

P
R

O
F

E
S

S
I

O
N

A
L

M

I
N

D
W

A
R

E
TM

Develop Powerful, User-Oriented Excel 2002 Applications

With this unique guide, renowned spreadsheet authority John Walkenbach invites

you to harness the full potential of Excel—and join the elite group of users and

developers who truly understand what the product is capable of. Offering plenty

of detailed, well-thought-out examples, he walks you through the basics of Excel

application development and VBA programming—and then gives you a lucid,

wide-ranging seminar on advanced programming techniques and application

development issues. It’s all you need to create user-oriented custom applications

that leverage the power of Excel 2002.

Your Road Map to Excel Application Development

• Take Excel to the next level with formula tricks and techniques

• Work with VBA sub procedures and function procedures

• Create stellar UserForms as well as custom dialog box alternatives

• Develop applications that maximize the power of PivotTables and charts

• Incorporate event-handling and interactions with other applications

• Build user-friendly toolbars, menus, and help systems

• Manipulate files and Visual Basic components and understand class modules

• Get advice on compatibility issues and answers to frequently asked Excel
programming questions

Excel 2002 Power
Programming with VBA

$49.99 USA
$74.99 CANADA
£39.99 UK incl. VAT

Excel 2002 Pow
er Program

m
ing w

ith VBA

Walkenbach

Reader Level
Intermediate to Advanced

Shelving Category
Programming/Spreadsheets

Power Utility Pak trial
and more on CD-ROM Visit us at mandtbooks.com

CD-ROM
included

P
R

O
F

E
S

S
I

O
N

A
L

M

I
N

D
W

A
R

E
TM

• A trial version of the author’s
award-winning Power Utility
Pak 2000

• A demo of the author’s
Sound-Proof 2000

• Over 175 example Excel
workbooks from the book

BONUS CD-ROM
INCLUDES

Excel 2002 Power
Programming with VBA
John Walkenbach
Author of Excel 2002 Bible

“An outstanding reference. . . . If you use Excel,
you need this book.”
— Microsoft OfficePRO magazine on the previous edition

John Walkenbach is a
principal of JWalk and Associates, Inc., a
consulting firm that specializes in
spreadsheet application development,
and is the author of more than two
dozen books, including, most
recently, Excel 2002 Bible and Excel
2002 Formulas. He maintains “The
Spreadsheet Page,” a popular Web
resource at www.j-walk.com/ss.

,!7IA7G4-fehjjh!:p;o;t;T;T
ISBN 0-7645-4799-2

*85555-AGBGEe
w w w . m a n d t b o o k s . c o m

System Requirements: Pentium PC with
Windows 98 or greater; 32 MB RAM; Microsoft
Excel 2002. See About the CD appendix for
details and complete system requirements.

4799-2 Cover_rb3.qxp 5/31/01 3:06 PM Page 1

Excel 2002 Power
Programming with VBA

4799-2 FM.F 6/11/01 1:12 PM Page i

4799-2 FM.F 6/11/01 1:12 PM Page ii

Excel 2002 Power
Programming with VBA

John Walkenbach

M&T Books
An imprint of Hungry Minds, Inc.

New York, NY ✦ Cleveland, OH ✦ Indianapolis, IN

4799-2 FM.F 6/11/01 1:12 PM Page iii

Excel 2002 Power Programming with VBA

Published by
M&T Books
An imprint of Hungry Minds, Inc.
909 Third Avenue
New York, NY 10022
www.hungryminds.com
Copyright © 2001 Hungry Minds, Inc. All rights
reserved. No part of this book, including interior
design, cover design, and icons, may be reproduced
or transmitted in any form, by any means
(electronic, photocopying, recording, or otherwise)
without the prior written permission of the
publisher.

Library of Congress Control Number 2001089315

ISBN: 0-7645-4799-2

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

1O/SY/QW/QR/IN

Distributed in the United States by Hungry Minds,
Inc.

Distributed by CDG Books Canada Inc. for Canada;
by Transworld Publishers Limited in the United
Kingdom; by IDG Norge Books for Norway; by IDG
Sweden Books for Sweden; by IDG Books Australia
Publishing Corporation Pty. Ltd. for Australia and
New Zealand; by TransQuest Publishers Pte Ltd. for
Singapore, Malaysia, Thailand, Indonesia, and Hong
Kong; by Gotop Information Inc. for Taiwan; by ICG
Muse, Inc. for Japan; by Intersoft for South Africa;
by Eyrolles for France; by International Thomson
Publishing for Germany, Austria, and Switzerland;
by Distribuidora Cuspide for Argentina; by LR
International for Brazil; by Galileo Libros for Chile;
by Ediciones ZETA S.C.R. Ltda. for Peru; by WS

Computer Publishing Corporation, Inc., for the
Philippines; by Contemporanea de Ediciones for
Venezuela; by Express Computer Distributors for
the Caribbean and West Indies; by Micronesia
Media Distributor, Inc. for Micronesia; by Chips
Computadoras S.A. de C.V. for Mexico; by Editorial
Norma de Panama S.A. for Panama; by American
Bookshops for Finland.

For general information on Hungry Minds’ products
and services please contact our Customer Care
department within the U.S. at 800-762-2974, outside
the U.S. at 317-572-3993 or fax 317-572-4002.

For sales inquiries and reseller information,
including discounts, premium and bulk quantity
sales, and foreign-language translations, please
contact our Customer Care department at
800-434-3422, fax 317-572-4002 or write to Hungry
Minds, Inc., Attn: Customer Care Department, 10475
Crosspoint Boulevard, Indianapolis, IN 46256.

For information on licensing foreign or domestic
rights, please contact our Sub-Rights Customer
Care department at 212-884-5000.

For information on using Hungry Minds’ products
and services in the classroom or for ordering
examination copies, please contact our Educational
Sales department at 800-434-2086 or fax
317-572-4005.

For press review copies, author interviews, or
other publicity information, please contact our
Public Relations department at 317-572-3168 or fax
317-572-4168.

For authorization to photocopy items for
corporate, personal, or educational use, please
contact Copyright Clearance Center, 222 Rosewood
Drive, Danvers, MA 01923, or fax 978-750-4470.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND AUTHOR HAVE USED THEIR
BEST EFFORTS IN PREPARING THIS BOOK. THE PUBLISHER AND AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE
CONTENTS OF THIS BOOK AND SPECIFICALLY DISCLAIM ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. THERE ARE NO WARRANTIES WHICH
EXTEND BEYOND THE DESCRIPTIONS CONTAINED IN THIS PARAGRAPH. NO WARRANTY MAY BE
CREATED OR EXTENDED BY SALES REPRESENTATIVES OR WRITTEN SALES MATERIALS. THE
ACCURACY AND COMPLETENESS OF THE INFORMATION PROVIDED HEREIN AND THE OPINIONS
STATED HEREIN ARE NOT GUARANTEED OR WARRANTED TO PRODUCE ANY PARTICULAR RESULTS,
AND THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY
INDIVIDUAL. NEITHER THE PUBLISHER NOR AUTHOR SHALL BE LIABLE FOR ANY LOSS OF PROFIT OR
ANY OTHER COMMERCIAL DAMAGES, INCLUDING BUT NOT LIMITED TO SPECIAL, INCIDENTAL,
CONSEQUENTIAL, OR OTHER DAMAGES. FULFILLMENT OF EACH COUPON OFFER IS THE SOLE
RESPONSIBILITY OF THE OFFEROR.

Trademarks: Professional Mindware is a trademark or registered trademark of Hungry Minds. Microsoft is a
registered trademark or trademark of Microsoft Corporation. All other trademarks are property of their
respective owners. Hungry Minds, Inc. is not associated with any product or vendor mentioned in this book.

is a trademark of is a trademark of
Hungry Minds, Inc. Hungry Minds, Inc.

4799-2 FM.F 6/11/01 1:12 PM Page iv

About the Author
John Walkenbach is a leading authority on spreadsheet software and is principal of
JWalk and Associates Inc., a small, San Diego-based consulting firm that specializes
in spreadsheet application development. John is the author of more than two dozen
spreadsheet books and has written more than 300 articles and reviews for a variety
of publications, including PC World, InfoWorld, Windows, and PC/Computing. He also
maintains The Spreadsheet Page, a popular Internet Web site (www.j-walk.com/ss),
and is the developer of Power Utility Pak, an award-winning add-in for Microsoft
Excel. John graduated from the University of Missouri and earned a master’s and a
Ph.D. from the University of Montana.

In addition to computers and spreadsheet software, John’s other interests include
guitar, music, novels, digital photography, and puttering around in the garden.

4799-2 FM.F 6/11/01 1:12 PM Page v

Credits
Acquisitions Editor
Greg Croy

Project Editor
Susan Christophersen

Technical Editor
Bill Manville

Copy Editor
Jennifer Mario

Editorial Manager
Kyle Looper

Project Coordinator
Dale White

Graphics and Production Specialists
Amy Adrian
Joyce Haughey
LeAndra Johnson
Betty Schulte
Brian Torwelle
Stephanie D. Jumper

Quality Control Technicians
Andy Hollandbeck
Carl Pierce
Dwight Ramsey
Charles Spencer

Senior Permissions Editor
Carmen Krikorian

Media Development Specialist
Travis Silvers

Media Development Coordinator
Marisa Pearman

Proofreading and Indexing
TECHBOOKS Production Services

Cover Image
© Noma/Images.com

4799-2 FM.F 6/11/01 1:12 PM Page vi

This one’s for Michelle.

4799-2 FM.F 6/11/01 1:12 PM Page vii

4799-2 FM.F 6/11/01 1:12 PM Page viii

Preface

Welcome to Excel 2002 Power Programming with VBA. If your job involves
developing spreadsheets that others will use — or if you simply want to

get the most out of Excel — you’ve come to the right place.

Why I Wrote This Book
Quite a few advanced Excel books are available, but this book is still the only one
that deals with spreadsheet application development from a larger perspective.
VBA is just one component (albeit a fairly large component) of application develop-
ment. Excel is an extremely deep software product: It has many interesting features
that lurk in the background, unbeknownst to the typical user. And you can use
some of the well-known features in novel ways.

Millions of people throughout the world use Excel. I monitor the spreadsheet-related
newsgroups on the Internet, and it’s very clear to me that people need (and want)
help in the areas that this book covers. My guess is that only five percent of Excel
users really understand what the product is capable of. In this book, I attempt to
nudge you into that elite company. Are you up to it?

What You Need to Know
This is not a book for beginning Excel users. If you have no experience with Excel, I
recommend that you read either of the following books:

✦ Excel 2002 for Windows For Dummies, by Greg Harvey, is written for users who
want to know just enough to get by, and want to be entertained in the process.

✦ Excel 2002 Bible (by yours truly) provides comprehensive coverage of all the
features of Excel. It is meant for users of all levels.

To get the most out of this book, you should be a relatively experienced Excel user.
I didn’t spend much time writing basic how-to information. In fact, I assume that
you know the following:

✦ How to create workbooks, insert sheets, save files, and so on

✦ How to navigate through a workbook

✦ How to use the menus and shortcut menus

4799-2 FM.F 6/11/01 1:12 PM Page ix

x Preface

✦ How to manage Excel’s toolbars

✦ How to enter formulas

✦ How to use Excel’s worksheet functions

✦ How to name cells and ranges

✦ How to use basic Windows features, such as file management techniques and
the clipboard

If you don’t know how to perform the preceding tasks, you may find some of this
material over your head, so consider yourself warned. If you’re an experienced
spreadsheet user who hasn’t used Excel 2002, Chapter 2 presents a short overview
of what this product offers.

What You Need to Have
To make the best use of this book, you need a copy of Excel. Although the book was
written with Excel 2002 in mind, most of the material also applies to Excel 2000 and
Excel 97. If you use an earlier version of Excel, you’re reading the wrong book. Most
of the material in this book also applies to Excel for Macintosh. However, I did no
compatibility testing with the Mac version, so you’re on your own.

Any computer system that can run Windows will suffice, but you’ll be much better
off with a fast Pentium-based machine with plenty of memory. Excel is a large pro-
gram, and using it on a slower system or a system with minimal memory can be
extremely frustrating.

I recommend using a high-resolution video driver (800 × 600 is okay, 1024 × 768 is
excellent, and 1600 × 1024 is sheer heaven). A standard VGA resolution will do in a
pinch, but it just doesn’t let you see enough on-screen.

To make use of the examples on the companion CD, you will also need a CD-ROM
drive.

Conventions in This Book
Take a minute to skim this section and learn some of the typographic conventions
used throughout this book.

4799-2 FM.F 6/11/01 1:12 PM Page x

xiPreface

Keyboard conventions
You need to use the keyboard to enter data. In addition, you can work with menus
and dialog boxes directly from the keyboard — a method you may find easier if your
hands are already positioned over the keys.

Input
Input that you type from the keyboard appears in boldface — for example, enter
=SUM(B2: B50) into cell B51.

More lengthy input usually appears on a separate line in a monospace font. For
example, I may instruct you to enter the following formula:

=VLOOKUP(STOCKNUMBER,PRICELIST,2)

VBA code
This book contains many snippets of VBA code, as well as complete procedure
listings. Each listing appears in a monospace font; each line of code occupies a
separate line. (I copied these listings directly from the VBA module and pasted
them into my word processor.) To make the code easier to read, I often use one or
more tabs to create indentations. Indentation is optional, but it does help to delin-
eate statements that go together.

If a line of code doesn’t fit on a single line in this book, I use the standard VBA line
continuation sequence: At the end of a line, a space followed by an underscore
character indicates that the line of code extends to the next line. For example, the
following two lines are a single line of code:

If Right(ActiveCell, 1) = “!” Then ActiveCell _
= Left(ActiveCell, Len(ActiveCell) - 1)

You can enter this code either on two lines, exactly as shown, or on a single line
without the underscore character.

Functions, filenames, and named ranges
Excel’s worksheet functions appear in uppercase monospace font, like so: “Enter a
SUM formula in cell C20.” VBA procedure names, properties, methods, and objects
appear in monospace font: “Execute the GetTotals procedure.” I often use mixed
upper- and lowercase to make these names easier to read.

Mouse conventions
If you’re reading this book, you’re well versed in mouse usage. The mouse terminol-
ogy I use is all standard fare: pointing, clicking, right-clicking, dragging, and so on.

4799-2 FM.F 6/11/01 1:12 PM Page xi

xii Preface

What the Icons Mean
Throughout the book, I’ve used icons in the left margin to call your attention to
points that are particularly important.

I use this icon to indicate that the material discussed is new to Excel 2002. If
you’re developing an application that will be used for earlier versions of Excel, pay
particular attention to these icons.

I use Note icons to tell you that something is important — perhaps a concept that
may help you master the task at hand or something fundamental for understand-
ing subsequent material.

Tip icons indicate a more efficient way of doing something or a technique that
may not be obvious.

These icons indicate that an example file is on the companion CD-ROM (see
“About the Companion CD-ROM,” later in the introduction). This CD holds many of
the examples that I cover in the book, as well as a trial copy of my popular Power
Utility Pak software.

I use Caution icons when the operation that I’m describing can cause problems if
you’re not careful.

I use the Cross Reference icon to refer you to other chapters that have more to
say on a subject.

How This Book Is Organized
The chapters of this book are grouped into seven main parts. In addition, I’ve
included a few appendixes that provide supplemental information.

Part I: Some Essential Background
In this part, I set the stage for the rest of the book. Chapter 1 presents a brief history
of spreadsheets so that you can see how Excel fits into the big picture. In Chapter 2,
I offer a conceptual overview of Excel 2002 — quite useful for experienced spread-
sheet users who are switching to Excel. In Chapter 3, I cover the essentials of
formulas, including some clever techniques that may be new to you. Chapter 4
covers the ins and outs of the various files used and generated by Excel.

Cross-
Reference

Caution

On the
CD-ROM

Tip

Note

New
Feature

4799-2 FM.F 6/11/01 1:12 PM Page xii

xiiiPreface

Part II: Excel Application Development
This part consists of just two chapters. In Chapter 5, I broadly discuss the concept
of a spreadsheet application. Chapter 6 goes into more detail and covers the steps
typically involved in a spreadsheet application development project.

Part III: Understanding Visual Basic for Applications
Chapters 7 through 11 make up Part III, and these chapters include everything you
need to know to learn VBA. In this part, I introduce you to VBA, provide program-
ming fundamentals, and detail how to develop VBA subroutines and functions.
Chapter 11 contains tons of useful VBA examples.

Part IV: Working with UserForms
The four chapters in this part cover custom dialog boxes (also known as UserForms).
Chapter 12 presents some built-in alternatives to creating custom UserForms.
Chapter 13 provides an introduction to UserForms and the various controls you
can use. Chapters 14 and 15 present many examples of custom dialog boxes, rang-
ing from basic to advanced.

Part V: Advanced Programming Techniques
Part V covers additional techniques that are often considered advanced. The first
three chapters discuss how to develop utilities and how to use VBA to work with
pivot tables and charts. Chapter 19 covers the topic of event-handling, which
enables you to execute procedures automatically when certain events occur.
Chapter 20 discusses various techniques that you can use to interact with other
applications (such as Word). Chapter 21 concludes Part V with an in-depth discus-
sion of creating add-ins.

Part VI: Developing Applications
The chapters in Part VI deal with important elements of creating user-oriented
applications. Chapters 22 and 23 provide information on creating custom toolbars
and menus. Chapter 24 presents several different ways to provide online help for
your applications. In Chapter 25, I present some basic information about develop-
ing user-oriented applications, and I describe such an application in detail.

Part VII: Other Topics
The five chapters in Part VII cover additional topics that you may find helpful.
Chapter 26 presents information regarding compatibility. In Chapter 27, I discuss
various ways to use VBA to work with files. In Chapter 28, I explain how to use VBA

4799-2 FM.F 6/11/01 1:12 PM Page xiii

xiv Preface

to manipulate Visual Basic components such as UserForms and modules. Chapter
29 covers the topic of class modules. I finish the part with a useful chapter that
answers many common questions about Excel programming.

Appendixes
Five appendixes round out the book. Appendix A contains useful information about
Excel resources online. Appendix B is a reference guide to all of VBA’s keywords
(statements and functions). I explain VBA error codes in Appendix C, and Appendix
D is a handy ANSI code reference chart. The final appendix describes the files avail-
able on the companion CD-ROM.

About the Companion CD-ROM
The inside back cover of this book contains a CD-ROM that holds many useful
examples that I discuss in the text. When I write about computer-related material,
I emphasize learning by example. I know that I learn more from a well-thought-out
example than from reading a dozen pages in a book. I assume that this is true for
many other people. Consequently, I spent more time developing the examples on
the CD-ROM than I did writing chapters.

The files on the companion CD-ROM are not compressed, so you can access them
directly from the CD.

Refer to Appendix E for a description of each file on the CD-ROM.

All CD-ROM files are read-only files. Therefore, if you open a file from the CD-ROM
and make any changes to it, you need to save it to your hard drive. In addition, if
you copy a file from the CD-ROM to your hard drive, the file retains its read-only
attribute. To change this attribute after copying a file, right-click the filename or
icon and select Properties from the shortcut menu. In the Properties dialog box,
click the General tab and remove the check mark from the Read-only checkbox.

About the Power Utility Pak Offer
Toward the back of the book, you’ll find a coupon that you can redeem for a free
copy of my popular Power Utility Pak software (normally $39.95). PUP is an award-
winning collection of useful Excel utilities and many new worksheet functions. I
developed this package exclusively with VBA.

Note

Cross-
Reference

4799-2 FM.F 6/11/01 1:12 PM Page xiv

xvPreface

I think you’ll find this product useful in your day-to-day work with Excel, and I urge
you to take advantage of this free offer. You can also purchase the complete VBA
source code for a nominal fee. Studying the code is an excellent way to pick up
some useful programming techniques.

You can take Power Utility Pak for a test drive by installing the 30-day trial version
from the companion CD-ROM.

How to Use This Book
You can use this book any way you please. If you choose to read it cover to cover, be
my guest. But because I’m dealing with intermediate-to-advanced subject matter, the
chapter order is often immaterial. I suspect that most readers will skip around, pick-
ing up useful tidbits here and there. If you’re faced with a challenging task, you might
try the index first to see whether the book specifically addresses your problem.

Reach Out
The publisher and I want your feedback. After you have had a chance to use this
book, please take a moment to visit the Hungry Minds, Inc. Web site to register your
book and give us your comments. (See the “my2cents.hungryminds.com” page at
the back of this book for more details.) Please be honest in your evaluation. If you
thought a particular chapter didn’t tell you enough, let me know. Of course, I would
prefer to receive comments like “This is the best book I’ve ever read,” or “Thanks to
this book, I was promoted and now make $90,000 a year.”

I get at least a dozen questions every day, via e-mail, from people who have read
my books. I appreciate the feedback. Unfortunately, I simply don’t have the time to
reply to questions. Appendix A provides a good list of sources that can answer your
questions.

I also invite you to visit my Web site, which contains lots of Excel-related material.
Despite the massive attempts to make this book completely accurate, a few errors
have probably crept into its pages. My Web site includes a list of any such errors.
The URL is

http://www.j-walk.com/ss/

4799-2 FM.F 6/11/01 1:12 PM Page xv

4799-2 FM.F 6/11/01 1:12 PM Page xvi

Acknowledgments

First of all, thanks to everyone around the world who purchased the previous
editions of this book. The daily positive feedback from readers continues to

astound and encourage me.

Many of the ideas for the topics in this book came from postings to the Excel Internet
newsgroups. Thanks to all who frequent these services; your problems and questions
were the inspiration for many of the examples I present in this book.

This book would not be in your hands if it weren’t for the talented people at Hungry
Minds, Inc., including Susan Christophersen, my project editor. Special thanks to
Bill Manville, my technical editor. Bill provided lots of great feedback and sugges-
tions, and set me straight on more than a few issues.

Finally, thanks to Katlyn, my wonderful daughter and the joy of my life.

John Walkenbach

La Jolla, California

4799-2 FM.F 6/11/01 1:12 PM Page xvii

Contents at a Glance
Preface. ix
Acknowledgments . xvii

Part I: Some Essential Background . 1
Chapter 1: Excel 2002: Where It Came From . 3

Chapter 2: Excel in a Nutshell . 17

Chapter 3: Formula Tricks and Techniques . 37

Chapter 4: Understanding Excel’s Files . 61

Part II: Excel Application Development 79
Chapter 5: What is a Spreadsheet Application? . 81

Chapter 6: Essentials of Spreadsheet Application Development 95

Part III: Understanding Visual Basic for Applications 117
Chapter 7: Introducing Visual Basic for Applications 119

Chapter 8: VBA Programming Fundamentals . 177

Chapter 9: Working with VBA Sub Procedures . 219

Chapter 10: Creating Function Procedures . 257

Chapter 11: VBA Programming Examples and Techniques 291

Part IV: Working with UserForms . 353
Chapter 12: Custom Dialog Box Alternatives . 355

Chapter 13: Introducing UserForms . 377

Chapter 14: UserForm Examples . 411

Chapter 15: Advanced UserForm Techniques . 439

Part V: Advanced Programming Techniques 475
Chapter 16: Developing Excel Utilities with VBA 477

Chapter 17: Working with Pivot Tables . 505

Chapter 18: Working with Charts . 521

Chapter 19: Understanding Excel’s Events . 571

Chapter 20: Interacting with Other Applications 603

Chapter 21: Creating and Using Add-Ins . 625

4799-2 FM.F 6/11/01 1:12 PM Page xviii

xixContents

Part VI: Developing Applications . 651
Chapter 22: Creating Custom Toolbars . 653

Chapter 23: Creating Custom Menus . 685

Chapter 24: Providing Help for Your Applications 719

Chapter 25: Developing User-Oriented Applications 739

Part VII: Other Topics . 751
Chapter 26: Compatibility Issues . 753

Chapter 27: Manipulating Files with VBA . 767

Chapter 28: Manipulating Visual Basic Components 789

Chapter 29: Understanding Class Modules . 811

Chapter 30: Frequently Asked Questions about Excel Programming 825

Appendix A: Excel Resources Online . 861

Appendix B: VBA Statements and Functions Reference 867

Appendix C: VBA Error Codes . 877

Appendix D: ANSI Code Reference . 881

Appendix E: What’s on the CD-ROM . 891

Index . 907
End-User License Agreement . 943
CD-ROM Installation Instructions . 946

4799-2 FM.F 6/11/01 1:12 PM Page xix

4799-2 FM.F 6/11/01 1:12 PM Page xx

Contents

Part I: Some Essential Background 1

Chapter 1: Excel 2002: Where It Came From 3
A Brief History of Spreadsheets . 3

It all started with VisiCalc . 3
Lotus 1-2-3 . 4
Quattro Pro . 7
Microsoft Excel . 8

Spreadsheets Today . 13
Why Excel Is Great for Developers . 14
Excel’s Role in Microsoft’s Strategy . 15

Chapter 2: Excel in a Nutshell . 17
Thinking in Terms of Objects . 17
Workbooks . 18

Worksheets . 19
Chart sheets . 20
XLM macro sheets . 20
Excel 5/95 dialog sheets . 20

Excel’s User Interface . 21
Menus . 21
Dialog boxes . 21
Toolbars . 22
Drag-and-drop . 23
Keyboard shortcuts . 24

Customizing the Display . 24
Data Entry . 24
Selecting Objects . 26
Formatting . 26

Numeric formatting . 26
Stylistic formatting . 27

Formulas . 27
Names . 27
Functions . 28
Shapes . 28
Charts . 30
Macros . 31
Database Access . 31

Worksheet databases . 32
External databases . 32

4799-2 FM.F 6/11/01 1:12 PM Page xxi

xxii Contents

Internet Features . 33
Analysis Tools . 33

Outlines . 33
Automatic subtotals . 33
Scenario management . 34
Analysis ToolPak . 34
Pivot tables . 34
Auditing . 35
Solver . 35

Add-Ins . 35
Compatibility . 36

Chapter 3: Formula Tricks and Techniques 37
About Formulas . 37
Calculating Formulas . 38
Cell and Range References . 39

Why use references that aren’t relative? 39
About R1C1 notation . 40
Referencing other sheets or workbooks 41

Using Names . 42
Naming cells and ranges . 42
Applying names to existing references 43
Intersecting names . 44
Naming columns and rows . 45
Scoping names . 45
Naming constants . 46
Naming formulas . 46
Naming objects . 48

Formula Errors . 48
Array Formulas . 49

An array formula example . 50
An array formula calendar . 51
Array formula pros and cons . 52

Counting and Summing Techniques . 52
Using the COUNTIF or SUMIF function 52
Using array formulas to count and sum 53
Other counting tools . 54

Working with Dates and Times . 55
Entering dates and times . 55
Using pre-1900 dates . 56

Creating Megaformulas . 56

Chapter 4: Understanding Excel’s Files 61
Starting Excel . 61
Excel’s File Extensions . 63
Spreadsheet File Formats Supported . 64

Lotus 1-2-3 spreadsheet files . 64
Quattro Pro spreadsheet files . 65

4799-2 FM.F 6/11/01 1:12 PM Page xxii

xxiiiContents

Database file formats . 66
Text file formats . 66
Other file formats . 66

Files Written by Excel . 67
XLS files . 67
Workspace files . 68
Template files . 68
Toolbar files . 69
Add-in files . 69

Excel and HTML . 70
So how does it work? . 70
Adding some complexity . 71
What about interactivity? . 72

Excel Settings in the Registry . 74
About the Registry . 74
Excel’s settings . 75

Part II: Excel Application Development 79

Chapter 5: What Is a Spreadsheet Application? 81
Spreadsheet Applications . 81
The Developer and the End User . 83

Who are developers? What do they do? 83
Classifying spreadsheet users . 84
The audience for spreadsheet applications 85
Why people use spreadsheets . 86

Solving Problems with a Spreadsheet . 88
Basic Spreadsheet Types . 89

Quick-and-dirty spreadsheets . 90
For-your-eyes-only spreadsheets . 90
Single-user applications . 90
Spaghetti applications . 91
Utility applications . 91
Add-ins that contain worksheet functions 92
Single-block budgets . 92
What-if models . 93
Data storage and access spreadsheets 93
Database front ends . 94
Turnkey applications . 94

Chapter 6: Essentials of Spreadsheet Application Development . . . 95
Determining User Needs . 96
Planning an Application That Meets User Needs 97

4799-2 FM.F 6/11/01 1:12 PM Page xxiii

xxiv Contents

Determining the Most Appropriate User Interface 100
Creating custom dialog boxes . 100
Using ActiveX controls on a worksheet 101
Customizing menus . 103
Customizing toolbars . 105
Creating shortcut keys . 106
Executing the development effort . 107

Concerning Yourself with the End User . 107
Testing the application . 107
Making the application bulletproof 109
Making the application aesthetically appealing and intuitive 110
Documenting the development effort 111
Distributing the application to the user 112
Updating the application when necessary 113

Other Development Issues . 113
The user’s installed version of Excel 114
Language issues . 114
System speed . 114
Video modes . 115
Directory structure . 115

Part III: Understanding Visual Basic for Applications 117

Chapter 7: Introducing Visual Basic for Applications 119
Some BASIC Background . 119
About VBA . 120

Object models . 120
VBA versus XLM . 120
VBA versus Lotus macros . 121
VBA versus LotusScript . 122

The Basics of VBA . 122
Introducing the Visual Basic Editor . 125

Activating the VBE . 125
The VBE windows . 126

Working with the Project Explorer . 128
Adding a new VBA module . 129
Removing a VBA module . 129
Exporting and importing objects . 129

Working with Code Windows . 130
Minimizing and maximizing windows 130
Storing VBA code . 131
Entering VBA code . 132

Customizing the VBE Environment . 138
Using the Editor tab . 138
Using the Editor Format tab . 141
Using the General tab . 142
Using the Docking tab . 143

4799-2 FM.F 6/11/01 1:12 PM Page xxiv

xxvContents

The Macro Recorder . 143
What is recorded . 144
Relative or absolute? . 145
Recording options . 149
Cleaning up recorded macros . 150

About Objects and Collections . 152
The object hierarchy . 152
About collections . 153
Object referral . 153

Properties and Methods . 154
Object properties . 154
Object methods . 155

The Comment Object: A Case Study . 157
Online help for the Comment object 157
Properties of a Comment object . 158
Methods of a Comment object . 158
The Comments collection . 159
About the Comment property . 160
Objects within a Comment object . 161
Determining whether a cell has a comment 163
Adding a new Comment object . 163
Some useful application properties 163

Working with Range Objects . 165
The Range property . 166
The Cells property . 167
The Offset property . 169

Things to Know about Objects . 170
Esoteric but essential concepts to remember 170
Learn more about objects and properties 171

Chapter 8: VBA Programming Fundamentals 177
VBA Language Elements: An Overview . 177
Comments . 178
Variables, Data Types, and Constants . 181

Defining data types . 182
Declaring variables . 184
Scoping variables . 186
Working with constants . 190
Working with strings . 191
Working with dates . 192

Assignment Statements . 193
Arrays . 195

Declaring arrays . 195
Declaring multidimensional arrays 196

Object Variables . 196
User-Defined Data Types . 198
Built-in Functions . 198

4799-2 FM.F 6/11/01 1:12 PM Page xxv

xxvi Contents

Manipulating Objects and Collections . 201
With-End With constructs . 202
For Each-Next constructs . 202

Controlling Execution . 204
GoTo statements . 205
If-Then constructs . 205
Select Case constructs . 208
Looping blocks of instructions . 212

Chapter 9: Working with VBA Sub Procedures 219
About Procedures . 219

Declaring a Sub procedure . 220
Scoping a procedure . 221

Executing Procedures . 222
Executing a procedure with the Run Í Run Sub/

UserForm command . 223
Executing a procedure from the Macro dialog box 223
Executing a procedure using a Ctrl+shortcut key combination . . . 224
Executing a procedure from a custom menu 225
Executing a procedure from another procedure 227
Executing a procedure from a toolbar button 230
Executing a procedure by clicking an object 231
Executing a procedure when an event occurs 233
Executing a procedure from the Immediate window 233

Passing Arguments to Procedures . 234
Error-Handling Techniques . 237

Trapping errors . 238
Error-handling examples . 239

A Realistic Example . 241
The goal . 241
Project requirements . 242
What you know . 242
The approach . 243
What you need to know . 243
Some preliminary recording . 243
Initial setup . 245
Code writing . 246
Sort procedure writing . 247
More testing . 250
Fixing the problems . 251
Utility availability . 254
Evaluating the project . 254

Chapter 10: Creating Function Procedures 257
Sub Procedures versus Function Procedures 257
Why Create Custom Functions? . 258

4799-2 FM.F 6/11/01 1:12 PM Page xxvi

xxviiContents

An Introductory Example . 258
A custom function . 258
Using the function in a worksheet . 259
Using the function in a VBA procedure 260
Analyzing the custom function . 260

Function Procedures . 262
Declaring a function . 262
A function’s scope . 263
Executing function procedures . 263

Function Arguments . 266
Function Examples . 266

A function with no argument . 266
Another function with no argument 267
A function with one argument . 268
A function with two arguments . 271
A function with an array argument . 272
A function with optional arguments 273
A function that returns a VBA array 274
A function that returns an error value 276
A function with an indefinite number of arguments 278

Emulating Excel’s SUM function . 279
Debugging Functions . 281
Dealing with the Insert Function Dialog Box 282

Specifying a function category . 283
Adding a function description . 284

Using Add-ins to Store Custom Functions 286
Using the Windows API . 287

Windows API examples . 287
Determining the Windows directory 288
Detecting the Shift key . 289
Learning more about API functions 290

Chapter 11: VBA Programming Examples and Techniques 291
Working with Ranges . 292

Copying a range . 292
Moving a range . 293
Copying a variably sized range . 293
Selecting or otherwise identifying various types of ranges 294
Prompting for a cell value . 296
Entering a value in the next empty cell 298
Pausing a macro to get a user-selected range 299
Counting selected cells . 300
Determining the type of selected range 301
Looping through a selected range efficiently 302
Deleting all empty rows . 305
Determining whether a range is contained in another range 305
Determining a cell’s data type . 306

4799-2 FM.F 6/11/01 1:12 PM Page xxvii

xxviii Contents

Reading and writing ranges . 307
A better way to write to a range . 308
Transferring one-dimensional arrays 310
Transferring a range to a variant array 310
Selecting the maximum value in a range 311
Selecting all cells with a particular format 312

Working with Workbooks and Sheets . 314
Saving all workbooks . 314
Saving and closing all workbooks . 315
Accessing workbook properties . 315
Synchronizing worksheets . 316

VBA Techniques . 317
Toggling a Boolean property . 317
Determining the number of printed pages 318
Displaying the date and time . 318
Getting a list of fonts . 320
Sorting an array . 321
Processing a series of files . 323

Some Useful Functions for Use in Your Code 325
The FileExists function . 325
The FileNameOnly function . 325
The PathExists function . 326
The RangeNameExists function . 326
The SheetExists function . 326
The WorkbookIsOpen function . 327
Retrieving a value from a closed workbook 328

Some Useful Worksheet Functions . 329
Returning cell formatting information 329
Displaying the date a file was saved or printed 330
Understanding object parents . 331
Counting cells between two values 332
Counting visible cells in a range . 332
Determining the last nonempty cell in a column or row 333
Does a string match a pattern? . 335
Extracting the nth element from a string 336
A multifunctional function . 337
The SHEETOFFSET function: Version 1 338
The SHEETOFFSET function: Version 2 339
Returning the maximum value across all worksheets 339
Returning an array of nonduplicated random integers 340
Randomizing a range . 342

Windows API Calls . 344
Determining file associations . 344
Determining default printer information 345
Determining the current video mode 346
Adding sound to your applications 347
Reading from and writing to the Registry 349

4799-2 FM.F 6/11/01 1:12 PM Page xxviii

xxixContents

Part IV: Working with UserForms 353

Chapter 12: Custom Dialog Box Alternatives 355
Before You Create That UserForm. 355
Using an Input Box . 355

VBA’s InputBox function . 356
Excel’s InputBox method . 357

VBA’s MsgBox Function . 359
Excel’s GetOpenFilename Method . 364
Excel’s GetSaveAsFilename Method . 367
Prompting for a Directory . 368

Using a Windows API function to select a directory 368
Using the FileDialog object to select a directory 370

Displaying Excel’s Built-In Dialog Boxes . 371
Using the Dialogs collection . 371
Learning more about built-in dialog boxes 373
Using arguments with built-in dialog boxes 373
Executing a menu item directly . 374

Chapter 13: Introducing UserForms 377
How Excel Handles Custom Dialog Boxes 377
Inserting a New UserForm . 378
Displaying a UserForm . 378
Adding Controls to a UserForm . 379
Controls Available to You . 380

CheckBox . 380
ComboBox . 380
CommandButton . 380
Frame . 380
Image control . 380
Label . 381
ListBox . 381
MultiPage . 381
OptionButton . 381
RefEdit . 381
ScrollBar . 381
SpinButton control . 382
TabStrip . 382
TextBox . 382
ToggleButton . 382

Adjusting UserForm Controls . 382
Adjusting a Control’s Properties . 385

Using the Properties window . 385
Common properties . 386
Learning more about properties . 387
Accommodating keyboard users . 387

4799-2 FM.F 6/11/01 1:12 PM Page xxix

xxx Contents

Displaying and Closing UserForms . 389
Displaying a UserForm . 389
Closing a UserForm . 389
About event-handler procedures . 391

Creating a UserForm: An Example . 391
Creating the UserForm . 391
Writing code to display the dialog box 394
Trying it out . 395
Adding event-handler procedures . 396
Validating the data . 398
Now it works . 398

UserForm Events . 398
Learning about events . 399
UserForm events . 399
Example: SpinButton events . 400
Pairing a SpinButton with a TextBox 402

Referencing UserForm Controls . 404
Customizing the Toolbox . 406

Changing icons or tip text . 406
Adding new pages . 406
Customizing or combining controls 406
Adding new ActiveX controls . 407

Creating UserForm “Templates” . 408
A UserForm Checklist . 408

Chapter 14: UserForm Examples . 411
Creating a UserForm “Menu” . 411

Using CommandButtons . 411
Using a ListBox . 412

Selecting Ranges . 413
Creating a “Splash Screen” . 414
Disabling a UserForm’s Close Button . 416
Changing a Dialog Box’s Size . 417
Zooming and Scrolling a Sheet from a UserForm 418
ListBox Techniques . 420

About the ListBox control . 421
Adding items to a ListBox control . 421
Determining the selected item . 425
Determining multiple selections . 426
Multiple lists in a single ListBox . 426
ListBox item transfer . 427
Moving items in a ListBox . 428
Working with multicolumn ListBox controls 430
Using a ListBox to select worksheet rows 432
Using a ListBox to activate to a sheet 434

Using the MultiPage Control . 436

4799-2 FM.F 6/11/01 1:12 PM Page xxx

xxxiContents

Chapter 15: Advanced UserForm Techniques 439
Displaying a Progress Indicator . 439

Creating a standalone progress indicator 440
Showing progress using a MultiPage control 442
Showing progress without using a MultiPage control 445

Creating Wizards . 445
Setting up the MultiPage control . 446
Adding the buttons . 447
Programming the buttons . 447
Programming dependencies . 449
Performing the task . 450
Final steps . 451

Emulating the MsgBox Function . 452
MyMsgBox code . 452
How it works . 453
Using the MyMsgBox function . 455

A Modeless Dialog Box . 455
Multiple Buttons, One Event-Handler . 458

Procedure . 459
Adapting this technique . 461

A Color Picker Dialog . 461
Displaying a Chart in a UserForm . 463

Method 1: Save the chart as a file . 463
Method 2: Use the OWC ChartSpace control 464

Displaying a Spreadsheet in a UserForm . 467
An Enhanced Data Form . 471

Description . 472
Installing the add-in . 473
Using the Enhanced Data Form . 473

Part V: Advanced Programming Techniques 475

Chapter 16: Developing Excel Utilities with VBA 477
About Excel Utilities . 477
Using VBA to Develop Utilities . 478
What Makes a Good Utility? . 478
Text Tools: The Anatomy of a Utility . 479

Background . 479
Project goals for Text Tools . 480
How it works . 480
The Text Tools workbook . 481
The FormMain UserForm . 481
The modMain module . 483
The ApplyButton_Click procedure . 486
The “task” procedures . 488
The undo technique . 497
The ShowStats procedure . 498

4799-2 FM.F 6/11/01 1:12 PM Page xxxi

xxxii Contents

User help technique . 500
Create menu and delete menu procedures 500
Evaluation of the project . 501
Understand the Text Tools utility . 502

More About Excel Utilities . 502

Chapter 17: Working with Pivot Tables 505
An Introductory Example . 505

Creating a pivot table . 506
Examining the recorded code . 508
Cleaning up the recorded code . 508

Creating a More Complex Pivot Table . 509
The data . 509
The pivot table . 510
The code that created the pivot table 511
How it works . 513

Creating a Pivot Table from an External Database 513
Creating Multiple Pivot Tables . 515
Modifying Pivot Tables . 518

Chapter 18: Working with Charts . 521
About Charts . 521

Chart locations . 521
The Chart object model . 522

Recording Chart Macros . 524
Macro recorder output . 524
The “cleaned up” macro . 526

Common VBA Charting Techniques . 527
Activating a chart . 527
Deactivating a chart . 529
Determining whether a chart is activated 529
Deleting from ChartObjects or charts 530
Applying chart formatting . 530
Looping through all charts . 531
Sizing and aligning ChartObjects . 532

More Charting Examples . 533
Using names in a SERIES formula . 534
Specifying the data used by a chart 535
Determining a chart’s source data: Method 1 538
Determining a chart’s source data: Method 2 543
Displaying arbitrary data labels on a chart 546
Displaying a chart in a UserForm . 549

Understanding Chart Events . 551
An example of using Chart events . 552
Enabling events for an embedded chart 555
Example: Using Chart events with an embedded chart 557

4799-2 FM.F 6/11/01 1:12 PM Page xxxii

xxxiiiContents

Charting Tricks . 559
Printing embedded charts on a full page 559
Creating a “dead chart” . 560
Controlling a data series by hiding data 560
Storing multiple charts on a chart sheet 562
Using linked pictures in a chart . 563
Animated charts . 565
Creating a hypocycloid chart . 566
Creating a “clock” chart . 567
Drawing with an XY chart . 569

Chapter 19: Understanding Excel’s Events 571
Event Types That Excel Can Monitor . 572
What You Should Know about Events . 572

Understanding event sequences . 572
Where to put event-handler procedures 573
Disabling events . 574
Entering event-handler code . 576
Event-handler procedures that use arguments 577

Workbook-Level Events . 578
The Open event . 579
The Activate event . 580
The SheetActivate event . 580
The NewSheet event . 581
The BeforeSave event . 581
The Deactivate event . 581
The BeforePrint event . 582
The BeforeClose event . 583

Worksheet Events . 585
The Change event . 585
Monitoring a specific range for changes 586
The SelectionChange event . 590
The BeforeRightClick event . 591

Chart Events . 592
Application Events . 592

Enabling Application-level events . 595
Determining when a workbook is opened 595
Monitoring Application-level events 597

UserForm Events . 598
Events Not Associated with an Object . 599

The OnTime event . 599
The OnKey event . 600

Chapter 20: Interacting with Other Applications 603
Starting Another Application . 603
Activating Another Application . 607
Running Control Panel Dialog Boxes and Wizards 608

4799-2 FM.F 6/11/01 1:12 PM Page xxxiii

xxxiv Contents

Automation . 609
Working with foreign objects . 609
Early versus late binding . 610
A simple example . 613
Controlling Word from Excel . 613
Controlling Excel from another application 616

Working with ADO . 619
Using SendKeys . 621

Chapter 21: Creating and Using Add-Ins 625
What Is an Add-In? . 625

Comparing an add-in to a standard workbook 625
Why create add-ins? . 626

Understanding Excel’s Add-In Manager . 627
Creating an Add-In . 628
An Add-In Example . 629

Setting up the workbook . 629
Testing the workbook . 630
Adding descriptive information . 630
Creating the add-in . 631
Installing the add-in . 632
Distributing the add-in . 633
Modifying the add-in . 633

Comparing XLA and XLS Files . 635
File size and structure . 635
Collection membership . 635
Windows . 635
Sheets . 636
Accessing VBA procedures in an add-in 637

Manipulating Add-Ins with VBA . 639
The AddIns collection . 639
AddIn object properties . 641
AddIn object events . 644

Optimizing the Performance of Add-ins . 644
Code speed . 644
File size . 645

Special Problems with Add-Ins . 646
Ensuring that an add-in is installed 646
Referencing other files . 648
Specifying the proper Excel version 649

Part VI: Developing Applications 651

Chapter 22: Creating Custom Toolbars 653
About Command Bars . 653
Toolbar Manipulations . 654

4799-2 FM.F 6/11/01 1:12 PM Page xxxiv

xxxvContents

How Excel Handles Toolbars . 654
Storing toolbars . 654
When toolbars don’t work correctly 655

Manipulating Toolbars and Buttons Manually 655
About command bar customization mode 656
Distributing toolbars . 660

Manipulating the CommandBars Collection 661
Command bar types . 662
Listing all CommandBar objects . 662
Creating a command bar . 664
Referring to command bars . 665
Deleting a command bar . 665
Properties of command bars . 666
Referring to controls in a command bar 671
Listing the controls on a command bar 672
Listing all controls on all toolbars . 672
Adding a control to a command bar 673
Deleting a control from a command bar 674
Properties of command bar controls 675

Chapter 23: Creating Custom Menus 685
A Few Words about Excel’s Menu Bar . 685
What You Can Do with Excel’s Menus . 686

Menu terminology . 686
Removing menu elements . 687
Adding menu elements . 688
Changing menu elements . 688

VBA Examples . 689
Listing menu information . 689
Adding a new menu to a menu bar . 690
Deleting a menu from a menu bar . 694
Adding menu items to a menu . 694
Displaying a shortcut key with a menu item 698
Fixing a menu that has been reset . 700

Working with Events . 701
Adding and deleting menus automatically 701
Disabling or hiding menus . 702
Working with checked menu items . 703

The Easy Way to Create Custom Menus . 706
Creating a Substitute Worksheet Menu Bar 708
Working with Shortcut Menus . 710

Adding menu items to shortcut menus 712
Deleting menu items from shortcut menus 713
Disabling shortcut menu items . 713
Disabling shortcut menus . 714
Resetting shortcut menus . 714
Creating new shortcut menus . 714

4799-2 FM.F 6/11/01 1:12 PM Page xxxv

xxxvi Contents

Chapter 24: Providing Help for Your Applications 719
Help for Your Excel Applications? . 719
Help Systems That Use Excel Components 721

Using cell comments for help . 722
Using a Text Box for help . 722
Using a worksheet to display help text 722
Displaying help in a UserForm . 723
Using the Office Assistant to display help 727

Using the WinHelp and HTML Help Systems 730
About WinHelp . 730
About HTML Help . 731

Associating a Help File with Your Application 732
Other Ways of Displaying WinHelp or HTML Help 736

Using the Help method . 736
Displaying Help from a message box 736
Displaying Help from an input box . 737

Chapter 25: Developing User-Oriented Applications 739
What is a User-Oriented Application? . 739
the Loan Amortization Wizard . 739

Using the application . 740
The workbook structure . 742
How it works . 743
Potential enhancements . 748

Application Development Concepts . 748
Some Final Words . 748

Part VII: Other Topics 751

Chapter 26: Compatibility Issues . 753
What Is Compatibility? . 753
Types of Compatibility Problems . 754
Excel File Formats Supported . 755
Avoid Using New Features . 756
Applications That Use Windows API Calls 757
But Will It Work on a Mac? . 758
Creating an International Application . 759

Multilanguage applications . 761
VBA language considerations . 762
Using “local” properties . 762
Identifying system settings . 763
Date and time settings . 766

4799-2 FM.F 6/11/01 1:12 PM Page xxxvi

xxxviiContents

Chapter 27: Manipulating Files with VBA 767
Performing Common File Operations . 767

VBA file-related commands . 768
Using the FileSearch object . 771
Locating files that contain specific text 773
Using the FileSystemObject object . 773

Working with Text Files . 775
Opening a text file . 776
Reading a text file . 777
Writing a text file . 777
Getting a file number . 777
Determining or setting the file position 778
Statements for reading and writing 778

Text File Manipulation Examples . 779
Importing data in a text file . 779
Exporting a range to a text file . 779
Importing a text file to a range . 781
Logging Excel usage . 782
Filtering a text file . 783
Importing more than 256 columns of data 783
Exporting a range to HTML format . 786

Chapter 28: Manipulating Visual Basic Components 789
Introducing the IDE . 789
The IDE Object Model . 791

The VBProjects collection . 791
An Introductory Example . 794
Replacing a Module with an Updated Version 795
Using VBA to Write VBA Code . 797
Adding Controls to a UserForm at Design Time 800

Design-time versus runtime UserForm manipulations 800
Adding 100 CommandButtons at design time 802

Creating UserForms Programmatically . 804
A simple example . 804
A useful (but not so simple) example 806

Chapter 29: Understanding Class Modules 811
What is a Class Module? . 811
Example: Creating a NumLock Class . 812

Inserting a class module . 813
Adding the VBA code . 813
Using the NumLock class . 814

More about Class Modules . 815
Naming the object class . 815
Programming properties . 816
Programming methods . 817
Class module events . 818

4799-2 FM.F 6/11/01 1:12 PM Page xxxvii

xxxviii Contents

Example: A CSV File Class . 818
Class module-level variables . 819
Property procedures . 819
Method procedures . 820
Using the CSVFileClass object . 822

Chapter 30: Frequently Asked Questions
about Excel Programming . 825

General Excel Questions . 826
The Visual Basic Editor . 830
Procedures . 834
Functions . 839
Objects, Properties, Methods, and Events 842
UserForms . 851
Add-Ins . 856
CommandBars . 858

Appendix A: Excel Resources Online 861

Appendix B: VBA Statements and Functions Reference 867

Appendix C: VBA Error Codes . 877

Appendix D: ANSI Code Reference . 881

Appendix E: What’s on the CD-ROM 891

Index . 907

End-User License Agreement . 943

CD-ROM Installation Instructions . 946

4799-2 FM.F 6/11/01 1:12 PM Page xxxviii

Some Essential
Background

The four chapters in this section provide some useful
background information about Excel 2002 and spread-

sheets in general. In Chapter 1, you get a brief history of
spreadsheets, with insights about why Excel is the superior
product for developers. Chapter 2 provides a quick-and-dirty
overview of using Excel, complete with lots of tips and
helpful suggestions. In Chapter 3, I present some of the
formula tricks I’ve accumulated over the years. Chapter 4
provides many details about the files used and generated by
Excel — important information for developers.

