.06.01
 PF 1 HELP 3 END 5 VAR 7 SBH 8 SFH 9 MSG 10 SB 11 SF
112 EJB for OS/390 and z/OS, CICS TS V2.1

As we have set up our CICS system to wait for the remote debugger to initiate the connection,
we use the -attach parameter to tell jdb to initiate the connection to the CICS JVM. The
attach parameter specifies the hostname of the CICS system followed by the port number
specified in the JVMPROFILE of request processor program. For example we used:

jdb -attach wtsc69oe.itso.ibm.com:10177

Information on the various jdb parameters can be displayed by entering the help option,
for example, jdb -help.

Once a connection to the remote JVM is established breakpoints can be set with the stop
command, and execution of the remote JVM controlled with the cont and next commands.

A basic debugging session is shown in Example 5-3. The CICS JVM is in debug mode waiting
for a debugger client to initiate a connection. We connect to it jdb, set a breakpoint in the
Trader logon() method, and when that break point is hit, we alter the name of the user
logging on.

Example 5-3 Using jdb to step through the hello() method of the TraderBean sample

C:\>jdb -attach wtsc69oe.itso.ibm.com:10177
Initializing jdb...
VM Started: main[1] No frames on the current call stack

main[1] stop in *.TraderBean.logon
Deferring breakpoint *.TraderBean.logon.
It will be set after the class is loaded.
main[1] cont
> Set deferred breakpoint *.TraderBean.logon

Breakpoint hit: thread="ANTDIIRP.TASK200.ADRP", itso.ejb390.trader.TraderBean.logon(),
line=114, bci=0
 114 ivUserID = userID;

ANTDIIRP.TASK200.ADRP[1] list logon
110 }
111 public void logon(String userID, String password, String connectURL, String
cicsServer) throws Exception {
112
113 // save userID
114 => ivUserID = userID;
115
116 // now logon to system
117 ivTraderBackend.logon(userID, password, connectURL, cicsServer);
118
119 }
ANTDIIRP.TASK200.ADRP[1] locals
Method arguments:
 userID = "ANT"
 password = "ELDER"
 connectURL = "local:"
 cicsServer = ""
Local variables:
ANTDIIRP.TASK200.ADRP[1] set userID="cicsrs1"
 userID="cicsrs1" = "cicsrs1"
ANTDIIRP.TASK200.ADRP[1] next

Step completed: ANTDIIRP.TASK200.ADRP[1] thread="ANTDIIRP.TASK200.ADRP",
itso.ejb390.trader.TraderBean.logon(), line=117, bci=5
 117 ivTraderBackend.logon(userID, password, connectURL, cicsServer);
Chapter 5. Troubleshooting enterprise beans in CICS TS V2.1 113

ANTDIIRP.TASK200.ADRP[1] next

Step completed: ANTDIIRP.TASK200.ADRP[1] thread="ANTDIIRP.TASK200.ADRP",
itso.ejb390.trader.TraderBean.logon(), line=111, bci=19
 111 public void logon(String userID, String password, String connectURL, String
cicsServer) throws Exception {

ANTDIIRP.TASK200.ADRP[1] cont
>
The application exited

C:\>

The details of each of these steps are as follows:

� First the stop command is used to set a breakpoint in the logon() method of the
TraderBean class. We use an asterisk(*) to prefix the class name to avoid entering the full
package name of the class.

� When the breakpoint is hit we display the source of the method with the list command.

� The locals command is then used to show the values of the local variables. This displays
each local variable along with its current value.

� The userID local variable is altered with the set command. This is the local variable
holding name of the user logging on which we change with the set command to be the
name of a different user.

� We then use the next command to step through the lines of code as they execute. The
display shows the logon() method of the Trader backend class being called.

� Finally, the cont command is used to let execution continue normally.

Entering help at the jdb command prompt causes jdb to print out all its commands with a
short description of what they do. Some of the more useful commands are:

� threads to list the running threads

� where <thread id> to print a stacktrace of a thread

� eval to evaluate an expression, which can use any variables and call any methods that
are in scope.

� classes and class <classname> to show details of classes

� methods <classname> to list methods of a class

� fields <classname> to list fields (variables) of a class

� locals to list all local variables

� set to change the value of a field or variable
114 EJB for OS/390 and z/OS, CICS TS V2.1

5.2 WebSphere diagnostic aids
A complete description on how to use and debug Web applications on WebSphere
Application Server is out of the scope of this redbook and there have been many other
publications on this topic already. We can only mention here some of the places within
WebSphere which we found particularly useful in getting our Web applications running.

In-depth information on the using WebSphere Application Server can be found in the
WebSphere InfoCenter, at this URL:

http://www.ibm.com/software/webservers/appserv/library.html

More information on using and debugging Web applications in WebSphere can be found in
the redbook, WebSphere Application Servers: Standard and Advanced Editions, SG24-5460.

5.2.1 WebSphere logs
The WebSphere Advanced Administrator Console contains a Console Messages window
which can be useful while developing servlets. This displays messages about servlet activity
such as when servlets are initialized, and any uncaught exceptions thrown by the servlet
code.

The WebSphere Application server logs record useful information to aid with debugging
applications. In a default installation, the logs are located in the directory:

C:\WebSphere\AppServer\logs

A number of logs are stored in this directory; the most useful are default_server_stdout.log
and default_server_stderr.log. These are the Java stdout and stderr files, and they are
where messages and uncaught exceptions from servlets are recorded.

An example of the type of information found in the stderr.log is shown in Example 5-4. This
error was caused by specifying a non-existent prefix in the JNDIName field of the HelloWorld
sample Web application. The HelloWorld sample is described in “Test the cicshello sample”
on page 100.

Example 5-4 WebSphere default_server_stderr.log example

...
javax.naming.NameNotFoundException: XXX/HelloWorld

at javax.naming.NamingException.<init>(NamingException.java:104)
at javax.naming.NameNotFoundException.<init>(NameNotFoundException.java:40)
at com.ibm.ejs.ns.jndi.CNContextImpl.doLookup(CNContextImpl.java:729)
at com.ibm.ejs.ns.jndi.CNContextImpl.lookup(CNContextImpl.java:584)
at javax.naming.InitialContext.lookup(InitialContext.java:349)
at helloworld.sample.DataBean.hello(DataBean.java:43)
at helloworld.sample.HelloWorldServlet.performTask(HelloWorldServlet.java:128)
at helloworld.sample.HelloWorldServlet.doPost(HelloWorldServlet.java:54)
at javax.servlet.http.HttpServlet.service(HttpServlet.java:566)
at javax.servlet.http.HttpServlet.service(HttpServlet.java:627)

...

5.2.2 COS Naming Server
CICS uses the COS Naming Server facility provided by WebSphere when publishing its
resources, and the EJB clients use it to locate the location of the enterprise beans.
WebSphere provides no tools for the COS Naming Server, and it can be difficult to verify that
the IORs are being correctly published to it by CICS.
Chapter 5. Troubleshooting enterprise beans in CICS TS V2.1 115

http://www.ibm.com/software/webservers/appserv/library.html

Verifying that the COS Naming Server is running
The COS Naming Server function is provided by the AdminServer part of WebSphere. By
default, the AdminServer is not started automatically when the WebSphere workstation is
booted. To manually start AdminServer on the workstation, use Start -> Programs -> IBM
WebSphere -> Application Server V3.5 -> Start Admin Server.

The AdminServer can be set to start automatically from the Services window of the Windows
NT Control Panel. The service name is IBM WS AdminServer.

The netstat command can be used to verify that the workstation is listening on the correct
TCP/IP port. From a Windows command prompt, enter netstat -a and it should show that
the workstation is listening on port 900. This is shown in Example 5-5 which shows an extract
of the netstat command running on our WebSphere workstation.

Example 5-5 Using netstat to list active TCP/IP connections

C:\>netstat -a
Active Connections
Proto Local Address Foreign Address State
 TCP hecate:80 0.0.0.0:0 LISTENING
 TCP hecate:135 0.0.0.0:0 LISTENING
 TCP hecate:135 0.0.0.0:0 LISTENING
 TCP hecate:900 0.0.0.0:0 LISTENING
 TCP hecate:1027 0.0.0.0:0 LISTENING
 TCP hecate:1029 0.0.0.0:0 LISTENING

Querying the COS Naming Server
We found it useful to be able to query the WebSphere COS Naming Server to see if our
enterprise beans really were published to it. To do this we wrote a simple utility program,
called JNDIList to list out the contents of the JNDI directory. Appendix C, “Using the
additional material” on page 315 contains information on how to create this program and the
other sample programs provided with this redbook.

The JNDIList program takes two parameters, the URL of the COS Naming Server, and
optionally the literal IOR. Appending the JNDI prefix to the URL restricts the output to only
show references for that JNDI prefix. Using a specific JNDI prefix makes the utility run faster
and limits the number of references displayed. This makes it much easier to locate a
particular enterprise bean reference.

The optional second parameter, IOR, causes the stringified IOR for each bean to also be
listed. This could then be cut-and-pasted into another utility which formats the IOR. There are
many such utilities available including Web pages where you paste the IOR into a form and a
CGI program formats it. Searching for IOR parser with your favorite Internet search engine
should locate several of these sites. The IOR contains information such as the host address
and port number and the complete object key.

Example 5-6 shows the JNDIList utility being run against our COS Naming Server for the
JNDI prefix /ITSO/PJA5.

Example 5-6 JNDIList utility showing the samples published to the COS Naming Server

C:\JNDIList>java JNDIList iiop://hecate:900/ITSO/PJA5
Trader.itso\.ejb390\.trader\.EJSRemoteTraderHome
HelloWorldSession.itso\.ejb390\.helloworld\.EJSRemoteHelloWorldSessionHome
HelloWorld.helloworld\.sample\.EJSRemoteHelloWorldHome

C:\JNDIList>
116 EJB for OS/390 and z/OS, CICS TS V2.1

5.3 Traditional CICS diagnostic aids
This section describes the various CICS options available to aid with diagnosing problems
with enterprise beans in CICS. We only describe the areas which we found particularly useful
for solving the general configuration problems we had during the development and testing of
our sample programs. For more complete information on debugging CICS problems, see the
CICS Problem determination Guide, GC33-5719.

5.3.1 CICS job log and console messages
The CICS job log and OS/390 console contain useful messages about CICS activity. This was
one of the first places we would check when a problem had been narrowed down to
somewhere within the CICS region. Example 5-7 shows some typical messages produced. In
this example CICS has published an enterprise bean and the message indicates the URL of
the COS Naming Server.

Example 5-7 Extract of the CICS job log show messages about EJB activity

...
DFHAD2000 I 04/11/2001 21:20:06 SCSCPJA5 A DJAR named J2DJ0013 was created by CICSRS1.
DFHEJ1540 04/11/2001 21:20:18 SCSCPJA5 DJar J2DJ0013 and the Beans it contains are now
accessible.
DFHEJ5009 04/11/2001 21:20:24 SCSCPJA5 Published bean HelloWorld to JNDI server
iiop://hecate.almaden.ibm.com:900 at location ITSO/PJA5.
...

5.3.2 CICS auxiliary trace
The CICS auxiliary trace can be useful in some circumstances. However, in many problem
situations, once the JVM starts executing the enterprise bean, then the Java code problems
do not cause entries to be written to the trace file. For example, if the Java program catches
its own exceptions, then no messages appear in the CICS trace file about the exceptions.

The trace file can be useful for CICS configuration problems relating to enterprise beans. For
example, Example 5-8 provides an edited extract of a CICS auxiliary trace which shows the
exception CICS gets when receiving an incoming request for an enterprise bean that has not
been installed.

Example 5-8 Trace extract showing HelloWorld bean not defined to CICS

00128 J8005 EJ 0602 JRAS ENTRY com.ibm.cics.ejs.csi.EJJOGate getBeanMetaData
00128 J8005 EJ 0E01 EJJO ENTRY GET_BEAN_DD PJA5,HelloWorld,352026B8 ,
00128 J8005 EJ 0B01 EJBG ENTRY GET_BEAN_DD PJA5,352026B8 , 00000000 ,
00128 J8005 EJ 0701 EJCG ENTRY INQUIRE_CORBASERVER PJA5
00128 J8005 EJ 071A EJCG EXIT INQUIRE_CORBASERVER/OK INSERV
00128 J8005 EJ 0B02 EJBG EXIT GET_BEAN_DD/EXCEPTION BEAN_ABSENT,,352026B8 , 00
00128 J8005 EJ 0E0B EJJO EXIT GET_BEAN_DD/EXCEPTION BEAN_ABSENT,,0,352026B8 ,
00128 J8005 EJ 0701 EJCG ENTRY INQUIRE_CORBASERVER PJA5
00128 J8005 EJ 071A EJCG EXIT INQUIRE_CORBASERVER/OK INSERV
00128 J8005 EJ 0901 EJDG ENTRY COUNT_FOR_CS PJA5
00128 J8005 EJ 0911 EJDG EXIT COUNT_FOR_CS/OK 2,0,0,0,0,0,0,2,0
00128 J8005 EJ 0911 EJDG EXIT WAIT_FOR_USABLE_DJARS/OK
00128 J8005 EJ 0E0B EJJO EXIT WAIT_FOR_USABLE_DJARS/OK
00128 J8005 EJ 0B01 EJBG ENTRY GET_BEAN_DD PJA5,352026B8 , 00000000 ,
00128 J8005 EJ 0701 EJCG ENTRY INQUIRE_CORBASERVER PJA5
00128 J8005 EJ 071A EJCG EXIT INQUIRE_CORBASERVER/OK INSERV
00128 J8005 EJ 0B02 EJBG EXIT GET_BEAN_DD/EXCEPTION BEAN_ABSENT,,352026B8 , 00
00128 J8005 EJ 0E0B EJJO EXIT GET_BEAN_DD/EXCEPTION BEAN_ABSENT,,0,352026B8 ,
00128 J8005 EJ 0603 JRAS *EXC* com.ibm.cics.ejs.csi.EJJOGate getBeanMetaData
Chapter 5. Troubleshooting enterprise beans in CICS TS V2.1 117

00128 J8005 EJ 0603 JRAS *EXC* com.ibm.cics.ejs.csi.CICSBeanMetaDataStore getIn
00128 J8005 EJ 0603 JRAS *EXC* com.ibm.cics.ejs.csi.CICSBeanMetaDataStore get
00128 J8005 EJ 0603 JRAS *EXC* com.ibm.cics.ejs.csi.CICSObjectAdapter keyToObje
00128 J8005 II 1003 JRAS *EXC* com.ibm.cics.iiop.orb.ExtendedServerDelegate get
00128 J8005 II 1003 JRAS *EXC* com.ibm.cics.iiop.orb.CICSConnection doWork (Req
00128 J8005 II 1002 JRAS ENTRY com.ibm.rmi.iiop.IIOPOutputStream writeTo (java.
00128 J8005 II 0700 IIRP ENTRY SEND_REPLY 0D362840,1,35254F80 , 0000
00128 J8005 II 0200 IIRH ENTRY PARSE 35254F80 , 00000014
00128 J8005 II 0201 IIRH EXIT PARSE/OK 146,00000000 , 00000000,00
00128 J8005 II 0714 IIRP EVENT IIOP_DATA ABOUT TO SEND GIOP REPLY
00128 J8005 RZ 0120 RZTA ENTRY SEND_REPLY 35254F80 , 00000014,1

5.3.3 Verifying that the request receiver transaction runs
One thing we found useful early-on in the setting up of our CICS system with enterprise bean
support was to determine if a request had even reached CICS or not. The first thing that
happens when a request is received by CICS is that the request receiver transaction is run.
Using CEMT I PROG(DFHIIRRS) to display the use count of the request receiver program
provides a quick way to verify this without having to resort to running a trace.

This technique does not work with the request processor program because CEMT does not
show a use count for Java programs. However, it is possible to use CEDF to determine if the
correct request processor transaction is running, and this is described further in the following
section.

5.3.4 Using EDF with enterprise beans
The CEDX transaction is used to invoke the CICS execution diagnostic facility (EDF) for
testing application programs that are associated with non-terminal transactions. CEDX can
be used with the request processor transaction CIRP or one of its aliases.

While testing our enterprise beans, we found two ways that using CEDX on a request
processor transaction could be useful:

� To step through the EXEC CICS commands used by an enterprise bean. This can be done
both for a called a program in another language, or for a CICS Java program using the
JCICS classes.

� To verify that the REQUESTMODEL was mapping our requests to the correct request
processor alias transaction.

When used with CIRP, EDF will always show the final task terminate screen. We found
this useful when testing that a particular request processor alias has indeed been selected
by the REQUESTMODEL.

Restriction: There are restrictions on having multiple request processor transactions
using EDF. This means that the TRANSCLASS resource definition of the request
processor transaction alias needs to have the MAXACTIVE attribute set to a value of 1.
For more information on this, see the section “Using EDF with enterprise beans’ in Java
applications in CICS, SC34-5881.
118 EJB for OS/390 and z/OS, CICS TS V2.1

5.4 Debugging common errors
In this section we describe how to diagnose some common problems with Web applications
using enterprise beans in CICS. The first part of this section gives an overview of the method
we use when trying to diagnose problems. The second part of the section gives some
examples of the symptoms of various problems and what is done to resolve them.

5.4.1 Overview of debugging a Web application
We suggest using the following strategy when attempting to diagnose a problem with a Web
application using an enterprise bean in CICS:

1. Verify that the IBM HTTP server is serving Web pages.

2. Verify WebSphere Application server is starting the servlet.

3. Check for exceptions and messages in the WebSphere logs.

4. Verify that the request reached CICS.

5. Verify that the expected request processor transaction is called.

6. Check for any messages on the OS/390 console or CICS job log.

7. Check for any messages in the Java stderr files in the HFS.

8. Use JPDA to step through the code of the enterprise bean.

Verify that the IBM HTTP server is serving Web pages
Verify that the IBM HTTP server is running and serving Web pages. On the WebSphere
workstation, starting a Web browser and entering http://localhost/ as the URL should
show the default index.html page. Repeating this on another workstation but specifying the
WebSphere Application server hostname as the URL should also show this page; this verifies
that the Web server is running and that there is remote connectivity to it.

Verify that the WebSphere Application server is starting the servlet
The Console Messages window of the WebSphere Administrators console will show
messages when a servlet is loaded and initialized. This verifies that the HTML page is
causing a servlet to be started. For example, the first time we use our CICS development
deployment tool, the SCSCPJA5 servlet is initialized, as shown in Example 5-9.

Example 5-9 WebSphere initializing the CICS development deployment tool servlet

4/8/01 7:56 PM : AUDIT [hecate/Default Server]: Loading.servlet:."SCSCPJA5"
4/8/01 7:56 PM : AUDIT [hecate/Default Server]:[Servlet.LOG]:

"com.ibm.cics.addeploy.servlet.CicsEjbAdServlet: [SCSCPJA5]init"
4/8/01 7:57 PM : AUDIT [hecate/Default Server]:Servlet.available.for.service:."SCSCPJA5"
4/8/01 7:57 PM : AUDIT [hecate/Default Server]:[Servlet.LOG]:

"pagecompile._loginIBM01_xjsp: init"
4/8/01 7:57 PM : AUDIT [hecate/Default Server]:[Servlet.LOG]:

"com.ibm.servlet.jsp.http.pagecompile.JSPState: init"

Check for exceptions or messages in the WebSphere logs
Many Web application problems will cause messages to be written to the WebSphere
Application Server log files. These files are described in 5.2, “WebSphere diagnostic aids” on
page 115.
Chapter 5. Troubleshooting enterprise beans in CICS TS V2.1 119

An example of the type of messages written to the WebSphere logs is shown in
Example 5-10. Here the HelloWorld sample Web application is failing with a Java
NameNotFound exception. The cause of this problem is that a DJAR resource in CICS has
not been published, so when the servlet does a JNDI lookup for the bean it gets this
exception.

Example 5-10 HelloWorld naming exception due

javax.naming.NameNotFoundException: ITSO/PJA5/HelloWorld
at javax.naming.NamingException.<init>(NamingException.java:104)
at javax.naming.NameNotFoundException.<init>(NameNotFoundException.java:40)
at com.ibm.ejs.ns.jndi.CNContextImpl.doLookup(CNContextImpl.java:729)
at com.ibm.ejs.ns.jndi.CNContextImpl.lookup(CNContextImpl.java:584)
at javax.naming.InitialContext.lookup(InitialContext.java:349)
at helloworld.sample.DataBean.hello(DataBean.java:43)
at helloworld.sample.HelloWorldServlet.performTask(HelloWorldServlet.java:128)
at helloworld.sample.HelloWorldServlet.doPost(HelloWorldServlet.java:54)
at javax.servlet.http.HttpServlet.service(HttpServlet.java:566)
at javax.servlet.http.HttpServlet.service(HttpServlet.java:639)

...

Verify that the request reached CICS
When an IIOP request is received by CICS the request receiver program should be invoked.
The request receiver program is the program associated with the TRANSID attribute of the
TCPIPSERVICE definition, which by default is CIRR.

CEMT can be used to verify that the use count increases for the request receiver program
each time a client program tries to invoke a method on an enterprise bean in CICS. If this use
count does not increase, then the client requests have probably not reached CICS. This is
shown in Figure 5-6.

Figure 5-6 Displaying the request receiver programs use count

Verify that the expected request processor transaction is called
It can be useful to verify that the correct request processor transaction is being selected by
the REQUESTMODEL resource definitions. For example, we used the command CEDX ADRP
to verify that our debugging request processor was being called for the correct requests. The
next time that an incoming request is matched to this transaction, we get the EDF initiation
screen, as shown in Figure 5-7.

This EDF program initiation screen is displayed even when using the default request receiver
program which defines the EDF attribute set to NO.

CEMT I PROG(DFHIIRRS)
STATUS: RESULTS - OVERTYPE TO MODIFY
Prog(DFHIIRRS) Len(0000001032) Ass Pro Ena Pri
 Res(000) Use(0000000150) Any Cex Ful Qua Nat

 SYSID=PJA5 APPLID=SCSCPJA5
 RESPONSE: NORMAL TIME: 23.21.20 DATE: 04.08.01
PF 1 HELP 3 END 5 VAR 7 SBH 8 SFH 9 MSG 10 SB 11 SF
120 EJB for OS/390 and z/OS, CICS TS V2.1

Figure 5-7 Verifying that a request processor alias is used with EDF

Check for messages in the OS/390 console or CICS job log
Many errors will cause messages to be written to the CICS job log. The messages typically
seen here will occur when the problem is drastic enough to prevent the JVM from initializing
or running the request receiver program. An example of this type of problem is shown in
Example 5-11, which is caused by the request receiver program specifying a JVMPROFILE
that pointed to a non-existent system properties file.

Example 5-11 Sample messages from the CICS job log

DFHSJ0509 04/09/2001 00:05:50 SCSCPJA5 Attempt to open JVM system properties file
/u/cicsts21/props/Xfjjvmpr.props has failed. Runtime error message is EDC5129I No such
file or directory.
DFHAC2016 04/09/2001 00:05:50 SCSCPJA5 Transaction CIRP cannot run because program
DFJIIRP is not available.
DFHII0108 04/09/2001 00:05:50 SCSCPJA5 9.1.150.233 PJA5 The request receiver was
notified that a reply could not be delivered for requestId 274. Reason: Request Stream
closed.

Check for any messages in the Java stderr files in the HFS
The Java stderr files will record JVM problems and exceptions that are not caught by the
enterprise bean code. Sometimes these messages can be very specific about what the
problem is. Example 5-12 shows the messages you get in the Java stderr file when an
enterprise bean tries to use JDBC but the DB2 library is no defined in the JVMPROFILE
LIBPATH parameter.

Example 5-12 Java stderr file in HFS showing DB2 missing from the JVMPROFILE

Can't find library db2os390j2comp
Make sure that the library is in your path
java.lang.UnsatisfiedLinkError: no db2os390j2comp (libdb2os390j2comp.so) in
java.library.path
SQLException loading DLL/registering JDBC Driver

TRANSACTION: ADRP PROGRAM: ANTDIIRP TASK: 0000542 APPLID: SCSCPJA5 DISPLAY: 00
 STATUS: PROGRAM INITIATION

 EIBTIME = 232852
 EIBDATE = 0101098
 EIBTRNID = 'ADRP'
 EIBTASKN = 542
 EIBTRMID = '....'

 EIBCPOSN = 0
 EIBCALEN = 0
 EIBAID = X'00' AT X'0DBB00EA'
 EIBFN = X'0000' AT X'0DBB00EB'
 EIBRCODE = X'000000000000' AT X'0DBB00ED'
 EIBDS = '........'
 + EIBREQID = '........'

ENTER: CONTINUE
 PF1 : UNDEFINED PF2 : SWITCH HEX/CHAR PF3 : END EDF SESSION
 PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PF6 : USER DISPLAY
 PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITIONS
 PF10: PREVIOUS DISPLAY PF11: EIB DISPLAY PF12: UNDEFINE
Chapter 5. Troubleshooting enterprise beans in CICS TS V2.1 121

SQLSTATE is FFFFF
SQLCODE is -1
java.sql.SQLException: Error: DB2 JDBC Driver was unable to load the DLL db2os390j2comp
java.lang.Exception: AIIA

Use JPDA to step through the code of the enterprise bean
We found that where possible, it is much easier to test and debug enterprise bean logic using
the WebSphere Test Environment which is described in 6.2.2, “Testing in VAJ” on page 142.
Sometimes this is not possible, such as when using the JCICS classes, and in these cases a
JPDA debugger can be used to debug the Java code within CICS. See “Debugging an
enterprise bean using JPDA” on page 109 for more details.

5.4.2 Common problems
This section shows examples of some of the problems that we encountered while developing
the applications in this redbook. We show the symptoms of the problem occurring and
describe what we did to resolve the problem.

Problems with the IVP HelloWorld application
The CICS supplied HelloWorld program used in the installation verification has limited error
handling. Most problems result in the program returning an HTML page showing a blank
Sample Results page (Figure 5-8).

Figure 5-8 HelloWorld sample blank error page

When this blank page is shown, the HelloWorld Web application will have written exception
information to the WebSphere stderr log. An example of this is shown in Example 5-13.
122 EJB for OS/390 and z/OS, CICS TS V2.1

Example 5-13 HelloWorld naming exception due to the DJAR not published

javax.naming.NameNotFoundException: ITSO/PJA5/HelloWorld
at javax.naming.NamingException.<init>(NamingException.java:104)
at javax.naming.NameNotFoundException.<init>(NameNotFoundException.java:40)
at com.ibm.ejs.ns.jndi.CNContextImpl.doLookup(CNContextImpl.java:729)
at com.ibm.ejs.ns.jndi.CNContextImpl.lookup(CNContextImpl.java:584)
at javax.naming.InitialContext.lookup(InitialContext.java:349)
at helloworld.sample.DataBean.hello(DataBean.java:43)
at helloworld.sample.HelloWorldServlet.performTask(HelloWorldServlet.java:128)
at helloworld.sample.HelloWorldServlet.doPost(HelloWorldServlet.java:54)
at javax.servlet.http.HttpServlet.service(HttpServlet.java:566)
at javax.servlet.http.HttpServlet.service(HttpServlet.java:639)

This shows a Java NameNotFoundException which is caused by not publishing the
HelloWorld DJAR. This type of exception also occurs if WebSphere is reinstalled or if the
JNDI prefix is specified incorrectly, either in the CORBASERVER resource definition, or on
the HelloWorld sample Web page form.

Similar symptoms occur if the DJAR has been successfully published in the past, but now
does not exist in CICS. This could occur, for example, after a CICS cold start, if the group
containing the DJAR has not been installed. The exception is different in this situation, a
NoSuchObjectException which is shown in Example 5-14.

Example 5-14 HelloWorld naming exception due

java.rmi.NoSuchObjectException: CORBA OBJECT_NOT_EXIST 1 No; nested exception is:
org.omg.CORBA.OBJECT_NOT_EXIST: minor code: 1 completed: No

org.omg.CORBA.OBJECT_NOT_EXIST: minor code: 1 completed: No
at java.lang.RuntimeException.<init>(RuntimeException.java:49)
at org.omg.CORBA.SystemException.<init>(SystemException.java:51)
at org.omg.CORBA.OBJECT_NOT_EXIST.<init>(OBJECT_NOT_EXIST.java:72)
at org.omg.CORBA.OBJECT_NOT_EXIST.<init>(OBJECT_NOT_EXIST.java:61)
at com.ibm.CORBA.iiop.IIOPConnection.locate(Unknown Source)
at com.ibm.CORBA.iiop.GIOPImpl.locate(Unknown Source)
at com.ibm.CORBA.iiop.ClientDelegate.createRequest(Unknown Source)
at com.ibm.CORBA.iiop.ClientDelegate.request(Unknown Source)
at org.omg.CORBA.portable.ObjectImpl._request(ObjectImpl.java:237)
at helloworld.sample._HelloWorldHome_Stub.create(_HelloWorldHome_Stub.java:164)
at helloworld.sample.DataBean.hello(DataBean.java:45)
at helloworld.sample.HelloWorldServlet.performTask(HelloWorldServlet.java:128)
at helloworld.sample.HelloWorldServlet.doPost(HelloWorldServlet.java:54)
at javax.servlet.http.HttpServlet.service(HttpServlet.java:566)
at javax.servlet.http.HttpServlet.service(HttpServlet.java:639)

...
Chapter 5. Troubleshooting enterprise beans in CICS TS V2.1 123

CICS development deployment tool application problems
In this section we describe the symptoms of problems that can happen with the CICS
development deployment tool.

Figure 5-9 shows the error you get when the CICS development deployment tool cannot run
its servlet. Likely causes of this problem are that the WebSphere Application Server Admin
Server is not running, or there is a configuration problem with the servlet name.

Figure 5-9 IBM HTTP Server unable to connect to WebSphere Application server

Next, Figure 5-10 shows the Deployment tool unavailable page. This is a generic error page
that is displayed for nearly all problems with the CICS development deployment tool. It does
verify that the servlet is running but the problem could be anything from a problem in
WebSphere to a problem with the enterprise bean in CICS. To determine the nature of the
problem, the steps outlined in 5.4.1, “Overview of debugging a Web application” on page 119
should be followed.

Figure 5-10 CICS development deployment tool servlet problems
124 EJB for OS/390 and z/OS, CICS TS V2.1

Any errors in the CICS development deployment tool XML configuration file will prevent the
tool’s Web application from starting. These type of errors cause messages to be written to the
WebSphere Application Server stdout.log. An extract of the WebSphere log for this type of
error is shown in Example 5-15.

Example 5-15 CICS development deployment DCF file errors

2001.04.04 19:13:02.910 com.ibm.cics.addeploy.servlet.CicsEjbAdServlet init
[SCSCPJA5]DFHAD0501I CICS Development Deployment Tool for EJB Technology is starting.
2001.04.04 19:29:15.378 com.ibm.cics.addeploy.servlet.CicsEjbAdServlet
exceptionToMessageLog [SCSCPJA5]DFHAD0325E XML parsing error ("/>" or '>' expected.) at
line number 30.
2001.04.04 19:13:04.002 com.ibm.cics.addeploy.servlet.CicsEjbAdServlet
exceptionToMessageLog [SCSCPJA5]DFHAD0260E The CICS Development Deployment Tool for EJB
Technology cannot service requests.

Some problems cause messages to be written to the CICS development deployment tool’s
own log file not to the WebSphere logs. The location of this log file is specified in the DCF
configuration file and by default is in the tools Web application root directory,
C:\WebSphere\AppServer\hosts\default_host\CICS_EJB. An example of an error here is
shown in Example 5-16. This problem was when the CICS development deployment tool
CICS components had not been installed in CICS.

Example 5-16 CICS development deployment tool error in logfile example

2001.04.10 18:38:56.099 com.ibm.cics.addeploy.shared.CICSEJBDeployerReference
getEJBRef:NoUserID00000100
javax.naming.NameNotFoundException: DFHD/CICSDDTbean
at javax.naming.NamingException.<init>(NamingException.java:104)
at javax.naming.NameNotFoundException.<init>(NameNotFoundException.java:40)
at com.ibm.ejs.ns.jndi.CNContextImpl.doLookup(CNContextImpl.java:729)
at com.ibm.ejs.ns.jndi.CNContextImpl.lookup(CNContextImpl.java:584)
at javax.naming.InitialContext.lookup(InitialContext.java:349)
...

Problems with the Trader application
This section gives examples of many of the configuration problems possible with setting up
the Trader application described in the other chapters of the book.

JAR files missing from the trusted middleware classpath
The Trader Web application catches most exceptions and displays the Java stacktrace on an
error Web page. Figure 5-11 shows an example of this, where the enterprise bean in CICS
received a NoClassDefFound exception. This occurred because the CCF.jar file was missing
from the trusted middleware classpath, defined using TMSUFFIX in the JVM profile. This
requirement is described in 7.3.6, “Adding the supporting JAR files to the trusted middleware
classpath” on page 194.
Chapter 5. Troubleshooting enterprise beans in CICS TS V2.1 125

Figure 5-11 Trader error — CCF.jar missing from classpath

Trader unable to contact the CTG
Another of these types of errors is shown in Figure 5-12. In this example, the Trader
application was connecting to CICS using the CTG but the CTG was not active. Again the
Trader application catches this exception displaying the Java stacktrace on the Trader error
page.

Figure 5-12 CCF sample unable to connect to CTG
126 EJB for OS/390 and z/OS, CICS TS V2.1

Sometimes when a problem occurs in the Trader application, a follow-on error occurs, and
the Trader error page displays information about the second error. Often the first error is what
is really of interest, and in these cases, the CICS Java stderr files will have the information
about the first problem. An example of this is shown in Figure 5-13. Here the Trader error
page is showing a NullPointerException.

Figure 5-13 Trader showing a null pointer secondary error

Looking in the Java stderr files in the OS/390 HFS provides information about both the first
and second problem of this example. An extract of the stderr file is shown in Example 5-17.
This shows the first problem is an SQL exception saying No suitable driver. The problem here
was because the db2sqljruntime.zip file had not been defined in the JVM profile member.
Setting up the JVM profile for using DB2 with enterprise beans is discussed in “Setting CICS
parameters” on page 279.

Example 5-17 Trader application SQL exception in OS/390 stderr file

java.sql.SQLException: No suitable driver
.at java.sql.DriverManager.getConnection(DriverManager.java:557)
.at java.sql.DriverManager.getConnection(DriverManager.java:210)
.at itso.ejb390.trader.TraderBackendDB2JDBC.openConnection(TraderBackendDB2J
.at itso.ejb390.trader.TraderBackendDB2JDBC.ejbCreate(TraderBackendDB2JDBC
.at itso.ejb390.trader.TraderBean.ejbCreate(TraderBean.java:40)
.at itso.ejb390.trader.EJSTraderHomeBean.create(EJSTraderHomeBean.java:40)
.at itso.ejb390.trader.EJSRemoteTraderHome.create(EJSRemoteTraderHome.java
.at itso.ejb390.trader._EJSRemoteTraderHome_Tie._invoke(_EJSRemoteTraderHome
...
Chapter 5. Troubleshooting enterprise beans in CICS TS V2.1 127

Another similar problem, which also shows as a null pointer exception on the Trader error
page, but has a more meaningful message in the CICS stderr file, is shown in Example 5-18.
The messages in this example are about DB2 libraries missing from the path. The problem
here is that the JVM profile member does not have the DB2 HFS directories concatenated in
the LIBPATH statement. Setting up the LIBPATH for DB2 is described in “Setting CICS
parameters” on page 279.

Example 5-18 Trader application missing DB2 library in OS/390 stderr file

Can't find library db2os390j2comp
Make sure that the library is in your path
java.lang.UnsatisfiedLinkError: no db2os390j2comp (libdb2os390j2comp.so) in

java.library.path
SQLException loading DLL/registering JDBC Driver
SQLSTATE is FFFFF
SQLCODE is -1
java.sql.SQLException: Error: DB2 JDBC Driver was unable to load the DLL db2os390j2comp
...

JDBC profile not available in classpath
Example 5-19 shows the Java exception received when the JDBC profile has not been copied
to the classpath being used by the JVM profile. Setting up the JDBC profile is described in
“Create a JDBC profile and make it accessible” on page 277.

Example 5-19 JDBC profile not available in CLASSPATH

java.sql.SQLException: --> JDBC is not allowed without a valid JDBC serialized profile
-> The following error messages were received while trying to read the JDBC profile:
-> Unable to find the JDBC Serialized Profile: DSNJDBC_JDBCProfile.ser.
-> Not found as System resource.
-> Also failed extended file search of all directories in classpath: /u/cicsts21/lib
.at

COM.ibm.db2os390.sqlj.jdbc.DB2JDBCSQLCompiler.compileSQL(DB2JDBCSQLCompiler.java:166)
.at COM.ibm.db2os390.sqlj.jdbc.DB2SQLJStatement.executeQuery(DB2SQLJStatement.java:481)
.at itso.ejb390.trader.TraderBackendDB2JDBC.logon(TraderBackendDB2JDBC.java:253)
.at itso.ejb390.trader.TraderBean.logon(TraderBean.java:117)
.at itso.ejb390.trader.EJSRemoteTrader.logon(EJSRemoteTrader.java:153)
.at itso.ejb390.trader._EJSRemoteTrader_Tie._invoke(_EJSRemoteTrader_Tie.java:115)
.at com.ibm.rmi.corba.ServerDelegate.dispatch(ServerDelegate.java:284)
.at com.ibm.rmi.iiop.ORB.process(ORB.java:263)
.at com.ibm.rmi.iiop.IIOPConnection.doWork(IIOPConnection.java:1341)
.at com.ibm.cics.iiop.orb.CICSConnection.processRequest(CICSConnection.java:329)
.at com.ibm.cics.iiop.RequestProcessor.processNormalMode(RequestProcessor.java:388)
.at com.ibm.cics.iiop.RequestProcessor.main(RequestProcessor.java:170)
.at java.lang.reflect.Method.invoke(Native Method)
.at com.ibm.cics.server.Wrapper.call_main(Wrapper.java:415)
.at com.ibm.cics.server.Wrapper.callUserClass(Wrapper.java:551)
.at com.ibm.cics.server.Wrapper.main(Wrapper.java:832)
128 EJB for OS/390 and z/OS, CICS TS V2.1

JDBC plan does not exist
Example 5-20 shows an SQL exception with a DB2 error code of 00F30034. This error code
can be found in the manual DB2 Messages and Codes, GC26-9011. For this error code, the
manual says “The authorization ID associated with this connection is not authorized to use
the specified plan name or the specified plan name does not exist”.

In this case, the error was caused because the plan had not been defined to DB2. Creating
the JDBC profile and binding the DBRMs to DB2 is described in “Create a JDBC profile and
make it accessible” on page 277.

Example 5-20 JDBC plan does not exist

java.sql.SQLException: DB2SQLJConnection error in native method: constructor:
 PLAN ACCESS 00F30034.............................SQLSTATE=42505 and SQLCODE=-922
.at COM.ibm.db2os390.sqlj.jdbc.DB2SQLJConnection.setError(DB2SQLJConnection.java:1551)
.at COM.ibm.db2os390.sqlj.jdbc.DB2SQLJConnection.<init>(DB2SQLJConnection.java:335)
.at
COM.ibm.db2os390.sqlj.jdbc.DB2SQLJDriver.createCicsImsConnection(DB2SQLJDriver.java:1230)
.at COM.ibm.db2os390.sqlj.jdbc.DB2SQLJDriver.connect(DB2SQLJDriver.java:1152)
.at java.sql.DriverManager.getConnection(DriverManager.java:537)
.at java.sql.DriverManager.getConnection(DriverManager.java:210)
.at itso.ejb390.trader.TraderBackendDB2JDBC.openConnection(TraderBackendDB2JDBC.java:290)
.at itso.ejb390.trader.TraderBackendDB2JDBC.ejbCreate(TraderBackendDB2JDBC.java:104)
.at itso.ejb390.trader.TraderBean.ejbCreate(TraderBean.java:40)
.at itso.ejb390.trader.EJSTraderHomeBean.create(EJSTraderHomeBean.java:40)
.at itso.ejb390.trader.EJSRemoteTraderHome.create(EJSRemoteTraderHome.java:35)
.at itso.ejb390.trader._EJSRemoteTraderHome_Tie._invoke(_EJSRemoteTraderHome_Tie.java:81)
.at com.ibm.rmi.corba.ServerDelegate.dispatch(ServerDelegate.java:284)
.at com.ibm.rmi.iiop.ORB.process(ORB.java:263)
.at com.ibm.rmi.iiop.IIOPConnection.doWork(IIOPConnection.java:1341)
.at com.ibm.cics.iiop.orb.CICSConnection.processRequest(CICSConnection.java:329)
.at com.ibm.cics.iiop.RequestProcessor.processNormalMode(RequestProcessor.java:388)
.at com.ibm.cics.iiop.RequestProcessor.main(RequestProcessor.java:170)
.at java.lang.reflect.Method.invoke(Native Method)
.at com.ibm.cics.server.Wrapper.call_main(Wrapper.java:415)
.at com.ibm.cics.server.Wrapper.callUserClass(Wrapper.java:551)
.at com.ibm.cics.server.Wrapper.main(Wrapper.java:832)

These types of errors also produce associated CICS messages in the CICS joblog. The CICS
messages for this example problem are shown in Example 5-21. This shows a CICS abend
code of AD2U, which also provides hints about what has happened. The text for the AD2U
abend code is “An attempt to create a DB2 thread by the subtask servicing the DB2 request
failed”.

Example 5-21 CICS abend messages associated with a DB2 exception

DFHDU0203I 04/11/2001 14:28:01 SCSCPJA5 A transaction dump was taken for dumpcode: AD2U,
Dumpid: 1/0001.
DFHAC2248 04/11/2001 14:28:01 SCSCPJA5 Transaction CIRP running program DFJIIRP term
???? has failed with abend ASP7 following the failure of a local resource owner in the
prepare phase of syncpoint. Updates will be backed out
Chapter 5. Troubleshooting enterprise beans in CICS TS V2.1 129

No select privilege to access table TRADER_COMPANY
Example 5-22 on page 130 shows an exception caused by a DB2 authorization problem.
From the exception the SQL error code can be seen, in this example, -551. The DB2 manual,
DB2 Messages and Codes, GC26-9011, contains information on SQL error codes:

- 551 auth-id DOES NOT HAVE THE PRIVILEGE TO PERFORM OPERATION operation ON OBJECT
object-name

The Java exception provides the values for auth-id, operation, and object-name, which in this
example are CICSRS1, SELECT, and ITSOEJB.TRADER_COMPANY respectively. From
this, we can determine that the error is due to the user CICSRS1 not having DB2 SELECT
authorization for the TRADER_COMPANY table. These authorizations are described in
10.3.5, “Granting privileges to the CICS user ID” on page 298.

Example 5-22 No select privilege to access table TRADER_COMPANY

java.sql.SQLException: DB2JDBCCursor Received Error in Method prepare:SQLCODE==> -551
SQLSTATE ==> 42501 Error Tokens ==> <<DB2 6.1 ANSI SQLJ-0/JDBC 1.0>> CICSRS1
SELECT ITSOEJB.TRADER_COMPANY
.at COM.ibm.db2os390.sqlj.jdbc.DB2SQLJJDBCCursor.setError(DB2SQLJJDBCCursor.java:938)
.at COM.ibm.db2os390.sqlj.jdbc.DB2SQLJJDBCSection.prepare(DB2SQLJJDBCSection.java:576)
.at COM.ibm.db2os390.sqlj.jdbc.DB2SQLJStatement.executeQuery(DB2SQLJStatement.java:497)
.at itso.ejb390.trader.TraderBackendDB2JDBC.logon(TraderBackendDB2JDBC.java:253)
.at itso.ejb390.trader.TraderBean.logon(TraderBean.java:117)
.at itso.ejb390.trader.EJSRemoteTrader.logon(EJSRemoteTrader.java:153)
.at itso.ejb390.trader._EJSRemoteTrader_Tie._invoke(_EJSRemoteTrader_Tie.java:115)
.at com.ibm.rmi.corba.ServerDelegate.dispatch(ServerDelegate.java:284)
.at com.ibm.rmi.iiop.ORB.process(ORB.java:263)
.at com.ibm.rmi.iiop.IIOPConnection.doWork(IIOPConnection.java:1341)
.at com.ibm.cics.iiop.orb.CICSConnection.processRequest(CICSConnection.java:329)
.at com.ibm.cics.iiop.RequestProcessor.processNormalMode(RequestProcessor.java:388)
.at com.ibm.cics.iiop.RequestProcessor.main(RequestProcessor.java:170)
.at java.lang.reflect.Method.invoke(Native Method)
.at com.ibm.cics.server.Wrapper.call_main(Wrapper.java:415)
.at com.ibm.cics.server.Wrapper.callUserClass(Wrapper.java:551)
.at com.ibm.cics.server.Wrapper.main(Wrapper.java:832)

Plan TRADERP is not specified in CICS DB2CONN definition
Our final problem example is shown in Example 5-23. In this example, the SQL exception
shows an SQL error code of -805. Again the DB2 manual, DB2 Messages and Codes,
GC26-9011, contains information about this SQL error, which indicates that the DBRM or
package name is not found in the DB2 plan.

In this example, the reason code, 02, which is the two digit number after ‘DSNJDBC’ in the
exception text, indicates the problem:

02 The DBRM name 'dbrm-name' did not match an entry in the member list or the package
list.

This problem was caused by the CICS DB2CONN resource definition not specifying the
correct DB2 plan name. Setting up the CICS DB2 definitions is discussed in 10.2.5, “Defining
a CICS DB2 connection” on page 280.
130 EJB for OS/390 and z/OS, CICS TS V2.1

Example 5-23 No select privilege to access table TRADER_COMPANY

java.sql.SQLException: DB2JDBCCursor Received Error in Method staticDescribe:SQLCODE==>
-805 SQLSTATE ==> 51002 Error Tokens ==> <<DB2 6.1 ANSI SQLJ-0/JDBC 1.0>>
DBZ1..TRADER2.000000E59D0552F7 DSNJDBC 02
.at COM.ibm.db2os390.sqlj.jdbc.DB2SQLJJDBCCursor.setError(DB2SQLJJDBCCursor.java:938)
.at COM.ibm.db2os390.sqlj.jdbc.DB2SQLJJDBCCursor.staticDescribe(DB2SQLJJDBCCursor.java:448)
.at
COM.ibm.db2os390.sqlj.runtime.DB2SQLJRTStatement.executeRTQuery(DB2SQLJRTStatement.java:111
2)
.at sqlj.runtime.ExecutionContext$StatementFrame.executeQuery(ExecutionContext.java:734)
.at sqlj.runtime.ExecutionContext.executeQuery(ExecutionContext.java:362)
.at itso.ejb390.trader.TraderBackendDB2SQLJ.logon(TraderBackendDB2SQLJ.java:558)
.at itso.ejb390.trader.TraderBean.logon(TraderBean.java:117)
.at itso.ejb390.trader.EJSRemoteTrader.logon(EJSRemoteTrader.java:153)
.at itso.ejb390.trader._EJSRemoteTrader_Tie._invoke(_EJSRemoteTrader_Tie.java:115)
.at com.ibm.rmi.corba.ServerDelegate.dispatch(ServerDelegate.java:284)
.at com.ibm.rmi.iiop.ORB.process(ORB.java:263)
.at com.ibm.rmi.iiop.IIOPConnection.doWork(IIOPConnection.java:1341)
.at com.ibm.cics.iiop.orb.CICSConnection.processRequest(CICSConnection.java:329)
.at com.ibm.cics.iiop.RequestProcessor.processNormalMode(RequestProcessor.java:388)
.at com.ibm.cics.iiop.RequestProcessor.main(RequestProcessor.java:170)
.at java.lang.reflect.Method.invoke(Native Method)
.at com.ibm.cics.server.Wrapper.call_main(Wrapper.java:415)
.at com.ibm.cics.server.Wrapper.callUserClass(Wrapper.java:551)
.at com.ibm.cics.server.Wrapper.main(Wrapper.java:832)
Chapter 5. Troubleshooting enterprise beans in CICS TS V2.1 131

132 EJB for OS/390 and z/OS, CICS TS V2.1

Part 3 CICS TS V2.1:
Enterprise bean
scenarios

In this part we document five different scenarios where we developed and deployed
enterprise beans in CICS. We start with the initial step of creating a simple HelloWorld
application in the VisualAge for Java Development environment, and then move on to
creating a stateful session bean called TraderBean that wraps the existing
pseudo-conversational COBOL Trader application. Following this we provide details on how
to develop new Java versions of COBOL applications using either the JCICS classes, or the
SQLJ and JDBC interfaces. We also provide details on how we developed both a stand-alone
Java test client and a sample JSP/servlet application to invoke the TraderBean, as well as
information on how to deploy this into WebSphere Application Server for Windows NT.

Part 3
© Copyright IBM Corp. 2001 133

134 EJB for OS/390 and z/OS, CICS TS V2.1

Chapter 6. Developing a HelloWorld session
bean for CICS

In this chapter we explain how to develop, deploy, and test a HelloWorld stateless session
bean under CICS TS V2.1. We used a Java client to test the enterprise bean from within
VisualAge for Java (VAJ), as well as a standalone application from the Windows NT and the
OS/390 UNIX System Services (USS) environment. Our scenario is illustrated in Figure 6-1.

Figure 6-1 CICS Helloworld session bean

6

CICS TS V2.1

RMI/IIOP

HelloWorldClient

Windows NT
OS/390

hwc.cmd

HelloWorldSession

enterprise bean

VAJ
Test client

HelloWorldClient

hwc.cmd

UNIX System Services

RMI/IIOP
© Copyright IBM Corp. 2001 135

6.1 Quick start — Invoking HelloWorldBean
If you want to run our sample HelloWorld enterprise bean without following all the details
specified in the following sections of this chapter you can follow the steps below. All the
source code and examples used in this book are available for download from the redbooks
Web site ftp://www.redbooks.ibm.com/redbooks/. For full details of the available files, refer
to Appendix C, “Using the additional material” on page 315.

1. Create a CICS TCPIPSERVICE, CORBASERVER, and DJAR definition in your CICS TS
V2.1 region if you have not already done so. For more details refer to 6.3.3, “Deploying to
CICS” on page 150.

2. Deploy the HelloWorld deployed JAR file hws_GEN.jar to your CICS region. For more
information refer to 6.3.3, “Deploying to CICS” on page 150.