✦ ✦ ✦ ✦

In This Part

Chapter 1
Excel 2002: Where It
Came From

Chapter 2
Excel in a Nutshell

Chapter 3
Formula Tricks and
Techniques

Chapter 4
Understanding
Excel’s Files

✦ ✦ ✦ ✦

P A R T

II

4799-2 PO1.F 6/11/01 9:26 AM Page 1

4799-2 PO1.F 6/11/01 9:26 AM Page 2

Excel 2002:
Where It Came
From

To fully appreciate the application development features
available in Excel 2002, it’s important to understand

where this product came from and how it fits into the overall
scheme of things. If you’ve worked with personal computers
and spreadsheets over the past decade, this information may
be old hat. If you’re a trivia buff, this chapter is a gold mine.
Study this chapter and you’ll be a hit at the next computer
geek party you attend.

A Brief History of Spreadsheets
Most of us tend to take spreadsheet software for granted. In
fact, it may be hard to fathom, but there really was a time
when electronic spreadsheets were not available. Back then,
people relied instead on clumsy mainframes or calculators
and spent hours doing what now takes minutes.

It all started with VisiCalc
The world’s first electronic spreadsheet, VisiCalc, was con-
jured up by Dan Bricklin and Bob Frankston back in 1978,
when personal computers were pretty much unheard of in the
office environment. VisiCalc was written for the Apple II com-
puter, an interesting little machine that is something of a toy by
today’s standards. But in its day, the Apple II kept me mesmer-
ized for days at a time. VisiCalc essentially laid the foundation
for future spreadsheets, and its row-and-column-based layout
and formula syntax are still found in modern spreadsheet prod-
ucts. VisiCalc caught on quickly, and many forward-looking
companies purchased the Apple II for the sole purpose of
developing their budgets with VisiCalc. Consequently, VisiCalc
is often credited for much of the Apple II’s initial success.

11C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

A history of
spreadsheets —
where they came
from, who makes
them, and what
differentiates them

A discussion of
Excel’s evolution

An analysis of why
Excel is the best
spreadsheet
available for
developers

✦ ✦ ✦ ✦

4799-2 ch01.F 6/11/01 9:26 AM Page 3

4 Part I ✦ Some Essential Background

In the meantime, another class of personal computers was evolving; these PCs ran
the CP/M operating system. A company called Sorcim developed SuperCalc, a
spreadsheet that also attracted a legion of followers.

When the IBM PC arrived on the scene in 1981, legitimizing personal computers,
VisiCorp wasted no time porting VisiCalc to this new hardware environment, and
Sorcim soon followed with a PC version of SuperCalc.

By current standards, both VisiCalc and SuperCalc were extremely crude. For exam-
ple, text entered into a cell could not extend beyond the cell — a lengthy title had to
be entered into multiple cells. Nevertheless, the capability to automate the budget-
ing tedium was enough to lure thousands of accountants from paper ledger sheets
to floppy disks.

Lotus 1-2-3
Envious of VisiCalc’s success, a small group of computer freaks at a start-up com-
pany in Cambridge, Massachusetts, refined the spreadsheet concept. Headed by
Mitch Kapor and Jonathan Sachs, the company designed a new product and
launched the software industry’s first full-fledged marketing blitz. I remember see-
ing a large display ad for 1-2-3 in The Wall Street Journal. It was the first time that I’d
ever seen software advertised in a general interest publication. Released in January
1983, Lotus Development Corporation’s 1-2-3 was an instant success. Despite its
$495 price tag (yes, people really paid that much for software), it quickly outsold
VisiCalc, rocketing to the top of the sales charts, where it remained for many years.

Lotus 1-2-3 not only improved on all the basics embodied in VisiCalc and SuperCalc
but also was the first program to take advantage of the new and unique features
found in the powerful 16-bit IBM PC AT. For example, 1-2-3 bypassed the slower DOS
calls and wrote text directly to display memory, giving it a snappy and responsive
feel that was unusual for the time. The online help system was a breakthrough, and
the ingenious “moving bar” menu style set the standard for many years. One feature
that really set 1-2-3 apart, though, was its macro capability, a powerful tool that
enabled spreadsheet users to record their keystrokes to automate many proce-
dures. When such a macro was “played back,” the original keystrokes were sent to
the application. Although this was a far cry from today’s macro capability, 1-2-3
macros were definitely a step in the right direction.

1-2-3 was not the first integrated package, but it was the first successful one. It com-
bined (1) a powerful electronic spreadsheet with (2) elementary graphics and (3)
some limited but handy database features. Easy as 1, 2, 3 — get it?

Lotus followed up the original 1-2-3 Release 1 with Release 1A in April 1983. This
product enjoyed tremendous success and put Lotus in the enviable position of vir-
tually owning the spreadsheet market. In September 1985, Release 1A was replaced

4799-2 ch01.F 6/11/01 9:26 AM Page 4

5Chapter 1 ✦ Excel 2002: Where It Came From

by Release 2, a major upgrade that was superseded by the bug-fixed Release 2.01
the following July. Release 2 introduced add-ins, special-purpose programs that
could be attached to give an application new features and extend the application’s
useful life. Release 2 also had improved memory management, more @ functions
(pronounced “at functions”), four times as many rows as its predecessor, and added
support for a math coprocessor. It also enhanced the macro language, whose popu-
larity exceeded the developers’ wildest dreams.

Not surprisingly, the success of 1-2-3 spawned many clones — work-alike products
that usually offered a few additional features and sold at a much lower price. Among
the more notable were Paperback Software’s VP Planner series and Mosaic Software’s
Twin. Lotus eventually took legal action against Paperback Software for copyright
infringement (for copying the “look and feel” of 1-2-3); the successful suit essentially
put Paperback out of business.

In the summer of 1989, Lotus shipped DOS and OS/2 versions of the long-delayed
1-2-3 Release 3. This product literally added a dimension to the familiar row-and-
column-based spreadsheet; it extended the paradigm by adding multiple spread-
sheet pages. The idea wasn’t really new, however; a relatively obscure product
called Boeing Calc originated the 3D spreadsheet concept, and SuperCalc 5 and
CubeCalc also incorporated it.

1-2-3 Release 3 offered features that users wanted, features that ultimately became
standard fare: multilayered worksheets, the capability to work with multiple files
simultaneously, file linking, improved graphics, and direct access to external
database files. But it still lacked an important feature that users were begging for:
a way to produce high-quality output.

Release 3 began life with a reduced market potential because it required an 80286-
based PC and a minimum of 1MB of RAM — fairly hefty requirements in 1989. But
Lotus had an ace up its corporate sleeve. Concurrent with the shipping of Release
3, the company surprised nearly everyone by announcing an upgrade of Release
2.01 (the product materialized a few months later as 1-2-3 Release 2.2). Release 3
was not a replacement for Release 2, as most analysts had expected. Rather, Lotus
made the brilliant move of splitting the spreadsheet market into two segments:
those with high-end hardware and those with more mundane equipment.

1-2-3 Release 2.2 wasn’t a panacea for spreadsheet buffs, but it was a significant
improvement. The most important Release 2.2 feature was Allways, an add-in that
gave users the ability to churn out attractive reports, complete with multiple type-
faces, borders, and shading. In addition, users could view the results on-screen in a
WYSIWYG (What You See Is What You Get) manner. Allways didn’t, however, let
users issue any worksheet commands while they viewed and formatted their work
in WYSIWYG mode. Despite this rather severe limitation, most 1-2-3 users were
overjoyed with this new capability, for they could finally produce near-typeset-quality
output.

4799-2 ch01.F 6/11/01 9:26 AM Page 5

6 Part I ✦ Some Essential Background

In May 1990, Microsoft released Windows 3.0. As you probably know, Windows
changed the way people used personal computers. Apparently, the decision makers
at Lotus weren’t convinced that Windows was a significant product, and the com-
pany was slow getting out of the gate with its first Windows spreadsheet, 1-2-3 for
Windows, which wasn’t introduced until late 1991. Worse, this product was, in
short, a dud. It didn’t really capitalize on the Windows environment and disap-
pointed many users. Consequently, Excel, which had already established itself as
the premier Windows spreadsheet, became the overwhelming Windows spread-
sheet market leader (and has never left that position). Lotus came back with 1-2-3
Release 4 for Windows in June 1993, a vast improvement over the original. Release 5
for Windows appeared in mid-1994.

In mid-1994, Lotus unveiled 1-2-3 Release 4.0 for DOS. Many analysts (including
myself) expected a product more compatible with the Windows product. But we
were wrong; DOS Release 4.0 is simply an upgraded version of Release 3.4. Because
of the widespread acceptance of Windows, this should be the last DOS version of
1-2-3 to see the light of day.

Over the years, spreadsheets became less important to Lotus (its flagship product
turns out to be Notes). In mid-1995, IBM purchased Lotus Development Corporation.
Two more versions of 1-2-3 became available, but it seems to be a case of too little,
too late. Excel clearly dominates the spreadsheet market, and 1-2-3 continues to
lose market share.

A Few Words about Copy Protection

In the early days of personal computing, copy-protected software was the rule rather than
the exception. Most analysts agree that copy protection makes life more difficult for legiti-
mate users and does very little to actually prevent software piracy.

As you probably know, Microsoft Office XP incorporates “product activation” technology.
This technology is targeted to consumers and is designed to prevent “casual copying.” It
does not address the vastly more serious problem of real pirates who create and sell coun-
terfeit software.

Ironically, one of the reasons Microsoft Office initially gained prominence in the market
place was because it was not copy protected. The competing products at the time (1-2-3
and WordPerfect) were. Other companies realized that copy protection doesn’t work, and it
soon became history.

Personally, I think the return to copy-protected software is a bad trend for the software
industry; it will only make product installation more complex and frustrate legitimate cus-
tomers when things go wrong. The success of Microsoft’s new copy-protection method
remains to be seen. Will it result in increased sales? I doubt it. Will it cause people to avoid
upgrading from a previous version? I think so. Will it cause people to seek out another prod-
uct? Possibly. Will it be “cracked” and be rendered completely useless? Without a doubt.

4799-2 ch01.F 6/11/01 9:26 AM Page 6

7Chapter 1 ✦ Excel 2002: Where It Came From

The most recent versions of 1-2-3 feature LotusScript, a scripting language similar
to VBA (see Figure 1-1). Spreadsheet developers haven’t exactly embraced this lan-
guage with open arms. In retrospect, Lotus probably should have licensed VBA
from Microsoft.

Quattro Pro
The other significant player in the spreadsheet world is (or, I should say, was)
Borland International. In 1994, Novell purchased both WordPerfect International
and Borland’s entire spreadsheet business. In 1996, WordPerfect and Quattro Pro
were both purchased by Corel Corporation.

Borland started out in spreadsheets in 1987 with a product called Quattro. Essentially
a clone of 1-2-3, Quattro offered a few additional features and an arguably better
menu system. And it was also much cheaper. Importantly, users could opt for a
1-2-3-like menu system that let them use familiar commands and also ensured com-
patibility with 1-2-3 macros.

In the fall of 1989, Borland began shipping Quattro Pro, a more powerful product
that built upon the original Quattro and trumped 1-2-3 in just about every area. For
example, the first Quattro Pro let you work with multiple worksheets in movable
and resizable windows — although it did not have a graphical user interface (GUI).
More trivia: Quattro Pro was based on an obscure product called Surpass, which
Borland acquired.

Figure 1-1: Currently, Lotus 1-2-3 includes LotusScript, a VBA-like scripting language.

4799-2 ch01.F 6/11/01 9:26 AM Page 7

8 Part I ✦ Some Essential Background

Released in late 1990, Quattro Pro Version 2.0 added 3D graphs and a link to
Borland’s Paradox database. A mere six months later — much to the chagrin of
Quattro Pro book authors — Version 3.0 appeared, featuring an optional graphical
user interface and a slide show feature. In the spring of 1992, Version 4 appeared,
having customizable SpeedBars and an innovative analytical graphics feature.
Version 5, which came out in 1994, had only one significant new feature: worksheet
notebooks (that is, 3D worksheets).

Like Lotus, Borland was slow to jump on the Windows bandwagon. When Quattro
Pro for Windows finally shipped in the fall of 1992, however, it provided some tough
competition for the other two Windows spreadsheets, Excel 4.0 and 1-2-3 Release
1.1 for Windows. Importantly, Quattro Pro for Windows had an innovative feature,
known as the UI Builder, that let developers and advanced users easily create cus-
tom user interfaces.

Also worth noting is a lawsuit between Lotus and Borland. Lotus won the suit, forc-
ing Borland to remove the 1-2-3 macro compatibility and 1-2-3 menu option from
Quattro Pro. This ruling was eventually overturned in late 1994, however, and
Quattro Pro can now include 1-2-3 compatibility features (as if anyone really cares).
Both sides spent millions of dollars on this lengthy legal fight, and when the dust
cleared, no real winner emerged.

Borland followed up the original Quattro Pro for Windows with Version 5, which
was upgraded to Version 6 after Novell took over Borland’s spreadsheet business
(see Figure 1-2). As I write this, the current version of Quattro Pro is Version 9,
which is part of WordPerfect Office 2000. This product boasts some impressive
specs, including support for 1 million rows and 18,278 columns (something many
Excel users would kill for). In the spreadsheet market, Quattro Pro ranks a distant
third.

For a while, Quattro Pro seemed the ultimate solution for spreadsheet developers.
But then Excel 5 arrived.

Microsoft Excel
And now on to the good stuff.

Most people don’t realize that Microsoft’s experience with spreadsheets extends
back to the early ’80s. Over the years, Microsoft’s spreadsheet offerings have come
a long way, from the barely adequate MultiPlan to the state-of-the-art Excel 2002.

In 1982, Microsoft released its first spreadsheet, MultiPlan. Designed for computers
running the CP/M operating system, the product was subsequently ported to
several other platforms, including Apple II, Apple III, XENIX, and MS-DOS.

4799-2 ch01.F 6/11/01 9:26 AM Page 8

9Chapter 1 ✦ Excel 2002: Where It Came From

Figure 1-2: Corel’s Quattro Pro

MultiPlan essentially ignored existing software user-interface standards. Difficult to
learn and use, it never earned much of a following in the United States. Not surpris-
ingly, Lotus 1-2-3 pretty much left MultiPlan in the dust.

Excel sort of evolved from MultiPlan, first surfacing in 1985 on the Macintosh. Like
all Mac applications, Excel was a graphics-based program (unlike the character-
based MultiPlan). In November 1987, Microsoft released the first version of Excel
for Windows (labeled Excel 2.0 to correspond with the Macintosh version). Because
Windows was not in widespread use at the time, this version included a runtime
version of Windows — a special version that had just enough features to run Excel
and nothing else. Less than a year later, Microsoft released Excel Version 2.1. In July
1990, Microsoft released a minor upgrade (2.1d) that was compatible with Windows
3.0. Although these 2.x versions were quite rudimentary by current standards (see
Figure 1-3) and didn’t have the attractive, sculpted look of later versions, they
attracted a small but loyal group of supporters and provided an excellent founda-
tion for future development. The macro language (XLM) consisted of functions that
were evaluated in sequence. It was quite powerful, but very difficult to learn and
use. As you’ll see, the XLM macro language was replaced by VBA, which is the topic
of this book.

4799-2 ch01.F 6/11/01 9:26 AM Page 9

10 Part I ✦ Some Essential Background

Figure 1-3: The original Excel 2.1 for Windows. This product has come a long way, no?
(Photo courtesy of Microsoft)

Meanwhile, Microsoft developed a version of Excel (numbered 2.20) for OS/2
Presentation Manager, released in September 1989 and upgraded to Version 2.21
about ten months later. OS/2 never quite caught on, despite continued efforts
by IBM.

In December 1990, Microsoft released Excel 3 for Windows, a significant improve-
ment in both appearance and features (see Figure 1-4). The upgrade included a tool-
bar, drawing capabilities, a powerful optimization feature (Solver), add-in support,
Object Linking and Embedding (OLE) support, 3D charts, macro buttons, simplified
file consolidation, workgroup editing, and wordwrap text in a cell. Excel 3 also had
the capability to work with external databases (via the Q+E program). The OS/2
version upgrade appeared five months later.

Version 4, released in the spring of 1992, not only was easier to use, but also had
more power and sophistication for advanced users (see Figure 1-5). Excel 4 took top
honors in virtually every spreadsheet product comparison published in the trade
magazines. In the meantime, the relationship between Microsoft and IBM became
increasingly strained; Excel 4 was never released for OS/2, and Microsoft has
stopped making versions of Excel for OS/2.

4799-2 ch01.F 6/11/01 9:26 AM Page 10

11Chapter 1 ✦ Excel 2002: Where It Came From

Figure 1-4: Excel 3 was a vast improvement over the original release. (Photo courtesy of
Microsoft)

Excel 5 hit the streets in early 1994 and immediately earned rave reviews. Like its
predecessor, it finished at the top of every spreadsheet comparison published in
the leading trade magazines. Despite stiff competition from 1-2-3 Release 5 for
Windows and Quattro Pro for Windows 5 — both were fine products that could
handle just about any spreadsheet task thrown their way — Excel 5 continued to
rule the roost. This version, by the way, was the first to feature VBA.

Excel 95 (also known as Excel 7) was released concurrently with Microsoft Windows
95. Microsoft skipped over Version 6 to make the version numbers consistent across
its Office products. On the surface, Excel 95 didn’t appear to be much different from
Excel 5. Much of the core code was rewritten, however, and speed improvements
were apparent in many areas. Importantly, Excel 95 used the same file format as
Excel 5, which is the first time an Excel upgrade didn’t use a new file format. This
compatibility wasn’t perfect, however, because Excel 95 included a few enhance-
ments in the VBA language. Consequently, it was possible to develop an application
using Excel 95 that would load (but not run properly) in Excel 5.

4799-2 ch01.F 6/11/01 9:26 AM Page 11

12 Part I ✦ Some Essential Background

Figure 1-5: Excel 4 was another significant step forward, although still far from Excel 5.
(Photo courtesy of Microsoft)

In early 1997, Microsoft released Office 97, which included Excel 97. Excel 97 is also
known as Excel 8. This version included dozens of general enhancements plus a
completely new interface for developing VBA-based applications. In addition, the
product offered a new way of developing custom dialog boxes (called UserForms
rather than dialog sheets). Microsoft tried to make Excel 97 compatible with previ-
ous versions, but the compatibility is far from perfect. Many applications that were
developed using Excel 5 or Excel 95 require some tweaking before they will work
with Excel 97 or later versions.

I discuss compatibility issues in Chapter 26.

Excel 2000 was released in early 1999 and is also sold as part of Office 2000. The
enhancements in Excel 2000 deal primarily with Internet capabilities, although a
few significant changes are apparent in the area of programming.

Excel 2002 hit the market in mid-2001. Like its predecessor, it doesn’t offer a raft of
significant new features. Rather, it has a number of minor new features and several
refinements of existing features. Perhaps the most compelling new feature is the
ability to repair damaged files and save your work when Excel crashes. Excel will
continue its market dominance and will remain the standard for users of all levels.

Cross-
Reference

4799-2 ch01.F 6/11/01 9:26 AM Page 12

13Chapter 1 ✦ Excel 2002: Where It Came From

Spreadsheets Today
As I’ve watched the various spreadsheet products come and go over the years, I’ve
seen some dramatic changes and some astounding shifts in the market. With each
version of each product, the designers show a willingness to “borrow” their com-
petitors’ successful features. As a result, the three major spreadsheets are now, by
and large, virtually identical from the standpoint of the typical user. Excel has, how-
ever, continued to gain market share and now dominates the spreadsheet world. In
fact, competition in the spreadsheet market has virtually disappeared — which may
explain why we haven’t seen many significant new features in Excel in the past few
upgrades.

How do you decide which product to use? Consider these factors:

✦ Corporate policy. Of course, most users end up using a particular spreadsheet
because of corporate policy. Most companies choose a spreadsheet and stick
with it. So, most end users are stuck with a spreadsheet.

✦ Inertia. Users tend to stick with a product, upgrading when possible, even if a
better product is available. The phrase If it ain’t broke, don’t fix it comes to
mind.

✦ Familiarity. In the past, 1-2-3 users often found Excel difficult to adapt to, and
vice versa. Although the user interfaces of the latest versions are strikingly
similar, each product has its own distinct look and feel. Users tend to use
products that just “feel” right.

✦ Standout features. A standout feature or two can catch a user’s fancy. Although
today’s spreadsheets possess similar features, not all implement these fea-
tures equally well. For example, all three of the leading spreadsheets offer
scenario management, but 1-2-3 far surpasses its competition in this area.

✦ Recommendations. Unless they’re intimately involved with the spreadsheet
industry, most people really don’t have the foggiest idea where to start when
evaluating spreadsheet products. Consequently, most rely heavily on recom-
mendations from friends, associates, and the media.

✦ Compatibility. This is a broad term that covers an application’s file formats
and menu structures as well as how the application works with other software
and operating environments (hardware and software).

✦ Manufacturer stability. Nobody wants to buy a spreadsheet from a company
that may go out of business in six months. That would mean no support and
no upgrades.

✦ Programmability. All spreadsheets have some sort of macro capability. But as
you’ll see, Excel is clearly the winner in this area. VBA is a significant step for-
ward that makes competing macro features pale in comparison.

4799-2 ch01.F 6/11/01 9:26 AM Page 13

14 Part I ✦ Some Essential Background

✦ Peer support. A primary source for spreadsheet help is the Internet. Web sites,
newsgroups, and online “knowledge bases” provide answers to just about any
spreadsheet question that may arise. The amount of material available for the
popular spreadsheets varies quite a bit. I estimate that 95 percent of all
spreadsheet information on the Internet deals with Excel.

✦ Cost. Unlike with most products, price is not usually a major issue.

✦ Bundling. When consumers purchase a new computer, it is usually bundled
with an operating system and software (which often includes a spreadsheet
product).

Given these factors, it’s no wonder that Excel remains the leading Windows spread-
sheet. It was first on the scene, and I doubt that many original Excel users have
switched. It has several standout features (pivot tables, data filtering, and add-ins,
to name a few). It almost always comes out on top in head-to-head reviews. Its file
format makes it quite compatible with other spreadsheets, and it’s also extremely
compatible with other Microsoft applications.

For application development, Excel is without peer. In addition, many individuals
and corporations alike choose Excel because it and Windows come from the same
company, Microsoft, which happens to be the world’s most successful software
company and isn’t going to disappear any time in the near future (although its
corporate structure may change). If you’re looking for spreadsheet information
on the Internet, you’ll have dozens of Web sites and newsgroups to choose from.
Finally, when you buy Excel as part of the Microsoft Office package, it’s dirt cheap.
And it’s even cheaper if it comes bundled with a new computer.

Why Excel Is Great for Developers
Spreadsheet-based application development will become increasingly important
over the next few years. Excel 2002, a highly programmable product, is easily the
best choice for developing spreadsheet-based applications because it supports the
VBA language, which is now in widespread use.

For developers, Excel’s key features include the following:

✦ File structure. The multisheet orientation makes it easy to organize elements of
an application and store it in a single file. For example, a single workbook file
can hold any number of worksheets and chart sheets. UserForms and VBA
modules are stored with a workbook but are invisible to the end user.

✦ Visual Basic for Applications. This macro language lets you create structured
programs directly in Excel. Excel isn’t the only spreadsheet to include a
structured scripting language (1-2-3 offers LotusScript, for example), but it’s
certainly the best implementation.

4799-2 ch01.F 6/11/01 9:26 AM Page 14

15Chapter 1 ✦ Excel 2002: Where It Came From

✦ Easy access to controls. Excel makes it very easy to add controls such as
buttons, list boxes, and option buttons to a worksheet. Implementing these
controls often requires little or no macro programming.

✦ Custom dialog boxes. You can easily create professional-looking dialog boxes.
Excel 2000’s UserForm feature (introduced in Excel 97) is a vast improvement
over the old dialog sheets.

✦ Custom worksheet functions. Using VBA, you can create custom worksheet
functions to simplify formulas and calculations.

✦ Customizable menus. You can change menu elements, add to existing menus,
or create entirely new menus. Other products enable you to do this as well,
but Excel makes it extremely easy.

✦ Customizable shortcut menus. Excel is the only spreadsheet that lets you
customize the right-click, context-sensitive shortcut menus.

✦ Customizable toolbars. It’s easy to create new toolbars as another user inter-
face option. Again, other spreadsheets let you do this as well, but Excel out-
muscles them all.

✦ Powerful data analysis options. Excel’s pivot table feature makes it very easy to
summarize large amounts of data with very little effort.

✦ Microsoft Query. You can access important data directly from the spreadsheet
environment. Data sources include standard database file formats, text files,
and Web pages.

✦ Data Access Objects (DAO) and ActiveX Data Objects (ADO). These features
make it easy to work with external databases using VBA.

✦ Extensive protection options. Your applications can be kept confidential and
protected from changes. Again, pretty standard fare, but Excel has some
advantages.

✦ Ability to create “compiled” add-ins. With a single command, you can create
XLA add-in files that install seamlessly.

✦ Support for automation. Using VBA, you can control other applications that
support automation. For example, you can generate a report in Microsoft
Word.

✦ Ability to create Web pages. It’s very easy to create an HTML document from
an Excel workbook.

Excel’s Role in Microsoft’s Strategy
Currently, most copies of Excel are sold as part of Microsoft Office — a suite of prod-
ucts that includes a variety of other programs (the exact programs you get depend
on which version of Office you buy). Obviously, it helps if the programs can commu-
nicate well with each other. Microsoft is at the forefront of this trend. All the Office
products have extremely similar user interfaces, and all support VBA.

4799-2 ch01.F 6/11/01 9:26 AM Page 15

16 Part I ✦ Some Essential Background

Therefore, after you hone your VBA skills in Excel, you’ll be able to put them to
good use in other applications — you just need to learn the object mode for the
other applications.

Summary
In this chapter, I sketched the evolution of spreadsheets. I provided an overview of
the various versions of the major spreadsheet product lines, and I explained why
Excel is so successful and is an excellent choice for application development. I
hope that you gained a new appreciation of Excel while preparing for your next
spreadsheet trivia contest.

In the next chapter, I provide a quick-and-dirty overview of Excel for newcomers.

✦ ✦ ✦

4799-2 ch01.F 6/11/01 9:26 AM Page 16

Excel in a
Nutshell

In this chapter, I provide a broad overview of the major
components of Excel 2002. This chapter will prove espe-

cially useful for readers who have experience with another
spreadsheet and are moving up to Excel. Veteran 1-2-3 users,
for example, usually need help thinking in Excel’s terms. But
even experienced Excel users still may learn a thing or two by
skimming through this chapter.

Thinking in Terms of Objects
When you are developing applications with Excel (especially
when you are dabbling with VBA), it’s helpful to think in terms
of objects, or Excel elements that you can manipulate manu-
ally or via a macro. Some examples of Excel objects are:

✦ The Excel application itself

✦ An Excel workbook

✦ A worksheet in a workbook

✦ A range in a worksheet

✦ A ListBox control on a UserForm (a custom dialog box)

✦ A chart sheet

✦ A chart on a chart sheet

✦ A chart series on a chart

Notice that something of an object hierarchy exists here: The
Excel object contains workbook objects, which contain work-
sheet objects, which contain range objects. This hierarchy
comprises Excel’s object model. Excel has approximately 200
classes of objects that you can control directly or by using
VBA. Other Office 2002 products have their own object models,
and Office itself even has an object model.

22C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

An introduction to
Excel’s “object
orientation”

A conceptual
overview of
Excel 2002,
including a
description of its
major features

Some tips and
techniques that even
advanced users may
find helpful

✦ ✦ ✦ ✦

4799-2 ch02.F 6/11/01 9:27 AM Page 17

18 Part I ✦ Some Essential Background

Controlling objects is fundamental to developing applications. Throughout this
book, you learn how to automate tasks by controlling Excel’s objects, and you do
so using VBA. This concept becomes clearer in subsequent chapters.

Workbooks
One of the most common Excel objects is a workbook. Everything you do in Excel
takes place in a workbook, which is stored in a file that, by default, has an XLS
extension.

An Excel workbook can hold any number of sheets (limited only by memory).
There are four types of sheets:

✦ Worksheets

✦ Chart sheets

✦ XLM macro sheets (obsolete, but still supported)

✦ Dialog sheets (obsolete, but still supported)

You can open as many workbooks as you like (each in its own window), but at any
given time, only one workbook is the active workbook. Similarly, only one sheet
in a workbook is the active sheet. To activate a sheet, click its sheet tab, which is
located at the bottom of the screen. To change a sheet’s name, double-click the
tab and enter the new text. Right-clicking a tab brings up a shortcut menu.

Excel 2002 also lets you color-code your sheet tabs. To do so, choose Format ➪

Sheet ➪ Tab Color. Color-coding sheet tabs may help identify a particular sheet,
especially when the workbook has many sheets.

You can also hide the window that contains a workbook by using the Window ➪
Hide command. A hidden workbook window remains open, but it is not visible.

New
Feature

Note

Where Are the VBA Module Sheets?

VBA first appeared in Excel 5. In this version (as well as in Excel 95), a VBA module
appeared in a workbook as a separate sheet. A VBA module, as you may know, holds VBA
code. Beginning with Excel 97, VBA modules no longer appear as separate sheets. Rather,
you work with VBA modules in the Visual Basic Editor (VBE). To view or edit a VBA module,
activate the VBE by pressing Alt+F11. Subsequent chapters discuss VBA modules in depth.

4799-2 ch02.F 6/11/01 9:27 AM Page 18

19Chapter 2 ✦ Excel in a Nutshell

Worksheets
The most common type of sheet is a worksheet, which is what people normally
think of when they think of a spreadsheet. Every Excel worksheet has 256 columns
and 65,536 rows. And, to answer a common question, the number of rows and
columns cannot be changed. You can hide unneeded rows and columns to keep
them out of view, but you cannot increase the number of rows or columns. The
ability to increase the number of columns is easily one of the top five requests from
Excel users, but (for whatever reason) Microsoft continues to ignore such requests.

Versions prior to Excel 97 had only 16,384 rows.

The real value of using multiple worksheets in a workbook is not access to more
cells. Rather, multiple worksheets enable you to organize your work better. Back in
the old days, when a file comprised a single worksheet, developers wasted a lot of
time trying to organize the worksheet to hold their information efficiently. Now you
can store information on any number of worksheets and still access it instantly by
clicking a sheet tab.

As you know, a worksheet cell can hold a constant value or the result of a formula.
The value may be a number, a date, a Boolean value (True or False), or text. Every
worksheet also has an invisible draw layer, which lets you insert graphic objects,
such as charts, diagrams, drawing objects, UserForm controls, pictures, and
embedded objects.

Note

How Big Is a Worksheet?

It’s interesting to stop and think about how big a worksheet really is. Do the arithmetic
(256 × 65,536), and you’ll see that a worksheet has 16,777,216 cells. Remember, this is in
just one worksheet. A single workbook can hold more than one worksheet.

If you’re using the standard VGA video mode with the default row heights and column
widths, you can see 9 columns and 18 rows (or 162 cells) at a time. This works out to less
than 0.001 percent of the entire worksheet. Put another way, a single worksheet contains
nearly 104,000 VGA screens of information.

If you started entering a single digit into each cell at a relatively rapid clip of one cell per
second, it would take you about 194 days, nonstop, to fill up a worksheet. Printing the
results of your efforts would require more than 36,000 sheets of paper — a stack about
six feet tall.

Filling an entire workbook with values is not recommended. Such a file would be huge and
extremely slow to work with because Windows would be continually paging information to
disk. As you may have surmised, Excel does not allocate memory for each cell; only cells
that are actually used take up memory.

4799-2 ch02.F 6/11/01 9:27 AM Page 19

20 Part I ✦ Some Essential Background

The geographic mapping feature, found in previous versions of Excel, is no longer
available in Excel 2002. If you relied on this feature in the past, upgrading to Excel
2002 is not recommended.

You have complete control over the column widths and row heights — in fact, you
can even hide rows and columns (as well as entire worksheets). Text in a cell can be
displayed vertically (or at an angle) and even wrap around to occupy multiple lines.

Chart sheets
A chart sheet normally holds a single chart. Many users ignore chart sheets,
preferring to store charts on the worksheet’s draw layer. Using chart sheets is
optional, but they make it a bit easier to print a chart on a page by itself, and they
are especially useful for presentations.

XLM macro sheets
An XLM macro sheet (also known as an MS Excel 4 macro sheet) is essentially a
worksheet, but it has some different defaults. More specifically, an XLM macro
sheet displays formulas rather than the results of formulas. In addition, the default
column width is larger than in a normal worksheet.

As the name suggests, an XLM macro sheet is designed to hold XLM macros. As
you may know, the XLM macro system is a holdover from previous versions of Excel
(version 4.0 and earlier). Excel 2002 continues, however, to support XLM macros
for compatibility reasons — although it no longer provides the option of recording
an XLM macro. This book does not cover the XLM macro system; instead, it focuses
on the more powerful VBA macro system.

Excel 5/95 dialog sheets
In Excel 5 and Excel 95, you created a custom dialog box by inserting a special
dialog sheet. Excel 97 and later versions still support these dialog sheets, but a
much better alternative is available: UserForms. You work with UserForms in the
Visual Basic Editor.

When you open a workbook that contains an Excel 5/95 dialog sheet, the dialog
sheet appears as a sheet in the workbook.

If, for compatibility purposes, you need to insert an Excel 5/95 dialog sheet, you
won’t find the command to do so on the Insert menu. The only way to add an
Excel 5/95 dialog sheet is to right-click any sheet tab and select Insert from the
shortcut menu. Then, in the Insert dialog box, click the MS Excel 5.0 Dialog icon.

Be aware that I do not discuss Excel 5/95 dialog sheets in this book (refer to my
Excel for Windows 95 Power Programming with VBA, IDG Books Worldwide, Inc.).

Tip

New
Feature

4799-2 ch02.F 6/11/01 9:27 AM Page 20

21Chapter 2 ✦ Excel in a Nutshell

Excel’s User Interface
The user interface (UI) is the means by which an end user communicates with a
computer program. A UI includes elements such as menus, toolbars, dialog boxes,
keystroke combinations, and so on. For the most part, Excel uses the standard
Windows UI to accept commands, but it deviates from the standard Windows UI in
at least one area — Excel’s menus are not “standard” Windows menus.

Menus
Beginning with Excel 97, the menus are actually toolbars in disguise. The icons that
accompany some menu items are a dead giveaway.

Excel’s menu system is relatively straightforward. Two different menu bars exist
(one when a worksheet is active; the other when a chart sheet is active or when a
chart object in a worksheet is selected). Consistent with Windows conventions,
inappropriate menu commands are dimmed and commands that open a dialog box
are followed by an ellipsis. Where appropriate, the menus list any available short-
cut key combinations (for example, the Edit menu lists Ctrl+Z as the shortcut key
for Edit ➪ Undo).

Several menu items are cascading menus. Clicking such a menu item leads to a sub-
menu that has additional commands (Edit ➪ Fill is a cascading menu, for example).
Cascading menus are indicated by a small right-pointing arrow.

The entire menu system can be customized by the end user or developer. To do so,
choose the View ➪ Toolbars ➪ Customize command. It’s important to understand
that menu changes made by using this technique are “permanent.” In other words,
the menu changes remain in effect even if you close Excel and restart it. This is very
different from the Menu Editor found in Excel 5 and Excel 95 — and is no longer
available in Excel 2002.

If you need to modify a menu created with the menu editor found in Excel 5 or
Excel 95, you’ll need to use Excel 5 or Excel 95 to make the change. Or, seek out
a utility program that can do the job.

Excel also features context-sensitive shortcut menus, which appear when the user
right-clicks after selecting one or more objects. Importantly, the end user or devel-
oper can customize any of the shortcut menus.

Refer to Chapter 23 for more information about customizing menus.

Dialog boxes
Most of the menu commands in Excel display a dialog box. These dialog boxes are
quite consistent in terms of how they operate, except for some subtle differences
found in the dialog boxes produced by the Analysis ToolPak add-in (which was
written by a third party).

Cross-
Reference

Note

4799-2 ch02.F 6/11/01 9:27 AM Page 21

22 Part I ✦ Some Essential Background

Some of Excel’s dialog boxes use a notebook tab metaphor, which makes a single
dialog box function as several different dialog boxes. The Options dialog box
(choose Tools ➪ Options) is an example of a tabbed dialog box (see Figure 2-1).
This dialog box has 13 tabs.

Figure 2-1: Tabbed dialog boxes make many
options accessible without overwhelming the user.

The UserForm feature (which debuted in Excel 97) is a significant advancement
because it enables the developer to create more robust dialog boxes, including
tabbed dialog boxes (using the MultiPage control).

Refer to Part IV for information about creating and working with UserForms.

Toolbars
Excel 2002 ships with dozens of predefined toolbars (including the two toolbars
that function as menus), and you can create as many new toolbars as you like. Use
the View ➪ Toolbars ➪ Customize command to customize toolbars or create new
ones. You can distribute customized toolbars by attaching them to workbooks.

You can dock toolbars (position them along any edge of the screen) or make them
float. By default, Excel displays the Standard and Formatting toolbars directly below
the menu bar.

The toolbar buttons can be displayed in either of two sizes — although the large
size buttons are simply too large in my opinion. A crude but effective toolbar
button editor is built into Excel (see Figure 2-2). Excel provides a huge assortment
of toolbar button images, however, so you probably won’t need to use the button
editor.

Cross-
Reference

4799-2 ch02.F 6/11/01 9:27 AM Page 22

23Chapter 2 ✦ Excel in a Nutshell

I discuss toolbars in detail in Chapter 22.

Figure 2-2: Excel’s toolbar button
editor is nothing to write home about,
but it does the job.

Drag-and-drop
Excel’s drag-and-drop UI feature enables you to freely drag objects that reside on
the draw layer to change their position. Pressing Ctrl while dragging duplicates the
selected objects.

Cross-
Reference

New Toolbars

Excel 2002 features a number of new toolbars.

✦ Task Pane. Although this doesn’t look like a toolbar, technically it is one. The Task
Pane varies, depending on what you are doing. It can display tools to open or create
new files, comprehensive search tools, or a list of items currently on the clipboard.

✦ Watch Window. Enables you to monitor the values in any number of cells, even if
the cells are not visible on-screen.

✦ Text To Speech. Reads the contents of cells (useful for proofreading).

✦ Organization Chart. Contains tools to customize organization charts.

✦ Protection. Contains tools to help you with various types of protection.

✦ Diagram. Contains tools for manipulating diagrams created with the Insert Diagram
command.

✦ Drawing Canvas. Contains tools to change the size of diagrams.

✦ Borders. Contains tools to let you “draw” borders around cells.

4799-2 ch02.F 6/11/01 9:27 AM Page 23

24 Part I ✦ Some Essential Background

Excel also allows drag-and-drop actions on cells and ranges: You can easily drag a
cell or range to a different position. And pressing Ctrl while dragging copies the
selected range.

Drag-and-drop is optional; you can disable it in the Edit tab of the Options
dialog box.

You can also drag a range to the Windows desktop, creating a “scrap” object. You
can then drag this object to another workbook (or to another application) and
insert it as an OLE object.

Keyboard shortcuts
Excel has many keyboard shortcuts. For example, you can press Ctrl+C to copy
a selection. If you’re a newcomer to Excel — or you just want to improve your
efficiency — I urge you to check out the online help (access the Keyboard Shortcuts
index and go from there). Learning these shortcuts is key to becoming proficient in
Excel. The help file has tables that summarize useful keyboard commands and
shortcuts.

Customizing the Display
Excel offers a great deal of flexibility regarding what is displayed on-screen
(status bar, formula bar, toolbars, and so on). For example, by choosing View ➪
Full Screen, you can get rid of everything except the menu bar, thereby maximizing
the amount of information visible. In addition, by using the View tab in the Options
dialog box, you can customize what is displayed in a worksheet window (you can
even hide scroll bars and grid lines).

In fact, Excel makes it possible to develop an application that doesn’t even look like
a spreadsheet.

Data Entry
Data entry in Excel is quite straightforward. Excel interprets each cell entry as one
of the following:

✦ A numeric value (including date and time values)

✦ Text

✦ A formula

✦ A Boolean value (True or False)

Note

4799-2 ch02.F 6/11/01 9:27 AM Page 24

25Chapter 2 ✦ Excel in a Nutshell

Data Entry Tips

The following data entry tips are especially useful for those who are moving up to Excel
from another spreadsheet:

✦ If you select a range of cells before entering data, you can press Enter to end a cell
entry and move to the next cell in the selected range. Similarly, use Shift+Enter to
move up, Tab to move to the right, and Shift+Tab to move to the left.

✦ To enter data without pressing the arrow keys, enable the Move Selection after Enter
option in the Edit tab of the Options dialog box (which you access from the Tools ➪

Options command). You can also choose the direction in which you want to go.

✦ To enter the same data into each cell of a range, select the range, enter the
information into the active cell, and then press Ctrl+Enter.

✦ To copy the contents of the active cell to all other cells in a selected range, press F2
and then Ctrl+Enter.

✦ To fill a range with increments of a single value, press Ctrl while you drag the fill
handle at the bottom-right corner of the selection.

✦ To create a custom AutoFill list, use the Custom Lists tab of the Options dialog box.

✦ To copy a cell without incrementing, drag the fill handle at the corner of the
selection. Or press Ctrl+D to copy down or Ctrl+R to copy to the right.

✦ You can enter tabs and carriage returns in a cell to make the text easier to read.
To enter a tab, press Ctrl+Alt+Tab. To enter a carriage return, press Alt+Enter.
Carriage returns cause a cell’s contents to wrap within the cell.

✦ To enter a fraction, press 0, a space, and then the fraction (using a slash). Excel
formats the cell using the Fraction number format.

✦ To automatically format a cell with the Currency format, type the currency symbol
(a dollar sign in the U.S.) before the value. To enter a value in Percent format, type a
percent sign after the value. You can also include thousand separator symbols to
separate thousands (for example, use commas in the U.S.: 4,123,434).

✦ Press Ctrl+; to insert the current date and Ctrl+Shift+; to enter the current time into
a cell.

✦ To set up a cell or range so it only accepts entries of a certain type (or within a
certain value range), use the Data ➪ Validation command.

Formulas always begin with an equals sign (=). Excel is accommodating
to habitual 1-2-3 users, however, and accepts an ampersand (&), a plus
sign (+), or a minus sign (–) as the first character in a formula. It auto-
matically adjusts the entry after you press Enter.

4799-2 ch02.F 6/11/01 9:27 AM Page 25

26 Part I ✦ Some Essential Background

Selecting Objects
Generally, selecting objects conforms to standard Windows practices. You can
select a range of cells by clicking and dragging. Clicking an object that has been
placed on the draw layer selects the object. To select multiple objects or noncon-
tiguous cells, press Ctrl while you select the objects or cells. To select a large range,
click a cell at any corner of the range, scroll to the opposite corner of the range,
and press Shift while you click the opposite corner cell.

In versions prior to Excel 97, clicking an embedded chart selected the chart.
In Excel 97 and later, clicking a chart selects a specific object within the chart.
To select the chart object itself, press Ctrl while you click the chart.

Formatting
Excel provides two types of formatting: numeric formatting and “stylistic” formatting.

Numeric formatting
Numeric formatting refers to how a value appears in the cell. In addition to choosing
from an extensive list of predefined formats, you can create your own formats
(see Figure 2-3). The procedure is thoroughly explained in the online help system.

Excel applies some numeric formatting automatically, based on the entry. For
example, if you precede a value with your currency symbol (a dollar sign in the
U.S.), Excel applies Currency number formatting.

Figure 2-3: Excel’s numeric formatting
options are very flexible.

Note

4799-2 ch02.F 6/11/01 9:27 AM Page 26

27Chapter 2 ✦ Excel in a Nutshell

Stylistic formatting
Stylistic formatting refers to the formatting that you apply to make your work look
good. Many toolbar buttons offer direct access to common formatting options,
regardless of whether you’re working with cells, drawn objects, or charts. For
example, you can use the Fill Color toolbar button to change the background color
of a cell, change the fill color of a drawn text box, or change the color of a bar in
a chart. But you’ll want to access the Format dialog box for the full range of
formatting options.

The easiest way to get to the correct dialog box and format an object is to select
the object and press Ctrl+1. Or, right-click the object and choose Format xxx
(where xxx is the selected object) from the shortcut menu. This action leads to a
tabbed dialog box that holds all the formatting options for the selected object.

Excel’s conditional formatting feature is particularly useful. This feature, accessed
by selecting Format ➪ Conditional Formatting, allows you to specify formatting that
will be applied only if certain conditions are met. For example, you can make cells
that exceed a specified value appear in a different color.

Formulas
Formulas are what make a spreadsheet a spreadsheet. Excel has some important
formula-related features that are worth knowing. They enable you to write array
formulas, use an intersection operator, include links, and create megaformulas
(my term for a lengthy and incomprehensible — but very efficient — formula).

Chapter 3 covers formulas and presents lots of tricks and tips.

Names
All spreadsheets let you use names for cells and ranges, but Excel handles names
in some unique ways.

A name is an identifier that enables you to refer to a cell, range, value, formula, or
graphic object. Formulas that use names are much easier to read than formulas
using cell references, and it’s much easier to create formulas that use named
references.

I discuss names in Chapter 3.Cross-
Reference

Cross-
Reference

4799-2 ch02.F 6/11/01 9:27 AM Page 27

28 Part I ✦ Some Essential Background

Functions
Worksheet functions enable you to perform calculations or operations that would
otherwise be impossible. Excel provides a huge number of built-in functions, and
you can access even more functions (many of them quite esoteric) by attaching
the Analysis ToolPak add-in.

The easiest way to locate the function you need is to use the Insert Function dialog
box, shown in Figure 2-4. Access this dialog box by clicking the Insert Function
button on the formula bar (or by selecting Insert ➪ Function or pressing Shift+F3).
If you’re not familiar with this feature, I encourage you to check it out. It’s very
handy.

Figure 2-4: The Insert Function dialog
box is the best way to insert a function
into a formula.

A new feature in Excel 2002 lets you identify a function by searching for a key
word. This is useful if you can’t remember the name of the function. For example,
if you’re looking for the function that converts text to its ASCII code, you can search
for “code” and click Go. Excel will propose three functions: CODE, CELL, and CHAR.

Excel also lets you create your own worksheet functions using VBA. For details
about this powerful feature, see Chapter 10.

Shapes
As I mentioned earlier in this chapter, each worksheet has an invisible draw layer,
which holds charts, maps, pictures, controls (such as buttons and list boxes),
and shapes.

Cross-
Reference

New
Feature

4799-2 ch02.F 6/11/01 9:27 AM Page 28

29Chapter 2 ✦ Excel in a Nutshell

Excel enables you to easily draw a wide variety of geometric shapes directly on
your worksheet, thanks to buttons on the Drawing toolbar. In addition, you should
be aware that you can group objects into a single object, which is easier to size
or position.

Several drawing objects are worthy of additional discussion:

✦ You can insert AutoShapes from the Drawing toolbar. You can choose from
a huge assortment of shapes. Once a shape is placed on your worksheet, you
can modify the shape by selecting it and dragging its handles. In addition, you
can apply drop shadows, text, or 3D effects to the shape.

✦ The text box provides a way to display text that’s independent of row and
column boundaries — a good way to label rows in a table (see Figure 2-5).
Although you can display text vertically in a cell, doing so changes the row
height and messes up the table.

Figure 2-5: The text box drawing object is useful for
displaying text vertically.

✦ For some reason, the designers of Excel made the linked picture object rather
difficult to generate. Copy a range and then select the Edit ➪ Paste Picture
Link command (which appears on the Edit menu only when you press Shift).
The Paste Picture Link command is useful for printing a noncontiguous
selection of ranges. For example, you can “take pictures” of the ranges and
then paste the pictures together in a single area, which can then be printed.

✦ Finally, many of the controls used in custom dialog boxes can be placed
directly on a worksheet. Doing so can greatly enhance the usability of some
worksheets and eliminate the need to create custom dialog boxes.

Excel 2002 provides you with a new object type: Diagrams. Use Insert ➪ Diagram
to select one of six diagram types (see Figure 2-6). After the diagram is inserted,
you can use the Diagram toolbar to make basic modifications to it.

New
Feature

4799-2 ch02.F 6/11/01 9:27 AM Page 29

30 Part I ✦ Some Essential Background

Figure 2-6: A new feature in Excel 2002 lets you add
diagrams to a worksheet.

Charts
Excel, of course, has excellent charting capabilities. As I mentioned earlier in this
chapter, you can store charts on a chart sheet or float them on a worksheet.

Beginning with Excel 2000, you can also create pivot charts. A pivot chart is linked
to a pivot table, and you can view various graphical summaries of your data using
the same techniques used in a pivot table.

Excel offers extensive chart customization options. If a chart is free-floating, just
click a chart element to select it (or double-click it to display its formatting dialog
box). Right-clicking a chart element displays a shortcut menu.

The easiest way to create a chart is to select the data to be charted and then use
the Chart Wizard (you can choose the corresponding button on the Standard
toolbar). The Chart Wizard walks you through the steps to create a chart that
meets your needs.

Excel uses a SERIES function to specify data for the chart (one SERIES formula for
each data series). When you select a series in a chart, the SERIES function is
displayed in the formula bar (see Figure 2-7). You can modify the SERIES function
manually if you like. Often, this is the most efficient way to change the data range
used in a chart.

Note

4799-2 ch02.F 6/11/01 9:27 AM Page 30

31Chapter 2 ✦ Excel in a Nutshell

Figure 2-7: Data for a chart series is specified in a SERIES function.

Macros
All the major spreadsheet products have a macro language. Excel has two: XLM and
VBA. The original XLM macro language is obsolete and has been replaced with VBA.
Excel 2002 can still execute any XLM macro you may run across, but you cannot
record such macros. You’ll want to use VBA to develop new macros.

Part III of this book is devoted to the VBA language.

Database Access
Over the years, most spreadsheets have enabled users to work with simple flat
database tables (even the original version of 1-2-3 contained this feature). Excel has
some slick tools.

Using databases from a spreadsheet falls into two categories:

✦ Worksheet databases. The entire database is stored in a worksheet, limiting the
size of the database. In Excel, a worksheet database can have no more than
65,535 records (the top row holds the field names) and 256 fields.

✦ External databases. The data is stored in one or more disk files and accessed as
needed.

Cross-
Reference

4799-2 ch02.F 6/11/01 9:27 AM Page 31

32 Part I ✦ Some Essential Background

Worksheet databases
Generally, when the cell pointer is located within a database, Excel recognizes it
and displays the field names whenever possible. For example, if you move the cell
pointer within a worksheet database and choose the Data ➪ Sort command, Excel
lets you select the sort keys by choosing field names from a drop-down list.

Particularly useful is Excel’s AutoFilter feature, which enables you to display only
the records that you want to see. When AutoFilter mode is on, you can filter the
data by selecting values from pull-down lists (which appear in place of the field
names when you choose the Data ➪ Filter ➪ AutoFilter command). Rows that don’t
qualify are temporarily hidden. See Figure 2-8 for an example.

Figure 2-8: Excel’s AutoFilter enables you to view database records that
meet your criteria.

If you prefer to use the traditional spreadsheet database techniques that involve
criteria ranges, choose the Data ➪ Filter ➪ Advanced Filter command.

External databases
To work with external database tables, use the Data ➪ Get External Data command,
which executes Microsoft Query and enables you to choose your databases and
define queries. The results of a query can be directed back to your worksheet.

4799-2 ch02.F 6/11/01 9:27 AM Page 32

33Chapter 2 ✦ Excel in a Nutshell

Beginning with Excel 97, you can also create Web queries to bring in data stored in
a corporate intranet or on the Internet.

Excel also lets you work with data objects independent of Excel through both Data
Access Objects (DAO) and ActiveX Data Objects (ADO). Both systems allow you to
access external databases from VBA, and ADO lets you make changes to the
database.

Internet Features
Excel includes a number of features that relate to the Internet. For example, you
can save a worksheet or an entire workbook in HTML format, accessible in a Web
browser. In addition, you can insert clickable hyperlinks (including e-mail addresses)
directly in cells.

Excel files can be saved as HTML files “with interactivity.” This feature, which
makes use of the Office Web Components, allows you to post interactive workbooks
to a Web server and allow others (who have a license for the Office Web Components)
to work with the workbook.

Analysis Tools
Excel is certainly no slouch when it comes to analysis. After all, that’s what most
people use a spreadsheet for. Most analysis tasks can be handled with formulas, but
Excel offers many other options.

Outlines
A worksheet outline is often an excellent way to work with hierarchical data such
as budgets. Excel can create an outline (either horizontal, vertical, or both) auto-
matically, or you can do so manually. Once created, you can collapse or expand the
outline to display various levels of detail.

Automatic subtotals
Excel can automatically insert (or remove) subtotal formulas in a table set up as
a database. It also creates an outline from the data so that you can view only
the subtotals or any level of detail you desire. Figure 2-9 shows some automatic
subtotals and the accompanying outline.

4799-2 ch02.F 6/11/01 9:27 AM Page 33

34 Part I ✦ Some Essential Background

Figure 2-9: Excel can automatically insert subtotal formulas and create outlines.

Scenario management
If you’re seeking the ultimate in scenario-management features, 1-2-3’s Version
Manager is probably your best bet. Excel’s scenario manager is quite weak in
comparison, but it can handle simple scenario-management tasks, and it’s definitely
easier than trying to keep track of different scenarios manually.

Analysis ToolPak
The Analysis ToolPak add-in provides 19 special-purpose analysis tools (primarily
statistical in nature) and many specialized worksheet functions. These tools make
Excel suitable for casual statistical analysis.

Be aware that some of the statistical tools in the Analysis ToolPak are known to
have some accuracy problems. Missing values are handled inconsistently and the
exact algorithms used are not documented. For critical statistical analyses, you will
probably want to use a standalone statistical analysis program.

Pivot tables
One of Excel’s most powerful tools is its pivot tables. A pivot table is capable of
summarizing data in a handy table, and this table can be arranged in many ways
simply by dragging your mouse. In addition, a pivot table can be manipulated
entirely by VBA. Data for a pivot table comes from a worksheet database or an
external database and is stored in a special cache, which enables Excel to
recalculate rapidly after a pivot table is altered. Figure 2-10 shows a pivot table.

See Chapter 17 for information about manipulating pivot tables with VBA.Cross-
Reference

Caution

4799-2 ch02.F 6/11/01 9:27 AM Page 34

35Chapter 2 ✦ Excel in a Nutshell

Figure 2-10: Excel’s pivot table feature has many applications.

Auditing
Excel also has some useful auditing capabilities that help you identify errors or
track the logic in an unfamiliar spreadsheet. To access these features, select
Tools ➪ Formula Auditing.

Solver
For specialized linear and nonlinear problems, Excel’s Solver add-in calculates
solutions to what-if scenarios based on adjustable cells, constraint cells, and,
optionally, cells that must be maximized or minimized. Excel’s Solver is very similar
to the feature found in 1-2-3 for Windows and Quattro Pro for Windows. (This
similarity is not surprising when you know that a single company, Frontline
Systems, was largely responsible for the feature in all three products.)

Add-Ins
An add-in is a program that’s attached to Excel to give it additional functionality.
To attach an add-in, use the Tools ➪ Add-Ins command.

New
Feature

4799-2 ch02.F 6/11/01 9:27 AM Page 35

36 Part I ✦ Some Essential Background

In addition to the add-ins that ship with Excel, you can download additional add-ins
from Microsoft’s Web site. And there are many third-party add-ins that you can
purchase or download from online services. You can use the coupon in the back
of the book to acquire a free copy of the Power Utility Pak add-in. And, as I detail
in Chapter 21, it’s very easy to create your own add-ins.

Compatibility
An Excel workbook file is generally specific to the version of Excel that created it.
Excel can read workbook files generated by previous versions of Excel, but earlier
versions may or may not be able to read files produced by later versions. For
example, Excel 97, Excel 2000, and Excel 2000 all use the same file format, so file
compatibility is not a problem for these three versions. Excel does give you the
option of saving a workbook using an earlier file format.

Excel can import a variety of files generated by other spreadsheet and database
products (see Chapter 4 for details).

If you’re an experienced 1-2-3 for DOS user, Excel provides detailed online help
that’s designed to get you to think in terms of Excel. Check out the Help ➪
Lotus 1-2-3 Help command for more information.

Another aspect of compatibility is compatibility with previous versions of Excel.
Developers should be aware of a number of issues. I discuss these in Chapter 26.

Summary
In this chapter, I provided a conceptual overview of Excel 2002 for newcomers to
the fold.

Chapter 3 continues the saga with a discussion of formulas.

✦ ✦ ✦

Cross-
Reference

4799-2 ch02.F 6/11/01 9:27 AM Page 36

Formula Tricks
and Techniques

Virtually every successful spreadsheet application uses
formulas. In fact, constructing formulas can certainly be

construed as a type of “programming.” This chapter provides
an overview of Excel’s formula-related features and describes
some techniques that may be new to you.

About Formulas
Formulas, of course, are what make a spreadsheet a spread-
sheet. If it weren’t for formulas, your worksheet would just be
a static document — something that could be produced by a
word processor with great support for tables.

Excel has a huge assortment of built-in functions, has excel-
lent support for names, and even supports array formulas
(a special type of formula that can perform magic).

A formula entered into a cell can consist of any of the
following elements:

✦ Operators such as + (for addition) and × (for
multiplication)

✦ Cell references (including named cells and ranges)

✦ Values or strings

✦ Worksheet functions (such as SUM or AVERAGE)

A formula can consist of up to 1,024 characters. After you
enter a formula into a cell, the cell displays the result of the
formula. The formula itself appears in the formula bar when
the cell is activated, however.

33C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

An overview of Excel
formulas

Differentiating
between absolute
and relative
references in
formulas

Understanding and
using names

Introducing array
formulas

Counting and
summing cells

Working with dates
and times

Creating
“megaformulas”

✦ ✦ ✦ ✦

4799-2 ch03.F 6/11/01 1:14 PM Page 37

38 Part I ✦ Some Essential Background

Excel 2000 includes several new features related to formulas. Perhaps the most
useful is the ability to flag potentially erroneous formulas. This can be done auto-
matically in the background, or upon request. To set the options for this feature,
use the Error Checking tab of the Options dialog box. Another new feature is the
Evaluate Formula dialog box. This dialog box lets you see the intermediate results
of individual parts of a complex formula. Access this feature from the Formula
Auditing toolbar.

Calculating Formulas
You’ve probably noticed that the formulas in your worksheet get calculated imme-
diately. If you change a cell that a formula uses, the formula displays a new result
with no effort on your part. This is what happens when Excel’s Calculation mode is
set to Automatic. In this mode (which is the default mode), Excel uses the following
rules when calculating your worksheet:

✦ When you make a change — enter or edit data or formulas, for example —
Excel immediately calculates those formulas that depend on the new or
edited data.

✦ If it’s in the middle of a lengthy calculation, Excel temporarily suspends
calculation when you need to perform other worksheet tasks; it resumes
when you’re finished.

✦ Formulas are evaluated in a natural sequence. In other words, if a formula in
cell D12 depends on the result of a formula in cell D11, cell D11 is calculated
before D12.

Sometimes, however, you may want to control when Excel calculates formulas. For
example, if you create a worksheet with thousands of complex formulas, you’ll
find that operations can slow to a snail’s pace while Excel does its thing. In such a
case, you should set Excel’s calculation mode to Manual. You can do this in the
Calculation panel of the Options dialog box.

When you’re working in Manual calculation mode, Excel displays Calculate in the
status bar when you have any uncalculated formulas. You can use the following
shortcut keys to recalculate the formulas:

✦ F9 calculates the formulas in all open workbooks.

✦ Shift+F9 calculates only the formulas in the active worksheet. Other work-
sheets in the same workbook won’t be calculated.

✦ Ctrl+Alt+F9 forces a recalculation of everything. This is an undocumented key
sequence. Use it if Excel (for some reason) doesn’t seem to be calculating
correctly, or if you want to force a recalculation of formulas that use custom
functions created with VBA.

New
Feature

4799-2 ch03.F 6/11/01 1:14 PM Page 38

39Chapter 3 ✦ Formula Tricks and Techniques

Excel’s Calculation mode isn’t specific to a particular worksheet. When you
change Excel’s Calculation mode, it affects all open workbooks, not just the active
workbook.

Cell and Range References
Most formulas reference one or more cells. This reference can be made by using the
cell’s or range’s address or name (if it has one). Cell references come in four styles:

✦ Relative. The reference is fully relative. When the formula is copied, the cell
reference adjusts to its new location. Example: A1.

✦ Absolute. The reference is fully absolute. When the formula is copied, the cell
reference does not change. Example: A1.

✦ Row Absolute. The reference is partially absolute. When the formula is copied,
the column part adjusts, but the row part does not change. Example: A$1.

✦ Column Absolute. The reference is partially absolute. When the formula
is copied, the row part adjusts, but the column part does not change.
Example: $A1.

By default, all cell and range references are relative. To change a reference, you
must manually add the dollar signs. Or, when editing a cell in the formula bar, move
the cursor to a cell address and press F4 repeatedly to cycle through all four types
of cell referencing.

Why use references that aren’t relative?
If you think about it, you’ll realize that the only reason you would ever need to
change a reference is if you plan to copy the formula. Figure 3-1 demonstrates why
this is so. The formula in cell C4 is:

=C$3×$B4

This formula calculates the area for various widths (listed in column B) and lengths
(listed in row 3). After the formula is entered, it can then be copied down to C8 and
across to F8. Because the formula uses absolute references to row 3 and column B
and relative references for other rows and columns, each copied formula produces
the correct result. If the formula used only relative references, then copying the
formula would cause all the references to adjust, and produce incorrect results.

Note

4799-2 ch03.F 6/11/01 1:14 PM Page 39

40 Part I ✦ Some Essential Background

Figure 3-1: An example of using nonrelative
references in a formula

About R1C1 notation
Normally, Excel uses what’s known as A1 notation. Each cell address consists of a
column letter and a row number. However, Excel also supports R1C1 notation. In
this system, cell A1 is referred to as cell R1C1, cell A2 as R2C1, and so on.

To change to R1C1 notation, select Tools ➪ Options, click the General tab, and place
a check mark next to R1C1 reference style. After you do so, you’ll notice that the
column letters all change to numbers. All the cell and range references in your for-
mulas are also adjusted.

Table 3-1 presents some examples of formulas using standard notation and R1C1
notation. The formula is assumed to be in cell B1 (also known as R1C2).

Table 3-1
Simple Formulas in Two Notations Compared

Standard R1C1

=A1+1 =RC[-1]+1

=A1+1 =R1C1+1

=$A1+1 =RC1+1

=A$1+1 =R1C[-1]+1

=SUM(A1:A10) =SUM(RC[-1]:R[9]C[-1])

=SUM(A1:A10) =SUM(R1C1:R10C1)

If you find R1C1 notation confusing, you’re not alone. R1C1 notation isn’t too bad
when you’re dealing with absolute references. But when relative references are
involved, the brackets can drive you nuts.

4799-2 ch03.F 6/11/01 1:14 PM Page 40

41Chapter 3 ✦ Formula Tricks and Techniques

The numbers in brackets refer to the relative position of the references. For
example, R[-5]C[-3] specifies the cell that’s five rows above and three columns to
the left. On the other hand, R[5]C[3] references the cell that’s five rows below and
three columns to the right. If the brackets are omitted, the notation specifies the
same row or column. For example, R[5]C refers to the cell five rows below in the
same column.

Although you probably won’t use R1C1 notation as your standard system, it does
have at least one good use. Using R1C1 notation makes it very easy to spot an
erroneous formula. When you copy a formula, every copied formula is exactly the
same in R1C1 notation. This is true regardless of the types of cell references you
use (relative, absolute, or mixed). Therefore, you can switch to R1C1 notation and
check your copied formulas. If one looks different from its surrounding formulas,
there’s a good chance that it may be incorrect.

In addition, if you write VBA code to create worksheet formulas, you may find it
easier to create the formulas using R1C1 notation.

Referencing other sheets or workbooks
References to cells and ranges need not be in the same sheet as the formula. To
refer to a cell in a different worksheet, precede the cell reference with the sheet
name followed by an exclamation point. Here’s an example of a formula that uses
a cell reference in a different worksheet:

=Sheet2!A1+1

You can also create link formulas that refer to a cell in a different workbook. To do
so, precede the cell reference with the workbook name (in square brackets), the
worksheet name, and an exclamation point. Here’s an example:

=[Budget.xls]Sheet1!A1+1

If the workbook name in the reference includes one or more spaces, you must
enclose it (and the sheet name) in single quotation marks. For example,

=’[Budget For 2002]Sheet1’!A1+A1

If the linked workbook is closed, you must add the complete path to the workbook
reference. Here’s an example:

=’C:\MSOffice\Excel\[Budget For 2002]Sheet1’!A1+A1

Although you can enter link formulas directly, you can also create the reference by
using normal pointing methods. To do so, the source file must be open. When you
do so, Excel creates absolute cell references (if you plan to copy the formula to
other cells, make the references relative).

4799-2 ch03.F 6/11/01 1:14 PM Page 41

42 Part I ✦ Some Essential Background

Working with links can be tricky. For example, if you use the File ➪ Save As
command to make a backup copy of the source worksheet, you automatically
change the link formulas to refer to the new file (not usually what you want to do).
Another way to mess up your links is to rename the source workbook when the
dependent workbook is not open.

Using Names
One of the most useful features in Excel is its ability to provide meaningful names
for various items. For example, you can name cells, ranges, rows, columns, charts,
and other objects. An advantage unique to Excel is that you can name values or
formulas that don’t even appear in cells in your worksheet (see the “Naming
constants” section later in this chapter).

Naming cells and ranges
You create names for cells or ranges by using the Insert ➪ Name ➪ Define command
(or by pressing Ctrl+F3). An even faster way to create names is to use the Name Box
(the drop-down list at the left side of the formula bar). When using the Name Box,
just select the cell or range, type the name into the Name Box, and press Enter.

You can choose the Insert ➪ Name ➪ Create command to create names automati-
cally for cells or ranges based on row or column titles on your worksheet. In
Figure 3-2, for example, C3:F3 is named North, C4:F4 is named South, and so on.
Vertically, C3:C6 is named Qtr1, D3:D6 is named Qtr2, and so on.

Using Links to Recover Data in a Corrupt File

Excel 2002 includes a new “detect and repair” feature that will attempt to fix damaged or
corrupt files. If this feature doesn’t work for you (or if you use an earlier version of Excel),
you can try the technique described here.

If you are unable to load a corrupted Excel workbook, you can write a link formula to
recover all or part of the data (but not the formulas). You can do so because the source file
in a link formula does not need to be open. If your corrupt file is named Badfile.xls, for
example, open a blank workbook and enter the following formula into cell A1 of Sheet1 to
attempt to recover the data from Sheet1 of the corrupt workbook file:

=[C:\Files\Badfile.xls]Sheet1!A1

In your new workbook, copy this formula down and to the right to recover as much
information as you can. A better approach, however, is to maintain a backup of your impor-
tant files.

4799-2 ch03.F 6/11/01 1:14 PM Page 42

43Chapter 3 ✦ Formula Tricks and Techniques

Figure 3-2: Excel makes it easy to create names that use
descriptive text in your worksheet.

Using names is especially important if you write VBA code that uses cell or range
references. The reason? VBA does not automatically update its references if you
move a cell or range that’s referred to in a VBA statement. For example, if your VBA
code writes a value to Range(“C4”), the data will be written to the wrong cell if the
user inserts a new row above or a new column to the left of cell C4. Using a refer-
ence to a name cell such as Range(“InterestRate”) avoids these potential problems.

Applying names to existing references
When you create a new name for a cell or a range, Excel doesn’t automatically use
the name in place of existing references in your formulas. For example, assume that
you have the following formula in cell F10:

=A1–A2

If you define a name Income for A1 and Expenses for A2, Excel won’t automatically
change your formula to =Income–Expenses. It’s fairly easy to replace cell or range
references with their corresponding names, however. Start by selecting the range
that you want to modify. Then choose the Insert ➪ Name ➪ Apply command. In the
Apply Names dialog box, select the names that you want to apply and then click
OK. Excel replaces the range references with the names in the selected cells.

Unfortunately, there is no way to “unapply” names. In other words, if a formula
uses a name, you can’t convert the name to an actual cell or range reference. Even
worse, if you delete a name that is used in a formula, the formula does not revert
to the cell or range address — it simply returns a #NAME? error.

Note

4799-2 ch03.F 6/11/01 1:14 PM Page 43

44 Part I ✦ Some Essential Background

My Power Utility Pak add-in (available on the companion CD-ROM) includes a
utility that scans all formulas in a selection and automatically replaces names
with their references.

Intersecting names
Excel has a special operator, called the intersection operator, that comes into play
when you’re dealing with ranges. This operator is a space character. Using names
with the intersection operator makes it very easy to create meaningful formulas.
For this example, refer once again to Figure 3-2. If you enter the following formula
into a cell:

=Qtr2 South

the result is 183 — the intersection of the Qtr2 range and the South range. To get the
total for the West region, you can use this formula:

=SUM(West)

On the
CD-ROM

Hidden Names

Some Excel macros and add-ins create hidden names. These are names that exist in a
workbook, but don’t appear in the Define Name dialog box. For example, the Solver add-in
creates a number of hidden names. Normally, you can just ignore these hidden names.
However, sometimes these hidden names create a problem. If you copy a sheet to another
workbook, the hidden names are also copied, and they may create a link that is very diffi-
cult to track down.

You can use the following VBA procedure to delete all hidden names in a workbook:

Sub DeleteHiddenNames()
Dim n As Name
Dim Count As Integer
For Each n In ActiveWorkbook.Names

If Not n.Visible Then
n.Delete
Count = Count + 1

End If
Next n
MsgBox Count & “ hidden names were deleted.”

End Sub

4799-2 ch03.F 6/11/01 1:14 PM Page 44

45Chapter 3 ✦ Formula Tricks and Techniques

Naming columns and rows
With Excel, you can also name complete rows and columns. In the preceding
example, the name Qtr1 is assigned to the range B2:B5. Alternatively, Qtr1 could be
assigned to all of column B, Qtr2 to column C, and so on. You also can do the same
horizontally so that North refers to row 2, South to row 3, and so on.

The intersection operator works exactly as before, but now you can add more
regions or quarters without having to change the existing names.

When naming columns and rows, make sure that you don’t store any extraneous
information in named rows or columns. For example, remember that if you insert
a value in cell B7, it is included in the Qtr1 range.

Scoping names
A named cell or range normally has a workbook-level scope — in other words, you
can use the name in any worksheet in the workbook.

Another option is to create names that have a worksheet-level scope. To create a
worksheet-level name, define the name by preceding it with the worksheet name
followed by an exclamation point; for example, Sheet1!Sales. If the name is used
on the sheet in which it is designed, you can omit the sheet qualifier when you
reference the name. The Define Name dialog box lists worksheet-level names only
if the sheet on which they are defined is active. You can, however, reference a
worksheet-level on a different sheet if you precede the name with the sheet qualifier.

“Natural Language” References

Beginning with Excel 97, you can write “natural language” formulas that use row and col-
umn headers. It’s not necessary to actually define these names — Excel figures them out
automatically. You connect these pseudo names by using the intersection operator (that is,
a space character). For example, you might create a formula like this:

=January Sales

Excel would display the value at the intersection of the column header (Sales) and the row
header (January).

While this type of thing may be convenient, I suggest that you avoid this feature like the
plague. Using these pseudo names is unreliable and difficult to document, and you cannot
use these names in your VBA code. When this feature first became available, Microsoft
touted it as a significant ease-of-use feature. Microsoft now downplays this feature, and it is
turned off by default. You can check the value of this setting in the Calculation panel of the
Options dialog box.

4799-2 ch03.F 6/11/01 1:14 PM Page 45

46 Part I ✦ Some Essential Background

If you decide to use a combination of workbook-level and worksheet-level names,
make sure you understand how this works, or you may be in for some surprises.

Naming constants
Virtually every experienced Excel user knows how to create cell and range names
(although not all Excel users actually do so). But most Excel users do not know that
you can use names to refer to values that don’t appear in your worksheet (that is,
constants).

Suppose that many formulas in your worksheet need to use a particular interest
rate. Some people would type the interest rate into a cell and give it a name, such
as RATE, so that they could use the name in their formulas. For example, the
following formula uses the name RATE:

=RATE×A3

The other alternative is to call up the Define Name dialog box and enter the interest
rate directly into the Refers to box (see Figure 3-3). Then you can use the name in
your formulas just as if the value is stored in a cell. If the interest rate changes,
just change the definition for RATE, and Excel updates all the cells that contain
this name.

Figure 3-3: Excel lets you name constants
that don’t appear in worksheet cells.

By the way, this technique also works for text. For example, you can define the
name IWC to stand for International Widget Corporation. Then, you can enter
=IWC into a cell and the cell displays the full name.

Naming formulas
Besides naming cells, ranges, and constants, you can also enter a formula directly
into the Refers to box in the Define Name dialog box to create a named formula. The
formula that you enter uses cell references relative to the active cell — the cell that
receives the formula. If you use the mouse to indicate related cells in the act of
building a formula, however, the references will be absolute.

Tip

4799-2 ch03.F 6/11/01 1:14 PM Page 46

47Chapter 3 ✦ Formula Tricks and Techniques

Figure 3-4 shows a formula (=A1^B1) entered directly in the Refers to box in the
Define Name dialog box. In this case, the active cell is C1, so the formula refers to
the two cells to its left (notice that the cell references are relative). After this name
is defined, entering =Power into a cell raises the value two cells to the left to the
power represented by the cell directly to the left. For example, if B10 contains 3 and
C10 contains 4, entering the following formula into cell D10 will return a value of 81
(3 to the 4th power):

=Power

Figure 3-4: You can name a formula that
doesn’t appear in any worksheet cell.

When you call up the Define Name dialog box after creating the named formula,
you’ll find that the Refers to box displays a formula that is relative to the active cell.
For example, if cell D32 is active, the Refers to dialog box will display:

=Sheet1!B32^Sheet1!C32

Notice that Excel appends the worksheet name to the cells references used in your
formula. This, of course, will cause the named formula to produce incorrect results
if you use it on a worksheet other than the one in which it was defined. If you would
like to use this named formula on a sheet other than Sheet1, you’ll need to remove
the sheet references from the formula (but keep the exclamation points). For example:

=!A1^!B1

After you understand the concept, you may discover some new uses for named
formulas. One distinct advantage is apparent if you need to modify the formula.
You can just change the definition in the Name Box rather than edit each occur-
rence of the formula.

The companion CD-ROM contains a workbook with several examples of named
formulas.

On the
CD-ROM

4799-2 ch03.F 6/11/01 1:14 PM Page 47

48 Part I ✦ Some Essential Background

Naming objects
In addition to providing names for cells and ranges, you can give more meaningful
names to objects such as charts and shapes. This can make it easier to refer to
such objects, especially when you refer to them in your VBA code.

Contrary to what you might think, the Insert ➪ Name ➪ Define command doesn’t
enable you to name objects (it works only for cells and ranges). The only way to
change the name of a nonrange object is to use the Name box. Just select the item,
type the new name in the Name box, and press Enter.

If you simply click elsewhere in your workbook after typing the name in the Name
box, the name won’t stick. You must press Enter.

Formula Errors
It’s not uncommon to enter a formula and receive an error in return. Formulas may
return an error value if a cell that they refer to has an error value. This is known as
the ripple effect — a single error value can make its way to lots of other cells that
contain formulas that depend on the cell. Excel’s Formula Auditing toolbar contains
tools that can help you trace the source of formula errors.

Table 3-2 lists the types of error values that may appear in a cell that has a formula.

Note

The Secret to Understanding Cell and Range Names

Excel users often refer to named ranges and named cells. In fact, I’ve used these terms
frequently throughout this chapter. Actually, this terminology is not quite accurate.

Here’s the secret to understanding names:

When you create a name for a cell or a range in Excel, you’re actually creating a named
formula — a formula that doesn’t exist in a cell. Rather, these named formulas exist in
Excel’s memory.

When you work with the Define Name dialog box, the Refers to field contains the formula,
and the Names in workbook field contains the formula’s name. You’ll find that the contents
of the Refers to field always begins with an equals sign. — which makes it a formula.

This is not exactly an earth-shaking revelation, but keeping this “secret” in mind may help
you understand what’s going on behind the scenes when you create and use names in
your workbooks.

4799-2 ch03.F 6/11/01 1:14 PM Page 48

49Chapter 3 ✦ Formula Tricks and Techniques

Table 3-2
Excel Error Values

Error Value Explanation

#DIV/0! The formula is trying to divide by zero (an operation that’s not allowed on
this planet). This error also occurs when the formula attempts to divide by
a cell that is empty.

#N/A The formula is referring (directly or indirectly) to a cell that uses the NA
worksheet function to signal the fact that data is not available. A LOOKUP
function that can’t locate a value also returns #NA.

#NAME? The formula uses a name that Excel doesn’t recognize. This can happen if
you delete a name that’s used in the formula or if you have unmatched
quotes when using text.

#NULL! The formula uses an intersection of two ranges that don’t intersect (this
concept is described later in the chapter).

#NUM! There is a problem with a value; for example, you specified a negative
number where a positive number is expected.

#REF! The formula refers to a cell that isn’t valid. This can happen if the cell has
been deleted from the worksheet.

#VALUE! The formula includes an argument or operand of the wrong type. An
operand is a value or cell reference that a formula uses to calculate a result.
This error also occurs if your formula uses a custom VBA worksheet function
that contains an error.

Array Formulas
An array is simply a collection of cells or values that is operated on as a group. An
array formula is a special type of formula that works with arrays. An array formula
can produce a single result, or it can produce multiple results — with each result
displayed in a separate cell (because Excel can fit only one value in a cell).

For example, when you multiply a 1 × 5 array by another 1 × 5 array, the result is
a third 1 × 5 array. In other words, the result of this kind of operation occupies five
cells; each element in the first array is multiplied by each corresponding element
in the second array to create five new values, each getting its own cell. The array
formula that follows multiplies the values in A1:A5 by the corresponding values
in B1:B5. This array formula is entered into five cells simultaneously:

=A1:A5×B1:B5

4799-2 ch03.F 6/11/01 1:14 PM Page 49

50 Part I ✦ Some Essential Background

You enter an array formula by pressing Ctrl+Shift+Enter. To remind you that a
formula is an array formula, Excel surrounds it with brackets ({ }) in the formula
bar. Don’t enter the brackets yourself.

An array formula example
Excel’s array formulas enable you to perform individual operations on each cell in
a range in much the same way that a program language’s looping feature enables
you to work with elements of an array. If you’ve never used array formulas before,
this section will get your feet wet with a hands-on example.

Figure 3-5 shows a worksheet with text in A1:A5. The goal of this exercise is to create
a single formula that returns the sum of the total number of characters in the range.
Without the single formula requirement, you would write a formula using the LEN
function, copy it down the column, and then use the SUM function to add up the
results of the intermediate formulas.

Figure 3-5: Cell B1 contains an array formula that returns the total number
of characters contained in range A1:A5.

To demonstrate how an array formula can occupy more than one cell, create the
worksheet shown in Figure 3-5, and then try this:

1. Select the range B1:B5.

2. Type the following formula:

=LEN(A1:A5)

3. Press Ctrl+Shift+Enter.

Note

4799-2 ch03.F 6/11/01 1:14 PM Page 50

51Chapter 3 ✦ Formula Tricks and Techniques

The preceding steps enter a single array formula into five cells. Enter a SUM formula
that adds the values in B1:B5, and you’ll see that the total number of characters in
A1:A5 is 27.

Here’s the key point: It’s not necessary to actually display those five array elements.
Rather, Excel can store the array in memory. Knowing this, you can type the
following single formula in any blank cell (make sure you enter it using
Ctrl+Shift+Enter):

=SUM(LEN(A1:A5))

This formula is displayed surrounded by brackets:

{=SUM(LEN(A1:A5))}

This formula essentially creates a five-element array (in memory) that consists of
the length of each string in A1:A5. The SUM function uses this array as its argument,
and the formula returns 27.

An array formula calendar
Figure 3-6 shows a worksheet set up to display a calendar for any month. Believe it
or not, the calendar is created with a single array formula that occupies 42 cells.

Figure 3-6: One array formula is all it takes to make a calendar for
any month in any year.

4799-2 ch03.F 6/11/01 1:14 PM Page 51

52 Part I ✦ Some Essential Background

The companion CD-ROM contains a workbook with the calendar example as well
as several additional array formula examples.

Array formula pros and cons
The advantages of using array formulas rather than single-cell formulas include
the following:

✦ They can sometimes use less memory.

✦ They can make your work much more efficient.

✦ They can eliminate the need for intermediate formulas.

✦ They can enable you to do things that would be difficult or impossible
otherwise.

A few disadvantages of using array formulas are the following:

✦ Some can slow your spreadsheet recalculation time to a crawl.

✦ They can make your worksheet more difficult for others to understand.

✦ You must remember to enter an array formula with a special key sequence
(Ctrl+Shift+Enter).

Counting and Summing Techniques
I spend quite a bit of time reading the Excel newsgroups on the Internet. Many of
the questions posed in these groups deal with counting or summing various types
of cells. In an attempt to answer most of these questions, I present a number of
formula examples that deal with counting various things on a worksheet. You can
probably adapt these formulas to your own needs.

Using the COUNTIF or SUMIF function
Excel’s SUM, COUNT, COUNTA, and COUNTBLANK functions are very straightforward,
so I’ll skip them and get straight to the more useful COUNTIF and SUMIF functions.
COUNTIF takes two arguments: the range that holds the data to be counted and the
criteria used to determine whether the cell is included in the count. SUMIF takes
three arguments: the range to be evaluated, the criteria used to determine whether
the cell is included in the count, and the range that holds the data to be summed.

Table 3-3 demonstrates a variety of uses for the COUNTIF function. The formulas
assume that you have a range named data (you’ll need to substitute the actual
range name or address in these formulas). Also, be aware that the second argument
for the COUNTIF function can be a reference to a cell that contains the search criteria.

On the
CD-ROM

4799-2 ch03.F 6/11/01 1:14 PM Page 52

53Chapter 3 ✦ Formula Tricks and Techniques

Table 3-3
Examples of Common Uses for the COUNTIF Function

Formula Return Value

=COUNTIF(data,12) The number of cells that contain the value 12

=COUNTIF(data,1)+ The number of cells that contain 1 or 12
COUNTIF(data,12)

=COUNTIF(data,”<0”) The number of cells that contain a negative number

=COUNTIF(data,”<>0”) The number of nonzero values

=COUNTIF(data,”>=1”)- The number of cells that contain a value between 1 and 10
COUNTIF(data,”>10”)

=COUNTIF(data,”yes”) The number of cells that contain the word yes
(not case-sensitive)

=COUNTIF(data,”×”) The number of cells that contain any text

=COUNTIF(data,”×s×”) The number of cells that contain the letter s
(not case-sensitive)

=COUNTIF(data,”???”) The number of three-letter words

Using array formulas to count and sum
If none of the standard counting techniques fits the bill, you may be able to con-
struct an array formula (see “Array Formulas” earlier in this chapter). Don’t forget:
When you enter an array formula, press Ctrl+Shift+Enter.

To count the number of numerical values (skipping text and blanks), use this array
formula:

=SUM(IF(ISNUMBER(data),1,0))

To count the number of cells that contain an error value, use this array formula:

=SUM(IF(ISERR(data),1,0))

To count the number of unique numeric values (skipping text, blanks not allowed),
use this array formula:

=SUM(IF(FREQUENCY(data,data)>0,1,0))

Table 3-4 shows a number of array formula examples based on the worksheet
shown in Figure 3-7.

4799-2 ch03.F 6/11/01 1:14 PM Page 53

54 Part I ✦ Some Essential Background

Figure 3-7: This simple database
demonstrates some useful array
formulas for countingandsumming.

Table 3-4
Complex Array Formulas Using the SUM Function

Array Formula Returns

=SUM((A2:A10=”Jan”)× Sum of Sales where Month=”Jan” AND Region=”North”
(B2:B10=”North”)×C2:C10)

=SUM((A2:A10=”Jan”)× Sum of Sales where Month=”Jan” AND Region<>”North”
(B2:B10<>”North”)×C2:C10)

=SUM((A2:A10=”Jan”)× Count of Sales where Month=”Jan” AND Region=”North”
(B2:B10=”North”))

=SUM((A2:A10=”Jan”)× Count of Sales where Region=”North” or “South” and
((B2:B10=”North”)+ Month=”Jan”
(B2:B10=”South”)))

=SUM((A2:A10=”Jan”)× Sum of Sales where Month=”Jan” and Sales>= 200
(C2:C10>=200)×(C2:C10))

=SUM((C2:C10>=300)× Sum of Sales between 300 and 400
(C2:C10<=400)×(C2:C10))

=SUM((C2:C10>=300)× Count of Sales between 300 and 400
(C2:C10<=400))

Other counting tools
The COUNTIF function is useful when you have a single counting criterion. For more
complex comparisons, you can use the DCOUNT function. To use the DCOUNT function,
you must set your data up as a database (with field names in the first row), and you
also need to create a separate criteria range to specify the counting criteria. The
criteria range can also handle logical OR operations by using additional rows. Consult
the online help for details.

4799-2 ch03.F 6/11/01 1:14 PM Page 54

55Chapter 3 ✦ Formula Tricks and Techniques

Excel’s SUBTOTAL function can be very useful when you need to get a count of rows
that have been filtered using the AutoFilter feature. The first argument for the
subtotal figure determines the type of subtotaling. An argument of 3 represents the
COUNTA function, and it returns the number of visible cells in a range.

For the ultimate in counting, consider using a pivot table. If you’re not familiar with
pivot tables, you’re missing out on one of the most powerful tools around.

Working with Dates and Times
Excel uses a serial number system to store dates. The earliest date that Excel can
understand is January 1, 1900. This date has a serial number of 1. January 2, 1900,
has a serial number of 2, and so on.

Most of the time, you don’t have to be concerned with Excel’s serial number date
system. You simply enter a date in a familiar date format, and Excel takes care of
the details behind the scenes. For example, if you need to enter June 1, 1999, you
can simply enter the date by typing June 1, 1999 (or use any of a number of different
date formats). Excel interprets your entry and stores the value 36312, which is the
serial number for that date.

Entering dates and times
When working with times, you simply enter the time into a cell in a recognized for-
mat. Excel’s system for representing dates as individual values is extended to
include decimals that represent portions or fractions of days. In other words,
Excel perceives all time using the same system whether that time is a particular
day, a certain hour, or a specific second. For example, the date serial number for
June 1, 1999, is 36312. Noon (halfway through the day) is represented internally as
36312.5. Again, you normally don’t have to be concerned with these fractional serial
numbers.

Because dates and times are stored as serial numbers, it stands to reason that you
can add and subtract dates and times. For example, you can enter a formula to
calculate the number of days between two dates.

When performing calculations with time, things get a bit trickier. When you enter
a time without an associated date, the date is assumed to be January 0, 1900.
This is not a problem — unless your calculation produces a negative time value.
When this happens, Excel displays an error (displayed as #########). The
solution? Switch to the 1904 date system. Select Tools ➪ Options, click the
Calculation tab, and place a check mark next to the 1904 date system check box.
Be aware that switching to the 1904 date system can cause problems with dates
already entered in your file, or dates in workbooks that are linked to your file.

Tip

4799-2 ch03.F 6/11/01 1:14 PM Page 55

56 Part I ✦ Some Essential Background

When you add time values, you’ll find that you can’t display more than 24 hours.
For each 24-hour period, Excel simply adds another day to the total. The solution
is to change the number formatting to use brackets around the hour part of the
format. The following number format, for example, displays more than 24 hours:

[hh]:mm

Using pre-1900 dates
The world, of course, didn’t begin on January 1, 1900. People who work with histori-
cal information using Excel often need to work with dates before January 1, 1900.
Unfortunately, the only way to work with pre-1900 dates is to enter the date into a
cell as text. For example, you can enter the following into a cell and Excel won’t
complain:

July 4, 1776

You can’t, however, perform any manipulation on dates that are actually text. For
example, you can’t change its formatting, you can’t determine which day of the week
this date occurred on, and you can’t calculate the date that occurs seven days later.

The companion CD-ROM contains an add-in that I developed called Extended
Date Functions. When this add-in is installed, you’ll have access to eight new
worksheet functions that let you work with any date in the years 0100 through
9999. Figure 3-8 shows a worksheet that uses these functions to calculate the
number of days between various pre-1900 dates.

Figure 3-8: The Extended Date Functions add-in
lets you work with pre-1900 dates.

Creating Megaformulas
Often, spreadsheets require intermediate formulas to produce a desired result.
In other words, a formula may depend on other formulas, which in turn depend
on other formulas. After you get all these formulas working correctly, it’s often

On the
CD-ROM

Tip

4799-2 ch03.F 6/11/01 1:14 PM Page 56

57Chapter 3 ✦ Formula Tricks and Techniques

possible to eliminate the intermediate formulas and use what I refer to as a single
megaformula instead. The advantages? You use fewer cells (less clutter), and recal-
culation may be faster. Besides, people in the know will be impressed with your
formula-building abilities. The disadvantages? The formula may be impossible to
decipher or modify.

Here’s an example: Imagine a worksheet with a column of people’s names. And
suppose that you’ve been asked to remove all the middle names and middle initials
from the names — but not all the names have a middle name or initial. Editing the
cells manually would take hours, so you opt for a formula-based solution. Although
this is not a difficult task, it normally involves several intermediate formulas.

Figure 3-9 shows the results of the more conventional solution, which requires six
intermediate formulas shown in Table 3-5. The names are in column A; the end
result goes in column H. Columns B through G hold the intermediate formulas.

Figure 3-9: Removing the middle names and initials requires six
intermediate formulas.

Table 3-5
Intermediate Formulas Written in the

First Row of Sheet1 in Figure 3-9

Cell Intermediate Formula What It Does

B1 =TRIM(A1) Removes excess spaces

C1 =FIND(“ “,B1,1) Locates the first space

D1 =FIND(“ “,B1,C1+1) Locates the second space

E1 =IF(ISERROR(D1),C1,D1) Uses the first space if no second space exists

F1 =LEFT(B1,C1) Extracts the first name

G1 =RIGHT(B1,LEN(B1)-E1) Extracts the last name

H1 =F1&G1 Concatenates the two names

4799-2 ch03.F 6/11/01 1:14 PM Page 57

58 Part I ✦ Some Essential Background

You can eliminate all the intermediate formulas by creating a megaformula. You do
so by creating all the intermediate formulas and then going back into the final result
formula and replacing each cell reference with a copy of the formula in the cell
referred to (without the equals sign). Fortunately, you can use the clipboard to
copy and paste. Keep repeating this process until cell H1 contains nothing but
references to cell A1. You end up with the following megaformula in one cell:

=LEFT(TRIM(A1),FIND
(“ “,TRIM(A1),1))&RIGHT(TRIM(A1),LEN(TRIM(A1))-
IF(ISERROR(FIND(“ “,TRIM(A1),FIND(“ “,TRIM(A1),1)+1)),
FIND(“ “,TRIM(A1),1),FIND(“ “,TRIM(A1),FIND
(“ “,TRIM(A1),1)+1)))

When you’re satisfied that the megaformula is working, you can delete the columns
that hold the intermediate formulas because they are no longer used.

The megaformula performs exactly the same tasks as all the intermediate
formulas — although it’s virtually impossible for anyone to figure out, even the
author. If you decide to use megaformulas, make sure that the intermediate formulas
are performing correctly before you start building a megaformula. Even better, keep
a single copy of the intermediate formulas somewhere in case you discover an error
or need to make a change.

The only limitation to the megaformula technique is that Excel formulas can contain
no more than 1,024 characters. Another way to approach this problem is to create
a custom worksheet function in VBA. Then you could replace the megaformula
with a simple formula, such as:

=NOMIDDLE(A1)

In fact, I wrote such a function to compare it with intermediate formulas and
megaformulas.

Because a megaformula is so complex, you may think that using one would slow
down recalculation. Actually, that’s not the case. As a test, I created a worksheet
that used a megaformula 65,536 times. Then I created another worksheet that used
six intermediate formulas. I compared the results with the VBA function I wrote.
Statistics regarding the two methodologies were recorded and are shown in
Table 3-6.

Table 3-6
Intermediate Formulas vs. Megaformula vs. VBA Function

Method Recalculation Time (Seconds) File Size

Intermediate formulas 10.8 24.4MB

Megaformula 6.2 8.9MB

VBA function 106.7 8.6MB

Note

4799-2 ch03.F 6/11/01 1:14 PM Page 58

59Chapter 3 ✦ Formula Tricks and Techniques

The actual results will vary significantly, depending on system speed and amount
of memory installed.

As you can see, using the megaformula resulted in faster recalculations as well as
a much smaller workbook. The VBA function was much slower — in fact, it wasn’t
even in the same ballpark. This is fairly typical of VBA functions; they are always
slower than built-in Excel functions.

The three files used in this time test are available on the companion CD-ROM.

Summary
In this chapter, I examined Excel formulas and related issues such as names and
calculation techniques. I also provided a few examples of array formulas, counting
and summing techniques, and even “megaformulas.”

In the next chapter, I explain how Excel maintains and organizes its many types and
formats of files.

✦ ✦ ✦

On the
CD-ROM

4799-2 ch03.F 6/11/01 1:14 PM Page 59

4799-2 ch03.F 6/11/01 1:14 PM Page 60

Understanding
Excel’s Files

If you plan to do any advanced work with Excel, it’s critical
that you become familiar with the various ways to start

Excel, and understand what happens when the application is
launched. It’s also a good idea to have an understanding of
the various files used and generated by Excel. These topics
are covered in this chapter.

Starting Excel
Excel can be started various ways (depending on how it’s
installed). All methods ultimately execute the Excel.exe exe-
cutable file.

When Excel starts, it reads its settings from the Windows
Registry and opens any add-ins that are installed (that is,
those that are checked in the Add-Ins dialog box). It then dis-
plays an empty workbook; the number of sheets in the work-
book is determined by a user-defined setting that is stored in
the Windows Registry. You can change this number by editing
the Sheets in the New Workbook setting located in the General
tab of the Options dialog box (select Tools ➪ Options).