3. On your workstation create a directory (for example, c:\itsohelloworld) and copy the
following files, supplied with this redbook, to this directory:

hws_CLI.jar
hwc.jar
hwc.cmd
hwc_nt.properties

4. Ensure that you have a Java 2 runtime environment version 1.3.0 (or higher) installed on
your workstation. You can verify your version with the command:

java -version

5. Ensure that you have file j2ee.jar accessible on your workstation. If not, you can either
obtain it by installing the CICS development deployment tool or by installing the Java 2
SDK Enterprise Edition available from http://java.sun.com.

6. Edit file hwc.cmd and make the following changes:

a. In the line that defines the JAVA_HOME variable, change the path to match your IBM
SDK 1.3 installation directory. The sample provided assumes the directory to be
C:\PROGRA~1\IBM\Java13.

b. In the line invoking defining JAVA_J2EE, change the directory to the location of the file
j2ee.jar on your worksation. The sample provided assumes the file to be in the
directory C:\Program Files\IBM\CICS TS 2.1 Tools\Common.

7. Edit file hwc_nt.properties and change the properties for the provider URL and the JNDI
name to match your requirements. For more information refer to “Dependencies of the
client code” on page 162.

8. Invoke the hwc.cmd file from a Windows command prompt, the output should be as shown
in Example 6-7 on page 168.
136 EJB for OS/390 and z/OS, CICS TS V2.1

ftp://www.redbooks.ibm.com/redbooks/
http://java.sun.com.

6.2 Developing a HelloWorld session bean with VAJ
VAJ Version 3.5 enables you to easily develop enterprise beans. It includes a WebSphere
Test Environment (WTE), which provides server run-time support for testing and debugging
enterprise beans.

For developing the enterprise beans described in this book, we used IBM VisualAge for Java,
Enterprise Edition V3.5. Note that you need, at a minimum, the features shown in the list
below to be able to use VAJ as a development environment for enterprise beans.

� IBM EJB Development Environment 3.5

� IBM Enterprise Extension Libraries 3.5

� IBM WebSphere Test Environment 3.5.0.2

If not already installed on your version of VAJ, you should install these features in VAJ by
selecting File -> Quickstart -> Features -> Add Feature, choosing the features from the list,
and clicking OK.

6.2.1 Developing in VAJ
The following list gives an overview of the basic steps to perform in VAJ in order to develop an
enterprise bean:

1. Add a project: Projects are used in VAJ to contain and organize Java packages in the
workspace and in the repository.

2. Add a package: Packages are used in Java to organize the Java code. Java code that is
part of a particular package has access to all classes in that package, and to all
non-private methods and fields in all those classes.

3. Add an EJB group: EJB groups are logical groups in VAJ that allows you to organize
your enterprise beans.

4. Add an enterprise bean to your EJB group: Enterprise beans are server-side
components that implement a business entity or business task.

5. Add a business method to your enterprise bean: Business methods are specific to the
business concept of the enterprise bean. They represent the task that the bean performs.

6. Add a business method to the remote interface: Enterprise beans are accessed by a
client application over the network through their remote and home interfaces.

Add a project
After starting VAJ the first step is to add a new project, which is a logical program element
only available within VAJ. It contains all the packages used for a particular work unit, such as
an entire application. To add a project from the VAJ Workbench (Figure 6-2), choose
Selected -> Add -> Project.
Chapter 6. Developing a HelloWorld session bean for CICS 137

Figure 6-2 VAJ add a project

The Add Project SmartGuide appears, which is then used to add a project. To create a new
project, select the Create a new project named radio button, type in the project name,
ITSO EJB 390 Redbook, and click Finish.

Add a package
To add a new Java package to the project, select the project, ITSO EJB 390 Redbook, and
choose Selected -> Add -> Package. The Add Package SmartGuide appears, which is
illustrated in Figure 6-3.

Figure 6-3 VAJ Add Package SmartGuide
138 EJB for OS/390 and z/OS, CICS TS V2.1

Within this page you can create a new package, add a package from the repository, or create
a default package. To create a new package, select the Create a new package named: radio
button, enter the package name, itso.ejb390.helloworld, and click Finish.

Add an EJB group
Enterprise beans are logically organized in EJB groups within VAJ. You can perform global
operations on an EJB group that will iterate on all of the enterprise beans that reside in the
group. To add an EJB group we selected the EJB tab in the Workbench window, and clicked
on EJB -> Add -> EJB Group. The Add EJB Group SmartGuide appears, which allows you
to create a new EJB group or add an EJB group from the repository. To add a new EJB group,
select the project, ITSO EJB 390 Redbook, and select the Create a new EJB group named:
radio button. Now type in the EJB group name, ITSOEJB390, in the corresponding input field
and click Finish.

Add an enterprise bean to your EJB group
An enterprise bean consists of a number of Java classes and interfaces. VAJ helps you to
keep these classes synchronized as a single entity. To add an enterprise bean, select the EJB
group, ITSOEJB390, and select EJB -> Add -> Enterprise Bean. The Create Enterprise
Bean SmartGuide appears, as illustrated in Figure 6-4, where you can either create a new
enterprise bean, or add enterprise beans from the repository. To create a new enterprise
bean, select the Create a new enterprise bean radio button as well as the proper project,
ITSO EJB 390 Redbook, and package, itso.ejb390.helloworld. Now type in the name of the
enterprise bean, HelloWorldSession, and select session bean in the Bean type field (since
CICS TS V2.1 supports only session beans). Finally, click Finish.

Figure 6-4 VAJ Create Enterprise Bean SmartGuide
Chapter 6. Developing a HelloWorld session bean for CICS 139

VAJ creates now all the classes and interfaces required for the enterprise bean, such as the
enterprise bean class and the remote and home interfaces. At this point in time the remote
interface contains no methods, since VAJ does not know what business method should be
exposed to the client.

Add a business method to your enterprise bean
The remote interface defines the bean’s business purpose. To add a business method to the
remote interface of the session bean, right-click the HelloWorldSession bean implementation
in the Types panel and select Add -> Method, as shown in Figure 6-5.

Figure 6-5 VAJ add a business method

The Create Method SmartGuide appears (Figure 6-6), which lets you create a new method,
constructor, or main method, or add an existing method from the repository.

To create a new method, select the Create a new method radio button and type in the
signature of the method, public String sayHello(String msg). Now click the Next button.
The Attributes SmartGuide appears, which allows you to fine tune or change the
characteristics of your method signature. Click the Next button. The Attributes SmartGuide
appears again, and allows you to specify the exceptions your method might throw. Click
Finish.
140 EJB for OS/390 and z/OS, CICS TS V2.1

Figure 6-6 VAJ Create Method SmartGuide

The message sayHello() appears in the Members panel. Modify the method code, as
illustrated in Figure 6-7. The Java print statement will be used to echo the input back to the
user. The return statement returns the argument that was passed to the method. Press Ctrl-s
to save the code.

Figure 6-7 VAJ Change implementation of business method in source panel
Chapter 6. Developing a HelloWorld session bean for CICS 141

Add a business method to the remote interface
The remote and home interface expose the capabilities of the bean and provide all the
methods needed to create, update, interact and delete with the bean. So in order to have the
business method available to a client, you must add it to the remote interface. To do this,
right-click the method sayHello() in the Members panel, and select Add To -> EJB Remote
Interface. After this step a new symbol (showing three arrows, where the top one is red)
appears to the right of the method name, indicating a remote method.

6.2.2 Testing in VAJ
To test the HelloWorldSession bean, you can use the Visual Age for Java WebSphere Test
Environment, which is a subset of the WebSphere Application Server, Advanced Edition.
Testing the bean within VAJ on your Workstation requires the following steps:

1. Generate deployed code: This step generates the code (such as stubs and ties)
required to tailor a generic enterprise bean definition into one that can run in an EJB
server.

2. Start the WebSphere Test Environment (WTE): The WTE offers the JSP file, servlet,
and EJB runtime and unit testing environment.

3. Start the Persistent name server (J:NDI server). The Persistent Name Server
provides the JNDI services in the WTE, just as the COS Naming Server is used by
WebSphere Application Server, Advanced Edition.

4. Add the enterprise bean to an EJB Server Configuration: An EJB server
configuration consists of one or more EJB groups containing enterprise beans which you
want to run on the EJB server.

5. Start the EJB server: The EJB server provides a runtime environment for one or more
EJB containers. The EJB container provides a playground where your enterprise beans
can run.

6. Use the WebSphere Test Client to test your enterprise bean: This test client
provides its own user interface and allows you to test the individual methods in the home
and remote interface of each enterprise bean.

Generate deployed code
The code-generation tool of VAJ generates the home and EJBObject (remote)
implementations and implementation classes for the home and remote interfaces, as well as
the JDBC persister and finder classes for CMP beans. It also generates the Java ORB, stubs,
and tie classes required for RMI access over IIOP, as well as stubs for the home and remote
interfaces. To generate the code for the enterprise bean, select the EJB tab in the VAJ
Workbench, right-click the EJB group, ITSOEJB390, and select Generate Deployed Code.

Start the WebSphere Test Environment
In order to start the WebSphere Test Environment select Workspace -> Tools ->
WebSphere Test Environment. This will bring up the WebSphere Test Environment Control
Center (Figure 6-8) which provides a central location to start, stop, and configure the
WebSphere Test Environment services, such as the Persistent Name Server.
142 EJB for OS/390 and z/OS, CICS TS V2.1

Figure 6-8 VAJ WebSphere Test Environment Control Center

Start the Persistent Name Server (JNDI server)
JNDI is a standard Java extension for accessing naming systems such as LDAP, NetWare,
the WebSphere COS Naming Server, and other Naming systems. EJB servers support JNDI
by organizing beans into a directory structure and providing a JNDI driver for accessing that
directory structure. In the WebSphere Test Environment the JNDI services are provided by
the Persistent Name Server. To start that server, select the Persistent Name Server within the
WebSphere Test Environment Control Center and click the Start Name Server button.

If you have installed the WebSphere Application Server on you NT machine (either standard
or advanced edition), the port 900 will already be in use by the WebSphere Application Server
COS Naming Server. In this case, if you use the default port 900 to start the Persistent Name
Server, a window will appear showing the following message:

Specified port is already in use. The server cannot be started.

Instead, you will have to specify a different port in the Bootstrap port input field. We used
the port 1800. Ensure that you apply your changes by clicking the Apply button in the
WebSphere Test Environment Control Center.

Attention: The JNDI Server provided by the VAJ WebSphere Test Environment is
completely separate from the JNDI Server implemented in the WebSphere Application
Server COS Naming Server (which is used by CICS).
Chapter 6. Developing a HelloWorld session bean for CICS 143

Messages written during the startup process of the Persistent Name Server are directed to
the VAJ Console. If not started before, a new console window will automatically appear, as
shown in Figure 6-9.

Figure 6-9 VAJ Console, after starting the Persistent Name Server

Add the enterprise bean to an EJB Server Configuration
In order to add our enterprise bean, HelloWorldSession, to an EJB Server Configuration,
select the EJB tab in the VAJ Workbench, right-click the EJB Group, ITSOEJB390, and select
Add To -> Server Configuration. Then the EJB Server Configuration window appears.

Start the EJB Server
During the start process of the enterprise server the enterprise beans which belong to the
EJB Server configuration are loaded. The enterprise server will then publish the location of
the enterprise beans into the JNDI server (Persistent Name Server). To start the EJB Server,
right-click the EJB Server in the left panel of the EJB Server Configuration window, and select
Start Server. The message in the VAJ Console, Server open for business, indicates that
the EJB Server startup is complete.

Use the EJB Test Client to test the enterprise bean
The easiest way to test an enterprise bean is to use the EJB Test Client supplied with VAJ.
This test client features its own user interface and allows you to test the individual methods in
the home and remote interface of each enterprise bean. To start the EJB Test Client, select
the EJB tab in the VAJ Workbench, right- click on the EJB Group, ITSOEJB390, and select
Run Test Client. Then the EJB Test Client window appears together with the EJB Lookup
window, as illustrated in Figure 6-10.
144 EJB for OS/390 and z/OS, CICS TS V2.1

Figure 6-10 VAJ Lookup window of the EJB Test Client

In the EJB lookup window you will see the entries used for the Provider URL, Context factory,
and JNDI name.

� Provider URL: The provider URL consist of the name of the local host and the port(1800).
This URL defines the name server that will be used to lookup enterprise beans. The port
number must match the port that was specified in the WebSphere Test Environment
Control Center in the Bootstrap port field, as illustrated in Figure 6-8 on page 143.

� Context factory: The initial context is the starting point for any JNDI lookup, similar in
concept to the root of a file system. To acquire an initial context, you use an initial context
factory. For the VAJ WebSphere Test Environment, the context factory is always
com.ibm.ejs.ns.jndi.CNInitialContextFactory.

� JNDI name: The JNDI name is used when publishing the location of the enterprise into
the JNDI server. A client uses the JNDI name to retrieve the home object of the enterprise
bean. The default JNDI name for enterprise beans created in VAJ is the fully-qualified
name of the remote interface, with periods replaced by forward slashes. For our sample it
is the compound name of the package name, itso/ejb390/helloworld, and the name of the
remote interface, HelloWorldSession.

Click Lookup. The EJB Test Client now creates a reference to the JNDI server, performs a
lookup() operation on the specified JNDI name and does a narrow() to get a reference to the
home interface of the enterprise bean. An additional window appears, where you can test the
individual methods in the home and remote interface of each enterprise bean. At this point in
time, the window shows the methods of the home interface of the enterprise bean. To create
an instance of the enterprise bean, right-click the create() method and select Invoke.

Now the window shows the methods of the remote interface of the enterprise bean. Select the
business method, sayHello(), in the left panel, and specify the value for the argument in the
input field on the right panel. To invoke the business method, right-click the method, and
select Invoke, as shown in Figure 6-11.

Tip: Note that if you wish to use the EJB test client with a session bean deployed in CICS,
you will need to add the class com.ibm.cics.portable.CICSEJBMetaData to your VAJ
workspace. This class can be found in the deployed JAR file generated by the CICS JAR
development tool.
Chapter 6. Developing a HelloWorld session bean for CICS 145

Figure 6-11 Invoke a remote method from the EJB Test Client

Now the value returned to the EJB Test Client appears in the right panel. In our case it is
You said: Guten Tag. (See Figure 6-12.)

Figure 6-12 VAJ Invoke a remote method from the EJB Test Client — results

To stop the client, select File -> Exit.
146 EJB for OS/390 and z/OS, CICS TS V2.1

6.3 Deploying the HelloWorld session bean to CICS
Deployment is the process to prepare an enterprise bean for the runtime environment and
install it into the EJB server. This step will vary depending on the tools provided by the
enterprise bean vendor. Here we describe the steps to deploy an enterprise bean developed
with VAJ to a CICS EJB server.

6.3.1 Packaging an undeployed JAR file
Once you have generated the files that define the bean (the home and remote interfaces, the
bean class, the bean’s properties and the deployment descriptor) they have to be packaged
up into one entity. This entity is called a JAR file. A JAR file is a compressed file that follows
the ZIP compression format. JAR files serve as convenient, compact modules for shipping
Java software.

To generate and export an EJB-JAR file containing the enterprise bean HelloWorldSession
from within VAJ, select the EJB tab in the VAJ Workbench, expand the EJB group
ITSOEJB390, right-click the enterprise bean HelloWorldSession and select Export -> EJB
JAR. The Export to an EJB JAR File SmartGuide appears, which is illustrated in Figure 6-13.
Type in the name of the EJB-JAR file in the JAR file input field and click the Finish button.
We used D:\itso\swl870\hws.jar as our EJB-JAR file name.

Figure 6-13 VAJ Export to an EJB JAR File SmartGuide

Tip: If you receive a message from VAJ stating that the file is not a zip file, or it is
corrupted, you should close the CICS Java development tool, or delete the output JAR file.
Chapter 6. Developing a HelloWorld session bean for CICS 147

6.3.2 Generating a CICS deployed JAR file
The EJB-JAR file that was generated and exported from VAJ is an undeployed, EJB 1.0
specification level file. In order to install that file into an CICS EJB server, it must be
transformed to a JAR file suitable for deployment. For CICS TS V2.1, an EJB 1.1 specification
level JAR file is required. The transformed file must also contain additional code required to
tailor a generic enterprise bean definition into one that can run in an EJB server.

CICS provides the CICS JAR development tool for EJB technology to facilitate this step. It
provides a GUI interface that enables you to create or edit the EJB-JAR file’s deployment
descriptor together with some optional CICS specific customizations. It also converts EJB 1.0
serialized deployment descriptors into the EJB 1.1 XML equivalents. The CICS JAR
development tool incorporates the CICS code generation utility for EJB technology. This
tool automatically generates the code required to tailor a generic enterprise bean definition
into one that can run in an EJB server. This code includes the CORBA stubs and ties needed
for the RMI/IIOP communication. The code generation utility can also be run separately from
a Windows command prompt window and can be used in a batch process. The result of this
process is one or more EJB 1.1 specification level files. Refer to Java applications in CICS,
SC34-5881, for more information on using the CICS deployment tools.

To run the CICS JAR development tool on your workstation, click the Windows Start button
and select Programs -> IBM CICS TS 2.1 Tools -> CICS JAR Development Tool for
EJB Technology. The CICS JAR development tool appears, which is illustrated in
Figure 6-14. Select File -> Load and choose the name of the EJB-JAR file within the Load
From File window. We chose our EJB-JAR file, D:\itso\swl870\hws.jar. Click the Open
button. After loading the EJB-JAR file we saw our enterprise bean, HelloWorldSession, listed
in the center panel and the following message in the status field near the bottom of the panel:

Finished reading the input file D:\itso\swl870\hws.jar

Figure 6-14 CICS JAR development tool
148 EJB for OS/390 and z/OS, CICS TS V2.1

To look at the deployment descriptor information, select the enterprise bean,
HelloWorldSession, and click the Edit button. This will display the window shown in
Figure 6-15, where you can modify the deployment descriptor for the enterprise bean. For
details on how we used this to set environment properties for JDBC in the deployment
descriptor, refer to“Convert the exported file to a DJAR file” on page 294.

Figure 6-15 CICS JAR development tool — deployment descriptor

Close that window to return to the main CICS JAR development tool window.

To generate the container specific code for the EJB-JAR file perform the following steps:

1. Select File -> Generate and click the Save button in the window that ask you if you want
to save the changes to a JAR file. This window always appears if you have used an EJB
1.0 specification level JAR file, or if you have changed the deployment descriptor.

The tool then generates an XML version of the deployment descriptor.

2. Click the Remove button in the window that gives you the option of retaining the EJB 1.0
specific data.

The Generate deployed code window appears as illustrated in Figure 6-16.

3. Select the Verbose Output and the Create an EJB Client JAR File radio buttons and
click the Generate button.
Chapter 6. Developing a HelloWorld session bean for CICS 149

Figure 6-16 CICS JAR development tool — generate deployed code window

During the generate process, a window will pop up with the messages from the generate
process. The message Code generation completed in the status panel indicates the
deployed JAR file has been successfully generated. The generate process creates two new
files, a deployed JAR file and a client JAR file. A client JAR file contains all classes and
interfaces used to access enterprise beans.

6.3.3 Deploying to CICS
Once you have generated the deployed JAR file, it must be installed into a CICS EJB server.
This step involves the creation of CICS resource definitions, publishing bean references to an
external namespace, and making the EJB-JAR file accessible to CICS. CICS provides two
alternative tools, the CICS development deployment tool for EJB technology and the CICS
production deployment tool for EJB technology, to perform these operations. It is also
possible to perform these operations manually. We shall describe each of these options in the
following sections.

Deploying manually
We start by describing the manual way to deploy a EJB-JAR file to CICS. You may find this
easier to understand than using the tools especially if you are familiar with CICS systems
programming and using CEDA to define RDO resources.

First, before using CEDA, we enabled our 3270 terminal to handle mixed case input by using
the following command:

CEOT TRANIDONLY

This is important, as it allows you to enter mixed case path names for HFS files.

Define CICS resource definitions
The following list gives an overview of the CICS resources you have to define as part of the
final deployment step of an EJB-JAR file.
150 EJB for OS/390 and z/OS, CICS TS V2.1

CORBASERVER A CICS resource definition that defines the attributes of an execution
environment for enterprise beans and stateless CORBA objects.
CORBASERVER definitions are installed in AORs.

DJAR A CICS resource definition that defines a CICS-deployed JAR file,
which is a deployed JAR file, produced specifically for the CICS EJB
server.

REQUESTMODEL A CICS resource definition that enables the request receiver to match
incoming request to a CICS TRANSID, to define execution parameters
that are used if a new request processor instance is created to handle
that request.

TCPIPSERVICE A CICS resource definition that configures the CICS TCP/IP Listener
to receive IIOP requests and to call the IIOP request receiver. It can
also specify load-balancing and security options.

This sample assumes that you have already defined CORBASERVER, REQUESTMODEL
and TCPIPSERVICE definitions as described in 4.1.5, “Installing CICS resource definitions”
on page 77. It is important to note that the CORBASERVER defines the JNDIprefix, which is
used as the prefix in the JNDI name space when the enterprise bean is published to the
Naming Server. We used ITSO/PJA5 as our JNDIprefix attribute value.

Make the deployed JAR file accessible to CICS
Before defining a DJAR definition in CICS you should transfer the actual deployed JAR file to
an HFS on your OS/390 system. We used FTP from a Windows command prompt to transfer
the JAR file in binary to OS/390. We stored it in the HFS under the following path:

/u/cicsts21/djars/hws_GEN.jar

We then defined the deployed JAR file to CICS by creating a DJAR resource using the
following command:

CEDA DEFINE DJAR(HWS) GROUP(ITSOEJB)

On the CEDA screen, which appears after entering this command, type in the values for the
Corbaserver and the Hfsfile, as shown in Figure 6-17.

Figure 6-17 CEDA define DJAR HWS

DEFINE DJAR(HWS) GROUP(ITSOEJB)
OVERTYPE TO MODIFY CICS RELEASE = 0610
 CEDA DEFine DJar(HWS)
 DJar ==> HWS
 Group ==> ITSOEJB
 Description ==> DJar CICS resource definitin for HelloWorld EJB
 Corbaserver ==> PJA5
 Hfsfile ==> /u/cicsts21/djars/hws_GEN.jar
 ==>
 ==>
 ==>
 ==>

 DEFINE SUCCESSFUL
 SYSID=PJA5 APPLID=SCSCPJA5
Chapter 6. Developing a HelloWorld session bean for CICS 151

After defining the DJAR, it should be installed into the CICS region using the command:

CEDA INS DJAR(HWS) GROUP(ITSOEJB)

Installing a DJAR makes the deployed JAR file available in CICS, by copying it from the
specified HFS file to the CORBASERVER subdirectory in the CICS shelf.

The enterprise bean is now available to be published to the COS Naming Server.

Publish names to the COS Naming Server
Publishing is the process which writes the IOR of the enterprise beans into the JNDI
namespace. You can think of the JNDI namespace as the DNS server of the IIOP world, since
this operation needs only to be performed once, even if the actual JAR file is modified. You
perform this operation in CICS by using the command CEMT PERFORM DJAR() PUBLISH. For
each bean installed from the named DJAR, an object reference (the IOR) is published to the
COS Naming Server. We published our HelloWorld enterprise bean with the following
command:

CEMT PERFORM DJAR(HWS) PUBLISH

Once an enterprise bean has been registered in the COS Naming Server command, a client
application can use the JNDI interface to locate its home interface. Hence the enterprise bean
is now available to be used. In order to unbind a home of an enterprise bean from the
namespace, you can use the RETRACT option of the CEMT PERFORM DJAR command.

Deploying with the CICS development deployment tool
The CICS development deployment tool provides a route that simplifies the creation of the
CICS resource definitions for application programmers with a minimum of CICS expertise.
The tool transfers the EJB-JAR file in the HFS on OS/390 and creates a set of generic CICS
resource definitions.

The interface provided to the Java developer is a standard HTML servlet interface, and so no
knowledge of CICS RDO or the CEDA transaction is required. It is only necessary for a user
to signon and then enter the name and location of the EJB-JAR file to be deployed, and the
CICS CorbaServer into which the enterprise beans are deployed. However, before you can
use this tool, the necessary components must be set up and the deployment configuration file
must be correctly configured. This is described further in 4.2.4, “CICS development
deployment tool” on page 86.

To start the CICS development deployment tool, first configure your Web browser so that it
does not cache HTML pages, then enter the URL of the Web application. We entered:

http://hecate.almaden.ibm.com/CICS_EJB

Tip: To query the contents of the JNDI Namespace in the WebSphere COS Naming Server
you can use our sample Java utility class JNDIList. For details of how to use this refer to
“Querying the COS Naming Server” on page 116
152 EJB for OS/390 and z/OS, CICS TS V2.1

The User Login page appears, where you enter your OS/390 user ID and password
(Figure 6-18).

Figure 6-18 User Login page of CICS development deployment tool

Click Submit to proceed, which opens the Deployment Information page (Figure 6-19), this
allows a JAR file to be deployed or undeployed in a CICS CorbaServer.

Figure 6-19 Deployment Information page of CICS development deployment tool
Chapter 6. Developing a HelloWorld session bean for CICS 153

The selected CORBASERVER specifies the run-time environment within the CICS EJB
server in which the enterprise beans in your selected JAR are to be run. Select a
CORBASERVER and enter the path of the CICS deployed JAR file into the JAR file path
field. Then click Deploy button to start the operation. Now the CICS development
deployment tool performs the following operation using the CICSDDTbean within CICS.

1. Creates the necessary CICS resource definitions in the CICS runtime database.

2. Stores the resource definitions in the EJB-JAR file (in the file cics-ejb-jar-ext.xmi)
for later use by the CICS production deployment tool.

3. Uploads the EJB-JAR file from the client to WebSphere, where it is validated, then
transferred by FTP to the HFS on OS/390.

4. Publishes the name of the EJB-JAR file to the COS Naming Server.

The results of the deploy operation are displayed in the Deploy Results page (Figure 6-20).

Figure 6-20 Deployment Results page of CICS development deployment tool

If a problem occurs during the deployment, a message is issued. Messages are color coded
blue for warning, and pink for error. Select the ? icon to the right of the message to display
further information about the problem.

Attention: Note that the Undeploy operation removes the CICS resource definitions
associated with a previously deployed EJB-JAR file, but it does not remove the EJB-JAR
file itself from HFS.
154 EJB for OS/390 and z/OS, CICS TS V2.1

Deploying with the CICS production deployment tool
The CICS production deployment tool is a workstation based tool designed for production
deployment. It takes as input a CICS-deployed JAR file, either on the local workstation or on
a remote OS/390 accessed by FTP, and allows you perform the following actions:

� Create a CICS DFHCSDUP input streamt o define the necessary CICS resource
definitions in the CICS CSD.

� Create a CICSPlex SM data repository to define the necessary CICS resource definitions

The tool can be run either via a GUI on your workstation, or as an offline utility.

Store the deployed JAR file on the HFS
We used the GUI of the CICS production deployment tool in FTP mode, so we first of all
transferred the CICS deployed JAR file, output from the CICS JAR development tool to the
following location on the HFS on our OS/390 system:

/u/cicsts21/djars/hws_GEN.jar

To start the tool on your workstation, select Programs -> IBM CICS TS 2.1 Tools -> CICS
Production Deployment Tool for EJB Technology. The GUI windows appears, which
shows general information about the tool.

1. Click the CICS EJB Production Deployment button in the upper left part of this window.

2. Then click on the words JAR file task to reveal the full navigation tree.

3. Click the Work with JAR files via FTP radio button in order to work remotely with JAR
files on OS/390, then click the OK button at the bottom of the window (Figure 6-21).

Figure 6-21 CICS production deployment tool
Chapter 6. Developing a HelloWorld session bean for CICS 155

4. Click the Choose FTP server task line in the navigation tree.

5. Click the Yes button in the pop-up box to start a new JAR file editing session.

6. Type in your FTP server host name, userid, and password in the corresponding fields and
click the OK button, as illustrated in Figure 6-22.

Figure 6-22 CICS production deployment tool, choose FTP server

7. Click the Specify JAR files task line in the navigation tree.

8. Click the Yes button in the pop-up box to start a new JAR file editing session.

9. Type in the source JAR file name and the destination JAR file name in the corresponding
fields and click the OK button. We entered the following for our HelloWorld enterprise
bean.

Source JAR file name /u/cicsts21/djars/hws_GEN.jar

Destination JAR file name /u/cicsts21/djars/hws_GEN1.jar

10.Now click the Define DJARs task line under the Set CICS resources task line in the
navigation tree.

11.Click the Create button at the bottom of the window to define a new DJAR resource. We
entered the following information for our HelloWorld session bean, as shown in
Figure 6-23.

DJAR name HWS

CORBASERVER PJA5

HFS file /u/cicsts21/djars/hws_GEN1.jar
156 EJB for OS/390 and z/OS, CICS TS V2.1

Figure 6-23 CICS production deployment tool, CICS DJAR Definition Create window

12.Click the Save JAR file task line in the navigation tree.

13.Click the Yes button to save the updated JAR file.

14.Click the OK button to confirm that the FTP transfer was successfull.

At this point you have successfully created a new deployed JAR file on OS/390,
containing the necessary definitions to build a DJAR definition.

15.Now click the Set up batch update streams task line in the navigation tree.

16.Then select the CICS DFHCSDUP stream radio button and click the OK button.

17.In the CICS parameters window, specify the name of the CICS list, the name of the CSD
group and a valid HFS file name where the generated DFHCSDUP output stream is to be
stored.

We entered the following information, before clicking the OK button.

CSD List PJA5LIST

CSD Group ITSOEJB

Output HFS File name /u/cicsts21/djars/cicscsd.def

This creates a DFHSCUP output stream and stores it in the specified file on OS/390. Once
the FTP transfer is complete, a window will appear; click the OK button to confirm that the
FTP transfer was successful.
Chapter 6. Developing a HelloWorld session bean for CICS 157

In our case, a new file, named /u/cicsts21/djars/cicscsd.def, was created. The
DFHCSDUP input stream definitions contained in that file are shown in Example 6-1.

Example 6-1 DFHCSUP input stream generated by CICS production deployment tool

DELETE DJAR(HWS)
 GROUP(ITSOEJB)

DEFINE DJAR(HWS)
 GROUP(ITSOEJB)
 DESCRIPTION(DJAR CICS resource definition for HelloWorld EJB)
 CORBASERVER(PJA5)
 HFSFILE(/u/cicsts21/djars/hws_GEN1.jar)

ADD GROUP(ITSOEJB) LIST(PJA5LIST)

Applying generated CICS resource definitions
To utilize the DFHCSDUP input stream created by the CICS development deployment tool, it
is necessary to copy the resource definition statements from the HFS to an MVS data set
before running DFHCSDUP. The JCL we used to perform the copy step and to apply the
statements is shown in Example 6-2.

Example 6-2 JCL to apply resource definition statements

//CRS3DUP JOB AX4328,AXP4328,
// CLASS=A,MSGCLASS=X,MSGLEVEL=(1,1),
// NOTIFY=&SYSUID,
// REGION=0M
//*
//PARMS SET HFSPATH='''/u/cicsts21/djars/cicscsd.def''',
// CSDNAME=CICSSYSF.CICSTS21.DFHCSD
//*
//OCOPY EXEC PGM=IKJEFT01,REGION=0M
//CSDIN DD DSN=&&CSDIN,DISP=(NEW,PASS),UNIT=SYSDA,
// SPACE=(CYL,(8,64)),DCB=(LRECL=80,BLKSIZE=6080,
// RECFM=FB)
//HFSIN DD PATH=&HFSPATH
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
OCOPY INDD(HFSIN)OUTDD(CSDIN)
/*
//CSDUP EXEC PGM=DFHCSDUP,REGION=0M,COND=(0,NE)
//STEPLIB DD DSN=CICSTS21.CICS.SDFHLOAD,DISP=SHR
//DFHCSD DD DSN=&CSDNAME,DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(1024,(100,10))
//SYSPRINT DD SYSOUT=A
//SYSUDUMP DD SYSOUT=A
//SYSABEND DD SYSOUT=A
//CBDOUT DD SYSOUT=A
//SYSIN DD DSN=*.OCOPY.CSDIN,DISP=SHR

Running this JCL for the first time, we got a warning (RC=4) indicating that the CICS group
did not exist while processing the delete command. Subsequently, runs also returned a
warning for the reason that the CICS group ITSOEJB was already a member of the CICS list
PJA5LIST while processing the add command.
158 EJB for OS/390 and z/OS, CICS TS V2.1

Publish names to JNDI
After creating the HelloWorld DJAR resource definition, the only steps remaining were to
install the resource definitions and to publish the deployed JAR file to the COS Naming
Server. We used the following two commands to perform these steps:

CEDA INSTALL GROUP(ITSOEJB)
CEMT PERFORM DJAR(HWS) PUBLISH

Due to the fact that the group ITSOEJB containing the DJAR resource definition was added to
the CSD list PJA5LIST, which was specified in our CICS regions GRPLIST, the DJAR HWS
was always accessible after subsequent restarts of the CICS system.

6.4 Testing with a Java client application
Using the EJB Test Client supplied with VAJ is limited to the VAJ WebSphere Test
Environment. If you want to use a client outside of VAJ, for example, as a standalone
application in the USS environment, you have to write your own client code.

6.4.1 Writing the client within VAJ
Clients use a set of interfaces that provide access to enterprise beans and their business
logic. These operations are the same for the majority of client programs. In this section we
describe the Java client program, HelloWorldClient, which we used to test the enterprise
bean, HelloWorldSession, developed in 6.2.1, “Developing in VAJ” on page 137.

The important sections of our HelloWorldClient are shown in Figure 6-24, and are discussed
further in the following sections.

Figure 6-24 HelloWorldClient and EJBHelper

public class HelloWorldClient {
public static void main(String[] args) {
1 HelloWorldSessionHome helloWorldSessionHome =
 (HelloWorldSessionHome)EJBHelper.jndi_lookup(HelloWorldSessionHome.class);
13HelloWorldSession helloWorldSession = helloWorldSessionHome.create();
14String result = helloWorldSession.sayHello
 (System.getProperties().getProperty(METHOD_ARGUMENT, "Hello world"));
15System.out.println ("Result from business method is: " +result);
16helloWorldSession.remove();
}}
public class EJBHelper {
public static Object jndi_lookup(Class resultClass) {
2 Properties sp = System.getProperties();
3 String propFileName = sp.getProperty(PROPERTY_FILE);
4 Properties p = EJBHelper.jndi_properties(propFileName);
9 String helloWorldHomeNameString = p.getProperty(JNDI_HELLOWORLD_SESSION_NAME);
10Context ctx = new InitialContext(p);
11Object tempObject = ctx.lookup(helloWorldHomeNameString);
12return javax.rmi.PortableRemoteObject.narrow(tempObject, resultClass);
}
public static Properties jndi_properties(String propFileName) throws Exception {
5 FileInputStream propFile = new FileInputStream(propFileName);
6 Properties p = new Properties(System.getProperties());
7 p.load(propFile);
8 return p;
}}
Chapter 6. Developing a HelloWorld session bean for CICS 159

The Java client needs to do the following.

� 1 Call the jndi_lookup() method of EJBHelper class.
The EJBHelper class contains two methods, jndi_lookup() and jndi_properties(). The
jndi_lookup() method performs all necessary operations to get a home object reference.

� 2 Get system properties and create a property object.
A system property is a key/value pair that the Java runtime defines to describe the user,
system environment, and Java system. The runtime defines and uses a set of default
system properties. Other properties can be made available to a Java program via the -D
command line option to the Java interpreter. Running the Java interpreter as shown below
adds the values from the file defined by CLIENT_PROPERY_FILE to the list of system
properties.

java -DCLIENT_PROPERTY_FILE=D:\itso\swl870\client_nt.properties

The java.lang.System class contains static methods for reading and updating system
properties. Environment properties set as system properties affect the context of all
applications. We created an empty property list object with the default specified in the
system properties.

� 3 Get name of the property file.
The list of key/value pairs contained in this property file is used to determine the type of
naming service and its network location. The file must also contain the JNDI name to
which the home object of the enterprise bean is bound. The jndi_lookup() method uses
this name for the JNDI lookup() operation on the naming directory.

� 4 Call the jndi_properties() method of EJBHelper class.
The jndi_properties() method is used to initialize a Properties object from a file
containing a list of key/value pairs. The name of the property file is passed as an argument
to the method.

� 5 Open a connection to the property file.
We use the FileInputStream constructor to open a connection to the property file,
specified by the path name in the file system. A FileInputStream obtains input bytes
from a file in a file system. The constructor method creates a new FileDescriptor object to
represent the file connection.

� 6 Get system properties and create a property object.

� 7 Load properties from property file.
We use the load() method of the class Properties to read the property list (key and
value pairs) from the input stream. Every property occupies one line of the input stream.

� 8 Return the property object.

� 9 Get JNDI home name of the enterprise bean.
This is the name to which the home object of the enterprise bean is bound. The
jndi_lookup() method uses this name for the JNDI lookup() operation on the naming
directory.

� 10 Create an initial context object.
An initial context object is a local starting point for any JNDI lookup. To create an initial
context, you first create a properties table of the type Properties. The Properties class
represents a persistent set of properties (key/value pairs). The values you add to that
table determine the kind of initial context you want to use. These values are mainly the
type of naming service you want to use and its network location. We have loaded the
properties from the property file as described in step 4 to 8.

� 11 Obtain a remote object reference.
A home object is a factory responsible for instantiating and destroying EJB objects. To
obtain a home object reference, you must perform a JNDI lookup() operation on the
160 EJB for OS/390 and z/OS, CICS TS V2.1

naming directory. This operation returns an RMI remote object, which must you cast to a
home object.

� 12 Narrow to the home object reference.
The javax.naming.Context.lookup() method returns an RMI remote object. The EJB 1.1
specification requires that you must narrow (cast) that object to a home object. Finally, we
return the home object reference to the main program.

� 13 Obtain an object reference.
An EJB object acts as glue between the client and the bean. It delegates all client
requests to the bean. To obtain an EJB object reference, you must use one of the
create() methods on the home object reference. For stateless session beans, no
parameters are passed to the create() method.

� 14 Invoke a business method.
To invoke a business method, you must use the enterprise bean object reference. In our
program, we call the method sayHello() of the enterprise bean HelloWorldSession and
save the return value in the string variable result.

� 15 Echo the return value the user.

� 16 Remove an EJB object.
To destroy an EJB object, you must use the remove() method on the home object
reference. The impact of that operation depends on the type of the bean.

Defining EJBHelper class in VAJ
To add the EJBHelper class to the package itso.ejb390.helloworld, select the Projects tab in
the VAJ Workbench, click the project ITSO EJB 390 Redbook, and select Add -> Class. The
Create Class SmartGuide appears. Select the Create a new class radio button and the
proper project and package, type in the name of the class, EJBHelper, in the Class name
field and click the Finish button.

To add the jndi_properties() method to the class EJBHelper, perform the following steps.

� Expand the project ITSO EJB 390 Redbook, right-click the class EJBHelper, and select
Add -> Method.

� In the Create Method SmartGuide, select the Create a new method: radio button and
click the Next button.

� In the Attributes SmartGuide, type in the method name, jndi_properties(), in the
Method Name field, and the return type, Properties, in the Return type field.

� Select the public and the static radio button and click Add.

� In the Parameters window, type in the name of the argument, propFileName, in the Name
field, select the Reference Type radio button and type in the argument type, String.

� Click Add, Close, and finally Finish.

� Edit the method’s source code in the source panel.

Repeat these steps accordingly for the jndi_lookup() method.

Defining HelloWorldClient class in VAJ
To add the HelloWorldClient class to the package itso.ejb390.helloworld, expand the project
ITSO EJB 390 Redbook, right-click the class HelloWorldClient, and select Add -> Method
to open the Create Method SmartGuide. Select Create a new main method: and click
Finish. Edit the main method’s source code in the source panel.
Chapter 6. Developing a HelloWorld session bean for CICS 161

Dependencies of the client code
An EJB server must provide JNDI access to their naming service. The naming service
provides object binding and a lookup API. A Java client uses the JNDI to instantiate a
connection to an EJB server and to locate a specific enterprise bean home. To do this, the
client tells the JNDI API where it can find the EJB server and which kind of JNDI service
provider (driver) it should have. These properties will change depending on how an enterprise
bean vendor has implemented JNDI. The following extract shows the valid properties for the
VAJ Test Environment:

Properties p = new Properties);
p.setProperty(“java.naming.factory.initial”,“com.ibm.ejs.ns.jndi.CNInitialContextFactory”);
p.setProperty(“java.naming.provider.url”, ”iiop://localhost:1800/”);
Context ctx = new Context(p);

If you want to use the JNDI API provided by CICS TS V2.1, the following properties would be
used:

Properties p = new Properties);
p.setProperty(java.naming.factory.initial,“com.sun.jndi.cosnaming.CNCtxFactory”);
p.setProperty(“java.naming.provider.url”,”iiop://hecate.almaden.ibm.com:900/”);
Context ctx = new Context(p);

Note that javax.naming.Context.INITIAL_CONTEXT_FACTORY and
javax.naming.Context.PROVIDER_URL are Java string constants supplied in the
javax.naming.Context Interface provided by VAJ. These constants are defined as
“java.naming.factory.initial” and “java.naming.provider.url”, respectively.

You can specify environment properties to the JNDI by using the environment parameter to
the InitialContext constructor (as shown in the code fragments above) and application
resource files. Several JNDI environment properties could also be specified by using system
properties.

� Application resource file. This is an optional property file named jndi.properties,
which contains a list of key/value pairs presented in the property file format. The key is the
name of the property, for example, java.naming.factory.initial, and the value is a string in
the format defined for that property. The JNDI automatically reads the application resource
files from JAVA_HOME/lib/jndi.properties, where JAVA_HOME is the file directory that
contains your Java runtime environment. The JNDI adds the properties from that file into
the environment of the initial context.

� System properties. See step 2 of 6.4.1, “Writing the client within VAJ” on page 159, for
an explanation of system properties.

6.4.2 Running the client within VAJ
Once we had written our own client, we could test it within VAJ or as a standalone application
from the Windows NT or USS environment. To call an enterprise bean,the client must tell the
JNDI API where it can find the CICS EJB server. The client allows us to specify this property,
together with the properties for the initial context factory and the JNDI name of the enterprise
bean home object, in a property file. Example 6-3 shows the properties file
(hwc_vaj.properties) to call an enterprise bean locally deployed in the VAJ EJB server.

Example 6-3 Property file to call an EJB locally deployed in VAJ

java.naming.factory.initial=com.ibm.ejs.ns.jndi.CNInitialContextFactory
java.naming.provider.url=iiop://localhost:1800/
JNDI_HELLOWORLD_SESSION_NAME=itso/ejb390/helloworld/HelloWorldSession

To run the client, we performed the following steps.
162 EJB for OS/390 and z/OS, CICS TS V2.1

� We expanded the project ITSO EJB 390 Redbook, right-clicked the HelloWorldClient
class and selected Run -> Run main with.

� In the properties window for the client, we selected the Program tab and typed in the
key/value pair defining the property file in the Properties field. We used
PROPERTY_FILE=D:\itso\swl870\hwc_vaj.properties (Figure 6-25).

Figure 6-25 VAJ Program window for HelloWorldClient

� We selected the Class Path tab, selected the Project path check box and clicked Edit.

� We selected the IBM Enterprise Extension Libraries and IBM WebSphere Test
Environment check boxes and clicked OK (Figure 6-26).

Figure 6-26 VAJ Class path window
Chapter 6. Developing a HelloWorld session bean for CICS 163

� We clicked OK to start the client. We checked the output in the Console window for the
client process itso.ejb390.helloworld.HelloWorldClient.main() to see whether the
client had run successfully (Figure 6-27).

Figure 6-27 VAJ Console window showing the output of HelloWorldClient

To call an enterprise bean deployed in the CICS EJB server, we changed the properties for
the EJB server and the JNDI name of the enterprise bean home object. Figure 6-4 shows the
properties we used to call an enterprise bean deployed in the CICS EJB server.

Example 6-4 Property file to call an enterprise bean deployed in CICS

java.naming.factory.initial=com.ibm.ejs.ns.jndi.CNInitialContextFactory
java.naming.provider.url=iiop://hecate.almaden.ibm.com:900/
JNDI_HELLOWORLD_SESSION_NAME=PJA5/HelloWorldSession

Note: In order to check whether the enterprise bean was really executed into the CICS
EJB server, you can look for the message You said: Hello world in one of the stdout files
in the cicsts21/work/<APPLID> directory, where <APPLID> is the CICS APPLID of your
CICS region. This work directory has a subdirectory for each CICS APPLID which is used
for the java programs stdin, stdout, and stderr files. For more information related to the
work directory, please read “Defining the CICS HFS directories” on page 69 and “The Java
stdin/stdout/stderr files” on page 104.
164 EJB for OS/390 and z/OS, CICS TS V2.1

6.4.3 Running the client from the Windows NT environment
In order to run the client as standalone application from the Windows NT environment, we
created the directory (d:\itso\swl870\client) and copied the following files to this directory.

Client JAR file hws_CLI.jar

The client JAR file contains all classes and interfaces used to access enterprise beans.
We generated the client JAR file with the CICS JAR development tool as described in
6.3.2, “Generating a CICS deployed JAR file” on page 148.

Java client program hwc.jar

The Java client program accesses the business logic of an enterprise bean. We used the
file as Java client. How we generated our JAR file hwc.jar is described in “Packaging a
Java client with VAJ” on page 165.

We also created the following two files which we will describe later in this section:

Property file hwc_nt.properties

Java client command script hwc.cmd

Note: All the files we used are available as samples with this redbook. For further details,
refer to Appendix C, “Using the additional material” on page 315.

Packaging a Java client with VAJ
To generate and export a JAR file containing the Java client classes from within VAJ, we
performed the following steps:

� We selected the Projects tab in the VAJ Workbench, expanded the project ITSO EJB 390
Redbook, and the itso.ejb390.helloworld package, right-clicked the HelloWorldClient
class, and selected Export (Figure 6-28).

Figure 6-28 VAJ Export EJB JAR file
Chapter 6. Developing a HelloWorld session bean for CICS 165

� We selected the Jar file radio button on the Export SmartGuide and clicked Next.

� In the Export to a JAR file SmartGuide, we typed in the name and location of the JAR file
hwc.jar in the Jar file input field, selected the class check box, and clicked the Details
button to select the classes we wanted to export Figure 6-29.

Figure 6-29 VAJ Export to a JAR file SmartGuide

� In the class export window we selected the EJBHelper class and the HelloWorldClient
class and clicked OK.

Figure 6-30 VAJ Export to a JAR file SmartGuide, class export

� Finally, we clicked the Finish button to export the client classes to a JAR file.

Property file for Windows NT environment
Example 6-5 shows the property file (hwc_nt.properties) we used to call an enterprise bean
deployed in the CICS EJB server from Windows NT.

Example 6-5 Property file to call an EJB deployed in CICS from Windows NT

java.naming.factory.initial=com.sun.jndi.cosnaming.CNCtxFactory
java.naming.provider.url=iiop://hecate.almaden.ibm.com:900/
JNDI_HELLOWORLD_SESSION_NAME=ITSO/PJA5/HelloWorldSession
166 EJB for OS/390 and z/OS, CICS TS V2.1

Java command script for Windows NT
Example 6-6 shows the command script (hwc.cmd) we used to run the Java client program on
Windows NT.

The command script provided assumes the file j2ee.jar is located in the directory
C:\PROGRA~1\IBM\j2ee, and a Java 2 runtime in installed in C:\PROGRA~1\IBM\Java13.
If you have this file available in another directory, you will have to edit the file hwc.cmd and
change the JAVA_HOME and JAVA_J2EE variables accordingly.

Example 6-6 Java command script to run the Java client on WinNT

echo off
rem --
rem CICS EJB HelloWorld run command script
rem Use this file to call HelloWorldSession from WinNT.
rem
rem Modify the following to match your IBM SDK 1.3 installation directory:
set JAVA_HOME=C:\PROGRA~1\IBM\Java13
rem
rem Modify the following to match your directory containing j2ee.jar:
set JAVA_J2EE=”C:\Program Files\IBM\CICS TS 2.1 Tools\Common”
rem --
setlocal
rem --
set CLIENTCLASSPATH=.;hwc.jar;hws_CLI.jar;%JAVA_J2EE%\j2ee.jar
rem --
echo CICS EJB HelloWorld: Querying the Java SDK level.
if exist %JAVA_HOME%\bin\java.exe goto callejb
echo CICS EJB HelloWorld: Failed, possible cause:
echo Java support not found at $JAVA_HOME.
echo Check the JAVA_HOME setting in the hwc.cmd command script.
goto endcmd
rem --
:callejb
echo CICS EJB HelloWorld: Starting the EJB client program.
%JAVA_HOME%\bin\java -classpath %CLIENTCLASSPATH% -DPROPERTY_FILE=.\hwc_nt.properties
itso.ejb390.helloworld.HelloWorldClient
if errorlevel 0 goto success
echo CICS EJB HelloWorld: Failed
echo Check the JAVA_HOME and CLASSPATH settings in the hwc.sh
echo shell script, and the CICS server installation steps.
goto endcmd
rem --
:success
echo CICS EJB HelloWorld: Completed successfully.
:endcmd
endlocal

Tip: If you have the CICS JAR development tool installed on your workstation, you will
already have a copy of the j2ee.jar, the default location being C:\Program Files\IBM\CICS
TS 2.1 Tools\Common\j2ee.jar. Or, you can obtain a copy with the Java 2 SDK, Enterprise
Edition, which is available from http://java.sun.com.as an alternate possibility
Chapter 6. Developing a HelloWorld session bean for CICS 167

http://java.sun.com/

Run the client on Windows NT
In order to test our HelloWorld session bean, we invoked our client using our hwc.cmd file from
a Windows command prompt. We saw the output shown in Example 6-7, indicating that the
bean had been successfully invoked in our CICS region.

Example 6-7 Output of Java client run on WinNT

D:\itso\swl870\client>hwc.cmd
CICS EJB HelloWorld: Querying the Java SDK level.
CICS EJB HelloWorld: Starting the EJB client program.
Starting helloWorld sample.
Creating an intial context object.
Obtaining a remote object reference.
Narrowing to the home object reference.
Obtaining an object reference.
Invoking a business method.
Result from business method is: You said: Hello world
Removing the EJB object.
Finishing helloWorld sample.
CICS EJB HelloWorld: Completed successfully.