If your Xlstart folder contains any workbooks, they are
opened automatically — and a blank workbook does not
appear. If your Xlstart folder includes a workspace file, multi-
ple workbooks are opened in a customized workspace. You
can also define an alternate startup directory to hold other
worksheet or workspace files you want opened automatically.
You can set up this alternate startup directory by specifying a
path in the At startup, open all files in setting located in the
General tab of the Options dialog box. In previous versions of
Excel, this field was labeled Alternate startup file location.

44C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

A description of the
various ways to start
Excel

A discussion of the
files used and
produced by Excel —
including the new
HTML file format

Details about how
Excel uses the
Windows Registry

✦ ✦ ✦ ✦

4799-2 ch04.F 6/11/01 9:28 AM Page 61

62 Part I ✦ Some Essential Background

If you want to change the default formats (or content) of blank workbooks that
you create, create a default workbook and save it as a template with the name
Book.xlt in your Xlstart folder. For details on creating and using template files, refer
to the online help.

Excel recognizes several command line switches. These are listed in Table 4-1.

Table 4-1
Excel Command Line Switches

Switch What It Does

/automation Forces Excel to start without loading add-ins and templates or processing
files in the Xlstart directory or the alternate startup file location. Use this
switch to perform a “clean-boot” of Excel.

/e Forces Excel to start in “embedded” mode. Use this switch when you
want to start Excel without creating a new workbook and without
displaying its splash screen.

/embedded Starts an invisible instance of Excel (not recommended).

/m Forces Excel to create a new workbook that contains a single Microsoft
Excel 4.0 macro sheet (obsolete).

/o Causes Excel to register itself in the Windows Registry. It replaces missing
Registry entries; it does not correct invalid entries (see /regserver, later in
this table).

/p directory Sets the active path to a directory other than the default directory.

/r filename Forces Excel to open the specified file in read-only mode.

/s Forces Excel to start in “safe” mode, and does not load any add-ins or
files in the Xlstart or alternate startup file directories.

/regserver Forces Excel to reregister itself in the Windows Registry and then quit. Use
this switch when you want Excel to rewrite all its Registry keys and
reassociate itself with Excel files, such as workbooks and charts.

/unregserver Forces Excel to unregister itself in the Windows Registry and then quit.

One way to specify any of these switches is to edit the properties of the shortcut
that starts Excel. For example, if you want Excel to use a folder named Xlfiles as its
default folder, you can use the /p switch and specify this in the Target field in the
Properties dialog box for the Excel shortcut. To access the Properties dialog box,
right-click the shortcut icon and click the Shortcut tab. For example, you can
change the Target to:

“C:\Program Files\Microsoft Office\Office\EXCEL.EXE” /p
C:\Xlfiles

Tip

4799-2 ch04.F 6/11/01 9:28 AM Page 62

63Chapter 4 ✦ Understanding Excel’s Files

You can run multiple instances of Excel on a single system. Each instance is treated
as a separate task. And, most people have pretty good success running multiple
versions of Excel on a single system. For best results, install the versions in the
order of their release dates.

Excel’s File Extensions
As Excel goes about its business, it uses many files in addition to the Excel.exe exe-
cutable. These other files are loaded into memory as needed. Table 4-2 presents a
summary of the file types that Excel may write to your hard disk during installation,
or files that you may encounter when working with Excel.

Table 4-2
File Types Installed by Excel

File Type Description

CHM A compiled HTML help file.

DLL A Dynamic Link Library file. DLLs are used by Windows applications to store
program code.

EXE An executable file. Excel.exe is the executable file that runs Excel.

OLB An object type library file.

TXT A plain ASCII text file, readable from any text editor (such as NotePad). These
files often contain late-breaking information not found in the manuals.

XLA An Excel add-in file. Several are supplied with Excel, and you can also download
other add-ins or create your own.

XLB An Excel toolbar configuration file. The current toolbar configuration is stored in
the Windows directory in a file named Excel10.xlb (the filename is different in a
network environment).

XLC An Excel 4 chart file (obsolete beginning with Excel 5).

XLL An Excel link library file. For example, the Analysis ToolPak add-in uses this type
of file.

XLM An Excel 4 macro file (obsolete beginning with Excel 5).

XLS An Excel workbook file. Unfortunately, there is no way to tell from the extension
which version of Excel produced the file.

Continued

Note

4799-2 ch04.F 6/11/01 9:28 AM Page 63

64 Part I ✦ Some Essential Background

Table 4-2 (continued)

File Type Description

XLT An Excel template file.

XLW A workspace file that contains information about the windows and positions in
a workspace. This extension was also used for Excel 4 workbook files (obsolete
beginning with Excel 5 because all files are workbooks).

XLK A backup file.

Excel versions prior to Excel 2000 used standard Windows Help files (*.hlp). Excel
2000 and later use HTML Help. This system uses compiled HTML files with a *.chm
extension.

Spreadsheet File Formats Supported
Although Excel’s default file format is an XLS workbook file, it can also open and
save a wide variety of files generated by several other applications.

An important consideration is whether a particular file type can survive a “round
trip.” In other words, do you lose any information if you save a file in a particular
format and then reopen it in the same application? As you might expect, using
Excel’s native file format (XLS files) ensures that you’ll lose absolutely nothing —
as long as you use the latest version of XLS.

If you save and retrieve a file using a format other than the current XLS format, you
run the risk of losing some types of information — typically formatting and macros,
but sometimes formulas and charts.

In the sections that follow, I discuss the various types of files you can and cannot
use with Excel.

Lotus 1-2-3 spreadsheet files
Lotus spreadsheets come in several flavors:

✦ WKS files are single-sheet files used by 1-2-3 Release 1.x for DOS. Excel can
read and write these files.

Excel can also open Microsoft Works files, which also have a WKS extension.Note

Caution

New
Feature

4799-2 ch04.F 6/11/01 9:28 AM Page 64

65Chapter 4 ✦ Understanding Excel’s Files

✦ WK1 files are single-sheet files used by 1-2-3 Release 2.x for DOS. The format-
ting for these files is stored in *.all files (produced by the Allways add-in) or
FM1 files (produced by the WYSIWYG add-in). Excel can read and write all
these files. When you save a file to the *.wk1 format, you can choose which (if
any) type of formatting file to generate.

✦ WK3 files are generated by 1-2-3 Release 3.x for DOS, 1-2-3 Release 4.x for DOS,
and 1-2-3 Release 1.x for Windows. These files may contain more than one
sheet. The formatting for these files is stored in *.fm3 files (produced by the
WYSIWYG add-in). Excel can read and write WK3 files with or without the
accompanying FM3 file.

✦ WK4 files are generated by 1-2-3 Release 4.x for Windows and 1-2-3 Release 5.x
for Windows (Lotus finally got its act together and eliminated the separate for-
matting file). These files may contain more than one sheet. Excel can neither
read nor write these files. If you need to read a WK4 file into Excel, your only
option is to use 1-2-3 Release 4 for Windows (or later) and save the file in WK3
format, which Excel can read.

✦ 123 files are generated by 1-2-3 97 and 1-2-3 Millenium Edition. These files may
contain more than one sheet. Excel can neither read nor write these files. If
you need to read a 123 file into Excel, your only option is to use 1-2-3 and save
the file in WK3 format, which Excel can read.

Quattro Pro spreadsheet files
Quattro Pro files also exist in several versions:

✦ WQ1 files are the single-sheet files generated by Quattro Pro for DOS Versions 1,
2, 3, and 4. Excel can read and write these files.

✦ WQ2 files are generated by Quattro Pro for DOS Version 5. Excel can neither
read nor write this file format.

✦ WB1 files are generated by Quattro Pro for Windows Versions 1 and 5 (there are
no Versions 2 through 4). Excel can read, but not write, this file format.

✦ WB2 files are generated by Quattro Pro for Windows Version 6. Excel can neither
read nor write this file format.

✦ WB3 files are generated by Quattro Pro for Windows Versions 7 and 8. Excel can
neither read nor write this file format.

You can download a Quattro Pro file converter from Microsoft’s Web site. This con-
verter enables you to import Quattro Pro 97’s WB3 files. The URL for download is

http://officeupdate.microsoft.com/downloadDetails/
quatt97.htm

Note

4799-2 ch04.F 6/11/01 9:28 AM Page 65

66 Part I ✦ Some Essential Background

Database file formats
DBF files are single-table database files generated by dBASE and several other
database programs. Excel can read and write DBF files up to and including dBASE 4.

Excel cannot read or write any other database file formats directly. You can, how-
ever, use Microsoft Query to access many other database file formats and then
copy or link the data into an Excel worksheet. You can run Microsoft Query directly
from Excel by using the Data ➪ Get External Data ➪ New Database Query command.

Text file formats
Text files simply contain data with no formatting. There are several relatively stan-
dard text file formats, but there are no standard file extensions.

✦ Each line in tab-delimited files consists of fields separated by tabs. Excel can
read these files, converting each line to a row and each field to a column.
Excel also can write these files, using TXT as the default extension.

✦ Each line in comma-separated files consists of fields usually separated by
commas (countries that use a comma as a decimal symbol will use semi-
colons in CSV files). Sometimes text appears in quotes. Excel can read these
files, converting each line to a row and each field to a column. Excel can also
write these files, using CSV as the default extension.

✦ Each line in space-delimited files consists of fields separated by spaces. Excel
can read these files, converting each line to a row and each field to a column.
Excel also can write these files, using PRN as the default extension.

When you attempt to load a text file into Excel, the Text Import Wizard may kick in
to help you specify how you want the file retrieved.

To bypass the Text Import Wizard, press Shift when you click OK in the Open
dialog box.

You can also perform queries using text files. Use the Data ➪ Get External Data ➪

Import Text File command.

Other file formats
Other formats supported are the following:

✦ DIF (Data Interchange Format) file format was used by VisiCalc. I haven’t seen
a DIF file in ages. Excel can read and write these files.

✦ SYLK (SYmbolic LinK) file format was used by MultiPlan. SYLK files, too, are
quite rare these days. Excel can read and write these files.

Note

Tip

4799-2 ch04.F 6/11/01 9:28 AM Page 66

67Chapter 4 ✦ Understanding Excel’s Files

Files Written by Excel
Excel can write several types of files, which I discuss in this section.

XLS files
The XLS workbook files produced by Excel 2002 use the same file format as Excel
2000 and Excel 97. These files cannot be opened by any version of Excel prior to
Excel 97. You can, however, save a workbook using any of the older Excel file for-
mats. You may lose some information that is specific to the later file format.

An Excel workbook or add-in file can have any extension you like. In other words,
these files need not be stored using an XLS or XLA extension.

Note

Which Version Created That XLS File?

Unfortunately, there is no direct way to determine which version of Excel created a particu-
lar XLS file. If you have an earlier version of Excel and attempt to open an XLS file that was
created in a later version, you’ll probably get an error message or a screenful of garbage
characters. But if you can open the file successfully, you can use a simple VBA statement to
determine the Excel version of the file.

Open the workbook, and make sure it’s the active workbook. Press Alt+F11 to activate the
Visual Basic Editor, and then press Ctrl+G to activate the Immediate window. Type the fol-
lowing statement, and press Enter:

Print ActiveWorkbook.FileFormat

The Immediate window displays a value that corresponds to the version of the active work-
book. This value is one of those shown in the following table:

Value Excel Version

16 Excel 2

29 Excel 3

33 Excel 4

39 Excel 5, 95

-4143 Excel 97, 2000, 2002

4799-2 ch04.F 6/11/01 9:28 AM Page 67

68 Part I ✦ Some Essential Background

Workspace files
A workspace file is a special file that contains information about an Excel workspace.
For example, if you have a project that uses two workbooks and you like to have
the workbook windows arranged in a particular way, you can save an XLW file (use
the File ➪ Save Workspace command) to save this window configuration. Then,
whenever you open the XLW file, Excel restores the desired workspace.

It’s important to understand that a workspace file does not include the work-
books — only the configuration information that makes those workbooks visible in
your Excel workspace. So if you need to distribute a workspace to someone else,
make sure that you include the workbook files as well as the XLW file. In addition,
the File ➪ Save Workspace command does not save the workbooks themselves.

Template files
You can save any workbook as a template file (XLT extension). Doing so is useful if
you tend to create similar files on a regular basis. For example, you may need to
generate a monthly sales report. You can save some time by creating a template
that holds the necessary formulas and charts for your report. When you start new
files based on the template, you need only plug in the values.

To create a new workbook that’s based on an existing template, use the File ➪ New
command, and select the template from the New dialog box.

Excel 2002 requires an extra step, because the preceding commands display the
New Workbook toolbar. From the toolbar, you can choose a source for the tem-
plate, including templates that you can download from Microsoft’s Web site.

Clicking the New toolbar button or pressing Ctrl+N does not enable you to select
a template. Rather, a default workbook is created.

If you create a template named Book.xlt, that template will be used as the basis for
new workbooks. In addition, you can create a template named Sheet.xlt, which is
used as the basis for new worksheets that you add to a workbook. Note that it is
not possible to create a template for chart sheets because Excel handles chart
templates differently.

Templates can be stored in two locations on your local computer:

✦ Your Xlstart folder. This is where you store autotemplates named Book.xlt and
Sheet.xlt. You can also put workbook templates in this folder.

✦ Your Templates folder. Workbook templates stored here appear in the New
dialog box.

Note

New
Feature

Caution

4799-2 ch04.F 6/11/01 9:28 AM Page 68

69Chapter 4 ✦ Understanding Excel’s Files

The location of the Templates folder varies, depending on the version of Excel. To
find the location of your Templates folder, execute the following VBA statement:

MsgBox Application.TemplatesPath

Toolbar files
Excel stores toolbar and menu bar configurations in an XLB file. When you exit
Excel 2002, the current toolbar configuration is saved in a file named Excel10.xlb.
The exact location and name of this file varies with the version of Excel, so search
your hard drive for *.xlb and you’ll find it. This file contains information regarding
the position and visibility of all custom toolbars and custom menu bars, plus modi-
fications that you’ve made to built-in toolbars or menu bars.

Excel 2002’s online help lists the various names and locations of the XLB files for
various versions of Excel. Do a search for “xlb” to find this information.

Add-in files
An add-in is essentially a workbook file with a few important differences:

✦ The workbook’s IsAddin property is True — which means that it can be
loaded using the Tools ➪ Add-Ins command.

✦ The workbook is hidden and cannot be unhidden by the user. Consequently,
an add-in is never the active workbook.

✦ The workbook is not part of the Workbooks collection.

Many add-ins provide new features or functions to Excel. You can access these new
features as if they were built into the product.

You can create your own add-ins from XLS workbook files. In fact, creating add-ins
is the preferred method of distributing some types of Excel applications. Add-ins
have an XLA extension by default, but you can use any extension you like.

Besides XLA add-ins, Excel supports XLL add-ins and (beginning with Excel 2000)
COM add-ins. These types of add-ins are created using software other than Excel.
This book discusses only XLA add-ins.

Chapter 21 covers the topic of add-ins in detail.Cross-
Reference

Note

Tip

4799-2 ch04.F 6/11/01 9:28 AM Page 69

70 Part I ✦ Some Essential Background

Excel and HTML
HTML is the language of the World Wide Web. When you browse the Web, the docu-
ments that are retrieved and displayed by your browser are usually in HTML for-
mat. An HTML file consists of text information plus special tags that describe how
the text is to be formatted. The browser interprets the tags, applies formatting, and
displays the information.

Excel 2000 and later can use HTML as a native file format. In other words, you can
save a workbook in HTML format and then reopen the HTML file, and it will look
exactly as it did before you first saved it. All the Excel-specific information (such as
macros, charts, pivot tables, and worksheet settings) remains intact. HTML is a rel-
atively simple file format. The fact that an Excel workbook can survive the “round
trip” is just short of amazing.

Using HTML as a native file format may be amazing, but I think Microsoft may have
overemphasized the importance of this feature. In real life, this simply isn’t very
useful except in a small number of situations.

So how does it work?
The best way to understand how Excel can use HTML as a native file format is to
perform some simple experiments. Start with a new workbook, and make sure it has
only one worksheet. Enter a few values and a formula, do some simple formatting,
and then save the workbook in HTML format. Use the File ➪ Save As Web Page com-
mand, and make sure you select the Entire Workbook option. Figure 4-1 shows a
very simple workbook consisting of two values and a formula, with the formula cell
formatted bold. This is a good candidate for learning about the HTML files saved by
Excel.

Figure 4-1: Try saving a simple
workbook like this in HTML format.

The remainder of the material in this section assumes that you’re familiar with
HTML.

Note

4799-2 ch04.F 6/11/01 9:28 AM Page 70

71Chapter 4 ✦ Understanding Excel’s Files

Next, open the HTML file in your browser. It will, of course, look pretty much like
the original workbook. However, it is a “dead” non-interactive document. Use the
browser’s View ➪ Source command to view the HTML code. You might be surprised
by what you see. Even HTML gurus might be overwhelmed by the complexity of
this “simple” Web document.

Following are a few observations about the HTML file:

✦ The entire Excel workbook can be represented by a single HTML file. In other
words, all the information needed to create an exact replica of the original
workbook is contained in the HTML file. This isn’t always the case, however.
Keep reading to find out when a simple HTML file no longer suffices.

✦ Most of the document is contained within the <head> and </head> tags.

✦ A large portion consists of style definitions. This is the information between
the <style> and </style> tags — which is embedded between the <head>
and </head> tags.

✦ The actual text that’s displayed in the browser is contained in a table
(between the <table> and </table> tags).

✦ The formula is preserved by using a proprietary argument for the <td> tag.
The proprietary argument is ignored by browsers, but Excel uses this informa-
tion when the file is reopened.

The HTML file produced for the simple workbook is more than 4,000 bytes in size,
which is quite large considering the simplicity of the displayed page. The extra
information, of course, is what Excel uses to create a workbook when the HTML file
is reopened.

Adding some complexity
The example workbook used in the preceding section is about as simple as it gets.
Now let’s add a small bit of complexity to the workbook and see what happens to
the HTML file.

Using the simple example file, select A1:A3 and press F11 to create a new chart
sheet. Save the file again and load it in your browser. You’ll find that it closely
resembles the Excel workbook, even down to the sheet tabs and navigation arrows
at the bottom!

The HTML file has more than doubled in size (it’s now up to about 10,000 bytes).
More importantly, you’ll find that the directory in which you saved the file has a
new subdirectory that contains additional files (six extra files using my simple
workbook). The files in this directory are necessary to display a replica of the work-
book in a browser and to re-create the workbook when the HTML file is reopened in
Excel.

4799-2 ch04.F 6/11/01 9:28 AM Page 71

72 Part I ✦ Some Essential Background

If you examine the HTML file, you’ll see that it’s much more complicated than the
original one and contains quite a bit of complex JavaScript code (JavaScript is a
scripting language supported by Internet Explorer and Netscape Navigator). At this
point, the HTML file has gotten well beyond the grasp of your average HTML author.
And that’s not even taking into account the other files dumped into the subdirectory.
The files are:

✦ Three HTML files (one for each sheet, plus a file that displays the tab strip).

✦ A GIF file (the chart).

✦ A CSS file (a cascading style sheet that holds formatting and display
information).

✦ An XML file. This is an “eXtensible Markup Language” file. XML is well beyond
the scope of this book. (Hey, I told you this stuff was getting complicated!)

You might want to open some other Excel workbooks and save them as HTML files.
You’ll soon discover another type of file that’s created in the subdirectory, an MSO
(for Microsoft Office) file. This is a binary file that holds the information necessary
to re-create Excel-specific features such as macros, pivot tables, conditional format-
ting, and so on.

As you may have surmised by now, saving an Excel workbook in HTML format
introduces lots of potential problems. For example, if you need to transfer your file
to another location, it’s imperative that you include all the supporting files as well.
If any of the supporting files are damaged, Excel cannot re-create the workbook.
And opening and saving HTML files is much slower than opening and saving
normal XLS files. To make a long story short, don’t save your workbooks in HTML
format unless you have a very good reason to do so.

What about interactivity?
If you’re still with me at this point, it’s time to introduce yet another level of com-
plexity. Excel can save HTML files that include spreadsheet interactivity. In other
words, when the HTML file is displayed in a browser, the user can actually interact
with the document as a spreadsheet — enter data, change formulas, adjust cell for-
matting, see “live” charts, and even drag data around in pivot tables. This feature,
which is called publishing (as opposed to saving), is limited in that you can only
save one sheet (not an entire workbook).

To get a feel for how this works, activate a sheet that contains formulas. Use the
File ➪ Save As Web Page command. In the Save As dialog box, choose the Selection:
Sheet option, and place a check mark next to Add interactivity. Click the Publish
button. You’ll get another dialog box (Publish as Web Page). Accept the defaults,
and click Publish.

When you open the HTML file in your browser, you’ll find that it displays a spread-
sheet-like object that is, in fact, interactive. Figure 4-2 shows an example, using
Microsoft’s Internet Explorer browser.

Caution

4799-2 ch04.F 6/11/01 9:28 AM Page 72

73Chapter 4 ✦ Understanding Excel’s Files

You might expect that the HTML file generated for an interactive worksheet would
be much more complex than the example in the previous section. You’d be wrong.
Such a worksheet occupies a single HTML file. Since only one sheet is involved
when you publish, there’s no need to get involved with the tab strip stuff. The com-
plexity is handled by an ActiveX control. Because of this, the end user must have
Office 2000 or later installed (or have a license for the Microsoft Web Components
ActiveX control) to view an interactive Excel file in his or her browser.

This section was intended to provide a brief overview of the HTML feature in Excel
2000 and 2002. This topic is definitely fodder for a complete book — one that I
don’t choose to write, thank you.

Figure 4-2: An example of an interactive Excel worksheet
displayed in a browser

Note

What about the Script Editor?

You’ll find that this book ignores a complete aspect of Excel: the Microsoft Script Editor,
which you access by pressing Alt+Shift+F11. The Script Editor is used to edit the JavaScript
(or VBScript) code in an HTML document. I consider this topic to be beyond the scope of
this book, and useful to only a very small number of readers. In fact, I have never been in
contact with anyone who had any interest at all in this topic. Consequently, I focus on the
real meat of Excel: non-Web-based application development using VBA.

4799-2 ch04.F 6/11/01 9:28 AM Page 73

74 Part I ✦ Some Essential Background

Excel Settings in the Registry
In this section, I provide some background information about the Windows Registry
and discuss how Excel uses the Registry to store its settings.

About the Registry
Windows 3.1 used a Registration Database to store information about file associa-
tion and OLE registration. The Windows 95 (or later) Registry extends this concept
by storing configuration information for all types of applications, as well as
computer-specific information.

The Registry is essentially a hierarchical database that can be accessed by applica-
tion software. This information is stored in two data files: System.dat (for system-
specific information) and User.dat (for user-specific information). Both of these files
are located in the Windows folder. In addition, the Registry may use a file named
Policy.pol — a file that contains system policies that override the information in the
other files.

You can use the Registry Editor program (Regedit.exe, in the Windows folder) to
browse the Registry — and even edit its contents if you know what you’re doing.
Before beginning your explorations, take a minute to read the sidebar titled “Before
You Edit the Registry . . . “ Figure 4-3 shows what the Registry Editor looks like.

Figure 4-3: The Registry Editor lets you browse and make changes to the Registry.

4799-2 ch04.F 6/11/01 9:28 AM Page 74

75Chapter 4 ✦ Understanding Excel’s Files

As I mentioned, the Registry is hierarchical. It consists of keys and values. Table 4-3
lists the top-level root keys of the Registry along with a brief description of the type
of information stored there.

Table 4-3
Top-Level Keys in the Windows Registry

Key Description

HKEY_CLASSES_ROOT Information on OLE, shortcut, and other interface features

HKEY_CURRENT_USER Data from the current user’s User.dat file (a duplicate of data
found in HKEY_USERS)

HKEY_LOCAL_MACHINE System-specific information from the System.dat file

HKEY_USERS Information about all users on the system

HKEY_CURRENT_CONFIG Hardware information

HKEY_DYN_DATA Information on installed devices

Excel’s settings
Information used by Excel 2002 is stored in

HKEY_CURRENT_USER\Software\Microsoft\Office\10.0\Excel

In this section of the Registry, you’ll find a number of keys that contain specific
values that determine how Excel operates.

Before You Edit the Registry . . .

You can use the Regedit.exe program to change anything in the Registry, including informa-
tion that is critical to your system’s operation. In other words, if you change the wrong piece
of information, Windows may no longer work properly.

Therefore, it’s a good idea to take some simple precautions. First, make sure that you have
a startup diskette (you can do this by using the Add/Remove Programs app in the Control
Panel). You can use this diskette to start Windows in an emergency.

Second, get into the habit of using the Registry ➪ Export Registry File command in Regedit.
This command enables you to save an ASCII version of the Registry or just a specific branch
of the Registry. If you find that you messed up something, you can always import the ASCII
file to restore the Registry to its previous condition (use the Registry ➪ Import Registry File
command). Refer to the help file for Regedit for details.

4799-2 ch04.F 6/11/01 9:28 AM Page 75

76 Part I ✦ Some Essential Background

The Registry settings are updated automatically by Excel when Excel closes.

It’s important to understand that Excel reads the Windows Registry only once —
when it starts up. In addition, Excel updates the Registry settings only when Excel
closes normally. If Excel crashes your system (unfortunately, not an uncommon
occurrence), the Registry information is not updated. For example, if you change
one of Excel’s settings, such as the visibility of the status bar, this setting is not writ-
ten to the Registry until Excel closes by normal means.

Table 4-4 lists the Registry sections that are relevant to Excel 2002. You may not
find all these sections in your Registry database.

Table 4-4
Excel Configuration Information in the Registry

Section Description

Add-in Manager Lists add-ins that appear in the list box when you choose the Tools ➪

Add-Ins command. Add-ins that are included with Excel do not appear
in this list. If you have an add-in entry in this list box that you no
longer use, you can remove it by using the Registry Editor.

Converters Lists additional (external) file converters that are not built into Excel.

AutoSave Holds the AutoSave option that you set.

Delete Commands Enables you to specify which menu commands you don’t want to
appear.

Error Checking Holds the settings for formula error checking.

Init Commands Holds information about custom commands.

Init Menus Holds information about custom menus.

Line Print Holds settings used in 1-2-3 macro printing. Excel updates this section
whenever it executes a 1-2-3 macro that has /wgdu (Worksheet
Global Default Update) in it.

Options A catch-all section; holds a wide variety of settings, including the paths
to files that are opened automatically when Excel starts (such as
add-ins).

Recent Files Stores the names of the last files saved (up to nine files).

Resiliency Information used for recovering documents.

Security Specifies the security level for opening files that contain macros.

Spell Checker Stores information about your spelling checker options.

UserInfo Information about the user.

WK? Settings Contains settings for opening and saving 1-2-3 files (for example,
whether to create an FMT or FM3 format file).

Note

4799-2 ch04.F 6/11/01 9:28 AM Page 76

77Chapter 4 ✦ Understanding Excel’s Files

Although you can change most of the settings via Excel’s Options dialog box,
several other useful settings cannot be changed directly from Excel (but you can
use the Registry Editor to make changes).

One more warning is in order. Prior to making any changes to the Registry, refer to
the sidebar “Before You Edit the Registry . . . “

Summary
In this chapter, I discussed the files used and created by Excel. I described Excel
installation, various ways to load files automatically, Excel’s file extensions, and file
formats supported by Excel (including HTML format). I also discussed some of
Excel’s settings in the Windows Registry. Information in this chapter that’s particu-
larly relevant to application development and programming appears in more detail
in other chapters.

This chapter concludes Part I. Part II provides information about developing user-
oriented applications with Excel.

✦ ✦ ✦

Caution

4799-2 ch04.F 6/11/01 9:28 AM Page 77

4799-2 ch04.F 6/11/01 9:28 AM Page 78

Excel
Application
Development

This part contains only two chapters, but they are impor-
tant for readers who want to become effective Excel

power programmers. In Chapter 5, I present my views on
exactly what constitutes a spreadsheet application. Chapter 6
discusses the general steps involved in creating a spreadsheet
application with Excel.

✦ ✦ ✦ ✦

In This Part

Chapter 5
What Is a
Spreadsheet
Application?

Chapter 6
Essentials of
Spreadsheet
Application
Development

✦ ✦ ✦ ✦

P A R T

IIII

4799-2 PO2.F 6/11/01 9:28 AM Page 79

4799-2 PO2.F 6/11/01 9:28 AM Page 80

What Is a
Spreadsheet
Application?

In this chapter, I attempt to clarify how people use spread-
sheets in the real world. This is a topic that’s germane to

this entire book because it can help you determine how much
effort you should devote to a particular development project.
By the time you finish this chapter, you should have a pretty
good idea of what I mean by a “spreadsheet application.” And
after you’ve made it through the rest of the book, you’ll be
well on your way to developing your own spreadsheet appli-
cations with Excel. But first, let’s get down to the basics.

You’ve probably been working with spreadsheets for several
years, but chances are good that your primary focus has been
on simply generating spreadsheets to get the job done. You
probably never gave much thought to more global issues like
those discussed in this chapter: the different types of spread-
sheet users, how to classify various types of spreadsheets,
and even basic questions such as why people use spread-
sheets. If the title of this book attracted your attention, it’s
important for you to understand these issues so that you can
become an effective “power programmer.” I’ll first discuss the
concept of a spreadsheet application. This is, after all, the
desired result of your power-programming efforts.

Spreadsheet Applications
Programming, as it relates to spreadsheet use, is essentially
the process of building applications that use a spreadsheet
rather than a traditional programming language such as C,
Pascal, or BASIC. In both cases, however, these applications
will be used by other people — not the developer of the
application.

55C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

A working definition
of a spreadsheet
application

The difference
between a
spreadsheet user and
a spreadsheet
developer

A system for
classifying
spreadsheet users to
help you
conceptualize who
the audience is for
your applications

A discussion of why
people use
spreadsheets

A taxonomy of the
basic types of
spreadsheets

✦ ✦ ✦ ✦

4799-2 ch05.F 6/11/01 9:28 AM Page 81

82 Part II ✦ Excel Application Development

For purposes of this book, a spreadsheet application is a spreadsheet file (or
group of related files) that is designed so that someone other than the developer
can perform useful work without extensive training. According to this definition,
most of the spreadsheet files you’ve developed probably wouldn’t qualify as
spreadsheet applications. You may have dozens or hundreds of spreadsheet files on
your hard drive, but it’s a safe bet that most of them aren’t really designed for oth-
ers to use.

A good spreadsheet application has the following characteristics:

✦ It enables the end user to perform a task that he or she probably would not be
able to do otherwise.

✦ It provides the appropriate solution to the problem. (A spreadsheet environ-
ment isn’t always the optimal approach.)

✦ It accomplishes what it is supposed to do. This may be an obvious prerequi-
site, but it’s not at all uncommon for applications to fail this test.

✦ It produces accurate results and is free of bugs.

✦ It uses appropriate and efficient methods and algorithms to accomplish
its job.

✦ It traps errors before the user is forced to deal with them. Note that errors
and bugs are not the same. Attempting to divide by zero is an error. Failure to
identify that error before it occurs is a bug.

✦ It does not allow the user to delete or modify important components acciden-
tally (or intentionally).

✦ Its user interface is clear and consistent, so the user always knows how to
proceed.

✦ Its formulas, macros, and user interface elements are well documented, allow-
ing for subsequent changes, if necessary.

✦ It is designed so that it can be modified in simple ways without making major
changes. A basic fact of life is that a user’s needs change over time.

✦ It has an easily accessible help system that provides useful information on at
least the major procedures.

✦ It is designed so that it is portable and runs on any system that has the proper
software (in this case, a copy of the appropriate version of Excel).

It should come as no surprise that it is possible to create spreadsheet applications
for many different usage levels, ranging from simple fill-in-the-blank templates to
extremely complex applications that use custom menus and dialog boxes and that
may not even look like spreadsheets.

4799-2 ch05.F 6/11/01 9:28 AM Page 82

83Chapter 5 ✦ What Is a Spreadsheet Application?

The Developer and the End User
I’ve already used the terms developer and end user, terms you’ll see frequently
throughout this book. Because you’ve gotten this far, I think I can safely assume
that you’re either a spreadsheet application developer or a potential developer.

My definitions regarding developers and end users are simple. The person who
creates the spreadsheet application is the developer. For joint projects, there are
multiple developers (a development team). The person who uses the results of the
developer’s spreadsheet programming efforts is the end user (which I often shorten
to simply user). In many cases, there will be multiple end users, and often the devel-
oper is one of the users.

Who are developers? What do they do?
I’ve spent about 15 years trading methodologies and basically hanging out with the
motley crew of folks who call themselves spreadsheet developers. I divide them
into two primary groups:

✦ Insiders are developers who are intimately involved with the users and thor-
oughly understand their needs. In many cases, these developers are also
users of the application. Often, they developed the application in response to
a particular problem.

✦ Outsiders are developers who are hired to produce a solution to a problem. In
most cases, developers in this category are familiar with the business in gen-
eral, but not with the specifics of the application they are developing. In other
cases, these developers are employed by the company that requests the
application (but they normally work in a different department).

Some developers devote full time to development efforts. These developers may be
either insiders or outsiders. A fair number of consultants (outsiders) make a decent
living developing spreadsheet applications on a freelance basis.

Other spreadsheet developers don’t work full time at the task and may not even
realize they are developing spreadsheet applications. These developers are often
office computer gurus who seem to know everything about computers and soft-
ware. These folks often create spreadsheet applications as a way to make their lives
easier — the time spent developing a well-designed application for others can often
save hours of training time and can greatly reduce the time spent answering others’
questions.

4799-2 ch05.F 6/11/01 9:28 AM Page 83

84 Part II ✦ Excel Application Development

Spreadsheet developers are typically involved in the following activities, often
performing most or all of each task on their own:

✦ Determining the needs of the user

✦ Planning an application that meets these needs

✦ Determining the most appropriate user interface

✦ Creating the spreadsheet, formulas, macros, and user interface

✦ Testing the application under all reasonable sets of conditions

✦ Making the application relatively “bulletproof” (often based on results from
the testing)

✦ Making the application aesthetically appealing and intuitive

✦ Documenting the development effort

✦ Distributing the application to users

✦ Updating the application if and when it’s necessary

I discuss these activities in more detail in Chapter 6.

Developers must have a thorough understanding of their development environment
(in this case, Excel). And there’s certainly a lot to know when it comes to Excel. By
any standard, Excel is easy to use, but defining what’s easy to use depends on the
user. Developing nontrivial spreadsheet applications with Excel requires an in-depth
knowledge of formulas, functions, macros, custom dialog boxes, custom toolbars,
menu modifications, and add-ins. Most Excel users, of course, don’t meet these
qualifications and have no intention of learning these details — which brings me to
the next topic: classifying spreadsheet users.

Classifying spreadsheet users
Over the years, I’ve found that it’s often useful to classify people who use spread-
sheets (including both developers and end users) along two dimensions: their
degree of experience with spreadsheets and their interest in learning about
spreadsheets.

To keep things simple, each of these two dimensions has three levels. Combining
them results in nine combinations, which are shown in Table 5-1. In reality, only
seven segments are worth thinking about because both moderately experienced
and very experienced spreadsheet users generally have at least some interest in
spreadsheets (that’s what motivated them to get their experience). Users who
have a lot of spreadsheet experience and a low level of interest would make very
bad developers.

Cross-
Reference

4799-2 ch05.F 6/11/01 9:28 AM Page 84

85Chapter 5 ✦ What Is a Spreadsheet Application?

Table 5-1
Classification of Spreadsheet Users by Experience and Interest

No Interest Moderately Very Interested
Interested

Little Experience User User User/Potential Developer

Moderately Experienced N/A User Developer

Very Experienced N/A User Developer

It should be clear that spreadsheet developers must have a great deal of experience
with spreadsheets, as well as a high interest in spreadsheets. Those with little
spreadsheet experience, but with a great deal of interest, are potential developers.
All they need is more experience. If you’re reading this book, you probably fall into
one of the boxes in the last column of the table.

The audience for spreadsheet applications
The remaining segments in the preceding table comprise spreadsheet end users,
whom you can think of as the consumers of spreadsheet applications. When you
develop a spreadsheet application for others to use, you need to know which of
these groups of people will actually be using your application.

Users with little experience and no interest comprise a large percentage of all
spreadsheet users, probably the largest segment of all. These are the people who
need to use a spreadsheet for their jobs but who view the spreadsheet simply as a
means to an end. Typically, they know very little about computers and software,
and they usually have no interest in learning anything more than what’s required to
get their work done. They might even feel a bit intimidated by computers. Often,
these users don’t even know which version of their spreadsheet they use, and they
are largely unfamiliar with what it can do. Obviously, applications developed for
this group must be user-friendly. By that I mean straightforward, unintimidating,
easy to use, and as bulletproof as possible.

From the developer’s point of view, a more interesting group of users are those who
have little or moderate spreadsheet experience but are interested in learning more.
These users understand the concept of formulas, use built-in worksheet functions,
and generally have a good idea of what the product is capable of doing. These users
generally appreciate the work you put into an application and are often impressed
by your efforts. Even better, they’ll often make excellent suggestions for improving
your applications. Applications developed for this group should also be user-
friendly (easy to use and bulletproof), but they can also be more complex and cus-
tomizable than applications designed for the less experienced and less interested
groups.

4799-2 ch05.F 6/11/01 9:28 AM Page 85

86 Part II ✦ Excel Application Development

Why people use spreadsheets
If I asked you why people use spreadsheets, you would probably have to think
about it before coming up with an answer. This question is rarely asked, but asking
it and arriving at a meaningful answer can have a major impact on your develop-
ment efforts. The real and not-at-all-surprising answer is that it depends on the
user.

Several years ago, I conducted an informal (and not very scientific) survey of
spreadsheet users at the company where I was working. Most of the employees
were using Excel, but there were also a few staunch 1-2-3 for DOS holdouts in the
group. The survey consisted of one question (Why do you use a spreadsheet? (
along with a series of check boxes. The survey respondents could choose as many
reasons as they liked. After I received the completed survey, I classified each user,
based on my knowledge of him or her, into one of two categories: Inexperienced or
Moderately/Very Experienced. The results are shown in Table 5-2.

Table 5-2
“Why Do You Use a Spreadsheet?”

Reason Inexperienced Moderately
or very experienced

It reduces the amount of work I have to do. 12% 100%

It saves time. 20% 91%

It makes my work look better. 76% 82%

It helps prevent calculation errors. 76% 82%

It can handle lots of different tasks. 12% 82%

It’s fun. 12% 73%

It’s the most appropriate tool for a particular task. 8% 73%

It makes good graphs. 12% 64%

I know how to use it. 68% 55%

It’s the only way I know to perform a particular task. 72% 36%

It’s all set up for me. 28% 27%

Making nice columns is easier with a spreadsheet 60% 18%
than with a word processor.

It was on my workstation when I came here. 36% 18%

I like the macros. 0% 9%

Everybody else does. 32% 0%

4799-2 ch05.F 6/11/01 9:28 AM Page 86

87Chapter 5 ✦ What Is a Spreadsheet Application?

I certainly don’t claim that this survey represents the views of all spreadsheet
users, and it’s likely that the results would be different if I did the survey today.
But I find it interesting, and maybe you will, too. I discuss my interpretations of
this data in the following sections.

Inexperienced users
More than three-quarters of the inexperienced users claim to use a spreadsheet
because it makes their work look better and helps prevent calculation errors. Other
reasons often cited by these users are that it’s the only way they know to perform a
particular task, they know how to use it, and making nice columns is easier with a
spreadsheet than with a word processor.

Only 12 percent claim that it reduces the amount of work they have to do or that it
can handle a lot of different tasks. This low percentage suggests that many inexperi-
enced users are missing the point of spreadsheets or that they perceive using a
spreadsheet as being work, and they don’t understand the spreadsheet’s
capabilities.

This group often uses spreadsheet software because it’s there. In many cases, these
users did not choose to have the software. It just happened to be installed on their
workstations. Or the person who had the job before they took over used a spread-
sheet, and it became a part of the job they inherited. When the time comes to pro-
duce the monthly sales report, these users fire up the spreadsheet and repeat the
same procedures they’ve followed for the past 12 months.

My experience with these users tells me that most of them learn only enough to
perform basic operations, and they typically ignore about 90 percent of a product’s
features. My survey supports this perception. Most of these users did not use the
charting feature, and none used a spreadsheet because of its macro capability. Only
8 percent said they use a spreadsheet because it’s the most appropriate tool. As a
side note, users in this group frequently use software inappropriately. For example,
I’ve seen people attempt to summarize information from massive databases by
importing huge files into a worksheet. Others write letters and memos using Lotus
1-2-3. Still others enter tables of numbers into a word processor and compute sums
by using a hand calculator. Go figure.

Moderately experienced and very experienced users
The more experienced survey respondents clearly have a better appreciation for
the potential uses of spreadsheet software, and generally, they checked off more
reasons for using spreadsheets. The reasons most frequently cited by experienced
users are usually those that are not checked by the inexperienced users, such as
reduced workload, time savings, most appropriate tool for a task, and so on.
Interestingly, these users also frequently cited the top two reasons that the inexpe-
rienced users gave for using a spreadsheet: better-looking work and fewer calcula-
tion errors.

4799-2 ch05.F 6/11/01 9:28 AM Page 87

88 Part II ✦ Excel Application Development

Conclusions
This informal survey may shed some light on why people use spreadsheets. The
bottom line is that people use spreadsheets

✦ Because spreadsheets make them (and their work) look good

✦ Because the results are more accurate

✦ Because spreadsheets save time and eliminate manual effort

These are not exactly earth-shattering conclusions, but as a developer, you can
translate these reasons into goals for the applications you develop. Your applica-
tion will be successful if it helps the user look good and generates attractive output,
produces more accurate results, and saves time and effort.

Solving Problems with a Spreadsheet
I’ve covered the basic concept of a spreadsheet application, discussed the end
users and developers of such applications, and even attempted to figure out why
people use spreadsheets at all. Now it’s time to take a look at the types of tasks that
are appropriate for spreadsheet applications.

You may already have a pretty good idea of the types of tasks for which you can use
a spreadsheet. Traditionally, spreadsheet software has been used for numerical
applications that are largely interactive in nature. Corporate budgets are an excel-
lent example of this. After the model has been set up (that is, after formulas have
been developed), working with a budget is simply a matter of plugging in amounts
and observing the bottom-line totals. Often, budgeters simply need to allocate fixed
resources among various activities and present the results in a reasonably attrac-
tive (or at least legible) format. A spreadsheet, of course, is ideal for this.

Budget-type problems, however, probably account for only a small percentage of
your spreadsheet-development time. If you’re like me, you’ve learned that uses for
spreadsheet software (particularly in recent years) can often extend well beyond
the types of tasks for which spreadsheets were originally designed.

Here are just a few examples of nontraditional ways that a spreadsheet such as
Excel can be used:

✦ As a presentation device. For example, with minimal effort you can create an
attractive, interactive on-screen slide show using only Excel.

✦ As a data-entry tool. For repetitive data-entry tasks, a spreadsheet is often the
most efficient route to take. The data can then be exported to a variety of for-
mats for use in other programs.

4799-2 ch05.F 6/11/01 9:28 AM Page 88

89Chapter 5 ✦ What Is a Spreadsheet Application?

✦ As a forms generator. For creating attractive printed forms, many find it easier to
use Excel’s formatting capabilities than to learn a desktop publishing package
such as PageMaker.

✦ As a text processor. The text functions found in all spreadsheets enable you to
manipulate text in ways that are impossible using a word processor.

✦ As a platform for simple games. Clearly, Excel was not designed with this in
mind. However, I’ve downloaded (and written) some interesting strategy games
using the tools found in Excel and other spreadsheets.

You can probably think of many more examples for this list.

Ironically, the versatility of spreadsheets is a double-edged sword. On one hand, it’s
tempting to try to use a spreadsheet for every problem that crops up. On the other
hand, you’ll often be spinning your wheels by trying to use a spreadsheet for a
problem that’s better suited for a different solution.

Basic Spreadsheet Types
In this section, I classify spreadsheets into several basic types to provide a better
perspective on how spreadsheet applications fit into the overall scheme of things.
This is all quite arbitrary, of course, and is based solely on my own experience.
Moreover, there is quite a bit of overlap between the categories, but they cover
most of the spreadsheets I’ve seen and developed.

My names for these categories are as follows:

✦ Quick-and-dirty

✦ For-your-eyes-only

✦ Single-user applications

✦ Spaghetti applications

✦ Utility applications

✦ Add-ins that contain worksheet functions

✦ Single-block budgets

✦ What-if models

✦ Data storage and access

✦ Database front ends

✦ Turnkey applications

I discuss each of these categories in the following sections.

4799-2 ch05.F 6/11/01 9:28 AM Page 89

90 Part II ✦ Excel Application Development

Quick-and-dirty spreadsheets
This is probably the most common type of spreadsheet. Most of the spreadsheets
in this category are fairly small and are developed to quickly solve a problem or
answer a question. Here’s an example: You’re about to buy a new car, and you want
to figure out your monthly payment for various loan amounts. Or perhaps you need
to generate a chart that shows your company’s sales by month, so you quickly
enter 12 values and whip out a chart, which you paste into your word processor.

In both of the preceding cases, you can probably input the entire model in a few
minutes, and you certainly won’t take the time to document your work. You proba-
bly won’t even think of developing any macros or custom dialog boxes. In fact, you
may not even deem these simple spreadsheets worthy of saving to disk. Obviously,
spreadsheets in this category are not applications.

For-your-eyes-only spreadsheets
As the name implies, no one except you — the creator — will ever see or use the
spreadsheets that fall into this category. An example of this type might be a file in
which you keep information relevant to your income taxes. You open the file when-
ever a check comes in the mail, you incur an expense that can be justified as busi-
ness, you buy tax-deductible Girl Scout cookies, and so on. Another example is a
spreadsheet that you use to keep track of your employees’ time records (sick leave,
vacation, and so on).

Spreadsheets in this category differ from quick-and-dirty spreadsheets in that you
use them more than once, so you save these spreadsheets to files. But again,
they’re not worth spending a great deal of time on. You may apply some simple for-
matting, but that’s about it. This type of spreadsheet also lacks any type of error
detection because you understand how the formulas are set up; you know enough
to avoid inputting data that will produce erroneous results. If an error does crop up,
you immediately know what caused it.

Spreadsheets in this category don’t qualify as applications, although they some-
times increase in sophistication over time. For example, I have an Excel workbook
that I use to track my income by source. This workbook was simple when I first set
it up, but I tend to add accouterments to it on a regular basis — more summary for-
mulas, better formatting, and even a chart that displays income by month. My lat-
est modification was to add a best-fit line to the chart to project income based on
past trends. I’ll probably continue to add more to this file, and it may eventually
qualify for the single-user application category.

Single-user applications
This is a spreadsheet application that only the developer uses, but its complexity
extends beyond the spreadsheets in the for-your-eyes-only category. For example,
I developed a workbook to keep track of registered users for my shareware

4799-2 ch05.F 6/11/01 9:28 AM Page 90

91Chapter 5 ✦ What Is a Spreadsheet Application?

applications. It started out as a simple worksheet database (for my eyes only), but
then I realized that I could also use it to generate mailing labels and invoices. One
day I spent an hour or so writing macros and then realized that I had converted this
application from a for-your-eyes-only application to a single-user application.

No one else will ever use this spreadsheet, but it’s a slick little application that’s
very easy to use. In this particular case, the time I spent modifying the spreadsheet
from a for-your-eyes-only spreadsheet to a single-user application was definitely
time well spent because it has already saved me several hours of work. The applica-
tion now has buttons that execute macros, and it has greatly reduced the amount of
effort required to deal with the mechanics of tracking my customers and mailing
products.

Creating single-user applications for yourself is an excellent way to get practice
with Excel’s developer’s tools. For example, you can learn to create custom dialog
boxes, modify menus, create a custom toolbar, write VBA macros, and so on. You’ll
find that working on a meaningful project (even if it’s meaningful only to you) is the
best way to learn advanced features in Excel — or any other software, for that
matter.

Spaghetti applications
An all-too-common type of spreadsheet is what I call a spaghetti application. The
term stems from the fact that the parts of the application are difficult to follow,
much like a plate of spaghetti. Most of these spreadsheets begin life as a reasonably
focused single-user application. But over time they are passed along to others who
make their own modifications. As requirements change and employees come and
go, new parts are added and others are ignored. Before too long, the original pur-
pose of the workbook may have been forgotten. The result is a file that is used fre-
quently, but no one really understands exactly how it all works.

Everyone who’s involved with it knows that the spaghetti application should be
completely reworked. But because nobody really understands it, the situation
tends to worsen over time. Spreadsheet consultants make a lot of money untangling
such applications. I’ve found that, in most cases, the most efficient solution is to
redefine the user needs and build a new application from scratch.

Utility applications
No one is ever completely satisfied with his or her spreadsheet product. Good as
it is, I still find quite a bit lacking in Excel. This brings me to the next category of
spreadsheets: utility applications. Utilities are special tools designed to perform a
single recurring task. For example, if you often import text into Excel, you may want
some additional text-handling commands, such as the ability to convert selected
text to uppercase (without using formulas). The solution? Develop a text-handling
utility that does exactly what you want.

4799-2 ch05.F 6/11/01 9:28 AM Page 91

92 Part II ✦ Excel Application Development

The Power Utility Pak is a collection of utility applications for Excel. I developed
these utilities to extend Excel’s functionality. These utilities work just like normal
Excel commands. You can find the shareware version of the Power Utility Pak on
the companion CD-ROM, and you can get a free copy of the full version by using
the coupon located at the back of the book. And if you’re interested, the com-
plete VBA source code is also available.

Utility applications are very general in nature. Most macros are designed to per-
form a specific operation on a specific type of data found in a specific type of work-
book. A good utility application essentially works like a command normally found
in Excel. In other words, the utility needs to recognize the context in which a com-
mand is executed and take appropriate action. This usually requires quite a bit of
error-handling code so that the utility can handle any situation that comes up.

Utility applications always use macros and may or may not use custom dialog
boxes. Fortunately, Excel makes it relatively easy to create such utilities, and they
can be converted to add-ins and attached to Excel’s user interface so that they
appear to be part of Excel.

The topic of creating utilities is so important that I devote an entire chapter to it.
Chapter 16 discusses how to create custom Excel utilities using VBA.

Add-ins that contain worksheet functions
As you know, Excel has many worksheet functions that you can use in formulas.
Chances are, you’ve needed a particular function, only to find that it doesn’t exist.
The solution? Create your own, using VBA. Custom worksheet functions can often
simplify your formulas and make your spreadsheet easier to maintain.

In Chapter 10, you’ll find everything you need to know about creating custom
worksheet functions, including lots of examples.

Single-block budgets
By a single-block budget, I mean a spreadsheet (not necessarily a budget model) that
essentially consists of one block of cells. The top row might contain names that cor-
respond to time (months, quarters, or years), and the left column usually contains
categories of some type. Typically, the bottom row and right column contain formu-
las that add the numbers together. There may or may not be formulas that compute
subtotals within the block.

This is a very common type of spreadsheet. In fact, VisiCalc (the world’s first
spreadsheet) was developed with this type of model in mind. In most cases, simple
single-block budget models are not good candidates for applications, because they

Cross-
Reference

Cross-
Reference

On the
CD-ROM

4799-2 ch05.F 6/11/01 9:28 AM Page 92

93Chapter 5 ✦ What Is a Spreadsheet Application?

are simple to begin with, but there are exceptions. For example, you might consider
converting such a spreadsheet into an application if the model is an unwieldy 3D
spreadsheet, needs to include consolidations from other files, or will be used by
departmental managers who may not understand spreadsheets.

What-if models
Many consider the what-if model category to be the epitome of spreadsheets at
their best. The ability to instantly recalculate thousands of formulas makes spread-
sheet software the ideal tool for financial modeling and other models that depend
on the values of several variables. If you think about it, just about any spreadsheet
that contains formulas is a what-if model (which are often distributed as templates).
Changing the value of a cell used in a formula is akin to asking “what if . . .?” My
view of this category, however, is a bit more sophisticated. It includes spreadsheets
designed exclusively for systematically analyzing the effects of various inputs.

What-if models are often good candidates for user-oriented applications, especially
if the model will be used for a lengthy period of time. Creating a good user interface
on an application can make it very easy for anyone to use, including computer-
illiterates. As an example, you might create an interface that lets the user provide
names for various sets of assumptions and then lets you instantly view the results
of a selected scenario and create a perfectly formatted summary chart with the
click of a button.

Data storage and access spreadsheets
It’s not surprising that spreadsheets are often used for keeping lists or modest
database manipulations. Most people find that it’s much easier to view and manipu-
late data in a spreadsheet than it is using normal database software. Beginning with
Excel 97, each worksheet consists of 65,536 rows, a size increase that greatly
extends the potential for database work.

Spreadsheets in this category are often candidates for applications, especially if
end users need to perform moderately sophisticated operations. However, Excel’s
built-in data form dialog box and its auto-filtering commands make working with
databases so easy that even beginning users can master simple database opera-
tions quickly.

For more sophisticated database applications, such as those that use multiple
tables with relationships between them, you’ll be better off using a real database
program such as Access.

4799-2 ch05.F 6/11/01 9:28 AM Page 93

94 Part II ✦ Excel Application Development

Database front ends
Increasingly, spreadsheet products are used to access external databases. Spread-
sheet users can access data stored in external files, even if they come in a variety of
formats, using tools that Excel provides. When you create an application that does
this, it’s sometimes referred to as an executive information system, or EIS. This sort
of system combines data from several sources and summarizes it for users.

Accessing external databases from a spreadsheet often strikes fear in the hearts of
beginning users. Creating an executive information system is therefore an ideal sort
of Excel application because its chief goal is usually ease of use.

Turnkey applications
The final category of spreadsheet types is the most complex. By turnkey, I mean
ready to go, with little or no preparation by the end user. For example, the user
loads the file and is presented with a user interface that makes user choices
perfectly clear. Turnkey applications may not even look as if they are being pow-
ered by a spreadsheet, and often, the user interacts completely with dialog boxes
rather than cells.

Actually, many of the categories just described can be converted into turnkey appli-
cations. The critical common elements, as I’ll discuss throughout the remainder of
the book, are good planning, error handling, and user-interface design.

Summary
In this chapter, I introduced the concept of a spreadsheet application. I then dis-
cussed the distinction between a developer and an end user, and I presented a
two-way classification system that describes spreadsheet users. Finally, I classified
spreadsheets into several categories, some of which qualify as material for applica-
tion developers.

✦ ✦ ✦

4799-2 ch05.F 6/11/01 9:28 AM Page 94

Essentials of
Spreadsheet
Application
Development

My goal in this chapter is to provide you with some
general guidelines that you may find useful as you

learn to create effective applications using Excel. There is
no simple, sure-fire recipe for developing an effective spread-
sheet application. Everyone has his or her own style for
creating such applications, and in my experience, I haven’t
discovered one “best way” that works for everyone. In addi-
tion, every project that you undertake will be different and
will therefore require its own approach. Finally, the demands
and general attitudes of the people you’ll be working with
(or for) also play a role in how the development process will
proceed.

As I mentioned in the preceding chapter, spreadsheet devel-
opers typically perform the following activities:

✦ Determine the needs of the user

✦ Plan an application that meets these needs

✦ Determine the most appropriate user interface

✦ Create the spreadsheet, formulas, macros, and user
interface

✦ Test and debug the application

✦ Attempt to make the application bulletproof

✦ Make the application aesthetically appealing and
intuitive

66C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

A discussion of the
basic steps involved
in spreadsheet
application
development

Determining end user
needs and planning
applications to meet
those needs

Guidelines for
developing and
testing your
applications

Documenting your
development efforts
and writing user
documentation

✦ ✦ ✦ ✦

4799-2 ch06.F 6/11/01 9:28 AM Page 95

96 Part II ✦ Excel Application Development

✦ Document the development effort

✦ Develop user documentation and online help

✦ Distribute the application to the user

✦ Update the application when it’s necessary

Not all of these steps are required for each application, and the order in which
these activities are performed may vary from project to project. Each of these activ-
ities is described in the pages that follow; and in most cases, the technical details
are covered in subsequent chapters.

Determining User Needs
When you undertake a spreadsheet application development project, one of your
first steps is to identify exactly what the end users require. Failure to thoroughly
assess the end users’ needs early on often results in additional work later when you
have to adjust the application so that it does what it was supposed to do in the first
place.

In some cases, you’ll be intimately familiar with the end users and may even be an
end user yourself. In other cases (for example, a consultant developing a project for
a new client), you may know little or nothing about the users or their situation.

Following are some guidelines that may help to make this phase easier:

✦ Don’t presume that you know what the user needs. Second-guessing at this
stage almost always causes problems later on.

✦ If possible, talk directly to the end users of the application, not just their
supervisor or manager.

✦ Learn what, if anything, is currently being done to meet the user’s needs. You
may be able to save some work by simply adapting an existing application.
At the very least, looking at current solutions will familiarize you with the
operation.

✦ Identify the resources available at the user’s site. For example, try to deter-
mine whether there are any hardware or software limitations that you must
work around.

✦ If possible, determine the specific hardware systems that will be used. If your
application will be used on slower systems, you need to take that into
account.

✦ Identify which version(s) of Excel are in use. Although Microsoft does every-
thing in its power to urge users to upgrade to the latest version of their soft-
ware, I’ve read estimates that fewer than 50 percent of Microsoft Office users
have the most recent version.

4799-2 ch06.F 6/11/01 9:28 AM Page 96

97Chapter 6 ✦ Essentials of Spreadsheet Application Development

✦ Understand the skill levels of the end users. This information will help you
design the application appropriately.

✦ Determine how long the application will be used and whether any changes are
anticipated during the lifetime of the project. Knowing this may influence the
amount of effort you put into the project and help you plan for changes. How
do you determine the needs of the user? If you’ve been asked to develop a
spreadsheet application, it’s a good idea to meet with the end user and ask
very specific questions. Better yet, get everything in writing, create flow dia-
grams, pay attention to minor details, and do anything else to ensure that the
product you deliver is the product that is needed.

One final note: Don’t be surprised if the project specifications change before you
complete the application. This is quite common, and you’ll be in a better position if
you expect changes rather than are surprised by them. Just make sure that your
contract (if you have one) addresses the issue of changing specifications.

Planning an Application
That Meets User Needs

Once you’ve determined the end users’ needs, it’s very tempting to jump right in
and start fiddling around in Excel — take it from someone who suffers from this
problem. But try to restrain yourself. Builders don’t construct a house without a
set of blueprints, and you shouldn’t develop a spreadsheet application without
some type of plan. The formality of your plan depends on the scope of the project
and your general style of working, but you should at least spend some time thinking
about what you’re going to do and coming up with a plan of action.

Before rolling up your sleeves and settling down at your keyboard, you’ll benefit by
taking some time to consider the various ways that you can approach the problem.
Here is where a thorough knowledge of Excel pays off. Avoiding blind alleys before
you stumble into them is always a good idea.

If you ask a dozen Excel gurus to design an application based on very precise speci-
fications, chances are you’ll get a dozen different implementations of the project
that all meet those specifications. And of those solutions, some will definitely be
better than the others because Excel often provides several different options to
accomplish a task. If you know Excel inside and out, you’ll have a pretty good idea
of the potential methods at your disposal, and you can choose the one most appro-
priate for the project at hand. Often, a bit of creative thinking yields an unusual
approach that’s vastly superior to other methods.

4799-2 ch06.F 6/11/01 9:28 AM Page 97

98 Part II ✦ Excel Application Development

So at the beginning stage of this planning period, you’ll be considering some
general options, such as those that follow:

✦ File structure. Think about whether you want to use one workbook with multi-
ple sheets, several single-sheet workbooks, or a template file.

✦ Data structure. You should always consider how your data will be structured.
This includes the use of external database files versus storing everything in
worksheets.

✦ Formulas versus VBA. Should you use formulas or write VBA procedures to
perform calculations? Both have advantages and disadvantages.

✦ Add-in or XLS file. In some cases, an add-in might be the best choice for your
final product. Or, perhaps you might use an add-in in conjunction with a stan-
dard workbook.

✦ Version of Excel. Will your Excel application be used with Excel 2002 only?
With Excel 2000 or Excel 97? What about Excel 95 and Excel 5? Will it also be
run on a Macintosh? These are very important considerations because each
new version of Excel adds features that aren’t available in previous versions.

✦ How to handle errors. Error handling is a major issue with applications. You
need to determine how your application will detect and deal with errors. For
example, if your application applies formatting to the active worksheet, you
need to be able to handle a case in which a chart sheet is active.

✦ Use of special features. If your application needs to summarize a lot of data,
you may want to consider using Excel’s pivot table feature. Or, you might
want to use Excel’s data validation feature as a check for valid data entry.

✦ Performance issues. The time to start thinking about increasing the speed and
efficiency of your application is at the development stage, not when the appli-
cation is completed and users are complaining.

✦ Level of security. As you may know, Excel provides several protection options
to restrict access to particular elements of a workbook. For example, you can
lock cells so that formulas cannot be changed, and you can assign a pass-
word to prevent unauthorized users from viewing or accessing specific files.
Determining up front exactly what you need to protect — and what level of
protection is necessary — will make your job easier.

You’ll probably have to deal with many other project-specific considerations in this
phase. The important thing is that you consider all options and don’t settle on the
first solution that comes to mind.

Another design consideration is remembering to plan for change. You’ll do yourself
a favor if you make your application as generic as possible. For example, don’t write
a procedure that works with only a specific range of cells. Rather, write a procedure
that accepts any range as an argument. When the inevitable changes are requested,

4799-2 ch06.F 6/11/01 9:28 AM Page 98

99Chapter 6 ✦ Essentials of Spreadsheet Application Development

such a design makes it easier for you to carry out the revisions. Also, you may find
that the work you do for one project is similar to the work you do for another.
Keeping reusability in mind when you are planning a project is always a good idea.

One thing that I’ve learned from experience is to avoid letting the end user com-
pletely guide your approach to a problem. For example, suppose you meet with a
manager who tells you that the department needs an application that writes text
files, which will be imported into another application. Don’t confuse the user’s
need with the solution. The user’s real need is to share data. Using an intermediate
text file to do it is one possible solution to the need. There may be other ways to
approach the problem — such as direct transfer of information by using DDE or
OLE. In other words, don’t let the users define their problem by stating it in terms
of a solution approach. Determining the best approach is your job.

Learning While You Develop

Now a few words about reality: Excel is a moving target. Excel’s upgrade cycle is approxi-
mately 18–24 months, which means that you have fewer than two years to get up to speed
with its current innovations before you have even more innovations to contend with.

Excel 5, which introduced VBA, represented a major paradigm shift for Excel developers.
Thousands of people up until that point earned their living developing Excel applications
that were largely based on the XLM macro language in Excel 2, 3, and 4. Beginning with
Excel 5, dozens of new tools became available and developers, for the most part, eagerly
embraced them.

When Excel 97 became available, developers faced yet another shift. This new version intro-
duced a new file format, the Visual Basic editor, and UserForms as a replacement for dialog
sheets. Excel 2000 and 2002 introduced additional features, but these changes were not as
radical as in previous upgrades.

We can probably look forward to yet another significant shift following Excel 2002.
Microsoft is currently developing its .NET (“dot net”) technology, and it’s likely that Office
will be part of that technology. And, word on the street is that Visual Studio for Applications
(VSA) will replace VBA.

VBA is not difficult to learn, but it definitely takes time to become comfortable with it, and
even more time to master it. The VBA language is still evolving. Consequently, it’s not
uncommon to be in the process of learning VBA while you’re developing applications with
it. In fact, I think it’s impossible to learn VBA without developing applications. If you’re like
me, you’ll find it much easier to learn VBA if you have a project that requires it. Learning
VBA just for the sake of learning VBA usually doesn’t work.

4799-2 ch06.F 6/11/01 9:28 AM Page 99

100 Part II ✦ Excel Application Development

Determining the Most Appropriate
User Interface

When you develop spreadsheets that others will use, you need to pay special atten-
tion to the user interface. By user interface, I mean the method by which the user
interacts with the application — clicking buttons, using menus, pressing keys,
accessing toolbars, and so on.

Again, it’s important that you keep the end user in mind. It’s likely that you have
much more computer experience than the end users, and an interface that’s intu-
itive to you may not be as intuitive to everyone else.

One way to approach the user interface issue is to rely on Excel’s built-in features:
its menus, toolbars, scroll bars, and so on. In other words, you can simply set up
the workbook and then let the user work with it however he or she wants. This may
be the perfect solution if the application will be used only by those who know Excel
well. More often, however, you’ll find that the audience for your application con-
sists of relatively inexperienced (and often disinterested) users. This makes your
job more difficult, and you’ll need to pay particular attention to the user interface
that drives your application.

Excel provides several features that are relevant to user-interface design:

✦ Custom dialog boxes (UserForms)

✦ Controls (such as a ListBox or a CommandButton) placed directly on a work-
sheet

✦ Custom menus

✦ Custom toolbars

✦ Custom shortcut keys

I discuss these features briefly in the following sections and cover them more
thoroughly in later chapters.

Creating custom dialog boxes
Anyone who has used Excel for any length of time is undoubtedly familiar with dia-
log boxes. Consequently, custom dialog boxes play a major role in the user inter-
faces you design for your applications.

Excel 97 introduced a completely new way to create custom dialog boxes:
UserForms. However, subsequent versions still support Excel 5/95 dialog sheets.
This book focuses exclusively on UserForms.

Note

4799-2 ch06.F 6/11/01 9:28 AM Page 100

101Chapter 6 ✦ Essentials of Spreadsheet Application Development

Figure 6-1 shows a custom dialog box that I developed for an application.

Figure 6-1: Custom dialog boxes are important
to an application’s user interface.

You can use a custom dialog box to solicit user input, get a user’s options or prefer-
ences, and direct the flow of your entire application. Custom dialog boxes are
stored in UserForms (one dialog box per UserForm). You create and edit custom
dialog boxes in the Visual Basic Editor (VBE), which you access by pressing
Alt+F11. The elements that make up a dialog box (buttons, drop-down lists, check
boxes, and so on) are called controls — more specifically, ActiveX controls. Excel
provides a standard assortment of ActiveX controls, and you can also incorporate
third-party controls.

After adding a control to a dialog box, you can link it to a worksheet cell so that it
doesn’t require any macros (except a simple macro to display the dialog box).
Linking a control to a cell is easy, but it’s not always the best way to get user input
from a dialog box. Most of the time, you’ll want to develop VBA macros that work
with your custom dialog boxes.

I cover UserForms in detail in Part IV.

Using ActiveX controls on a worksheet
Excel also lets you add the UserForm ActiveX controls to a worksheet’s draw layer.
Figure 6-2 shows a simple worksheet model with several UserForm controls
inserted directly on the worksheet. This sheet contains Option Buttons, a ScrollBar,
a CommandButton, and a CheckBox.

This workbook, which also includes a few simple macros, is available on the
companion CD-ROM.

On the
CD-ROM

Cross-
Reference

4799-2 ch06.F 6/11/01 9:28 AM Page 101

102 Part II ✦ Excel Application Development

Figure 6-2: Directly adding UserForm controls
may make a worksheet easier to use.

Perhaps the most common control is a CommandButton. By themselves, buttons
don’t do anything, so you have to attach a macro to each button.

Using dialog-box controls directly in a worksheet often eliminates the need for
custom dialog boxes. You can often greatly simplify the operation of a spreadsheet
by adding a few ActiveX controls to a worksheet. This lets the user make choices
by operating familiar controls rather than making entries into cells.

The ActiveX controls are found on the Control Toolbox toolbar. You can also use
Excel 5/95 compatible controls on a worksheet. These controls, which are not
ActiveX controls, are available on the Forms toolbar. These controls are not
discussed in this book. Table 6-1 summarizes these two classes of controls.

Table 6-1
ActiveX Controls vs Excel Controls

ActiveX Controls Excel Controls

Excel versions 97, 2000, 2002 5, 95, 97, 2000, 2002

Which toolbar? Control Toolbox Forms

Macro code storage In the code module In any standard VBA module
for the Sheet

4799-2 ch06.F 6/11/01 9:28 AM Page 102

103Chapter 6 ✦ Essentials of Spreadsheet Application Development

ActiveX Controls Excel Controls

Macro name Corresponds to the Any name you specify
control name (for
example,
CommandButton1_Click)

Correspond to... UserForm controls Dialog Sheet controls

Customization Extensive, using the Minimal
Properties box

Respond to events Yes Click or Change events only

Customizing menus
Another way to control the user interface in spreadsheet applications is to modify
Excel’s menus or to create your own menu system. Instead of creating buttons that
execute macros, you can add one or more new menus or menu items to execute
macros that you’ve already created. An advantage to custom menus is that the
menu bar is always visible, whereas a button placed on a worksheet can easily
scroll out of view.

Beginning with Excel 97, Microsoft implemented an entirely different way of deal-
ing with menus. As you’ll see in Chapter 22, a menu bar is actually a toolbar in dis-
guise. Figure 6-3 shows an example of a new menu added to Excel. This menu
was created by my Power Utility Pak add-in. Each menu item triggers a macro.

There are two ways to customize Excel’s menus. You can use VBA code to make the
menu modifications, or you can edit the menu directly, using the View ➪ Toolbars ➪
Customize command.

As I explain in Chapter 22, the best approach is usually to use VBA commands to
modify the menus. You have complete control over the menus, and can even per-
form such operations as disabling the menu item or adding a checkmark to the
item.

Menu modifications that you make using the View ➪ Toolbars ➪ Customize com-
mand (see Figure 6-4) are “permanent.” In other words, if you make a menu change
(such as the removal of a menu item), that change will remain in effect even if you
restart Excel.

The Menu Editor (which debuted in Excel 5) was removed, beginning with Excel
97. Menus that were created using the Menu Editor will continue to function when
the workbook is loaded into Excel 97 or later. However, the only way to modify or
delete menus created with the Menu Editor is to use Excel 5 or seek a utility that
was designed for this purpose.

Note

Note

4799-2 ch06.F 6/11/01 9:28 AM Page 103

104 Part II ✦ Excel Application Development

Figure 6-3: This new menu was created by an add-in.

Figure 6-4: The Customize dialog box is
where you make manual changes to Excel’s
menu system.

4799-2 ch06.F 6/11/01 9:28 AM Page 104

105Chapter 6 ✦ Essentials of Spreadsheet Application Development

You’ll find that you can customize every menu that Excel displays, even the
shortcut menus that appear when you right-click an object. You must use VBA to
customize the shortcut menus (you can’t do so manually). Figure 6-5 shows a cus-
tomized shortcut menu that appears when you right-click a cell or range. Notice
that this shortcut menu has several new commands that aren’t normally available
(the menu items with a “P” icon are custom items).

Figure 6-5: An example of a customized shortcut menu

I cover custom menus in detail in Chapter 23.

Customizing toolbars
Toolbars are very common in Windows applications, and Excel offers a huge assort-
ment of built-in toolbars. Generally, toolbar buttons serve as shortcuts for com-
monly used menu commands to give users a quicker way to issue commands.
Because a mouse is required to click a toolbar button, a toolbar button generally
isn’t the only way to execute a particular operation. Excel’s toolbars, for example,
make it possible to do most of the common spreadsheet operations without even
using the menus.

Cross-
Reference

4799-2 ch06.F 6/11/01 9:28 AM Page 105

106 Part II ✦ Excel Application Development

You can create a custom toolbar that contains only the tools you want users to
be able to access. In fact, if you attach macros to these tools, a custom toolbar
becomes the equivalent of a group of buttons placed on a worksheet. The advan-
tage to using the toolbar in this way is that it is always visible and can be reposi-
tioned anywhere on the screen. Buttons inserted on a worksheet are fixed in place
and can be scrolled off the screen.

Beginning with Excel 97, you can also add menus to a toolbar.

You can set up your application so that the toolbar appears whenever your applica-
tion is loaded. You do this by attaching a toolbar to a workbook using the Attach but-
ton in the Toolbars tab of the Customize dialog box (see Figure 6-6). This lets you store
individual toolbars with a workbook application so that you can distribute them to
users of your application.

Figure 6-6: You can attach a custom toolbar to a worksheet with the Attach Toolbars
dialog box.

I discuss the topic of toolbars in detail in Chapter 22.

Creating shortcut keys
The final user-interface option at your disposal is custom shortcut keys. Excel lets
you assign a Ctrl key (or Shift+Ctrl key) combination to a macro. When the user
presses the key combination, the macro executes. Obviously, you have to make it
clear to the user which keys are active and what they do. However, if speed is
essential, pressing a key combination is usually faster than issuing menu com-
mands, using a toolbar, or working with a dialog box.

You need to be careful, however, not to assign a key combination that’s already in
use for something else. For example, Ctrl+S is a built-in shortcut key used to save
the current workbook. If you assign this key combination to a macro, you lose the

Cross-
Reference

Note

4799-2 ch06.F 6/11/01 9:28 AM Page 106

107Chapter 6 ✦ Essentials of Spreadsheet Application Development

ability to save the file with Ctrl+S. In other words, a key combination you assign to a
macro takes precedence over the built-in shortcut keys. Shortcut keys are case-sen-
sitive, so you can use a combination such as Ctrl+Shift+S.

Executing the development effort
After you’ve identified user needs, determined the approach you’ll take to meet
those needs, and decided on the components you’ll use for the user interface, it’s
time to get down to the nitty-gritty and start creating the application. This step, of
course, comprises a great deal of the total time you spend on a particular project.

How you go about developing the application depends on your own personal style
and the nature of the application. Except for simple fill-in-the-blanks template work-
books, your application will probably use macros. Developing the macros is the
tough part. It’s easy to create macros in Excel, but it’s difficult to create good macros.
Part III of this book is devoted to VBA, the language you’ll use to write your macros.

Concerning Yourself with the End User
In this segment, I discuss the important development issues that surface as your
application becomes more and more workable, and the time to package and dis-
tribute your work grows nearer.

Testing the application
How many times have you used a commercial software application, only to have it
bomb out on you at a crucial moment? Most likely, the problem was caused by
insufficient testing that didn’t catch all the bugs. All nontrivial software has bugs,
but in the best software the bugs are simply more obscure. As you’ll see, you some-
times have to work around the bugs in Excel to get your application to perform
properly.

After you create your application, you need to test it. This is one of the most crucial
steps; it’s not uncommon to spend as much time testing and debugging an applica-
tion as you did creating the application in the first place. Actually, you should be
doing a great deal of testing during the development phase. After all, whether
you’re writing a VBA routine or creating formulas in a worksheet, you’ll want to
make sure that the application is working the way it’s supposed to work.

4799-2 ch06.F 6/11/01 9:28 AM Page 107

108 Part II ✦ Excel Application Development

Like standard compiled applications, spreadsheet applications that you develop
are prone to bugs. A bug is usually defined as (1) something that does happen but
shouldn’t while a program (or application) is running, or (2) something that doesn’t
happen when it should happen. Both species of bugs are equally nasty, and you
should plan on devoting a good portion of your development time to testing the
application under all reasonable conditions and fixing any problems you find. In
some cases, unfortunately, the problems aren’t entirely your fault. Excel, too, has
its problems (see the “Bugs? In Excel?” sidebar).

I probably don’t need to tell you to thoroughly test any spreadsheet development
you develop for others. And depending on its eventual audience, you might want to
make your application bulletproof. In other words, try to anticipate all of the errors
and screw-ups that could possibly occur, and make efforts to avoid them — or at
least handle them gracefully. This not only helps the end user, but also makes it
easier on you and your reputation.

Although you cannot conceivably test for all possibilities, your macros should be
able to handle common types of errors. For example, what if the user enters a text
string instead of a numeric value? What if the user tries to run your macro when a
workbook isn’t open? What if he or she cancels a dialog box without making any
selections? What happens if the user presses Ctrl+F6 and jumps to the next win-
dow? As you gain experience, issues like this become very familiar, and you’ll
account for them without even thinking.

Bugs? In Excel?

You might think that a product like Excel, which is used by millions of people throughout
the world, would be relatively free of bugs. Think again, pal. Excel is such a complex piece
of software that it is only natural to expect some problems with it. And Excel does have
some problems.

Getting a product like Excel out the door is not easy, even for a company like Microsoft with
seemingly unlimited resources. Releasing a software product involves compromises and
trade-offs. It’s commonly known that most major software vendors release their products
with full knowledge that they contain bugs. Most of the bugs are considered insignificant
enough to ignore. Software companies could postpone their releases by a few months and
fix most of them, but software, like everything else, is ruled by economics. The benefits of
delaying a product often do not exceed the costs involved. Although Excel definitely has its
share of bugs, my guess is that the majority of Excel users never encounter one.

In this book, I point out the problems with Excel that I know about. You’ll surely discover
some more on your own. Some problems occur only with a particular version of Excel, and
under a specific configuration involving hardware and/or software. These are the worst of
all bugs because they aren’t easily reproducible.

So what’s a developer to do? It’s called a workaround. If something that you try to do does-
n’t work — and all indications say that it should work — it’s time to move on to Plan B.
Frustrating? Sure. A waste of your time? Absolutely. It’s all part of being a developer.

4799-2 ch06.F 6/11/01 9:28 AM Page 108

109Chapter 6 ✦ Essentials of Spreadsheet Application Development

Making the application bulletproof
If you think about it, it’s fairly easy to destroy a spreadsheet. Erasing one critical
formula or value often causes errors throughout the entire worksheet — and per-
haps even other dependent worksheets. Even worse, if the damaged workbook is
saved, it replaces the good copy on disk. Unless a backup procedure is in place, the
user of your application could be in trouble and you’ll probably be blamed for it.

Obviously, it’s easy to see why you need to add some protection when users —
especially novices — will be using your worksheets. Excel provides several tech-
niques for protecting worksheets and parts of worksheets:

✦ You can lock specific cells (using the Protection tab in the Format Cells dialog
box) so that they cannot be changed. This takes effect only when the docu-
ment is protected with the Tools ➪ Protection ➪ Protect Sheet command.

✦ You can protect an entire workbook — the structure of the workbook, the
window position and size, or both. Use the Tools ➪ Protection ➪ Protect
Workbook command for this purpose.

✦ You can hide the formulas in specific cells (using the Protection tab in the
Format Cells dialog box) so that others can’t see them. Again, this takes effect
only when the document is protected with Tools ➪ Protection ➪ Protect Sheet
command.

What about Beta Testing?

Software manufacturers typically have a rigorous testing cycle for new products. After exten-
sive internal testing, the prerelease product is usually sent to a group of interested users for
beta testing. This phase often uncovers additional problems that are usually corrected
before the product’s final release.

If you’re developing an Excel application that more than a few people will use, you may
want to consider a beta test. This enables your application to be used in its intended setting
on different hardware (usually) and by the intended users.

The beta period should begin after you’ve completed all of your own testing, and you feel
the application is ready to distribute. You’ll need to identify a group of users to help you.
The process works best if you distribute everything that will ultimately be included in your
application: user documentation, installation program, online help, and so on. You can eval-
uate the beta test in a number of ways, including face-to-face discussions, questionnaires,
and phone calls.

You will almost always become aware of problems you need to correct or improvements
you need to make before you undertake a widespread distribution of the application.
Of course, a beta testing phase takes additional time, and not all projects can afford that
luxury.

4799-2 ch06.F 6/11/01 9:28 AM Page 109

110 Part II ✦ Excel Application Development

✦ You can lock objects on the worksheet (using the Protection tab in the Format
Object dialog box). This takes effect only when the document is protected
with the Tools ➪ Protection ➪ Protect Sheet command.

✦ You can hide rows (Format ➪ Row ➪ Hide), columns (Format ➪ Column ➪
Hide), sheets (Format ➪ Sheet ➪ Hide), and documents (Window ➪ Hide). This
helps prevent the worksheet from looking cluttered and also provides some
protection against prying eyes.

✦ You can designate an Excel workbook as read-only recommended (and use a
password) to ensure that the file cannot be overwritten with any changes. You
do this in the Save Options dialog box. Display this dialog box by choosing
Tools ➪ General Options in the Save As dialog box.

✦ You can assign a password to prevent unauthorized users from opening your
file. You do this in the Save Options dialog box. Display this dialog box by
choosing Tools ➪ General Options in the Save As dialog box.

✦ You can use a password-protected add-in, which doesn’t allow the user to
change anything on its worksheets.

Excel 2002 provides several new options in the area of sheet protection. Select
Tools ➪ Protection and you’ll see the new Protect Sheet dialog box. This allows you
to specify exactly which actions can be performed on a protected sheet. Also, the
Save Options dialog box has an Advanced button. Clicking this button allows you
to set the encryption level of the workbook.

Making the application aesthetically
appealing and intuitive
If you’ve used many different software packages, you’ve undoubtedly seen exam-
ples of poorly designed user interfaces, difficult-to-use programs, and just plain
ugly screens. If you’re developing spreadsheets for other people, you should pay
particular attention to how the application looks.

New
Feature

How Secure Are Excel’s Passwords?

As far as I know, Microsoft has never advertised Excel as a secure program. And for a good
reason: It’s actually quite easy to thwart Excel’s password system. Several commercial pro-
grams are available that can break passwords. Excel 2002 seems to have stronger security
than previous versions. Bottom line? Don’t think of password protection as foolproof. Sure,
it will be effective for the casual user. But if someone really wants to break your password,
it can probably be done.

4799-2 ch06.F 6/11/01 9:28 AM Page 110

111Chapter 6 ✦ Essentials of Spreadsheet Application Development

The way a computer program looks can make all the difference in the world to
users, and the same is true with the applications you develop with Excel. Beauty,
however, is in the eye of the beholder. If your skills lean more in the analytical direc-
tion, consider enlisting the assistance of someone with a more aesthetic sensibility
to provide help with design.

The users of your applications will appreciate a good-looking user interface, and
your applications will have a much more polished and professional look if you
devote some additional time to design and aesthetic considerations. An application
that looks good demonstrates that its developer cared enough about the product to
invest some extra time and effort. Take the following suggestions into account:

✦ Strive for consistency: When designing dialog boxes, for example, try to
emulate Excel’s dialog box look and feel whenever possible. Be consistent
with formatting, fonts, text size, and colors.

✦ A common mistake that developers make is trying to cram too much informa-
tion into a single screen or dialog box. A good rule of thumb is to present only
one or two chunks of information at a time.

✦ If you use an input screen to solicit information from the user, consider break-
ing it up into several, less crowded screens. If you use a complex dialog box,
you might want to break it up by using a MultiPage control (which lets you
create a familiar “tabbed” dialog box).

✦ Use color sparingly, because it’s very easy to overdo it and make the screen
look gaudy.

✦ Pay attention to numeric formats, typefaces and sizes, and borders.

Evaluating aesthetic qualities is very subjective. When in doubt, strive for simplicity
and clarity.

Documenting the development effort
Putting a spreadsheet application together is one thing. Making it understandable
for other people is another. As with traditional programming, it’s important that
you thoroughly document your work. Such documentation helps you if you need
to go back to it (and you will), and it helps anyone else you may pass it on to.

You may want to consider a couple of things when you document your project.
For example, if you were hired to develop an Excel application, you may not want
to share all your hard-earned secrets by thoroughly documenting everything. If
this is the case, you should maintain two versions: one thoroughly documented
and the other partially documented.

4799-2 ch06.F 6/11/01 9:28 AM Page 111

112 Part II ✦ Excel Application Development

How do you document a workbook application? You can either store the informa-
tion in a worksheet or use another file. You can even use a paper document if you
prefer. Perhaps the easiest way is to use a separate worksheet to store your com-
ments and key information for the project. For VBA code, use comments liberally
(text preceded with an apostrophe is ignored). An elegant piece of VBA code may
seem perfectly obvious to you today — but come back to it in a few months, and
your reasoning may be completely obscured.

With regard to user documentation, you basically have two choices: paper-based
documentation or electronic (online) documentation. Online help is standard fare
in Windows applications. Fortunately, your Excel applications can also provide
online help — even context-sensitive help. Developing online help takes quite a bit
of additional effort, but for a large project, it may be worth it.

In Chapter 23, I discuss several alternatives for providing online help for your
applications.

Distributing the application to the user
You’ve completed your project, and you’re ready to release it to the end users. How
do you go about doing this? You can choose from many ways to distribute your
application, and the method you choose depends on many factors.

You could just hand over a disk, scribble a few instructions, and be on your way. Or,
you may want to install the application yourself — but this is not always feasible.
Another option is to develop an official setup program that performs the task auto-
matically. You can write such a program in a traditional programming language,
purchase a generic setup program, or write your own in VBA.

The Developers Edition of Microsoft Office includes a Setup Wizard that helps you
prepare your applications for distribution.

Excel 2000 and later uses Microsoft Authenticode technology to enable developers
to digitally “sign” their applications. This process is designed to help end users
identify the author of an application, ensure that the project has not been altered,
and help prevent the spread of macro viruses or other potentially destructive code.
To digitally sign a project, you just first apply for a digital certificate from a formal
certificate authority (or, you can self-sign your project by creating your own digital
certificate). Refer to the online help or Microsoft’s Web site for additional
information.

Another point to consider is support for your application. In other words, who gets
the phone call if the user encounters a problem? If you aren’t prepared to handle
routine questions, you’ll need to identify someone who is. In some cases you’ll want
to arrange it so that only highly technical or bug-related issues escalate to the
developer.

Note

Cross-
Reference

4799-2 ch06.F 6/11/01 9:28 AM Page 112

113Chapter 6 ✦ Essentials of Spreadsheet Application Development

Updating the application when necessary
After you distribute your application, you’re finished with it, right? You can sit
back, enjoy yourself, and try to forget about the problems you encountered (and
solved) during the course of developing your application. In rare cases, yes, you
may be finished. More often, however, the users of your application will not be com-
pletely satisfied. Sure, your application adheres to all of the original specifications,
but things change. Seeing an application working frequently causes the user to
think of other things that the application could be doing. We’re talking updates.

When you need to update or revise your application, you’ll appreciate that you
designed it well in the first place and you fully documented your efforts. If not,
well . . . we learn from our experiences.

Other Development Issues
You need to keep several other issues in mind when developing an application —
especially if you don’t know exactly who will be using the application. If you’re
developing an application that will have widespread use (a shareware application,
for example), you have no way of knowing how the application will be used, what
type of system it will run on, or what other software will be running concurrently.

Why Is There No Runtime Version of Excel?

When you distribute your application, you need to be sure that each end user has a
licensed copy of the appropriate version of Excel. It’s illegal to distribute a copy of Excel
along with your application. Why, you might ask, doesn’t Microsoft provide a runtime ver-
sion of Excel? A runtime version is an executable program that can load files, but not create
them. With a runtime version, the end user wouldn’t need a copy of Excel to run your appli-
cation (this is common with database programs).

I’ve never seen a clear or convincing reason why Microsoft does not have a runtime version
of Excel, and no other spreadsheet manufacturer offers a runtime version of its product
either. The most likely reason is that spreadsheet vendors fear that doing so would reduce
sales of the software. Or, it could be that developing a runtime version would require a
tremendous amount of programming that would just never pay off.

On a related note . . . Microsoft does offer an Excel file viewer. This product lets you view
Excel files if you don’t own a copy of Excel. Macros, however, will not execute. You can get
a copy of this free file viewer from Microsoft’s Web site (http://officeupdate.
microsoft.com).

4799-2 ch06.F 6/11/01 9:28 AM Page 113

114 Part II ✦ Excel Application Development

The user’s installed version of Excel
With every new release of Excel, the issue of compatibility rears its head. As I write
this, Excel 2002 is just about ready to be released — yet many large corporations
are still using Excel 95 or Excel 97, and some use even earlier versions.

Unfortunately, there is no guarantee that an application developed for, say Excel 95,
will work perfectly with later versions of Excel. If you need your application to work
with Excel 95, Excel 97, Excel 2000, and Excel 2002, you’re going to have to work
with the lowest common denominator (Excel 95) — and then test it thoroughly with
all other versions.

Things get even more complicated when you consider Excel’s “subversions.”
Microsoft distributes service releases (SRs) to correct problems. For example,
users might have the original Excel 2000, Excel 2000 with SR-1, or Excel 2000
with SR-2.

I discuss compatibility issues in Chapter 25.

Language issues
Consider yourself very fortunate if all of your end users have the English language
version of Excel. Non-English versions of Excel aren’t always 100 percent compati-
ble, so that would mean additional testing on your part.

I briefly discuss language issues in Chapter 25.

System speed
You’re probably a fairly advanced computer user and tend to keep your hardware
reasonably up to date. In other words, you have a fairly powerful system that is
probably better than the average user’s system. In some cases, you’ll know exactly
what hardware the end users of your applications are using. If so, it’s vitally impor-
tant that you test your application on that system. A procedure that executes
almost instantaneously on your system may take several seconds on another sys-
tem. In the world of computers, several seconds may be unacceptable.

As you gain more experience with VBA, you’ll discover that there are ways to get
the job done, and there are ways to get the job done fast. It’s a good idea to get
into the habit of coding for speed. Other chapters in this book will certainly help
you out in this area.

Tip

Cross-
Reference

Cross-
Reference

4799-2 ch06.F 6/11/01 9:28 AM Page 114

115Chapter 6 ✦ Essentials of Spreadsheet Application Development

Video modes
As you may know, most Windows users use one of three standard video modes:
640 × 480 (that is, standard VGA mode), 800 × 600, and 1024 × 768. If you develop
an application in anything but VGA mode, the application may look terrible when it
runs on a VGA system.

I certainly don’t recommend developing your apps in VGA mode! You should,
however, test them in that mode if there’s a likelihood that they will be used in
that mode.

This can be a big problem if your application relies on specific information being
displayed on a single screen. For example, if you develop an input screen using 800
× 600 mode, users with a standard VGA display may not be able to see all of the
input screen without scrolling. Also, it’s important to realize that a restored (that is,
not maximized or minimized) workbook is displayed at its previous window size
and position. In the extreme case, it’s possible that a window saved using a high-
resolution display may be completely off the screen when opened on a system run-
ning in VGA mode.

Although advanced users tend to use higher resolutions in Windows, using VGA is
unavoidable in some cases. Some older laptop systems, for example, support only
VGA for their built-in display. There’s no way to automatically scale things so that
they look the same regardless of the display resolution. Unless you’re certain of the
video resolution that the users of your application will be using, it’s important that
you design your application using the lowest common denominator — VGA mode.

As you will learn later in the book (see Chapter 10), it’s possible to determine the
user’s video resolution by using Windows API calls from VBA. In some cases, you
may want to programmatically adjust things depending on the user’s video
resolution.

Directory structure
Another issue you need to think about is the structure of the user’s hard drive —
how the directories are arranged and named. For example, you can’t assume that
Excel is installed in a directory named C:\PROGRAM FILES\MICROSOFT OFFICE\
OFFICE. And you can’t even assume that it’s installed on drive C. Similarly, you can’t
assume that Windows is installed in a directory named WINDOWS. Although these
are the default installation locations, many systems won’t adhere to these conven-
tions. Fortunately, it’s possible to use VBA to determine file storage locations.

Note

4799-2 ch06.F 6/11/01 9:28 AM Page 115

116 Part II ✦ Excel Application Development

Summary
In this chapter, I outlined the basic process for developing a spreadsheet application.
Much of the information in this chapter is discussed in more detail later on in the
book.

✦ ✦ ✦

4799-2 ch06.F 6/11/01 9:28 AM Page 116

Understanding
Visual Basic for
Applications

This part is the heart of the book. It begins with an intro-
ductory overview of VBA and continues through key

topics that get you started developing professional applica-
tions. You’ll learn about VBA procedures (Sub procedures
and Function procedures) and get up to speed with essential
programming concepts. In addition, you’ll find many practical
examples that you can adapt for your own use.

✦ ✦ ✦ ✦

In This Part

Chapter 7
Introducing Visual
Basic for Applications

Chapter 8
VBA Programming
Fundamentals

Chapter 9
Working with VBA
Sub Procedures

Chapter 10
Creating Function
Procedures

Chapter 11
VBA Programming
Examples and
Techniques

✦ ✦ ✦ ✦

P A R T

IIIIII

4799-2 PO3.F 6/11/01 9:28 AM Page 117

4799-2 PO3.F 6/11/01 9:28 AM Page 118

Introducing
Visual Basic for
Applications

Programming Excel essentially boils down to manipulat-
ing objects, which you do by writing instructions in a

language that Excel can understand. This chapter introduces
you to that language, and provides an introduction to the
objects that make up Excel.

Some BASIC Background
Many hard-core programmers scoff at the idea of program-
ming in BASIC. The name itself (an acronym for Beginner’s All-
purpose Symbolic Instruction Code) suggests that it’s not a
professional language. In fact, BASIC was first developed in
the early 1960s as a way to teach programming techniques to
college students. BASIC caught on quickly and is available in
hundreds of dialects for many types of computers.

BASIC has evolved and improved over the years. For example,
in many early implementations, BASIC was an interpreted
language. Each line was interpreted before it was executed,
causing slow performance. Most modern dialects of BASIC
allow the code to be compiled, resulting in much faster
execution and improved program portability.

BASIC gained quite a bit of respectability in 1991 when Microsoft
released Visual Basic for Windows (which is currently in ver-
sion 6.0). This product made it easy for the masses to develop
standalone applications for Windows. Visual Basic has very
little in common with early versions of BASIC, but BASIC is the
foundation on which VBA was built.

77C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

An introduction to
VBA — the
programming
language built into
Excel 2002

How VBA is different

How to use the Visual
Basic Editor (VBE)

How to work in the
code windows in the
VBE and customize
the VBE environment

Information on using
Excel’s macro
recorder

An overview of
objects, collections,
properties, and
methods

A case study of the
Comment object

Specific information
and examples of
working with Range
objects

How to access a lot
of information about
Excel objects,
properties, and
methods

4799-2 ch07.F 6/11/01 9:29 AM Page 119

120 Part III ✦ Understanding Visual Basic for Applications

About VBA
Excel 5 was the first application on the market to feature Visual Basic for Appli-
cations. VBA is best thought of as Microsoft’s common application scripting
language, and it’s now included with all Office 2002 applications, and even applica-
tions from other vendors. Therefore, if you master VBA using Excel, you’ll be able
to jump right in and write macros for other Microsoft (and non-Microsoft) products.
Even better, you’ll be able to create complete solutions that use features across
various applications.

Object models
The secret to using VBA with other applications lies in understanding the object
model for each application. VBA, after all, simply manipulates objects, and each
product (Excel, Word, Access, PowerPoint, and so forth) has its own unique object
model. You can program an application using the objects that the application
exposes.

Excel’s object model, for example, exposes several very powerful data analysis
objects, such as worksheets, charts, pivot tables, scenarios, and numerous mathe-
matical, financial, engineering, and general business functions. With VBA, you can
work with these objects and develop automated procedures. As you work with VBA
in Excel, you’ll gradually build an understanding of the object model. Warning: It
will be very confusing at first. Eventually, however, the pieces will come together
and all of a sudden you’ll realize that you’ve mastered it!

VBA versus XLM
Before version 5, Excel used a powerful (but cryptic) macro language called XLM.
Later versions of Excel still execute XLM macros, but the ability to record macros in
XLM was removed beginning with Excel 97. As a developer, you should be aware of
XLM (in case you ever encounter macros written in that system), but you should
use VBA for your development work.

Figures 7-1 and 7-2 show a simple procedure coded in both XLM and VBA. This
macro works on the selected cells. It changes the cell background color and adds
a border around the cells. You probably agree that the VBA code is much easier to
read. More important, however, the VBA code is also easier to modify when the
need arises.

4799-2 ch07.F 6/11/01 9:29 AM Page 120

121Chapter 7 ✦ Introducing Visual Basic for Applications

Figure 7-1: A simple macro coded in Excel’s XLM
language, stored on a macro sheet.

Figure 7-2: A simple macro coded in Excel’s VBA language, stored
in a VBA module.

VBA versus Lotus macros
Lotus 1-2-3 (the DOS version) was the first spreadsheet to incorporate macro
capability. Although this feature was great in its day, it’s quite crude by today’s
standards. The original 1-2-3 for DOS macros were based on simple keystroke
recording, and then playing back those keystrokes to execute the macro. For
example, a 1-2-3 for DOS macro that names a range might look like this:

/RNC~

This represents the following 1-2-3 command sequence:

/Range Name Create (Enter)

The keystroke-oriented macro language in 1-2-3 was eventually replaced by a
command-oriented language. The most recent versions of 1-2-3 include a scripting
language similar to VBA (see the next section).

4799-2 ch07.F 6/11/01 9:29 AM Page 121

122 Part III ✦ Understanding Visual Basic for Applications

VBA versus LotusScript
1-2-3 97 and later editions feature LotusScript, a procedural language that has much
in common with VBA. My experience with LotusScript is limited, but from what I
have seen, VBA offers many advantages.