6.4.4 Running the client from the USS environment
We now wished to test our HelloWorld session bean from OS/390 in the UNIX System
Services (USS) envrionment. First of all we transferred the following files to the HFS of the
OS/390 system in which our CICS region was running.

Client JAR file hws_CLI.jar

Java client hwc.jar

We also created the following two files which we will describe later in this section:

Property file hwc_uss.properties

Java client command script hwc.sh

Note: All the files we used are available as samples with this redbook, for further details refer
to the Appendix C, “Using the additional material” on page 315.

Tip: If transferring the files using FTP, ensure that the JAR files are transferred in binary
mode from Windows to OS/390.
168 EJB for OS/390 and z/OS, CICS TS V2.1

Property file for USS environment
Figure 6-31 shows the properties file (hwc_uss.properties) we created to test our HelloWorld
session bean from USS.

Figure 6-31 Property file to call an enterprise bean from USS

Java shell script
Example 6-8 shows the shell script (hwc.sh) we used to run the Java client program on USS.

Example 6-8 Java shell script to run the Java client on USS

CICS EJB HelloWorld run shell script
#
Modify the following to match your IBM SDK 1.3 installation directory:
JAVA_HOME=/usr/lpp/java213d/J1.3
#
#--
#
CLASSPATH=./hwc.jar:./hws_CLI.jar:$JAVA_HOME/standard/ejb/1_1/ejb11.jar
#
echo "CICS EJB IVP: Querying the Java SDK level"
if $JAVA_HOME/bin/java -version
then
else echo "CICS EJB HelloWorld: Failed, possible cause:"
 echo " Java support not found at $JAVA_HOME"
 echo " Check the JAVA_HOME setting in the hwc.sh shell script"
 exit
fi
#
echo ""
echo "CICS EJB HelloWorld: Starting the EJB client program"
if $JAVA_HOME/bin/java -classpath $CLASSPATH -DPROPERTY_FILE=./hwc_uss.properties
itso.ejb390.helloworld.HelloWorldClient
then echo "CICS EJB HelloWorld: Completed successfully"
else echo "CICS EJB HelloWorld: Failed"
 echo " Check the JAVA_HOME and CLASSPATH settings in the hwc.sh"
 echo " shell script, and the CICS server installation steps."
fi

java.naming.factory.initial=com.sun.jndi.cosnaming.CNCtxFactory
java.naming.provider.url=iiop://hecate.almaden.ibm.com:900/
JNDI_HELLOWORLD_SESSION_NAME=PJA5/HelloWorldSession

Note: The hwc.sh shell script provided assumes the IBM SDK 1.3 installation directory is
/usr/lpp/java213d/J1.3. If you use a different installation directory, you have to change
the JAVA_HOME variable accordingly.
Chapter 6. Developing a HelloWorld session bean for CICS 169

Run the client on USS
Before testing our client on USS we added execute permissions to the shell script using the
command chmod 775 hwc.sh. Then, after starting the shell script, we saw the output shown
in Example 6-9.

Example 6-9 Output of enterprise bean client run on USS

CICSRS3 @ SC69:/u/cicsrs3/helloWorld>hwc.sh
CICS EJB IVP: Querying the Java SDK level
java version "1.3.0"
Java(TM) 2 Runtime Environment, Standard Edition (build 1.3.0)
Classic VM (build 1.3.0, J2RE 1.3.0 IBM OS/390 Persistent Reusable VM build hm1)
CICS EJB HelloWorld: Starting the EJB client program
Starting helloWorld sample.
Creating an intial context object.
Obtaining a remote object reference.
Narrowing to the home object reference.
Obtaining an object reference.
Invoking a business method.
Result from business method is: You said: Hello world
Removing the EJB object.
Finishing helloWorld sample.
CICS EJB HelloWorld: Completed successfully
CICSRS3 @
SC69:/u/cicsrs3/helloWorld>

6.5 Summary
This chapter has shown how to develop, deploy and test a simple HelloWorld enterprise bean
under CICS TS V2.1. We have developed a universal client which is able to invoke the
enterprise bean from within VisualAge for Java, from the Windows NT environment, and from
the OS/390 UNIX System Services (USS) environment.

We have also shown how you can install your enterprise bean into a CICS EJB server
manually, or use the CICS development deployment tool or CICS production deployment tool
to assist with this process.

In the next chapters, we go on to describe how we wrapped an existing CICS COBOL
application with a stateful session bean, and then modified this to use new business logic
written in Java.
170 EJB for OS/390 and z/OS, CICS TS V2.1

Chapter 7. Wrapping the Trader application:
JCICS link

In this chapter we describe how to invoke an existing CICS COBOL application from a
session bean running in the CICS TS V2.1 EJB container. The application we use is the
COBOL Trader application, which is a typical pseudo-conversational CICS application. We
show how to use the CICS Java class library (JCICS) to link to the existing business logic in
the Trader application, passing a COMMAREA as a byte array. Our scenario is illustrated in
Figure 7-1.

Figure 7-1 Calling a COBOL program with a JCICS link()

7

OS/390CICS TS V2.1

TraderBean

VSAM

TraderBackEndJCICS

TRADERBL
(COBOL

application)

COMMAREA

JCICS
link
© Copyright IBM Corp. 2001 171

Introduction
The goal of this scenario and those in the following chapters is to write a re-usable enterprise
bean such that a variety of different CICS application techniques can be used to provide the
same business application. In our example, this means the TraderBean is designed in such a
way that the actual technique of how the Trader application is invoked can be easily modified
or extended to invoke the application in a different way, or to even to invoke a different
application.

Before we describe how to wrap the Trader application, we give a short description of what
the COBOL Trader program does and how it works. However, if you want to get some
hands-on experience and run our sample enterprise bean immediately, jump straight to 7.1,
“Quick start — Invoking TraderBean” on page 173.

The COBOL Trader application
The COBOL Trader sample is a traditional 3270 green-screen application that allows
authenticated users to trade shares, that is, to buy and sell shares in a given group of
companies, as well as obtaining real-time quotes on the value of their current holdings.
Trader has been developed as a sample as part of an IBM CICS Web-enablement service
offering and has been used extensively in the previous redbooks A Performance Study of
Web Access to CICS, SG24-5480, and Workload Management for Web Access to CICS,
SG24-6118.

The original 3270 version of the Trader application uses the CICS 3270 BMS interface and
stores customer information in two VSAM files. It is a pseudo-conversational application,
meaning that a chain of related non-conversational CICS transactions is used to convey the
impression of a "conversation" to the users as they go through a sequence of screens that
constitute a business transaction. However, key to Web-enablement, Trader also offers a
business logic interface whereby the business logic program (TRADERBL) can be invoked
using a COMMAREA interface from other clients with non-3270 interfaces. We use this
interface in our later scenarios.

For further details on installing and using the Trader COBOL application, refer to Appendix B,
“The COBOL Trader application” on page 309. To obtain the sample COBOL Trader
application, refer to Appendix C, “Using the additional material” on page 315.

Wrapping a COBOL application using JCICS
JCICS is the Java class library provided with CICS TS V1.3 and V2.1. It provides a Java API
for many of the EXEC CICS API commands. In this chapter we use only the link() method
of the Program object in order to link from our enterprise bean into the existing business logic
of the Trader application.

Developing the presentation interface
To test our enterprise bean we developed two different scenarios. First of all, in VisualAge for
Java (VAJ), we developed a simple stand-alone Java application, TraderTest. This can be run
from the command line to quickly and easily test the Trader enterprise bean. In addition, we
also developed a servlet with a JSP HTML presentation interface to drive the enterprise bean.
We deployed the servlet on WebSphere Application Server for Windows NT, which then
made RMI/IIOP calls to our enterprise bean deployed in CICS TS V2.1. Figure 7-2 shows the
topology of the test scenarios.
172 EJB for OS/390 and z/OS, CICS TS V2.1

Figure 7-2 Topology of Trader test scenarios using JCICS link()

7.1 Quick start — Invoking TraderBean
If you want to run our sample Trader enterprise bean without following all the details specified
in this chapter, use the steps below. All the source code and examples used in this book are
available for download from the redbooks Web site ftp://www.redbooks.ibm.com/redbooks/
and for full details of the available files and how to obtain them, refer to Appendix C, “Using
the additional material” on page 315.

1. Install the COBOL Trader application in your CICS system. For more details, refer to
Appendix B, “The COBOL Trader application” on page 309.

2. Create a CICS TCPIPSERVICE, CORBASERVER, REQUESTMODEL and DJAR
definition if you have not already done so. For more details, refer to 6.3.3, “Deploying to
CICS” on page 150.

3. Deploy the TraderBean to your CICS TS V2.1 region. For more information on how to do
this, refer to Section 7.3, “Deploying the TraderBean to CICS” on page 191.

4. Test the application; this can be achieved in one of the following two ways:

a. Use our supplied TraderServlet to create a Web application with an HTML front-end to
TraderBean. For further details on the expected output, refer to Figure 7-50, “Quote
results using TraderServlet” on page 214.

b. Use the supplied runTest.cmd file to invoke our stand-alone Java test application
TraderTest. To set up TraderTest, simply do the following:

• On your workstation, create a directory (for example C:\itsotrader) and copy the
following sample files to this directory:

traderCLI.jar
traderTest.jar
runTest.cmd

• Ensure that you have a Java 2 runtime environment at version 1.3 or greater on
your workstation installed. You can verify your version with the command:

java -version

CICS TS V2.1

TraderBean

TRADERBL
(COBOL

application)

COMMAREA

JCICS
link()

RMI/IIOP

Windows NT or OS/390

WebSphere
Application Server

TraderServlet

TraderTest

Windows NT
command prompt

OS/390

RMI/IIOP

RunTest.cmd

JSP

Web browser

HTML
Chapter 7. Wrapping the Trader application: JCICS link 173

ftp://www.redbooks.ibm.com/redbooks/

• Ensure that you have the file j2ee.jar accessible on your workstation. If not, you
can obtain it if you install the CICS development deployment tool, or by installing
the Java 2 SDK, Enterprise Edition, available from http://java.sun.com as an
alternate possibility.

• Invoke TraderTest using the runtest.cmd file. You will need to alter the input
parameters as documented in the file. For further details and for an example of
expected output, refer to Example 7-2 on page 198.

7.2 TraderBean development with VisualAge for Java
The next sections of this chapter describe the steps necessary to design and code our Trader
the enterprise bean. If you are not familiar with enterprise bean development in VisualAge for
Java (VAJ), you should first look at Chapter 6, “Developing a HelloWorld session bean for
CICS” on page 135, which gives basic guidance on developing enterprise beans with VAJ.

The following steps are necessary to implement our enterprise bean:

1. Define the business methods of the enterprise bean.

2. Design the enterprise bean structure.

3. Implement the interface TraderBackend.

4. Implement CompaniesBean.

5. Implement QuotesBean.

6. Implement TraderBean.

7. Implement TraderBackendJcics.

7.2.1 Define the business methods of the enterprise bean
To design our enterprise bean, we have to define the business methods the bean provides.
These correspond to the following business functions provided by the COBOL application:

GET-COMPANY Query the list of companies

SHARE-VALUE Retrieve current stock quote from file

BUY-SELL Trader shares in a given company

To improve the usability of the enterprise bean, we decided that, instead of providing one
business method for trading, we would define both a buy and a sell method.

Trader also provides a 3270 panel to logon to the application. The userid and password
supplied are not verified with CICS, but the user ID is required when generating the stock
count during the buy/sell operation. Rather than supply the user ID with each call, we decided
to store the supplied user ID in an instance variable.

These are the methods we decided to implement in our TraderBean.

logon() To logon to the Trader application.

logoff() To logoff from the application.

getCompanies() To query the companies to trade with.

getQuotes() To retrieve quotes for a specific company.

buy() To buy shares of a given company.

sell() To sell shares of a given company.
174 EJB for OS/390 and z/OS, CICS TS V2.1

http://java.sun.com.

7.2.2 Design the enterprise bean structure
After we had defined which business methods the enterprise bean must implement, we
designed the enterprise bean structure. Because we wanted to be able to call the COBOL
Trader application using both the JCICS link() method and the CICS Connector, we decided
to separate the implementation details of calling the COBOL program from the enterprise
bean and to implement the access to the COBOL program in its own classes, which must
follow a specific interface. This approach has the advantage that, for each different technique
of calling Trader, only minor changes are necessary to the enterprise bean, and the
implementation details of calling Trader are hidden in the interface class.

We named the interface class TraderBackend. All classes which hide the implementation
details of accessing Trader have to implement TraderBackend. The interface class defines
the following methods:

� logon()
� logoff()
� getCompanies()
� getQuotes()
� buy()
� sell()
� ejbBackendBackend()
� ejbBackendRemove()
� ejbBackendActivate()
� ejbBackendPassivate()

As you can see, these are very similar to the methods we defined for the enterprise bean. You
will later see that the arguments of the methods differ slightly from those of the enterprise
bean.

You can also see that we defined a logon() method even though this functionality is not
directly supported by Trader. As we will explain later, we need this method to provide some
data for the class implementing the access to Trader with CICS Connector.

The reason why we have added the methods ejbBackendCreate(), ejbBackendRemove(),
ejbBackendActivate(), and ejbBackendPassivate() is that the back-end classes will need to
be informed about these events, when using the DB2 versions of the Traderbean. However,
in this version they are only present for compatibility reasons.

We named the class which implements the TraderBackend interface TraderBackendJcics.
Figure 7-3 shows the relation between TraderBean and TraderBackendJcics.

Figure 7-3 Relation between TraderBean and TraderBackendJcics

TraderBean TraderBackendJcics
Chapter 7. Wrapping the Trader application: JCICS link 175

7.2.3 Implement the interface TraderBackend
The first class we need to create is the interface class TraderBackend. As we will later see,
TraderBean has an instance variable referring to an instance of a class implementing this
class. Such an instance will be TraderBackendJcics.

All the classes for this example will be stored in the VAJ group ITSO EJB 390, that we created
in our HelloWorld session bean in Chapter 6. The package name of all classes related to the
enterprise bean will be itso.ejb390.trader.

TraderBackend is declared as:

public interface TraderBackend extends java.io.Serializable {}

As you can see, TraderBackend extends java.io.Serializable. This is necessary because
TraderBean is a stateful session bean, as is it required to store the conversational state of the
COBOL Trader applications across different method calls. All non-transient instance variables
of a stateful session bean can be passivated by the container, thus the need for session
beans to implement java.io.Serializable.

TraderBackend contains the following methods:

public void logon(String userID, String password,
 String connectURL, String cicsServer)

userID The user ID of the person using the Trader application

password The password of the person

connectURL Used only for the CICS Connector in order to specify the URL of
the CICS Transaction Gateway -- can be ignored for our JCICS
implementation

cicsServer Used only for the CICS Connector in order to specify the name
of the CICS server

� public void logoff()

This method is used to logoff from the application.

� public CompaniesBean getCompanies()

This method takes no arguments, but returns an instance of class CompaniesBean. This
class holds all companies’ Trader returns. The class is explained in more detail in 7.2.4,
“Implement CompaniesBean” on page 177.

� public QuotesBean getQuotes(String company, String userID)

company The company for which the quotes are obtained

userID The user ID of the person using the Trader application

The method returns an instance of class QuotesBean. This bean holds quote information of
the specified company. The class is explained in more detail in 7.2.5, “Implement
QuotesBean” on page 177.

Note: We have invented the parameters connectURL and cicsServer in order to have
the possibility to specify appropriate values from an user interface. In a real production
environment you would either have these parameters coded directly in the class accessing
the back-end, or you would read the parameters from a properties file. In this case you
would skip the two parameters from logon and just provide userID and password.
176 EJB for OS/390 and z/OS, CICS TS V2.1

� public void buy(String company, String userID, int numberOfShares)

company The company for which shares are bought

userID The user ID of the person using the Trader application

numberOfShares The number of shares to buy

� public void sell(String company, String userID, int numberOfShares)

company The company for which shares are sold

userID The user ID of the person using the Trader application

numberOfShares The number of shares to sell

Besides our business methods, we also need to define the control methods:

� public void ejbBackendCreate()
� public void ejbBackendRemove()
� public void ejbBackendActivate()
� public void ejbBackendPassivate()

7.2.4 Implement CompaniesBean
CompaniesBean is a class which holds all companies returned by Trader. It is declared as
illustrated in Figure 7-4. It implements methods to add a company, to get a company, and to
return the number of companies actually held by the bean.

Figure 7-4 Declaration of class CompaniesBean

7.2.5 Implement QuotesBean
QuotesBean is a class which holds all quote specific information returned by Trader. It is
declared as illustrated in Figure 7-5. For each instance variable, the bean provides a get and
set method.

Figure 7-5 Declaration of QuotesBean

public class CompaniesBean implements java.io.Serializable {
 private java.util.Vector companies = new java.util.Vector();
}

public class QuotesBean implements java.io.Serializable {
 private java.lang.String unitSharePrice;
 private java.lang.String totalShareValue;
 private java.lang.String unitValue1Days;
 private java.lang.String unitValue2Days;
 private java.lang.String unitValue3Days;
 private java.lang.String unitValue4Days;
 private java.lang.String unitValue5Days;
 private java.lang.String unitValue6Days;
 private java.lang.String unitValue7Days;
 private java.lang.String commissionCostSell;
 private java.lang.String commissionCostBuy;
 private java.lang.String numberOfShares;
}

Chapter 7. Wrapping the Trader application: JCICS link 177

Similar to CompaniesBean, QuotesBean is returned by method getQuotes() of TraderBean’s
remote interface class Trader. Therefore, it is also necessary to implement
java.io.Serializable, as previously described for CompaniesBean.

7.2.6 Implement TraderBean
Now that we have implemented TraderBackend we are able to write TraderBean. Most of the
hard work is implemented in the back-end classes so the implementation of TraderBean is
actually quite simple. To create TraderBean follow the steps below:

1. In VisualAge for Java, click the tab EJB.

2. Click EJB -> Add -> EJB Group to open the Add EJB Group SmartGuide.

3. As the project, select ITSO EJB 390 Redbook.

4. For the EJB group name specify ITSOEJB390.

5. Finally, click Finish to create the EJB group.

Now that we have defined EJB group ITSOEJB390, create the enterprise bean TraderBean.

1. Click the right mouse button on EJB group ITSOEJB390 and select Add -> Enterprise
Bean to open the Create EnterpriseBean SmartGuide.

2. Enter Trader as the bean name.

Leave all other fields as to default, which should be as follows:

BeanType Session bean

Create a new bean class selected

Project ITSO EJB 390 Redbook

Package itso.ejb390.trader

Class TraderBean

3. Click Next to verify the bean’s interfaces.

The SmartGuide proposes TraderHome for the home interface and Trader for the remote
interface. Keep the defaults and click Finish to create the enterprise bean and its
interface classes.

As explained earlier, TraderBean must be a stateful session bean in order to keep the user ID
and the reference to TraderBackend. To change the properties of the enterprise bean, click
right mouse button on TraderBean and select Properties. The Properties window for
ITSOEJB390 opens. Change the State Management Attribute to #STATEFUL and click OK to
apply your changes and to close the window.

Now we need to define the instance variables for TraderBean. We need one variable
referencing a TraderBackend interface and one to hold the user ID. Therefore, we need to
define the following instance variables:

private TraderBackend ivTraderBackend = null;
private java.lang.String ivUserID = "";

The ivUserID instance variables also requires a getter and setter method since a client
application should be able to retrieve the user ID. Right-click on the ivUserID variable and
select Generate -> Accessors to create the getUserID() and setUserID() methods. Once
these have been created, right-click the method getUserID() and select Add To -> EJB
Remote Interface.
178 EJB for OS/390 and z/OS, CICS TS V2.1

If you now select interface class Trader, you can see that VAJ has added the method
getUserID() to this class.

Modify TraderBean.ejbCreate()
The ejbCreate() method needs to instantiate the back-end class TraderBackend and to keep
a reference to it. Because the method has to know which kind of back-end needs to be
instantiated, we have to pass the back-end type as a parameter. Therefore, we need to
modify the existing ejbCreate() method by adding the parameter type as an argument.

The modified ejbCreate() method is illustrated in Figure 7-6.

Figure 7-6 TraderBean.ejbCreate()

Method loadClass() is a private method of TraderBean which gets as input a type which
specifies which type of back-end access technique should be used. Type is a String which, in
this example, represents TraderBackendJcics, but will be used in later scenarios to specify
other back-end classes such as TraderBackendCICSConnector. Figure 7-7 shows the
implementation of the loadClass() method.

Figure 7-7 Method TraderBean.loadClass()

Note: By default, VisualAge for Java creates a new method when the parameter list of an
existing method is changed. Therefore, after you have saved your changes, you will have
two ejbCreate() methods. One is the old one with no arguments, and one the new one
with type as an input parameter. To prevent this behavior, you can do a Save replace, using
Ctrl-Shift-S.

public void ejbCreate(String type) throws javax.ejb.CreateException,
 java.rmi.RemoteException {

try {
 // load backend class to handle requests
 loadClass(type);
 ivTraderBackend.ejbBackendCreate();
} catch(Exception e) {
 throw new CreateException(e.getMessage());
}

}

private void loadClass(String type) throws Exception {

Class loadClass=null;

if(type.equalsIgnoreCase("JCICS-COBOL") == true) {
 loadClass =
 Class.forName("itso.ejb390.trader.TraderBackendJcics");
}
else {
 throw new TraderException("You specified unknown type " + type);
}

ivTraderBackend = (TraderBackend)loadClass.newInstance();

}

Chapter 7. Wrapping the Trader application: JCICS link 179

Within this class, the method TraderException() has been defined. TraderException()
extends class Exception and is used to throw exceptions which are related to the Trader
application. Its implementation is illustrated in Figure 7-8.

Figure 7-8 TraderException

The next step is to modify the remaining control methods ejbRemove(), ejbActivate(), and
ejbPassivate().

Modify the remaining control methods
The remaining control methods just need to invoke the corresponding method of the
back-end interface, as shown in Figure 7-9.

Figure 7-9 Control methods of TraderBean

Finally, we will define the business methods logon(), getCompanies(), getQuotes(), sell(),
and buy(). We begin with logon().

TraderBean.logon()
Method logon() needs to do two things:

1. Store the provided user ID in a class instance variable.

2. Invoke the logon() method of the back-end instance.

How this is done is illustrated in Figure 7-9.

public class TraderException extends Exception {
 public TraderException() {
 super();
 }
 public TraderException(String s) {
 super(s);
 }
}

public void ejbRemove() throws java.rmi.RemoteException {
 ivTraderBackend.ejbBackendRemove();
}

public void ejbActivate() throws java.rmi.RemoteException {
 ivTraderBackend.ejbBackendActivate();
}

public void ejbPassivate() throws java.rmi.RemoteException {
 ivTraderBackend.ejbBackendPassivate();
}

180 EJB for OS/390 and z/OS, CICS TS V2.1

Figure 7-10 Method TraderBean.logon()

Because logon() is a method which a client application needs to call, we need to add it to the
enterprise bean remote interface in the same way as we have done for getUserID().

TraderBean.logoff()
This method just needs to invoke the logoff() method of the back-end instance, as shown in
Figure 7-11.

Figure 7-11 Method TraderBean.logoff()

Now that we have implemented method logoff(), we will implement the remaining business
methods.

The remaining business methods of TraderBean
The methods getCompanies(), getQuotes(), buy(), and sell() are quite simple to implement.
They do nothing else other than to call the appropriate method of TraderBackend. The
methods and their implementations are shown in Figure 7-12. After defining the methods, it is
then necessary to add them to Trader’s remote interface.

public void logon(String userID, String password,
 String connectURL, String cicsServer) throws Exception {

// save userID
ivUserID = userID;

// now logon to system
ivTraderBackend.logon(userID, password, connectURL, cicsServer);

}

public void logoff() throws Exception {

ivTraderBackend.logoff();

}

Chapter 7. Wrapping the Trader application: JCICS link 181

Figure 7-12 Business methods of TraderBean

7.2.7 Implement TraderBackendJcics
At this point we have implemented most of the classes necessary for the enterprise bean.
What remains is to write the class which actually invokes the COBOL Trader program using
the link() method of the JCICS Program object. We shall call this class TraderBackendJcics
which implements interface class TraderBackend. The declaration of TraderBackendJcics is
shown in Figure 7-13.

Figure 7-13 Declaration of TraderBackendJcics

The class defines the following three constants:

NUM_OF_COMPANIES The number of companies returned by the COBOL
program. Trader always returns four companies.

TransactionID The CICS mirror transaction id used for the link to the
COBOL Trader program.

ProgramName The CICS program name of the Trader application.

As you can see, TraderBackendJcics imports class com.ibm.cics.server.Program. This class
is defined in the JCICS API, which does not come with VisualAge for Java. Therefore, it is
necessary to import the JCICS package (com.ibm.cics.server) into VisualAge. The JCICS
classes are archived in the file dfjcics.jar, which is supplied with the CICS TS install in the
HFS directory $CICS_HOME/lib. We downloaded this file to our workstation, created a new
VAJ project called JCICS, and imported the JAR file into this project.

public CompaniesBean getCompanies() throws Exception {
 return ivTraderBackend.getCompanies();
}

public QuotesBean getQuotes(String company) throws Exception {
 return ivTraderBackend.getQuotes(company,ivUserID);
}

public void buy(String company, int numberOfShares)
 throws Exception{
 ivTraderBackend.buy(company,ivUserID,numberOfShares);
}

public void sell(String company, int numberOfShares)
 throws Exception{
 vTraderBackend.sell(company,ivUserID,numberOfShares);
}

import com.ibm.cics.server.Program;

public class TraderBackendJcics implements TraderBackend {
 private final static int NUM_OF_COMPANIES = 4;
 private final static String TransactionID = "TRB2";
 private final static String ProgramName = "TRADERBL";
}

182 EJB for OS/390 and z/OS, CICS TS V2.1

Now that we have declared our instance variables, we are ready to implement the methods
invoking Trader. This is explained in the next sections.

Control methods for TraderBackendJcics
As we already described, ejbBackendCreate(), ejbBackendRemove(), ejbBackendActivate(),
and ejbBackendPassivate() need to do nothing special in order to wrap Trader. Therefore,
their implementation is quite simple, as shown in Figure 7-14.

Figure 7-14 Control methods of TraderBackendJcics

TraderBackendJcics.logon()
As we discussed earlier, method logon() is only necessary for the class implementing
access to Trader through the CICS Connector. Since on our system, the enterprise bean and
the COBOL Trader application are installed on the same CICS region, it is not necessary to
specify the system ID. If you plan to link to a COBOL program running in another CICS
region, you could store the system ID specified by the cicsServer parameter of the logon()
method and use this value later for invocations of your COBOL program.

The implementation of method logon() is illustrated in Figure 7-15. As you can see, the
method has no logic implemented.

Figure 7-15 TraderBackendJcics.logon()

TraderBackendJcics.logoff()
For this back-end implementation, no business logic is necessary to logoff. Therefore the
method is quite simple, as illustrated in Figure 7-16.

Figure 7-16 TraderBackendJcics.logoff()

TraderBackendJcics.getCompanies()
Trader always expects one specific COMMAREA as input and returns the same COMMAREA
structure as response. Therefore we need a call which allows us to pass a COMMAREA as
input and returns a COMMAREA as output.

public void ejbBackendCreate() throws javax.ejb.CreateException,
 java.rmi.RemoteException {}

public void ejbBackendRemove() throws java.rmi.RemoteException {}

public void ejbBackendActivate() throws java.rmi.RemoteException {}

public void ejbBackendPassivate() throws java.rmi.RemoteException {}

public void logon(String userID, String password,
 String connectURL, String cicsServer) {
}

public void logoff() {
}

Chapter 7. Wrapping the Trader application: JCICS link 183

Calling a CICS program when using the JCICS class library is done with the method link()
of the Program object. There are several implementations of link(). One is without
parameters which is used when the called program exchanges no data through the
COMMAREA.

Another variation of link() is with two parameters, taking com.ibm.record.IByteBuffer as
an argument. This is the link method we use for our sample because this method takes the
first parameter as input and returns in the second parameter the response of the called
program. Therefore we need a Java class representing the COMMAREA which Trader
expects as input, and that implements the IByteBuffer interface.

VisualAge for Java Enterprise Edition provides the Enterprise Access Builder (EAB), which
enables you to convert a COBOL data structure to a Java class. Such a Java class extends
com.ibm.record.CustomRecord, which implements indirectly through other classes
IByteBuffer. Therefore the EAB generates a class we can use as a parameter for method
Program.link(). We named the Java class representing the COMMAREA TraderRecord.
The COMMAREA which Trader uses for input and output is listed in Figure 7-17, and is also
supplied as the file commarea.txt in the source code accompanying this book.

Figure 7-17 COMMAREA of COBOL program TRADERBL

 01 COMMAREA-BUFFER.
 03 REQUEST-TYPE PIC X(15).
 03 RETURN-VALUE PIC X(02).
 03 USERID PIC X(60).
 03 USER-PASSWORD PIC X(10).
 03 COMPANY-NAME PIC X(20).
 03 CORRELID PIC X(32).
 03 UNIT-SHARE-VALUES.
 05 UNIT-SHARE-PRICE PIC X(08).
 05 UNIT-VALUE-7-DAYS PIC X(08).
 05 UNIT-VALUE-6-DAYS PIC X(08).
 05 UNIT-VALUE-5-DAYS PIC X(08).
 05 UNIT-VALUE-4-DAYS PIC X(08).
 05 UNIT-VALUE-3-DAYS PIC X(08).
 05 UNIT-VALUE-2-DAYS PIC X(08).
 05 UNIT-VALUE-1-DAYS PIC X(08).
 03 COMMISSION-COST-SELL PIC X(03).
 03 COMMISSION-COST-BUY PIC X(03).
 03 SHARES.
 05 NO-OF-SHARES PIC X(04).
 03 SHARES-CONVERT REDEFINES SHARES.
 05 NO-OF-SHARES-DEC PIC 9(04).
 03 TOTAL-SHARE-VALUE PIC X(12).
 03 BUY-SELL1 PIC X(04).
 03 BUY-SELL-PRICE1 PIC X(08).
 03 BUY-SELL2 PIC X(04).
 03 BUY-SELL-PRICE2 PIC X(08).
 03 BUY-SELL3 PIC X(04).
 03 BUY-SELL-PRICE3 PIC X(08).
 03 BUY-SELL4 PIC X(04).
 03 BUY-SELL-PRICE4 PIC X(08).
 03 ALARM-CHANGE PIC X(03).
 03 UPDATE-BUY-SELL PIC X(01).
 03 FILLER PIC X(15).
 03 COMPANY-NAME-BUFFER.
 05 COMPANY-NAME-TAB OCCURS 4 TIMES
 INDEXED BY COMPANY-NAME-IDX PIC X(20).
184 EJB for OS/390 and z/OS, CICS TS V2.1

Note that before you can use the EAB, you need to add following features to your VisualAge
workspace:

� IBM Enterprise Access Builder Library
� IBM Java Record Library

The following instructions explain how to create TraderRecord.

1. Select Workspace -> Tools -> Enterprise Access Builder -> Import COBOL to
Record Type to open the Import COBOL to Record Type SmartGuide.

2. Click Browse to open the file dialog.

a. Navigate through your directory structure to select the file which contains the COBOL
definition of the COMMAREA.

b. Click Open to select the file and close the file dialog window.

3. Make sure that you import the COBOL definition for a CICS Transaction.

4. Click Next.

5. Now you can select one or more 01 COMMAREA levels to be imported by the
SmartGuide. All available 01 levels are listed on the left side of the window. Because our
COBOL data structure has only one 01 level, just COMMAREA-BUFFER is shown.

6. Select COMMAREA-BUFFER and click the > arrow in the middle of the window as
illustrated in Figure 7-18.

Figure 7-18 Selecting the 01 level of COMMAREA

7. Now COMMAREA-BUFFER switches to the right side which shows the selected
COMMAREAS. Click Next.

8. As the project name type ITSO EJB 390 Redbook and for the package name enter
itso.ejb390.trader. You can also use the Browse buttons to find the project and packages.

9. For the class name enter TraderRecordType. Your window should now look similar to
Figure 7-19.
Chapter 7. Wrapping the Trader application: JCICS link 185

Figure 7-19 Specifying the class name for COBOL Record Type

10.Click Finish to create the record type and to create a record from the record type.

Now a SmartGuide opens which allows you to create a record from a record type. This
SmartGuide will create the class TraderRecord, which is a Java class representing the
COBOL COMMAREA. This is shown with the next steps.

1. As class name, type TraderRecord. Leave all other options as they are (Figure 7-20).

Figure 7-20 Specifying class name TraderRecord representing the COMMAREA
186 EJB for OS/390 and z/OS, CICS TS V2.1

2. Click Next to modify the properties of the record.

3. Make the following changes:

Floating Point Format IBM
Remote Integer Endian Big Endian
Endian Big Endian
Code Page 037
Machine Type MVS

The window should now look as shown in Figure 7-21.

Figure 7-21 Changing the properties of TraderRecord

4. Click Finish to create TraderRecord.

If you now view the classes of package itso.ejb390.trader, you will see that VisualAge has
added the classes TraderRecordType, TraderRecord, and TraderRecordBeanInfo.
TraderRecord is the class which we can use as representation of our COBOL COMMAREA.

Now that we have created TraderRecord, we can implement the method getCompanies().
The code needs to do the following:

� Instantiate a CompaniesBean.

� Instantiate a TraderRecord for input and for output.

� Set the request type to Get_Company in the input COMMAREA.

� Instantiate a com.ibm.cics.server.Program.

� Invoke method Program.link() by providing the TraderRecords as parameters for input
and output.

� Iterate over company name array of the output COMMAREA and copy the companies to
CompaniesBean.

� Return the CompaniesBean instance.

Note: If you specify an EBCDIC code page such as 037 for conversion of character
data, you should ensure that you do not also use the CICS DFHCNV templates to
convert the COMMAREA data from ASCII to EBCDIC, otherwise you will experience
corruption of data due to double conversion. For more details on data conversion with
Java in CICS refer to the redbook Revealed! Architecting Web Access to CICS,
SG24-5466.
Chapter 7. Wrapping the Trader application: JCICS link 187

Figure 7-22 shows the implementation of method getCompanies().

Figure 7-22 TraderBackendJcics.getCompanies()

The hard work has now been done. As you will see, implementing the other methods is
relatively straightforward and they all look fairly similar.

TraderBackendJcics.getQuotes()
This method is implemented in a very similar way as getCompanies() and does the following:

� Instantiate a QuotesBean.

� Instantiate a TraderRecord for input and for output.

� Set the request type to Share_Value in the input COMMAREA.

� Instantiate a com.ibm.cics.server.Program.

� Invoke method Program.link() by providing the TraderRecords as input and output.

� Copy the results from the output COMMAREA to QuotesBean.

� Return the QuotesBean instance.

Figure 7-23 shows the implementation of method getQuotes().

public CompaniesBean getCompanies() throws Exception {

 CompaniesBean companies = new CompaniesBean();

 // allocate commarea
 TraderRecord traderRecordIn = new TraderRecord();
 TraderRecord traderRecordOut = new TraderRecord();

 // set request type
 traderRecordIn.setRequest__Type("Get_Company");

 // allocate program and set TxID and program name
 Program program = createProgram();

 // call program
 program.link(traderRecordIn, traderRecordOut);

 // copy companies to CompaniesBean
 for (int i = 0; i < NUM_OF_COMPANIES; i++) {
 companies.addCompany(traderRecordOut.getCompany__Name__Tab(i));
 }
return companies;
}

188 EJB for OS/390 and z/OS, CICS TS V2.1

Figure 7-23 TraderBackendJcics.getQuotes()

TraderBackendJcics.buy()
This method needs to do the following:

� Instantiate a TraderRecord for input and for output.

� Set the request type to Buy_Sell in the input COMMAREA.

� Set company, userID, and number of shares in the input COMMAREA.

� Set a flag if for buying or to selling shares in the input COMMAREA.

� Instantiate a com.ibm.cics.server.Program.

� Invoke the Program.link() method by providing the TraderRecords as parameters for
input and output.

The difference to the other methods is, that this request has additional arguments in the input
COMMAREA. Further this method does not return any results. Therefore it is declared as
void.

Because method buy() and sell() are very similar, we created the private method trade()
which invokes Trader. Methods buy() and sell() call this private method and provide a flag
to be able to distinguish between buy and sell.

public QuotesBean getQuotes(String company, String userID)
 throws Exception {

 QuotesBean quotes = new QuotesBean();
 // allocate commarea
 TraderRecord traderRecordIn = new TraderRecord();
 TraderRecord traderRecordOut = new TraderRecord();
 // set request type
 traderRecordIn.setRequest__Type("Share_Value");
 // set additional parameters
 traderRecordIn.setCompany__Name(company);
 traderRecordIn.setUserid(userID);
 // allocate program and set TxID and program name
 Program program = createProgram();
 // call Transaction
 program.link(traderRecordIn, traderRecordOut);

 // copy results
 quotes.setUnitSharePrice(traderRecordOut.getUnit__Share__Price());
 quotes.setUnitValue1Days(traderRecordOut.getUnit__Value__1__Days());
 quotes.setUnitValue2Days(traderRecordOut.getUnit__Value__2__Days());
 quotes.setUnitValue3Days(traderRecordOut.getUnit__Value__3__Days());
 quotes.setUnitValue4Days(traderRecordOut.getUnit__Value__4__Days());
 quotes.setUnitValue5Days(traderRecordOut.getUnit__Value__5__Days());
 quotes.setUnitValue6Days(traderRecordOut.getUnit__Value__6__Days());
 quotes.setUnitValue7Days(traderRecordOut.getUnit__Value__7__Days());
 quotes.setCommissionCostSell(traderRecordOut.getCommission__Cost__Sell());
 quotes.setCommissionCostBuy(traderRecordOut.getCommission__Cost__Buy());
 quotes.setNumberOfShares(traderRecordOut.getNo__Of__Shares());
 quotes.setTotalShareValue(traderRecordOut.getTotal__Share__Value());

return quotes;
}

Chapter 7. Wrapping the Trader application: JCICS link 189

Figure 7-24 shows the implementation of method trade().

Figure 7-24 TraderBackendJcics.trade()

The implementation of method buy() is now quite simple, as illustrated in Figure 7-25.

Figure 7-25 TraderBackendJcics.buy()

TraderBackendJcics.sell()
Method sell() is very similar to method buy(). It calls internal method trade() as shown in
Figure 7-26.

Figure 7-26 TraderBackendJcics.sell()

private void trade(String company, String userID,
 int numberOfShares, boolean buy) throws Exception {

 // allocate commarea
 TraderRecord traderRecordIn = new TraderRecord();
 TraderRecord traderRecordOut = new TraderRecord();

 // set request type
 traderRecordIn.setRequest__Type("Buy_Sell");

 // set additional parameters
 traderRecordIn.setCompany__Name(company);
 traderRecordIn.setUserid(userID);
 traderRecordIn.setNo__Of__Shares__Dec((short)numberOfShares);

 if(buy == true) // if buy
 traderRecordIn.setUpdate__Buy__Sell("1");
 else // if sell
 traderRecordIn.setUpdate__Buy__Sell("2");

 // allocate program and set TxID and program name
 Program program = createProgram();

 // call Transaction
 program.link(traderRecordIn, traderRecordOut);

}

public void buy(String company, String userID, int numberOfShares)
 throws Exception {

 trade(company, userID, numberOfShares, true);

}

public void sell(String company, String userID, int numberOfShares)
 throws Exception {

 trade(company, userID, numberOfShares, false);

}

190 EJB for OS/390 and z/OS, CICS TS V2.1

At this point we have completed the JCICS implementation of TraderBean. The next sections
show how to deploy the enterprise bean to our CICS TS V2.1 region.

7.3 Deploying the TraderBean to CICS
This section describes how to deploy Trader enterprise bean and its related classes to a
CICS TS V2.1 region. This task involves the following steps:

1. Exporting the enterprise bean and its related classes.

2. Converting the exported file to a CICS-deployed JAR file.

3. Sending the deployed JAR file to OS/390

4. Defining a DJAR in the CICS system.

5. Sending the supporting JAR files to OS/390.

6. Adding the supporting JAR files to CICS region’s trusted middleware classpath.

7. Restarting the CICS JVM environment.

8. Publishing the Trader enterprise bean to the COS Naming server.

For details of how we tested the enterprise bean, refer to Section 7.4, “Testing the enterprise
bean” on page 196.

7.3.1 Exporting the enterprise bean and its related classes
This section shows how to export the enterprise bean and its related classes.

1. Within VisualAge for Java, select the EJB tab to view the EJB groups. Select group
ITSOEJB390 and click the right mouse button.

2. Select Export -> EJB JAR to open the Export to an EJB JAR File SmartGuide.

3. If you now click Details besides .class you can see that only the three classes, Trader,
TraderBean, and TraderHome are selected. Close the window and click Select
referenced types and resources. VisualAge for Java has now also selected classes
which are referenced by the enterprise bean.

4. Click again Details besides .class to see which classes these are. You will see that in
addition to the previous three classes, the four classes, CompaniesBean, QuotesBean,
TraderBackend, and TraderException are selected.

But VAJ has not selected the classes TraderBackendJcics, TraderRecord,
TraderRecordBeanInfo, and TraderRecordType. The reason for this is, that
TraderBackend does not directly instantiate TraderBackendJcics, but loads the class
dynamically. VAJ does not know this and therefore does not select these classes. The
reason why we decided to load the classes dynamically rather than directly instantiating
them, was that we will later run the CICS Connector version of this bean within
WebSphere for Windows NT. In an Windows NT environment we cannot use the JCICS
API and therefore do not want to have any reference to TraderBackendJcics.

5. Select the following additional classes so that they will also be exported.

– TraderBackendJcics
– TraderRecord
– TraderRecordBeanInfo
– TraderRecordType

Click OK to close the window.

6. In the export window, you should now see that one bean and eleven classes are selected.
Chapter 7. Wrapping the Trader application: JCICS link 191

7. Specify path and file name for the JAR file. We created the sub-directory C:\itsotrader
and exported to the file C:\itsotrader\traderForCICS.jar. Now your window should look
as shown in Figure 7-27.

8. Click Finish to export the classes to file traderForCICS.jar.

Figure 7-27 Exporting TraderBean for CICS

7.3.2 Converting the exported file to a deployed JAR file
To convert the exported JAR file to a deployed JAR file, it is necessary to use the CICS JAR
development tool for EJB Technology. This generates a deployed JAR file specifically for
CICS, and converts from the deployment descriptor from an EJB V1.0 specification that VAJ
creates, to an EJB V1.1 specification that CICS requires. For further details on installing and
using the CICS JAR development tool, refer to Section 6.3.2, “Generating a CICS deployed
JAR file” on page 148.

Note that, before we started the tool, we added the EAB (eablib.jar) and Java Record
Framework classes (recjava.jar) to the classpath for the CICS JAR development tool. We
made these modifications to the batch file cicsjdt.bat, which is used to invoke the CICS
JAR development tool. Since the cicsjdt.bat file is supplied by CICS, we also created a
backup of the original file before we made these changes.

Note: When creating our EJB JAR file, we packaged all the required classes into one JAR
file. This is convenient for testing, but has the disadvantage that as our application grows it
becomes increasingly harder to package all the necessary classes into the JAR. A more
manageable approach would be to break the application into a series of smaller JAR files
that could be updated as required.
192 EJB for OS/390 and z/OS, CICS TS V2.1

Figure 7-28 Modification of cicsjdt.bat

Now that we have changed the batch file, we can start the tool to generate the
CICS-deployed JAR file:

1. Start the CICS JAR development tool using Start -> Programs -> IBM CICS TS 2.1
Tools -> CICS JAR Development Tool for EJB Technology.

2. Click File -> Load and enter the path and file name of the JAR file you have exported
from VisualAge, which in our case is c:\itsotrader\traderForCICS.jar.

3. Click Open to load the JAR file to the tool.

4. Now you should see Trader below Current Enterprise Beans. Select Trader.

5. Click File -> Generate to generate the CICS-deployed JAR file.

6. You are asked to save your changes to a JAR file. Click Save.

7. You are asked to remove old EJB1.0 information. Click Remove.

8. Now you can specify an output EJB JAR file. Use the tool’s default name, which in our
case is c:\itsotrader\traderForCICS_GEN.jar.

9. Click Generate.

After a short time, the tool will generate traderForCICS_GEN.jar. Now we need to send the file
to our OS/390 system.

7.3.3 Sending the deployed JAR file to OS/390
On our OS/390 system we created the HFS directory /u/cicsts21/djar. Using FTP we
transferred the deployed JAR file traderForCICS_GEN.jar in binary mode to this directory.

7.3.4 Defining the DJAR in the CICS system
This sample assumes that you have already defined to CICS a TCPIPSERVICE,
CORBASERVER and REQUESTMODEL as detailed in Section 4.1.5, “Installing CICS
resource definitions” on page 77. The only new definition that is required is a DJAR definition.
This can be defined as using the following command:

CEDA DEFINE DJAR(TRADER) GROUP(ITSOEJB)

If you have an existing DJAR definition, this should be discarded beforehand using the
command:

CEMT SET DJAR(TRADER) DISCARD

rem Add the user's CLASSPATH
set CLASSPATH=%CLASSPATH%;%CURRENTCP%

SET VAJINSTALL=C:\PROGRA~1\IBM\VISUAL~1

set CLASSPATH=%VAJINSTALL%\eab\runtime30\eablib.jar;%CLASSPATH%
set CLASSPATH=%VAJINSTALL%\eab\runtime30\recjava.jar;%CLASSPATH%

rem --
rem Invoke the CICS JAR Development Tool.

Tip: If you receive a message from VAJ stating that the file is not a zip file, or it is
corrupted, you should close the CICS Java development tool, or delete the output JAR file.
Chapter 7. Wrapping the Trader application: JCICS link 193

In the CEDA define panel enter the values for the Corbaserver and the Hfsfile, as shown in
Figure 7-29.

Figure 7-29 3270 CICS screen to define DJAR attributes

7.3.5 Sending supporting JAR files to OS/390
Since we used the EAB and the Java Record Framework in building the Trader enterprise
bean, the JAR files eablib.jar and recjava.jar must be made available to the CICS region
in order for the Trader enterprise bean to run properly. The recjava.jar file is included in the
OS/390 JVM installation in the lib/ext sub-irectory, however the eablib.jar file is not
included and therefore you need to transfer it from your workstation to a OS/390 HFS
directory to make it accessible to the CICS JVM.

We transferred eablib.jar to the CICS directory /u/cicsts21/lib. If you have a default
installation of VisualAge for Java, you will find the orginal file in the directory:

C:\Program Files\IBM\VisualAge for Java\eab\runtime30

7.3.6 Adding the supporting JAR files to the trusted middleware classpath
Now we have to add eablib.jar to the CICS JVMs trusted middleware classpath. To do this,
we added the JAR file to the TMSUFFIX path defined in the CICS JVM profile. In our region,
SCSCPJA5, this was defined in CICSSYSF.CICS610.DFHJVM(DFHJVMPR) and was as
follows:

TMSUFFIX=/u/cicsts21/lib/eablib.jar:

Note: You need to define mixed case mode for your CICS terminal in order to enter the
Hfsfile parameter. You can do this by entering the CICS transaction CEOT TRANIDONLY.

DEFINE DJAR(TRADER) GROUP(ITSOEJB)
OVERTYPE TO MODIFY CICS RELEASE = 0610
 CEDA DEFine DJar(TRADER)
 DJar ==> HWS
 Group ==> ITSOEJB
 Description ==> DJar CICS resource definitin for Trader EJB
 Corbaserver ==> PJA5
 Hfsfile ==> /u/cicsts21/djars/traderForCICS_GEN.jar
 ==>
 ==>
 ==>
 ==>

 DEFINE SUCCESSFUL
 SYSID=PJA5 APPLID=SCSCPJA5
194 EJB for OS/390 and z/OS, CICS TS V2.1

7.3.7 Restarting the CICS JVM environment
When you make any changes to the JVM profile you need to ensure that the CICS JVM
environment is restarted in order to pick up these changes. The easiest way to do this is to
issue the command:

CEMT SET JVM PHASEOUT

7.3.8 Publishing the Trader enterprise bean
Now that DJAR TRADER is defined in CICS it needs to be published to the COS Naming
Server. If you refresh the DJAR it does not need to be published again, unless the new DJAR
contains different enterprise beans.

To publish the DJAR enter the following CICS command:

CEMT PERFORM DJAR(TRADER) PUBLISH

There is no easy way to list which beans have been published to the WebSphere COS
Naming Server. However, the JNDI API is a standard API for accessing Naming Servers, and
so we wrote our own Java class JNDIList, which takes as input the Naming Server URL and a
JNDI Prefix. This can be run from any Java client, and allows you to either verify that the
Naming Server is responding to requests, or that your enterprise bean has indeed been
published to the Name Space.

Example 7-1 shows the output of the JNDIList utility querying all beans registered with the
ITSO prefix on the COS Naming Server listening on port 900 on our WebSphere machine,
hecate. The output shows the Home interfaces of our TraderBean and HelloWorldSession
beans used in this redbook.

Example 7-1 Output of JNDIList utility

C:\itsotrader>Java JNDIList iiop://hecate:900/ITSO
/PJA5 Trader.itso\.ejb390\.trader\.EJSRemoteTraderHome
/PJA5 HelloWorldSession.itso\.ejb390\.helloworld\.EJSRemoteHelloWorldSessionHome

For more details on how to obtain the JNDIList utility, refer to Appendix C, “Using the
additional material” on page 315.

Note: If you modify the CICS DJAR definition you will have to perform the following
commands to refresh the CICS runtime definitions:

� Discard JDAR with CEMT DISCARD DJAR(TRADER).
� Install DJAR with CEDA INSTALL DJAR(TRADER) GROUP(ITSOEJB).

This command will also cause the CICS JVMs to be reinitialized, so you do not need to
issue the CEMT SET JVM PHASEOUT command in this case.
Chapter 7. Wrapping the Trader application: JCICS link 195

7.4 Testing the enterprise bean
Now that we have created and deployed the Trader enterprise bean, it is now time to test it.
Within VAJ we developed a simple stand-alone test client TraderTest, this is the same client
that is used in “Quick start — Invoking TraderBean” on page 173. Following this we will then
show you how we developed a servlet to allow the servlet to be invoked from a Web browser.

7.4.1 Developing a stand-alone test client: TraderTest
We decided to place the test program in the VAJ project ITSO EJB 390 Redbook and in
package itso.ejb390.trader.test. We called the class TraderTest, and it is designed to perform
the following steps:

1. Create an initial context.

2. Look up Trader bean's home interface.

3. Narrow to TraderHome.

4. Create Trader session bean.

5. Logon to the Trader application.

6. Get the companies list and display them.

7. Get quotes of last found company and display them.

8. Buy and sell shares.

9. Remove the bean.

In method main() we defined the name service factory, the URL of the COS Naming Server,
and the name under which the bean is registered in the COS Naming Server. Further we
defined the type of back-end, the connection URL, and the CICS server (Figure 7-30).

Figure 7-30 Name service definitions of Trader test program

Method main() creates an instance of TraderTest and passes the constructor nameService,
providerURL, jndiName, type, connectURL, and cicsServer. The implementation of the
constructor is shown in Figure 7-31.

nameService = "com.ibm.ejs.ns.jndi.CNInitialContextFactory";
providerURL = "iiop://hecate:900/";
jndiName = "ITSO/PJA5/Trader";
type = "JCICS-COBOL";
connectURL = "local:";
cicsServer = "";
196 EJB for OS/390 and z/OS, CICS TS V2.1

Figure 7-31 Implementation of Trader test program

// create initial context
java.util.Hashtable properties = new java.util.Hashtable(2);
properties.put("java.naming.factory.initial", nameService);
properties.put("java.naming.provider.url", providerURL);
javax.naming.InitialContext ctx =
 new javax.naming.InitialContext(properties);

// lookup trader bean's home interface
Object obj = ctx.lookup(jndiName);

// narrow to traderHome
TraderHome traderHome = (TraderHome)javax.rmi.PortableRemoteObject.narrow(
 (org.omg.CORBA.Object)obj, TraderHome.class);

// create Trader session bean
Trader trader = traderHome.create(type);

// logon to Trader
trader.logon("Georg", "Password", connectURL, cicsServer);

// get companies and show them
CompaniesBean companies = trader.getCompanies();
java.util.Enumeration comps = companies.getCompanies();
String company = null;
while(comps.hasMoreElements() == true) {
 company = (String)comps.nextElement();
 show(company);
}

// get quotes of last found company and show them
QuotesBean quotes = trader.getQuotes(company);
show("CommissionCostBuy " + quotes.getCommissionCostBuy());
show("CommissionCostSell " + quotes.getCommissionCostSell());
show("NumberOfShares " + quotes.getNumberOfShares());
show("TotalShareValue " + quotes.getTotalShareValue());
show("UnitSharePrice " + quotes.getUnitSharePrice());
show("UnitValue1Days " + quotes.getUnitValue1Days());
show("UnitValue2Days " + quotes.getUnitValue2Days());
show("UnitValue3Days " + quotes.getUnitValue3Days());
show("UnitValue4Days " + quotes.getUnitValue4Days());
show("UnitValue5Days " + quotes.getUnitValue5Days());
show("UnitValue6Days " + quotes.getUnitValue6Days());
show("UnitValue7Days " + quotes.getUnitValue7Days());

// buy and sell shares
show("Now we buy 5 shares ... ");
trader.buy(company, 5);
show("... and sell 2 of them");
trader.sell(company, 2);

// remove bean
trader.remove();
Chapter 7. Wrapping the Trader application: JCICS link 197

Now we are almost ready to test the Trader enterprise bean. The only thing missing is the
client stubs. These are the classes a client application needs in order to invoke the enterprise
bean. VisualAge for Java provides us with the ability to generate these classes in the
following manner:

1. Click the EJB tab.

2. Right-click the EJB group ITSOEJB390 and select Generate Deployed Code. VAJ will
now generate all necessary stubs and ties.

Now, when you view the package itso.ejb390.trader, you will see the classes VisualAge for
Java has created.

Running TraderTest within VAJ
Before you run the test program you have to set the correct classpath. Normally VAJ is able to
compute the classpath for you, however, because the initial context factory is dynamically
loaded, VAJ is not able to find the classpath for this class. However, it is possible to make VAJ
set the classpath correctly. In your main() method, add following statement:

com.ibm.ejs.ns.jndi.CNInitialContextFactory dummy = new
 com.ibm.ejs.ns.jndi.CNInitialContextFactory();

1. Click class TraderTest with the right mouse button and select Run -> Check Class Path.

2. Click Compute Now and VisualAge will compute all necessary classpaths you need to
run the test program.

You need to do this only once for the class. After VisualAge has computed the classpath,
comment out the statement above.

To test the Trader enterprise bean, start the TraderTest program from within VisualAge for
Java as follows:

1. Expand the project ITSO EJB 390 Redbook

2. Right-click the TraderTest class and select Run.

After it has finished, your VAJ console should show output similar to Example 7-2.

Example 7-2 Output of TraderTest program for JCICS-COBOL

Starting TraderTest application with following input:
 Name service: com.ibm.ejs.ns.jndi.CNInitialContextFactory
 Naming Server: iiop://hecate:900/
 JNDI name: ITSO/PJA5/Trader
 Call type: JCICS-COBOL
 CTG: tcp://wtsc61oe.itso.ibm.com:2006
 CICS region: SCSCPJA5

Casey_Import_Export
Glass_and_Luget_Plc
Headworth_Electrical
IBM
CommissionCostBuy 010
CommissionCostSell 015
NumberOfShares 0270
TotalShareValue 000044010.00
UnitSharePrice 00163.00
UnitValue1Days 00163.00
UnitValue2Days 00162.00
UnitValue3Days 00160.00
UnitValue4Days 00161.00
UnitValue5Days 00159.00
198 EJB for OS/390 and z/OS, CICS TS V2.1

UnitValue6Days 00156.00
UnitValue7Days 00157.00
Now we buy 5 shares ...
... and sell 2 of them

If you have got this far, you have successfully written and deployed an enterprise bean in
CICS. The next section will show you how to design and build an HTML presentation
interface for the Trader enterprise bean using a JSP/servlet front end.

7.4.2 Servlet development with VisualAge for Java
This section shows you how we developed a Web based HTML presentation interface to our
Trader enterprise bean using a servlet and JSP front-end.

The original COBOL Trader application has a 3270-based user interface supporting the
following panels:

� Logon to Trader
� Select a company
� Select option to:

– Show quotes
– Buy shares
– Sell shares

We decided to modify the presentation interface to allow more flexibility, we used the
following JSP structure to provide the following functions, shown in Figure 7-32.

Figure 7-32 Relation between Trader windows

To create the client application, it is necessary to perform the following steps:

1. Develop the Trader servlet.

2. Develop the JSPs.

3. Configure WebSphere Application Server.

4. Test the Trader servlet.

Quotes Buy Sell

Company
Selection

Logon

Logoff
Chapter 7. Wrapping the Trader application: JCICS link 199

Developing the Trader servlet
We developed all the Trader servlet related classes in the VAJ group ITSO EJB 390 Redbook
and package itso.ejb390.trader.servlet. The name of the class was TraderServlet.

We decided to use the Create Servlet SmartGuide of VAJ as follows:

1. Click package itso.ejb390.trader.servlet with the right mouse button and select Add ->
Servlet to open the Create Servlet SmartGuide. Project and package should already have
the correct names.

2. As class name, specify TraderServlet.

3. Click Finish to create the servlet.

A servlet class created by VAJ has a method performTask() which handles all incoming
requests. We distinguish between the following two types of requests.

Show request This request is used to show a JSP.

Perform request This request is used to perform an action. The request
invokes a show request to display the resultant JSP.

The following requests are implemented by TraderServlet:

handlePerformLogon() Logs on user to Trader application and returns JSP with list
of companies.

handlePerformBuy() Buys a number of shares and returns JSP with list of
companies.

handlePerformSell() Sells a number of shares and returns JSP with list of
companies.

handleShowCompanies() Returns JSP with list of companies.

handleShowQuotes() Returns JSP containing quote information.

handleShowBuy() Returns a JSP to buy shares.

handleShowSell() Returns a JSP to sell shares.

handleShowLogoff() Logs of user from Trader application and returns JSP with
logoff message.

handleShowError() Returns a JSP containing error information.

These methods are either called by method performTask() or by another handle method.

Let us now take a closer look at the various implementations of these methods.

performTask()
When a user logs on to Trader, a user session is established. As we will later see,
handlePerformLogon() looks up the TraderBean’s home interface and creates a Trader
instance. Because TraderBean is a stateful session bean, we have to keep the reference to
Trader on the client side.

To pass information from one servlet request to another, we use the servlet session support
provided by Application Server. This service allows you to store information associated to a
unique key in a session object and to retrieve this value at a later time. We called our session
object HttpSession.
200 EJB for OS/390 and z/OS, CICS TS V2.1

To start with, PerformTask() first obtains the session ID from the request object. If this
request is the initial logon request, it creates a new Trader session bean instance using our
create Trader method, and then stores the reference to this object in the session ID. If this
request is not a logon request, then the Trader object is retrieved from the session ID.

Subsequently, we then check what type of request was specified in the JSP (logon, quote,
buy, sell or logoff) and the appropriate method is called.

Figure 7-33 shows the most important code snippets of method performTask(). We have
highlighted the parts which obtain the reference to the Trader object from HttpSession.

Figure 7-33 TraderServlet.performTask()

public void performTask(HttpServletRequest request, HttpServletResponse response) {

Trader trader = null;
// obtain HttpSession
HttpSession httpSesion = request.getSession();

// if logon request
if (request.getParameter(fieldDoPerformLogon) != null) {
 // create new trader session bean and keep it in session
 trader = createTrader(request);
 httpSesion.putValue(traderID, trader);
}
else {// for all other request trader must already exist
 // retrieve trader from session
 trader = (Trader)httpSesion.getValue(traderID);
}

// check which request we got and dispatch to appropriate method
String nextJsp = null;
if (request.getParameter(fieldDoPerformLogon) != null)
nextJsp = handlePerformLogon(request, trader);
else if (request.getParameter(fieldDoShowQuotes) != null)
nextJsp = handleShowQuotes(request, trader);
else if (request.getParameter(fieldDoShowCompanies) != null)
nextJsp = handleShowCompanies(request, trader);
else if (request.getParameter(fieldDoShowBuy) != null)
nextJsp = handleShowBuy(request);
else if (request.getParameter(fieldDoPerformBuy) != null)
nextJsp = handlePerformBuy(request, trader);
else if (request.getParameter(fieldDoShowSell) != null)
nextJsp = handleShowSell(request);
else if (request.getParameter(fieldDoPerformSell) != null)
nextJsp = handlePerformSell(request, trader);
else if (request.getParameter(fieldDoShowLogoff) != null)
nextJsp = handleShowLogoff(request, trader);
else
nextJsp = handleShowError(request, "Got unknown request to process, check the JSPs.");
// now process JSP
ServletContext sc = getServletContext();
RequestDispatcher rd = sc.getRequestDispatcher("/" + nextJsp);
rd.forward(request, response);
Chapter 7. Wrapping the Trader application: JCICS link 201

handlePerformLogon()
This method is used to logon to the Trader application. It performs the following steps:

� Retrieves fields from the request object, which are:

userID The user ID

password The password of the user

jndiPrefix The JNDI prefix of TraderBean

nameService Determines which name service to use

providerURL The URL of COS Naming Server

communicationType Determines if a JCICS link() or the CICS Connector is to
be used

connectURL Specifies the URL of the CTG when using the CICS
Connector

cicsServer Specifies the CICS server when using the CICS Connector

� Invokes the Trader bean’s logon() method

� Creates UserInfo and stores the user ID

UserInfo is a bean which holds the user ID and the last selected company. These fields
are displayed in some HTML windows. UserInfo is stored in the HttpSession object and
retrieved by other methods on demand. This is a shortcut to avoid retrieving the user ID
from the enterprise bean for each request.

� Invokes handleShowCompanies() to return a list of companies

Figure 7-34 shows the complete implementation of the handlePerformLogon() method.

Figure 7-34 TraderServlet.handlePerformLogon()

public String handlePerformLogon(HttpServletRequest request, Trader trader) throws
Exception {

// retrieve fields
String userID = request.getParameter(fieldUserID);
String password = request.getParameter(fieldPassword);
String connectURL = request.getParameter(fieldConnectURL);
String cicsServer = request.getParameter(fieldCicsServer);

// check if userID and password are provided
if(userID.equals("") || password.equals(""))

return handleShowError(request, "You have to specify userID AND password");

// now logon to the application
trader.logon(userID, password, connectURL, cicsServer);

// store user info, we need it later
UserInfoBean userInfo = new UserInfoBean();
userInfo.setUserID(userID);
request.getSession().putValue(userInfoID, userInfo);

// show companies now
return handleShowCompanies(request, trader);

}

202 EJB for OS/390 and z/OS, CICS TS V2.1

handleShowCompanies()
This method returns a list of companies. Companies are returned with bean CompaniesBean.
This is the same class that TraderBean also uses to return the companies. The method
performs the following steps:

� Retrieve CompaniesBean from HttpSession.

– The method tries to find the bean in HttpSession. This is also a shortcut to avoid
retrieving the companies more than once from the enterprise bean for one client
session. Because CompaniesBean implements java.io.Serializable it is allowed to
store it in HttpSession.

– If CompaniesBean is not found (which is always the case for the first invocation of a
new client session), it is obtained from the enterprise bean.

CompaniesBean is stored in HttpSession.

� CompaniesBean is made available for the JSP.

Figure 7-35 shows the full implementation of this method.

Figure 7-35 TraderServlet.handleShowCompanies()

handleShowBuy()
This method is used to display the buy dialog. It performs the following steps:

� Retrieve the input parameter, which is:

company The company in which to buy shares.

� Update company in UserInfo.

Besides the current user ID, UserInfo also holds the last selected company. Therefore it is
necessary to retrieve UserInfo from HttpSession, update it with the selected company, and
store it again in HttpSession.

Because this step is also used by other methods, we have moved it to a private method
which we have named updateCompany().

� Make UserInfo available for the JSP.

This piece of code is also used by other methods. We have moved it to the private method
returnUserInfo().

� Return the name of the next JSP.

public String handleShowCompanies(HttpServletRequest request, Trader trader) throws
Exception {

// check for local copy
HttpSession httpSesion = request.getSession();
CompaniesBean companies = (CompaniesBean)httpSesion.getValue(companiesID);

if(companies == null) {// if not stored locally
companies = trader.getCompanies();

// to improve response time, store it locally
request.getSession().putValue(companiesID, companies);

}

request.setAttribute(beanCompanies, companies);

return jspCompanySelection;
}

Chapter 7. Wrapping the Trader application: JCICS link 203

Figure 7-36 shows the implementation of updateCompany(), Figure 7-37 of returnUserInfo(),
and Figure 7-38 of handleShowBuy().

Figure 7-36 TraderServlet.updateCompany()

Figure 7-37 TraderServlet.returnUserInfo()

Figure 7-38 TraderServlet.handleShowBuy()

handleShowSell()
This method is used to display the sell dialog. The only difference between this and
handleShowBuy() is, that it returns jspSell.

handleShowQuotes()
This method is used to display quotes. It performs the following steps:

� Update company in UserInfo.

� Retrieve the input parameter, which is:

fieldcompany The company to display quotes for.

� Invoke Trader.getQuotes() to retrieve the latest quotes from TraderBean.

� Return QuotesBean available for the JSP.

private void updateCompany(HttpServletRequest request) {

String company = request.getParameter(fieldCompany);
HttpSession httpSesion = request.getSession();
UserInfoBean userInfo = (UserInfoBean)httpSesion.getValue(userInfoID);
userInfo.setCompany(company);
request.getSession().putValue(userInfoID, userInfo);

}

private void returnUserInfo(HttpServletRequest request) throws Exception {

// return user info
HttpSession httpSesion = request.getSession();
UserInfoBean userInfo = (UserInfoBean)httpSesion.getValue(userInfoID);
request.setAttribute(beanUserInfo, userInfo);

}

ppublic String handleShowBuy(HttpServletRequest request) throws Exception {

// query company and update it
updateCompany(request);

// return user info
returnUserInfo(request);

// show buy panel
return jspBuy;

}

204 EJB for OS/390 and z/OS, CICS TS V2.1

� Make UserInfo available for JSP.

� Return name of JSP to process next.

The implementation of handleShowQuotes() is illustrated in Figure 7-390.

Figure 7-39 TraderServlet.handleShowQuotes()

handlePerformBuy()
This method is used to buy shares. It performs the following steps:

� Retrieve parameter, which is:

numberOfShares The number of shares to buy.

� Get current company from UserInfo stored in HttpSession.

Because this functionality is also used by handlePerfromSell(), we have moved this
piece of code to the private method getCurrentCompany().

� Convert number of shares to an integer.

� Invoke Trader.buy() to buy shares.

� Make UserInfo available for JSP.

� Invoke handleShowCompanies() to show again all companies.

The implementation of getCurrentCompany() is shown in Figure 7-41, and the implementation
of handlePerformBuy() in Figure 7-41.

Figure 7-40 TraderServlet.getCurrentCompany()

public String handleShowQuotes(HttpServletRequest request, Trader trader) throws
Exception {

// query company and update it
updateCompany(request);

// get the quotes
String company = request.getParameter(fieldCompany);
QuotesBean quotes = trader.getQuotes(company);

// return quotes
request.setAttribute(beanQuotes, quotes);

// return user info
returnUserInfo(request);

// show the quotes
return jspQuotes;

}

private String getCurrentCompany(HttpServletRequest request) throws Exception {

HttpSession httpSesion = request.getSession();
UserInfoBean userInfo = (UserInfoBean)httpSesion.getValue(userInfoID);
return userInfo.getCompany();

}

Chapter 7. Wrapping the Trader application: JCICS link 205

Figure 7-41 TraderServlet.handlePerformBuy()

handlePerformSell()
This method is used to sell shares. Its implementation is exactly the same as
handlePerformBuy(), except that Trader.sell() is called instead of Trader.buy().

handleShowLogoff()
This method is used to logoff from Trader. It performs the following steps:

� Removes the session bean instance in the EJB server.

� Removes Trader from HttpSession.

� Removes CompaniesBean from HttpSession.

� Removes UserInfo from HttpSession.

� Returns the name of JSP to process next.

Figure 7-42 shows the implementation of handleShowLogoff().

Figure 7-42 TraderServlet.handleShowLogoff()

public String handlePerformBuy(HttpServletRequest request, Trader trader) throws
Exception {

// get the number of shares
String numberOfShares = request.getParameter(fieldNumberOfShares);
String company = getCurrentCompany(request);

// convert to integer
int shares = 0;
try {

shares = Integer.parseInt(numberOfShares);
} catch(Exception e) {
}

// buy shares
trader.buy(company, shares);
// return user info
returnUserInfo(request);
// go back to companies selction
return handleShowCompanies(request, trader);

}

public String handleShowLogoff(HttpServletRequest request, Trader trader) throws
Exception {

// logoff and then remove trader object in EJB server
trader.logoff();
trader.remove();

// remove session variables
request.getSession().removeValue(traderID);
request.getSession().removeValue(companiesID);
request.getSession().removeValue(userInfoID);

// return to logon panel
return jspLogon;

}

206 EJB for OS/390 and z/OS, CICS TS V2.1

TraderServlet.handleShowError()
This method is used to show an error message. It performs the following steps:

� Instantiates an ErrorMessageBean holding the error message.

� Makes ErrorMessageBean available for JSP.

� Returns the name of JSP to process next.

Figure 7-43 shows the implementation of handleShowError().

Figure 7-43 TraderServlet.handleShowError()

Now that we have implemented TraderServlet, we need to write the corresponding
JavaServer Pages.

Developing the JavaServer Pages
We have created the following JavaServer Pages with WebSphere Studio:

� Logon.jsp
� CompanySelection.jsp
� Quotes.jsp
� Buy.jsp
� Sell.jsp
� Logoff.jsp
� TraderError.jsp

These JavaServer Pages obtain their information from UserInfoBean, CompaniesBean,
QuotesBean, and ErrorMessageBean.

7.4.3 Configuring WebSphere Application Server for Windows NT
This section explains how we configured WebSphere Application Server Advanced Edition
V3.5 for Windows NT to run our TraderServlet in order to test the Trader enterprise bean.

The following steps need to be performed when configuring WebSphere Application Server
for Windows NT:

1. Exporting the JAR files

2. Copying files to the WebSphere environment

3. Creating a Web application

4. Defining the TraderServlet

public String handleShowError(String errorText) throws Exception {

request.setAttribute(beanErrorMessage, new ErrorMessageBean(errorText));

return jspTraderError;

}

Chapter 7. Wrapping the Trader application: JCICS link 207

Export the JAR files
For the WebSphere environment, we need the client classes for the TraderBean and the
servlet classes. Then we exported the bean’s client classes to the file traderCLI.jar and the
servlet related classes to traderServlet.jar.

First, we create traderCLI.jar, as shown in the following steps:

1. In VAJ select the EJB tab.

2. Click group ITSOEJB390 with the right mouse button and select Export -> Client JAR to
open the Export to an EJB Client JAR File SmartGuide.

3. You can see that initially one bean and six classes are selected. Click Select referenced
types and resources. Now eight classes are selected.

4. Click Details besides .class to verify which classes are selected. These should be:

– _Trader_BaseStub.class
– _Trader_Stub.class
– _TraderHome_BaseStub.class
– _TraderHome_Stub.class
– CompaniesBean.class
– QuotesBean.class
– Trader.class
– TraderHome.class

Click OK to close the window.

5. As the JAR file name, type traderCLI.jar.

6. Click Finish to export the class files to traderCLI.jar.

Now we create traderServlet.jar:

1. In VAJ click tab Projects.

2. Click with the right mouse button package itso.ejb390.trader.servlet and select Export to
open the Export SmartGuide.

3. Select Jar file, then click Next.

4. Make sure that .class is selected.

5. Click Details besides .class to see which classes are selected. These should be:

– ErrorMessageBean
– TraderServlet
– UserInfoBean

Click OK to close the window again.

6. As the JAR file name specify traderServlet.jar.

7. Click Finish to export the class files to traderServlet.jar

Copying files to the WebSphere environment
As you will see later, we shall call the Web application trader, and it will run under the
application server default server. Therefore, we created the following directories on the
workstation running WebSphere.

� C:\WebSphere\AppServer\host\default_host\trader\web

This directory contains the JSP files.

� C:\WebSphere\AppServer\host\default_host\trader\servlets

This directory contains the servlets.
208 EJB for OS/390 and z/OS, CICS TS V2.1

Having created these directories, we then did as follows:

1. Copied traderCLI.jar and traderServlet.jar to
C:\WebSphere\AppServer\host\default_host\trader\servlets.

2. Copied the JSP files we have created as described in , “Developing the JavaServer
Pages” on page 207 to C:\WebSphere\AppServer\host\default_host\trader\web.

Creating a Web application
Now we will show how we created a Web application for TraderServlet and how we
configured it.

1. On your workstation running WebSphere Application Server start WebSphere Advanced
Administrative Console. From your Windows desktop select Start -> Programs -> IBM
WebSphere -> Application Server V3.5 -> Administrator’s Console.

2. Select Console -> Task -> Create a Web Application.

3. As Web Application Name, type trader.

4. Deselect Enable File Servlet.

5. Select Enable JSP 1.0.

6. Click Next.

7. Open the Nodes subtree until you see Default Servlet Engine of your Default Server.

8. Select Default Servlet Engine.

9. Click Next.

10.Type your description.

11.For Web Application Web Path specify /trader instead of /webapp/trader.

12.Click Next.

13.Leave the Document Root as suggested by WebSphere:
C:\WebSphere\AppServer\host\default_host\trader\Web

14.In addition to classpath C:\WebSphere\AppServer\host\default_host\trader\servlets
add the following JAR files:

– C:\WebSphere\AppServer\host\default_host\trader\servlets\traderServlet.jar

– C:\WebSphere\AppServer\host\default_host\trader\servlets\traderCLI.jar

Now your windows should look as illustrated in Figure 7-44.

15.Click Finish to create the Web application.

 Note: To improve performance we suggest that you always stop the application server
before you do any changes. One way to do this is to click the application server (for
example, default server) with the right mouse button and select Stop. After you have made
your changes, start the application server. Click the application server with the right mouse
button and select Start.
Chapter 7. Wrapping the Trader application: JCICS link 209

Figure 7-44 Set the classpath for TraderServlet

Defining the Trader servlet
After creating the Trader Web application, we defined the Trader servlet as follows:

1. Right-click on the Web application trader and select Create -> Servlet.

2. As servlet name, specify TraderServlet.

3. Type the description you like.

4. For Servlet Class Name enter itso.ejb390.trader.servlet.TraderServlet.

5. Click Add to add default_host/trader/ to the Servlet Web Path List.

6. Click OK to close the Add Web Path to Servlet window. Your Create Servlet window should
now look as shown in Figure 7-45.

7. Click OK to create the servlet.

Figure 7-45 Create TraderServlet in WebSphere
210 EJB for OS/390 and z/OS, CICS TS V2.1

7.4.4 Configuring WebSphere Application Server for OS/390
This section explains how we configured WebSphere Application Server V3.5 for OS/390 to
run our TraderServlet in order to test the Trader enterprise bean deployed in CICS. The
deployed JAR file did not need any modification from the one used in WebSphere Application
Server for Windows NT, therefore the creation of the JAR file does not differ from that
documented in “Export the JAR files” on page 208. The JSP and HTML files were also the
same ones as those used for Windows NT.

The following steps need to be performed when configuring WebSphere Application Server
for OS/390:

1. Copy the files to the HFS on OS/390.

Our Web application server used the following HFS directories on OS/390:

/usr/lpp/was35 Application server root

/web/cics4 Location of configuration files

/web/cics4/servlets Location of servlets and JAR files

We transferred the files traderCli.jar, traderServlet.jar, j2ee.jar to this
directory

/web/cics4/webapp/trader Location of HTML documents

We transferred the files Buy.jsp, CompanySelection.jsp, Logon.jsp, Quotes.jsp,
Sell.jsp, TraderError.jsp to this directory.

2. Edit the configuration files.

We edited the was.conf and httpd.conf files to configure the application server with our
new Trader Web application. A summary of the statements we added is shown in
Figure 7-46 and Figure 7-47.

Figure 7-46 WebSphere Application Server for OS/390 — httpd.conf

Figure 7-47 WebSphere Application Server for OS/390 — was.conf

For further details on configuring WebSphere Application Server for OS/390, refer to HTTP
Server Planning, Installing, and Using, SC31-8690, and WebSphere Application Server
Standard Edition Planning, Installing, and Using, GC34-4835, available from the following
Web site:

http://www-4.ibm.com/software/webservers/appserv/library_390.html

Service /trader/* /usr/lpp/was35/AppServer/bin/was350plugin.so:service_exit
Service /webapp/* /usr/lpp/was35/AppServer/bin/was350plugin.so:service_exit
Service /*.jsp /usr/lpp/was35/AppServer/bin/was350plugin.so:service_exit

#Trader EJB servlet
deployedwebapp.TraderEJB.host=default_host
deployedwebapp.TraderEJB.rooturi=/trader
deployedwebapp.TraderEJB.classpath=/web/cics4/servlets
deployedwebapp.TraderEJB.documentroot=/web/cics4/webapp/trader
deployedwebapp.TraderEJB.autoreloadinterval=3000
webapp.TraderEJB.jspmapping=*.jsp
webapp.TraderEJB.filemapping=/
webapp.TraderEJB.jsplevel=1.0
webapp.TraderEJB.servlet.EJBServlet.code=itso.ejb390.trader.servlet.TraderServlet
webapp.TraderEJB.servlet.EJBServlet.servletmapping=/TraderServlet
Chapter 7. Wrapping the Trader application: JCICS link 211

http://www-4.ibm.com/software/webservers/appserv/library_390.html

Testing the Trader servlet
After starting the application server, open your Web browser and enter the following URL:

http://<hostname>/trader/Logon.jsp

In this URL, <hostname> specifies the TCP/IP address of your Web server. You should now
receive a logon panel as shown in Figure 7-48. The panels shown are the same for either
WebSphere Application Server on Windows NT or on OS/390.

Figure 7-48 Logon to Trader application using TraderServlet

To logon, follow the steps below:

1. Enter any user ID and any password.

2. Leave JCICS-COBOL selected, to use a JCICS link() to invoke the COBOL Trader
application.

3. If your have defined a JNDI prefix with your CORBASERVER, use this prefix for
JndiPrefix. If you have no JNDI prefix defined, this field must be empty. Our JndiPrefix was
ITSO/PJA5.

4. If you use the connection factory provided by WebSphere Application Server Advanced
Edition for Windows NT, you can use the default value of
com.ibm.ejs.ns.jndi.CNInitialContextFactory as the NameService. Otherwise if you
used the connection factory provided by j2ee.jar, such as when using WebSphere
Application Server V3.5 for OS/390 change it to com.sun.jndi.cosnaming.CNCtxFactory
212 EJB for OS/390 and z/OS, CICS TS V2.1

http://www-4.ibm.com/software/webservers/appserv/library_390.html

5. Specify the provider URL of your COS Naming Server. In our case the value is
iiop://hecate:900/ because our COS Naming Server and Web server both ran on the
workstation called hecate.

6. The fields URL to connect to and CICS Server are ignored for JCICS-COBOL and so
can be left to default.

7. Click Logon to connect to trader.

The next window you should see is the company selection as illustrated in Figure 7-50.

Figure 7-49 Company selection using TraderServlet

In this window you can see the same four companies as we have seen using the stand-alone
TraderTest program. Choose from the following menus to obtain a quote, or trade shares.

Quotes To view the quotes of a company

Buy To buy shares of a company

Sell To sell shares of a company

Logoff To logoff from Trader and return to the logon window

If you chose Quotes, you will be presented with the HTML form shown in Example 7-51.
Chapter 7. Wrapping the Trader application: JCICS link 213

Figure 7-50 Quote results using TraderServlet

If you now click on Companies, this will return you to the Company Selection window, and you
can select Buy or Sell. If you select Buy you will be presented with a window as shown in
Example 7-51, enabling you to buy shares in this particular company.

Figure 7-51 Buy Shares form using TraderServlet
214 EJB for OS/390 and z/OS, CICS TS V2.1

7.5 Summary
This chapter has shown you how you can use an enterprise bean in CICS TS V2.1 to wrap
the business logic in an existing application. The CICS program in question does not have to
be a COBOL application, but could be any kind of CICS program, written in Assembler, PL/I,
C, C++, or even Java.

As you will see in the following chapters, we go on to extend the Trader enterprise bean using
a series of new back-end classes in place of the existing TraderBackendJcics class. These
classes have the same functionality as the original COBOL Trader application, but are written
in Java using either JCICS, JDBC, or SQLJ, and directly access either the existing VSAM
files or DB2.

The reasons why we structured our development like this are two-fold. First, we wanted show
you how to access VSAM files and relational data directly from an enterprise bean in CICS.
Second, we wanted to illustrate a possible migration path in a real world environment,
whereby an enterprise bean is used first to wrap a traditional COBOL application and then the
enterprise bean is further developed to invoke new Java based business logic in CICS.

This does mean that our enterprise bean is structured in a somewhat different way than might
otherwise be the case. All the business logic is implemented in a set of back-end classes that
implement a single interface TraderBackend. The invocation of the correct back-end class is
controlled using an input parameter in order to ensure that the correct back-end class is
invoked. A real-life application could be structured somewhat differently with all the business
logic implemented within the actual session beans (or within multiple session beans).
Chapter 7. Wrapping the Trader application: JCICS link 215

216 EJB for OS/390 and z/OS, CICS TS V2.1

Chapter 8. Wrapping the Trader application:
CICS Connector

This aim of this chapter is to describe how to write an enterprise bean that invokes an existing
CICS program (written in COBOL or any other language), using the CICS connector. To this
end, we show you how we modified the TraderBean developed in the previous chapter, to use
the CICS connector as opposed to the JCICS link() method. We then show you how we
deployed this modified TraderBean into WebSphere Application Server on Windows NT, and
then how we moved the same code into our CICS TS V2.1 EJB Server. This scenario is
illustrated in Figure 8-1.

Figure 8-1 Calling a COBOL program with the CICS Connector

8

 CICS
EJB Server

TRADERBL
(COBOL

application)

COMMAREA

OS/390

CICS
Transaction

Gateway

WebSphere
Application Server

TCP

EXCI

TraderBean

TraderBean
© Copyright IBM Corp. 2001 217

Common Connector Framework
The CICS connector is part of IBM’s Common Connector Framework (CCF) and provides a
standard infrastructure for developing client applications using JavaBean connectors. The
CCF is based upon the following objects:

� ConnectionSpec is the object that defines all connection-relevant attributes of a CCF
connector, such as hostname, port number.

� InteractionSpec retains all attributes of the interaction itself, such as the name of the
CICS application.

� Communication is the object that will drive a particular interaction, specifying only an
instance of the InteractionSpec, and an input and output record to carry the exchanged
data.

The CICS Transaction Gateway provides the objects CICSConnectionSpec,
ECIInteractionSpec, and EPIInteractionSpec classes that implement the CCF connector for
CICS. These classes are provided in the CTG class library ctgclient.jar, and are also provided
by VisualAge for Java and by CICS Transaction Server V2.1. For further information on the
CCF, refer to the redbook CCF Connectors and Databases Connections using WebSphere
Advanced Edition, SG24-5514.

CICS TS V2.1 connector
In CICS TS V2.1, a Java program or enterprise bean running within CICS can use the new
CICS Connector for CICS TS to link to a suitable CICS server program. This connector runs
within the CICS region and provides the same CCF connector interface as previously
provided by the CTG. However, when using the CICS Connector for CICS TS, the CTG is not
required, as the connector runs within the CICS TS V2.1 JVM. This function provided is
equivalent to the JCICS link() method that we used in our previous chapter, since it allows
a Java program to invoke the business logic in an existing CICS application.

The advantage of using the CICS connector for CICS TS over the JCICS link() method is
that it allows you to take an enterprise bean that was previously deployed to an external EJB
Server (and used the CTG to invoke CICS applications) and deploy it directly in the CICS TS
V2.1 EJB Server without modification. To this end, we illustrate how we did just this by
deploying a CCF version of our TraderBean into both WebSphere Application Server and
directly into our CICS TS V2.1 EJB Server, with no modification of the code.

Note: The CICS connector for CICS TS is based on the technology in the CTG class
library ctgclient.jar. Because of this, it is also possible to develop and deploy Java
applications into CICS TS V2.1 that use the CTG JavaGateway and ECIRequest objects,
instead of using the ECIInteractionSpec and EPIInteractionSpec objects. However, you
should note that the JCICS link() method is a lower level interface than either of these
and is therefore likely to provide the best performance, but will not be portable if your
application is moved outside of a CICS region.
218 EJB for OS/390 and z/OS, CICS TS V2.1

8.1 Quick start — Invoking TraderBean
If you want to run our sample Trader enterprise bean without following all the details specified
in this chapter, use the steps below. All the source code and examples used in this book are
available for download from the redbooks Web site ftp://www.redbooks.ibm.com/redbooks/
and for full details of the available files and how to obtain them, you can refer to Appendix C,
“Using the additional material” on page 315.

1. Install the COBOL Trader application in your CICS system. For more details, refer to
Appendix B, “The COBOL Trader application” on page 309.

2. Either deploy the TraderBean to either WebSphere Application Server (see 8.3,
“Deploying the enterprise bean to WebSphere” on page 227)...

3. Or deploy the TraderBean to your CICS TS V2.1 region (see 8.4, “Deploying the
enterprise bean to CICS” on page 230). You will need to create a CICS TCPIPSERVICE,
CORBASERVER, REQUESTMODEL and DJAR definition if you have not already done
so; refer to 6.3.3, “Deploying to CICS” on page 150 for further details.

4. Test the application; this can be achieved in one of the following two ways:

a. Use our supplied TraderServlet to create a Web application with an HTML front-end to
TraderBean. For further details on the expected output refer to Figure 7-50, “Quote
results using TraderServlet” on page 214.

b. Use the supplied runTest.cmd file to invoke our stand-alone Java test application
TraderTest. To set up TraderTest, simply do the following:

• On your workstation, create a directory (for example, C:\itsotrader) and copy the
following sample files to this directory:

traderCLI.jar
traderTest.jar
runTest.cmd

• Ensure that you have a Java 2 runtime environment at version 1.3 or greater
installed on your workstation. You can verify your version with the command:

java -version

• Ensure that you have file j2ee.jar accessible on your workstation. If not, you can
either obtain it if you install the CICS development deployment tool or by installing
Java 2 SDK, Enterprise Edition available from:

http://java.sun.com

• Invoke TraderTest using the runtest.cmd file. You will need to alter the input
parameters as documented in the file. For further details and for an example of
expected output, refer to 8.3.1, “Testing the enterprise bean running in WebSphere”
on page 229.
Chapter 8. Wrapping the Trader application: CICS Connector 219

ftp://www.redbooks.ibm.com/redbooks/
http://java.sun.com.

8.2 Adapting TraderBean for use of the CICS Connector
Modification of the TraderBean to use the CICS connector requires only minimal changes to
the bean itself. This section details these changes in the method loadClass().

Modify TraderBean.loadClass()
Our initial implementation of loadClass() only took into account access using the JCICS
link() method to invoke the Trader COBOL application. However, because we implemented
all the CICS access logic in back-end classes we need to create a new class to invoke the
Trader COBOL application using the CCF, called TraderBackendCICSConnectorCCF. The
modifications to loadClass() to invoke this new class are shown in Figure 8-2 on page 220.

Figure 8-2 TraderBean.loadClass() loading TraderBackendCICSConnectorCCF

8.2.1 Implementing TraderBackendCICSConnectorCCF
This section demonstrates how to implement class TraderBackendCICSConnectorCCF which
invokes the COBOL Trader application using the CICS Connector.

Because the class must implement TraderBackend, it is necessary to implement the following
methods:

� logon()
� logoff()
� getCompanies()
� getQuotes()
� buy()
� sell()
� ejbBackendCreate()
� ejbBackendRemove()
� ejbBackendActivate()
� ejbBackendPassivate()

private void loadClass(String type) throws Exception {

Class loadClass=null;

if(type.equalsIgnoreCase("JCICS-COBOL") == true) {
 loadClass = Class.forName("itso.ejb390.trader.TraderBackendJcics");
}
else if(type.equalsIgnoreCase("CICSConnectorCCF") == true) {
 loadClass =
 Class.forName("itso.ejb390.trader.TraderBackendCICSConnectorCCF");
}
else {
 throw new TraderException("You specified unknown type " + type);
}

ivTraderBackend = (TraderBackend)loadClass.newInstance();

}

220 EJB for OS/390 and z/OS, CICS TS V2.1

There are two ways of using the CICS Connector for CICS TS:

1. Program to the connector’s Common Connector Framework (CCF) Client Interface, using
VisualAge for Java Enterprise Access Builder or a similar product. This is the
recommended method.

2. Program to the connector’s CTG API (using the JavaGateway and ECIRequest objects).
Normally, you would use this method only if you do not have access to VAJ EAB or a
similar product.

For our sample we will show how to use CICS Connector using the CCF interface. For more
information about CCF, refer to chapter 13 of the e-business Enablement Cookbook for
OS/390 Volume III: Java Development, or the online help of VisualAge for Java,
SG24-5980.

The following steps are necessary to implement the new back-end class
TraderBackendCICSConnectorCCF, and are described in more detail below:

1. Create class TraderCommand.

2. Implement class TraderBackendCICSConnectorCCF.

3. Implement control methods for TraderBackendCICSConnectorCCF.

4. Implement TraderBackendCICSConnectorCCF.logon().

5. Implement TraderBackendCICSConnectorCCF.getCompanies().

6. Implement TraderBackendCICSConnectorCCF.getQuotes().

7. Implement TraderBackendCICSConnectorCCF.buy().

8. Implement TraderBackendCICSConnectorCCF.sell().

Create class TraderCommand
� Before you start to use CCF with VAJ, you have to install the IBM Common Connector

Framework feature. We assume that you have already also installed the IBM EJB
Development Environment, Enterprise Access Builder, IBM Java Record Library, and
CICS Connector features as described in the previous chapters:

Now follow these steps:

1. In VAJ select Workspace -> Tools -> Enterprise Access Builder -> Create
Command to open the Create Command SmartGuide.

2. Select the project ITSO EJB 390 Redbook.

3. Select the package itso.ejb390.trader.

4. As the class name specify TraderCommand.

5. Ensure that edit when finished is selected.

6. Click Browse for ConnectionSpec.

Select CICSConnectionSpec and click OK.

7. Click Edit for the ConnectionSpec to view its properties.

a. As you can see, URL is set to local:. This will work with the CICS connector for CICS
TS, but not with a remote CTG, so we will need to modify this later.

b. Click Close to close the properties window.

8. Click Browse for InteractionSpec.

Select ECIInteractionSpec and click OK.

9. Click Edit for InteractionSpec to view its properties.
Chapter 8. Wrapping the Trader application: CICS Connector 221

a. Click the rectangle which represents the value of property programName and type
TRADERBL. This is the name of the COBOL program we want to invoke.

b. Click OK to close the properties window.

10.Click Next.

11.Ensure that implements IByteBuffer is selected.

12.As class name for the input record bean, specify itso.ejb390.trader.TraderRecord. You
can use the Browse button to find the class easily.

13.For output record beans select Use input bean type as output bean type.

14.Click Finish to create TraderRecord.

15.Because we specified to edit the command when we created TraderCommand, the
Command Editor opens. Verify the settings you specified and make changes if necessary.

16.Close the Command Editor.

As you can see, the CICSConnectionSpec controls the way that a CICS system is accessed,
including the URL of the connector. Since we let the URL default to the use of the local
protocol, we need to modify the code in order for it to work with the CTG which will require a
valid URL of our remote CTG daemon. Theoretically we would need a new Command which
defines these other properties. However, we decided to reuse TraderCommand, and therefore
it is necessary to change TraderCommand slightly, as explained next.

Select TraderCommand to view its instance variables. There you can see a section which
allows you to add your own user defined code. Define the following two instance variables as
shown in Figure 8-3.

Figure 8-3 Define instance variables for TraderCommand

Edit the method getceConnectionSpec() and add the code as illustrated in Figure 8-4.

Figure 8-4 Change TraderCommand.getceConnectionSpec()

Make a copy of the default constructor TraderCommand() and change it as shown (Figure 8-5).

Figure 8-5 New constructor for TraderCommand

// user code begin {__declarations_1}
 private String connectURL="local:";
 private String cicsServer="";
// user code end {__declarations_1}

// user code begin {__getceConnectionSpec()_1}
ceConnectionSpec.setURL(connectURL);
ceConnectionSpec.setCICSServer(cicsServer);
// user code end {__getceConnectionSpec()_1}

public TraderCommand(String connectURLArg, String cicsServerArg){

 super();
 try{
 // user code begin {__TraderCommand()_1}
 connectURL = connectURLArg;
 cicsServer = cicsServerArg;
 // user code end {__TraderCommand()_1}
222 EJB for OS/390 and z/OS, CICS TS V2.1

Optionally, you can now delete the default constructor TraderCommand() and method main().

Now that we have created TraderCommand we can create class
TraderBackendCICSConnectorCCF which will use TraderCommand to invoke the COBOL
Trader application.

Implement class TraderBackendCICSConnectorCCF
This section shows how to implement TraderBackendCICSConnectorCCF to invoke Trader
using the CICS Connector. It makes use of the CCF by using TraderCommand class, which
we created in the previous step.

The declaration of TraderBackendCICSConnectorCCF is shown in Figure 8-6. It is similar to
TraderBackendJcics, but declares the two additional instance variables connectURL and
cicsServer.

Figure 8-6 Declaration of TraderBackendCICSConnectorCCF

Implement control methods for TraderBackendCICSConnectorCCF
Similar to our previous back-end class TraderBackendJcics, the callbacks from the EJB
control methods to the methods ejbBackendCreate(), ejbBackendRemove(),
ejbBAckendActivate(), and ejbBackendPassivate() do not need any actual code and are
only retained for compatibility with later versions of the bean. See Figure 8-7.

Figure 8-7 Control methods of TraderBackendCICSConnectorCCF

Implement TraderBackendCICSConnectorCCF.logon()
In contrast to method TraderBackendJcics.logon() we now have to keep connectURL and
cicsServer for use later as illustrated in Figure 8-8.

Figure 8-8 TraderBackendCICSConnectorCCF.logon()

import com.ibm.cics.server.Program;

public class TraderBackendCICSConnectorCCF implements TraderBackend {

 private final static int NUM_OF_COMPANIES = 4;

 private String connectURL=null;
 private String cicsServer=null;
}

public void ejbBackendCreate() throws javax.ejb.CreateException,
 java.rmi.RemoteException {}

public void ejbBackendRemove() throws java.rmi.RemoteException {}

public void ejbBackendActivate() throws java.rmi.RemoteException {}

public void ejbBackendPassivate() throws java.rmi.RemoteException {}

public void logon(String userIDArg, String passwordArg, String connectURLArg, String
cicsServerArg) {

 connectURL = connectURLArg;
 cicsServer = cicsServerArg;
}

Chapter 8. Wrapping the Trader application: CICS Connector 223

Implement TraderBackendCICSConnectorCCF.logoff()
For this back-end implementation, no business logic is necessary to logoff. Therefore, the
method is quite simple, as illustrated in Figure 8-9.

Figure 8-9 TraderBackendCICSConnectorCCF.logoff()

Implement TraderBackendCICSConnectorCCF.getCompanies()
The method getCompanies() does the following:

� Instantiate a CompaniesBean.

� Instantiate a TraderCommand.

� Set the request type to Get_Company in the input COMMAREA.

� Execute TraderCommand to invoke Trader.

� Iterate over company name array of the output COMMAREA and copy the companies to
CompaniesBean.

� Return the CompaniesBean instance.

The implementation of this method is very similar to TraderBackendJcics.getCompanies(),
but simpler, as you can see. Figure 8-10 shows the implementation of the method
getCompanies().

Figure 8-10 TraderBackendCICSConnectorCCF.getCompanies()

public void logoff() {
}

public CompaniesBean getCompanies() throws Exception {

CompaniesBean companies = new CompaniesBean();

// create trader command
TraderCommand traderCommand = new TraderCommand(connectURL, cicsServer);

// set request type
traderCommand.getCeInput().setRequest__Type("Get_Company");

// execute command
traderCommand.execute();

// read companies and copy them to CompaniesBean
TraderRecord traderCommareaOut = traderCommand.getCeOutput0();

for (int i = 0; i < NUM_OF_COMPANIES; i++) {
 companies.addCompany(traderCommareaOut.getCompany__Name__Tab(i));
}

return companies;
}

224 EJB for OS/390 and z/OS, CICS TS V2.1

Implement TraderBackendCICSConnectorCCF.getQuotes()
Method getQuotes() performs the following steps:

� Instantiate a QuotesBean.
� Instantiate a TraderCommand.
� Set the request type to Share_Value in the input COMMAREA.
� Execute TraderCommand to invoke COBOL Trader program.
� Copy the results from the output COMMAREA.
� Return the QuotesBean instance.

Figure 8-11 shows the implementation of method getQuotes().

Figure 8-11 TraderBackendCICSConnectorCCF.getQuotes()

public QuotesBean getQuotes(String company, String userID)
 throws Exception {

QuotesBean quotes = new QuotesBean();

// create trader command
TraderCommand traderCommand = new TraderCommand(connectURL, cicsServer);
TraderRecord traderCommarea = traderCommand.getCeInput();

// set request type
traderCommand.getCeInput().setRequest__Type("Share_Value");

// set additional parameters
traderCommarea.setCompany__Name(company);
traderCommarea.setUserid(userID);

// execute command
traderCommand.execute();

// return results
TraderRecord traderCommareaOut = traderCommand.getCeOutput0();

quotes.setUnitSharePrice(traderCommareaOut.getUnit__Share__Price());
quotes.setUnitValue1Days(traderCommareaOut.getUnit__Value__1__Days());
quotes.setUnitValue2Days(traderCommareaOut.getUnit__Value__2__Days());
quotes.setUnitValue3Days(traderCommareaOut.getUnit__Value__3__Days());
quotes.setUnitValue4Days(traderCommareaOut.getUnit__Value__4__Days());
quotes.setUnitValue5Days(traderCommareaOut.getUnit__Value__5__Days());
quotes.setUnitValue6Days(traderCommareaOut.getUnit__Value__6__Days());
quotes.setUnitValue7Days(traderCommareaOut.getUnit__Value__7__Days());
quotes.setCommissionCostSell(
 traderCommareaOut.getCommission__Cost__Sell());
quotes.setCommissionCostBuy(traderCommareaOut.getCommission__Cost__Buy());
quotes.setNumberOfShares(traderCommareaOut.getNo__Of__Shares());
quotes.setTotalShareValue(traderCommareaOut.getTotal__Share__Value());

return quotes;
}

Chapter 8. Wrapping the Trader application: CICS Connector 225

Implement TraderBackendCICSConnectorCCF.buy()
This method needs to do the following:

� Instantiate a TraderCommand.
� Set the request type to Buy_Sell in input COMMAREA.
� Set company, userID, and number of shares in input COMMAREA.
� Set a flag indicating whether to buy or to sell shares in input COMMAREA.
� Execute TraderCommand to invoke Trader.

Just as we did in the class TraderBackendJcics, we have moved this functionality into a
private method trade(). We then specify with an additional flag, whether or not to buy or sell
shares. The implementation of method buy() is shown in Figure 8-12, and method trade() is
shown in Figure 8-13.

Figure 8-12 TraderBackendCICSConnectorCCF.buy()

Figure 8-13 Implementation of TraderBackendCICSConnectorCCF.trade()

Implement TraderBackendCICSConnectorCCF.sell()
The method sell() is very similar to the method buy(). It calls the internal method trade() as
shown in Figure 8-14.