In light of the fact that VBA has become a “standard” and users have a huge code
base to draw on, one wonders why Lotus developed a new (incompatible) language
rather than simply licensing VBA from Microsoft.

The Basics of VBA
Before I get into the meat of things, I suggest that you read through the material in
this section to get a broad overview of where I’m heading. These are the topics that
I cover in the remainder of this chapter.

Following is a quick-and-dirty summary of what VBA is all about:

✦ You perform actions in VBA by executing VBA code.

✦ You write (or record) VBA code, which is stored in a VBA module.

VBA modules are stored in an Excel workbook, but you view or edit a module
using the Visual Basic Editor (VBE).

✦ A VBA module consists of procedures.

A procedure is basically a unit of computer code that performs some action.
Here’s an example of a simple Sub procedure called Test: This procedure
calculates a simple sum and then displays the result in a message box.

Sub Test()
Sum = 1 + 1
MsgBox “The answer is “ & Sum

End Sub

✦ Besides Sub procedures, a VBA module can also have Function procedures.

A Function procedure returns a single value (or possibly an array). A function
can be called from another VBA procedure, or used in a worksheet formula.
Here’s an example of a function named AddTwo:

Function AddTwo(arg1, arg2)
AddTwo = arg1 + arg2

End Function

✦ VBA manipulates objects contained in its host application (in this case, Excel
is the host application).

Excel provides you with more than 100 classes of objects to manipulate. Exam-
ples of objects include a workbook, a worksheet, a range on a worksheet, a
chart, and a drawn rectangle. Many more objects are at your disposal, and
you can manipulate them using VBA code.

4799-2 ch07.F 6/11/01 9:29 AM Page 122

123Chapter 7 ✦ Introducing Visual Basic for Applications

✦ Object classes are arranged in a hierarchy.

Objects can act as containers for other objects. For example, Excel is an
object called Application, and it contains other objects, such as Workbook
and CommandBar objects. The Workbook object can contain other objects,
such as Worksheet objects and Chart objects. A Worksheet object can
contain objects such as Range objects, PivotTable objects, and so on. The
arrangement of these objects is referred to as Excel’s object model.

✦ Like objects form a collection.

For example, the Worksheets collection consists of all the worksheets in a
particular workbook. The CommandBars collection consists of all CommandBar
objects. Collections are objects in themselves.

✦ When you refer to a contained or member object, you specify its position in
the object hierarchy using a period (also known as a “dot”) as a separator
between the container and the member.

For example, you can refer to a workbook named Book1.xls as

Application.Workbooks(“Book1.xls”)

This refers to the Book1.xls workbook in the Workbooks collection. The
Workbooks collection is contained in the Excel Application object.
Extending this to another level, you can refer to Sheet1 in Book1 as

Application.Workbooks(“Book1.xls”).Worksheets(“Sheet1”)

You can take it to still another level and refer to a specific cell as follows:

Application.Workbooks(“Book1.xls”).Worksheets(“Sheet1”).Range
(“A1”)

✦ If you omit a specific reference to an object, Excel uses the active objects.

If Book1 is the active workbook, the preceding reference can be simplified as

Worksheets(“Sheet1”).Range(“A1”)

If you know that Sheet1 is the active sheet, you can simplify the reference
even more:

Range(“A1”)

✦ Objects have properties.

A property can be thought of as a setting for an object. For example, a range
object has properties such as Value and Name. A chart object has properties
such as HasTitle and Type. You can use VBA to determine object properties
and also to change them.

✦ You refer to properties by combining the object with the property, separated
by a period.

For example, you can refer to the value in cell A1 on Sheet1 as

Worksheets(“Sheet1”).Range(“A1”).Value

4799-2 ch07.F 6/11/01 9:29 AM Page 123

124 Part III ✦ Understanding Visual Basic for Applications

An Analogy

If you like analogies, here’s one for you. It may help you understand the relationships
between objects, properties, and methods in VBA. In this analogy, I compare Excel with a
fast-food restaurant chain.

The basic unit of Excel is a Workbook object. In a fast-food chain, the basic unit is an indi-
vidual restaurant. With Excel, you can add workbooks and close workbooks, and all the
open workbooks are known as Workbooks (a collection of Workbook objects). Similarly,
the management of a fast-food chain can add restaurants and close restaurants — and all
the restaurants in the chain can be viewed as a collection of Restaurant objects.

An Excel workbook is an object, but it also contains other objects such as worksheets,
charts, VBA modules, and so on. Furthermore, each object in a workbook can contain its
own objects. For example, a Worksheet object can contain Range objects, PivotTable
objects, Shape objects, and so on.

Continuing with the analogy, a fast-food restaurant (like a workbook) contains objects such
as the Kitchen, DiningArea,and Tables (a collection). Furthermore, management can add
or remove objects from the Restaurant object. For example, management may add more
tables to the Table collection. Each of these objects can contain other objects. For example,
the Kitchen object has a Stove object, VentilationFan object, a Chef object, Sink
object, and so on.

So far, so good. This analogy seems to work. Let’s see if I can take it further.

Excel’s objects have properties. For example, a Range object has properties such as Value
and Name, and a Shape object has properties such as Width, Height, and so on. Not sur-
prisingly, objects in a fast-food restaurant also have properties. The Stove object, for exam-
ple, has properties such as Temperature and NumberofBurners. The VentilationFan
has its own set of properties (TurnedOn, RPM, and so forth).

Besides properties, Excel’s objects also have methods, which perform an operation on an
object. For example, the ClearContents method erases the contents of a Range object. An
object in a fast-food restaurant also has methods. You can easily envision a
ChangeThermostat method for a Stove object, or a SwitchOn method for a
VentilationFan object.

With Excel, methods sometimes change an object’s properties. The ClearContents
method for a Range changes the Range’s Value property. Similarly, the
ChangeThermostat method on a Stove object affects its Temperature property.

With VBA, you can write procedures to manipulate Excel’s objects. In a fast-food restaurant,
the management can give orders to manipulate the objects in the restaurants (“Turn the
stove on and switch the ventilation fan to high.”). Now is it clear?

4799-2 ch07.F 6/11/01 9:29 AM Page 124

125Chapter 7 ✦ Introducing Visual Basic for Applications

✦ You can assign values to VBA variables. Think of a variable as a name that you
can use to store a particular value.

To assign the value in cell A1 on Sheet1 to a variable called Interest, use the
following VBA statement:

Interest = Worksheets(“Sheet1”).Range(“A1”).Value

✦ Objects have methods.

A method is an action that is performed with the object. For example, one of
the methods for a Range object is ClearContents. This method clears the
contents of the range.

✦ You specify methods by combining the object with the method, separated by
a period.

For example, to clear the contents of cell A1 on the active worksheet, use this:

Range(“A1”).ClearContents

✦ VBA also includes all the constructs of modern programming languages,
including arrays, looping, and so on.

Believe it or not, the preceding section pretty much describes VBA. Now it’s just a
matter of learning the details, which is what I cover in the rest of this chapter.

Introducing the Visual Basic Editor
In Excel 5 and Excel 95, a VBA module appeared as a separate sheet in a workbook.
Beginning with Excel 97, VBA modules no longer show up as sheets in a workbook.
Rather, you use the Visual Basic Editor (VBE) to view and work with VBA modules.

VBA modules are still stored with workbook files; they just aren’t visible unless you
activate the VBE.

The VBE is a separate application that works seamlessly with Excel. By seamlessly, I
mean that Excel takes care of the details of opening the VBE when you need it. You
can’t run VBE separately; Excel must be running in order for the VBE to run.

Activating the VBE
When you’re working in Excel, you can switch to the VBE using any of the following
techniques:

✦ Press Alt+F11.

✦ Select Tools ➪ Macro ➪ Visual Basic Editor.

✦ Click the Visual Basic Editor button, which is located on the Visual Basic
toolbar.

Note

4799-2 ch07.F 6/11/01 9:29 AM Page 125

126 Part III ✦ Understanding Visual Basic for Applications

Don’t confuse the Visual Basic Editor with the Microsoft Script Editor. These are
two entirely different animals. The Script Editor is used to edit HTML scripts written
in VBScript or JavaScript. The Script Editor is not covered in this book.

Figure 7-3 shows the VBE. Chances are, your VBE window won’t look exactly like
the window shown in the figure. This window is highly customizable — you can
hide windows, change their sizes, “dock” them, rearrange them, and so on.

Figure 7-3: The Visual Basic Editor window

The VBE windows
The VBE consists of a number of parts. I briefly describe some of the key compo-
nents in the sections that follow.

Menu bar
The VBE menu bar, of course, works like every other menu bar you’ve encountered.
It contains commands that you use to work with the various components in the
VBE. Also, you’ll find that many of the menu commands have shortcut keys associ-
ated with them. For example, the View ➪ Immediate Window command has a short-
cut key of Ctrl+G.

Note

4799-2 ch07.F 6/11/01 9:29 AM Page 126

127Chapter 7 ✦ Introducing Visual Basic for Applications

The VBE also features shortcut menus. As you’ll discover, you can right-click
virtually anything in a VBE window and you’ll get a shortcut menu of common
commands.

Toolbars
The Standard toolbar, which is directly under the menu bar by default, is one of six
VBE toolbars available (the menu bar is also considered a toolbar). VBE toolbars
work just like those in Excel: You can customize toolbars, move them around, dis-
play other toolbars, and so forth. Use the View ➪ Toolbars ➪ Customize command
to work with VBE toolbars.

Project Explorer window
The Project Explorer window displays a tree diagram that consists of every work-
book that is currently open in Excel (including add-ins and hidden workbooks).
Each workbook is known as a project. I discuss the Project Explorer window in
more detail in the next section (“Working with the Project Explorer”).

If the Project Explorer window is not visible, press Ctrl+R. To hide the Project
Explorer window, click the Close button in its title bar (or right-click anywhere
in the Project Explorer window and select Hide from the shortcut menu).

Code window
A code window (sometimes known as a Module window) contains VBA code. Every
item in a project has an associated code window. To view a code window for an
object, double-click the object in the Project Explorer window. For example, to view
the code window for the Sheet1 object, double-click Sheet1 in the Project Explorer
window. Unless you’ve added some VBA code, the code window will be empty.

Another way to view the code window for an object is to select the object in the
Project Explorer window and then click the View Code button in the toolbar at the
top of the Project Explorer window.

I discuss code windows later on in this chapter (see “Working with Code
Windows”).

Immediate window
The Immediate window is most useful for executing VBA statements directly, test-
ing statements, and debugging your code. This window may or may not be visible.
If the Immediate window isn’t visible, press Ctrl+G. To close the Immediate window,
click the Close button in its title bar (or right-click anywhere in the Immediate win-
dow and select Hide from the shortcut menu).

Tip

4799-2 ch07.F 6/11/01 9:29 AM Page 127

128 Part III ✦ Understanding Visual Basic for Applications

Working with the Project Explorer
When you’re working in the VBE, each Excel workbook and add-in that’s currently
open is considered a project. You can think of a project as a collection of objects
arranged as an outline. You can expand a project by clicking the plus sign (+) at the
left of the project’s name in the Project Explorer window. You contract a project by
clicking the minus sign (-) to the left of a project’s name. You can also use the
Toggle Folders button in the toolbar at the top of the Project Explorer window to
expand and contract a project. If you try to expand a project that’s protected with
a password, you’ll be prompted to enter the password.

Figure 7-4 shows a Project Explorer window with three projects listed (one add-in
and two workbooks).

When you activate the VBE, you cannot assume that the code module that’s dis-
played corresponds to the highlighted object in the Project Explorer window. To
make sure you’re working in the correct code module, always double-click the
object in the Project Explorer window.

Figure 7-4: A Project Explorer window with three projects listed

If you have many workbooks and add-ins loaded, the Project Explorer window
may be a bit overwhelming. Unfortunately, it’s not possible to hide projects in the
Project Explorer window. However, you’ll probably want to keep the project out-
lines contracted if you’re not working on them.

Every project expands to show at least one “node” called Microsoft Excel Objects.
This node expands to show an item for each worksheet and chart sheet in the
workbook (each sheet is considered an object), and another object called
ThisWorkbook (which represents the ActiveWorkbook object). If the project
has any VBA modules, the project listing also shows a Modules node and the
modules are listed there. A project may also contain a node called Forms which
contains UserForm objects (also known as custom dialog boxes). If your project
has any class modules, it will display another node call Class Modules.

Caution

4799-2 ch07.F 6/11/01 9:29 AM Page 128

129Chapter 7 ✦ Introducing Visual Basic for Applications

In Excel 2002, adding a reference to a project (using the Tools ➪ References com-
mand) causes another node to appear: References. Each reference is listed as a
separate object. The objects listed in this node do not have a code pane associ-
ated with them.

Adding a new VBA module
To add a new VBA module to a project, select the project’s name in the Project
Explorer window and choose Insert ➪ Module. Or you can just right-click the
project’s name and choose Insert ➪ Module from the shortcut menu.

When you record a macro, Excel automatically inserts a VBA module to hold the
recorded code.

Removing a VBA module
If you need to remove a VBA module or a class module from a project, select the
module’s name in the Project Explorer window and choose File ➪ Remove xxx
(where xxx is the name of the module). Or you can right-click the module’s name
and choose Remove xxx from the shortcut menu. You’ll be asked if you want to
export the module before removing it. See the next section for details. You cannot
remove code modules associated with the workbook (the ThisWorkbook code
module) or with a sheet (for example, the Sheet1 code module).

Exporting and importing objects
Except for those listed under the References node, every object in a project can
be saved to a separate file. Saving an individual object in a project is known as
exporting. And it stands to reason that you can also import objects into a project.
Exporting and importing objects might be useful if you want to use a particular
object (such as a VBA module or a UserForm) in a different project.

To export an object, select it in the Project Explorer window and choose File ➪
Export File (or press Ctrl+E). You’ll get a dialog box that asks for a filename. Note
that the object remains in the project (only a copy of it is exported). If you export a
UserForm object, any code associated with the UserForm is also exported.

To import a file into a project, select the project’s name in the Project Explorer win-
dow and choose File ➪ Import File. You’ll get a dialog box that asks for a file. You
can import only a file that has been exported using the File ➪ Export File command.

If you would like to copy a module or UserForm object to another project, it’s not
really necessary to export and then import the object. Make sure both projects are
open and simply activate the Project Explorer and then drag the object from one
project to the other.

Tip

Tip

New
Feature

4799-2 ch07.F 6/11/01 9:29 AM Page 129

130 Part III ✦ Understanding Visual Basic for Applications

Working with Code Windows
As you become proficient with VBA, you’ll be spending lots of time working in code
windows. Each object in a project has an associated code window. To summarize,
these objects can be

✦ The workbook itself (ThisWorkbook in the Project window)

✦ A worksheet or chart sheet in a workbook (for example, Sheet1 or Chart1 in
the Project window)

✦ A VBA module

✦ A class module (a special type of module that lets you create new object
classes)

✦ A UserForm

Minimizing and maximizing windows
At any given time, VBE may have lots of code windows, and things can get a bit
confusing. Figure 7-5 shows an example of what I mean.

Figure 7-5: Code window overload

4799-2 ch07.F 6/11/01 9:29 AM Page 130

131Chapter 7 ✦ Introducing Visual Basic for Applications

Code windows are much like worksheet windows in Excel. You can minimize them,
maximize them, hide them, rearrange them, and so on. Many people find it most
efficient to maximize the code window that they’re working on. Doing so enables
you to see more code and keeps you from getting distracted. To maximize a code
window, click the maximize button in its title bar or just double-click its title bar.
To restore a code window, making it nonmaximized, click the Restore button in its
title bar.

Sometimes, you may want to have two or more code windows visible. For example,
you might want to compare the code in two modules, or copy code from one mod-
ule to another.

Minimizing a code window gets it out of the way. You can also click the Close button
in a code window’s title bar to close the window completely. To open it again, just
double-click the appropriate object in the Project Explorer window.

The VBE doesn’t let you close a workbook. You must reactivate Excel and close it
from there. You can, however, use the Immediate window to close a workbook or
add-in. Just activate the Immediate window, type a VBA statement like the one that
follows, and press Enter.

Workbooks(“myaddin.xla”).Close

As you’ll see, this statement executes the Close method of the Workbook object,
which closes a workbook. In this case, the workbook happens to be an add-in.

Storing VBA code
In general, a code window can hold four types of code:

✦ Sub procedures. A procedure is a set of instructions that performs some action.

✦ Function procedures. A function is a set of instructions that returns a single
value or an array (similar in concept to a worksheet function such as SUM).

✦ Property procedures. These are special procedures used in class modules.

✦ Declarations. A declaration is information about a variable that you provide to
VBA. For example, you can declare the data type for variables you plan to use.

A single VBA module can store any number of Sub procedures, Function proce-
dures, and declarations. How you organize a VBA module is completely up to you.
Some people prefer to keep all their VBA code for an application in a single VBA
module; others like to split up the code into several different modules.

4799-2 ch07.F 6/11/01 9:29 AM Page 131

132 Part III ✦ Understanding Visual Basic for Applications

Although you have lots of flexibility regarding where to store your VBA code, there
are some restrictions. Event-handler procedures must be located in the code win-
dow for the object that responds to the event. For example, if you write a proce-
dure that executes when the workbook is opened, that procedure must be located
in the code window for the ThisWorkbook object, and the procedure must have
a special name. This concept will become clearer when I discuss events (Chapter
19) and UserForms (Part IV).

Entering VBA code
Before you can do anything meaningful, you must have some VBA code in a code
window. And the VBA code must be within a procedure. A procedure consists of
VBA statements. For now, I’ll focus on one type of code window: a VBA module.

You can add code to a VBA module in three ways:

✦ Enter the code the old-fashioned way: Type it from your keyboard.

✦ Use Excel’s macro-recorder feature to record your actions and convert them
into VBA code.

✦ Copy the code from another module and paste it into the module you are
working in.

Entering code manually
Sometimes, the most direct route is the best one. Entering code directly involves . . .
well, entering the code directly. In other words, you type the code using your key-
board. You can use the Tab key to indent the lines that logically belong together —
for example, the conditional statements between an If and an End If statement.
This isn’t really necessary, but it makes the code easier to read, so it’s a good habit
to acquire.

Entering and editing text in a VBA module works just as you would expect. You can
select text and copy it or cut it, and paste it to another location.

Note

Pause for a Terminology Break

Throughout this book, I use the terms routine, procedure, and macro. Programming people
typically use the word procedure to describe an automated task. In Excel, a procedure is
also known as a macro. Technically, a procedure can be a Sub procedure or a Function pro-
cedure, both of which are sometimes called routines. I use all these terms pretty much
interchangeably. There is, however, an important difference between Sub procedures and
Function procedures. This distinction will become apparent in Chapters 9 and 10.

4799-2 ch07.F 6/11/01 9:29 AM Page 132

133Chapter 7 ✦ Introducing Visual Basic for Applications

A single instruction in VBA can be as long as you need it to be. For readability’s
sake, however, you might want to break a lengthy instruction into two or more
lines. To do so, end the line with a space followed by an underscore character, then
press Enter and continue the instruction on the following line. The following code,
for example, is a single VBA statement split over four lines.

MsgBox “Can’t find “ & UCase(SHORTCUTMENUFILE) _
& vbCrLf & vbCrLf & “The file should be located in _
“ & ThisWorkbook.Path & vbCrLf & vbCrLf & _
“You may need to reinstall BudgetMan”, vbCritical, APPNAME

Notice that I indented the last three lines of this statement. Doing so is optional, but
it helps clarify the fact that these four lines are, in fact, a single statement.

Like Excel, the VBE has multiple levels of Undo and Redo. Therefore, if you find
that you deleted an instruction that you shouldn’t have, you can click the Undo
button (or press Ctrl+Z) repeatedly until the instruction comes back. After undo-
ing, you can click the Redo button to redo changes that were previously undone.
This feature can be a lifesaver, so I recommend that you play around with it until
you understand how it works.

Try this: Insert a VBA module into a project, and then enter the following procedure
into the code window of the module:

Sub SayHello()
Msg = “Is your name “ & Application.UserName & “?”
Ans = MsgBox(Msg, vbYesNo)
If Ans = vbNo Then

MsgBox “Oh, never mind.”
Else

MsgBox “I must be clairvoyant!”
End If

End Sub

Figure 7-6 shows how this looks in a VBA module.

As you enter the code, you might notice that the VBE makes some adjustments to
the text you enter. For example, if you omit the space before or after an equals
sign (=), VBE inserts the space for you. Also, the color of some of the text is
changed. This is all perfectly normal, and you’ll appreciate it later.

To execute the SayHello procedure, make sure that the cursor is located anywhere
within the text you typed. Then do any of the following:

✦ Press F5.

✦ Select Run ➪ Run Sub/UserForm.

✦ Click the Run Sub/UserForm button on the Standard toolbar.

Note

Tip

4799-2 ch07.F 6/11/01 9:29 AM Page 133

134 Part III ✦ Understanding Visual Basic for Applications

Figure 7-6: Your first VBA procedure

If you entered the code correctly, the procedure will execute and you can respond
to a simple dialog box (see Figure 7-7) that displays the user name, as listed in
Excel’s Options dialog box. Notice that Excel is activated when the macro executes.
At this point, it’s not important that you understand how the code works; that
becomes clear later in this chapter and in subsequent chapters.

Figure 7-7: The result of running the procedure in Figure 7-6

Most of the time, you’ll be executing your macros from Excel. However, it’s often
more efficient to test your macro by running it directly from the VBE.

What you did was write a VBA Sub procedure (also known as a macro). When you
issued the command to execute the macro, the VBE quickly compiled the code and
executed it. In other words, each instruction was evaluated and Excel simply did
what it was told to do. You can execute this macro any number of times, although it
tends to lose its appeal after a while.

For the record, this simple procedure uses the following concepts (all of which are
covered later):

✦ Declaring a procedure (the first line)

✦ Assigning a value to variables (Msg and Ans)

Note

4799-2 ch07.F 6/11/01 9:29 AM Page 134

135Chapter 7 ✦ Introducing Visual Basic for Applications

✦ Concatenating strings (using the & operator)

✦ Using a built-in VBA function (MsgBox)

✦ Using built-in VBA constants (vbYesNo and vbNo)

✦ Using an If-Then-Else construct

✦ Ending a procedure (the last line)

Not bad for a first effort, eh?

Using the macro recorder
Another way to get code into a VBA module is to record your actions using Excel’s
macro recorder.

No matter how hard you try, there is absolutely no way to record the SayHello
procedure shown previously. As you’ll see, recording macros is very useful, but it
has its limitations. In fact, when you record a macro you almost always need to
make some adjustments or enter some code manually.

This next example shows how to record a macro that simply changes the page
setup to landscape orientation. If you want to try this, start with a blank workbook
and follow these steps:

1. Activate a worksheet in the workbook (any worksheet will do).

2. Select the Tools ➪ Macro ➪ Record New Macro command.

Excel displays its Record Macro dialog box.

3. Just click OK to accept the defaults.

Excel automatically inserts a new VBA module into the project. From this
point on, Excel converts your actions into VBA code. While recording, Excel
displays the word Recording in the status bar, and also displays a miniature
floating toolbar that contains two toolbar buttons (Stop Recording and
Relative Reference).

4. Select the File ➪ Page Setup command.

Excel displays its Page Setup dialog box.

5. Select the Landscape option and click OK to close the dialog box.

6. Click the Stop Recording button on the miniature toolbar (or select Tools ➪
Macro ➪ Stop Recording.

Excel stops recording your actions.

To take a look at the macro, activate the VBE (Alt+F11 is the easiest way) and locate
the project in the Project Explorer window. Click the Modules node to expand it.
Then click the Module1 item to display the code window (if the project already had

4799-2 ch07.F 6/11/01 9:29 AM Page 135

136 Part III ✦ Understanding Visual Basic for Applications

a Module1, the new macro will be in Module2). The code generated by this single
command is shown in Listing 7-1. If you’re using a version other than Excel 2002,
the code may vary slightly.

Listing 7-1: Macro for changing page setup to landscape
orientation

Sub Macro1()
‘
‘ Macro1 Macro
‘ Macro recorded by John Walkenbach
‘

With ActiveSheet.PageSetup
.PrintTitleRows = “”
.PrintTitleColumns = “”

End With
ActiveSheet.PageSetup.PrintArea = “”
With ActiveSheet.PageSetup

.LeftHeader = “”

.CenterHeader = “”

.RightHeader = “”

.LeftFooter = “”

.CenterFooter = “”

.RightFooter = “”

.LeftMargin = Application.InchesToPoints(0.75)

.RightMargin = Application.InchesToPoints(0.75)

.TopMargin = Application.InchesToPoints(1)

.BottomMargin = Application.InchesToPoints(1)

.HeaderMargin = Application.InchesToPoints(0.5)

.FooterMargin = Application.InchesToPoints(0.5)

.PrintHeadings = False

.PrintGridlines = False

.PrintComments = xlPrintNoComments

.PrintQuality = 600

.CenterHorizontally = False

.CenterVertically = False

.Orientation = xlLandscape

.Draft = False

.PaperSize = xlPaperLetter

.FirstPageNumber = xlAutomatic

.Order = xlDownThenOver

.BlackAndWhite = False

.Zoom = 100
End With

End Sub

4799-2 ch07.F 6/11/01 9:29 AM Page 136

137Chapter 7 ✦ Introducing Visual Basic for Applications

You may be surprised by the amount of code generated by this single command (I
know I was the first time I tried something like this). Although you changed only
one simple setting in the Page Setup dialog box, Excel generates code that repro-
duces all the settings in the dialog box.

This brings up an important concept. Often, the code produced when you record a
macro is overkill. If you want your macro only to switch to landscape mode, you
can simplify this macro considerably by deleting the extraneous code. This makes
the macro easier to read, and the macro also runs faster because it doesn’t do
things that are not necessary. In fact, this macro can be simplified to the following:

Sub Macro1()
With ActiveSheet.PageSetup

.Orientation = xlLandscape
End With

End Sub

I deleted all the code except for the line that sets the Orientation property.
Actually, this macro can be simplified even more because the With-End With
construct isn’t necessary when we’re changing only one property:

Sub Macro1()
ActiveSheet.PageSetup.Orientation = xlLandscape

End Sub

In this example, the macro changes the Orientation property of the PageSetup
object on the active sheet. By the way, xlLandscape is a built-in constant that’s
provided to make things easier for you. Variable xlLandscape has a value of 2, and
xlPortrait has a value of 1. The following macro works the same as the preceding
Macro1.

Sub Macro1a()
ActiveSheet.PageSetup.Orientation = 2

End Sub

Most would agree that it’s easier to remember the name of the constant than the
arbitrary numbers. You can use the online help to learn the relevant constants for a
particular command.

You could have entered this procedure directly into a VBA module. To do so, you
would have to know which objects, properties, and methods to use. Obviously, it’s
much faster to record the macro, and this example has a built-in bonus: You also
learned that the PageSetup object has an Orientation property.

A point I make clear throughout this book is that recording your actions is perhaps
the best way to learn VBA. When in doubt, try recording. Although the result may
not be exactly what you want, chances are that it will steer you in the right direc-
tion. You can use the online help to check out the objects, properties, and meth-
ods that appear in the recorded code.

Note

4799-2 ch07.F 6/11/01 9:29 AM Page 137

138 Part III ✦ Understanding Visual Basic for Applications

I discuss the macro recorder in more detail later in this chapter. See “The Macro
Recorder.”

Copying VBA code
So far, I’ve covered entering code directly and recording your actions to generate
VBA code. The final method of getting code into a VBA module is to copy it from
another module. For example, you may have written a procedure for one project
that would also be useful in your current project. Rather than reenter the code, you
can simply open the workbook, activate the module, and use the normal Clipboard
copy-and-paste procedures to copy it into your current VBA module. After you’ve
finished pasting, you can modify the code as necessary.

As I noted previously in this chapter, you can also import an entire module that
has been exported, to a file.

Customizing the VBE Environment
If you’re serious about becoming an Excel programmer, you’ll be spending a lot of
time with the VBE window on your screen. To help make things as comfortable as
possible, the VBE provides quite a few customization options.

When VBE is active, choose Tools ➪ Options. You’ll see a dialog box with four tabs:
Editor, Editor Format, General, and Docking. I discuss some of the most useful
options on these tabs in the sections that follow. By the way, don’t confuse this with
Excel’s Options dialog box, which you bring up by selecting Tools ➪ Options in
Excel. Although they have the same name, these two dialogs set different options.

Using the Editor tab
Figure 7-8 shows the options you access by clicking the Editor tab of the Options
dialog box.

Auto Syntax Check option
The Auto Syntax Check setting determines whether the VBE pops up a dialog box if
it discovers a syntax error while you’re entering your VBA code. The dialog box
tells you roughly what the problem is. If you don’t choose this setting, VBE flags
syntax errors by displaying them in a different color from the rest of the code, and
you don’t have to deal with any dialog boxes popping up on your screen.

I usually keep this setting turned off because I find the dialog boxes annoying, and I
can usually figure out what’s wrong with an instruction. But if you’re new to VBA,
you might find this assistance helpful.

Tip

Cross-
Reference

4799-2 ch07.F 6/11/01 9:29 AM Page 138

139Chapter 7 ✦ Introducing Visual Basic for Applications

Figure 7-8: The Editor tab of the Options
dialog box

Require Variable Declaration option
If the Require Variable Declaration option is set, VBE inserts the following state-
ment at the beginning of each new VBA module you insert:

Option Explicit

If this statement appears in your module, you must explicitly define each variable
that you use. This is an excellent habit to get into, although it does require some
additional effort on your part. If you don’t declare your variables, they will all be of
the variant data type, which is flexible, but not efficient in terms of storage or
speed. I’ll discuss this in more depth later.

Changing the Require Variable Declaration option affects only new modules, not
existing modules.

Auto List Members option
If the Auto List Members option is set, VBE provides some help when you’re enter-
ing your VBA code by displaying a list of member items for an object. These items
include methods and properties for the object you typed.

This option is very helpful, and I always keep it turned on. Figure 7-9 shows an
example of Auto List Members (which will make a lot more sense when you actually
start writing VBA code). In this example, VBE is displaying a list of members for the
Application object. You can just select an item from the list, and avoid typing it
(this also ensures that it’s spelled correctly).

Note

4799-2 ch07.F 6/11/01 9:29 AM Page 139

140 Part III ✦ Understanding Visual Basic for Applications

Figure 7-9: An example of Auto List Members

Auto Quick Info option
If the Auto Quick Info option is set, the VBE displays information about the argu-
ments available for functions, properties, and methods as you type. This can be
very helpful, and I always leave this setting on. Figure 7-10 shows this feature in
action. It’s displaying the syntax for the Range property.

Figure 7-10: An example of Auto Quick Info offering help about
the Range property.

Auto Data Tips option
If the Auto Data Tips option is set, VBE displays the value of the variable over which
your cursor is placed when you’re debugging code. When you enter the wonderful
world of debugging, you’ll definitely appreciate this option. I always keep this
option turned on.

4799-2 ch07.F 6/11/01 9:29 AM Page 140

141Chapter 7 ✦ Introducing Visual Basic for Applications

Auto Indent option
The Auto Indent setting determines whether VBE automatically indents each new
line of code by the same amount as the previous line. I’m a big fan of using indenta-
tions in my code, so I keep this option on. You can also specify the number of char-
acters to indent (the default is four).

Use the Tab key to indent your code, not the space bar. Also, you can use Shift+Tab
to “unindent” a line of code. These keys also work if you select more than one
statement.

Drag-and-Drop Text Editing option
The Drag-and-Drop Text Editing option, when enabled, lets you copy and move text
by dragging and dropping. I keep this option turned on, but never use drag-and-
drop editing. I prefer to use keyboard shortcuts for copying and pasting.

Default to Full Module View option
The Default to Full Module View option specifies how procedures are viewed. If set,
procedures in the code window appear as a single scrollable window. If this option
is turned off, you can see only one procedure at a time. I keep this setting turned on.

Procedure Separator option
When the Procedure Separator option is turned on, it displays separator bars at the
end of each procedure in a code window. I like the visual cues of knowing where my
procedures end, so I keep this option turned on.

Using the Editor Format tab
Figure 7-11 shows the Editor Format tab of the Options dialog box.

Figure 7-11: The Editor Format tab of the Options
dialog box

Tip

4799-2 ch07.F 6/11/01 9:29 AM Page 141

142 Part III ✦ Understanding Visual Basic for Applications

Code Colors option
The Code Colors option lets you set the text color (foreground and background)
and indicator color displayed for various elements of VBA code. This is largely a
matter of individual preference. Personally, I find the default colors to be just fine.
But for a change of scenery, I occasionally play around with these settings.

Font option
The Font option lets you select the font that’s used in your VBA modules. For best
results, stick with a fixed-width font such as Courier New. In a fixed-width font, all
characters are exactly the same width. This makes your code much more readable
because the characters are nicely aligned vertically and you can easily distinguish
multiple spaces.

Size setting
The Size setting specifies the size of the font in the VBA modules. This setting is a
matter of personal preference determined by your video display resolution and
your eyesight. The default size of 10 points works for me.

Margin Indicator Bar option
This option controls the display of the vertical margin indicator bar in your
modules. You should keep this turned on; otherwise, you won’t be able to see
the helpful graphical indicators when you’re debugging your code.

Using the General tab
Figure 7-12 shows the options available under the General tab in the Options dialog
box. In almost every case, the default settings are just fine.

Figure 7-12: The General tab of the Options
dialog box

4799-2 ch07.F 6/11/01 9:29 AM Page 142

143Chapter 7 ✦ Introducing Visual Basic for Applications

The Error Trapping setting determines what happens when an error is encoun-
tered. If you write any error-handling code, make sure that the Break on
Unhandled Errors option is set. If the Break on All Errors option is set, error-
handling code is ignored (which is hardly ever what you want). I discuss error-
handling techniques in Chapter 9.

Using the Docking tab
Figure 7-13 shows the Docking tab of the Options dialog box. These options deter-
mine how the various windows in the VBE behave. When a window is docked, it is
fixed in place along one of the edges of the VBE window. This makes it much easier
to identify and locate a particular window. If you turn off all docking, you’ll have a
big mess of windows that will be very confusing. Generally, you’ll find that the
default settings work fine.

Figure 7-13: The Docking tab of the Options
dialog box

The Macro Recorder
Earlier in this chapter, I discussed the macro recorder, a tool that converts your
Excel actions into VBA code. This section covers the macro recorder in more detail.

Excel’s Visual Basic toolbar has several useful buttons for you. On this toolbar
you’ll find the Run Macro, Record Macro, Stop Macro, and Visual Basic Editor but-
tons useful.

Tip

Cross-
Reference

4799-2 ch07.F 6/11/01 9:29 AM Page 143

144 Part III ✦ Understanding Visual Basic for Applications

The macro recorder is an extremely useful tool, but it’s important to remember the
following points:

✦ The macro recorder is appropriate only for simple macros or for recording a
small part of a more complex macro.

✦ The macro recorder cannot generate code that performs looping (that is,
repeating statements), assigns variables, executes statements conditionally,
displays dialog boxes, and so on.

✦ The code that is generated depends on certain settings that you specify.

✦ You’ll often want to clean up the recorded code to remove extraneous
commands.

What is recorded
As you know, Excel’s macro recorder translates your mouse and keyboard actions
into VBA code. I could probably write several pages describing how this is done,
but the best way to show you is by example. Follow these steps:

1. Start with a blank workbook.

2. Make sure Excel’s window is not maximized. You don’t want it to fill the entire
screen.

3. Press Alt+F11 to activate the VBE window, and make sure this window is not
maximized.

4. Resize and arrange Excel’s window and the VBE window so both are visible.
(For best results, minimize any other applications that are running.)

5. Activate Excel, Choose Tools ➪ Macro ➪ Record New Macro, and click OK to
start the macro recorder.

Excel inserts a new module (named Module1) and starts recording on that
sheet.

6. Activate the VBE window.

7. In the Project Explorer window, double-click Module1 to display that module
in the code window.

8. Close the Project Explorer window in the VBE to maximize the view of the
code window.

Your screen should look something like the example in Figure 7-14. The size of the
windows will depend on your video resolution.

4799-2 ch07.F 6/11/01 9:29 AM Page 144

145Chapter 7 ✦ Introducing Visual Basic for Applications

Figure 7-14: A convenient window arrangement for watching the macro recorder do
its thing

Now, move around in the worksheet and select various Excel commands. Watch as
the code is generated in the window that displays the VBA module. Select cells,
enter data, format cells, use the menus and toolbars, create a chart, manipulate
graphic objects, and so on. I guarantee that you’ll be enlightened as you watch the
code being spit out before your very eyes.

Relative or absolute?
When recording your actions, Excel normally records absolute references to cells.
In other words, when you select a cell, it will remember that exact cell (not the cell
relative to the current active cell). To demonstrate how this works, perform these
steps and examine the code:

1. Activate a worksheet and start the macro recorder.

2. Activate cell B1.

3. Enter Jan into cell B1.

4. Move to cell C1 and enter Feb.

4799-2 ch07.F 6/11/01 9:29 AM Page 145

146 Part III ✦ Understanding Visual Basic for Applications

5. Continue this process until you’ve entered the first six months of the year in
B1:G1.

6. Click cell B1 to activate it again.

7. Stop the macro recorder.

Excel generates the following code:

Sub Macro1()
Range(“B1”).Select
ActiveCell.FormulaR1C1 = “Jan”
Range(“C1”).Select
ActiveCell.FormulaR1C1 = “Feb”
Range(“D1”).Select
ActiveCell.FormulaR1C1 = “Mar”
Range(“E1”).Select
ActiveCell.FormulaR1C1 = “Apr”
Range(“F1”).Select
ActiveCell.FormulaR1C1 = “May”
Range(“G1”).Select
ActiveCell.FormulaR1C1 = “Jun”
Range(“B1”).Select

End Sub

To execute this macro, choose the Tools ➪ Macro ➪ Macros command (or press
Alt+F8) and select Macro1 (or whatever the macro is named) and click the Run
button.

The macro, when executed, re-creates the actions you performed when you
recorded it. These same actions occur regardless of which cell is active when
you execute the macro. Recording a macro using absolute references always
produces the exact same results.

In some cases, however, you’ll want your recorded macro to work with cell loca-
tions in a relative manner. For example, you’d probably want such a macro to start
entering the month names in the active cell. In such a case, you’ll want to use rela-
tive recording to record the macro.

The Stop Recording toolbar, which consists of only two buttons, is displayed when
you are recording a macro. You can change the manner in which Excel records your
actions by clicking the Relative Reference button on the Stop Recording toolbar.
This button is a toggle. When the button appears in a pressed state, the recording
mode is relative. When the button appears normally, you are recording in absolute
mode. You can change the recording method at any time, even in the middle of
recording.

4799-2 ch07.F 6/11/01 9:29 AM Page 146

147Chapter 7 ✦ Introducing Visual Basic for Applications

To see how this works, erase the cells in B1:D1 and then perform the following
steps:

1. Activate cell B1.

2. Choose Tools ➪ Macro ➪ Record New Macro.

3. Name this macro Relative.

4. Click OK to begin recording.

5. Click the Relative Reference button (on the Stop Recording toolbar) to change
the recording mode to relative.

When you click this button, it appears pressed.

6. Enter the first six month names in B1:G1, as in the previous example.

7. Select cell B1.

8. Stop the macro recorder.

With the recording mode set to relative, the code that Excel generates is quite
different:

Sub Macro2()
ActiveCell.FormulaR1C1 = “Jan”
ActiveCell.Offset(0, 1).Range(“A1”).Select
ActiveCell.FormulaR1C1 = “Feb”
ActiveCell.Offset(0, 1).Range(“A1”).Select
ActiveCell.FormulaR1C1 = “Mar”
ActiveCell.Offset(0, 1).Range(“A1”).Select
ActiveCell.FormulaR1C1 = “Apr”
ActiveCell.Offset(0, 1).Range(“A1”).Select
ActiveCell.FormulaR1C1 = “May”
ActiveCell.Offset(0, 1).Range(“A1”).Select
ActiveCell.FormulaR1C1 = “Jun”
ActiveCell.Offset(0, -5).Range(“A1”).Select

End Sub

You can execute this macro by activating a worksheet and then choosing the
Tools ➪ Macro command. Select the macro’s name and click the Run button.

You’ll also notice that I varied the procedure slightly in this example: I activated the
beginning cell before I started recording. This is an important step when you record
macros that use the active cell as a base.

Although it looks rather complicated, this macro is actually quite simple. The first
statement simply enters Jan into the active cell. (It uses the active cell because
it’s not preceded by a statement that selects a cell.) The next statement uses the
Offset property to move the selection one cell to the right. The next statement

4799-2 ch07.F 6/11/01 9:29 AM Page 147

148 Part III ✦ Understanding Visual Basic for Applications

inserts more text, and so on. Finally, the original cell is selected by calculating a
relative offset rather than an absolute cell. Unlike the preceding macro, this one
always starts entering text in the active cell.

You’ll notice that this macro generates code that appears to reference cell A1 —
which may seem strange, because cell A1 was not even involved in the macro.
This is simply a by-product of the way the macro recorder works. (I discuss the
Offset property later in this chapter.) At this point, all you need to know is that
the macro works as it should.

By the way, the code generated by Excel is much more complex than it need be, and
it’s not the most efficient way to code the operation. The macro that follows, which
I entered manually, is a simpler and faster way to perform this same operation. This
example demonstrates that VBA doesn’t have to select a cell before it puts informa-
tion into it — an important concept that can also speed things up considerably.

Sub Macro3()
ActiveCell.Offset(0, 0) = “Jan”
ActiveCell.Offset(0, 1) = “Feb”
ActiveCell.Offset(0, 2) = “Mar”
ActiveCell.Offset(0, 3) = “Apr”
ActiveCell.Offset(0, 4) = “May”
ActiveCell.Offset(0, 5) = “Jun”

End Sub

In fact, this macro can be made even more efficient by using the With-End With
construct:

Sub Macro4()
With ActiveCell

.Offset(0, 0) = “Jan”

.Offset(0, 1) = “Feb”

.Offset(0, 2) = “Mar”

.Offset(0, 3) = “Apr”

.Offset(0, 4) = “May”

.Offset(0, 5) = “Jun”
End With

End Sub

Or, if you’re a VBA guru (like the technical editor for this book), you can impress
your colleagues and do it in one statement:

Sub Macro54()

ActiveCell.Resize(,6)=Array(“Jan”,”Feb”,”Mar”,”Apr”,”May”,”Jun”
)
End Sub

Note

4799-2 ch07.F 6/11/01 9:29 AM Page 148

149Chapter 7 ✦ Introducing Visual Basic for Applications

The point here is that the recorder has two distinct modes, and you need to be
aware of which mode you’re recording in. Otherwise, the result will not be what you
expected.

Recording options
When you record your actions to create VBA code, you have several options. Recall
that the Tools ➪ Macro ➪ Record New Macro command displays the Record Macro
dialog box before recording begins. This dialog box gives you quite a bit of control
over your macro. The following paragraphs describe your options.

Macro name
You can enter a name for the procedure that you are recording. By default, Excel
uses the names Macro1, Macro2, and so on for each macro you record. I usually just
accept the default name and change the name of the procedure later. You, however,
may prefer to name the macro before you record it. The choice is yours.

Shortcut key
The Shortcut key option lets you execute the macro by pressing a shortcut key
combination. For example, if you enter w (lowercase), you can execute the macro
by pressing Ctrl+W. If you enter W (uppercase), the macro comes alive when you
press Ctrl+Shift+W.

You can add or change a shortcut key at any time, so you don’t need to set this
option while recording a macro.

Store macro in
The Store macro in option tells Excel where to store the macro that it records. By
default, Excel puts the recorded macro in a module in the active workbook. If you
prefer, you can record it in a new workbook (Excel opens a blank workbook) or in
your Personal Macro Workbook.

The Personal Macro Workbook

If you create some VBA macros that you find particularly useful, you may want to store
these routines on your Personal Macro Workbook. This is a workbook, named Personal.xls,
that is stored in your Xlstart directory. Whenever you start Excel, this workbook is loaded. It’s
a hidden workbook, so it’s out of your way. When you record a macro, one of your options
is to record it to your Personal Macro Workbook. The Personal.xls file doesn’t exist until you
record a macro to it.

4799-2 ch07.F 6/11/01 9:29 AM Page 149

150 Part III ✦ Understanding Visual Basic for Applications

Description
By default, Excel inserts five lines of comments (three of them blank) that list the
macro name, the user’s name, and the date. You can put anything you like here, or
nothing at all. As far as I’m concerned, typing anything in is a waste of time,
because I always end up deleting this in the module.

In versions of Excel prior to Excel 97, the Record Macro dialog box provided an
option that let you assign the macro to a new menu item on the Tools menu. This
option was removed, beginning with Excel 97. If you want to be able to execute a
macro from a menu, you need to set this up yourself. See Chapter 23 for more
details.

Cleaning up recorded macros
Earlier in this section, you saw how recording your actions while you issued a sin-
gle command (the File ➪ Page Setup command) can produce an enormous amount
of VBA code. In many cases, the recorded code includes extraneous commands that
you can delete.

It’s also important to understand that the macro recorder doesn’t always generate
the most efficient code. If you examine the generated code, you’ll see that Excel
generally records what is selected (that is, an object) and then uses the Selection
object in subsequent statements. For example, here’s what is recorded if you select
a range of cells, and then use the buttons on the Formatting toolbar to change the
numeric formatting, and apply bold and italic:

Range(“A1:C5”).Select
Selection.NumberFormat = “#,##0.00”
Selection.Font.Bold = True
Selection.Font.Italic = True

If you use the Formatting dialog box to record this macro, you’ll find that Excel
records quite a bit of extraneous code. Recording toolbar button clicks often pro-
duces more efficient code.

This is just one way to perform these actions. You can also use the more efficient
With-End With construct, as follows:

Range(“A1:C5”).Select
With Selection

.NumberFormat = “#,##0.00”

.Font.Bold = True

.Font.Italic = True
End With

Tip

4799-2 ch07.F 6/11/01 9:29 AM Page 150

151Chapter 7 ✦ Introducing Visual Basic for Applications

Or you can avoid the Select method altogether and write the code even more effi-
ciently, like this:

With Range(“A1:C5”)
.NumberFormat = “#,##0.00”
.Font.Bold = True
.Font.Italic = True

End With

If speed is essential in your application, you’ll always want to examine any recorded
VBA code closely to make sure that it’s as efficient as possible.

About the Code Examples

Throughout this book, I present many small snippets of VBA code to make a point or to pro-
vide an example. Often, this code may consist of just a single statement. In some cases, the
example consists of only an expression, which isn’t a valid instruction by itself.

For example, the following is an expression:

Range(“A1”).Value

To test an expression, you must evaluate it. The MsgBox function is a handy tool for this:

MsgBox Range(“A1”).Value

To try out these examples, you need to put the statement within a procedure in a VBA mod-
ule, like this:

Sub Test()
‘ statement goes here
End Sub

Then put the cursor anywhere within the procedure and press F5 to execute it. Also, make
sure that the code is being executed within the proper context. For example, if a statement
refers to Sheet1, make sure that the active workbook actually has a sheet named Sheet1.

If the code is just a single statement, you can use VBE’s Immediate window. The Immediate
window is very useful for executing a statement “immediately” — without having to create a
procedure. If the Immediate window is not displayed, press Ctrl+G in the VBE.

Just type the VBA statement and press Enter. To evaluate an expression in the Immediate
window, precede the expression with a question mark (?). The question mark is a shortcut
for Print. For example, you can type the following into the Immediate window:

? Range(“A1”).Value

The result of this expression is displayed in the next line of the Immediate window.

4799-2 ch07.F 6/11/01 9:29 AM Page 151

152 Part III ✦ Understanding Visual Basic for Applications

You will, of course, need to understand VBA thoroughly before you start cleaning
up your recorded macros. But for now, just be aware that recorded VBA code isn’t
always the best, most efficient code.

About Objects and Collections
If you’ve worked through the first part of this chapter, you have an overview of VBA
and you know the basics of working with VBA modules in the VBE. You’ve also seen
some VBA code and were exposed to concepts such as objects and properties. This
section gives you some additional details about objects and collections of objects.

As you work with VBA, you must understand the concept of objects and Excel’s
object model. It helps to think of objects in terms of a hierarchy. At the top of this
model is the Application object — in this case, Excel itself. But if you’re program-
ming in VBA using Microsoft Word, the Application object is Word.