Figure 8-14 TraderBackendCICSConnectorCCF.sell()

public void buy(String company, String userID, int numberOfShares)
 throws Exception {
trade(company, userID, numberOfShares, true);
}

private void trade(String company, String userID, int numberOfShares,
 boolean buy) throws Exception {

TraderCommand traderCommand = new TraderCommand(connectURL, cicsServer);
TraderRecord traderCommarea = traderCommand.getCeInput();

traderCommand.getCeInput().setRequest__Type("Buy_Sell");

// set additional parameters
traderCommarea.setCompany__Name(company);
traderCommarea.setUserid(userID);
traderCommarea.setNo__Of__Shares__Dec((short)numberOfShares);
if(buy == true) // if buy
 traderCommarea.setUpdate__Buy__Sell("1");
else // if sell
 traderCommarea.setUpdate__Buy__Sell("2");

traderCommand.execute();
}

public void sell(String company, String userID, int numberOfShares)
 throws Exception {
trade(company, userID, numberOfShares, false);
}

226 EJB for OS/390 and z/OS, CICS TS V2.1

8.3 Deploying the enterprise bean to WebSphere
In this section we describe how to deploy the TraderBean and its related classes to
WebSphere Application Server Advanced Edition for Windows NT; this scenario is shown in
Figure 8-15. The TraderBean uses our new TraderBackendCICSConnectorCCF class to link
to the Trader COBOL application (TRADERBL). The TraderBackendCCF class uses the CCF
to send a request to our OS/390 CTG, which forwards the request into our CICS region using
the EXCI.

Figure 8-15 Deploying Traderbean to WebSphere

After deploying the TraderBean, we also describe how to:

1. Export the enterprise bean and its related classes.

2. Copy the JAR files to WebSphere.

3. Create an EJB container and an enterprise bean definition.

We do not describe how to configure or implement the OS/390 CTG. For further details on
this subject refer to the IBM redbook CICS Transaction Gateway V3.1, The WebSphere
Connector for CICS, SG24-6133.

Export the enterprise bean and its related classes
Export the enterprise bean from VAJ in the same way as described in“Export the enterprise
bean and its related classes” on page 231. The only difference is that you do not need to
include class TraderBackendJcics, because we cannot use the JCICS classes outside of the
CICS environment. Therefore, you should now have thirteen classes and one bean that has
been selected to export. We named our JAR file traderForWAS.jar.

TRADERBL
(COBOL

application)

COMMAREA
CICS TS

OS/390
CICS

Transaction
Gateway

WebSphere
Application Server

TCP

EXCI

TraderBean
CCF
Chapter 8. Wrapping the Trader application: CICS Connector 227

Copy the JAR files to WebSphere
On the workstation running WebSphere, we need several JAR files to run TraderBean. The
easiest way is to create a directory on this workstation for the supporting classes which we
named c:\ejbjar. We copied the following files, all originating from our development
workstation, to this directory:

traderForWAS.jar This is the JAR file created in the previous step.

CTGCLIENT.JAR This file can be found in C:\IBM Connectors\CICS\classes or in the
\classes sub-directory for a CTG installation.

CCF.jar This file is located in C:\IBM Connectors\classes.

eablib.jar This file is located in C:\Program Files\IBM\VisualAge for
Java\eab\runtime30.

Create an EJB container and an enterprise bean definition
On the Windows NT workstation define, using the WebSphere Advanced Administrative
Console, a new EJB Container and an enterprise bean definition, as follows:

1. Stop the Default Server application server.

2. Right-click application server Default Server and select Create -> EJBContainer.

a. Enter Trader as the EJBContainerName.

b. Click OK to create the container and close the window.

3. Right-click on the new EJBContainer Trader and select Create -> EnterpriseBean.

a. Specify Trader as the name.

b. Click Browse to open the file browser window.

i. Navigate to the directory containing traderForWAS.jar, which was in our case
C:\ejbjar, and select it.

ii. Double-click on traderForWAS.jar

iii. The dialog shows you one bean, which is itso.ejb390.trader.Trader/Trader.ser.

iv. Select this bean.

v. Click Select.

vi. A confirm dialog opens which asks you to Deploy and Enable WLM or to Deploy
Only. Click Deploy Only.

vii. A window opens which tells you that the bean is deploying, and then a message
reports that Command Deploy Jar file completed successfully. Click OK.

c. Back in the Create EnterpriseBean window you can see that WebSphere has inserted
a JAR file name and a deployment descriptor for you. You can click Edit to view the
bean properties, but you do not need to make any changes.

d. Click OK to close the Create EnterpriseBean window.

4. Select your node.

5. To the dependent classpath, add the following JAR files we previously copied to c:\ejbjar

C:\ejbjar\eablib.jar;C:\ejbjar\recjava.jar;C:\ejbjar\CCF.jar;C:\ejbjar\CTGCLIENT.jar

6. Click Apply.

7. Start the WebSphere application server Default Server.
228 EJB for OS/390 and z/OS, CICS TS V2.1

8.3.1 Testing the enterprise bean running in WebSphere
We tested our enterprise bean in two ways, with our TraderTest standalone application and
with our TraderServlet application. However, for both environments, because our Trader
enterprise bean is now running in another container, we had to use a different JNDI name
itso/ejb390/trader/Trader. The new name is the package name itso.ejb390.trader combined
with the bean name and is the default WebSphere chose when we deployed the enterprise.

Testing the enterprise bean with TraderTest
TraderTest is a standalone Java application that can be run from either a command line or
within VAJ. Further instructions on how to use this from the command line are given in 8.1,
“Quick start — Invoking TraderBean” on page 219. We were using a CTG on our OS/390
system, the host name of which was wtsc61oe.itso.ibm.com, and that was configured to
listen on port 2006. Thus the URL tcp://wtsc61oe.itso.ibm.com:2006 was required for the
enterprise bean running in WebSphere to connect to the CTG on OS/390.

We edited the following line in the runtest.cmd script so as to invoke the TraderTest
application with the CICSConnectorCCF option.

java -classpath ".;traderTest.jar;traderCLI.jar;C:\Program Files\IBM\CICS TS 2.1
Tools\Common\j2ee.jar" itso.ejb390.trader.test.TraderTest
com.sun.jndi.cosnaming.CNCtxFactory iiop://hecate:900/ itso/ejb390/trader/Trader
CICSConnectorCCF tcp://wtsc61oe.itso.ibm.com:2006 SCSCPJA5

The successful output of runtest.cmd is shown in Example 8-1.

Example 8-1 Successful output of runtest.cmd for DB2JDBC

Starting TraderTest application with following input:
Name service: com.sun.jndi.cosnaming.CNCtxFactory

 Naming Server: iiop://hecate:900/
 JNDI name: itso/ejb390/trader/Trader
 Call type: CICSConnectorCCF
 CTG: tcp://wtsc61oe.itso.ibm.com:2006
 CICS region: SCSCPJA5

Casey_Import_Export
Glass_and_Luget_Plc
Headworth_Electrical
IBM
CommissionCostBuy 010
CommissionCostSell 015
NumberOfShares 0228
TotalShareValue 000037164.00
UnitSharePrice 00163.00
UnitValue1Days 00163.00
UnitValue2Days 00162.00
UnitValue3Days 00160.00
UnitValue4Days 00161.00
UnitValue5Days 00159.00
UnitValue6Days 00156.00
UnitValue7Days 00157.00
Now we buy 5 shares ...
Chapter 8. Wrapping the Trader application: CICS Connector 229

Testing the enterprise bean with TraderServlet
In addition, it is also possible to test the Trader enterprise bean using our TraderServlet that
we developed in 7.4.2, “Servlet development with VisualAge for Java” on page 199. In this
case, we provided the following input parameters to the initial servlet HTML:

Communication type CICSConnectorCCF

JndiPrefix itso/ejb390/trader

NameService com.ibm.ejs.ns.jndi.CNInitialContextFactory

ProviderURL iiop://hecate:900/

URL to connect to tcp://wtsc61oe.itso.ibm.com:2006

CICS Server SCSCPJA5

The output of the TraderServlet was the same as shown in “Testing the Trader servlet” on
page 212.

8.4 Deploying the enterprise bean to CICS
In order to demonstrate the platform neutrality of using the CICS Connector, we took
TraderBean and our new TraderBackendConnectorCCF class and deployed them directly into
our CICS region instead of into WebSphere Application Server. No changes were necessary,
as the TraderBean can use the CICS connector for CICS TS to invoke the required program.
The only difference is that a URL of local: must be used and the SYSID of the region must be
used instead of the APPLID, since the CICS Transaction Gateway is no longer used to
provide connectivity to CICS.

This scenario is illustrated in Figure 8-16.

Figure 8-16 Deploying TraderBean to CICS

CICS TS

TRADERBL
(COBOL

application)

COMMAREA

OS/390

TraderBean
RMI/IIOP

CICS connector
230 EJB for OS/390 and z/OS, CICS TS V2.1

We do not need to modify the code we produced; the only steps we need to take are in the
deployment of the TraderBean and its associated classes.

We need to do the following steps:

1. Export the enterprise bean and its related classes.

2. Convert the exported file to a deployed JAR file.

3. Send the JAR file to the OS/390 system.

4. Send the supporting JAR files to the OS/390 system.

5. Add the supporting JAR files to the trusted middleware classpath.

6. Refresh the DJAR in the CICS shelf.

Export the enterprise bean and its related classes
Export the enterprise bean the same way as described in 7.3.1, “Exporting the enterprise
bean and its related classes” on page 191. The difference is, that you have to include the
three new classes TraderCommand, TraderCommandBeanInfo, and
TraderBackendCICSConnectorCCF. Therefore, you should now have fourteen classes and
one bean selected.

Convert the exported file to a deployed JAR file
You should generate the deployed JAR file using the CICS JAR development tool as
described in 7.3.2, “Converting the exported file to a deployed JAR file” on page 192. If the file
CCF.jar file is not in your system CLASSPATH, you will need to add this to the CLASSPATH in
cicsjdt.bat as described 7.3.2, “Converting the exported file to a deployed JAR file” on
page 192. On our workstation the CCF.jar was located in C:\IBM Connectors\classes.

Send the JAR file to the OS/390 system
Send the deployed JAR file traderForCICS_GEN.jar to your HFS on OS/390 as described in
7.3.3, “Sending the deployed JAR file to OS/390” on page 193 to the OS/390 system.

Send the supporting JAR files to the OS/390 system
Because TraderBackendCICSConnectorCCF uses the CCF, the CCF classes in CCF.jar
need to be made accessible to the CICS JVM. We FTPed the file CCF.jar in directory C:\IBM
Connectors\classes to /u/cicsts21/lib on our OS/390 system.

Add the supporting JAR files to the trusted middleware classpath
As described in 7.3.6, “Adding the supporting JAR files to the trusted middleware classpath”
on page 194, we need to change the trusted middleware classpath for our CICS region to
provide the CCF classes. After the changes, DFHJVMPR in CICSSYSF.CICS610.DFHJVM
looks as illustrated in Figure 8-17.

Figure 8-17 Modifying trusted middleware classpath for use of CCF

Refresh the DJAR in the CICS shelf
The DJAR now has to be deployed to the CICS system. In this sample we assume that you
have already defined the DJAR to CICS as described in Section 7.3.4, “Defining the DJAR in
the CICS system” on page 193. Therefore it is only necessary to discard the existing DJAR
and re-install as follows:

CEMT DISCARD DJAR(TRADER
CEDA INSTALL GR(ITSOEJB) DJAR(TRADER)

TMSUFFIX=/u/cicsts21/lib/eablib.jar:\
/u/cicsts21/lib/CCF.jar
Chapter 8. Wrapping the Trader application: CICS Connector 231

8.4.1 Testing the enterprise bean running in CICS
We tested our enterprise bean in two ways, with our TraderTest standalone application and
with our TraderServlet application. For both environments because our Trader enterprise
bean is now running in another container, we had to use the original JNDI name as specified
on the Jndiprefix of ITSO/PJA5 in the CICS CORBASERVER definition.

TraderTest is a standalone Java application that can be run from either a command line or
within VAJ. Further instructions on how to use this from the command line are given in 8.1,
“Quick start — Invoking TraderBean” on page 219. Note that since we were using the CICS
connector for CICS TS, the URL we had to use was local: and the CICS sysid of PJA5 had to
be specified as the CICS region.

We edited the following line in the runtest.cmd script so as to invoke the TraderTest
application with the CICSConnectorCCF option.

java -classpath ".;traderTest.jar;traderCLI.jar;C:\Program Files\IBM\CICS TS 2.1
Tools\Common\j2ee.jar" itso.ejb390.trader.test.TraderTest
com.sun.jndi.cosnaming.CNCtxFactory iiop://hecate:900/ ITSO/PJA5 CICSConnectorCCF local:
PJA5

The successful output of runtest.cmd is shown in Example 8-2.

Example 8-2 Successful output of runtest.cmd for CICSConnectorCCF

Starting TraderTest application with following input:
Name service: com.sun.jndi.cosnaming.CNCtxFactory

 Naming Server: iiop://hecate:900/
 JNDI name: ITSO/PJA5
 Call type: CICSConnectorCCF
 CTG: local:
 CICS region: PJA5

Casey_Import_Export
Glass_and_Luget_Plc
Headworth_Electrical
IBM
CommissionCostBuy 010
CommissionCostSell 015
NumberOfShares 0228
TotalShareValue 000037164.00
UnitSharePrice 00163.00
UnitValue1Days 00163.00
UnitValue2Days 00162.00
UnitValue3Days 00160.00
UnitValue4Days 00161.00
UnitValue5Days 00159.00
UnitValue6Days 00156.00
UnitValue7Days 00157.00
Now we buy 5 shares ...
232 EJB for OS/390 and z/OS, CICS TS V2.1

Testing the enterprise bean with TraderServlet
In addition it is also possible to test the Trader enterprise bean using our TraderServlet that
we developed in 7.4.2, “Servlet development with VisualAge for Java” on page 199. In this
case we provided the following input parameters to the initial servlet HTML form.

Communication type CICSConnectorCCF

JndiPrefix ITSO/PJA5

NameService com.ibm.ejs.ns.jndi.CNInitialContextFactory

ProviderURL iiop://hecate:900/

URL to connect to local:

CICS Server PJA5

The output of the TraderServlet was the same as shown in , “Testing the Trader servlet” on
page 212.

8.5 Summary
This chapter has shown how to wrap a CICS COBOL program with Enterprise JavaBean
technology. We have developed a universal enterprise bean which is able to invoke a COBOL
program by either using JCICS or the CICS Connector. Of course this way of doing it is not
bound to COBOL programs. You can basically invoke any kind of CICS program, no matter if
it is written in Assembler, COBOL, PL/I, C, C++, or a CICS Java program using the High
Performance Compiler for Java.

As you will see in the next chapters, the enterprise bean will be extended in such a way, that
instead of calling the existing COBOL program, new back-end classes are developed. These
classes have the same functionality as the COBOL Trader program, but are written in Java
and access either the existing VSAM files or a DB2 database.

The reasons why we have done this are twofold. First, we wanted show how to access VSAM
files and relational data directly from an enterprise bean in CICS. Second, we wanted to
illustrate, how a possible migration path in a real -world environment might look.

Wrapping existing CICS programs with enterprise beans can be seen as tactical solution to
enable very fast enterprise technology on OS/390 systems. Re-writing existing applications in
pure Java can be seen as the strategic way to invent enterprise technology on OS/390
systems. Therefore, one scenario could be to wrap first existing applications very quickly to
have them accessible as enterprise beans, while in the meantime the applications are
re-written in pure Java technology and modern software development tools.

This scenario also shows that you can easily change the implementation behind the scene,
without changing any interface of the enterprise bean. Therefore, no client code needs to be
changed and distributed to the workstations, which could save a lot of time and money.
Chapter 8. Wrapping the Trader application: CICS Connector 233

234 EJB for OS/390 and z/OS, CICS TS V2.1

Chapter 9. Rewriting the COBOL Trader
application with JCICS

In this chapter we describe how to re-implement the COBOL Trader application in Java using
enterprise bean technology and the JCICS classes. The goal was to rewrite the COBOL
business logic in Java, but still to access the underlying VSAM files in the same manner. This
is illustrated in Figure 9-1.

Figure 9-1 Rewriting Trader in Java

9

OS/390

VSAM

CICS TS V2.1

TraderBean

TraderBackEndVSAM
 JCICS
KSDS.startBrowse()
KSDS.read()
KSDS.write()
© Copyright IBM Corp. 2001 235

9.1 Quick start — Invoking TraderBean
If you want to run our sample Trader enterprise bean without following all the details specified
in this chapter, use the steps below. All the source code and examples used in this book are
available for download from the redbooks Web site ftp://www.redbooks.ibm.com/redbooks/
and for full details of the available files and how to obtain them, you can refer to Appendix C,
“Using the additional material” on page 315.

1. Install the COBOL Trader application in your CICS system. For details refer to Appendix B,
“The COBOL Trader application” on page 309.

2. Create a CICS TCPIPSERVICE, CORBASERVER, REQUESTMODEL and DJAR
definition if you have not already done so, for more details refer to 6.3.3, “Deploying to
CICS” on page 150.

3. Deploy the TraderBean and the associated back-end classes to your CICS TS V2.1
region. (see 9.3, “Deploying the enterprise bean to CICS” on page 249).

4. Test the application, this can be achieved in one of the following two ways:

a. Use our supplied TraderServlet to create a Web application with a HTML front-end to
TraderBean. For further details on the expected output refer to Figure 7-50 on
page 214.

b. Use the supplied runTest.cmd file to invoke our stand-alone Java test application
TraderTest. To set up TraderTest, simply do the following:

• On your workstation, create a directory (for example C:\itsotrader) and copy the
following sample files to this directory:

traderCLI.jar
traderTest.jar
runTest.cmd

• Ensure that you have a Java 2 runtime environment at version 1.3 or greater on
your workstation installed. You can verify your version with the command:

java -version

• Ensure that you have file j2ee.jar accessible on your workstation. If not, you can
either obtain it if you install the CICS development deployment tool or by installing
Java 2 SDK, Enterprise Edition available from:

http://java.sun.com

• Invoke TraderTest using the runtest.cmd file. You will need to alter the input
parameters as documented in the file. For further details and for an example of
expected output, refer to 9.3.1, “Testing the enterprise bean” on page 250.

9.2 Adapting TraderBean to use JCICS
In Chapter 7, “Wrapping the Trader application: JCICS link” on page 171 we described how
we designed, implemented, and deployed an enterprise bean using the JCICS link()
method to invoke a COBOL program. We designed the bean in such a way that to change the
way the business logic is invoked or implemented requires only minimal changes to the bean
itself.

In order to rewrite the business logic with Java using JCICS to access the VSAM files, we had
to perform the following steps:.

1. Implement a new class TraderBackendVsam

2. Build a Java record using the Java Record Framework.
236 EJB for OS/390 and z/OS, CICS TS V2.1

ftp://www.redbooks.ibm.com/redbooks/
http://java.sun.com.

TraderBean.loadClass()
Before we wrote the TraderBackendVsam class we modified the loadClass() method in
TraderBean to be able to load this back-end class (Figure 9-2); this was the only change
necessary to this class.

Figure 9-2 TraderBean.loadClass() loading TraderBackendVsam

The declaration of class TraderBackendVsam is shown in Figure 9-3.

Figure 9-3 Declaration of TraderBackendVsam

The class declares the string constants CUSTFILE and COMPFILE which represent the CICS file
definitions of the VSAM files. String constant DOT is the separator character for the key of
VSAM file CUSTFILE.

Because the class must implement the TraderBackend interface, it is necessary to implement
the following methods:

� logon()
� logoff()
� getCompanies()
� getQuotes()
� buy()
� sell()
� ejbBackendCreate()
� ejbBackendRemove()
� ejbBackendActivate()
� ejbBackendPassivate()

How these methods and classes used by these methods are implemented is shown in the
next sections.

private void loadClass(String type) throws Exception {

Class loadClass=null;
if(type.equalsIgnoreCase("JCICS-COBOL") == true) {
 loadClass = Class.forName("itso.ejb390.trader.TraderBackendJcics");
}
else if(type.equalsIgnoreCase("CICSConnectorCCF") == true) {
 loadClass = Class.forName("itso.ejb390.trader.TraderBackendCICSConnectorCCF");
}
else if(type.equalsIgnoreCase("JCICS-Java") == true) {
 loadClass = Class.forName("itso.ejb390.trader.TraderBackendVsam");
}
else {
 throw new TraderException("You specified unknown type " + type);
}
ivTraderBackend = (TraderBackend)loadClass.newInstance();
}

import com.ibm.cics.server.*;

public class TraderBackendVsam implements TraderBackend {
 private final static java.lang.String CUSTFILE = "CUSTFILE";
 private final static java.lang.String COMPFILE = "COMPFILE";
 private final static java.lang.String DOT = ".";
}

Chapter 9. Rewriting the COBOL Trader application with JCICS 237

9.2.1 Java Record Framework
VSAM files are accessed from a Java program in CICS using the JCICS API. JCICS classes
define methods which usually take byte arrays as arguments. These arrays contain either
data keys of VSAM records or VSAM record data. VisualAge for Java Enterprise Edition
comes with the Enterprise Access Builder plug-in which allows you to create Java classes
representing such keys or data records from COBOL data definitions. These generated
classes also provide built-in character translation from Unicode to EBCDIC or ASCII and vice
versa.

The COBOL Trader application operates on the two VSAM files COMPANY and
CUSTOMER. How the data records and data keys are mapped to Java classes is described
in the following sections.

COMPANY record
COMPANY represents all existing companies it is possible for the user to buy shares in. We
extracted the COBOL data definition representing the COMPANY-IO-BUFFER structure and
saved it in file company.txt, this is shown in Figure 9-4, and is supplied along with our sample
code.

Figure 9-4 company.txt

One record consists of a company name, the current share value, the share values of the last
seven days, and commission rates. The commission rates are for future use and are
therefore not relevant for this implementation. We will now create with VAJ the Java class
CompanyRecord representing this VSAM record.

1. In VisualAge for Java select Workspace -> Tools -> Enterprise Access Builder ->
Import COBOL to Record Type to open the Import COBOL to Record Type
SmartGuide.

2. Click Browse to open the file dialog.

a. Navigate through your directory structure to select file company.txt which contains the
COBOL definition of the COMPANY-IO-BUFFER.

b. Click Open to select the file and close the file dialog window.

3. Make sure that you import the COBOL definition for generic COBOL code. You can select
this option in the window.

4. Click Next.

01 COMPANY-IO-BUFFER.
 03 COMPANY PIC X(20).
 03 SHARE-VALUE.
 05 SHARE-VALUE-INT-PART PIC X(05).
 05 FILLER PIC X(01).
 05 SHARE-VALUE-DEC-PART PIC X(02).
 03 VALUE-1 PIC X(08).
 03 VALUE-2 PIC X(08).
 03 VALUE-3 PIC X(08).
 03 VALUE-4 PIC X(08).
 03 VALUE-5 PIC X(08).
 03 VALUE-6 PIC X(08).
 03 VALUE-7 PIC X(08).
 03 COMMISSION-BUY PIC X(03).
 03 COMMISSION-SELL PIC X(03).
238 EJB for OS/390 and z/OS, CICS TS V2.1

5. Now you can select one or more 01 COMMAREA levels to be imported by the
SmartGuide. All available 01 levels are listed on the left side of the window. Because our
COBOL data structure has only one 01 level, the left side shows just
COMPANY-IO-BUFFER.

6. Select COMPANY-IO-BUFFER and click the > arrow in the middle of the window.

7. Now COMPANY-IO-BUFFER switches to the right side which shows the selected
COMMAREAS. Click Next.

8. As project name enter ITSO EJB 390 Redbook and for package name enter
itso.ejb390.trader. You can also use the Browse buttons to find the project and package
names.

9. As the class name specify CompanyRecordType.

10.Click Finish to create the record type, and to create a record from the record type.

Now a SmartGuide opens which allows you to create a record from a record type. This
SmartGuide will create the class CompanyRecord which is a Java class representing one
data record of VSAM file COMPANY. This is shown in the next steps.

1. As class name type CompanyRecord. All other options should be left as they are.

2. Click Next to modify the properties of the record.

3. Enter the following:

Floating Point Format IBM

Remote Integer Endian Big Endian

Endian Big Endian

Code Page 037

Machine Type MVS

4. Click Finish to create CompanyRecord.

If you now view the classes of package itso.ejb390.trader, you will see that VisualAge has
added the classes CompanyRecordType, CompanyRecord, and CompanyRecordBeanInfo.
CompanyRecord is the class which we will use as the representation of our VSAM data
record for file COMPANY.

COMPANY record key
The key of COMPANY is company name. Therefore we created file companyKey.txt, which
just contains the COBOL definition for company name. The file is illustrated in Figure 9-5.

Attention: This data structure is not a COMMAREA, it is just a normal COBOL data
definition. Therefore, the description of the Import COBOL to Record Type window
might be a little bit misleading.

Note: If you specify an EBCDIC code page such as 037 for conversion of character
data, you should ensure that you do not also use the CICS DFHCNV templates to
convert the COMMAREA data from ASCII to EBCDIC, otherwise you will experience
corruption of data due to double conversion. For more details on data conversion with
Java in CICS refer to the redbook Revealed! Architecting Web Access to CICS,
SG24-5466.
Chapter 9. Rewriting the COBOL Trader application with JCICS 239

Figure 9-5 companyKey.txt

Now use this file as input to the VisualAge Import COBOL to Record Type SmartGuide as
described in “COMPANY record” on page 238. The output of this operation should be the
classes CompanyKeyRecordType, CompanyKeyRecord, and CompanyKeyRecordBeanInfo.

CUSTOMER record
The CUSTOMER record represents all existing customer to company relations. We have
extracted the COBOL data definition representing one CUSTOMER record and saved it in the
file customer.txt which is shown in Figure 9-6.

Figure 9-6 customer.txt

One record consists of a customer, a separator, a company, and the number of shares the
customer holds for this company. Customer, separator, and company are the record key. For
this application, all the other fields can be ignored, as they are not used.

Now use this file as input to the VisualAge Import COBOL to Record Type SmartGuide as
described in “COMPANY record” on page 238. The output of this operation should be the
classes CustomerRecordType, CustomerRecord, and CustomerRecordBeanInfo.

CUSTOMER record key
The key of CUSTOMER is customer, a separator, and company. Therefore we created file
customerKey.txt, which just contains these COBOL definitions. The file is illustrated in
Figure 9-7.

01 COMPANY-IO-BUFFER.
 03 COMPANY PIC X(20).

01 CUSTOMER-IO-BUFFER.
 03 KEYREC.
 05 CUSTOMER PIC X(60).
 05 KEYREC-DOT PIC X(01).
 05 COMPANY PIC X(20).
 03 CONVERT1.
 05 NO-SHARES PIC X(04).
 03 CONVERT2 REDEFINES CONVERT1.
 05 DEC-NO-SHARES PIC 9(04).
 03 BUY-FROM PIC X(08).
 03 BUY-FROM-NO PIC X(04).
 03 BUY-TO PIC X(08).
 03 BUY-TO-NO PIC X(04).
 03 SELL-FROM PIC X(08).
 03 SELL-FROM-NO PIC X(04).
 03 SELL-TO PIC X(08).
 03 SELL-TO-NO PIC X(04).
 03 ALARM-PERCENT PIC X(03).
240 EJB for OS/390 and z/OS, CICS TS V2.1

Figure 9-7 customerKey.txt

Now use this file as input to the VisualAge Import COBOL to Record Type SmartGuide as
described in “COMPANY record” on page 238. The output of this operation should be the
classes CustomerKeyRecordType, CustomerKeyRecord, and CustomerKeyRecordBeanInfo.

9.2.2 Implementing TraderBackendVsam
The following section details how we implemented the methods in the new back-end class
TraderBackendVsam.

TraderBackendVsam.getCompanies()
Now that we have created the record classes, we can implement method getCompanies().
The code needs to do the following:

� Instantiate a CompaniesBean which is returned as a result later.

� Instantiate a KSDS (Keyed Sequenced Data Set) object.

� Tell the KSDS object the name of the CICS file resource name.

� Obtain a KeyedFileBrowse object from object KSDS with an empty key.

� Iterate through the file, read one record after each other, and store the result in
CompaniesBean.

� End the file browse.

� Return the CompaniesBean instance.

Figure 9-8 shows the implementation of method getCompanies().

01 CUSTOMER-IO-BUFFER.
 03 KEYREC.
 05 CUSTOMER PIC X(60).
 05 KEYREC-DOT PIC X(01).
 05 COMPANY PIC X(20).
Chapter 9. Rewriting the COBOL Trader application with JCICS 241

Figure 9-8 TraderBackend.getCompanies()

TraderBackendVsam.getQuotes()
This method returns quote information related to a specific customer and company. The
method does the following:

� Instantiates a QuotesBean which is returned as result later.

� Tries to read a customer - company record. If the record is not found, an empty record is
created.

� From the customer record retrieves the actual number of shares the customer holds for
this company and store it in QuotesBean.

� Reads company data.

� Stores the result in QuotesBean.

Figure 9-9 shows the implementation of method getQuotes().

public CompaniesBean getCompanies() throws Exception {

CompaniesBean companies = new CompaniesBean();

KSDS companiesKSDS = new KSDS();
companiesKSDS.setName(COMPFILE);

// obtain a browser
CompanyKeyRecord companyKey = new CompanyKeyRecord();
companyKey.setInitialValues();

KeyedFileBrowse kfb = companiesKSDS.startBrowse(
 companyKey.getBytes());

KeyHolder kh = new KeyHolder(companyKey.getBytes());
RecordHolder rh = new RecordHolder();

// now iterate over companies
for(int i=0; i<4; i++) {
 kfb.next(rh, kh);
 CompanyRecord cr = new CompanyRecord(rh.value);
 companies.addCompany(cr.getCompany());
}

// end browsing
kfb.end();

return companies;
}

242 EJB for OS/390 and z/OS, CICS TS V2.1

Figure 9-9 TraderBackendVsam.getQuotes()

As you can see, this method calls the three private methods readCustomer(),
createCustomer(), and readCompany(). How these methods are implemented is shown next.

TraderBackendVsam.readCustomer()
This method reads one customer record. The key is customer name and company. The
method does the following:

� Instantiates a KSDS object.

� Tells the KSDS object the name of the CICS file resource name for customer.

� Instantiates a CustomerKeyRecord and store the key values company, separator, and
customer name.

public QuotesBean getQuotes(String company, String userID)
 throws Exception {
QuotesBean quotes = new QuotesBean();

// read customer data
CustomerRecord cur = new CustomerRecord();
try {
 readCustomer(company,userID, cur, false);
} catch(RecordNotFoundException rnfe) {
 createCustomer(company, userID, cur);
}

// set number of shares
quotes.setNumberOfShares(cur.getNo__Shares());

// read company data
CompanyRecord cor = new CompanyRecord();
readCompany(company, cor);

// copy company data
String shareValueString = cor.getShare__Value__Int__Part() +
 "." + cor.getShare__Value__Dec__Part();

double shareValue = Double.valueOf(shareValueString).doubleValue();
double shareValueTotal = shareValue * cur.getDec__No__Shares();

quotes.setTotalShareValue(String.valueOf(shareValueTotal));
quotes.setUnitSharePrice(cor.getShare__Value__Int__Part() +
 "." + cor.getShare__Value__Dec__Part());
quotes.setUnitValue1Days(cor.getValue__1());
quotes.setUnitValue2Days(cor.getValue__2());
quotes.setUnitValue3Days(cor.getValue__3());
quotes.setUnitValue4Days(cor.getValue__4());
quotes.setUnitValue5Days(cor.getValue__5());
quotes.setUnitValue6Days(cor.getValue__6());
quotes.setUnitValue7Days(cor.getValue__7());
quotes.setCommissionCostSell(cor.getCommission__Sell());
quotes.setCommissionCostBuy(cor.getCommission__Buy());

return quotes;
}

Chapter 9. Rewriting the COBOL Trader application with JCICS 243

� Reads one record providing the key and stores a result object. The method distinguishes
between a read and a read for update operation which is controlled with as a boolean flag
provided as parameter to readCustomer().

� Copies the result to a result object provided as parameter to this method.

The implementation of this method is illustrated in Figure 9-10.

Figure 9-10 TraderBackendVsam.readCustomer()

TraderBackendVsam.createCustomer()
This method creates an empty customer record. It does the following:

� Sets company, customer name, and separator which are also provided as parameters.

� Sets the number of shares to zero.

� Writes the new record.

How the method is implemented is shown in Figure 9-11.

private void readCustomer(String company, String userID,
 CustomerRecord curOut, boolean forUpdate)
 throws Exception {

KSDS customerKSDS = new KSDS();
customerKSDS.setName(CUSTFILE);

// create key
CustomerKeyRecord ckr = new CustomerKeyRecord();
ckr.setInitialValues();
ckr.setCompany(company);
ckr.setKeyrec__Dot(DOT);
ckr.setCustomer(userID);

// read customer record
RecordHolder rh = new RecordHolder();

if(forUpdate == false) // if for read only
 customerKSDS.read(ckr.getBytes(), rh);
else // if read for update
 customerKSDS.readForUpdate(ckr.getBytes(), rh);

// copy customer results
curOut.setBytes(rh.value);
}

244 EJB for OS/390 and z/OS, CICS TS V2.1

Figure 9-11 TraderBackendVsam.createCustomer()

The method uses the private method writeCustomer() which is described below.

TraderBackendVsam.writeCustomer()
This method writes one customer record. The key is the company, the customer name, and the
separator character. The method does the following:

� Instantiates a KSDS object.

� Tells the KSDS object the name of the CICS file resource name for customer.

� Instantiates a CustomerKeyRecord object and assign it company, customer name, and
separator character.

� Invokes the write() method of instance KSDS.

How the method is implemented is illustrated in Figure 9-12.

Figure 9-12 TraderBackendVsam.writeCustomer()

TraderBackendVsam.readCompany()
This method reads one company record. The key is the company. The method does the
following:

� Instantiates a KSDS object.

� Tells the KSDS object the name of the CICS file.

� Instantiates a CompanyKeyRecord and stores the key value company.

private void createCustomer(String company, String userID,
 CustomerRecord curOut) throws Exception {

curOut.setCompany(company);
curOut.setCustomer(userID);
curOut.setKeyrec__Dot(DOT);
curOut.setDec__No__Shares((short)0);

writeCustomer(company, userID, curOut);

}

private void writeCustomer(String company, String userID,
 CustomerRecord cur) throws Exception {

KSDS customerKSDS = new KSDS();
customerKSDS.setName(CUSTFILE);

// create key
CustomerKeyRecord ckr = new CustomerKeyRecord();
ckr.setCompany(company);
ckr.setKeyrec__Dot(DOT);
ckr.setCustomer(userID);

// read customer record
customerKSDS.write(ckr.getBytes(), cur.getBytes());

}

Chapter 9. Rewriting the COBOL Trader application with JCICS 245

� Reads one record providing the key and a result object.

� Copies the result to a result object provided as parameter to this method.

The implementation of this method is illustrated in Figure 9-13.

Figure 9-13 TraderBackendVsam.readCompany()

Implement TraderBackendVsam.buy()
This method is used to buy a specific amount of shares of a company. The method just
invokes the private method doBuyOrSell() as shown in Figure 9-14.

Figure 9-14 TraderBackendVsam.buy()

TraderBackendVsam.doBuyOrSell()
This method is used to either buy or sell shares of a specific customer for a given company. It
performs the following steps:

� Tries to read the company file. If the company does not exists, an exception is thrown.

� Tries to find a customer/company record in customer file. If no record is found, an empty
record is created. If the record is found it is locked for update.

� If shares are bought, the requested number of shares are added to the actual number of
shares the customer holds for the company.

� If shares are sold, it first checks if the actual held number of shares is greater or equal the
number of shares to be sold. If yes, the requested number of shares are subtracted from
the actual number of shares.

� The record is updated.

The implementation of the method is illustrated in Figure 9-15.

private void readCompany(String company, CompanyRecord corOut)
 throws Exception {

// read company data
KSDS companyKSDS = new KSDS();
companyKSDS.setName(COMPFILE);

CompanyKeyRecord companyKey = new CompanyKeyRecord();
companyKey.setInitialValues();
companyKey.setCompany(company);

RecordHolder rh = new RecordHolder();
companyKSDS.read(companyKey.getBytes(), rh);
corOut.setBytes(rh.value);

}

public void buy(String company, String userID, int numberOfShares)
 throws Exception {

doBuyOrSell(company, userID, numberOfShares, true);

}

246 EJB for OS/390 and z/OS, CICS TS V2.1

Figure 9-15 TraderBackendVsam.doBuyOrSell()

This method calls private method updateCustomer(), which is described below.

TraderBackendVsam.updateCustomer()
This method updates a customer record and does the following:

� Instantiates a KSDS object.

� Tells the KSDS object the name of the CICS file resource name for customer.

� Invokes method rewrite of the KSDS instance.

How the method is implemented is shown in Figure 9-16.

private void doBuyOrSell(String company, String userID, int numberOfShares, boolean
doBuy) throws Exception {

// read company to check if it exists (if not, an exception is thrown)
CompanyRecord cor = new CompanyRecord();
readCompany(company, cor);

// try to read customer for update
CustomerRecord cur = new CustomerRecord();
boolean rnfeException = false;

try {
readCustomer(company, userID, cur, true);

} catch(RecordNotFoundException rnfe) {
rnfeException = true;

}

// if buy
if(doBuy == true) {

if (rnfeException==false) {
cur.setDec__No__Shares((short)

(cur.getDec__No__Shares() + numberOfShares));
}
else { // if new customer

cur.setDec__No__Shares((short)(numberOfShares));
}

} else {// if sell
if(cur.getDec__No__Shares() >= numberOfShares)// if enough to sell

cur.setDec__No__Shares((short)
(cur.getDec__No__Shares() - numberOfShares));

}

// update customer
if (rnfeException == false) {

updateCustomer(cur);
} else {

createCustomer(company, userID, cur);
}

}

Chapter 9. Rewriting the COBOL Trader application with JCICS 247

Figure 9-16 TraderBckendVsam.updateCustomer()

Implement TraderBackendVsam.sell()
This method is used to sell a specific amount of shares of a company. The method just
invokes the private method doBuyOrSell() as shown in Figure 9-17.

Figure 9-17 TraderBackendVsam.sell()

The remaining methods of TraderBackendVsam
Because TraderBackendVsam implements TraderBackend, the following methods need to be
implemented as well.

� logon()
� logoff()
� ejbBackendCreate()
� ejbBackendRemove()
� ejbBackendActivate()
� ejbBackendPassivate()

For this back-end class, these remaining methods have no specific implementation, and are
implemented only for compatibility with the future JDBC back-end. Therefore, they just need
to be defined but have no additional business logic implemented (Figure 9-18).

private void updateCustomer(CustomerRecord cur) throws Exception {

KSDS customerKSDS = new KSDS();
customerKSDS.setName(CUSTFILE);

// update customer record
customerKSDS.rewrite(cur.getBytes());

}

public void sell(String company, String userID, int numberOfShares)
 throws Exception {

 doBuyOrSell(company, userID, numberOfShares, false);

}

248 EJB for OS/390 and z/OS, CICS TS V2.1

Figure 9-18 Remaining methods of TraderBackendVsam

Now that we have implemented TraderBackendVsam, we need to deploy the modified
enterprise bean to CICS. This is described in the next section.

9.3 Deploying the enterprise bean to CICS
This section describes how to deploy TraderBean and its related classes to CICS.

We need to do the following steps:

1. Export the enterprise bean and its related classes.

2. Convert the exported file to a deployed JAR file.

3. Send the deployed JAR file to OS/390.

4. Reinstall DJAR TRADER.

Export the enterprise bean and its related classes
Export the enterprise bean the same way as described in 7.3.1, “Exporting the enterprise
bean and its related classes” on page 191. The only difference is that you also need to select
the following additional classes built using the Java Record Framework.

� CompanyKeyRecord
� CompanyKeyRecordBeanInfo
� CompanyKeyRecordType
� CompanyRecord
� CompanyRecordBeanInfo
� CompanyRecordType
� CustomerKeyRecord
� CustomerKeyRecordBeanInfo
� CustomerKeyRecordType
� CustomerRecord
� CustomerRecordBeanInfo
� CustomerRecordType
� TraderBackendVsam

public void logon(String userID, String password,
 String connectURL, String cicsServer) throws Exception {
}

public void logoff() throws Exception {
}

public void ejbBackendCreate() throws javax.ejb.CreateException,
 java.rmi.RemoteException {
}

public void ejbBackendRemove() throws java.rmi.RemoteException {
}

public void ejbBackendActivate() throws java.rmi.RemoteException {
}

public void ejbBackendPassivate() throws java.rmi.RemoteException {
}

Chapter 9. Rewriting the COBOL Trader application with JCICS 249

Therefore you should have 27 classes and one bean selected.

Convert the exported file to a deployed JAR file
Generate the deployed JAR file using the CICS JAR development tool as described in 7.3.2,
“Converting the exported file to a deployed JAR file” on page 192.

Send the JAR file to the OS/390 system
Send the deployed JAR file traderForCICS_GEN.jar to your HFS on OS/390 in the same way
as described in 7.3.3, “Sending the deployed JAR file to OS/390” on page 193 to the OS/390
system.

Refresh the DJAR in the CICS shelf
The DJAR now has to be deployed to the CICS system. In this sample we assume that you
have already defined the DJAR to CICS as described in 7.3.4, “Defining the DJAR in the
CICS system” on page 193. Therefore it is only necessary to discard the existing DJAR and
re-install as follows:

CEMT DISCARD DJAR(TRADER
CEDA INSTALL GR(ITSOEJB) DJAR(TRADER)

9.3.1 Testing the enterprise bean
We tested our enterprise bean in two ways, with our TraderTest standalone application and
with our TraderServlet application.

TraderTest is a standalone Java application that can be run from either a command line or
within VAJ. Further instructions on how to use this from the command line are given in 9.1,
“Quick start — Invoking TraderBean” on page 236.

We edited the following line in the runtest.cmd script so as to invoke the traderTest
application with the CICSConnectorCCF option.

java -classpath ".;traderTest.jar;traderCLI.jar;C:\Program Files\IBM\CICS TS 2.1
Tools\Common\j2ee.jar" itso.ejb390.trader.test.TraderTest
com.sun.jndi.cosnaming.CNCtxFactory iiop://hecate:900/ ITSO/PJA5 JCICS-Java

The successful output of runtest.cmd is shown in Example 9-1.

Example 9-1 Output of runtest.cmd for JCICS-Java

Starting TraderTest application with following input:
Name service: com.sun.jndi.cosnaming.CNCtxFactory

 Naming Server: iiop://hecate:900/
 JNDI name: ITSO/PJA5
 Call type: JCICS-Java

Casey_Import_Export
Glass_and_Luget_Plc
Headworth_Electrical
IBM
CommissionCostBuy 010
CommissionCostSell 015
NumberOfShares 0228
TotalShareValue 000037164.00
UnitSharePrice 00163.00
UnitValue1Days 00163.00
UnitValue2Days 00162.00
UnitValue3Days 00160.00
UnitValue4Days 00161.00
250 EJB for OS/390 and z/OS, CICS TS V2.1

UnitValue5Days 00159.00
UnitValue6Days 00156.00
UnitValue7Days 00157.00
Now we buy 5 shares
...

Testing the enterprise bean with TraderServlet
In addition, it is also possible to test the Trader enterprise bean using our TraderServlet that
we developed in 7.4.2, “Servlet development with VisualAge for Java” on page 199. In this
case it is necessary to provide the following input parameters to the initial servlet HTML form.

Communication type JCICS-Java

JndiPrefix ITSO/PJA5

NameService com.ibm.ejs.ns.jndi.CNInitialContextFactory

ProviderURL iiop://hecate:900/

The output of the TraderServlet was the same as shown in “Testing the Trader servlet” on
page 212.

9.4 Summary
This scenario has illustrated how it is possible to modify the business logic within a traditional
CICS COBOL application, without affecting the external presentation interface. It has also
demonstrated the powerful nature of the Java Record Framework in mapping Java classes
onto the underlying CICS VSAM files.
Chapter 9. Rewriting the COBOL Trader application with JCICS 251

252 EJB for OS/390 and z/OS, CICS TS V2.1

Chapter 10. Rewriting the Trader session
bean using JDBC/SQLJ

In this chapter we describe how to access DB2 data within an enterprise bean running in the
CICS TS V2.1 container, using both the Java Database Connectivity (JDBC) API and the
SQL Java (SQLJ) API. We show how we re-wrote the CICS Trader application to access DB2
data instead of CICS VSAM files, using JDBC or SQLJ calls. Our new configuration is
illustrated in Figure 10-1.

Figure 10-1 TraderBean using JDBC or SQLJ

10

OS/390
CICS TS V2.1

TraderBean

CICS
DB2

Attach

JDBC
or

SQLJ
DB2 V6

TraderBackEndDB2
© Copyright IBM Corp. 2001 253

In Chapter 7, “Wrapping the Trader application: JCICS link” on page 171 we show you how
we developed an enterprise bean (TraderBean) to wrap the Trader COBOL application,
allowing us to invoke the Trader application from a EJB environment without modification to
the original COBOL code. The design of the TraderBean was such that modifying it to access
DB2 data instead of VSAM files requires only minimal changes to the bean itself. In this
chapter we describe the steps necessary to create a TraderBackEnd interface class for use
with both JDBC and SQLJ as a means for accessing DB2 data.

For information on using JDBC to dynamically access DB2 data from CICS, refer to 10.2,
“Accessing DB2 using JDBC” on page 256. For information on using static SQL using SQLJ
calls from CICS, refer to 10.3, “Accessing DB2 using SQLJ” on page 283.

The version of DB2 used in this scenario was DB2 UDB Server for OS/390 Version 6, which
we will refer to as DB2 V6.

In the following sections we now provide a discussion of the important considerations when
using JDBC and SQLJ from enterprise beans running in the CICS TS V2.1 EJB container.

CICS TS V2.1 JDBC/SQLJ support
CICS Java applications can now access DB2 data via the JDBC and SQLJ APIs. This applies
to both CICS JVM applications (including enterprise beans) and CICS Java program objects
(that is, programs bound using VisualAge for Java, Enterprise Edition for OS/390, Version 2).
The JDBC API uses the dynamic SQL model; the SQLJ uses the static SQL model.

In a CICS environment, the DB2 JDBC driver is link-edited with the CICS DB2 language
interface stub DSNCLI, therefore JDBC and SQLJ requests are converted by the JDBC driver
into EXEC SQL requests and then routed into the existing CICS-DB2 Attachment Facility. All
existing tuning and control parameters available to CICS DB2 applications can be used with
CICS Java applications using JDBC and SQLJ.

You can find general information about JDBC at the Web site:

http://java.sun.com/products/jdbc/index.html

For information how to use JDBC to access DB2, refer to the Web site:

http://www.software.ibm.com/data/db2/os390/jdbc.html

JDBC 2.0 and J2EE
The Java 2 Platform, Enterprise Edition (J2EE) defines a standard for developing multi-tier
enterprise applications. J2EE simplifies enterprise applications by basing them on
standardized, modular components. The J2EE specification requires application servers to
support a specific set of protocols and Java enterprise extensions, including JDBC 2.0,
Enterprise JavaBeans 1.1, Java Servlets 2.2, Java Server Pages 1.1.

The JDBC API has been factored into two complementary components. The first component
is the API that is core to the Java platform and comprises the updated contents of the java.sql
package. The second component, termed the JDBC 2.0 Optional Package API, consists of a
new package, javax.sql, which is the JDBC 2.0 Standard Extension API.

Important: DB2 required APAR. The support for CICS TS V2.1 is supplied by DB2 V6 in
APAR PQ44115 and on DB2 V7 via PQ45186.
254 EJB for OS/390 and z/OS, CICS TS V2.1

http://java.sun.com/products/jdbc/index.html
http://www.software.ibm.com/data/db2/os390/jdbc.html

The JDBC 2.0 Optional Package API provides support for DataSources, connection pooling,
distributed transactions and rowsets.The DataSource interface represents a particular
Database Management System (DBMS) or some other data source interface and provides an
alternative to the DriverManager class for making a connection to a data source. It makes the
code more portable and easier to maintain. However, since CICS TS V2.1 only supports use
of the DB2 JDBC 1.2 API it does not currently support the use of DataSources. It is planned
that a future release of CICS TS will support use of JDBC 2.0 and hence use of DataSources
from Enterprise JavaBeans.

Commit and rollback
JDBC / SQLJ applications are allowed to issue commit and rollback method calls, which will
be converted into a EXEC CICS SYNCPOINT or EXEC CICS SYNCPOINT ROLLBACK
command. Hence a JDBC or SQLJ commit results in the whole CICS unit of work being
committed, not just the updates made to DB2. Committing work done independently of the
rest of the CICS unit of work is not supported by CICS.

Autocommit causes a commit after each update to DB2 and when a connection is closed.
Because a commit results in the whole unit of work being committed, the usage of
autocommit in a CICS environment is discouraged, so the DB2 JDBC driver sets a default of
autocommit(false) when running in a CICS environment.

10.1 Quick start — Invoking TraderBean
If you want to run our sample JDBC or SQLJ enterprise bean without following all the details
specified in this chapter, use the steps below. All the source code and examples used in this
book are available for download from ftp://www.redbooks.ibm.com/redbooks/, which is the
redbooks FTP server. For further details, refer to Appendix C, “Using the additional material”
on page 315.

1. Create a CICS TCPIPSERVICE, CORBASERVER, REQUESTMODEL and DJAR
definition, if you have not already done so. For more details, refer to 6.3.3, “Deploying to
CICS” on page 150.

2. Deploy the TraderBean to your CICS TS V2.1 region. For more information on how to do
this, refer to 7.3, “Deploying the TraderBean to CICS” on page 191.

3. If you want to run the sample using JDBC, follow the steps below. If you want to run the
SQLJ sample, proceed with step 4.

a. Set up the DB2 database on OS/390 as described in 10.2.3, “Setting up the database”
on page 274.

b. Customize the JDBC runtime environment as described in 10.2.4, “Customizing the
JDBC runtime environment” on page 276.

c. Define a DB2 connection to your CICS region as described in 10.2.5, “Defining a CICS
DB2 connection” on page 280.

d. Grant the DB2 privileges to your CICS user ID as described in 10.2.6, “Granting
privileges to the CICS user ID” on page 282.

4. If you want to run the sample using SQLJ, follow the steps below:

a. Set up the DB2 database on OS/390 as described in 10.2.3, “Setting up the database”
on page 274.

b. Prepare the SQLJ application on OS/390 as described in 10.3.3, “Preparing the SQLJ
program on OS/390” on page 295. This includes customizing the SQLJ serialized
profile and binding the plan for the SQLJ application.
Chapter 10. Rewriting the Trader session bean using JDBC/SQLJ 255

ftp://www.redbooks.ibm.com/redbooks/

c. Modify the CICS DB2 connection as described in 10.3.4, “Modifying the CICS DB2
connection” on page 298.

d. Grant the required privileges to your CICS user ID as described in 10.3.5, “Granting
privileges to the CICS user ID” on page 298.

e. Deploy the JAR file in your CICS system as described in “Refresh the DJAR in the
CICS shelf” on page 273.

5. Use the supplied runTest.cmd file to invoke our stand-alone Java test application
TraderTest. To set up TraderTest, simply do the following:

a. On your workstation, create a directory (for example C:\itsotrader) and copy the
following sample files to this directory:

• traderCLI.jar
• traderTest.jar
• runTest.cmd

b. Ensure that you have a Java 2 runtime environment at version 1.3 or greater on your
workstation installed. You can verify your version with the command:

java -version

c. Ensure that you have file j2ee.jar accessible on your workstation. If not, you can
either obtain it either by installing Java 2 SDK, Enterprise Edition available from
http://java.sun.com or when you install the CICS development deployment tool.

d. Invoke TraderTest using the runtest.cmd file. You will need to alter the input
parameters as documented in the file. For further details and for an example of
expected output with JDBC, refer to Example 10-10 on page 282, and for an example
with SQLJ, refer to Example 10-13 on page 299.

10.2 Accessing DB2 using JDBC
The next sections describe the following steps, which were necessary to develop and test our
session bean accessing DB2. These steps were:

1. Developing the JDBC application.

2. Deploying the session bean to CICS.

3. Setting up the database.

4. Customizing the JDBC runtime environment.

5. Defining the CICS DB2 connection.

6. Granting privileges to the CICS user ID.

7. Testing the enterprise bean.

10.2.1 Developing the JDBC application
This section describes how to write a session bean accessing DB2 using JDBC. In this
context, we concentrate on describing the class that implements the interface
TraderBackend. All the necessary steps to design the enterprise bean and implement the
interface TraderBackend are already described in 7.2, “TraderBean development with
VisualAge for Java” on page 174.

To implement the new class, we have to consider the following steps:

1. Designing the database layout
256 EJB for OS/390 and z/OS, CICS TS V2.1

http://java.sun.com.
http://java.sun.com.

2. Adapting TraderBean for use of JDBC back-end class

3. Implementing TraderBackendDB2JDBC

Designing the database layout
To design the database layout, we have to look at the information the bean provides by
means of its business methods. This is basically the companies used by the COBOL Trader
application, as well as how many shares are held by each user for each company.

To store this information in DB2, we need two tables, TRADER_COMPANY and
TRADER_USER. The first table, TRADER_COMPANY, contains the names of the
companies and the quote specific information, such as the actual share price and the
commission cost for trading shares. The TRADER_COMPANY table is illustrated in
Table 10-1.

Table 10-1 TRADER_COMPANY table

The column “c_name” uniquely identifies a particular company in our application and
therefore serves as the primary key. The enterprise bean uses this table only to obtain data
about the companies, which means that it performs read-only access on this table. All
necessary data must be inserted into the table before the enterprise bean is started.

The second table, TRADER_USER, contains the current share holdings for each user. This
table is illustrated in Table 10-2.

Table 10-2 TRADER_USER table

Tip: Setting up JDBC in VAJ
If you want to utilize JDBC with VAJ, you need to add the JDBC driver that you will be using
to your workspace classpath. When you install VAJ, SQL classes are installed and located
in the package java.sql. To add the IBM UDB driver, select Window -> Options, select
Resources, enter the fully qualified path of db2java.zip, and click OK.

Column name Column type Length Nulls

c_name character 20 no

c_sv_1d decimal 7,2 no

c_sv_2d decimal 7,2 no

c_sv_3d decimal 7,2 no

c_sv_4d decimal 7,2 no

c_sv_5d decimal 7,2 no

c_sv_6d decimal 7,2 no

c_sv_7d decimal 7,2 no

c_sv_now decimal 7,2 no

c_cc_buy character 3 no

c_cc_sell character 3 no

Column name Column type Length Nulls

u_name character 8 no

u_c_name character 20 no
Chapter 10. Rewriting the Trader session bean using JDBC/SQLJ 257

The combination of the columns “u_name” and “u_c_name” serves as the primary key. The
enterprise bean uses this table to obtain the current number of company shares held by the
user, as well as to update this number if the user trades shares.

Adapting TraderBean for use of JDBC back-end class
It did not take much work to modify our TraderBean for use with DB2. The only change
necessary was to modify the method loadClass(). Our previous implementation of the
loadClass() method, described in 9.2, “Adapting TraderBean to use JCICS” on page 236,
takes into account only access with JCICS-COBOL, the CICS Connector, and JCICS-Java.
The new class that uses JDBC to access DB2 we will name TraderBackendDB2JDBC.
Therefore loadClass() needs to be modified in such a way that it can also load this new
class. Our changes are illustrated in Figure 10-2.

Figure 10-2 TraderBean.loadClass() loading TraderBackendDB2SQLJ

Implementing TraderBackendDB2JDBC
This section demonstrates how to implement class TraderBackendDB2JDBC, which
accesses DB2 on OS/390.

Because the class must implement TraderBackend, it is necessary to implement the following
methods:

� ejbBackendCreate()
� ejbBackendRemove()
� ejbBackendPassivate()
� ejbBackendActivate()
� logon()
� getCompanies()
� getQuotes()
� buy()
� sell()
� logoff()

u_sn_held integer no

private void loadClass(String type) throws Exception {
Class loadClass=null;
if(type.equalsIgnoreCase("JCICS-COBOL") == true) {
 loadClass = Class.forName("itso.ejb390.trader.TraderBackendJcics");
}
else if(type.equalsIgnoreCase("CICSConnectorCCF") == true) {
 loadClass = Class.forName("itso.ejb390.trader.TraderBackendCICSConnectorCCF");
}
else if(type.equalsIgnoreCase("JCICS-Java") == true) {
 loadClass = Class.forName("itso.ejb390.trader.TraderBackendVsam");
}
else if(type.equalsIgnoreCase("DB2JDBC") == true) {
 loadClass =
 Class.forName("itso.ejb390.trader.TraderBackendDB2JDBC");
}
else {
 throw new TraderException("You specified unknown type " + type);
}
ivTraderBackend = (TraderBackend)loadClass.newInstance();
}

Column name Column type Length Nulls
258 EJB for OS/390 and z/OS, CICS TS V2.1

It is also necessary to implement two further methods to manage the database connection.

� openConnection()
� closeConnection()

TraderBackendDB2JDBC class
The TraderBackendDB2JDBC class is an implementation of the interface class
TraderBackend. Figure 10-3 shows the declaration of TraderBackendDB2JDBC.

Figure 10-3 Declaration of class TraderBackendDB2JDBC

The class defines three instance variables, which are used by some of the methods:

ivUserID Holds the user ID that was used for the logon. The user ID is
needed to clean up the database when the user logs off from the
application.

ivJDBCURL Holds the URL that is needed to identify a data source.

ivCon Holds the connection to the data source when the bean is in the
state Method-Ready.

TraderBackendDB2JDBC imports three packages. We use the javax.naming package to read
the environment entries passed to the enterprise bean, the java.sql package to be able to
perform the JDBC API calls, and the java.text package to format the data returned by the
SQL queries.

Now that we have declared our instance variables, we are ready to implement the methods
belonging to the JDBC back-end class.

TraderBackendDB2JDBC.openConnection()
The openConnection() method requests a connection instance from the DriverManager by
specifying the location of the database as a URL. It then sets the autocommit property of the
JDBC connection to false.

The implementation of method openConnection() is illustrated in Figure 10-4. The declaration
of this method is private, because it is only used internally by the methods, which implements
the back-end interface.

Figure 10-4 TraderBackendDB2JDBC.openConnection()

import java.text.*;
import javax.naming.*;
import java.sql.*;

public class TraderBackendDB2JDBC implements TraderBackend {

 // fields to be stored if passivated
 private java.lang.String ivUserID = "";
 private java.lang.String ivJDBCURL = null;
 private java.sql.Connection ivCon = null;
}

private void openConnection() throws SQLException
{
 ivCon = DriverManager.getConnection(ivJDBCURL);
 ivCon.setAutoCommit(false);
}

Chapter 10. Rewriting the Trader session bean using JDBC/SQLJ 259

TraderBackendDB2JDBC.closeConnection()
The closeConnection() method closes the connection and frees all resources associated
with the connection. Then it sets the instance variable ivCon to null to avoid serialization
problems. Figure 10-5 shows the implementation of method closeConnection().

Figure 10-5 TraderBackendDB2JDBC.logoff()

TraderBackendDB2JDBC.ejbBackendCreate()
When the client invokes the create() method on the EJB home of the session bean, its life
cycle begins. The container receives the create request, and invokes the ejbCreate()
method of the instance that matches the client create request.

In our case, the ejbCreate() method of the TraderBean calls the ejbBackendCreate()
method of the back-end class that matches to the type passed as parameter from the client to
the ejbCreate() method. Thus the ejbBackendCreate() method is called only once to the
begin of the life cycle of the TraderBean (Figure 10-6).

Figure 10-6 TraderBackendDB2JDBC.ejbBackendCreate()

The ejbBackendCreate() method uses the following environment properties.

jdbcDriver This property specifies the name of the appropriate JDBC driver.

jdbcURL This property specifies the URL that is needed to identify a data
source.

Note: Although the DB2 JDBC driver sets a default of autocommit (false) when running in
the CICS environment, we also set the autocommit property to false in our code in case the
method is ever invoked from a non-CICS environment on OS/390.

private void closeConnection() throws SQLException
{
 ivCon.close();
 ivCon = null;
}

public void ejbBackendCreate() throws java.rmi.RemoteException
{
 String jdbcDriver = null;

 try {
 InitialContext initCtx = new InitialContext();
 jdbcDriver = (String)initCtx.lookup("java:comp/env/jdbcDriver");
 ivJDBCURL = (String) initCtx.lookup("java:comp/env/jdbcURL");
 // register the DB2 driver
 if (jdbcDriver != null && jdbcDriver.length() != 0)
 { Class.forName(jdbcDriver); }
 openConnection();
 } catch (Exception ex) {
 throw new java.rmi.RemoteException(ex.getMessage());
 }
}

260 EJB for OS/390 and z/OS, CICS TS V2.1

In the EJB 1.1 specification, all deployed beans have an environment naming context that
can be accessed using the JNDI API. This default JNDI context provides the bean with
access to environment properties, which are defined in the deployment descriptor.
Figure 10-6 shows how we use the default JNDI context to access the properties jdbcDriver
and jdbcURL. Notice that we look up environment properties in java:comp/env, which is the
location for all environment entries.

Due to the fact that you can specify the DB2 JDBC driver via the jdbc.drivers system
properties in the CICS environment file dfjjvmpr.props, applications running in CICS do not
need to load the driver themselves using the Class.forName(). Instead, the DriverManager
class will load the required class for the application. For that reason, we only load the driver if
the jdbcDriver property contains a real value. Finally, the ejbBackendCreate() method calls
the openConnection() method to establish a connection to the database.

TraderBackendDB2JDBC.ejbBackendRemove()
When the client invokes the remove() method on the EJB home of the session bean, its life
cycle ends. The container receives the remove request, and invokes the ejbRemove() method
on the instance. At this time, the bean instance should perform any cleanup operations, such
as closing open resources, including database connections.

In our case, the ejbRemove() method of the TraderBean calls the ejbBackendRemove()
method of the back-end class. Thus the ejbBackendRemove() method is called only once at
the end of the life cycle of the TraderBean, and calls the closeConnection() method to close
the database connection, freeing all resources associated with that connection. This is
illustrated in Figure 10-7.

Figure 10-7 TraderBackendDB2JDBC.ejbBackendRemove()

TraderBackendDB2JDBC.ejbBackendPassivate()
During the lifetime of a stateful session bean, the container can passivate the bean instance
to conserve resources. The instance fields are saved to storage, and the bean instance is
evicted from memory. To alert the bean that it is to enter the Passivated state, the container
invokes the ejbPassivate() method. At this time, the bean instance should close any open
resources and set all nonserializable fields to null. This will prevent problems from occurring
when the bean is serialized.

public void ejbBackendRemove() throws java.rmi.RemoteException
{
 try {
 closeConnection();
 } catch (Exception ex) {
 throw new java.rmi.RemoteException(ex.getMessage());
 }
}

Chapter 10. Rewriting the Trader session bean using JDBC/SQLJ 261

In our case, the ejbPassivate() method of the TraderBean calls the ejbBackendPassivate()
method of the TraderBackendDB2JDBC class. Thus the ejbBackendPassivate() method is
called if the container decides to passivate the bean (Figure 10-8).

Figure 10-8 TraderBackendDB2JDBC.ejbRemove()

The ejbBackendPassivate() method calls the closeConnection() method to close the
database connection, freeing all resources associated with that connection. The
implementation is identical to method ejbBackendRemove() method.

TraderBackendDB2JDBC.ejbBackendActivate()
When the client makes a request on an EJB object whose bean is passivated, the container
activates the instance and invokes the ejbActivate() method, this is to allow the bean to open
any resources needed. In our case, the ejbActivate() method of the TraderBean calls the
ejbBackendActivate() method of the back-end class, which calls the openConnection()
method to establish a new connection to the database (Figure 10-9).

Figure 10-9 TraderBackendDB2JDBC.ejbBackendActivate()

public void ejbBackendPassivate() throws java.rmi.RemoteException
{
 try {
 closeConnection();
 } catch (Exception ex) {
 throw new java.rmi.RemoteException(ex.getMessage());
 }
}

public void ejbBackendActivate() throws java.rmi.RemoteException
{
 try {
 // open connection
 openConnection();
 } catch (Exception e) {
 throw new java.rmi.RemoteException(ex.getMessage());
 }
}

262 EJB for OS/390 and z/OS, CICS TS V2.1

TraderBackendDB2JDBC.logon()
The logon() method uses the supplied userid to query the database in order to display the list
of companies (Figure 10-10).

Figure 10-10 TraderBackendDB2JDBC.logon()

The following list summarize the logic in method logon().

� 1 Store the provided user ID in the class’s instance variable.

The user ID needs to be stored, since it is required to clean up the database when the
user logs off from the application.

� 2 Define the Statement objects.

Statement objects are used to execute SQL statements.

public void logon(String userID, String password, String connectURL, String cicsServer)
throws Exception
{

// save userID
1 ivUserID = userID;

2 Statement stmt = null;
PreparedStatement pstmt = null;

try {
// create the statement (select the company names)

3 stmt = ivCon.createStatement();
// create the prepared statement
// (insert user, company, number of shares held into user table)

4 pstmt = ivCon.prepareStatement(sql_insertShareNumber);

5 // execute the query
ResultSet result = stmt.executeQuery(sql_selectCompany);

// set parameters
6 pstmt.setString(1, userID);

// retrieve the result
7 while (result.next()) {

pstmt.setString(2, result.getString(1));
// execute the insert
try {

8 pstmt.executeUpdate();
} catch (SQLException ex) {

if (ex.getErrorCode() != -803) throw ex;
}

}
} catch (Exception ex) {

System.out.println("Exception detected!");
System.out.println("********* S T A C K T R A C E *********");
ex.printStackTrace();
throw ex;

} finally {
9 if (stmt != null) stmt.close();

if (pstmt != null) pstmt.close();
}

}

Chapter 10. Rewriting the Trader session bean using JDBC/SQLJ 263

� 3 Create the statement.

The createStatement() method creates the statement object.

� 4 Create the prepared statement.

The prepareStatement() method creates a PreparedStatement object for sending
parameterized SQL statements to the database. The SQL statement defined by
sql_insertShareNumber is as follows:

INSERT INTO itsoejb.trader_user(u_name,u_c_name,u_sn_held) VALUES(?,?,?)

� 5 Execute a query.

The executeQuery() method executes an SQL query and generates a ResultSet
instance. The SQL statement that is defined by the sql_selectCompany constant looks
as follows:

SELECT c_name FROM itsoejb.trader_company

� 6 Supply the values for the user ID and number of shares hold.

The set...() methods supply the values to be used in place of the question mark
placeholders to the prepared statement.

� 7 Retrieve the result and copy the company names to the CompaniesBean.

The next() method on the ResultSet instance advances the iterator to successive
rows.

� 8 Execute the update.

The executeUpdate() method executes an SQL update. In our sample, a new row is
inserted into the TRADER_USER table for each company.

Note: We have to tolerate the SQL error -803 (non-unique value). The reason is that
an insert would result in duplicate values in the index column, because the application
keeps all positive (>0) share holdings when the user logs off from the application.

� 9 Close the statements.

The close() method closes the statements and frees all resources associated with the
statements.

Assuming that a user named Steffen logs on to the application the first time, the table
TRADER_USER would contain the entries shown in Table 10-3 after calling the logon()
method.

Table 10-3 Content of TRADER_USER table after logon from Steffen

u_name u_c_name u_sn_held

Casey_Import_Export Steffen 0

Class_and_Luget_Plc Steffen 0

Headworth_Electrical Steffen 0

IBM Steffen 0
264 EJB for OS/390 and z/OS, CICS TS V2.1

TraderBackendDB2JDBC.getCompanies()
The getCompanies() method generates an SQL query to return the list of available
companies; see Figure 10-11.

Figure 10-11 TraderBackendDB2JDBC.getCompanies()

The following list summarizes the logic in method getCompanies().

� 1 Define the Statement object.

� 2 Instantiate a CompaniesBean.

� 3 Create the statement.

� 4 Execute a query and generate a ResultSet instance.

The SQL statement that is defined by the sql_selectCompany constant looks as
follows:

SELECT c_name FROM itsoejb.trader_company

� 5 Retrieve the result and copy the company names to the CompaniesBean.

� 6 Close the statement.

� 7 Return the CompaniesBean.

TraderBackendDB2JDBC.getQuotes()
The getQuotes() method is used to execute an SQL query to obtain the current value of a
given user’s share holding in the chosen company.

Figure 10-12 shows the implementation of method getQuotes().

public CompaniesBean getCompanies() throws Exception
{
1 Statement stmt = null;
2 CompaniesBean companies = new CompaniesBean();

 try {
3 stmt = ivCon.createStatement();
4 ResultSet result = stmt.executeQuery(sql_selectCompany);
 while (result.next()) {
5 companies.addCompany(result.getString(1));
 }
 } catch (Exception ex) {
 ex.printStackTrace(); throw ex;
 } finally {
6 stmt.close();
 }
7 return companies;
}

Chapter 10. Rewriting the Trader session bean using JDBC/SQLJ 265

Figure 10-12 TraderBackendDB2JDBC.getQuotes()

The following list summarizes the logic in method getQuotes().

� 1 Define the prepared Statement object.

� 2 Instantiate a QuotesBean.

QuotesBean is a class which is used to hold all quote specific information returned by
the SQL statement.

� 3 Create the prepared statement.

The SQL statement defined by sql_selectQuotes constant is as follows:

SELECT c_sv_1d,...,c_sv_7d,c_sv_now,c_cc_sell,c_cc_buy
 FROM itsoejb.trader_company WHERE c_name = ?

� 4 Supply the value for the company name.

public QuotesBean getQuotes(String company, String userID) throws Exception
{
1 PreparedStatement pstmt = null;
2 QuotesBean quotes = new QuotesBean();
 try {
3 pstmt = ivCon.prepareStatement(sql_selectQuotes);
4 pstmt.setString(1, company);
5 ResultSet result = pstmt.executeQuery();
 double unitSharePrice = 0;
 DecimalFormat df = new DecimalFormat("00000.00");
 FieldPosition fp = new FieldPosition(1);
6 if (result.next()) {
 quotes.setUnitValue1Days(df.format(result.getDouble(1),
 new StringBuffer(),fp).toString());

quotes.setUnitValue7Days(df.format(result.getDouble(7),
 new StringBuffer(),fp).toString());
 unitSharePrice = result.getDouble(8);
 quotes.setUnitSharePrice(df.format(unitSharePrice,
 new StringBuffer(),fp).toString());
 quotes.setCommissionCostSell(result.getString(9));
 quotes.setCommissionCostBuy(result.getString(10));
 }
7 pstmt.close();
8 pstmt = ivCon.prepareStatement(sql_selectShareNumber);
9 pstmt.setString(1, userID);
 pstmt.setString(2, company);
10 result = pstmt.executeQuery();
11 if (result.next()) {
 int numberOfSharesHeld = result.getInt(1);
 quotes.setNumberOfShares(new DecimalFormat("0000").format
 (numberOfSharesHeld,new StringBuffer(),fp).toString());
 double totalShareValue = unitSharePrice * numberOfSharesHeld;
 quotes.setTotalShareValue(df.format(totalShareValue,
 new StringBuffer(),fp).toString());
 }
 } catch (Exception ex) { ex.printStackTrace(); throw ex; }
 finally {
 pstmt.close();
 }
12return quotes;
}

266 EJB for OS/390 and z/OS, CICS TS V2.1

� 5 Execute a query and generate a ResultSet instance.

� 6 Retrieve the result and copy the information to the QuotesBean.

We have used the class DecimalFormat to format the decimal numbers to the same
format that is used by the COBOL Trader application.

� 7 Close the prepared statement.

� 8 Create the prepared statement.

The SQL statement defined by sql_selectShareNumber constant looks as follows:

SELECT u_sn_held FROM itsoejb.trader_user WHERE u_name=? AND u_c_name=?

� 9 Supply the values for the user ID and the company name.

� 10 Execute the SQL query and generate a ResultSet instance.

� 11 Retrieve the result and copy the information to the QuotesBean.

The total share value is calculated from the number of shares held by the user
multiplied by the current share value.

� 12 Return the QuotesBean.

TraderBackendDB2JDBC.buy()
The buy() method uses the company name, the user ID, and the number of shares to
execute an SQL statement in order to perform a “buy shares” operation (see Figure 10-13).

Figure 10-13 TraderBackendDB2JDBC.buy()

Note: It is also possible to use getBigDecimal() instead of getDouble(). However, due to
the fact that CICS TS V2.1 only supports use of the DB2 JDBC 1.2 API, you cannot use
getBigDecimal(int columnIndex), as it is only supported by JDBC 2.0. Instead, you have
to use getBigDecimal(int columnIndex, int scale), which is deprecated in JDBC 2.0
and therefore leads to a warning when using it in VAJ V3.5.

public void buy(String company, String userID, int numberOfShares) throws Exception
{
1 if (numberOfShares > 9999) return;
2 PreparedStatement pstmt = null;

try {
3 pstmt = ivCon.prepareStatement(sql_selectShareNumber);
4 pstmt.setString(1, userID);
 pstmt.setString(2, company);
5 ResultSet result = pstmt.executeQuery();
 int numberOfSharesHeld = 0;
6 if (result.next()) numberOfSharesHeld = result.getInt(1);
 numberOfSharesHeld += numberOfShares;
7 if (numberOfSharesHeld > 9999) return;
8 pstmt.close();
9 pstmt = ivCon.prepareStatement(sql_updateShareNumber);
10 pstmt.setInt(1, numberOfSharesHeld);
 pstmt.setString(2, userID);
 pstmt.setString(3, company);
 pstmt.executeUpdate();
 } catch (Exception ex) { ex.printStackTrace(); throw ex; }
 finally {
11 pstmt.close();
 }
}

Chapter 10. Rewriting the Trader session bean using JDBC/SQLJ 267

The following list summarizes the logic in method buy().

� 1 Verify that the number of shares to buy does not exceed the maximum.

The maximum number of shares a user can buy is 9999 and is defined by the COBOL
Trader application.

� 2 Define the prepared Statement object.

� 3 Create the prepared statement.

The SQL statement defined by sql_selectShareNumber constant looks as follows:

SELECT u_sn_held FROM itsoejb.trader_user WHERE u_name=? AND u_c_name=?

� 4 Supply the values for the user ID and the company name.

� 5 Execute the SQL query and generate a ResultSet instance.

� 6 Retrieve the result, copy the number of shares held by the user to a local variable and
calculate the new number of shares held.

� 7 Verify that the number of shares does not exceed the maximum.

The maximum number of shares a user can hold is 9999 and is defined by the COBOL
Trader application.

� 8 Close the prepared statement.

� 9 Create the prepared statement.

The SQL statement defined by sql_updateShareNumber constant is as follows.

UPDATE itsoejb.trader_user SET u_sn_held=? WHERE u_name=? AND u_c_name=?

� 10 Supply the values for the user ID, the company name, and the number of shares, and
execute the update.

� 11 Close the prepared statement.

Assuming that the user Steffen buys 250 shares of the company IBM, the table
TRADER_USER would contain the entries shown in Table 10-4 after calling the buy()
method.

Table 10-4 Content of TRADER_USER table after user Steffen has bought 250 shares

u_name u_c_name u_sn_held

Casey_Import_Export Steffen 0

Class_and_Luget_Plc Steffen 0

Headworth_Electrical Steffen 0

IBM Steffen 250
268 EJB for OS/390 and z/OS, CICS TS V2.1

TraderBackendDB2JDBC.sell()
The sell() method is very similar to the method buy(). The only difference is how it
calculates the new number of shares held by the customer, as shown in Figure 10-14.

Figure 10-14 TraderBackendDB2JDBC.sell()

Assuming that the user Steffen sells 125 shares of the company IBM, the table
TRADER_USER would contain the entries shown in Table 10-5 after calling the sell()
method.

Table 10-5 Content of TRADER_USER table after Steffen has sold 125 shares

public void sell(String company, String userID, int numberOfShares) throws Exception
{
 if (numberOfShares > 9999) return;
 PreparedStatement pstmt = null;
 try {
 pstmt = ivCon.prepareStatement(sql_selectShareNumber);
 pstmt.setString(1, userID);
 pstmt.setString(2, company);
 ResultSet result = pstmt.executeQuery();
 int numberOfSharesHeld = 0;
 if (result.next()) numberOfSharesHeld = result.getInt(1);
 if (numberOfShares > numberOfSharesHeld) return;
 numberOfSharesHeld -= numberOfShares;
 pstmt.close();
 pstmt = ivCon.prepareStatement(sql_updateShareNumber);
 pstmt.setInt(1, numberOfSharesHeld);
 pstmt.setString(2, userID);
 pstmt.setString(3, company);
 pstmt.executeUpdate();
 } catch (Exception ex) {
 ex.printStackTrace(); throw ex;
 } finally {
 pstmt.close();
 }
}

u_name u_c_name u_sn_held

Casey_Import_Export Steffen 0

Class_and_Luget_Plc Steffen 0

Headworth_Electrical Steffen 0

IBM Steffen 125
Chapter 10. Rewriting the Trader session bean using JDBC/SQLJ 269

TraderBackendDB2JDBC.logoff()
This method is driven when a user logs off, and delete entries from the database for which the
number of shares held is zero. Figure 10-15 shows the implementation of method logoff().

Figure 10-15 TraderBackendDB2JDBC.logoff()

The following list summarizes the logic in method logoff().

� 1 Define the prepared Statement object.

� 2 Create the prepared statement.

The SQL statement defined by sql_deleteShareNumber constant looks as follows:

DELETE FROM itsoejb.trader_user WHERE u_name=? AND u_sn_held=?

� 3 Supply the values for the user ID and the number of shares held. The application keeps
all positive share holdings of a user when he logs off, which means that only those
entries are deleted for which the number of shares held is equal zero.

� 4 Execute the SQL update.

� 5 Close the prepared statement.

After the user Steffen has logged off the application, the table TRADER_USER would contain
the entry shown in Table 10-6.

Table 10-6 Content of TRADER_USER table after Steffen has logged off

public void logoff() throws Exception
{
1 PreparedStatement pstmt = null;
 try {
2 pstmt = ivCon.prepareStatement(sql_deleteShareNumber);
3 pstmt.setString(1, ivUserID);
4 pstmt.executeUpdate();
 } catch (Exception ex) {

System.out.println("Exception detected!");
System.out.println("********* S T A C K T R A C E *********");
ex.printStackTrace();
throw ex;

 } finally {
5 if (pstmt != null) pstmt.close();

}
}

u_name u_c_name u_sn_held

IBM Steffen 125
270 EJB for OS/390 and z/OS, CICS TS V2.1

10.2.2 Deploying the enterprise bean to CICS
This section describes how we deployed TraderBean and its related classes to our CICS TS
V2.1 region. To do this, it is necessary to perform the following steps.

1. Export the enterprise bean and its related classes.

2. Convert the exported file to a DJAR file.

3. Send the DJAR file to OS/390.

4. Refresh the DJAR in the CICS region.

Export the enterprise bean and its related classes
This section shows how we exported the enterprise bean and its related classes.

1. Within VisualAge for Java,select the EJB tab to view the EJB groups. Select group
ITSOEJB390 and click the right mouse button.

2. Select Export -> EJB JAR to open the Export to an EJB JAR File SmartGuide.

3. You should see that the Trader bean and three additional classes are selected by default.
Click Select referenced types and resources to ensure that VAJ now also selects
classes which are referenced by the enterprise bean. This will cause CompaniesBean,
QuotesBean, TraderBackend, and TraderException to also be selected. But VAJ has not
selected the classes which implement the different back-ends.

4. In addition, select the following classes which implement the back-ends:

– CompaniesBean
– CompanyKeyRecord
– CompanyKeyRecordBeanInfo
– CompanyKeyRecordType
– CompanyRecord
– CompanyRecordType
– CustomerKeyRecord
– CustomerKeyRecordBeanInfo
– CustomerKeyRecordType
– CustomerRecord
– CustomerRecordBeanInfo
– CustomerRecordType
– TraderBackendCICSConnectorCCF
– TraderBackendDB2JDBC
– TraderBackendJcics
– TraderBackendVsam
– TraderCommand
– TraderCommandBeanInfo
– TraderRecord
– TraderRecordBeanInfo
– TraderRecordType

Now click OK to close the window.

5. In the export window, you should now see that 1 bean and 28 classes are selected.

6. Specify path and file name for the JAR file. We used C:\itsotrader\traderForCICS.jar.
Your window should look as shown in Figure 10-16.

7. Click Finish to export the classes to file traderForCICS.jar.

Tip: If you receive a message from VAJ stating that the file is not a zip file, or it is
corrupted, you should close the CICS Java development tool, or delete the output JAR file.
Chapter 10. Rewriting the Trader session bean using JDBC/SQLJ 271

Figure 10-16 Exporting TraderBean for CICS (including TraderBackendDB2JDBC)

Convert the exported file to a DJAR file
The next step is to convert the exported JAR file to a deployed JAR file, and to edit the
deployment descriptor. We used the CICS JAR development tool for this purpose, for further
details on using this tool, refer to 6.3.2, “Generating a CICS deployed JAR file” on page 148.

� Start the CICS JAR development tool.

� Click File -> Load and enter the path and file name of the JAR file you have exported
from VisualAge, which is in our case c:\itsotrader\traderForCICS.jar.

� Click Open to load the JAR file into the tool.

� Now you should see Trader below Current Enterprise Beans. Select Trader.

� Click Edit and then select the Environment tab. Now enter the two environment
properties which are used by the ejbCreate() method as described in
“TraderBackendDB2JDBC.ejbBackendCreate()” on page 260. To do so, perform the
following steps, the final results of which are shown in Figure 10-17.

– Enter jdbcDriver in the Name: field
– select java.lang.String within the Type: field
– Click the Set button
– Enter jdbcURL in the Name: field
– Enter jdbc:db2os390sqlj: in the Value: field
– select java.lang.String within the Type: field
– Click the Set button.
272 EJB for OS/390 and z/OS, CICS TS V2.1

Figure 10-17 CICS JAR development tool, environment properties for DB2

� Close the window to return to the main CICS JAR development tool window.

� Click File -> Generate to generate the DJAR.

� You are asked to save your changes to a JAR file, click Save.

� You are asked to remove old EJB1.0 information, click Remove.

� Now you can specify an output EJB JAR file, use the tool’s default name, which in our
case is c:\itsotrader\traderForCICS_GEN.jar.

� Click Generate.

After a short time the tool generates the deployed JAR file traderForCICS_GEN.jar.

Send the deployed JAR file to OS/390
The next step is to transfer the deployed JAR file to OS/390. We created the HFS directory
/u/cicsts21/djars on our OS/390 system and then, using FTP, we transferred the deployed
JAR file traderForCICS_GEN.jar in binary mode to this directory.

Refresh the DJAR in the CICS shelf
The updated JAR file now has to be refreshed in the CICS region. In this sample we assume
that you have already defined the DJAR to CICS as described in 7.3.4, “Defining the DJAR in
the CICS system” on page 193. Therefore it is only necessary to discard the existing DJAR
and re-install as follows:

CEMT DISCARD DJAR(TRADER)
CEDA INSTALL GR(ITSOEJB) DJAR(TRADER)
Chapter 10. Rewriting the Trader session bean using JDBC/SQLJ 273

10.2.3 Setting up the database
In this section we explain how to create the database, the layout of which is described in
“Designing the database layout” on page 257. The following objects need to be defined:

1. Define a DB2 database.

2. Define a DB2 table space.

3. Define DB2 tables.

4. Define DB2 indexes.

5. Load the data into the DB2 tables.

We will show how this is done in the next sections.

Define a DB2 database
In DB2, a database is a set of DB2 structures, such as a table and index spaces, and the data
and indexes contained within them. When you define a DB2 database, you give a name to an
eventual collection of tables and associated indexes, as well as to the table spaces in which
they reside. In this context, a DB2 database is only an organizational entity.

Also, database has a different meaning for DB2 applications running on OS/390 compared to
other environments. In a JDBC/SQLJ application you must be connected to a data source
before you can execute SQL statements. A data source on OS/390 is a DB2 subsystem. In
other environments, such as Windows NT, a data source is usually referred to as a database.

Example 10-1 shows the SQL statement we have used to define the DB2 database named
TRADERDB, specifying DSN8G610 as the storage group to be used and BP0 as the default
buffer pool. A DB2 storage group is a set of volumes on direct access storage devices, and a
buffer pool is an area of virtual storage in which DB2 temporarily stores pages of table spaces
or indexes.

Example 10-1 Create database statement for TRADERDB

CREATE DATABASE TRADERDB
 STOGROUP DSN8G610
 BUFFERPOOL BP0
 CCSID
EBCDIC;

Define a DB2 table space
A table space is one or more data sets in which one or more tables are stored. A table space
can consist of a number of VSAM data sets. We used a simple table space using a primary
space allocation of 20 KB, as shown in Example 10-2.

Example 10-2 Create tablespace statement for TRADERTS

CREATE TABLESPACE TRADERTS
 IN TRADERDB
 USING STOGROUP DSN8G610
 PRIQTY 20
 SECQTY 20
 ERASE NO
 LOCKSIZE ANY LOCKMAX SYSTEM
 BUFFERPOOL BP0
 CLOSE NO
 CCSID
EBCDIC;
274 EJB for OS/390 and z/OS, CICS TS V2.1

Define DB2 tables
All data in a DB2 database is presented in tables, collections of rows all having the same
columns. So when you create a table in DB2, you define an ordered set of columns.

Example 10-3 shows the SQL statements we have used to create the tables
TRADER_COMPANY and TRADER_USER.

Note: After creation both tables are marked as unavailable until their primary indexes are
explicitly created.

Example 10-3 Create table statements for TRADER_COMPANY and TRADER_USER

CREATE TABLE ITSOEJB.TRADER_COMPANY
 (C_NAME CHAR(20) NOT NULL,
 C_SV_1D DECIMAL(7,2) NOT NULL,
 C_SV_2D DECIMAL(7,2) NOT NULL,
 C_SV_3D DECIMAL(7,2) NOT NULL,
 C_SV_4D DECIMAL(7,2) NOT NULL,
 C_SV_5D DECIMAL(7,2) NOT NULL,
 C_SV_6D DECIMAL(7,2) NOT NULL,
 C_SV_7D DECIMAL(7,2) NOT NULL,
 C_SV_NOW DECIMAL(7,2) NOT NULL,
 C_CC_SELL CHAR(3) NOT NULL,
 C_CC_BUY CHAR(3) NOT NULL,
 PRIMARY KEY(C_NAME)
)
IN TRADERDB.TRADERTS;

CREATE TABLE ITSOEJB.TRADER_USER
 (U_NAME CHAR(8) NOT NULL,
 U_C_NAME CHAR(20) NOT NULL,
 U_SN_HELD INTEGER NOT NULL,
 PRIMARY KEY(U_NAME, U_C_NAME)
)
IN TRADERDB.TRADERTS;

Define DB2 indexes
An index is an ordered set of pointers to the data in DB2 table. The index is stored separately
from the table. Each index is based on the values of data in one or more columns of a table.
In DB2, indexes are used to ensure the uniqueness of the primary key and to improve
performance. In most cases, access to data is faster with an index. A table with a unique
index cannot have rows with identical keys. Example 10-4 shows the statements we have
used to create the indexes.

Example 10-4 Create index statements for TRADER_COMPANY_PK and TRADER_USER_PK

CREATE UNIQUE INDEX ITSOEJB.TRADER_COMPANY_PK
 ON ITSOEJB.TRADER_COMPANY
 (C_NAME ASC)
 USING STOGROUP DSN8G610
 PRIQTY 12
 ERASE NO
 BUFFERPOOL BP0
 CLOSE NO;

CREATE UNIQUE INDEX ITSOEJB.TRADER_USER_PK
 ON ITSOEJB.TRADER_USER
 (U_NAME ASC, U_C_NAME ASC)
 USING STOGROUP DSN8G610
Chapter 10. Rewriting the Trader session bean using JDBC/SQLJ 275

 PRIQTY 12
 ERASE NO
 BUFFERPOOL BP0
 CLOSE
NO;

Load the data into the DB2 tables
You can load data into DB2 tables by using the DB2 LOAD utility or SQL INSERT statement.
You will probably load most of your tables using the LOAD utility. We have used the SQL
INSERT statement, because it was only necessary to fill the table TRADER_COMPANY with
four rows. Example 10-5 shows the SQL INSERT statement to load the data for the company
IBM into the TRADER_COMPANY table.

Example 10-5 SQL INSERT statement to load data into TRADER_COMPANY

INSERT INTO ITSOEJB.TRADER_COMPANY
 (C_NAME, C_SV_1D, C_SV_2D, C_SV_3D, C_SV_4D, C_SV_5D,
 C_SV_6D, C_SV_7D, C_SV_NOW, C_CC_SELL, C_CC_BUY)
 VALUES ('IBM', 163.0, 162.0, 160.0, 161.0, 159.0,
 156.0,157.0,163.0, '015','010'
);

10.2.4 Customizing the JDBC runtime environment
In this section we describe the steps required to customize the JDBC runtime environment.
Note that you have to perform these steps only once.

1. Customize the cursor properties file.

2. Create a JDBC profile and make it accessible.

3. Bind the DBRMs.

4. Set environment variables for CICS.

We assume that you have already installed the DB2 JDBC and SQLJ. Also, we concentrate
on those steps which are important for running JDBC and SQLJ application for a CICS
environment. Refer to the DB2 manual Application Programming Guide and Reference for
Java, SC26-9018, for more information on JDBC and SQLJ administration.

Customize the cursor property file
The cursor properties file describes the DB2 cursors that the SQLJ/JDBC driver uses to
process JDBC result sets. You can customize the cursor property file to modify the number of
DB2 cursors available for JDBC and to control cursor names.

Choose the number of cursors for JDBC result sets
The default cursor properties file, db2jdbc.cursors, defines 125 cursors with hold and 125
cursors without hold. This number of cursors is too large for CICS applications, and it results
in a JDBC profile size that is large enough to degrade performance. Specifying five cursors
with hold and five cursors without hold should be should be adequate for most CICS
applications.

Example 10-6 shows the cursor property file we have used to create a JDBC profile
appropriate for CICS applications. As you can see, we have specified five cursors with hold
and five cursors without hold.
276 EJB for OS/390 and z/OS, CICS TS V2.1

Example 10-6 Cursor property file

cursor=DB2OS390NOHOLD001:nohold
cursor=DB2OS390NOHOLD002:nohold
cursor=DB2OS390NOHOLD003:nohold
cursor=DB2OS390NOHOLD004:nohold
cursor=DB2OS390NOHOLD005:nohold
cursor=DB2OS390HOLD001:hold
cursor=DB2OS390HOLD002:hold
cursor=DB2OS390HOLD003:hold
cursor=DB2OS390HOLD004:hold
cursor=DB2OS390HOLD005:hold

Create a JDBC profile and make it accessible
To create a JDBC profile, you have to execute the db2genJDBC utility. The JDBC profile
contains the JDBC program properties used at runtime.

Choose parameter values for the db2genJDBC utility
The default value for the statement parameters used by the db2genJDBC utility is not
appropriate for CICS applications, because it generates a large JDBC profile. For VAJ SQLJ
and JDBC applications that run in a CICS environment, large JDBC profiles can degrade
performance.

Choose a value for the statements parameter that is lower than the default of 150. The
default value produces more sections than are necessary for typical CICS applications. A
larger number of sections results in a larger JDBC profile size. A value of 10 should be
adequate for most CICS applications.

Execute the db2genJDBC utility
The shell script we used to generate a JDBC profile is illustrated in Example 10-7.

Example 10-7 USS shell script to execute db2genJDBC utility

--
Shell script to run the DB2 db2genJdBC utility from USS.
#
Modify the following to match your DB2/390 installation directory:
DB2_HOME=/service_db2v6/usr/lpp/db2/db2610
#---
CLASSPATH=$CLASSPATH:$DB2_HOME/classes/db2sqljclasses.zip
export CLASSPATH
export LIBPATH=$LIBPATH:$DB2_HOME/lib/
export DB2SQLJPROPERTIES=./mydb2sqljjdbc.properties
$DB2_HOME/bin/db2genJDBC -statements=10 -cursors=./db2jdbc.cursors

The db2genJDBC utility creates four DBRMs and a JDBC profile.

Note: We use the environment variable DB2SQLJPROPERTIES to specify the runtime properties
file for the DB2 for OS/390 SQLJ/JDBC driver. The runtime properties file lets you specify
program preparation and runtime options that the DB2 for OS/390 SQLJ/JDBC driver uses.
We used the runtime properties file only to specify the name of the partitioned data set into
which DBRMs are placed. Therefore, our properties file contains one entry.

DB2SQLJDBRMLIB=CICSRS3.ITSO.DBRMLIB
Chapter 10. Rewriting the Trader session bean using JDBC/SQLJ 277

Make the JDBC profile accessible
The JDBC profile name is program name_JDBCProfile.ser, where program name is the
name you have specified using the -pgmname option of the db2genJDBC utility. Because we did
not specify this option, the default DSNJDBC was used. Therefore, the name of the
generated profile is DSNJDBC_JDBCProfile.ser.

You have to make sure the JDBC profile is accessible in a directory specified in the
CLASSPATH environment variable. For application running in CICS, the CLASSPATH is
specified using the CLASSPATH setting in the JVM profile. In “DFHJVM and JVM profiles” on
page 73 we describe how we tailored the default profile provided by CICS to match our
installation. In that profile, the CLASSPATH is defined as follows:

CLASSPATH=/usr/lpp/cicsts/cicsts21/lib

In order to make the JDBC profile available, we copied the JDBC profile to this path.

Bind the DBRMs
The db2genJDBC utility also creates four DBRMs, one for each DB2 isolation level. The
name of the DBRMs are program name<x>, where <x> is a number between 1 and 4. In our
case, the names of the generated profiles are DSNJDBC1, DSNJDBC2, DSNJDBC3 and
DSNJDBC4. By default, the DBRMs are written to the dataset DBRMLIB.DATA.

You must bind the DBRMs into packages and include them into a plan that the JDBC
application is able to access it at runtime.

DB2 provides a sample job in DSN610.SDSNSAMP.DSNTJJCL. Our bind job after tailoring
the DB2 sample job is shown in Example 10-8.

Example 10-8 JCL to bind the JDBC DBRMs

// CLASS=A,MSGCLASS=X,MSGLEVEL=(1,1),
// NOTIFY=&SYSUID,REGION=0M
//JOBLIB DD DISP=SHR,DSN=DSN610.SDSNLOAD
//BINDJDBC EXEC PGM=IKJEFT01,DYNAMNBR=20
//DBRMLIB DD DISP=SHR,DSN=CICSRS3.ITSO.DBRMLIB
//SYSTSPRT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSTSIN DD *
 DSN SYSTEM(DBZ1)

 BIND PACKAGE (DSNJDBC) MEMBER(DSNJDBC1) ISOLATION(UR)
 BIND PACKAGE (DSNJDBC) MEMBER(DSNJDBC2) ISOLATION(CS)
 BIND PACKAGE (DSNJDBC) MEMBER(DSNJDBC3) ISOLATION(RS)
 BIND PACKAGE (DSNJDBC) MEMBER(DSNJDBC4) ISOLATION(RR)
 BIND PLAN(DSNJDBC) -
 PKLIST(DSNJDBC.DSNJDBC1, -
 DSNJDBC.DSNJDBC2, -
 DSNJDBC.DSNJDBC3, -
 DSNJDBC.DSNJDBC4) RETAIN

END
/*
278 EJB for OS/390 and z/OS, CICS TS V2.1

Note: For JDBC and SQLJ applications, and mixed JDBC and SQLJ applications, the DB2
JDBC driver uses information from the JDBC profile to set the name of the DBRM in the
parameter list of the first EXEC SQL statement executed. The first SQL issued will always
have the DBRM name set to the JDBC base program with the default isolation level
appended, that is, DSNJDBC2 by default; or if, for example, the JDBC profile was generated
using pgmname=OTHER, the DBRM name will be OTHER2. Because we do not specify the
-pgmname option when generating the JDBC profile, the default DBRM used was DSNJDBC2,
which is the DBRM for the isolation level cursor stability. In CICS, it is recommended to use
cursor stability unless there is a specific need for using repeatable read. Cursor stability is
recommended to allow a high level of concurrency and to reduce the risk of deadlocks.

Setting CICS parameters
It is necessary to modify several CICS parameters in order to use JDBC and SQLJ programs
within CICS. These are described in the following sections.

STEPLIB
The CICS DB2 Attachment facility has to load the DB2 program request handler, DSNAPRH.
To do this, the DB2 library SDSNLOAD should be placed in the MVS linklist, or added to the
STEPLIB concatenation of your CICS job. Example 10-9 shows the modifications we made to
our CICS startup procedure to enable DB2 support.

Example 10-9 JCL to start CICS region with DB2 support

//CICTSEJB PROC START='INITIAL',REG='0M',OUTC='*'
// COMMAND 'V NET,ACT,ID=APCPJA5,ALL'
//CICS610 EXEC PGM=DFHSIP,REGION=®,TIME=1440,
// PARM=('START=&START','SYSIN')
//STEPLIB DD DSN=CICSTS21.CICS.SDFHAUTH,DISP=SHR
// DD DSN=DSN610.SDSNLOAD,DISP=SHR
//SYSABEND DD SYSOUT=&OUTC
//SYSIN DD DSN=CICSSYSF.CICSTS21.SYSIN(PJA5SIT),DISP=SHR
//DFHRPL DD DSN=CICSSYSF.APPL61.LOADLIB,DISP=SHR
// DD DSN=CICSTS21.CICS.SDFHLOAD,DISP=SHR
// DD DSN=CEE.SCEECICS,DISP=SHR
// DD DSN=CEE.SCEERUN,DISP=SHR
//DFHCXRF DD SYSOUT=&OUTC
//DFHAUXT DD DISP=SHR,DCB=BUFNO=5,
// DSN=CICSSYSF.CICS610.PJA5.DFHAUXT
//DFHBUXT DD DISP=SHR,DCB=BUFNO=5,
// DSN=CICSSYSF.CICS610.PJA5.DFHBUXT
DFHDMPA DD DSN=CICSSYSF.CICS610.PJA5.DFHDMPA,DISP=SHR
DFHDMPB DD DSN=CICSSYSF.CICS610.PJA5.DFHDMPB,DISP=SHR
DFHINTRA DD DSN=CICSSYSF.CICS610.PJA5.DFHINTRA,DISP=SHR
DFHTEMP DD DSN=CICSSYSF.CICS610.PJA5.DFHTEMP,DISP=SHR
DFHGCD DD DSN=CICSSYSF.CICS610.PJA5.DFHGCD,DISP=SHR
DFHLCD DD DSN=CICSSYSF.CICS610.PJA5.DFHLCD,DISP=SHR
DFHCSD DD DSN=CICSSYSF.CICSTS21.DFHCSD,DISP=SHR
DFHJVM DD DSN=CICSSYSF.CICS610.DFHJVM,DISP=SHR
DFHEJDIR DD DSN=CICSSYSF.CICS610.PJA5.DFHEJDIR,DISP=SHR
DFHEJOS DD DSN=CICSSYSF.CICS610.PJA5.DFHEJOS,DISP=SHR
DFHADJM DD DSN=CICSSYSF.CICS610.PJA5.DFHADJM,DISP=SHR

Environment variables
To enable JDBC/SQLJ support, the following environment variables need to be set in the
CICS JVM profile. The profile we used was CICSSYSF.CICS610.DFHJVM (DFHJVMPR).
For more details on setting JVM profiles, refer to “DFHJVM and JVM profiles” on page 73.
Chapter 10. Rewriting the Trader session bean using JDBC/SQLJ 279

� LIBPATH

The DB2 for OS/390 SQLJ/JDBC driver contains several dynamic load libraries(DLLs).
Modify the LIBPATH to include the directory that contains these DLLs. In our case, SQLJ
and JDBC were installed in the HFS directory /service_db2v6/usr/lpp/db2/db2610, so
we have added the following line to the LIBPATH concatenation of the CICS JVM profile:

/service_db2v6/usr/lpp/db2/db2610/lib/

� TMSUFFIX

TMSUFFIX is used to control the trusted middle classpath for the persistent reusable JVM.
The DB2 zip operation archives db2sqljruntime.zip, and db2jdbcruntime.zip contains
all of the classes necessary to run JDBC and SQLJ programs. We added the following
lines to the TMSUFFIX concatenation of our JVM profile:

/service_db2v6/usr/lpp/db2/db2610/classes/db2sqljruntime.zip:\
/service_db2v6/usr/lpp/db2/db2610/classes/db2jdbcruntime.zip

� DB2SQLJPROPERTIES

DB2SQLJPROPERTIES specifies the fully-qualified name of the runtime properties file for
the DB2 for OS/390 SQLJ/JDBC driver. The runtime properties file contains various
entries of the form parameter=value that specify program preparation and runtime options
that the DB2 for OS/390 SQLJ/JDBC driver uses. Most properties in the runtime
properties file are not used in a CICS environment, and we did not use this file in our CICS
region.