The object hierarchy
The Application object (that is, Excel) contains other objects. Here are a few
examples of objects contained in the Application object:

Workbooks (a collection of all Workbook objects)

Windows (a collection of all Window objects)

AddIns (a collection of all AddIn objects)

Some objects can contain other objects. For example, the Workbooks collection
consists of all open Workbook objects, and a Workbook object contains other
objects, a few of which are as follows:

Worksheets (a collection of Worksheet objects)

Charts (a collection of Chart objects)

Names (a collection of Name objects)

Each of these objects, in turn, can contain other objects. The Worksheets collec-
tion consists of all Worksheet objects in a Workbook. A Worksheet object contains
many other objects, which include the following:

ChartObjects (a collection of ChartObject objects)

Range

PageSetup

PivotTables (a collection of PivotTable objects)

4799-2 ch07.F 6/11/01 9:29 AM Page 152

153Chapter 7 ✦ Introducing Visual Basic for Applications

If this seems confusing, trust me, it will make sense, and you’ll eventually realize
that this whole object hierarchy thing is quite logical and well structured. By the
way, the complete Excel object model is diagrammed in the online help system.

About collections
Another key concept in VBA programming is collections. A collection is a group of
objects of the same class (and a collection is itself an object). As I noted above,
Workbooks is a collection of all Workbook objects currently open. Worksheets is a
collection of all Worksheet objects contained in a particular Workbook object. You
can work with an entire collection of objects or with an individual object in a collec-
tion. To reference a single object from a collection, you put the object’s name or
index number in parentheses after the name of the collection, like this:

Worksheets(“Sheet1”)

If Sheet1 is the first worksheet in the collection, you may also use the following ref-
erence:

Worksheets(1)

You refer to the second worksheet in a Workbook as Worksheets(2), and so on.

There is also a collection called Sheets, which is made up of all sheets in a work-
book, whether they’re worksheets or chart sheets. If Sheet1 is the first sheet in the
workbook, you can reference it as follows:

Sheets(1)

Object referral
When you refer to an object using VBA, you often must qualify the object by con-
necting object names with a period (also known as a “dot operator”). What if you
had two workbooks open and they both had a worksheet named Sheet1? The solu-
tion is to qualify the reference by adding the object’s container, like this:

Workbooks(“Book1”).Worksheets(“Sheet1”)

Without the workbook qualifier, VBA would look for Sheet1 in the active workbook.

To refer to a specific range (such as cell A1) on a worksheet named Sheet1 in a
workbook named Book1, you can use the following expression:

Workbooks(“Book1”).Worksheets(“Sheet1”).Range(“A1”)

4799-2 ch07.F 6/11/01 9:29 AM Page 153

154 Part III ✦ Understanding Visual Basic for Applications

The fully qualified reference for the preceding example also includes the
Application object, as follows:

Application.Workbooks(“Book1”).Worksheets(“Sheet1”). _
Range(“A1”)

Most of the time, however, you can omit the Application object in your references
(it is assumed). If the Book1 object is the active workbook, you can even omit that
object reference and use this:

Worksheets(“Sheet1”).Range(“A1”)

And — I think you know where I’m going with this — if Sheet1 is the active work-
sheet, you can use an even simpler expression:

Range(“A1”)

Contrary to what you might expect, Excel does not have an object that refers to an
individual cell that is called “Cell.” A single cell is simply a Range object that hap-
pens to consist of just one element.

Simply referring to objects (as in these examples) doesn’t do anything. To perform
anything meaningful, you must read or modify an object’s properties, or specify a
method to be used with an object.

Properties and Methods
It’s easy to be overwhelmed with properties and methods; there are literally thou-
sands available. In this section I describe how to access properties and methods of
objects.

Object properties
Every object has properties. For example, a Range object has a property called
Value. You can write VBA code to display the Value property or write VBA code
to set the Value property to a specific value. Here’s a procedure that uses VBA’s
MsgBox function to pop up a box that displays the value in cell A1 on Sheet1 of the
active workbook:

Sub ShowValue()
Msgbox Worksheets(“Sheet1”).Range(“A1”).Value

End Sub

MsgBox is a useful function that you’ll use often to display results while your VBA
code is executing. I use it extensively throughout this book.

Note

Note

4799-2 ch07.F 6/11/01 9:29 AM Page 154

155Chapter 7 ✦ Introducing Visual Basic for Applications

The code in the preceding example displays the current setting of the Value prop-
erty of a specific cell: cell A1 on a worksheet named Sheet1 in the active workbook.
Note that if the active workbook does not have a sheet named Sheet1, the macro
will generate an error.

Now, what if you want to change the Value property? The following procedure
changes the value displayed in cell A1 by changing the cell’s Value property:

Sub ChangeValue()
Worksheets(“Sheet1”).Range(“A1”).Value = 123

End Sub

After executing this routine, cell A1 on Sheet1 has the value 123. You might want to
enter these procedures into a module and experiment with them.

Most objects have a default property. For a Range object, the default property is
the Value property. Therefore, you can omit the .Value part from the above
code and it will have the same effect. However, it’s usually considered good pro-
gramming practice to include the property, even if it is the default property.

Object methods
In addition to properties, objects also have methods. A method is an action that you
perform with an object. Here’s a simple example that uses the Clear method on a
range object. After you execute this procedure, A1:C3 on Sheet1 will be empty, and
all of the cell formatting will be removed.

Sub ZapRange()
Worksheets(“Sheet1”).Range(“A1:C3”).Clear

End Sub

If you’d like to delete the values in a range, but keep the formatting, use the
ClearContents method of the Range object.

Most methods also take arguments to define the action further. Here’s an example
that copies cell A1 to cell B1 by using the Copy method of the Range object. In this
example, the Copy method has one argument (the destination of the copy). Notice
that I used the line continuation character sequence (a space, followed by an
underscore) in this example. You can omit the line continuation sequence and type
the statement on a single line.

Sub CopyOne()
Worksheets(“Sheet1”).Range(“A1”).Copy _

Worksheets(“Sheet1”).Range(“B1”)
End Sub

Note

4799-2 ch07.F 6/11/01 9:29 AM Page 155

156 Part III ✦ Understanding Visual Basic for Applications

Specifying Arguments for Methods and Properties

An issue that often leads to confusion among VBA programmers concerns arguments for
methods and properties. Some methods use arguments to further clarify the action to be
taken, and some properties use arguments to further specify the property value. In some
cases, one or more of the arguments is optional.

If a method uses arguments, place the arguments after the name of the method, separated
by commas. If the method uses optional arguments, you can insert blank placeholders for
the optional arguments. Consider the Protect method for a workbook object. Check the
online help and you’ll find that the Protect method takes three arguments: password,
structure, windows. These arguments correspond to the options in the Protect Workbook
dialog box.

If you want to protect a workbook named MyBook.xls, for example, you might use a state-
ment like this:

Workbooks(“MyBook.xls”).Protect “xyzzy”, True, False

In this case, the workbook is protected with a password (argument 1). Its structure is pro-
tected (argument 2), but not its windows (argument 3).

If you don’t want to assign a password, you can use a statement like this:

Workbooks(“MyBook.xls”).Protect , True, False

Notice that the first argument is omitted, and that I specified the placeholder using a
comma.

Another approach, which makes your code more readable, is to use named arguments.
Here’s an example of how you use named arguments for the preceding example:

Workbooks(“MyBook.xls”).Protect Structure:=True, Windows:=False

Using named arguments is a good idea, especially for methods that have lots of optional
arguments, and also when you need to use only a few of them. When you use named argu-
ments, there is no need to use a placeholder for missing arguments.

For properties that use arguments, you must place the arguments in parentheses. For
example, the Address property of a Range object takes five arguments, all of which are
optional. The following statement is not valid because the parentheses are omitted:

MsgBox Range(“A1”).Address False ‘ invalid

The proper syntax for such a statement requires parentheses, as follows:

MsgBox Range(“A1”).Address(False)

Or the statement could also be written using a named argument:

MsgBox Range(“A1”).Address(rowAbsolute:=False)

These nuances will become clearer as you gain more experience with VBA.

4799-2 ch07.F 6/11/01 9:29 AM Page 156

157Chapter 7 ✦ Introducing Visual Basic for Applications

The Comment Object: A Case Study
To help you better understand the properties and methods available for an object, I
focus on a particular object: the Comment object. You create a Comment object when
you use Excel’s Insert ➪ Comment command to enter a cell comment. In the sec-
tions that follow, you’ll get a feel for working with objects. If you’re a bit over-
whelmed by the material in this section, don’t fret. These concepts will become
much clearer over time.

Online help for the Comment object
One way to learn about a particular object is to look it up in the online help system.
Figure 7-15 shows the main help screen for the Comment object.

Figure 7-15: The main help screen for the Comment object

Notice that the colored or underlined words are hyperlinks that display additional
information. For example, you can click the Properties hyperlink to get a list of all
properties for the Comment object. Or click the Method hyperlink to get a list of the
object’s methods.

4799-2 ch07.F 6/11/01 9:29 AM Page 157

158 Part III ✦ Understanding Visual Basic for Applications

Properties of a Comment object
The Comment object has six properties. Table 7-1 contains a list of these properties,
along with a brief description of each. If a property is read-only, your VBA code can
read the property but cannot change it.

Table 7-1
Properties of a Comment Object

Property Read-Only Description

Application Yes Returns an object that represents the application that created
the comment (that is, Excel).

Author Yes Returns the name of the person who created the comment.

Creator Yes Returns a number that specifies the application that created the
object. Not used in Excel for Windows (relevant only for Excel
for Macintosh).

Parent Yes Returns the parent object for the comment (it is always a Range
object).

Shape Yes Returns a Shape object that represents the shape attached to
the comment.

Visible No Is True if the comment is visible.

Methods of a Comment object
Table 7-2 shows the methods that you can use with a Comment object. Again, these
methods perform common operations that you may have performed manually with
a comment at some point . . . but you probably never thought of these operations
as methods.

Using the Online Help System

The easiest way to get specific help about a particular object, property, or method is to type
the word in a code window and press F1. If there is any ambiguity about the word you
typed, you’ll get a dialog box like the one shown in the accompanying figure.

Unfortunately, the items listed in the dialog box are not always clear, so it may require some
trial and error to locate the correct help topic. The dialog box in the figure appears when
you type Comment and then press F1. In this case, although Comment is an object, it may
behave like a property. Clicking the first item displays the help topic for the Comment object;
clicking the second item displays the help topic for the Comment property.

4799-2 ch07.F 6/11/01 9:29 AM Page 158

159Chapter 7 ✦ Introducing Visual Basic for Applications

Table 7-2
Methods of a Comment Object

Method Description

Delete Deletes a comment.

Next Returns a Comment object that represents the next comment.

Previous Returns a Comment object that represents the previous comment.

Text Returns or sets the text in a comment (takes three arguments).

You may be surprised to see that Text is a method rather than a property. This
leads to an important point: The distinction between properties and methods isn’t
always clear-cut, and the object model isn’t perfectly consistent. In fact, it’s not
really important that you distinguish between properties and methods. As long as
you get the syntax correct, it doesn’t matter if a word in your code is a property or
a method.

The Comments collection
Recall that a collection is a group of like objects. Every worksheet has a Comments
collection, which consists of all Comment objects on the worksheet. If the worksheet
has no comments, this collection is empty.

For example, the following code refers to the first comment on Sheet1 of the active
workbook:

Worksheets(“Sheet1”).Comments(1)

The following statement displays the text contained in the first comment on Sheet1:

MsgBox Worksheets(“Sheet1”).Comments(1).Text

Unlike most objects, a Comment object does not have a Name property. Therefore,
to refer to a specific comment you must use an index number, or use the Comment
property of a Range object to return a specific comment (keep reading, and this will
make sense).

The Comments collection is also an object and has its own set of properties and
methods. For example, the following example shows the total number of comments:

MsgBox ActiveSheet.Comments.Count

Note

4799-2 ch07.F 6/11/01 9:29 AM Page 159

160 Part III ✦ Understanding Visual Basic for Applications

The Comments collection here has a Count property that stores the number of
Comment objects in the active worksheet. The next example shows the address of
the cell that has the first comment:

MsgBox ActiveSheet.Comments(1).Parent.Address

Here, Comments(1) returns the first Comment object in the Comments collection.
The Parent property of the Comment object returns its container, which is a Range
object. The message box displays the Address property of the Range. The net
effect is that the statement displays the address of the cell that contains the first
comment.

You can also loop through all the comments on a sheet by using the For Each-Next
construct (this is explained in Chapter 8). Here’s an example that displays a sepa-
rate message box for each comment on the active worksheet:

For Each cmt in ActiveSheet.Comments
MsgBox cmt.Text

Next cmt

If you’d rather not deal with a series of message boxes, use this procedure to print
the comments to the Intermediate window in the VBE:

For Each cmt in ActiveSheet.Comments
Debug.Print cmt.Text

Next cmt

About the Comment property
In this section I’ve been discussing the Comment object. If you dig through the
online help, you’ll find that a Range object has a property named Comment. If the
cell contains a comment, the Comment property returns an object: a Comment
object. For example, the following statement refers to the Comment object in cell A1:

Range(“A1”).Comment

If this were the first comment on the sheet, you could refer to the same Comment
object as follows:

Comments(1)

To display the comment in cell A1 in a message box, use a statement like this:

MsgBox Range(“A1”).Comment.Text

If cell A1 does not contain a comment, this statement will generate an error.

The fact that a property can return an object is a very important concept — a diffi-
cult one to grasp, perhaps, but critical to mastering VBA.

Note

4799-2 ch07.F 6/11/01 9:29 AM Page 160

161Chapter 7 ✦ Introducing Visual Basic for Applications

Objects within a Comment object
Working with properties is confusing at first because some properties actually
return objects. Suppose that you want to determine the background color of a par-
ticular comment on Sheet1. If you look through the list of properties for a Comment
object, you won’t find anything that relates to color. Rather, you must do this:

1. Use the Comment object’s Shape property to return the Shape object that’s
contained in the comment.

2. Use the Shape object’s Fill property to return a FillFormat object.

3. Use the FillFormat object’s ForeColor property to return a ColorFormat
object.

4. Use the ColorFormat object’s RGB property (or SchemeColor property) to set
the color.

Put another way, getting at the interior color for a Comment object involves access-
ing other objects contained in the Comment object. Here’s a look at the object hier-
archy that’s involved.

Application (Excel)

Workbook object

Worksheet object

Comment object

Shape object

FillFormat object

ColorFormat object

I’ll be the first to admit it: This can get very confusing! But, as an example of the
“elegance” of VBA, code to change the color of a comment can be written with a
single statement:

Worksheets(“Sheet1”).Comments(1).Shape.Fill.ForeColor _
.RGB = RGB(0, 255, 0)

Or, if you use the SchemeColor property (which ranges from 0 to 80):

Worksheets(“Sheet1”).Comments(1).Shape.Fill.ForeColor _
.SchemeColor = 12

This type of referencing is certainly not intuitive at first, but it will eventually make
sense. Fortunately, recording your actions in Excel almost always yields some
insights regarding the hierarchy of the objects involved.

4799-2 ch07.F 6/11/01 9:29 AM Page 161

162 Part III ✦ Understanding Visual Basic for Applications

By the way, to change the color of the text in a comment, you’ll need to access the
Comment object’s TextFrame object, which contains the Characters object, which
contains the Font object. Then, you’ll have access to the Font object’s Color or
ColorIndex properties. Here’s an example that sets ColorIndex property to 5:

Worksheets(“Sheet1”).Comments(1) _
.Shape.TextFrame.Characters.Font.ColorIndex = 5

Confused by Colors?

As you gain experience with VBA and start working with setting colors for various objects,
you will probably reach a head-scratching point and wonder what’s going on. Keep this in
mind: Excel uses a 56-color palette of colors, and the specific colors are saved with each
workbook. These are the colors you see when you use the Fill Color button on Excel’s
Formatting toolbar (the same colors that are displayed in the Color tab of the Options dia-
log box). So what does this mean for a VBA programmer? The color you specify in your VBA
code may or may not be the color that actually appears.

Things get even more confusing. Depending on the object you’re manipulating, you’ll need
to deal with several different color-related objects and properties.

You can set the color of a Shape object by using either the RGB property or the
SchemeColor property. The RGB property lets you specify a color in terms of its red, green,
and blue components. This is used in conjunction with VBA’s RGB function, which takes
three arguments, each of which ranges from 0 to 255. The RGB function returns a value
between 0 and 16,777,215. But, as I mentioned, Excel can only handle 56 different colors.
Therefore, the actual color that results when you use the RGB function will be the closest
color match in the workbook’s 56-color palette. The SchemeColor property accepts values
between 0 and 80. The online help says virtually nothing about what these colors actually
represent. They are, however, limited to the workbook’s color palette.

When you’re dealing with colors in a Range object, you need to access the Interior
object, contained in the Range object. You have a choice of setting the color using the
Color property or the ColorIndex property. Valid values for the ColorIndex property are
0 through 56 (0 represents no fill). These values correspond to the workbook’s color
palette. Unfortunately, the order of the colors displayed bears no relationship to the num-
bering system for the ColorIndex property, so you’ll need to record a macro to determine
the ColorIndex value for a particular color. Even then, there’s no guarantee that the user
hasn’t changed the color palette for the workbook. If so, the ColorIndex may result in a
color completely different from the one you had in mind.

If you use the Color property, you can specify a color value using VBA’s RGB function. But,
again, the actual color that you get will be the one closest to a color in the workbook’s color
palette.

4799-2 ch07.F 6/11/01 9:29 AM Page 162

163Chapter 7 ✦ Introducing Visual Basic for Applications

Determining whether a cell has a comment
The following statement will display the comment in cell A1 of the active sheet:

MsgBox Range(“A1”).Comment.Text

If cell A1 does not have a comment, executing this statement will generate a cryptic
error message: Object variable or With block variable not set.

To determine whether a particular cell has a comment, you can write code to see
whether the Comment object is Nothing (yes, Nothing is a valid keyword). The
following statement displays True if cell A1 does not have a comment:

MsgBox Range(“A1”).Comment Is Nothing

Note that I use the Is keyword, not an equals sign.

Adding a new Comment object
You may have noticed that the list of methods for the Comment object doesn’t
include a method to add a new comment. This is because the AddComment method
belongs to the Range object. The following statement adds a comment (an empty
comment) to cell A1 on the active worksheet:

Range(“A1”).AddComment

If you consult the online help, you’ll discover that the AddComment method takes
an argument that represents the text for the comment. Therefore, you can add a
comment and then add text to the comment with a single statement, like this:

Range(“A1”).AddComment “Formula developed by JW.”

The AddComment method generates an error if the cell already contains a
comment.

If you’d like to see these Comment object properties and methods in action,
check out the example workbook on the companion CD-ROM. This workbook
contains several examples that manipulate Comment objects with VBA code. You
probably won’t understand all the code, but you will get a feel for how you can
use VBA to manipulate an object.

Some useful Application properties
As you know, when you’re working with Excel, only one workbook at a time can be
active. And if the sheet is a worksheet, one cell is the active cell (even if a multicell
range is selected).

On the
CD-ROM

Note

4799-2 ch07.F 6/11/01 9:29 AM Page 163

164 Part III ✦ Understanding Visual Basic for Applications

VBA knows this and lets you refer to these active objects in a simplified manner.
This is often useful, because you won’t always know the exact workbook, work-
sheet, or range that you want to operate on. VBA handles this by providing proper-
ties of the Application object. For example, the Application object has an
ActiveCell property that returns a reference to the active cell. The following
instruction assigns the value 1 to the active cell:

ActiveCell.Value = 1

Notice that I omitted the reference to the Application object in the preceding
example because it is assumed. It’s important to understand that this instruction
will fail if the active sheet is not a worksheet. For example, if VBA executes this
statement when a chart sheet is active, the procedure halts and you’ll get an error
message.

If a range is selected in a worksheet, the active cell will be in a cell within the
selected range. In other words, the active cell is always a single cell (never a multi-
cell range).

The Application object also has a Selection property that returns a reference to
whatever is selected, which could be a single cell (the active cell), a range of cells,
or an object such as ChartObject, TextBox, or Shape.

Table 7-3 lists the other Application properties that are useful when working with
cells and ranges.

Table 7-3
Some Useful Properties of the Application Object

Property Object Returned

ActiveCell The active cell

ActiveChart The active chart sheet or chart object on a worksheet. This property
will be Nothing if a chart is not active.

ActiveSheet The active sheet (worksheet or chart)

ActiveWindow The active window

ActiveWorkbook The active workbook

RangeSelection The selected cells on the worksheet in the specified window, even
when a graphic object is selected

Selection The object selected (it could be a Range object, Shape,
ChartObject, and so on)

ThisWorkbook The workbook that contains the procedure being executed

4799-2 ch07.F 6/11/01 9:29 AM Page 164

165Chapter 7 ✦ Introducing Visual Basic for Applications

The advantage of using these properties to return an object is that you don’t need
to know which cell, worksheet, or workbook is active, or provide a specific refer-
ence to it. This allows you to write VBA code that is not specific to a particular
workbook, sheet, or range. For example, the following instruction clears the con-
tents of the active cell, even though the address of the active cell is not known:

ActiveCell.ClearContents

The example that follows displays a message that tells you the name of the active
sheet:

MsgBox ActiveSheet.Name

If you want to know the name of the active workbook, use a statement like this:

MsgBox ActiveWorkbook.Name

If a range on a worksheet is selected, you can fill the entire range with a value by
executing a single statement. In the following example, the Selection property of
the Application object returns a Range object that corresponds to the selected
cells. The instruction simply modifies the Value property of this Range object, and
the result is a range filled with a single value:

Selection.Value = 12

Note that if something other than a range is selected (such as a ChartObject or a
Shape), the preceding statement will generate an error because ChartObjects and
Shape objects do not have a Value property.

The following statement, however, enters a value of 12 into the Range object
that was selected before a non-Range object was selected. If you look up the
RangeSelection property in the online help, you’ll find that this property
applies only to a Window object.

ActiveWindow.RangeSelection.Value = 12

To find out how many cells are selected in the active worksheet, access the Count
property. Here’s an example:

MsgBox ActiveWindow.RangeSelection.Count

Working with Range Objects
Much of the work you will do in VBA involves cells and ranges in worksheets. After
all, that’s what spreadsheets are designed to do. The earlier discussion on relative
versus absolute macro recording exposed you to working with cells in VBA, but you
need to know a lot more.

4799-2 ch07.F 6/11/01 9:29 AM Page 165

166 Part III ✦ Understanding Visual Basic for Applications

A Range object is contained in a Worksheet object, and consists of a single cell or
range of cells on a single worksheet. In the sections that follow, I discuss three ways
of referring to Range objects in your VBA code:

✦ The Range property of a Worksheet or Range class object

✦ The Cells property of a Worksheet object

✦ The Offset property of a Range object

The Range property
The Range property returns a Range object. If you consult the online help for the
Range property, you’ll learn that this property has two syntaxes:

object.Range(cell1)
object.Range(cell1, cell2)

The Range property applies to two types of objects: a Worksheet object or a Range
object. Here, cell1 and cell2 refer to placeholders for terms that Excel will recog-
nize as identifying the range (in the first instance) and delineating the range (in the
second instance). Following are a few examples of using the Range method.

You’ve already seen examples like the following one earlier in the chapter. The
instruction that follows simply enters a value into the specified cell. In this case, it
puts a 1 into cell A1 on Sheet1 of the active workbook:

Worksheets(“Sheet1”).Range(“A1”).Value = 1

The Range property also recognizes defined names in workbooks. Therefore, if a
cell is named “Input,” you can use the following statement to enter a value into that
named cell:

Worksheets(“Sheet1”).Range(“Input”).Value = 1

The example that follows enters the same value into a range of 20 cells on the
active sheet. If the active sheet is not a worksheet, this causes an error message:

ActiveSheet.Range(“A1:B10”).Value = 2

The next example produces exactly the same result as the preceding example:

Range(“A1”, “B10”) = 2

The sheet reference is omitted, however, so the active sheet is assumed. Also, the
value property is omitted, so the default property (which is Value, for a Range
object) is assumed. This example also uses the second syntax of the Range prop-
erty. With this syntax, the first argument is the cell at the top left of the range and
the second argument is the cell at the lower right of the range.

4799-2 ch07.F 6/11/01 9:29 AM Page 166

167Chapter 7 ✦ Introducing Visual Basic for Applications

The following example uses Excel’s range intersection operator (a space) to return
the intersection of two ranges. In this case, the intersection is a single cell, C6.
Therefore, this statement enters 3 into cell C6:

Range(“C1:C10 A6:E6”) = 3

And finally, this next example enters the value 4 into five cells, that is, a noncontigu-
ous range. The comma serves as the union operator:

Range(“A1,A3,A5,A7,A9”) = 4

So far, all the examples have used the Range property on a Worksheet object. As I
mentioned, you can also use the Range property on a Range object. This can be
rather confusing, but bear with me.

Following is an example of using the Range property on a Range object (in this case,
the Range object is the active cell). This example treats the Range object as if it
were the upper-left cell in the worksheet, and then enters a value of 5 into the cell
that would be B2. In other words, the reference returned is relative to the upper-left
corner of the Range object. Therefore, the statement that follows enters a value of 5
into the cell directly to the right and one row below the active cell:

ActiveCell.Range(“B2”) = 5

I said this is confusing. Fortunately, there is a much clearer way to access a cell rela-
tive to a range, called the Offset property. I’ll discuss this property after the next
section.

The Cells property
Another way to reference a range is to use the Cells property. Like the Range prop-
erty, you can use the Cells property on Worksheet objects and Range objects.
Check the online help, and you’ll see that the Cells property has three syntaxes:

object.Cells(rowIndex, columnIndex)
object.Cells(rowIndex)
object.Cells

I’ll give you some examples that demonstrate how to use the Cells property. The
first example enters the value 9 into cell 1 on Sheet1. In this case, I’m using the first
syntax, which accepts the index number of the row (from 1 to 65536) and the index
number of the column (from 1 to 256):

Worksheets(“Sheet1”).Cells(1, 1) = 9

Here’s an example that enters the value 7 into cell D3 (that is, row 3, column 4) in
the active worksheet:

ActiveSheet.Cells(3, 4) = 7

4799-2 ch07.F 6/11/01 9:29 AM Page 167

168 Part III ✦ Understanding Visual Basic for Applications

You can also use the Cells property on a Range object. When you do so, the Range
object returned by the Cells property is relative to the upper-left cell of the refer-
enced Range. Confusing? Probably. An example might help clear this up. The follow-
ing instruction enters the value 5 into the active cell. Remember, in this case, the
active cell is treated as if it were cell A1 in the worksheet:

ActiveCell.Cells(1, 1) = 5

The real advantage of this type of cell referencing will be apparent when I discuss
variables and looping (see Chapter 8). In most cases, you will not use actual val-
ues for the arguments. Rather, you’ll use variables.

To enter a value of 5 into the cell directly below the active cell, you can use the fol-
lowing instruction:

ActiveCell.Cells(2, 1) = 5

Think of the preceding example as though it said this: “Start with the active cell and
consider this cell as cell A1. Return the cell in the second row and the first column.”

The second syntax of the Cells method uses a single argument that can range from
1 to 16,777,216. This number is equal to the number of cells in a worksheet (65,536
rows × 256 columns). The cells are numbered starting from A1 and continuing right
and then down to the next row. The 256th cell is IV1, the 257th is A2.

The next example enters the value 2 into cell H3 (which is the 520th cell in the
worksheet) of the active worksheet:

ActiveSheet.Cells(520) = 2

To display the value in the last cell in a worksheet (IV65536), use this statement:

MsgBox ActiveSheet.Cells(16777216)

This syntax can also be used with a Range object. In this case, the cell returned is
relative to the Range object referenced. For example, if the Range object is A1:D10
(40 cells), the Cells property can have an argument from 1 to 40 and return one of
the cells in the Range object. In the following example, a value of 2000 is entered
into cell A2 because A2 is the fifth cell (counting from the top and to the right, then
down) in the referenced range:

Range(“A1:D10”).Cells(5) = 2000

In the preceding example, the argument for the Cells property is not limited to
values between 1 and 40. If the argument exceeds the number of cells in the
range, the counting continues as if the range were larger than it actually is.
Therefore, a statement like the preceding one could change the value in a cell
that’s outside of the range A1:D10.

Note

Note

4799-2 ch07.F 6/11/01 9:29 AM Page 168

169Chapter 7 ✦ Introducing Visual Basic for Applications

The third syntax for the Cells property simply returns all cells on the referenced
worksheet. Unlike the other two syntaxes, in this one, the return data is not a single
cell. This example uses the ClearContents method on the range returned by using
the Cells property on the active worksheet. The result is that the contents of
every cell on the worksheet are cleared:

ActiveSheet.Cells.ClearContents

The Offset property
The Offset property (like the Range and Cells properties) also returns a Range
object. But unlike the other two methods I discussed, the Offset property applies
only to a Range object and no other class. Its syntax is as follows:

object.Offset(rowOffset, columnOffset)

The Offset property takes two arguments that correspond to the relative position
from the upper-left cell of the specified Range object. The arguments can be posi-
tive (down or right), negative (up or left), or zero. The example that follows enters a
value of 12 into the cell directly below the active cell:

ActiveCell.Offset(1,0).Value = 12

The next example enters a value of 15 into the cell directly above the active cell:

ActiveCell.Offset(-1,0).Value = 15

By the way, if the active cell is in row 1, the Offset property in the preceding exam-
ple generates an error, because it cannot return a Range object that doesn’t exist.

The Offset property is quite useful, especially when you use variables within loop-
ing procedures. I discuss these topics in the next chapter.

When you record a macro using the relative reference mode, Excel uses the Offset
property to reference cells relative to the starting position (that is, the active cell
when macro recording begins). For example, I used the macro recorder to generate
the following code. I started with the cell pointer in cell B1, entered values into
B1:B3, and then returned to B1.

Sub Macro1()
ActiveCell.FormulaR1C1 = “1”
ActiveCell.Offset(1, 0).Range(“A1”).Select
ActiveCell.FormulaR1C1 = “2”
ActiveCell.Offset(1, 0).Range(“A1”).Select
ActiveCell.FormulaR1C1 = “3”
ActiveCell.Offset(-2, 0).Range(“A1”).Select

End Sub

4799-2 ch07.F 6/11/01 9:29 AM Page 169

170 Part III ✦ Understanding Visual Basic for Applications

Notice that the macro recorder uses the FormulaR1C1 property. Normally, you’ll
want to use the Value property to enter a value into a cell. However using
FormulaR1C1 or even Formula produces the same result.

Also notice that the generated code references cell A1, which may seem a bit odd,
because that cell was not even involved in the macro. This is a quirk in the macro
recording procedure that makes the code more complex than necessary. You can
delete all references to Range(“A1”) and the macro still works perfectly:

Sub Modified Macro1()
ActiveCell.FormulaR1C1 = “1”
ActiveCell.Offset(1, 0).Select
ActiveCell.FormulaR1C1 = “2”
ActiveCell.Offset(1, 0).Select
ActiveCell.FormulaR1C1 = “3”
ActiveCell.Offset(-2, 0).Select

End Sub

In fact, here’s a much more efficient version of the macro (which I wrote myself)
that doesn’t do any selecting:

Sub Macro1()
ActiveCell = 1
ActiveCell.Offset(1, 0) = 2
ActiveCell.Offset(2, 0) = 3

End Sub

Things to Know about Objects
The preceding sections introduced you to objects (including collections), proper-
ties, and methods. But I’ve barely scratched the surface.

Esoteric but essential concepts to remember
In this section, I’ll add some more concepts that are essential for would-be VBA
gurus. These concepts become clearer as you work with VBA and read subsequent
chapters:

✦ Objects have unique properties and methods.

Each object has its own set of properties and methods. Some objects, how-
ever, share some properties (for example, Name) and some methods (such as
Delete).

4799-2 ch07.F 6/11/01 9:29 AM Page 170

171Chapter 7 ✦ Introducing Visual Basic for Applications

✦ You can manipulate objects without selecting them.

This may be contrary to how you normally think about manipulating objects
in Excel, especially if you’ve programmed XLM macros. Fact is, it’s usually
more efficient to perform actions on objects without selecting them first.
When you record a macro, Excel generally selects the object first. This is not
necessary and may actually make your macro run slower.

✦ It’s important that you understand the concept of collections.

Most of the time, you’ll refer to an object indirectly by referring to the collec-
tion that it’s in. For example, to access a Workbook object named Myfile, refer-
ence the Workbooks collection as follows:

Workbooks(“Myfile.xls”)

This reference returns an object, which is the workbook with which you are
concerned.

✦ Properties can return a reference to another object. For example, in the fol-
lowing statement, the Font property returns a Font object contained in a
Range object:

Range(“A1”).Font.Bold = True

✦ There can be many different ways to refer to the same object.

Assume that you have a workbook named Sales, and it’s the only workbook
open. Then assume that this workbook has one worksheet, named Summary.
You can refer to the sheet in any of the following ways:

Workbooks(“Sales.xls”).Worksheets(“Summary”)
Workbooks(1).Worksheets(1)
Workbooks(1).Sheets(1)
Application.ActiveWorkbook.ActiveSheet
ActiveWorkbook.ActiveSheet
ActiveSheet

The method you use is usually determined by how much you know about the
workspace. For example, if there is more than one workbook open, the second
or third method is not reliable. If you want to work with the active sheet
(whatever it may be), any of the last three methods would work. To be abso-
lutely sure that you’re referring to a specific sheet on a specific workbook, the
first method is your best choice.

Learn more about objects and properties
If this is your first exposure to VBA, you’re probably a bit overwhelmed about
objects, properties, and methods. I don’t blame you. If you try to access a property
that an object doesn’t have, you’ll get a runtime error, and your VBA code will grind
to a screeching halt until you correct the problem.

4799-2 ch07.F 6/11/01 9:29 AM Page 171

172 Part III ✦ Understanding Visual Basic for Applications

Fortunately, there are several good ways to learn about objects, properties, and
methods.

Read the rest of the book
Don’t forget, the name of this chapter is “Introducing Visual Basic for Applications.”
The remainder of this book covers a lot of additional details and provides many
useful and informative examples.

Record your actions
The absolute best way to become familiar with VBA, without question, is to simply
turn on the macro recorder and record some actions you make in Excel. This is a
quick way to learn the relevant objects, properties, and methods for a task. It’s even
better if the VBA module in which the code is being recorded is visible while you’re
recording.

Use the online help system
The main source of detailed information about Excel’s objects, methods, and proce-
dures is the online help system.

Figure 7-16 shows the help topic for the Value property. This particular property
applies to a number of different objects, and the help topic contains hyperlinks
labeled See Also, Applies To, and Example. If you click See Also, you get a list of
related topics (if any). Clicking Applies To displays a window that lists all objects
that use this property. If you click Example, you’ll be able to view one or more
examples (you can copy the example text and paste it into a VBA module to try it
out).

Use the Object Browser
The Object Browser is a handy tool that lists every property and method for every
object available. When the VBE is active, you can bring up the Object Browser in
any of the following three ways:

✦ Press F2.

✦ Choose the View ➪ Object Browser command from the menu.

✦ Click the Object Browser tool on the Standard toolbar.

The Object Browser is shown in Figure 7-17.

4799-2 ch07.F 6/11/01 9:29 AM Page 172

173Chapter 7 ✦ Introducing Visual Basic for Applications

Figure 7-16: A typical VBA help screen

The drop-down list in the upper-left corner of the Object Browser includes a list of
all object libraries that you have access to:

✦ Excel itself

✦ MSForms (used to create custom dialog boxes)

✦ Office (objects common to all Microsoft Office applications)

✦ Stdole (OLE automation objects)

✦ VBA

✦ Each open workbook (each workbook is considered an object library because
it contains objects)

Your selection in this upper-left drop-down list determines what is displayed in the
Classes window, and your selection in the Classes window determines what is visi-
ble in the Members of window.

4799-2 ch07.F 6/11/01 9:29 AM Page 173

174 Part III ✦ Understanding Visual Basic for Applications

Figure 7-17: The Object Browser is a great reference source.

Once you select a library, you can search for a particular text string to get a list of
properties and methods that contain the text. You do so by entering the text in the
second drop-down list and then clicking the binoculars icon. For example, assume
that you’re working on a project that manipulates cell comments:

1. Select the library of interest. If you’re not sure which object library is appro-
priate, you can select <All Libraries>).

2. Enter Comment in the drop-down list below the library list.

3. Click the binoculars icon to begin the text search.

The Search Results window displays the matching text. Select an object to display
its classes in the Classes window. Select a class to display its members (properties,
methods, and constants). Pay attention to the bottom pane, which shows more
information about the object. You can press F1 to go directly to the appropriate
help topic.

The Object Browser may seem complex at first, but its usefulness to you will
increase over time.

4799-2 ch07.F 6/11/01 9:29 AM Page 174

175Chapter 7 ✦ Introducing Visual Basic for Applications

Experiment with the Immediate window
As I described in the sidebar earlier in this chapter (see “About the Code Examples”),
the Immediate window of the VBE is very useful for testing statements and trying
out various VBA expressions. I generally keep the Immediate window visible at all
times, and I use it frequently to test various expressions and to help in debugging
code.

Summary
In this chapter, I introduced VBA and discussed how VBA compares to other
languages. I explained that a VBA module contains procedures and that VBA is
based on objects, properties, and methods. I also explained how to use the macro
recorder to translate your actions into VBA code.

Chapter 8 discusses programming concepts that are necessary to get the most out
of VBA.

✦ ✦ ✦

4799-2 ch07.F 6/11/01 9:29 AM Page 175

4799-2 ch07.F 6/11/01 9:29 AM Page 176

VBA
Programming
Fundamentals

In the preceding chapter, I introduced you to VBA; now it’s
time to get better acquainted. This chapter discusses some

of the key language elements and programming concepts in
VBA. If you’ve used other programming languages, much of
this information may sound familiar. VBA has a few unique
wrinkles, however, so even experienced programmers may
find some new information.

VBA Language Elements: An
Overview

In Chapter 7, I presented an overview of objects, properties,
and methods. But I didn’t tell you much about how to manipu-
late objects so that they do meaningful things. This chapter
gently nudges you in that direction by exploring VBA’s lan-
guage elements, the keywords and control structures that you
use to write VBA routines.

To get the ball rolling, I’ll start by presenting a simple proce-
dure. The following procedure is stored in a VBA module, and
calculates the sum of the first 100 integers. When done, the
procedure displays a message with the result.

Sub VBA_Demo()
‘ This is a simple VBA Example

Dim Total As Integer, i As Integer
Total = 0
For i = 1 To 100

Total = Total + i
Next i
MsgBox Total

88C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Understanding VBA’s
language elements,
including variables,
data types, constants,
and arrays

Using VBA’s built-in
functions

Manipulating objects
and collections

Controlling the
execution of your
procedures

✦ ✦ ✦ ✦

4799-2 ch08.F 6/11/01 9:30 AM Page 177

178 Part III ✦ Understanding Visual Basic for Applications

End SubThis procedure uses some common language elements, including a com-
ment (the line preceded by the apostrophe), a variable (Total), two assignment
statements (Total = 0 and Total = Total + i), a looping structure (For-Next),
and a VBA statement (MsgBox). All these are discussed in subsequent sections of
this chapter.

VBA procedures need not manipulate any objects. The preceding procedure, for
example, doesn’t do anything with objects. It simply works with numbers.

Comments
A comment is descriptive text embedded within your code. The text of a comment
is completely ignored by VBA. It’s a good idea to use comments liberally to
describe what you’re doing (an instruction’s purpose is not always obvious).

You can use a complete line for your comment, or you can insert a comment after
an instruction on the same line. A comment is indicated by an apostrophe. VBA
ignores any text that follows an apostrophe — except when the apostrophe is con-
tained within quotation marks — up until the end of the line. For example, the fol-
lowing statement does not contain a comment, even though it has an apostrophe:

Msg = “Can’t continue”

The following example shows a VBA procedure with three comments:

Sub Comments()
‘ This procedure does nothing of value

x = 0 ‘x represents nothingness
‘ Display the result

MsgBox x
End Sub

Although the apostrophe is the preferred comment indicator, you can also use the
Rem keyword to mark a line as a comment. For example,

Rem -- The next statement prompts the user for a filename

The Rem keyword is essentially a holdover from old versions of BASIC; it is included
in VBA for the sake of compatibility. Unlike the apostrophe, Rem can be written only
at the beginning of a line, not on the same line as another instruction.

Using comments is definitely a good idea, but not all comments are equally benefi-
cial. To be useful, comments should convey information that’s not immediately
obvious from reading the code. Otherwise, you’re just chewing up valuable bytes.
The following procedure, for example, contains many comments, none of which
really adds anything of value:

Sub BadComments()

Note

4799-2 ch08.F 6/11/01 9:30 AM Page 178

179Chapter 8 ✦ VBA Programming Fundamentals

Entering VBA Code

VBA code, which resides in a VBA module, consists of instructions. The accepted practice is to
use one instruction per line. This standard is not a requirement, however; you can use a colon
to separate multiple instructions on a single line. The following example combines four
instructions on one line:

Sub OneLine()
x= 1: y= 2: z= 3: MsgBox x + y + z

End Sub

Most programmers agree that code is easier to read if you use one instruction per line:

Sub OneLine()
x = 1
y = 2
z = 3
MsgBox x + y + z

End Sub

Each line can be as long as you like; the VBA module window scrolls to the left when you
reach the right side. For lengthy lines, you may want to use VBA’s line continuation sequence:
an underscore (_) preceded by a space. For example,

Sub LongLine()
SummedValue = _
Worksheets(“Sheet1”).Range(“A1”).Value + _
Worksheets(“Sheet2”).Range(“A1”).Value

End Sub

When you record macros, Excel often uses underscores to break long statements into multi-
ple lines.

After you enter an instruction, VBA performs the following actions to improve readability:

✦ It inserts spaces between operators. If you enter Ans=1+2 (without spaces), for exam-
ple, VBA converts it to

Ans = 1 + 2

✦ VBA adjusts the case of the letters for keywords, properties, and methods. If you enter
the following text

Result=activesheet.range(“a1”).value=12

VBA converts it to

Result = ActiveSheet.Range(“a1”).Value = 12

Notice that text within quotation marks (in this case, “a1”) is not changed.

Continued

4799-2 ch08.F 6/11/01 9:30 AM Page 179

180 Part III ✦ Understanding Visual Basic for Applications

‘ Declare variables
Dim x As Integer
Dim y As Integer
Dim z As Integer

‘ Start the routine
x = 100 ‘ Assign 100 to x
y = 200 ‘ Assign 200 to y

‘ Add x and y and store in z
z = x + y

‘ Show the result
MsgBox z

End Sub

Following are a few general tips on making the best use of comments:

✦ Use comments to describe briefly the purpose of each procedure you write.

✦ Use comments to describe changes you make to a procedure.

✦ Use comments to indicate that you’re using functions or constructs in an
unusual or nonstandard manner.

✦ Use comments to describe the purpose of variables so that you and other
people can decipher otherwise cryptic names.

✦ Use comments to describe workarounds that you develop to overcome Excel
bugs.

✦ Write comments as you code rather than after.

You may want to test a procedure without including a particular instruction or
group of instructions. Instead of deleting the instruction, simply turn it into a com-
ment by inserting an apostrophe at the beginning. VBA then ignores the instruc-
tion(s) when the routine is executed. To convert the comment back to an
instruction, delete the apostrophe.

Tip

Continued

✦ Because VBA variable names are not case sensitive, the interpreter by default adjusts
the names of all variables with the same letters so that their case matches the case of
letters that you most recently typed. For example, if you first specify a variable as
myvalue (all lowercase) and then enter the variable as MyValue (mixed case), VBA
changes all other occurrences of the variable to MyValue. An exception occurs if you
declare the variable with Dim or a similar statement; in this case, the variable name
always appears as it was declared.

✦ VBA scans the instruction for syntax errors. If VBA finds an error, it changes the color of
the line and may display a message describing the problem. Use the VBE’s Tools ➪

Options command to display the Options dialog box, where you control the error
color (use the Editor Format tab) and whether the error message is displayed (use the
Auto Syntax Check option in the Editor tab).

4799-2 ch08.F 6/11/01 9:30 AM Page 180

181Chapter 8 ✦ VBA Programming Fundamentals

VBE’s Edit toolbar contains two very useful buttons. Select a group of instructions
and then use the Comment Block button to convert the instructions to comments.
The Uncomment Block button converts a group of comments back to instructions.
These buttons are very useful, so you may want to copy them to your Standard
toolbar.

Variables, Data Types, and Constants
VBA’s main purpose in life is to manipulate data. Some data resides in objects, such
as worksheet ranges. Other data is stored in variables that you create.

A variable is simply a named storage location in your computer’s memory. Variables
can accommodate a wide variety of data types — from simple Boolean values (True
or False) to large, double-precision values (see the following section). You assign a
value to a variable by using the equals sign operator (more about this later).

You’ll make your life easier if you get into the habit of making your variable names
as descriptive as possible. VBA does, however, have a few rules regarding variable
names:

✦ You can use alphabetic characters, numbers, and some punctuation charac-
ters, but the first character must be alphabetic.

✦ VBA does not distinguish between case. To make variable names more read-
able, programmers often use mixed case (for example, InterestRate rather
than interestrate).

✦ You cannot use spaces or periods. To make variable names more readable,
programmers often use the underscore character (Interest_Rate).

✦ Special type declaration characters (#, $, %, &, or !) cannot be embedded in a
variable name.

✦ Variable names may comprise as many as 254 characters — but no one in his
right mind would create a variable name that long!

The following list contains some examples of assignment expressions that use vari-
ous types of variables. The variable names are to the left of the equals sign. Each
statement assigns the value to the right of the equal sign to the variable on the left.

x = 1
InterestRate = 0.075
LoanPayoffAmount = 243089
DataEntered = False
x = x + 1
MyNum = YourNum * 1.25
UserName = “Bob Johnson”

4799-2 ch08.F 6/11/01 9:30 AM Page 181

182 Part III ✦ Understanding Visual Basic for Applications

DateStarted = #3/14/98#

VBA has many reserved words, which are words that you cannot use for variable or
procedure names. If you attempt to use one of these words, you get an error mes-
sage. For example, although the reserved word Next might make a very descriptive
variable name, the following instruction generates a syntax error:

Next = 132

Unfortunately, syntax error messages aren’t always very descriptive. The preceding
instruction generates this error message: Compile error: Expected variable. It
would be nice if the error message were something like Reserved word used as a
variable. So if an instruction produces a strange error message, check the online
help to make sure your variable name doesn’t have a special use in VBA.

Defining data types
VBA makes life easy for programmers because it can automatically handle all the
details involved in dealing with data. Not all programming languages make it so
easy. For example, some languages are strictly typed, which means that the program-
mer must explicitly define the data type for every variable used.

Data type refers to how data is stored in memory — as integers, real numbers,
strings, and so on. Although VBA can take care of data typing automatically, it does
so at a cost: slower execution and less efficient use of memory. (There’s no such
thing as a free lunch.) As a result, letting VBA handle data typing may present prob-
lems when you’re running large or complex applications. If you need to conserve
every last byte of memory, you need to be on familiar terms with data types. Another
advantage to explicitly declaring your variables as a particular data type is that
VBA can perform some additional error checking at the compile stage. These errors
might otherwise be difficult to locate.

Table 8-1 lists VBA’s assortment of built-in data types (note that you can also define
custom data types, which I describe later in this chapter).

Table 8-1
VBA’s Built-in Data Types

Data Type Bytes Used Range of Values

Byte 1 byte 0 to 255

Boolean 2 bytes

True or False

Integer 2 bytes –32,768 to 32,767

4799-2 ch08.F 6/11/01 9:30 AM Page 182

183Chapter 8 ✦ VBA Programming Fundamentals

Data Type Bytes Used Range of Values

Long 4 bytes –2,147,483,648 to 2,147,483,647

Single 4 bytes –3.402823E38 to –1.401298E–45 (for
negative values); 1.401298E–45 to
3.402823E38 (for positive values)

Double 8 bytes –1.79769313486232E308 to
–4.94065645841247E–324 (negative
values); 4.94065645841247E–324 to
1.79769313486232E308 (positive values)

Currency 8 bytes –922,337,203,685,477.5808 to
922,337,203,685,477.5807

Decimal 14 bytes +/–79,228,162,514,264,337,593,543,950,335
with no decimal point;
+/–7.9228162514264337593543950335
with 28 places to the right of the decimal

Date 8 bytes January 1, 0100 to December 31, 9999

Object 4 bytes Any object reference

String 10 bytes + string length 0 to approximately 2 billion
(variable-length)

String Length of string 1 to approximately 65,400
(fixed-length)

Variant 16 bytes Any numeric value up to the range of a
(with numbers) double data type

Variant 22 bytes + string length 0 to approximately 2 billion
(with characters)

User-defined Varies Varies by element

The Decimal data type was introduced in Excel 2000, and cannot be used in previ-
ous versions. This is a rather unusual data type because you cannot actually
declare it. In fact, it is a “subtype” of a variant. You need to use VBA’s CDec func-
tion to convert a variant to the decimal data type.