10.2.5 Defining a CICS DB2 connection
A CICS attachment facility is provided with CICS that allows you to operate DB2 with CICS.
The connection between CICS and DB2 can be created or terminated at any time, and CICS
and DB2 can be started and stopped independently. You also have the option of CICS
automatically connecting and reconnecting to DB2. The DB2 system can be shared by
several CICS systems, but each CICS system can be connected to only one DB2 subsystem
at any one time.

You use a DB2CONN definition to define the global attributes of the connection to be
established between CICS and DB2 as well as the attributes of pool threads and command
threads to be used with the connection.

Defining a DB2 connection
Several ways exists to define a DB2 connection in CICS. We used the CEDA transaction to
define a DB2 connection. From a CICS terminal, we used the command CEDA DEFINE
DB2CONN(DB2CON) GROUP(ITSOEJB). We then specified the DB2 connection definition
attributes as shown in Figure 10-18.

We specified the name of the DB2 subsystem to which the CICS DB2 attachment facility is to
connect, in our case DBZ1, and the name of the DB2 plan to be used, which was DSNJDBC.
Also, we specified CICSRS1 as the authorized CICS user ID using the attributes SIGNID and
AUTHTYPE.

Note: DROLLBACK(YES) should not be specified on a DB2ENTRY definition or the
DB2CONN pool definition used by transactions running enterprise beans as part of an OTS
transaction. With this attribute, if a deadlock is detected, the CICS-DB2 Attach will issue a
CICS syncpoint rollback request, which is not allowed in an OTS transaction, and an ASPD
abend will result. Enterprise beans should use DROLLBACK(NO). They should test for an
SQLException with an SQLCODE of -913 and issue an OTS rollback request.
280 EJB for OS/390 and z/OS, CICS TS V2.1

Figure 10-18 Define panel for DB2CONN

Installing a DB2 connection
A DB2CONN must be installed before the CICS DB2 connection can be started. Because
it contains information regarding pool threads and command threads, as well as global
type information, a DB2CONN represents the minimum required to start the CICS DB2
connection. Only one DB2CONN can be installed in a CICS region at any one time.

To install the DB2CONN, we used the CEDA INSTALL command from a CICS terminal:

CEDA INSTALL DB2CONN(DB2CON) GROUP(ITSOEJB)

Starting the CICS DB2 attachment facility
The CICS DB2 attachment facility can be started automatically at initialization, or manually
using the CEMT SET DB2CONN command. This command sets the attributes of the CICS DB2
connection. To start the CICS DB2 connection, we used the following command:

CEMT SET DB2CONN CONNECTED

B2Conn : DB2CON
 Group : ITSOEJB
 DEscription ==> DB2 CONNECTION FOR JDBC / SQLJ
CONNECTION ATTRIBUTES
 CONnecterror ==> Sqlcode Sqlcode | Abend
 DB2id ==> DBZ1
 MSGQUEUE1 ==> CDB2
 MSGQUEUE2 ==>
 MSGQUEUE3 ==>
 Nontermrel ==> Yes Yes | No
 PUrgecycle ==> 00 , 30 0-59
 SIgnid ==> CICSRS1
 STANdbymode ==> Reconnect Reconnect | Connect | Noconnect
 STATsqueue ==> CDB2
 TCblimit ==> 0012 4-2000
 THREADError ==> N906D N906D | N906 | Abend
POOL THREAD ATTRIBUTES
 ACcountrec ==> None None | TXid | TAsk | Uow
 AUTHId ==>
 AUTHType ==> Sign Userid | Opid | Group | Sign | TErm
 | TX
 DRollback ==> No Yes | No
 PLAN ==> DSNJDBC
 PLANExitname ==>
 PRiority ==> High High | Equal | Low
 THREADLimit ==> 0003 3-2000
 THREADWait ==> Yes Yes | No
COMMAND THREAD ATTRIBUTES
 COMAUTHId ==>
 COMAUTHType ==> Userid Userid | Opid | Group | Sign | TErm
 | TX
 COMThreadlim ==> 0001 0-2000
Chapter 10. Rewriting the Trader session bean using JDBC/SQLJ 281

10.2.6 Granting privileges to the CICS user ID
To enable the authorized CICS user ID CICSRS1 to access the tables TRADER_COMPANY
and TRADER_USER we had to grant the appropriate privileges to this user ID. In order to
allow applications to use JDBC to access DB2 data we had to grant general access for the
the package DSNJDBC.* and the DB2 plan DSNJDBC.

Grant table privilege
For the table TRADER_COMPANY, the user ID CICSRS1 needs only the privilege to use the
SELECT statement. We granted that privilege with the following command:

GRANT SELECT ON TABLE ITSOEJB.TRADER_COMPANY TO CICSRS1;

For the table TRADER_USER, the CICSRS1 needs the privileges to use the SELECT,
INSERT, UPDATE and DELETE statement. We granted these privileges with the following
command:

GRANT SELECT,INSERT,UPDATE,DELETE ON TABLE ITSOEJB.TRADER_USER TO CICSRS1;

Note: Using dynamic SQL from a generic interface such as JDBC, the DB2 uses the end
user’s privileges to access relational data. This is required because DB2 does not have any
secure way to determine which program the end user is executing. Instead, DB2 simply
detects SQL statements issued by a JDBC driver. In order to allow the end user to perform
the SQL statements, you have to grant table privileges for the tables accessed by the JDBC
application. In our case, the CICS user ID CICSRS1 needed the proper table privileges to be
able to perform the SQL commands specified in the JDBC application.

Grant plan privileges
In “Bind the DBRMs” on page 278, we described how to bind the DBRMs into packages and
include them into a plan. These packages and the plan are needed in order to run JDBC
applications on OS/390. Therefore, they must be made available for all JDBC applications.
We granted the necessary privileges with the following commands:

GRANT EXECUTE ON PLAN DSNJDBC TO PUBLIC;
GRANT EXECUTE ON PACKAGE DSNJDBC.* TO PUBLIC;

10.2.7 Testing the JDBC enterprise bean
We tested our JDBC version of our Trader enterprise bean in two different ways.

Test the enterprise bean with TraderTest
First we tested with our standalone test program TraderTest. This is a standalone Java
application that can be run from either a command line or within VAJ. Instructions on how to
use this from the command line are given in 10.1, “Quick start — Invoking TraderBean” on
page 255. We edited the following line to invoke the traderTest application with the DB2SQLJ
option.

java -classpath ".;traderTest.jar;traderCLI.jar;C:\Program Files\IBM\CICS TS 2.1
Tools\Common\j2ee.jar" itso.ejb390.trader.test.TraderTest
com.sun.jndi.cosnaming.CNCtxFactory iiop://hecate:900/ ITSO/PJA5/Trader DB2JDBC

The successful output of runtest.cmd is shown in Example 10-11.

Example 10-10 Output of runtest.cmd for DB2JDBC

C:\itsotrader>runtest.cmd
Starting TraderTest application with following input:

Name service: com.sun.jndi.cosnaming.CNCtxFactory
 Naming Server: iiop://hecate:900/
282 EJB for OS/390 and z/OS, CICS TS V2.1

 JNDI name: ITSO/PJA5
 Call type: DB2JDBC

Casey_Import_Export
Glass_and_Luget_Plc
Headworth_Electrical
IBM
CommissionCostBuy 010
CommissionCostSell 015
NumberOfShares 0198
TotalShareValue 000032274.00
UnitSharePrice 00163.00
UnitValue1Days 00163.00
UnitValue2Days 00162.00
UnitValue3Days 00160.00
UnitValue4Days 00161.00
UnitValue5Days 00159.00
UnitValue6Days 00156.00
UnitValue7Days 00157.00
Now we buy 5 shares ...
... and sell 2 of theM

Test the enterprise bean with TraderServlet
Next we tested the our JDBC application from our TraderServlet that we previously
developed in 7.4.2, “Servlet development with VisualAge for Java” on page 199. We invoked
the Trader servlet on our using the URL:

http://hecate/trader/Logon.jsp

We provided the following input parameters to the initial servlet HTML:

Communication type DB2JDBC

JndiPrefix ITSO/PJA5

NameService com.ibm.ejs.ns.jndi.CNInitialContextFactory

ProviderURL iiop://hecate:900/

The output of the TraderServlet was the same as shown in “Testing the Trader servlet” on
page 212.

10.3 Accessing DB2 using SQLJ
SQLJ is a standard way to embed SQL statements in Java programs; it is a lower level API
than JDBC, so it is less complex and more concise. You can use both JDBC and SQLJ
statements in the same source code.

The SQLJ standard has three components: embedded SQLJ, a translator, and a runtime
environment. The translator translates SQLJ files that contain embedded SQLJ to produce
.java files and profiles that use the runtime environment to perform SQL operations.

You can find general SQLJ information at the following Web site:

http://www.sqlj.org

For more information on SQLJ syntax for DB2, visit the IBM DB2 SQLJ Web site at:

http://www.software.ibm.com/data/db2/java/sqlj
Chapter 10. Rewriting the Trader session bean using JDBC/SQLJ 283

http://www.sqlj.org
http://www.software.ibm.com/data/db2/java/sqlj

The next sections describe the following steps which were necessary to develop and test our
session bean accessing SQLJ. These steps were:

1. Developing the SQLJ application.

2. Deploying the session bean to CICS.

3. Preparing the SQLJ program on OS/390.

4. Modifying the CICS DB2 connection.

5. Grants privileges to CICS user ID.

6. Refresh the DJAR in the CICS system.

7. Testing the enterprise bean.

10.3.1 Developing the SQLJ application
This section describes how to write an session bean accessing DB2 for OS/390 using SQLJ.
We describe the following steps:

1. Adapting TraderBean for use of SQLJ.

2. Setting up SQLJ support in VAJ.

3. Creating the TraderBackendDB2SQLJ SQLJ file.

4. Implementing TraderBackendDB2SQLJ.

Adapting TraderBean for use of SQLJ
This section shows which changes are necessary for class TraderBean. As you will see, it is
only necessary to modify method loadClass() as illustrated in the next section. No other
change is necessary for TraderBean.

Modifying TraderBean.loadClass()
The method loadClass() needs to be modified in such a way that it can also load the new
SQLJ back-end class, named TraderBackendDB2SQLJ, as illustrated in Figure 10-19.

Figure 10-19 TraderBean.loadClass() loading TraderBackendDB2SQLJ

private void loadClass(String type) throws Exception {

Class loadClass=null;

if(type.equalsIgnoreCase("JCICS-COBOL") == true) {
 loadClass = Class.forName("itso.ejb390.trader.TraderBackendJcics");}
else if(type.equalsIgnoreCase("CICSConnectorCCF") == true) {
 loadClass = Class.forName("itso.ejb390.trader.TraderBackendCICSConnectorCCF");}
else if(type.equalsIgnoreCase("JCICS-Java") == true) {
 loadClass = Class.forName("itso.ejb390.trader.TraderBackendVsam");}
else if(type.equalsIgnoreCase("DB2JDBC") == true) {
 loadClass = Class.forName("itso.ejb390.trader.TraderBackendDB2JDBC");}
else if(type.equalsIgnoreCase("DB2SQLJ") == true) {
 loadClass = Class.forName("itso.ejb390.trader.TraderBackendDB2SQLJ");}
else { throw new TraderException("You specified unknown type " + type);}

ivTraderBackend = (TraderBackend)loadClass.newInstance();

}

284 EJB for OS/390 and z/OS, CICS TS V2.1

http://www.software.ibm.com/data/db2/java/sqlj

Setting up SQLJ support in VAJ
VisualAge for Java provides an SQLJ Tool that implements the SQLJ standard, enabling
you to simplify database access. The translator component is integrated into the IDE,
enabling you to import, translate, and edit SQLJ files. The runtime environment is an
installable feature in VisualAge for Java. The runtime environment must be added to your
workspace before you can successfully compile and execute translated SQLJ code.

To add the SQLJ Runtime Library feature to your workspace, select File -> Quickstart ->
Features -> Add feature and click the OK button. Now select the SQLJ Runtime Library
V3.0 from the list, and click the OK button.

Creating the TraderBackendDB2SQLJ SQLJ file
You cannot add #sqlj statements directly to your source code in a source window in VAJ. You
have to create a new .sqlj file in your file system with a text editor, which you can then import
into your VAJ project. Figure 10-20 shows the content of the file TraderBackendDB2SQLJ.sqlj
we used when importing it into VAJ.

Figure 10-20 SQLJ skeleton file of TraderBackendDB2SQLJ class

Once you have created an SQLJ file, you need to import it into a project and translate the file,
before you can use it. To import the SQLJ file, select Workspace -> Tools -> SQL ->
Import. In the SQLJ Import window type a project name in the Project Name field (in our
case ITSO EJB 390 Redbook), and type an SQLJ file name in the SQLJ file name field.

Note: The name of the SQLJ file must be same as the class which is defined in the .sqlj
file. In our case, we have provided the file TraderBackendDB2SQLJ.sqlj.

One you have imported an SQLJ file into your project, you can edit and translate it from
within VAJ. Each time you edit an imported SQLJ file, you need to translate it to ensure
that the SQLJ file in your project resources directory and the source code in your project
are synchronized.

package itso.ejb390.trader;
import java.sql.*;
public class TraderBackendDB2SQLJ implements TraderBackend {
public TraderBackendDB2SQLJ() {
 super();
}
public void buy(String company, String userID, int numberOfShares) throws
java.lang.Exception {}
private void closeConnection() throws SQLException {}
public void ejbBackendActivate() throws java.rmi.RemoteException {}
public void ejbBackendCreate() throws java.rmi.RemoteException {}
public void ejbBackendPassivate() throws java.rmi.RemoteException {}
public void ejbBackendRemove() throws java.rmi.RemoteException {}
public CompaniesBean getCompanies() throws Exception {}
public QuotesBean getQuotes(String company, String userID) throws Exception {}
public void logoff() throws Exception {}
public void logon(String userID, String password, String connectURL, String cicsServer)
throws Exception {}
private void openConnection() throws SQLException {}
public void sell(String company, String userID, int numberOfShares) throws Exception {}
}

Chapter 10. Rewriting the Trader session bean using JDBC/SQLJ 285

To edit or translate your SQLJ file, right-click your project, select Open and select the
Resources tab. To edit the SQLJ file, right-click it and select Tools -> SQL -> Edit.
To translate the SQLJ file, right-click it and select Tools -> SQL -> Translate.

Implementing TraderBackendDB2SQLJ
This section demonstrates how to implement class TraderBackendDB2SQLJ, which uses
SQLJ to access DB2 on OS/390. As shown in “Implementing TraderBackendDB2JDBC” on
page 258, this class must implement all the following methods belonging to the
TraderBackend interface class, as follows:

� ejbBackendCreate()
� ejbBackendRemove()
� ejbBackendPassivate()
� ejbBackendActivate()
� logon()
� getCompanies()
� getQuotes()
� buy()
� sell()
� logoff()

It is also necessary to implement two further methods to manage the database connection:

� openConnection()
� closeConnection()

TraderBackendDB2SQLJ class
The declaration of TraderBackendDB2SQLJ is shown in Figure 10-21. It is similar to
TraderBackendDB2JDBC, but declares the variable ivConCtx instead of ivCon. Also, it defines
iterators to retrieve the rows from the result table.

Figure 10-21 Declaration of TraderBackendDB2SQLJ

import java.text.*;
import javax.naming.*;
import java.sql.*;
import sqlj.runtime.*;

#sql context ctx;

public class TraderBackendDB2SQLJ implements TraderBackend {

#sql public static iterator iter_selectCompany (String c_name);
#sql public static iterator iter_selectQuotes

(double c_sv_1d,...,double c_sv_7d,double c_sv_now,
 String c_cc_sell,String c_cc_buy);

//fields to be stored if passivated
private java.lang.String ivUserID ="";
private java.lang.String ivJDBCURL =null;
private ctx ivConCtx =null;

}

286 EJB for OS/390 and z/OS, CICS TS V2.1

Each SQLJ executable clause requires, either explicitly or implicitly, a connection context
object that designates the database connection at which the SQL operations specified in that
clause will be executed. In the declaration of TraderBackendDB2SQLJ we define a
connection class named ctx with the SQLJ clause #sql context ctx. The instance variable
ivConCtx is later used to invoke the constructor for class ctx using a JDBC connection as the
argument.

A capability central to SQL is the ability to execute queries that retrieve a result set of rows
from the database. An SQLJ result set iterator is a Java object from which data returned by
an SQL query can be retrieved. SQLJ supports two mechanism for matching iterators
columns to query columns: bind by position and bind by name.

We use the named bindings to columns in our sample. When you declare an iterator that
binds by name, you specify names for each of the iterator columns. Those names must match
the names of columns in the database. The names are case-insensitive. The iterators
iter_selectCompany, iter_selectQuotes and iter_selectShareNumber are used in our sample
to retrieve the data returned by the SQL queries.

Also, TraderBackendDB2SQLJ imports one additional package, sqlj.runtime.*, which
provides the SQLJ runtime support.

TraderBackendDB2SQLJ.openConnection()
The openConnection() method requests a connection instance from the DriverManager by
specifying the location of the database as URL. It sets the autocommit property of the JDBC
connection to false, and invokes the constructor for the connection context class, using the
JDBC connection as an argument. The implementation of method openConnection() is
illustrated in Figure 10-22.

Figure 10-22 TraderBackendDB2SQLJ.logon()

TraderBackendDB2SQLJ.closeConnection()
The closeConnection() method closes the connection connect object, which also closes the
underlying connection and frees all resources associated with the connection. Then it sets the
instance variable ivConCtx to null to avoid serialization problems. Figure 10-23 shows the
implementation of method closeConnection().

Figure 10-23 TraderBackendDB2JDBC.logoff()

private void openConnection() throws SQLException
{
 Connection con = DriverManager.getConnection(ivJDBCURL);
 con.setAutoCommit(false);
 ivConCtx = new DefaultContext (con);
}

private void closeConnection() throws SQLException
{
 ivConCtx.close();
 ivConCtx = null;
}

Chapter 10. Rewriting the Trader session bean using JDBC/SQLJ 287

Control methods for TraderBackendDB2SQLJ
The control methods ejbBackendCreate(), ejbBackendRemove(), ejbBackendActivate(),
ejbBackendPassivate() and ejbBackendRemove() are identical to the implementation used in
TraderBackendDB2JDBC, because the differences in establishing a connection using JDBC
and SQLJ are hidden in the private methods openConnection() and closeConnection().
Their TraderBackendJDBC control methods are shown in Figure 10-6 on page 260 to
Figure 10-9 on page 262.

TraderBackendDB2SQLJ.logon()
The logon() method is very similar to TraderBackendDB2JDBC.logon(), but simpler.
Figure 10-24 shows the implementation of the method logon().

Figure 10-24 TraderBackendDB2SQLJ.logon()

The following list summarize the logic in method logon():

� 1 Store the provided user ID in the class’s instance variable.

The user ID needs to be stored, since it is required to clean up the database when the
user logs off from the application.

� 2 Define the iterator object.

The iterator is used to retrieve the company names from the result set returned by the
SQL query. The named iterator class iter_selectCompany was created by the following
SQLJ clause:

#sql public static iterator iter_selectCompany (String c_name);

The iterator class has the accessor method c_name(), which returns the data from the
result table column.

public void logon(String userID, String password, String connectURL, String cicsServer)
throws Exception
{
1 ivUserID = userID;
2 iter_selectCompany i = null;

try {
3 #sql [ivConCtx] i = { SELECT c_name FROM trader_company};

 String company = null;
4 while (i.next()) {
 company = i.c_name();

 try {
5 #sql [ivConCtx] { INSERT INTO trader_user

(u_name, u_c_name, u_sn_held)
VALUES (:userID, :company, 0) };

 } catch (SQLException ex) {
 if (ex.getErrorCode() != -803) throw ex;
 }
 }
} catch (Exception ex) {
 ex.printStackTrace(); throw ex;
} finally {

6 if (i != null) i.close();
}

}

288 EJB for OS/390 and z/OS, CICS TS V2.1

� 3 Execute the SQL query.

This SQLJ clause executes the SELECT statement, constructs an iterator object that
contains the result table for the SELECT statement, and assigns the iterator object to
variable i. The connection context that is used for executing the SQL operation is the
value of the Java variable ivConCtx. As you can see, we use an unqualified name for
the table name (that means that we specify only the second part of the two-part name).
We provide the qualifier later when processing the SQLJ file on OS/390.

� 4 Retrieve the result and copy the company name to the local variable company.

The next() method, which is a method of the generated class
iterator_selectCompanies, advances the iterator to successive rows of the result set.
The method next() returns a value of true when a next row is available, and a value of
false waen all rows have been fetched.

� 5 Execute the SQL update.

This SQLJ clause performs an insert operation. In our sample, a new row is inserted
into the TRADER_USER table for each company. The values for the user ID, company
name and the number of shares are provided by host variables, which are
distinguished by the colon character (:).

Note: As for the logon method of TraderBackendDB2JDBC, we have to tolerate the
SQL error -803 (insert would result in duplicate values in index columns), because the
application keeps all positive (>0) share holdings when the user logs off from the
application.

� 6 Close the iterator.

The close() method closes the SQLJ iterator.

TraderBackendDB2SQLJ.getCompanies()
Figure 10-25 shows the implementation of method getCompanies().

Figure 10-25 TraderBackendDB2SQLJ.getCompanies()

The getCompanies() method does the following:

� 1 Define the iterator object.

� 2 Instantiate a CompaniesBean.

� 3 Execute the SQL query.

� 4 Retrieve the result and copy the company names to the CompaniesBean.

public CompaniesBean getCompanies() throws Exception
{
1 iter_selectCompany i = null;
2 CompaniesBean companies = new CompaniesBean();
 try {
3 #sql [ivConCtx] i = { SELECT c_name FROM trader_company};
4 while (i.next()) {
 companies.addCompany(i.c_name());
 }
 } catch (Exception ex) {
 ex.printStackTrace(); throw ex;
 } finally {
5 if (i != null) i.close();
 }
6 return companies;
}

Chapter 10. Rewriting the Trader session bean using JDBC/SQLJ 289

� 5 Close the iterator.

� 6 Return the CompaniesBean.

TraderBackendDB2SQLJ.getQuotes()
Figure 10-26 shows the implementation of method getQuotes().

Figure 10-26 TraderBackendDB2SQLJ.getQuotes()

The getQuotes() method requires the company name and the user ID to do the following
steps:

� 1 Define the iterator object.

public QuotesBean getQuotes(String company, String userID) throws Exception
{
1 iter_selectQuotes i = null;

2 QuotesBean quotes = new QuotesBean();

try {
// perform the sqlj statement (select the quotes of a company)

3 #sql [ivConCtx] i = { SELECT c_sv_1d, ... ,c_sv_7d, ,c_sv_now,
 c_cc_sell,c_cc_buy

 FROM trader_company
WHERE c_name = :company };

double unitSharePrice = 0;
DecimalFormat df = new DecimalFormat("00000.00");
FieldPosition fp = new FieldPosition(1);

4 if (i.next()) {
 quotes.setUnitValue1Days(df.format(i.c_sv_1d(),

 new StringBuffer(),fp).toString());
 ...
 quotes.setUnitValue7Days(df.format(i.c_sv_7d(),
 new StringBuffer(),fp).toString());

 unitSharePrice = i.c_sv_now();
 quotes.setUnitSharePrice(df.format(unitSharePrice,

 new StringBuffer(),fp).toString());
 quotes.setCommissionCostSell(i.c_cc_sell());
 quotes.setCommissionCostBuy(i.c_cc_buy());

 }
 int numberOfSharesHeld = 0;
5 #sql [ivConCtx] { SELECT u_sn_held
 INTO :numberOfSharesHeld
 FROM trader_user
 WHERE u_name = :userID AND u_c_name = :company};

6 quotes.setNumberOfShares(new DecimalFormat("0000").format(
 numberOfSharesHeld,new StringBuffer(),fp).toString());

 double totalShareValue = unitSharePrice * numberOfSharesHeld;
 quotes.setTotalShareValue(df.format(totalShareValue,

 new StringBuffer(),fp).toString());
} catch (Exception ex) {

ex.printStackTrace(); throw ex;
} finally {

7 if (i != null) i.close();
}

8 return quotes;
}

290 EJB for OS/390 and z/OS, CICS TS V2.1

� 2 Instantiate a QuotesBean.

QuotesBean is a class which is used to hold all quote specific information returned by
the SQL statement.

� 3 Execute the SQL query.

The named iterator class iter_selectQuotes was created by the following SQLJ clause:

#sql public static iterator iter_selectQuotes
 (double c_sv_1d, ... , c_sv_7d, double c_sv_now,
 String c_cc_sell, String c_cc_buy);

� 4 Retrieve the result and copy the information to the QuotesBean.

We have used the class DecimalFormat to format the decimal numbers to the same
format that is used by the COBOL Trader application.

� 5 Execute the SQL query.

Rather than creating an iterator, we use here SQLJ's support of SELECT ... INTO ...
FROM, because the query returns only one row.

� 6 Copy the information to the QuotesBean.

The total value is calculated from the number of shares hold by the user multiplies by
the current share value.

� 7 Close the iterators.

� 8 Return the QuotesBean.

TraderBackendDB2SQLJ.buy()
The buy() method uses the company name, the user ID, and the number of shares, as
follows (Figure 10-27).

Figure 10-27 TraderBackendDB2SQLJ.buy()

The following steps are performed in the buy() method:

� 1 Verify that the number of shares to buy does not exceed the maximum.

The maximum number of shares a user can buy is 9999 and is defined within the
COBOL Trader application.

� 2 Execute the SQL query.

public void buy(String company, String userID, int numberOfShares) throws
java.lang.Exception
{
1 if (numberOfShares > 9999) return;
 try {
 int numberOfSharesHeld = 0;
2 #sql [ivConCtx] { SELECT u_sn_held INTO :numberOfSharesHeld FROM trader_user
 WHERE u_name = :userID AND u_c_name = :company};
3 numberOfSharesHeld += numberOfShares;
4 if (numberOfSharesHeld > 9999) return;
5 #sql [ivConCtx] { UPDATE trader_user
 SET u_sn_held = :numberOfSharesHeld
 WHERE u_name = :userID and u_c_name = :company};
 } catch (Exception ex) {

ex.printStackTrace(); throw ex;
 }
}

Chapter 10. Rewriting the Trader session bean using JDBC/SQLJ 291

� 3 Calculate the new number of shares held.

� 4 Verify that the number of shares held does not exceed the maximum (9999).

� 5 Execute the SQL update. This SQLJ clause performs an update operation.

TraderBackendDB2SQLJ.sell()
The sell() method is very similar to the buy() method. The only difference is how it
calculates the new number of shares held by the customer, as shown in Figure 10-28.

Figure 10-28 TraderBackendDB2SQLJ.sell()

TraderBackendDB2SQLJ.logoff()
The logoff() method is shown in Figure 10-29.

Figure 10-29 TraderBackendDB2SQLJ.logoff()

This logoff() method performs the following:

� 1 Execute the SQL update.

This SQLJ clause performs a delete operation.

public void sell(String company, String userID, int numberOfShares) throws Exception
{

if (numberOfShares > 9999) return;

try {
 // perform the sqlj statement (select number of shares held)

int numberOfSharesHeld = 0;
#sql [ivConCtx] { SELECT u_sn_held INTO :numberOfSharesHeld FROM trader_user

WHERE u_name = :userID AND u_c_name = :company};

 // calculate new number of shares held
if (numberOfShares > numberOfSharesHeld) return;
numberOfSharesHeld -= numberOfShares;
// perform the sqlj statement (update number of shares held)
#sql [ivConCtx] { UPDATE trader_user

SET u_sn_held = :numberOfSharesHeld
WHERE u_name = :userID and u_c_name = :company};

} catch (Exception ex) {
System.out.println("Exception detected!");
System.out.println("********* S T A C K T R A C E *********");
ex.printStackTrace();
throw ex;

}
}

public void logoff() throws Exception
{
 try {
1 #sql [ivConCtx] { DELETE FROM trader_user
 WHERE u_name = :ivUserID AND u_sn_held = 0};
 } catch (Exception ex) {
 ex.printStackTrace(); throw ex;
 }
}

292 EJB for OS/390 and z/OS, CICS TS V2.1

10.3.2 Deploying the enterprise bean to CICS
This section describes how to deploy TraderBean and its related classes to CICS TS V2.1.
We need to do the following steps.

1. Export the enterprise bean and its related classes.

2. Convert the exported file to a DJAR file.

3. Send the DJAR file to the OS/390 system.

Export the enterprise bean and its related classes
Export the enterprise bean the same way as described in “Export the enterprise bean and its
related classes” on page 271. The difference is that you have to include the new class
TraderBackendDB2SQLJ and the additional classes and resources this uses.

1. Within VisualAge for Java, select the EJB tab to view the EJB groups. Select group
ITSOEJB390 and click the right mouse button.

2. Select Export -> EJB JAR to open the Export to an EJB JAR File SmartGuide.

3. You should see that the Trader bean and 3 additional classes are selected by default.
Click Select referenced types and resources to ensure that VAJ now also selects
classes which are referenced by the enterprise bean. This will cause CompaniesBean,
QuotesBean, TraderBackend, and TraderException to also be selected. But VAJ has not
selected the classes which implement the different back-ends.

4. In addition select the following classes which implement the back-ends:

– CompaniesBean
– CompanyKeyRecord
– CompanyKeyRecordBeanInfo
– CompanyKeyRecordType
– CompanyRecord
– CompanyRecordType
– CustomerKeyRecord
– CustomerKeyRecordBeanInfo
– CustomerKeyRecordType
– CustomerRecord
– CustomerRecordBeanInfo
– CustomerRecordType
– ctx
– TraderBackendCICSConnectorCCF
– TraderBackendDB2JDBC
– TraderBackendDB2SQLJ
– TraderBackendDB2SQLJ_SJProfileKeys
– TraderBackendJcics
– TraderBackendVsam
– TraderCommand
– TraderCommandBeanInfo
– TraderRecord
– TraderRecordBeanInfo
– TraderRecordType

Now click OK to close the window.

5. In the export window you should now see that 1 bean and 31 classes are selected.

6. Select resource check box and click Details.

7. Select the ITSO EJB 390 Redbook check box in the left panel of the window so that the
resources will also be exported. One of these resources is the uncustomized profile
Chapter 10. Rewriting the Trader session bean using JDBC/SQLJ 293

TraderBackendDB2SQLJ_SJProfile.ser, which is addressed in 10.3.3, “Preparing the
SQLJ program on OS/390” on page 295.

8. Then click OK to close the window.

9. In the export window you should now see that 1 bean, 31 classes, and 2 resources are
selected.

10.Specify path and file name for the JAR file. We used C:\itsotrader\traderForCICS.jar.
Now your window should look as shown in Figure 10-30.

Click Finish to export the classes to file traderForCICS.jar.

Figure 10-30 Exporting TraderBean for CICS (including TraderBackendDB2SQLJ)

Convert the exported file to a DJAR file
Convert the exported EJB-JAR file to a deployed JAR file using the CICS JAR development
tool as described in “Convert the exported file to a DJAR file” on page 272. Note, however,
that you need to click the Retain button when you are asked to remove the old EJB1.0
information, otherwise the SQLJ profile will be deleted from the DJAR file.

Send the DJAR file to the OS/390 system
Within UNIX System Services (USS) we created the directory /u/cicsts21/djars. With
standard FTP we sent the file traderForCICS_GEN.jar in binary mode to this directory.

Tip: If you receive a message from VAJ stating that the file is not a zip file, or it is
corrupted, you should close the CICS Java development tool, or delete the output JAR file.
294 EJB for OS/390 and z/OS, CICS TS V2.1

10.3.3 Preparing the SQLJ program on OS/390
After you write an SQLJ application, you must generate an executable form of the application.
With SQLJ, creating an executable is different from JDBC, where you just need to compile
your code to get an executable. As shown in Figure 10-31, preparing the SQLJ application for
execution on OS/390 involves the following steps:

1. Translating and compiling the SQLJ application.

2. Customizing the SQLJ serialized profile.

3. Binding the plan for the SQLJ application.

Figure 10-31 The SQLJ program preparation process

Translating and compiling the SQLJ application
This step is performed by VAJ during the import of your SQLJ file or when you start the
translate step from within VAJ explicitly, as described in “Creating the
TraderBackendDB2SQLJ SQLJ file” on page 285. VAJ itself invokes the DB2 SQLJ
translator, which generates a Java source program and produces a default serialized
profile. The serialized profile file is named program-name_SJProfile0.ser. In our case, the
translation of the file TraderBackendDB2SQLJ.sqlj produced the following files:

TraderBackendDB2SQLJ.java
TraderBackendDB2SQLJ_SJProfile.ser

The SQLJ translator replaces embedded SQL statements in the SQLJ program with calls to a
generic SQLJ runtime layer and saves information about the SQL operations found in the
SQLJ program in the default serialized profile. Because all database vendors supporting
SQLJ ship the same SQLJ translator, binary portability of the serialized profile is guaranteed.
Using the default serialized profile at runtime, all SQLJ statements are mapped to JDBC.

Source
Program

SQLJ
translator

Serialized
profile

DBRM

Package

Customize

Bind Plan Plan

Modified
Source

Compile

Java class
file

Bind
Package

TraderBackendDB2SQLJ.sqlj

TraderBackendDB2SQLJ.java
TraderBackendDB2SQLJ_SJProfile0.ser

TraderBackendDB2SQLJ.class

CICSRS3.ITSO.DBRMLIB
TRADER1 dbrm
TRADER2 dbrm
TRADER3 dbrm
TRADER4 dbrm

data set

TRADERC.TRADER1 package
TRADERC.TRADER2 package
TRADERC.TRADER3 package
TRADERC.TRADER4 package

TRADERP plan
Chapter 10. Rewriting the Trader session bean using JDBC/SQLJ 295

Customizing the SQLJ default serialized profile
Customizing a default serialized profile is the process to replace that profile with a customized
profile which can be used to exploit optimizations available within the target database. DB2
uses this capability to replace the default profile, which maps SQLJ to JDBC, with a
customized profile that maps SQLJ statements to pre-bound DB2 static SQL packages and
plans. This customization lets Java exploit DB2’s static SQL support.

The default serialized profile generated by the SQLJ translator tool must transferred to the
OS/390 system. In our case, the profile is packaged together with the enterprise bean and its
related classes in the DJAR file. The DJAR file was already sent to the OS/390 system, as
described in “Send the DJAR file to the OS/390 system” on page 294.

On OS/390, the DB2 tool db2profc is used from the USS shell to customize a serialized
profile. The output from the SQLJ customizer are four DBRMs (one for each isolation level, as
illustrated in Table 10-7) and a modified (customized) serialized profile.

Table 10-7 Trader’s SQLJ DBRMs and their isolation level

The shell script we used to generate a customized serialized profile, db2profc.sh, is
illustrated in Figure 10-11. You have to pass the name (without the suffix) as parameter to the
shell script. In our case, we used the command:

db2profc.sh traderForCICS_GEN

Example 10-11 USS shell to execute db2profc

#---
Shell script to run the DB2 utility db2profc from USS.
#
Modify the following to match your DB2/390 installation directory:
DB2_ROOT=/service_db2v6
DB2_HOME=/service_db2v6/usr/lpp/db2/db2610
#--
if ls -la $1.jar
 then
 else echo "Please specify the name of the JAR file (without the suffix)."
 echo "f.e. traderForCICS_GEN"
 exit
fi

Note: By default, if you run an SQLJ program with an uncustomized profile, then dynamic
SQL is used, since the SQL will be mapped to pure JDBC calls at runtime. Only if you
perform the additional steps on OS/390 to customize the profile will static SQL really be
used for SQLJ.

DBRM Name Bind with isolation level

DBRM-name1 Uncommitted read (UR)

DBRM-name2 Cursor stability (CS)

DBRM-name3 Read stability (RS)

DBRM-name4 Repeatable read (RR)

Tip: You have to make sure that the SQLJ customized profile is accessible within your
CICS environment. The recommended way is to package it within your DJAR file. The shell
script shown in Example 10-11 updates the customized profile
TraderBackendDB2SQLJ_SJProfile0.ser in the deployed JAR file traderForCICS_GEN.jar
296 EJB for OS/390 and z/OS, CICS TS V2.1

jar -xvf $1.jar itso/ejb390/trader/TraderBackendDB2SQLJ_SJProfile0.ser
if ls -la itso/ejb390/trader/TraderBackendDB2SQLJ_SJProfile0.ser
 then rm -r itso
 else echo "The JAR file must contain the following class:"
 echo "itso/ejb390/trader/TraderBackendDB2SQLJ_SJProfile0.ser"
 exit
fi
export CLASSPATH=$CLASSPATH:$DB2_HOME/classes/db2sqljclasses.zip
export LD_LIBRARY_PATH=$DB2_HOME/lib:$LD_LIBRARY_PATH
export LIBPATH=$DB2_ROOT/usr:$DB2_ROOT/usr/lib:$DB2_HOME/lib:$LIBPATH
export PATH=$DB2_HOME/bin:$PATH
export STEPLIB=DSN610.SDSNLOAD
export DB2SQLJPROPERTIES=../mydb2sqljjdbc.properties
#
cp ./$1.jar ./$1_uncustomized.jar
mkdir temp
cp ./$1.jar temp
cd temp
jar -xvf ./$1.jar
rm ./$1.jar
$DB2_HOME/bin/db2profc -schema=ITSOEJB -pgmname=TRADER
itso/ejb390/trader/TraderBackendDB2SQLJ_SJProfile0.ser
jar -cvf ./$1.jar *
cp ./$1.jar ./..
cd ..
rm -r temp
jar -tvf ./$1.jar itso/ejb390/trader/TraderBackendDB2SQLJ_SJProfile0.ser
jar -tvf ./$1_uncustomized.jar itso/ejb390/trader/TraderBackendDB2SQLJ_SJProfile0.ser

Once this has completed successfully, you should ensure that the updated deployed JAR file,
containing the customized serialized profile, is copied to the HFS directory which the CICS
DJAR definition points to. We did this using the following command:

cp traderForCICS_GEN.jar /u/cicsts21/djars

Binding the plan for the SQLJ application
The SQLJ customizer produces four DBRMs, one for each isolation level. The name of the
DBRMs are specified by the -pgname option of the db2profc tool — in our case, the names of
the generated profiles are TRADER1, TRADER2, TRADER3, and TRADER4.

To communicate the SQL requests contained in these DBRMs to DB2, you must bind the
DBRMs into packages and include them into a plan. The bind job we used is illustrated in
Example 10-12 and is supplied with our sample code in the file bindtrad.jcl.

Example 10-12 JCL to bind the SQLJ DBRMs

//CRS3BIT JOB AX4328,AXP4328,
// CLASS=A,MSGCLASS=X,MSGLEVEL=(1,1),
// NOTIFY=&SYSUID,
// REGION=0M
//*
//JOBLIB DD DISP=SHR,DSN=DSN610.SDSNLOAD

Note: With the QUALIFIER option we specified the qualifier for the unqualified table
names used in our application. The option PKLIST determines what packages to include in
the package list for the plan. In order to include also the packages necessary for JDBC
applications in our plan TRADERP, we specified all packages of the collection DSNJDBC
and all packages of the collection TRADERC.
Chapter 10. Rewriting the Trader session bean using JDBC/SQLJ 297

//BINDSQLJ EXEC PGM=IKJEFT01,DYNAMNBR=20
//DBRMLIB DD DISP=SHR,DSN=CICSRS3.ITSO.DBRMLIB
//SYSTSPRT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSTSIN DD *
 DSN SYSTEM(DBZ1)
 BIND PACKAGE (TRADERC) QUALIFIER(ITSOEJB) -
 MEMBER(TRADER1) ISOLATION(UR)
 BIND PACKAGE (TRADERC) QUALIFIER(ITSOEJB) -
 MEMBER(TRADER2) ISOLATION(CS)
 BIND PACKAGE (TRADERC) QUALIFIER(ITSOEJB) -
 MEMBER(TRADER3) ISOLATION(RS)
 BIND PACKAGE (TRADERC) QUALIFIER(ITSOEJB) -
 MEMBER(TRADER4) ISOLATION(RR)
 BIND -
 PLAN(TRADERP) QUALIFIER(ITSOEJB) -
 PKLIST(TRADERC.*, DSNJDBC.*) RETAIN
END
/*
//

10.3.4 Modifying the CICS DB2 connection
In 10.2.5, “Defining a CICS DB2 connection” on page 280, we described how to define,
install, and start a CICS DB2 connection. We specified DSNJDBC as the plan to be used for the
DB2 connection, which contains all packages necessary to run JDBC applications on
OS/390. However, in “Binding the plan for the SQLJ application” on page 297, we have
generated a new plan TRADERP which contains both the packages for the SQLJ application
and the packages required to run JDBC applications. In order to use that plan from now on,
we had to change the DB2 connection definition attribute PLAN for the CICS DB2 connection
definition DB2CON.

We used the CEMT SET DB2CONN PLAN(TRADERP) command to change the plan name from
DSNJDBC to TRADERP.

Note: You do not need to specify the name of the DB2 connection definition, because only
one DB2CONN can be installed in a CICS system at one time. Also, it is not necessary to
stop the connection before changing the PLAN attribute, because a new plan will be
determined the next time the transaction releases the thread.

10.3.5 Granting privileges to the CICS user ID
In “Binding the plan for the SQLJ application” on page 297, we have described how to bind
the plan for the SQLJ application. To authorize the user ID CICSRS1 to execute that plan, we
used the following command:

GRANT EXECUTE ON PLAN TRADERP TO CICSRS1;

Attention: In EJB 1.1, isolation levels are not controlled through declarative attributes,
which means that you cannot specify transaction isolation in the EJB 1.1 deployment
descriptor. Instead, an enterprise bean can use JDBC isolation facilities and any
deployment time isolation control provided by enterprise bean containers. But note that
EJB 1.1 does not require the container to provide isolation control.
298 EJB for OS/390 and z/OS, CICS TS V2.1

Note: The content of a static SQL statement is available to DB2 when the program is bound
to DB2. DB2 binds the statements as packages or plans using the privileges of the person
who issued the bind request. This step lets DB2 execute static SQL statements using the
privileges of the owner of the package or plan. The owner of the package or plan can then
grant execute privileges to individual end users, such as an authorized CICS user ID. In other
words, end users do not need table privileges in order to run DB2 static SQL programs.
Instead, only the owner of the package or plan must have these privileges. In our case, the
privileges granted for the tables TRADER_COMPANY and TRADER_USER, as described in
“Grant table privilege” on page 282, are not needed to run the SQLJ application. We only
need these privileges to run the JDBC application.

10.3.6 Refreshing the DJAR in the CICS region
Refresh the DJAR in the shelf in the same way as described in “Refresh the DJAR in the
CICS shelf” on page 273.

10.3.7 Testing the SQLJ enterprise bean
We tested our SQLJ version of our Trader enterprise bean with both our standalone test client
TraderTest and our servlet.

Testing the enterprise bean with TraderTest
First we tested with our standalone test program TraderTest. This is a standalone Java
application that can be run from either a command line or within VAJ. Instructions on how to
use this from the command line are given in 10.1, “Quick start — Invoking TraderBean” on
page 255. We edited the following line to invoke the TraderTest application with the DB2SQLJ
option.

java -classpath ".;traderTest.jar;traderCLI.jar;C:\Program Files\IBM\CICS TS 2.1
Tools\Common\j2ee.jar" itso.ejb390.trader.test.TraderTest
com.sun.jndi.cosnaming.CNCtxFactory iiop://hecate:900/ ITSO/PJA5/Trader DB2SQLJ

The successful output of runtest.cmd is shown in Example 10-13.

Example 10-13 Output of runtest.cmd for DB2SQLJ

C:\itsotrader>runtest.cmd
Starting TraderTest application with following input:

Name service: com.sun.jndi.cosnaming.CNCtxFactory
 Naming Server: iiop://hecate:900/
 JNDI name: ITSO/PJA5
 Call type: DB2SQLJ

Casey_Import_Export
Glass_and_Luget_Plc
Headworth_Electrical
IBM
CommissionCostBuy 010
CommissionCostSell 015
NumberOfShares 0198
TotalShareValue 000032274.00
UnitSharePrice 00163.00
UnitValue1Days 00163.00
UnitValue2Days 00162.00
UnitValue3Days 00160.00
UnitValue4Days 00161.00
UnitValue5Days 00159.00
UnitValue6Days 00156.00
Chapter 10. Rewriting the Trader session bean using JDBC/SQLJ 299

UnitValue7Days 00157.00
Now we buy 5 shares ...
... and sell 2 of them

Testing the enterprise bean with TraderServlet
Next we tested the our JDBC application from our TraderServlet that we previously
developed in 7.4.2, “Servlet development with VisualAge for Java” on page 199. We invoked
the Trader servlet on our using the URL:

http://hecate/trader/Logon.jsp

We provided the following input parameters to the initial servlet HTML.

Communication type DB2SQLJ

JndiPrefix ITSO/PJA5

NameService com.ibm.ejs.ns.jndi.CNInitialContextFactory

ProviderURL iiop://hecate:900/

The output of the TraderServlet was the same as shown in “Testing the Trader servlet” on
page 212.

10.4 Summary
This chapter has shown how to rewrite a CICS COBOL program as a session bean accessing
DB2. We have used dynamic SQL in form of JDBC as well as static SQL in form of SQLJ to
access the data in the database.

The primary advantages of SQLJ over JDBC are:

� Better performance: SQLJ computes the DB2 access path at compilation time.

� Better security: SQLJ executes SQL statements with the privileges of the person who
created the database plan.

� Simpler syntax and greater robustness: SQLJ statements are verified when the
precompilation is executed.

Besides these many advantages, there may exist other reasons why you want to use
dynamic SQL. These reasons could be that you need all or part of the SQL statement to be
generated during application execution, or that you want the statement to always use the
most optimal access path, based on the current database statistics.

Besides JDBC and SQLJ, there is also another way to access DB2 from a session bean:
using Data Access Beans. Data Access Beans are JavaBeans which wrap JDBC classes to
provide more function and to make them easier to use. Using the sample JDBC code
provided with the book, it should be easy to extend the enterprise bean in such a way.
300 EJB for OS/390 and z/OS, CICS TS V2.1

Part 4 Appendixes

Part 4
© Copyright IBM Corp. 2001 301

302 EJB for OS/390 and z/OS, CICS TS V2.1

Appendix A. Security customization:
DFHXOPUS

In this appendix we describe how the user replaceable module (URM) DFHXOPUS can be
used to control the security authorization for inbound EJB request to CICS TS V2.1. We also
provide a modified version of DFHXOPUS (COBXOPUS), written in COBOL that is capable of
modifying the user ID under which an IIOP request runs based on a simple lookup table using
the bean name.

For further details on how to obtain the sample code refer to Appendix C, “Using the
additional material” on page 315.

A

© Copyright IBM Corp. 2001 303

Security functions of DFHXOPUS
The aim of the DFHXOPUS is to enable the setting of the CICS user ID for the request
receiver transaction, CIRR.

The name of the URM to be used is set in the TCPIPSERVICE resource definition, and a
PROGRAM resource definition must also be supplied. If you do not specify a URM name in
the TCPIPSERVICE, no URM is called. If you use SSL client certificates to generate a user ID
for incoming request then the RACF user ID associated with the certificate is used and the
URM is not called. How DFHXOPUS fits into the flow of a IIOP request to the CICS EJB
Server is illustrated in Figure A-1.

Figure A-1 DFHXOPUS function

For further details on the functions of DFHXOPUS refer to CICS Supplied Transactions,
SC34-5724 and Java applications in CICS, SC34-5881.

The sample COBXOPUS
The sample URM we developed (COBXOPUS) is illustrated in Example A-1. It is written in
COBOL and uses a simple lookup table to determine the CICS user ID based on the bean
name. Unlike the sample C version of DFHXOPUS, it does not contain any logic to handle
authentication using SSL client certificates.

In the example, if the bean name is “HelloWorld”, then the user ID CICSRS1 is used; if the
bean name is “TRADER”, then CICSRS2 is used, if ithe bean name is “BEAN3”, then
CICSRS3 is used. Otherwise, it defaults to using CICSUSER. In a production environment, a
more sophisticated mechanism could be used — perhaps using data from a DB2 database or
VSAM file to determine the user ID.

IIOP
request

Connect
request

IIOP
reply

LINK

TCP/IP
listener

Request
Receiver

Security
URM

DFHXOPUS

CIRR

Request
Processor

EJB
Container

CIRP

DFHIIRRS DFJIIRP bean
304 EJB for OS/390 and z/OS, CICS TS V2.1

Example: A-1 Sample COBXOPUS

 * COBXOPUS - IIOP security URM
 * COBOL version of DFHXOPUS C Sample
 *
 * Userid selected from table of bean names
 *
 * Provided with redbook SG246284
 * For lastest version see ftp://www.redbooks.ibm.com/redbooks

 ID DIVISION.
 PROGRAM-ID. COBXOPUS.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 * The name of the enterprise bean padded with blanks
 01 NAMEOFBEAN PIC X(16).
 * Message to show module has been entered.
 01 ENTRYMSG.
 05 FILLER1 PIC X(21)
 VALUE 'COBXOPUS ENTRY; TRAN:'.
 05 ENTTRANID PIC X(4).
 05 FILLER2 PIC X(6)
 VALUE ' BEAN:'.
 05 ENTBEANID PIC X(16).
 * Message to show module is about to exit.
 01 XITMSG PIC X(32)
 VALUE 'COBXOPUS EXIT'.
 * Message to show that a userid has been set from the table.
 01 USERIDSETMSG.
 05 FILLER PIC X(15)
 VALUE 'USERID SET TO: '.
 05 USETID PIC X(8).
 05 FILLER PIC X(16)
 VALUE ' FOR BEAN NAME: '.
 05 USETNAME PIC X(16).
 * Message to show that the commarea does
 * not point to a bean name.
 01 NOBEAN PIC X(12)
 VALUE 'NO BEAN NAME'.

 * table of bean names and userids *

 01 BEANNAMESANDUSERIDS.
 * <----name-----><userid>
 05 FILLER PIC X(24) VALUE 'HelloWorld CICSRS1 '.
 05 FILLER PIC X(24) VALUE 'TRADER CICSRS2 '.
 05 FILLER PIC X(24) VALUE 'BEAN3 CICSRS3 '.
 01 BEANTABLE REDEFINES BEANNAMESANDUSERIDS.
 05 BEANELEMENT OCCURS 3 INDEXED BY I.
 10 NAMEINTABLE PIC X(16).
 10 USERIDINTABLE PIC X(8).
 LINKAGE SECTION.

Note: You should observe that the return code from the URM should be set to 1 (one) on a
successful completion and 0 (zero) on a non-successful completion. A zero return code will
cause an exception to be driver in the EJB client.
Appendix A. Security customization: DFHXOPUS 305

 **
 * Commarea for COBXOPUS (standard DFHXOPUS commarea)
 **
 01 DFHCOMMAREA.
 05 SXOPUS.
 10 STANDARDHEADER PIC X(4).
 10 PIIOPDATA POINTER.
 10 LIIOPDATA PIC S9(8) COMP.
 10 PREQUESTBODY POINTER.
 10 LREQUESTBODY PIC S9(8) COMP.
 10 CORBASERVER PIC XXXX.
 10 PBEANNAME POINTER.
 10 LBEANNAME PIC S9(8) COMP.
 10 BEANINTERFACETYPE PIC S9(8) COMP.
 10 PMODULE POINTER.
 10 LMODULE PIC S9(8) COMP.
 10 PINTERFACE POINTER.
 10 LINTERFACE PIC S9(8) COMP.
 10 POPERATION POINTER.
 10 LOPERATION PIC S9(8) COMP.
 10 USERID PIC X(8).
 10 TRANSID PIC XXXX.
 10 FLAGBYTES PIC XXXX.
 10 RETURNCODE PIC S9(8) COMP.
 10 REASONCODE PIC S9(8) COMP.
 01 PASSEDBEANNAME PIC X(16).
 **
 PROCEDURE DIVISION.
 MOVE EIBTRNID TO ENTTRANID.
 **
 * put bean name into field with blank padding to right
 **
 MOVE SPACES TO ENTBEANID.
 SET ADDRESS OF PASSEDBEANNAME TO PBEANNAME.
 MOVE PASSEDBEANNAME(1:LBEANNAME) TO ENTBEANID.
 EXEC CICS WRITEQ TD QUEUE('CSSL') FROM(ENTRYMSG)
 END-EXEC.
 IF LBEANNAME = ZERO
 THEN EXEC CICS WRITEQ TD QUEUE('CSSL') FROM(NOBEAN)
 END-EXEC
 GO TO XIT.
 **
 * set CICSUSER as default
 **
 MOVE 'CICSUSER' TO USERID.
 **
 * scan table and set userid if bean defined in table
 **
 MOVE ENTBEANID TO NAMEOFBEAN.
 SET I TO 1.
 SEARCH BEANELEMENT
 WHEN NAMEINTABLE(I) = NAMEOFBEAN
 MOVE USERIDINTABLE(I) TO USERID
 MOVE USERID TO USETID
 MOVE NAMEOFBEAN TO USETNAME
 EXEC CICS WRITEQ TD QUEUE('CSSL')
 FROM(USERIDSETMSG)
 END-EXEC
 END-SEARCH.
306 EJB for OS/390 and z/OS, CICS TS V2.1

 **
 * exit with commarea set
 **
 XIT.
 MOVE 1 TO RETURNCODE.
 MOVE ZERO TO REASONCODE.

 * EXEC CICS WRITEQ TD QUEUE('CSSL') FROM(DFHCOMMAREA)
 * END-EXEC.

 EXEC CICS WRITEQ TD QUEUE('CSSL') FROM(XITMSG)
 END-EXEC.

 EXEC CICS RETURN
 END-EXEC.

Deploying the sample COBXOPUS
Here is how to deploy this sample URM:

� Download the source code COBXOPUS.

� Translate and compile COBXOPUS and place the load module in a dataset in your CICS
region DFHRPL concatenation.

� Define a program definition for COBXOPUS.

� Specify COBXOPUS in the URM parameter in the relevant TCPIPSERVICE definition.

To verify the sample is functioning correctly, the command CEMT I TAS will display the user ID
that a suspended task is running under. Tasks can be suspended using the CEDX transaction
against the relevant request processor transaction, which by default is CIRP.

Testing the sample COBXOPUS
If the sample DFHXOPUS user exit functions correctly, you should see the following
messages displayed in the CICS CSMT log. The messages shown in Example A-2 were
produced when testing the URM with the Hello World IVP enterprise bean documented in
Section 4.3.1, “Running the IVP OS/390 USS client application” on page 94.

Example: A-2 COBXOPUS messages written to CSMT log

COBXOPUS ENTRY; TRAN:CIRR BEAN:HelloWorld
USERID SET TO: CICSRS1 FOR BEAN NAME: HelloWorld
COBXOPUS EXIT
CICS EJB hello world sample called with string: Hello from CICS EJB IVP client
Appendix A. Security customization: DFHXOPUS 307

308 EJB for OS/390 and z/OS, CICS TS V2.1

Appendix B. The COBOL Trader application

This appendix describes the 3270 COBOL Trader application used as the basis of the
enterprise bean examples provided in Part 3 on page 133 of this redbook.

We start by providing a description of how the original 3270 based version of the Trader
application functions. We then provide a summary of what definitions are required when
installing the Trader application in your CICS system.

To obtain the sample COBOL Trader application and accompanying JCL, refer to Appendix C,
“Using the additional material” on page 315. Note along with the 3270 version of Trader, we
also supply a Web-enabled version for use with CICS Web support, and the CICS Transaction
Gateway.

B

© Copyright IBM Corp. 2001 309

The 3270 Trader COBOL application
Trader, written in COBOL, uses the VSAM access method for file access and the CICS 3270
BMS programming interface. It is a pseudo-conversational application, meaning that a chain
of related non-conversational CICS transactions is used to convey the impression of a
"conversation" to the users as they go through a sequence of screens that constitute a
business transaction. The application consists of two modules: TRADERPL, which contains
the 3270 presentation logic; and TRADERBL, which contains the business logic. TRADERPL
invokes TRADERBL using an EXEC CICS LINK and passing a COMMAREA structure for
input and output. TRADERBL contains logic to query and write to the persistent VSAM data,
stored in two files the company file and the customer file.

Figure B-1 Trader application structure

At each step, the application presents a set of options. The user makes a choice, then
presses the required key in order to send their selections back to the application. The
application performs the necessary actions based on the user’s choice and presents the
results together with any possible new options. The application has a strict hierarchical menu
structure which allows the user to return to the previous step by using the PF3 key.

3270 application flows
In this section we describe a typical business transaction when using the 3270 Trader
application:

1. The program TRADERPL is invoked on a 3270 capable terminal by entering the initial
CICS transaction identifier (TRAD). TRADERPL calls TRADERBL, passing an
inter-program COMMAREA of 400 bytes. TRADERBL expects the COMMAREA to
contain a request type and associated data. There are three request types: Get_Company
to return a company list, Share_Value to return a list of share values, or Buy_Sell to buy or
sell shares. In this step the request type is Get_Company.

When TRADERBL receives a Get_Company request, it browses the company file and
returns the first four entries to TRADERPL. At this point the user has not entered any
request, but the application assumes that a Get_Company request will be following.
TRADERPL then sends the signon display (T001 shown in Figure B-2), which prompts for
a userid and password. The list of companies is stored in the COMMAREA associated
with the terminal when the TRAD transaction ends, so that it will be available at the next
task in the pseudo-conversational sequence.

customer
file

company
fileTRADERBLTRADERPL

 C
 O
 M
 M
 A
 R
 E
 A

 C
 O
 M
 M
 A
 R
 E
 A

LINK
Presentation

Logic

Business

Logic

3270

BMS

VSAM
310 EJB for OS/390 and z/OS, CICS TS V2.1

Figure B-2 Trader signon display

2. The next transaction invokes TRADERPL, which receives the signon display (T001) and
the saved COMMAREA from step 1. Using the company data acquired in step 1,
TRADERPL sends the company selection display (T002), the format of which is shown in
Figure B-3. TRADERPL then returns, specifying the next transaction to run and the
associated COMMAREA.

Figure B-3 Company selection display

3. The user selects the company to trade from the Company Selection display, and presses
Enter. The program TRADERPL is invoked and sends the Options display (T003, shown
in Figure B-4) to the terminal. The user can now decide whether to buy, sell, or get a new
real-time quote. TRADERPL returns, specifying the next transaction to run and the
associated COMMAREA.

Share Trading Demonstration TRADER.T001

 Share Trading Manager: Logon

 Enter your User Name:

 Enter your Password:

 --
 PF3=Exit PF12=Exit

 Share Trading Demonstration TRADER.T002

 Share Trading Manager: Company Selection

 1. Casey_Import_Export

 2. Glass_and_Luget_Plc

 3. Headworth_Electrical

 4. IBM

 Please select a company (1,2,3 or 4) :

 --
 PF3=Return PF12=Exit
Appendix B. The COBOL Trader application 311

Figure B-4 Options menu display

4. The user then selects option 1 and presses the Enter key. TRADERPL is invoked and
determines that the user's request is a Share_Value request type. TRADERPL calls
TRADERBL, passing the request type and the company selected earlier. TRADERBL
reads the customer file to determine how many shares are held, then reads the company
file to determine the price history, and returns the information to TRADERPL. TRADERPL
uses this data to build a Real-Time Quote display (T004) as illustrated in Figure B-5. This
display shows the recent history of share values for the company chosen, the number of
shares held with this company, and the total value of these shares. TRADERPL returns,
specifying the next transaction to run and the associated COMMAREA data.

Figure B-5 Real-time quote display

 Share Trading Demonstration TRADER.T003

 Share Trading Manager: Options

 1. New Real-Time Quote

 2. Buy Shares

 3. Sell Shares

 Please select an option (1,2 or 3):

 --
 PF3=Return PF12=Exit

 Share Trading Demonstration TRADER.T004

 Share Trading Manager: Real-Time Quote

 User Name: TRADER

 Company Name: IBM

 Share Values: Commission Cost:
 NOW: 00163.00 for Selling: 015
 1 week ago: 00157.00 for Buying: 010
 6 days ago: 00156.00
 5 days ago: 00159.00
 4 days ago: 00161.00
 3 days ago: 00160.00
 2 days ago: 00162.00 Number of Shares Held: 0100
 1 day ago: 00163.00 Value of Shares Held: 000000000.00

 --
 PF3=Return PF12=Exit
312 EJB for OS/390 and z/OS, CICS TS V2.1

5. The user now presses PF3 to go back to the options menu. TRADERPL is invoked and
sends the Options display (T003) to the terminal (repeating the actions of step 3), and
returns, specifying the next transaction to run and the associated COMMAREA data.

6. The user now requires to purchase shares, so selects option 2 and presses the Enter key.
Program TRADERPL receives map T003 and determines that the user wants to buy
shares, and sends the Shares-Buy display (T005) shown in Figure B-6. TRADERPL
returns, specifying the next transaction to run and the associated COMMAREA.

Figure B-6 Shares — Buy display

7. Program TRADERPL receives the T005 screen and builds a Buy_Sell request
COMMAREA which is passed to program TRADERBL. TRADERBL reads the company
file and then performs a READ for UPDATE and REWRITE to the customer file to update
the customers share holdings. The success of the request is returned to TRADERPL in
the COMMAREA, and TRADERPL sends the Options display (T003) reporting the
successful buy to the user. TRADERPL returns, specifying the next transaction to run and
the associated COMMAREA.

8. Next the user checks his share holdings by repeating step 4.

9. The user returns to the options screen by repeating step 5.

10.The business transaction is completed by the user pressing PF12, which performs an
EXEC CICS SEND TEXT to write a message to the terminal reporting the session is
complete. TRADERPL then executes the final EXEC CICS RETURN command. No
COMMAREA is specified because the pseudo-conversation is over, and there is no
conversation state data to retain.

Share Trading Demonstration TRADER.T005

 Share Trading Manager: Shares - Buy

 User Name: TRADER

 Company Name: IBM

 Number of Shares to Buy: 100

 --
 PF3=Return PF12=Exit
Appendix B. The COBOL Trader application 313

CICS resource definitions
To install the COBOL Trader application the following CICS resources need to be created:

� Files

Trader uses the following two VSAM files:

– COMPFILE

This file is used to store the list of companies and associated share prices. It can be
created using the supplied JCL TRADERCOCJL.TXT which requires as input the file
TRADERCODATA.TXT

– CUSTFILE

This file is used to store the list of users and share holdings. It can be created using the
supplied JCL TRADERCUJCL.TXT

� Transactions

The 3270 version of Trader requires just one transaction TRAD, which should specify the
program TRADERPL

� Programs

CICS program definitions are only required if program autoinstall is not active. The 3270
trader application uses two COBOL programs which will need to compiled and placed in a
dataset in your CICS region DFHRPL concatenation.

– TRADERPL

This contains the 3270 presentation logic and is invoked by transaction TRAD.

– TRADERBL

This contains the business logic and is invoked by program TRADERPL

� Mapset

Trader uses a the Mapset NEWTRAD which comprises the maps T001, T002, T003,
T004, T005 and T006. The Mapset is supplied in the file NEWTRADB.TXT and will need to be
assembled and placed in a dataset in your CICS region DFHRPL concatenation.

For further information on creating the resource definitions for Trader, refer to the supplied file
TRADERRDO.TXT which contains the output of a CSD extract for the Trader application.
314 EJB for OS/390 and z/OS, CICS TS V2.1

Appendix C. Using the additional material

This redbook contains additional material that can be downloaded from the Web.

Locating the additional material on the Internet
The Web material associated with this redbook is available in softcopy on the Internet from
the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG246284/SG246284src.zip

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with the redbook
form number.

Using the Web material
The additional Web material that accompanies this redbook includes the following files in the
following directories:

� DFHXOPUS

This directory contains the sample DFHXOPUS URM as documented in Appendix A-1,
“DFHXOPUS function” on page 304. The following files are provided:

ReadMe.txt Readme file
COBXOPUS.txt COBOL DFHXOPUS sample

� HelloWorldEJB

This directory contains the following files for use with the HelloWorld EJB used in
Chapter 6, “Developing a HelloWorld session bean for CICS” on page 135. The following
files are provided in two sub-directories as follows:

– CSD

This sub-directory contains the following files:

C

© Copyright IBM Corp. 2001 315

ftp://www.redbooks.ibm.com/redbooks/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

ReadMe.txt Readme file
dfhcsdup.jcl JCL to run DFHCSDUP
cicscsd.def Input to DFHCSDUP to create CICS resource definitions

– Programs

This sub-directory contains the following files

ReadMe.txt Readme file
hws.jar Contains all classes, beans, and resources used as input for

CICS JAR Development Tool.
hws_GEN.jar This file is the deployed JAR file the HelloWorld bean, it is the

output of the CICS JAR Development Tool.
hws_CLI.jar This contains all classes, beans, and resources used by clients

accessing the HelloWorldSession enterprise bean
hwc.jar This contains all the classes for the stand-alone test client for

the HelloWorld bean.
hwc.cmd This is the command script used to start the stand-alone test

client from Windows NT.
hwc.sh This is the shell script used to start the stand-alone test client

from USS on OS/390.
hwc_vaj.properties This is the properties file used to call the HelloWorldSession

enterprise bean from the client running in VAJ.
hwc_nt.properties This is the properties file used to call the HelloWorldSession

enterprise bean from the stand-alone client running on
Windows NT.

hwc_vaj.properties This is the properties file used to call the HelloWorldSession
enterprise bean from the stand-alone client running on USS.

� JNDIList

This directory contains the JNDIList application we used to query our COS Naming
Server. This is described further in Chapter 5, “Troubleshooting enterprise beans in CICS
TS V2.1” on page 103. The following files are provided:

ReadMe.txt Readme file
JNDIList.java JNDIList java source
JNDIList.class JNDIList class

� Repository

This directory contains the VAJ repository file which contains all files from the VAJ ITSO
EJB OS390 Redbook project that we developed during the course of this project. The
development and use of these files is described further in the individual chapters in Part 3,
“CICS TS V2.1: Enterprise bean scenarios” on page 133. The following files are provided

Readme.txt Readme file

Note: When importing the VAJ repository file you should import the following projects:
ITSO EJB 390 Redbook and JCICS. You should also select the check box Add most
recent project addition to workspace, before you import the projects.

After importing the supplied repository you will also need to add the following features
to your VAJ workspace:

– IBM EJB Development Environment
– IBM Enterprise Access Builder Library
– IBM Java Record Library
– SQLJ Runtime Library
– CICS Connector (or import the ctgclient.jar file)
316 EJB for OS/390 and z/OS, CICS TS V2.1

ITSO_EJB_390_Redbook.dat VAJ repository file
ITSO_EJB_390_Redbook.dat.pr This subdirectory contains the following files which

are required for the SQLJ. samples:
• TraderBackendDB2SQLJ.sqlj
• TraderBackendDB2SQLJ_SJProfile0.ser

� TraderCobol

This directory contains all the sample code for installing and configuring the COBOL
Trader sample, and also the Web-enabled CICS Web support and servlet version used in
the previous redbooks A Performance Study of Web Access to CICS, SG24-5748, and
Workload Management for Web Access to CICS, SG24-6133. The structure of the
following sub-directories is documented in the ReadMe.txt file:

– Cobol

This sub-directory contains the following COBOL files

traderbl.txt TRADERBL application
tradercv.txt Trader CWS converter
traderpl.txt TRADERPL application
tradwbsr.txt Trader TS state management program
deltsqs.txt TS deletion program
commarea.txt The COMMAREA data structure of TRADERBL
company.txt Data structure representing a record in VSAM file COMPFILE
companyKey.txt Data structure representing the key of VSAM file COMPANY
customer.txt Data structure representing a record in VSAM file CUSTOMER
customerKey.txt Data structure representing the key of VSAM file CUSTOMER

– Html

This directory contains the following files

tradbann.html Trader CWS HTML template
tradcomp.html Trader CWS HTML template
tradend.html Trader CWS HTML template
tradfoot.html Trader CWS HTML template
tradhead.html Trader CWS HTML template
tradqbs.html Trader CWS HTML template
tradsign.html Trader CWS HTML template

– Setup

This directory contains the following files

newtradb.txt Mapset for trader 3270 application
tradercodata.txt Trader company file data
tradercojcl.txt JCL for creating company file
tradercujcl.txt JCL for creating customer file
traderrdo.txt RDO definitions for Trader

– Servlet

This directory contains the following files

StateData.java Trader servlet Java source
trader.java Trader servlet Java source
traderb2.java Trader servlet Java source
TraderBase.java Trader servlet Java source
TraderCommarea.javaTrader servlet Java source
StateData.class Trader servlet Java class
trader.class Trader servlet Java class
traderb2.class Trader servlet Java class
Appendix C. Using the additional material 317

TraderBase.class Trader servlet Java class
TraderCommarea.classTrader servlet Java class

� TraderEJB

This directory contains all the files for the EJB implementation of Trader

– DB2

This directory contains files contain all the DB2 commands to setup the Trader
database on OS/390.

ReadMe.txt Readme file

Create.db2 DB2 commands to create a DB2 database, table space and
tables.

LoadDB.db2 DB2 commands to insert data into the table
ITSOEJB.TRADER_COMPANY.

GrantPrivileges.db2 DB2 commands to grant privileges to PUBLIC and to user
CICSRS1.

– JDBC

This directory contains all the files necessary to customize the JDBC run-time
environment on OS/390.

ReadMe.txt Readme file
db2genJDBC.sh Shell script to run the DB2 utility db2genJDBC from

USS
db2jdbc.cursors Cursor property file
DSNJDBC_JDBCProfile.ser JDBC profile
dsntjjcl.jcl Bind job to bind JDBC DBRMs
mydb2sqljjdbc.properties Run-time properties file for the DB2 for OS/390

SQLJ/JDBC driver
dsnjdbc.dbrm DBRM for isolation level UR
dsnjdbc.dbrm DBRM for isolation level CS
dsnjdbc.dbrm DBRM for isolation level RS
dsnjdbc.dbrm DBRM for isolation level RR

– JSP

This directory contains the following JSP files for the servlet to test trader.

ReadMe.txt Readme file
Buy.jsp JSP for buy dialog.
CompanySelection.jsp JSP for company selection dialog.
Logoff.jsp JSP to show logoff message.
Logon.jsp JSP to show logon dialog.
Quotes.jsp JSP to show quotes.
Sell.jsp JSP to show sell dialog.
TraderError.jsp JSP to show error message.

– Programs

This directory contains the following jar and cmd files for the TraderBean.

ReadMe.txt Readme file
traderAll.jar This contains all classes,Java source files, beans, and

resources of the complete EJB Trader application. It is not
required to run the trader enterprise bean unless the VAJ
repository file (.dat) is not used. It contains no VAJ specific
information such as project and names and EJB groups
(which are contained in the .dat file)
318 EJB for OS/390 and z/OS, CICS TS V2.1

traderForCICS.jar This is the undeployed Jar file ready for deployment to any
enterprise Java server. It contains all classes, beans, and
resources for the trader enterprise bean.

traderForWAS.jar Contains all classes, beans, and resources used as input
for WebSphere deployment.

traderForCICS_GEN.jar This is the deployed Jar file for use in CICS TS V2.1, it is
the output of the CICS JAR development tool. If using
SQLJ, you should note this contains an uncustomized
serialized profile.

traderCLI.jar This contains all classes, beans, and resources used by
clients accessing EJB Trader.

traderServlet.jar This contains all servlet related classes, beans, and
resources.

traderTest.jar This contains the TraderTest class for the stand-alone test
client program (runTest.cmd).

runTest.cmd This is the stand-alone test client program used to run the
trader bean from the Windows command line.

– SQLJ

This directory contains the following files necessary to prepare the SQLJ application.

ReadMe.txt Readme file
bindtrad.jcl Bind job to bind trader DBRMs.
db2profc.sh Shell script to run the DB2 utility db2profc

from USS.
mydb2sqljjdbc.properties Run-time properties file for the DB2 for

OS/390 SQLJ/JDBC driver.
trader1.dbrm DBRM for isolation level UR.
trader1.dbrm DBRM for isolation level CS.
trader1.dbrm DBRM for isolation level RS.
trader1.dbrm DBRM for isolation level RR.
traderForCICS_GEN_uncustomized.jar This file is used as input for shell script

db2profc.sh. It is the output of the CICS
JAR development tool. It contains an
uncustomized serialized profile.

traderForCICS_GEN.jar This file is used as input for CICS
deployment of the SQLJ version. It is the
output of the shell script db2profc.sh. It
contains the customized SQLJ profile.

System requirements for downloading the Web material
The following system configuration is recommended for downloading the additional Web
material.

Hard disk space: 3 MB minimum
Operating System: Windows NT, or 2000.
Processor: Intel 486 or higher
Memory: 128 MB

How to use the Web material
Create a subdirectory (folder) on your workstation, and unzip the contents of the Web
material Zip file into this folder. This will create the six sub-directories as documented in this
appendix, and the readme files with further instructions.
Appendix C. Using the additional material 319

320 EJB for OS/390 and z/OS, CICS TS V2.1

Special notices

References in this publication to IBM products, programs or services do not imply that IBM
intends to make these available in all countries in which IBM operates. Any reference to an
IBM product, program, or service is not intended to state or imply that only IBM's product,
program, or service may be used. Any functionally equivalent program that does not infringe
any of IBM's intellectual property rights may be used instead of the IBM product, program or
service.

Information in this book was developed in conjunction with use of the equipment specified,
and is limited in application to those specific hardware and software products and levels.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these patents.
You can send license inquiries, in writing, to the IBM Director of Licensing, IBM Corporation,
North Castle Drive, Armonk, NY 10504-1785.

Licensees of this program who wish to have information about it for the purpose of enabling:
(i) the exchange of information between independently created programs and other programs
(including this one) and (ii) the mutual use of the information which has been exchanged,
should contact IBM Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and conditions, including in
some cases, payment of a fee.

The information contained in this document has not been submitted to any formal IBM test
and is distributed AS IS. The use of this information or the implementation of any of these
techniques is a customer responsibility and depends on the customer's ability to evaluate and
integrate them into the customer's operational environment. While each item may have been
reviewed by IBM for accuracy in a specific situation, there is no guarantee that the same or
similar results will be obtained elsewhere. Customers attempting to adapt these techniques to
their own environments do so at their own risk.

Any pointers in this publication to external Web sites are provided for convenience only and
do not in any manner serve as an endorsement of these Web sites.

The following terms are trademarks of other companies:

Tivoli, Manage. Anything. Anywhere.,The Power To Manage., Anything. Anywhere.,TME,
NetView, Cross-Site, Tivoli Ready, Tivoli Certified, Planet Tivoli, and Tivoli Enterprise are
trademarks or registered trademarks of Tivoli Systems Inc., an IBM company, in the United
States, other countries, or both. In Denmark, Tivoli is a trademark licensed from Kjøbenhavns
Sommer - Tivoli A/S.

C-bus is a trademark of Corollary, Inc. in the United States and/or other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of
Sun Microsystems, Inc. in the United States and/or other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States and/or other countries.
© Copyright IBM Corp. 2001 321

PC Direct is a trademark of Ziff Communications Company in the United States and/or other
countries and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel
Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries licensed exclusively
through The Open Group.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks owned by SET
Secure Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service marks of others.
322 EJB for OS/390 and z/OS, CICS TS V2.1

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks” on page 324.

� Enterprise JavaBeans for z/OS and OS/390 WebSphere Application Server V4.0,
SG24-6283

� EJB Development with VisualAge for Java for WebSphere Application Server, SG24-6144

� CICS Transaction Gateway V3.1, The WebSphere Connector for CICS, SG24-6133

Other resources
These publications are also relevant as further information sources:

� Horswill et al., Designing and Programming CICS Applications, O’Reilly, ISBN
1-56592-676-5, SR23-9692

� Bainbridge et al., CICS and Enterprise JavaBeans, IBM Systems Journal Vol. 40, No. 1,
2001.

� Vlada Matena & Mark Hapner, Enterprise JavaBeans Specification, V1.1, Sun
Microsystems, available from:

http://www.javasoft.com/products/ejb

Referenced Web sites
These Web sites are also relevant as further information sources:

� http://www-4.ibm.com/software/ts/cics/library/books/zos/
CICS TS V2.1 on-line library, where you can find all the CICS TS V2.1
manuals referenced in this redbook

� http://www-4.ibm.com/software/ts/cics/library/infocenter/
CICS TS V2.1 Information Center

� http://www.ibmlink.ibm.com/usalets&parms=H_201-060
CICS TS V2.1 announcement letter

� http://www.ibm.com/software/ts/cics/txppacs/
CICS SupportPacs

� http://www-4.ibm.com/software/webservers/appserv/library_390.html
WebSphere Application Server for OS/390 and z/OS library

� http://www.ibm.com/software/webservers/appserv/efix.html
WebSphere Application Server FixPack downloads

� http://www.ibm.com/software/webservers/appserv/library.html
WebSphere Application Server library
© Copyright IBM Corp. 2001 323

http://www-4.ibm.com/software/ts/cics/library/books/zos/

http://www-4.ibm.com/software/ts/cics/library/books/zos
http://www.ibm.com/software/webservers/appserv/efix.html
http://www.ibm.com/software/webservers/appserv/library.html
http://java.sun.com
http://www.ibm.com/software/ts/cics/txppacs
http://www-4.ibm.com/software/ts/cics/library/infocenter/
http://www.ibmlink.ibm.com/usalets&parms=H_201-060
http://www-4.ibm.com/software/webservers/appserv/library_390.html
http://www.javasoft.com/products/ejb

� http://java.sun.com/
Sun Java Web site

� http://java.sun.com/products/jdbc/index.html
Sun JDBC Web site

� http://www.software.ibm.com/data/db2/os390/jdbc.html
DB2 for OS/390 Java Database Connectivity

� http://www.sqlj.org
Information on SQLJ set of standards.

� http://www.software.ibm.com/data/db2/java/sqlj
Java enablement with DB2

How to get IBM Redbooks
Search for additional Redbooks or redpieces, view, download, or order hardcopy from the
Redbooks Web site:

ibm.com/redbooks

Also download additional materials (code samples or diskette/CD-ROM images) from this
Redbooks site.

Redpieces are Redbooks in progress; not all Redbooks become redpieces and sometimes
just a few chapters will be published this way. The intent is to get the information out much
quicker than the formal publishing process allows.

IBM Redbooks collections
Redbooks are also available on CD-ROMs. Click the CD-ROMs button on the Redbooks Web
site for information about all the CD-ROMs offered, as well as updates and formats.
324 EJB for OS/390 and z/OS, CICS TS V2.1

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://java.sun.com/products/jdbc/index.html
http://www.software.ibm.com/data/db2/os390/jdbc.html
http://www.sqlj.org
http://www.software.ibm.com/data/db2/java/sqlj
http://java.sun.com/products/jdbc/index.html

ronyms
AOR Application-owning region

API Application Programming Interface

ASCII American Standard Code for
Information Interchange

AWT Abstract windowing toolkit

BMP Bean-managed persistence

CCF Common Connector Framework

CMP Container managed persistence

CORBA Component Object Request Broker
Architecture

CTG CICS Transaction Gateway

CWS CICS Web support

DBMS Database management system

DNS Domain Name System

DPL Distributed program link

EAB Enterprise Access Builder

EBCDIC Extended Binary Coded Decimal
Interchange Code

ECI External Call Interface

EJB Enterprise JavaBeans

EJS Enterprise Java Server

EPI External Presentation Interface

ESI External Security Interface

ESM External Security Manager

EXCI External CICS Interface

FOR File-owning region

FTP File Transfer Protocol

GIOP General Inter-ORB Protocol

GUI Graphical user interface

HFS Hierarchical File System

HTML Hypertext Transfer Protocol

HTTP Hypertext Markup Language

IDE Integrated development
environment

IDL Interface definition language

IIOP Internet Inter-ORB Protocol

IOR Interoperable object reference

ISC Inter-system communication

J2EE Java 2 Enterprise Edition

JAR Java archive

JDBC Java Database Connectivity

Abbreviations and ac
© Copyright IBM Corp. 2001
JDK Java Developer’s Kit

JNDI Java Naming and Directory
Interface

JNI Java Native Interface

JPDA Java Platform Debugger
Architecture

JSDK Java Servlet Development Kit

JSP JavaServer Page

JVM Java Virtual Machine

LDAP Lightweight Directory Access
Protocol

LPAR Logical Partition

LUW Logical unit of work

OMG Object Management Group

OS/390 Operating System 390

OTS Object transaction service

PB Persistence Builder

RDBMS Relational database management
system

RMI Remote Method Invocation

RPC Remote procedure call

SDK Software Development Kit

SQL Structured query language

SQLJ SQL Java

SSL Secure socket layer

TCB Task control block

TCP/IP Transmission Control
Protocol/Internet Protocol

UML Unified Modeling Language

UOW Unit of work

URL Uniform resource locator

USS Unix System Services

VAJ VisualAge for Java

WTE WebSphere Test Environment

XMI XML metadata interchange

XML eXtensible Markup Language
 325

326 EJB for OS/390 and z/OS, CICS TS V2.1

Index

Numerics
2216 router 51

A
ACID, properties of transactions 4
activation, of session bean 15
announcement letter, CICS TS V2.1 323
application class system heap 35
application-owning region (AOR) 43, 45, 50
auxiliary trace, CICS 117

B
bean implementation 11, 16
bean managed persistence 15, 18
bean persistence 15

C
CCF.jar 125, 231
CEDF, CICS execution diagnostic facility 118
CEDX, CICS execution diagnostic facility 118, 120, 307
CEOT, terminal status transaction 79, 150, 194
CICS code generation utility 85, 148
CICS connector 54, 218
CICS connector for CICS TS 59, 218
CICS development deployment tool 152
CICS JAR development tool 85, 148, 192
CICS production deployment tool 85
CICS Transaction Gateway 54, 56, 126

ECIRequest object 54, 56, 218
JavaGateway object 218

CICS Transaction Gateway (CTG). 32
CICS Web support (CWS) 32
CICSConnectionSpec 218
cicsjdt.bat see CICS JAR development tool
CICSPlex SM 51
CICSPlex SM, data repository 155
CIRP, request processor 38, 40, 42, 44, 80, 307
CIRR, request receiver 40, 50, 78, 118
CLASSPATH 35, 74
COBXOPUS, sample DFHXOPUS 303
code pages 187, 239
commit 255
Common Connector Framework (CCF) 54, 60, 69, 126,
218
Context object 29
CORBA 39
CorbaServer 40, 45, 47, 50
CORBASERVER, resource definition 45, 48, 79, 151
COS Naming Server 45, 115, 142, 152, 159, 196
CSD, definition of VSAM dataset 71
ctgclient.jar 218
cursors, DB2 276
© Copyright IBM Corp. 2001
D
Data Access beans 19, 25, 300
data conversion 187, 239
DB2

CICS connection 280, 298
CICS DB2 attachment facility 281
cursor properties file 276
DB2CONN, CICS DB2 connection 130, 281
db2genJDBC, DB2 JDBC utility 277
db2jdbc.cursors, DB2 cursor properties file 276
DB2SQLJPROPERTIES 280
DBRMs 278
granting privileges 282
plan 130
type 2 driver 20

DCT, support in CICS TS V2.1 76
DD statements, CICS startup JCL 75
debugging

CICS development deployment tool 124
CICS diagnostic aids 117
IBM HTTP server 119
Java problems in CICS 104
JDBC applications 128
Trader application 125
WebSphere 115

deployment configuration file 87, 152
deployment descriptor 5, 8, 11, 12, 16, 18, 46, 85, 93,
147, 149, 192, 228, 272, 298
DFH$EJB, sample EJB CSD group 94
DFHADJM DJAR mapping dataset 73, 75
DFHCNV, data conversion templates 187
DFHCSDUP 71, 158
DFHDSRP, distributed routing program 47, 51
DFHEJDIR, EJB directory dataset 43, 45, 72, 75
DFHEJOS, object directory store 72
DFHIIRRS, request receiver program 41, 118
DFHJVM, JVM profile dataset 38, 48, 73, 94
DFHJVMAT, user-replaceable program 104
DFHJVMPR, default JVM profile 74, 94, 107
DFHXOPUS 41, 42, 78, 303, 315
DFJIIRP, request processor program 44, 48, 81
dfjjvmpr.props 261
Distributed Debugger 111
DJAR, resource definition 46, 151, 156, 193
DNS connection optimization 41, 50
DSNAPRH, DB2 program request handler 279

E
eablib.jar 192, 194
ECIInteractionSpec 218, 221
EDSALIM, SIT parameter 76
EJB client, development of 159
EJB group 139
EJB, specification 4, 36
 327

ejbActivate() 15, 17, 180, 262
ejbCreate() 11, 13, 179
ejbPassivate() 15, 180, 262
ejbRemove(), 180
Enterprise Access Builder 184, 221, 238
entity beans 15, 18
EPIInteractionSpec 218
EXCI 56
EXEC CICS CREATE 86
EXEC CICS LINK 310
EXEC CICS READ 313
EXEC CICS REWRITE 313
EXEC CICS SEND TEXT 313
EXEC CICS SYNCPOINT 255
External Call Interface (ECI) 54
External Presentation Interface (EPI) 54
External Security Interface (ESI) 54

F
FileInputStream, constructor 160
fixpack, WebSphere Application Server 83

G
garbage collection 34, 35
getCallerPrincipal() 10
GIOP 39

H
HelloWorld, CICS sample 96
HelloWorld, our sample 135
HFS, allocation of dataset 67
home interface 11, 13, 16, 142, 145, 152, 178
httpd.conf 211

I
IBM Distributed Debugger 111
ibm.dg.trc.external 105
ibm.jvm.events.output 105
ibm.jvm.shareable.application.class.path 35
Information Center, CICS TS V2.1 84, 323
interface classes 176
Internet Inter-ORB protocol (IIOP) 39
IOR 13, 116, 152
isCallerInRole() 10
ISHELL 68
isolation 7
IVP test client 94

J
J2EE Connector Architecture specification 56, 254
j2ee.jar 90, 97, 167, 174, 229, 236, 250, 282, 299
Java

 See also persistent reusable JVM
Java Platform Debugger Architecture 105
Java Record Framework 192, 194, 238, 249
Java Transaction API (JTA) 6
JavaServer Pages(JSP) 207

system properties 160
java.naming.factory.initial 162
java.naming.provider.url 162
javax.naming.Context 162
JCICS 172

KSDS class 241
Program class 172

link() method 218
jdb, Java debugger 112
JDBC 19
JDBC, debugging 128
JDBC, samples 318
JNDI 13, 28, 35, 162
JNDI namespace 152
JNDIList, sample JNDI browser 84, 116, 152, 195, 316
JNDIprefix 151
JSP sample files 318
JVM

garbage collection 36
persistent reusable JVM 34
pools 37
selection 38
tracing 105

JVMPROFILE attribute 73

K
key, of VSAM file 237

L
LE enclaves 34
LIBPATH 74, 128, 280
listener region 50, 75

M
main system heap 35
manual deployment of enterprise beans 85
marshalling 27
middleware heap 35
mixed case, path names for HFS files 150
Modify bean 25

N
name-mangling 48
narrow, casting Java objects 161
netstat, TCP/IP port usage command 116
Network Dispatcher 51

O
Object Management Group (OMG) 39
Object oriented software 4
object store 45
object-level trace 111
on-line library, CICS TS V2.1 323
OTS TID 43
OTS transaction 5, 6, 49
328 EJB for OS/390 and z/OS, CICS TS V2.1

P
passivation 15, 44, 79, 176
persistence 18

bean managed 18
container managed 18

Persistent Name Server, VAJ 142
persistent reusable JVM 34, 36, 73
phasing out, of JVMs 38
port sharing, TCP/IP 51
Principal, Java security 9
privileges, DB2 282
ProcedureCall bean 25
Program object, JCICS 172
Publishing, of an enterprise bean 152

Q
query, execution of 264
query, generation of 265

R
recjava.jar 192, 194
record size, in DHFEJOS 72
Redbooks Web site 324
region size, CICS 75
remote interface 11, 16, 137
remote procedure call (RPC) 27
request models, matching of 47
request processor, aliasing 81
request stream 42
request stream directory, DFHEJDIR 43
REQUESTMODEL, resource definition 42, 80, 151
RMI 27
role based security 10
rollback 255
runEJBIVP, OS/390 USS IVP client 94

S
sample code, with this redbook 315
security

CICS authorization to HFS files 70
EJB and security 8
security context 10

Select bean 25
serial reuse of JVM 34
services, Windows NT 83
servlets

defining to WebSphere Application Server 210
developing the Trader servlet 200
with WebSphere Application Server 54

session beans 10
SIT parameters

EDSALIM 76
MAXOPENTCBS 76
our overrides for CICS TS V2.1 76
TCPIP 76

SQLJ 19, 23, 283
SQLJ, samples 319
stateful, session beans 14, 178

stateless, session beans 14, 161
SupportPacs, download site 323
SYS1.PARMLIB 68
Sysplex Distributor 50
system heap 35

T
TCBs 37
TCP/IP listener, CICS 41
TCP/IP port sharing 51
TCPIP, SIT parameter 76
TCPIPSERVICE, resource definition 78, 151
time-out 79
TMPREFIX 35
TMSUFFIX 35, 74, 125, 280
Trader application 172

CCF Backend 217
COBOL version 310
debugging 125
JCICS link Backend 171
JCICS VSAM Backend 235
JDBC Backend 256
obtaining the samples 317
SQLJ backend 283

transaction management 4
transient heap, JVM 35
trusted middleware classpath 125

 See also TMSUFFIX
tuning parameters, JVM 35

U
UNIX System Services, running EJB client 168
unmarshalling 27

V
VisualAge for Java

add a package 138
add a project 137
add EJB group 139
adding features 137, 185, 221, 285, 316
debug option 110
features 316
packaging a JAR file 147
sample repository 316
servlet development 199
Traderbean development 174
WebSphere Test Environment 142

W
was.conf 211
WebSphere Application Server

Admin Server 89
Advanced Edition 57, 82
Advanced Edition, configuration on Windows NT 207
classpath 90
COS Naming Server 45, 115, 142
creating a Web application 209
debugging 115
 Index 329

fixpack 3 82
OS/390 55, 211
Standard Edition 54

WebSphere Studio 207
WebSphere Test Environment 142
WebSphere/390 CICSEXCI connector 56
Windows services 83
WORK_DIR parameter, of JVM system properties 69, 74
workload balancing 50

X
Xdebug, JVM parameter 107
Xnoagent, JVM parameter 107
Xresettable, JVM parameter 107
Xrunjdwp, JVM parameter 107

Z
z/OS 31, 53, 55
330 EJB for OS/390 and z/OS, CICS TS V2.1

(0.5” spine)
0.475”<->0.873”

250 <-> 459 pages

Enterprise JavaBeans for z/OS and OS/390 CICS Transaction Server V2.1

®

SG24-6284-00 ISBN 0738423157

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed
by the IBM International
Technical Support
Organization. Experts from
IBM, Customers and Partners
from around the world create
timely technical information
based on realistic scenarios.
Specific recommendations
are provided to help you
implement IT solutions more
effectively in your
environment.

For more information:
ibm.com/redbooks

Enterprise JavaBeans
for z/OS and OS/390
CICS Transaction Server V2.1

Understand the CICS
EJB Server and how to
deploy enterprise
beans

Integrate enterprise
beans with your
COBOL applications

Develop session
beans in VisualAge for
Java

In this IBM Redbook, we first provide an introduction to both EJB
and the way it has been implemented within the CICS architecture.
We also include a summary of the different configurations in which
servlets and enterprise beans can be used to access CICS
applications.

Following this, we document how to set up and configure a CICS
region to support enterprise beans, how to use the various new
tools and features required, and how to deploy and test the product
samples. Then we provide information on how to diagnose and fix
problems when deploying and testing enterprise beans in CICS.

Finally, we document five scenarios in which we developed
enterprise beans and deployed them to CICS. We start with the
initial step of creating a simple HelloWorld session bean using the
VisualAge for Java Development environment, and then move on to
creating a stateful session bean called TraderBean that wraps the
existing pseudo-conversational COBOL Trader application.

Following this, we provide details on how to develop new Java
versions of COBOL applications using either the JCICS classes, or
the SQLJ and JDBC interfaces. We also provide details on how we
developed a sample JSP/servlet application to invoke the
TraderBean and information on how to deploy this in WebSphere
Application Server for Windows NT and WebSphere Application
Server for OS/390.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Preface
	The CICS evolution continues
	The team that wrote this redbook
	Special notice
	IBM trademarks
	Comments welcome

	Part 1 CICS and EJB
	Chapter 1. Enterprise JavaBeans: An�introduction
	1.1 Enterprise JavaBeans
	1.1.1 Object orientation
	1.1.2 Transactionality
	1.1.3 Isolation
	1.1.4 Security

	1.2 Enterprise beans
	1.2.1 Session beans
	1.2.2 Entity beans
	1.2.3 Database access

	1.3 Enterprise bean interoperability
	1.3.1 RMI
	1.3.2 RMI and EJB
	1.3.3 JNDI

	Chapter 2. CICS TS V2.1: The EJB Server
	2.1 The CICS Java road map
	2.2 The Java Virtual Machine
	2.2.1 Features of the persistent reusable JVM
	2.2.2 Exploitation of the persistent reusable JVM

	2.3 IIOP support in CICS
	2.3.1 The Object Request Broker

	2.4 The CICS EJB Server architecture
	2.4.1 Components of the CICS EJB Server
	2.4.2 Selecting a new request processor
	2.4.3 Object Transaction Service
	2.4.4 Workload balancing

	Chapter 3. Accessing CICS from servlets and enterprise beans
	3.1 From a servlet — Using the CICS connectors
	3.2 From a session bean — Using the CICS connectors
	3.3 From a servlet — Invoking a CICS session bean
	3.4 From a session bean — Invoking a CICS session bean

	Part 2 CICS TS V2.1: Systems programming
	Chapter 4. Installation considerations for CICS TS V2.1
	4.1 Installation and configuration
	4.1.1 Initial preparation
	4.1.2 Creating HFS directories and files
	4.1.3 Defining OS/390 data sets
	4.1.4 Tailoring the CICS startup JCL
	4.1.5 Installing CICS resource definitions

	4.2 Setting up the workstation tools
	4.2.1 WebSphere Application Server
	4.2.2 CICS Information Center
	4.2.3 CICS JAR development tool and production deployment tool
	4.2.4 CICS development deployment tool

	4.3 Installation verification
	4.3.1 Running the IVP OS/390 USS client application
	4.3.2 The HelloWorld Web application

	Chapter 5. Troubleshooting enterprise beans in CICS TS V2.1
	5.1 Diagnosing Java problems in CICS
	5.1.1 Gathering diagnostic information
	5.1.2 The Java Platform Debugger Architecture

	5.2 WebSphere diagnostic aids
	5.2.1 WebSphere logs
	5.2.2 COS Naming Server

	5.3 Traditional CICS diagnostic aids
	5.3.1 CICS job log and console messages
	5.3.2 CICS auxiliary trace
	5.3.3 Verifying that the request receiver transaction runs
	5.3.4 Using EDF with enterprise beans

	5.4 Debugging common errors
	5.4.1 Overview of debugging a Web application
	5.4.2 Common problems

	Part 3 CICS TS V2.1: Enterprise bean scenarios
	Chapter 6. Developing a HelloWorld session bean for CICS
	6.1 Quick start — Invoking HelloWorldBean
	6.2 Developing a HelloWorld session bean with VAJ
	6.2.1 Developing in VAJ
	6.2.2 Testing in VAJ

	6.3 Deploying the HelloWorld session bean to CICS
	6.3.1 Packaging an undeployed JAR file
	6.3.2 Generating a CICS deployed JAR file
	6.3.3 Deploying to CICS

	6.4 Testing with a Java client application
	6.4.1 Writing the client within VAJ
	6.4.2 Running the client within VAJ
	6.4.3 Running the client from the Windows NT environment
	6.4.4 Running the client from the USS environment

	6.5 Summary

	Chapter 7. Wrapping the Trader application: JCICS link
	7.1 Quick start — Invoking TraderBean
	7.2 TraderBean development with VisualAge for Java
	7.2.1 Define the business methods of the enterprise bean
	7.2.2 Design the enterprise bean structure
	7.2.3 Implement the interface TraderBackend
	7.2.4 Implement CompaniesBean
	7.2.5 Implement QuotesBean
	7.2.6 Implement TraderBean
	7.2.7 Implement TraderBackendJcics

	7.3 Deploying the TraderBean to CICS
	7.3.1 Exporting the enterprise bean and its related classes
	7.3.2 Converting the exported file to a deployed JAR file
	7.3.3 Sending the deployed JAR file to OS/390
	7.3.4 Defining the DJAR in the CICS system
	7.3.5 Sending supporting JAR files to OS/390
	7.3.6 Adding the supporting JAR files to the trusted middleware classpath
	7.3.7 Restarting the CICS JVM environment
	7.3.8 Publishing the Trader enterprise bean

	7.4 Testing the enterprise bean
	7.4.1 Developing a stand-alone test client: TraderTest
	7.4.2 Servlet development with VisualAge for Java
	7.4.3 Configuring WebSphere Application Server for Windows NT
	7.4.4 Configuring WebSphere Application Server for OS/390

	7.5 Summary

	Chapter 8. Wrapping the Trader application: CICS Connector
	8.1 Quick start — Invoking TraderBean
	8.2 Adapting TraderBean for use of the CICS Connector
	8.2.1 Implementing TraderBackendCICSConnectorCCF

	8.3 Deploying the enterprise bean to WebSphere
	8.3.1 Testing the enterprise bean running in WebSphere

	8.4 Deploying the enterprise bean to CICS
	8.4.1 Testing the enterprise bean running in CICS

	8.5 Summary

	Chapter 9. Rewriting the COBOL Trader application with JCICS
	9.1 Quick start — Invoking TraderBean
	9.2 Adapting TraderBean to use JCICS
	9.2.1 Java Record Framework
	9.2.2 Implementing TraderBackendVsam

	9.3 Deploying the enterprise bean to CICS
	9.3.1 Testing the enterprise bean

	9.4 Summary

	Chapter 10. Rewriting the Trader session bean using JDBC/SQLJ
	10.1 Quick start — Invoking TraderBean
	10.2 Accessing DB2 using JDBC
	10.2.1 Developing the JDBC application
	10.2.2 Deploying the enterprise bean to CICS
	10.2.3 Setting up the database
	10.2.4 Customizing the JDBC runtime environment
	10.2.5 Defining a CICS DB2 connection
	10.2.6 Granting privileges to the CICS user ID
	10.2.7 Testing the JDBC enterprise bean

	10.3 Accessing DB2 using SQLJ
	10.3.1 Developing the SQLJ application
	10.3.2 Deploying the enterprise bean to CICS
	10.3.3 Preparing the SQLJ program on OS/390
	10.3.4 Modifying the CICS DB2 connection
	10.3.5 Granting privileges to the CICS user ID
	10.3.6 Refreshing the DJAR in the CICS region
	10.3.7 Testing the SQLJ enterprise bean

	10.4 Summary

	Part 4 Appendixes
	Appendix A. Security customization: DFHXOPUS
	Security functions of DFHXOPUS
	The sample COBXOPUS
	Deploying the sample COBXOPUS
	Testing the sample COBXOPUS

	Appendix B. The COBOL Trader application
	The 3270 Trader COBOL application
	CICS resource definitions

	Appendix C. Using the additional material
	Locating the additional material on the Internet
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material

	Special notices
	Related publications
	IBM Redbooks
	Other resources

	Referenced Web sites
	How to get IBM Redbooks
	IBM Redbooks collections

	Abbreviations and acronyms
	Index
	Back cover