Generally, it’s best to use the data type that uses the smallest number of bytes yet
still can handle all the data assigned to it. When VBA works with data, execution
speed is a function of the number of bytes VBA has at its disposal. In other words,
the fewer bytes used by data, the faster VBA can access and manipulate the data.

For worksheet calculation, Excel uses the Double data type, so that’s a good choice
for processing numbers in VBA when you don’t want to lose any precision. For inte-
ger calculations, you can use the Integer type if you’re sure that the values will not

Note

4799-2 ch08.F 6/11/01 9:30 AM Page 183

184 Part III ✦ Understanding Visual Basic for Applications

exceed 32,767. Otherwise, use the Long data type. When dealing with Excel work-
sheet row numbers, you’ll want to use the Long data type because the number of
rows in a worksheet exceed the maximum value for the Integer data type.

Declaring variables
If you don’t declare the data type for a variable that you use in a VBA routine, VBA
uses the default data type, variant. Data stored as a variant acts like a chameleon:
It changes type, depending on what you do with it. The following procedure demon-
strates how a variable can assume different data types:

Sub VariantDemo()
MyVar = “123”
MyVar = MyVar / 2
MyVar = “Answer: “ & MyVar
MsgBox MyVar

End Sub

In the VariantDemo procedure, MyVar starts out as a three-character string. Then
this “string” is divided by two and becomes a numeric data type. Next, MyVar is
appended to a string, converting MyVar back to a string. The MsgBox statement
displays the final string: Answer: 61.5.

To further demonstrate the potential problems in dealing with variant data types,
try executing this procedure:

Sub VariantDemo2()
MyVar = “123”
MyVar = MyVar + MyVar
MyVar = “Answer: “ & MyVar
MsgBox MyVar

End Sub

The message box will display: Answer: 123123. This is probably not what you
wanted. When dealing with variants that contain text string, the + operator
performs string concatenation.

Determining a data type
You can use VBA’s TypeName function to determine the data type of a variable.
Here’s a modified version of the previous procedure. This version displays the data
type of MyVar at each step. You’ll see that it starts out as a string, then is converted
to a double, and finally ends up as a string again.

Sub VariantDemo2()
MyVar = “123”
MsgBox TypeName(MyVar)
MyVar = MyVar / 2
MsgBox TypeName(MyVar)

4799-2 ch08.F 6/11/01 9:30 AM Page 184

185Chapter 8 ✦ VBA Programming Fundamentals

MyVar = “Answer: “ & MyVar
MsgBox TypeName(MyVar)
MsgBox MyVar

End Sub

Thanks to VBA, the data type conversion of undeclared variables is automatic. This
process may seem like an easy way out, but remember that you sacrifice speed and
memory.

Benchmarking Variant Data Types

To test whether data-typing is important, I developed the following routine, which performs
some meaningless calculations in a loop and then displays the procedure’s total execution
time:

Sub TimeTest()
Dim x As Integer, y As Integer
Dim A As Integer, B As Integer, C As Integer
Dim i As Integer, j As Integer
Dim StartTime As Date, EndTime As Date

‘ Store the starting time
StartTime = Timer

‘ Perform some calculations
x = 0
y = 0
For i = 1 To 5000

For j = 1 To 1000
A = x + y + i
B = y - x - i
C = x - y - i

Next j
Next i

‘ Get ending time
EndTime = Timer

‘ Display total time in seconds
MsgBox Format(EndTime - StartTime, “0.0”)

End Sub

On my system, this routine took 4.0 seconds to run (the time will vary, depending on your
system’s processor speed). I then commented out the Dim statements, which declare the
data types. That is, I turned the Dim statements into comments by adding an apostrophe at
the beginning of the lines. As a result, VBA used the default data type, variant. I ran the pro-
cedure again. It took 8.3 seconds, more than twice as long as before.

The moral is simple: If you want your VBA applications to run as fast as possible, declare
your variables!

4799-2 ch08.F 6/11/01 9:30 AM Page 185

186 Part III ✦ Understanding Visual Basic for Applications

It’s an excellent habit to declare each variable in a procedure before you use it.
Declaring a variable tells VBA its name and data type. Declaring variables provides
two main benefits:

✦ Your programs run faster and use memory more efficiently. The default data
type, variant, causes VBA to repeatedly perform time-consuming checks and
reserve more memory than necessary. If VBA knows the data type, it doesn’t
have to investigate, and it can reserve just enough memory to store the data.

✦ You avoid problems involving misspelled variable names. This assumes that
you use Option Explict to force yourself to declare all variables (see the
next section). Say that you use an undeclared variable named CurrentRate.
At some point in your routine, however, you insert the statement CurentRate
= .075. This misspelled variable name, which is very difficult to spot, will
likely cause your routine to give incorrect results.

Forcing yourself to declare all variables
To force yourself to declare all the variables that you use, include the following as
the first instruction in your VBA module:

Option Explicit

This statement causes your program to stop whenever VBA encounters a variable
name that has not been declared. VBA issues an error message, and you must
declare the variable before you can proceed.

To ensure that the Option Explicit statement is automatically inserted when-
ever you insert a new VBA module, enable the Require Variable Declaration option
in the Editor tab of the VBE’s Options dialog box. I highly recommend doing so.

Scoping variables
A variable’s scope determines which modules and procedures the variable can be
used in. A variable’s scope can be any of the following:

Scope How a Variable with this Scope Is Declared

Single procedure Include a Dim or Static statement within the procedure.

Single module Include a Dim or Private statement before the first procedure in a
module.

All modules Include a Public statement before the first procedure in a module.

I discuss each scope further in the following sections.

Tip

4799-2 ch08.F 6/11/01 9:30 AM Page 186

187Chapter 8 ✦ VBA Programming Fundamentals

Local variables
A local variable is a variable declared within a procedure. Local variables can be
used only in the procedure in which they are declared. When the procedure ends,
the variable no longer exists, and Excel frees up its memory.

If you need the variable to retain its value, declare it as a Static variable (see
“Static variables” later in this section).

The most common way to declare a local variable is to place a Dim statement
between a Sub statement and an End Sub statement. Dim statements usually are
placed right after the Sub statement, before the procedure’s code.

If you’re curious about this word, Dim is a shortened form of Dimension. In old ver-
sions of BASIC, this statement was used exclusively to declare the dimensions for
an array. In VBA, the Dim keyword is used to declare any variable, not just arrays.

The following procedure uses six local variables declared using Dim statements:

Sub MySub()
Dim x As Integer
Dim First As Long
Dim InterestRate As Single
Dim TodaysDate As Date
Dim UserName As String * 20
Dim MyValue

‘ - [The procedure’s code goes here] -
End Sub

Notice that the last Dim statement in the preceding example doesn’t declare a data
type; it simply names the variable. As a result, that variable becomes a variant.

By the way, you also can declare several variables with a single Dim statement. For
example,

Dim x As Integer, y As Integer, z As Integer
Dim First As Long, Last As Double

Note

A Note about the Examples in This Chapter

This chapter contains many examples of VBA code, usually presented in the form of simple
procedures. These examples demonstrate various concepts as simply as possible. Most of
these examples do not perform any particularly useful task; in fact, the task can often be
performed in a different way. In other words, don’t use these examples in your own work.
Subsequent chapters provide many more code examples that are useful.

4799-2 ch08.F 6/11/01 9:30 AM Page 187

188 Part III ✦ Understanding Visual Basic for Applications

Unlike some languages, VBA does not let you declare a group of variables to be a
particular data type by separating the variables with commas. For example, the fol-
lowing statement, although valid, does not declare all the variables as integers:

Dim i, j, k As Integer

In VBA, only k is declared to be an integer; the other variables are declared vari-
ants. To declare i, j, and k as integers, use this statement:

Dim i As Integer, j As Integer, k As Integer

If a variable is declared with a local scope, other procedures in the same module
can use the same variable name, but each instance of the variable is unique to its
own procedure.

In general, local variables are the most efficient because VBA frees up the memory
they use when the procedure ends.

Caution

Another Way of Data-Typing Variables

Like most other dialects of BASIC, VBA lets you append a character to a variable’s name to
indicate the data type. For example, you can declare the MyVar variable as an integer by
tacking % onto the name:

Dim MyVar%

Type-declaration characters exist for most of VBA’s data types (data types not listed don’t
have type-declaration characters).

Data Type Type-Declaration Character

Integer %

Long &

Single !

Double #

Currency @

String $

This method of data typing is essentially a holdover from BASIC; it’s better to declare your
variables using the techniques described in this chapter.

4799-2 ch08.F 6/11/01 9:30 AM Page 188

189Chapter 8 ✦ VBA Programming Fundamentals

Modulewide variables
Sometimes, you’ll want a variable to be available to all procedures in a module. If
so, just declare the variable before the module’s first procedure (outside of any pro-
cedures or functions).

In the following example, the Dim statement is the first instruction in the module.
Both MySub and YourSub have access to the CurrentValue variable.

Dim CurrentValue as Integer

Sub MySub()
‘ - [Code goes here] -
End Sub

Sub YourSub()
‘ - [Code goes here] -
End Sub

The value of a modulewide variable does not change when a procedure ends.

Public variables
To make a variable available to all the procedures in all the VBA modules in a pro-
ject, declare the variable at the module level by using the Public keyword rather
than Dim. Here’s an example:

Public CurrentRate as Long

The Public keyword makes the CurrentRate variable available to any procedure
in the project, even those in other modules within the project. You must insert this
statement before the first procedure in a module. This type of declaration must also
appear in a standard VBA module, not in a code module for a sheet or a UserForm.

Static variables
Static variables are a special case. They are declared at the procedure level, and
they retain their value when the procedure ends.

You declare static variables using the Static keyword:

Sub MySub()
Static Counter as Integer
- [Code goes here] -

End Sub

4799-2 ch08.F 6/11/01 9:30 AM Page 189

190 Part III ✦ Understanding Visual Basic for Applications

Working with constants
A variable’s value may, and often does, change while a procedure is executing
(that’s why it’s called a variable). Sometimes, you need to refer to a named value or
string that never changes: a constant.

Declaring constants
You declare constants using the Const statement. Here are some examples:

Const NumQuarters as Integer = 4
Const Rate = .0725, Period = 12
Const ModName as String = “Budget Macros”
Public Const AppName as String = “Budget Application”

The second example doesn’t declare a data type. Consequently, the two constants
are variants. Because a constant never changes its value, you’ll normally want to
declare your constants as a specific data type.

Like variables, constants also have a scope. If you want a constant to be available
within a single procedure only, declare it after the Sub or Function statement to
make it a local constant. To make a constant available to all procedures in a mod-
ule, declare it before the first procedure in the module. To make a constant avail-
able to all modules in the workbook, use the Public keyword, and declare the
constant before the first procedure in a module. For example:

Public Const InterestRate As Double = 0.0725

If you attempt to change the value of a constant in a VBA procedure, you get an
error — which is what you would expect. A constant is a constant, not a variable.

Using constants throughout your code in place of hard-coded values or strings is an
excellent programming practice. For example, if your procedure needs to refer to a
specific value, such as an interest rate, several times, it’s better to declare the value
as a constant and use the constant’s name rather than its value in your expressions.
This technique not only makes your code more readable, it also makes it easier to
change should the need arise — you have to change only one instruction rather
than several.

Using predefined constants
Excel and VBA provide many predefined constants, which you can use without
declaring. In fact, you don’t even need to know the value of these constants to use
them. The macro recorder generally uses constants rather than actual values. The
following procedure uses a built-in constant (xlLandscape) to set the page orienta-
tion to landscape for the active sheet:

Sub SetToLandscape()
ActiveSheet.PageSetup.Orientation = xlLandscape

End Sub

Note

4799-2 ch08.F 6/11/01 9:30 AM Page 190

191Chapter 8 ✦ VBA Programming Fundamentals

I discovered the xlLandscape constant by recording a macro. I also could have
found this information in the online help. And, if you have the AutoList Members
option turned on, you can often get some assistance as you enter your code. In
many cases, VBA lists all the constants that can be assigned to a property.

The actual value for xlLandscape is 2. The other built-in constant for changing
paper orientation is xlPortrait, which has a value of 1. Obviously, if you use the
built-in constants, there is really no need to know their values.

The Object Browser, which I discuss in Chapter 7, contains a list of all Excel and
VBA constants. In the VBE, press F2 to bring up the Object Browser.

Working with strings
Like Excel, VBA can manipulate both numbers and text (strings). There are two
types of strings in VBA:

Note

Variable Naming Conventions

Some programmers name variables so that their data types can be identified just by look-
ing at their names. Personally, I usually don’t use this technique because I think it makes
the code more difficult to read. But you might find it helpful.

The naming convention involves using a standard lowercase prefix for the variable’s name.
For example, if you have a Boolean variable that tracks whether a workbook has been
saved, you might name the variable bWasSaved. That way, it is clear that the variable is a
Boolean variable. The following table lists some standard prefixes for data types:

Data Type Prefix

Boolean b

Integer i

Long l

Single s

Double d

Currency c

Date/Time dt

String str

Object obj

Variant v

User-defined u

4799-2 ch08.F 6/11/01 9:30 AM Page 191

192 Part III ✦ Understanding Visual Basic for Applications

✦ Fixed-length strings are declared with a specified number of characters. The
maximum length is 65,535 characters.

✦ Variable-length strings theoretically can hold up to 2 billion characters.

Each character in a string requires 1 byte of storage, and a small additional amount of
storage is used for the header of each string. When you declare a string variable with
a Dim statement, you can specify the length if you know it (that is, a fixed-length
string), or you can let VBA handle it dynamically (a variable-length string). Working
with fixed-length strings is slightly more efficient in terms of memory usage.

In the following example, the MyString variable is declared to be a string with a
maximum length of 50 characters. YourString is also declared as a string, but its
length is unfixed.

Dim MyString As String * 50
Dim YourString As String

Working with dates
You can use a string variable to store a date, of course, but you can’t perform date
calculations on one. Using the date data type is a better way to work with dates.

A variable defined as a date uses 8 bytes of storage and can hold dates ranging from
January 1, A.D. 100, to December 31, 9999. That’s a span of nearly 10,000 years —
more than enough for even the most aggressive financial forecast! The date data
type is also useful for storing time-related data. In VBA, you specify dates and times
by enclosing them between two pound signs (#), as shown next.

About Excel’s Date Bug

It is commonly known that Excel has a date bug: It incorrectly assumes that the year 1900
is a leap year. Even though there was no February 29, 1900, Excel accepts the following for-
mula and displays the result as the 29th day of February, 1900:

=Date(1900,2,29)

VBA does not have this date bug. The VBA equivalent of Excel’s DATE function is
DateSerial. The following expression (correctly) returns March 1, 1900:

DateSerial(1900,2,29)

Therefore, Excel’s date serial number system does not correspond exactly to VBA’s date
serial number system. These two systems return different values for dates between January
1, 1900 and March 1, 1900.

4799-2 ch08.F 6/11/01 9:30 AM Page 192

193Chapter 8 ✦ VBA Programming Fundamentals

The range of dates that VBA can handle is much larger than Excel’s own date
range, which begins with January 1, 1900. Therefore, be careful that you don’t
attempt to use a date in a worksheet that is outside of Excel’s acceptable date
range.

Here are some examples of declaring variables and constants as Date data types:

Dim Today As Date
Dim StartTime As Date
Const FirstDay As Date = #1/1/2001#
Const Noon = #12:00:00#

Date constants are always defined using month/day/year format, even if your sys-
tem is set up to display dates in a different format (for example, day/month/year).

If you use a message box to display a date, it will be displayed according to your
system’s short date format. Similarly, a time is displayed according to your system’s
time format (either 12- or 24-hour). You can modify these system settings by using
the Regional Settings option in the Windows Control Panel.

The companion CD-ROM contains an Excel add-in that I created called Extended
Data Functions. This add-in, which was created using VBA, adds new worksheet
functions to Excel. These new functions enable you to create formulas that work
with dates prior to January 1, 1900.

Assignment Statements
An assignment statement is a VBA instruction that makes a mathematical evaluation
and assigns the result to a variable or an object. Excel’s online help defines expres-
sion as

a combination of keywords, operators, variables, and constants that yields a
string, number, or object. An expression can perform a calculation, manipulate
characters, or test data.

I couldn’t have said it better myself. Much of the work done in VBA involves devel-
oping (and debugging) expressions.

If you know how to create formulas in Excel, you’ll have no trouble creating expres-
sions in VBA. With a worksheet formula, Excel displays the result in a cell. A VBA
expression, on the other hand, can be assigned to a variable or used as a property
value.

VBA uses the equals sign (=) as its assignment operator. The following are examples
of assignment statements (the expressions are to the right of the equals sign):

On the
CD-ROM

Note

4799-2 ch08.F 6/11/01 9:30 AM Page 193

194 Part III ✦ Understanding Visual Basic for Applications

x = 1
x = x + 1
x = (y * 2) / (z * 2)
FileOpen = True
FileOpen = Not FileOpen
Range(“TheYear”).Value = 2001

Expressions can be very complex. You may want to use the continuation sequence
(space followed by an underscore) to make lengthy expressions easier to read.

Often, expressions use functions. These functions can be VBA’s built-in functions,
Excel’s worksheet functions, or custom functions that you develop in VBA. I discuss
built-in VBA functions later in this chapter.

Operators play a major role in VBA. Familiar operators describe mathematical
operations, including addition (+), multiplication (*), division (/), subtraction (-),
exponentiation (^), and string concatenation (&). Less-familiar operators are the
backslash (\), used in integer division, and the Mod operator, used in modulo arith-
metic. The Mod operator returns the remainder of one number divided by another.
For example, the following expression returns 2:

17 Mod 3

VBA also supports the same comparative operators used in Excel formulas: equal
to (=), greater than (>), less than (<), greater than or equal to (>=), less than or
equal to (<=), and not equal to (<>).

In addition, VBA provides a full set of logical operators, shown in Table 8-2. For
complete details on these operators (including examples), use the VBA help
system.

Table 8-2
VBA’s Logical Operators

Operator What It Does

Not Performs a logical negation on an expression

And Performs a logical conjunction on two expressions

Or Performs a logical disjunction on two expressions

XoR Performs a logical exclusion on two expressions

Eqv Performs a logical equivalence on two expressions

Imp Performs a logical implication on two expressions

Tip

4799-2 ch08.F 6/11/01 9:30 AM Page 194

195Chapter 8 ✦ VBA Programming Fundamentals

The order of precedence for operators in VBA is exactly the same as in Excel. Of
course, you can add parentheses to change the natural order of precedence.

The following instruction uses the Not operator to toggle the grid-line display in the
active window. The DisplayGridlines property takes a value of either True or
False. Therefore, using the Not operator changes False to True and True to False.

ActiveWindow.DisplayGridlines = _
Not ActiveWindow.DisplayGridlines

The following expression performs a logical And operation. The MsgBox statement
displays True only when Sheet1 is the active sheet and the active cell is in row 1. If
either or both of these conditions are not true, the MsgBox statement displays
False.

MsgBox ActiveSheet.Name = “Sheet1” And ActiveCell.Row = 1

The following expression performs a logical Or operation. The MsgBox statement
displays True when either Sheet1 or Sheet2 is the active sheet.

MsgBox ActiveSheet.Name = “Sheet1” _
Or ActiveSheet.Name = “Sheet2”

Arrays
An array is a group of elements of the same type that have a common name; you
refer to a specific element in the array using the array name and an index number.
For example, you may define an array of 12 string variables so that each variable
corresponds to the name of a month. If you name the array MonthNames, you can
refer to the first element of the array as MonthNames(0), the second element as
MonthNames(1), and so on, up to MonthNames(11).

Declaring arrays
You declare an array with a Dim or Public statement, just as you declare a regular
variable. You can also specify the number of elements in the array. You do so by
specifying the first index number, the keyword To, and the last index number — all
inside parentheses. For example, here’s how to declare an array comprising exactly
100 integers:

Dim MyArray(1 To 100) As Integer

When you declare an array, you need specify only the upper index, in which case
VBA assumes that 0 is the lower index. Therefore, the two statements that follow
have the same effect:

Tip

4799-2 ch08.F 6/11/01 9:30 AM Page 195

196 Part III ✦ Understanding Visual Basic for Applications

Dim MyArray(0 to 100) As Integer
Dim MyArray(100) As Integer

In both these cases, the array consists of 101 elements.

If you would like VBA to assume that 1 is the lower index for all arrays that declare
only the upper index, include the following statement before any procedures in
your module:

Option Base 1

Declaring multidimensional arrays
The arrays examples in the preceding section were one-dimensional arrays. VBA
arrays can have up to 60 dimensions, although it’s rare to need more than 3 dimen-
sions (a 3D array). The following statement declares a 100-integer array with two
dimensions (2D):

Dim MyArray(1 To 10, 1 To 10) As Integer

You can think of the preceding array as occupying a 10 × 10 matrix. To refer to a
specific element in a 2D array, you need to specify two index numbers. For example,
here’s how you can assign a value to an element in the preceding array:

MyArray(3, 4) = 125

You can think of a 3D array as a cube, but I can’t tell you how to visualize the data
layout of an array of more than three dimensions.

A dynamic array doesn’t have a preset number of elements. You declare a dynamic
array with a blank set of parentheses:

Dim MyArray() As Integer

Before you can use a dynamic array in your code, however, you must use the ReDim
statement to tell VBA how many elements are in the array (or ReDim Preserve if
you want to keep the existing values in the array). You can use the ReDim statement
any number of times, changing the array’s size as often as you need to.

Arrays crop up later in this chapter when I discuss looping.

Object Variables
An object variable is a variable that represents an entire object, such as a range or a
worksheet. Object variables are important for two reasons:

4799-2 ch08.F 6/11/01 9:30 AM Page 196

197Chapter 8 ✦ VBA Programming Fundamentals

✦ They can simplify your code significantly.

✦ They can make your code execute more quickly.

Object variables, like normal variables, are declared with the Dim or Public state-
ment. For example, the following statement declares InputArea as a Range object:

Public InputArea As Range

To see how object variables simplify your code, examine the following procedure,
which was written without using object variables:

Sub NoObjVar()
Worksheets(“Sheet1”).Range(“A1”).Value = 124
Worksheets(“Sheet1”).Range(“A1”).Font.Bold = True
Worksheets(“Sheet1”).Range(“A1”).Font.Italic = True

End Sub

This routine enters a value into cell A1 of Sheet1 on the active workbook and then
boldfaces and italicizes the cell’s contents. That’s a lot of typing. To reduce wear
and tear on your fingers, you can condense the routine with an object variable:

Sub ObjVar()
Dim MyCell As Range
Set MyCell = Worksheets(“Sheet1”).Range(“A1”)
MyCell.Value = 124
MyCell.Font.Bold = True
MyCell.Font.Italic = True

End Sub

After the variable MyCell is declared as a Range object, the Set statement assigns
an object to it. Subsequent statements can then use the simpler MyCell reference
in place of the lengthy Worksheets(“Sheet1”).Range(“A1”) reference.

After an object is assigned to a variable, VBA can access it more quickly than it can
a normal lengthy reference that has to be resolved. So when speed is critical, use
object variables. One way to think about this is in terms of “dot processing.” Every
time VBA encounters a dot, as in Sheets(1).Range(“A1”), it takes time to
resolve the reference. Using an object variable reduces the number of dots to be
processed. The fewer the dots, the faster the processing time. Another way to
improve the speed of your code is by using the With-End With construct, which
also reduces the number of dots to be processed. I discuss this construct later in
this chapter.

The true value of object variables will become apparent when I discuss looping
later in this chapter.

Tip

4799-2 ch08.F 6/11/01 9:30 AM Page 197

198 Part III ✦ Understanding Visual Basic for Applications

User-Defined Data Types
VBA lets you create custom, or user-defined, data types (a concept much like Pascal
records or C structures). A user-defined data type can ease your work with some
types of data. For example, if your application deals with customer information, you
may want to create a user-defined data type named CustomerInfo, as follows:

Type CustomerInfo
Company As String * 25
Contact As String * 15
RegionCode As Integer
Sales As Long

End Type

You define custom data types at the top of your module, before any procedures.

After you create a user-defined data type, you use a Dim statement to declare a vari-
able as that type. Usually, you define an array. For example,

Dim Customers(1 To 100) As CustomerInfo

Each of the 100 elements in this array consists of four components (as specified by
the user-defined data type, CustomerInfo). You can refer to a particular compo-
nent of the record as follows:

Customers(1).Company = “Acme Tools”
Customers(1).Contact = “Tim Robertson”
Customers(1).RegionCode = 3
Customers(1).Sales = 150677

You can also work with an element in the array as a whole. For example, to copy the
information from Customers(1) to Customers(2), use this instruction:

Customers(2) = Customers(1)

The preceding example is equivalent to the following instruction block:

Customers(2).Company = Customers(1).Company
Customers(2).Contact = Customers(1).Contact
Customers(2).RegionCode = Customers(1).RegionCode
Customers(2).Sales = Customers(1).Sales

Built-in Functions
Like most programming languages, VBA has a variety of built-in functions that sim-
plify calculations and operations. Often, the functions enable you to perform opera-
tions that are otherwise difficult, or even impossible. Many of VBA’s functions are

Note

4799-2 ch08.F 6/11/01 9:30 AM Page 198

199Chapter 8 ✦ VBA Programming Fundamentals

similar (or identical) to Excel’s worksheet functions. For example, the VBA function
UCase, which converts a string argument to uppercase, is equivalent to the Excel
worksheet function UPPER.

Appendix B contains a complete list of VBA’s functions, with a brief description of
each. All are thoroughly described in the online help system.

To get a list of VBA functions while you’re writing your code, type VBA followed by
a period (.). The VBE displays a list of all of its members, including functions (see
Figure 8-1). The functions are preceded by a green icon. If this technique doesn’t
work for you, make sure that the Auto List Members option is selected. Choose
Tools ➪ Options, and click the Editor tab.

Figure 8-1: Displaying a list of VBA functions in the VBE

You use functions in VBA expressions in much the same way that you use functions
in worksheet formulas. For instance, you can nest VBA functions.

Here’s a simple procedure that calculates the square root of a variable using VBA’s
Sqr function, stores the result in another variable, and then displays the result:

Sub ShowRoot()
MyValue = 25
SquareRoot = Sqr(MyValue)
MsgBox SquareRoot

End Sub

VBA’s Sqr function is equivalent to Excel’s SQRT worksheet function.

You can use many (but not all) of Excel’s worksheet functions in your VBA code.
The WorksheetFunction object, which is contained in the Application object,
holds all the worksheet functions that you can call from your VBA procedures.

Tip

Cross-
Reference

4799-2 ch08.F 6/11/01 9:30 AM Page 199

200 Part III ✦ Understanding Visual Basic for Applications

To use a worksheet function in a VBA statement, just precede the function name
with

Application.WorksheetFunction

The following example demonstrates how to use an Excel worksheet function in a
VBA procedure. Excel’s infrequently used ROMAN function converts a decimal num-
ber into a Roman numeral.

Sub ShowRoman()
DecValue = 2001
RomanValue = Application.WorksheetFunction.Roman(DecValue)
MsgBox RomanValue

End Sub

The MsgBox Function

The MsgBox function is one of the most useful VBA functions. Many of the examples in this
chapter use this function to display the value of a variable.

This function often is a good substitute for a simple custom dialog box. It’s also an excellent
debugging tool because you can insert MsgBox functions at any time to pause your code
and display the result of a calculation or assignment.

Most functions return a single value, which you assign to a variable. The MsgBox function
not only returns a value, but also displays a dialog box that the user can respond to. The
value returned by the MsgBox function represents the user’s response to the dialog. You can
use the MsgBox function even when you have no interest in the user’s response but want
to take advantage of the message display.

The official syntax of the MsgBox function has five arguments (those in square brackets are
optional):

MsgBox(prompt[, buttons][, title][, helpfile, context])

✦ prompt— (Required) The message displayed in the pop-up display.

✦ buttons— (Optional) A value that specifies which buttons and which icons, if any,
appear in the message box. Use built-in constants — for example, vbYesNo.

✦ title— (Optional) The text that appears in the message box’s title bar. The default
is Microsoft Excel.

✦ helpfile— (Optional) The name of the help file associated with the message box.

✦ context— (Optional) The context ID of the help topic. This represents a specific
help topic to display.

4799-2 ch08.F 6/11/01 9:30 AM Page 200

201Chapter 8 ✦ VBA Programming Fundamentals

When you execute this procedure, the MsgBox function displays the string MMI.
Fans of old movies are often dismayed when they learn that Excel doesn’t have a
function to convert a Roman numeral to its decimal equivalent.

It’s important to understand that you cannot use worksheet functions that have an
equivalent VBA function. For example, VBA cannot access Excel’s SQRT worksheet
function because VBA has its own version of that function: Sqr. Therefore, the fol-
lowing statement generates an error:

MsgBox Application.WorksheetFunction.Sqrt(123) ‘error

As I describe in Chapter 10, you can use VBA to create custom worksheet func-
tions that work just like Excel’s built-in worksheet functions.

Manipulating Objects and Collections
As an Excel programmer, you’ll spend a lot of time working with objects and collec-
tions. Therefore, you’ll want to know the most efficient ways to write your code to
manipulate these objects and collections. VBA offers two important constructs that
can simplify working with objects and collections:

✦ With-End With constructs

✦ For Each-Next constructs

Cross-
Reference

You can assign the value returned to a variable, or you can use the function by itself with-
out an assignment statement. The next example assigns the result to the variable Ans.

Ans = MsgBox(“Continue?”, vbYesNo + vbQuestion, “Tell me”)
If Ans = vbNo Then Exit Sub

Notice that I used the sum of two built-in constants (vbYesNo + vbQuestion) for the but-
tons argument. Using vbYesNo displays two buttons in the message box: one labeled Yes
and one labeled No. Adding vbQuestion to the argument also displays a question mark
icon (see the accompanying figure). When the first statement is executed, Ans contains one
of two values, represented by the constants vbYes or vbNo. In this example, if the user
clicks the No button, the procedure ends.

For more information, refer to the online help, which lists all the constants you can use.

4799-2 ch08.F 6/11/01 9:30 AM Page 201

202 Part III ✦ Understanding Visual Basic for Applications

With-End With constructs
The With-End With instruction construct enables you to perform multiple opera-
tions on a single object. To start understanding how the With-End With construct
works, examine the following procedure, which modifies five properties of a selec-
tion’s formatting (the selection is assumed to be a Range object):

Sub ChangeFont1()
Selection.Font.Name = “Times New Roman”
Selection.Font.FontStyle = “Bold Italic”
Selection.Font.Size = 12
Selection.Font.Underline = xlUnderlineStyleSingle
Selection.Font.ColorIndex = 5

End Sub

This procedure can be rewritten using the With-End With construct. The following
procedure performs exactly like the preceding one:

Sub ChangeFont2()
With Selection.Font

.Name = “Times New Roman”

.FontStyle = “Bold Italic”

.Size = 12

.Underline = xlUnderlineStyleSingle

.ColorIndex = 5
End With

End Sub

Some people think that the second incarnation of the procedure is actually more
difficult to read. Remember, though, that the objective is increased speed. Although
the first version may be more straightforward and easier to understand, a proce-
dure that uses the With-End With construct when changing several properties of
an object can be significantly faster than the equivalent procedure that explicitly
references the object in each statement.

When you record a VBA macro, Excel uses the With-End With construct every
chance it gets. To see a good example of this construct, try recording your actions
while you change the page setup by choosing the File ➪ Page Setup command.

For Each-Next constructs
Recall from the preceding chapter that a collection is a group of related objects. For
example, the Workbooks collection is a collection of all open Workbook objects.
There are many other collections that you can work with. You don’t have to know
how many elements are in a collection to use the For Each-Next construct.

Suppose that you want to perform some action on all objects in a collection. Or
suppose that you want to evaluate all objects in a collection and take action under
certain conditions. These are perfect occasions for the For Each-Next construct.

Note

4799-2 ch08.F 6/11/01 9:30 AM Page 202

203Chapter 8 ✦ VBA Programming Fundamentals

The syntax of the For Each-Next construct is:

For Each element In group
[instructions]
[Exit For]
[instructions]

Next [element]

The following procedure uses the For Each-Next construct to refer to each of the
six single-precision members of a fixed-length array one at a time:

Sub Macro1()
Dim MyArray(5)
For i = 0 To 5

MyArray(i) = Rnd
Next i
For Each n In MyArray

Debug.Print n
Next n

End Sub

The next procedure uses the For Each-Next construct with the Sheets collection
in the active workbook. When you execute the procedure, the MsgBox function dis-
plays each worksheet’s Name property. (If there are five worksheets in the active
workbook, the MsgBox function is called five times.)

Sub CountSheets()
Dim Item as WorkSheet
For Each Item In ActiveWorkbook.WorkSheets

MsgBox Item.Name
Next Item

End Sub

In the preceding example, Item is an object variable (more specifically, a
Worksheet object). There’s nothing special about the name Item; you can use
any valid variable name in its place.

The next example uses For Each-Next to cycle through all objects in the Windows
collection:

Sub HiddenWindows()
Dim AllVisible As Boolean
Dim Item As Window
AllVisible = True
For Each Item In Windows

If Item.Visible = False Then
AllVisible = False
Exit For

End If
Next Item
MsgBox AllVisible

End Sub

Note

4799-2 ch08.F 6/11/01 9:30 AM Page 203

204 Part III ✦ Understanding Visual Basic for Applications

If a window is hidden, the value of AllVisible is changed to False, and the For
Each-Next loop is exited. The message box displays True if all windows are visible
and False if at least one window is hidden. The Exit For statement is optional. It
provides a way to exit the For Each-Next loop early. This is generally used in
conjunction with an If-Then statement (described later in this chapter).

Here’s an example that closes all workbooks except the active workbook. This pro-
cedure uses the If-Then construct to evaluate each workbook in the Workbooks
collection.

Sub CloseInActive()
Dim Book as Workbook
For Each Book In Workbooks
If Book.Name <> ActiveWorkbook.Name Then Book.Close

Next Book
End Sub

My final example of For Each-Next is designed to be executed after the user
selects a range of cells. Here, the Selection object acts as a collection that
consists of Range objects because each cell in the selection is a Range object.
The procedure evaluates each cell and uses VBA’s UCase function to convert its
contents to uppercase (numeric cells are not affected).

Sub MakeUpperCase()
Dim Cell as Range
For Each Cell In Selection

Cell.Value = UCase(Cell.Value)
Next Cell

End Sub

Controlling Execution
Some VBA procedures start at the top and progress line by line to the bottom.
Macros that you record, for example, always work in this fashion. Often, however,
you need to control the flow of your routines by skipping over some statements,
executing some statements multiple times, and testing conditions to determine
what the routine does next.

The preceding section described the For Each-Next construct, which is a type of
loop. This section discusses the additional ways of controlling the execution of
your VBA procedures:

✦ GoTo statements

✦ If-Then constructs

✦ Select Case constructs

4799-2 ch08.F 6/11/01 9:30 AM Page 204

205Chapter 8 ✦ VBA Programming Fundamentals

✦ For-Next loops

✦ Do While loops

✦ Do Until loops

GoTo statements
The most straightforward way to change the flow of a program is to use a GoTo
statement. This statement simply transfers program execution to a new instruction,
which must be preceded by a label (a text string followed by a colon, or a number
with no colon). VBA procedures can contain any number of labels, and a GoTo state-
ment cannot branch outside of a procedure.

The following procedure uses VBA’s InputBox function to get the user’s name. If
the name is not Howard, the procedure branches to the WrongName label and ends.
Otherwise, the procedure executes some additional code. The Exit Sub statement
causes the procedure to end.

Sub GoToDemo()
UserName = InputBox(“Enter Your Name:”)
If UserName <> “Howard” Then GoTo WrongName
MsgBox (“Welcome Howard...”)

‘ -[More code here] -
Exit Sub

WrongName:
MsgBox “Sorry. Only Howard can run this.”

End Sub

This simple procedure works, but in general you should use the GoTo statement
only when there is no other way to perform an action. In fact, the only time you
really need to use a GoTo statement in VBA is for error trapping (refer to Chapter 9).

If-Then constructs
Perhaps the most commonly used instruction grouping in VBA is the If-Then
construct. This common instruction is one way to endow your applications with
decision-making capability. Good decision making is the key to writing successful
programs. A successful Excel application essentially boils down to making decisions
and acting on them.

The basic syntax of the If-Then construct is:

If condition Then true_instructions [Else false_instructions]

The If-Then construct is used to execute one or more statements conditionally.
The Else clause is optional. If included, it lets you execute one or more instruc-
tions when the condition you’re testing is not true.

4799-2 ch08.F 6/11/01 9:30 AM Page 205

206 Part III ✦ Understanding Visual Basic for Applications

The following procedure demonstrates an If-Then structure without an Else clause.
The example deals with time. VBA uses a similar date-and-time serial number system
as Excel. The time of day is expressed as a fractional value — for example, noon is
represented as .5. VBA’s Time function returns a value that represents the time of
day, as reported by the system clock. In the following example, a message is displayed
if the time is before noon. If the current system time is greater than or equal to .5,
the procedure ends and nothing happens.

Sub GreetMe1()
If Time < 0.5 Then MsgBox “Good Morning”

End Sub

If you want to display a different greeting when the time of day is after noon, add
another If-Then statement, like so:

Sub GreetMe2()
If Time < 0.5 Then MsgBox “Good Morning”
If Time >= 0.5 Then MsgBox “Good Afternoon”

End Sub

Notice that I used >= (greater than or equal to) for the second If-Then statement.
This covers the extremely remote chance that the time is precisely 12:00 noon.

Another approach is to use the Else clause of the If-Then construct. For example,

Sub GreetMe3()
If Time < 0.5 Then MsgBox “Good Morning” Else _
MsgBox “Good Afternoon”

End Sub

Notice that I used the line continuation sequence; If-Then-Else is actually a
single statement.

If you need to expand a routine to handle three conditions (for example, morning,
afternoon, and evening), you can use either three If-Then statements or a nested
If-Then-Else structure. The first approach is the simpler:

Sub GreetMe4()
If Time < 0.5 Then MsgBox “Good Morning”
If Time >= 0.5 And Time < 0.75 Then MsgBox “Good Afternoon”
If Time >= 0.75 Then MsgBox “Good Evening”

End Sub

The value 0.75 represents 6:00 p.m. — three-quarters of the way through the day
and a good point at which to call it evening.

In the preceding examples, every instruction in the procedure gets executed, even
in the morning. A more efficient procedure would include a structure that ends the
routine when a condition is found to be true. For example, it might display the Good

4799-2 ch08.F 6/11/01 9:30 AM Page 206

207Chapter 8 ✦ VBA Programming Fundamentals

Morning message in the morning and then exit without evaluating the other, super-
fluous conditions. True, the difference in speed is inconsequential when you design
a procedure as small as this routine. But for more complex applications, you need
another syntax:

If condition Then
[true_instructions]

[ElseIf condition-n Then
[alternate_instructions]]

[Else
[default_instructions]]

End If

Here’s how you can use this syntax to rewrite the GreetMe procedure:

Sub GreetMe5()
If Time < 0.5 Then

MsgBox “Good Morning”
ElseIf Time >= 0.5 And Time < 0.75 Then

MsgBox “Good Afternoon”
ElseIf Time >= 0.75 Then

MsgBox “Good Evening”
End If

End Sub

With this syntax, when a condition is true, the conditional statements are executed
and the If-Then construct ends. In other words, the extraneous conditions are not
evaluated. Although this syntax makes for greater efficiency, some may find the
code to be more difficult to understand.

The following procedure demonstrates yet another way to code this example. It
uses nested If-Then-Else constructs (without using ElseIf). This procedure is
efficient, and also easy to understand. Note that each If statement has a corre-
sponding End If statement.

Sub GreetMe6()
If Time < 0.5 Then

MsgBox “Good Morning”
Else

If Time >= 0.5 And Time < 0.75 Then
MsgBox “Good Afternoon”

Else
If Time >= 0.75 Then

MsgBox “Good Evening”
End If

End If
End If

End Sub

4799-2 ch08.F 6/11/01 9:30 AM Page 207

208 Part III ✦ Understanding Visual Basic for Applications

The following is another example that uses the simple form of the If-Then
construct. This procedure prompts the user for a value for Quantity and then
displays the appropriate discount based on that value. If the InputBox is can-
celled, Quantity contains an empty string, and the procedure ends. Note that
this procedure does not perform any other error checking. For example, it does
not ensure that the quantity entered is a non-negative numeric value.

Sub Discount1()
Quantity = InputBox(“Enter Quantity: “)
If Quantity = “” Then Exit Sub
If Quantity >= 0 Then Discount = 0.1
If Quantity >= 25 Then Discount = 0.15
If Quantity >= 50 Then Discount = 0.2
If Quantity >= 75 Then Discount = 0.25
MsgBox “Discount: “ & Discount

End Sub

Notice that each If-Then statement in this procedure is always executed, and the
value for Discount can change. The final value, however, is the desired value.

The following procedure is the previous one rewritten to use the alternate syntax.
In this case, the procedure ends after executing the True instruction block.

Sub Discount2()
Quantity = InputBox(“Enter Quantity: “)
If Quantity = “” Then Exit Sub

If Quantity >= 0 And Quantity < 25 Then
Discount = 0.1

ElseIf Quantity < 50 Then
Discount = 0.15

ElseIf Quantity < 75 Then
Discount = 0.2

ElseIf Quantity >= 75 Then
Discount = 0.25

End If
MsgBox “Discount: “ & Discount

End Sub

I find nested If-Then structures rather cumbersome. As a result, I usually use the
If-Then structure only for simple binary decisions. When you need to choose
among three or more alternatives, the Select Case structure is often a better
construct to use.

Select Case constructs
The Select Case construct is useful for choosing among three or more options.
This construct also works with two options and is a good alternative to If-Then-
Else. The syntax for Select Case is as follows:

4799-2 ch08.F 6/11/01 9:30 AM Page 208

209Chapter 8 ✦ VBA Programming Fundamentals

Select Case testexpression
[Case expressionlist-n

[instructions-n]]
[Case Else

[default_instructions]]
End Select

The following example of a Select Case construct shows another way to code the
GreetMe examples presented in the preceding section:

Sub GreetMe()
Select Case Time

Case Is < 0.5
Msg = “Good Morning”

Case 0.5 To 0.75
Msg = “Good Afternoon”

Case Else
Msg = “Good Evening”

End Select
MsgBox Msg

End Sub

And here’s a rewritten version of the Discount example, using a Select Case con-
struct. This procedure assumes that Quantity will always be an integer value. For
simplicity, the procedure performs no error checking.

VBA’s IIf Function

VBA offers an alternative to the If-Then construct: the IIf function. This function takes
three arguments, and works much like Excel’s IF worksheet function. The syntax is:

IIf(expr, truepart, falsepart)

expr (Required) Expression you want to evaluate.

truepart (Required) Value or expression returned if expr is True.

falsepart (Required) Value or expression returned if expr is False.

The following instruction demonstrates the use of the IIf function. The message box dis-
plays Zero if cell A1 contains a zero or is empty, and displays Nonzero if cell A1 contains
anything else.

MsgBox IIf(Range(“A1”) = 0, “Zero”, “Nonzero”)

It’s important to understand that the third argument (falsepart) is always evaluated,
even if the second argument (truepart) is True. Therefore, the following statement will
generate an error if the value of n is zero:

MsgBox IIf(n = 0, 0, 1 / n)

4799-2 ch08.F 6/11/01 9:30 AM Page 209

210 Part III ✦ Understanding Visual Basic for Applications

Sub Discount3()
Quantity = InputBox(“Enter Quantity: “)
Select Case Quantity

Case “”
Exit Sub

Case 0 To 24
Discount = 0.1

Case 25 To 49
Discount = 0.15

Case 50 To 74
Discount = 0.2

Case Is >= 75
Discount = 0.25

End Select
MsgBox “Discount: “ & Discount

End Sub

The Case statement also can use the Or operator. The following procedure uses
VBA’s WeekDay function to determine whether the current day is a weekend; then it
displays an appropriate message. Note the use of the Or operator, which checks for
a Sunday or a Saturday.

Sub GreetUser()
Select Case Weekday(Now)

Case 1 Or 7
MsgBox “This is the weekend”

Case Else
MsgBox “This is not the weekend”

End Select
End Sub

Alternatively, you can use a comma to separate expressions in a Case statement.
The following example shows another way to code the previous procedure:

Sub GreetUser()
Select Case Weekday(Now)

Case 2, 3, 4, 5, 6
MsgBox “This is not the weekend”

Case Else
MsgBox “This is the weekend”

End Select
End Sub

Any number of instructions can be written below each Case statement, and they all
are executed if that case evaluates to True. If you use only one instruction per case,
as in the preceding example, you may want to put the instruction on the same line
as the Case keyword (but don’t forget VBA’s statement-separator character, the
colon). This technique makes the code more compact. For example,

4799-2 ch08.F 6/11/01 9:30 AM Page 210

211Chapter 8 ✦ VBA Programming Fundamentals

Sub Discount3()
Quantity = InputBox(“Enter Quantity: “)
Select Case Quantity

Case “”: Exit Sub
Case 0 To 24: Discount = 0.1
Case 25 To 49: Discount = 0.15
Case 50 To 74: Discount = 0.2
Case Is >= 75: Discount = 0.25

End Select
MsgBox “Discount: “ & Discount

End Sub

VBA exits a Select Case construct as soon as a True case is found. Therefore, for
maximum efficiency, you might want to check the most likely case first.

Select Case structures can also be nested. The following procedure, for example,
tests for Excel’s window state (maximized, minimized, or normal) and then displays a
message describing the window state. If Excel’s window state is normal, the procedure
tests for the window state of the active window and then displays another message.

Sub AppWindow()
Select Case Application.WindowState

Case xlMaximized: MsgBox “App Maximized”
Case xlMinimized: MsgBox “App Minimized”
Case xlNormal: MsgBox “App Normal”

Select Case ActiveWindow.WindowState
Case xlMaximized: MsgBox “Book Maximized”
Case xlMinimized: MsgBox “Book Minimized”
Case xlNormal: MsgBox “Book Normal”

End Select
End Select

End Sub

You can nest Select Case constructs as deeply as you need, but make sure that
each Select Case statement has a corresponding End Select statement.

This procedure demonstrates the value of using indentation in your code to clarify the
structure. For example, take a look at the same procedure without the indentations:

Sub AppWindow()
Select Case Application.WindowState
Case xlMaximized: MsgBox “App Maximized”
Case xlMinimized: MsgBox “App Minimized”
Case xlNormal: MsgBox “App Normal”
Select Case ActiveWindow.WindowState
Case xlMaximized: MsgBox “Book Maximized”
Case xlMinimized: MsgBox “Book Minimized”
Case xlNormal: MsgBox “Book Normal”
End Select
End Select
End Sub

Fairly incomprehensible, eh?

Tip

4799-2 ch08.F 6/11/01 9:30 AM Page 211

212 Part III ✦ Understanding Visual Basic for Applications

Looping blocks of instructions
Looping is the process of repeating a block of instructions. You may know the num-
ber of times to loop, or it may be determined by the values of variables in your
program.

The following code, which enters consecutive numbers into a range, demonstrates
what I call a bad loop. The procedure uses two variables to store a starting value
(StartVal) and the total number of cells to fill (NumToFill). This loop uses the
GoTo statement to control the flow. If the Cnt variable, which keeps track of how
many cells are filled, is less than the number requested by the user, program con-
trol loops back to DoAnother.

Sub BadLoop()
StartVal = 1
NumToFill = 100
ActiveCell.Value = StartVal
Cnt = 1

DoAnother:
ActiveCell.Offset(Cnt, 0).Value = StartVal + Cnt
Cnt = Cnt + 1
If Cnt < NumToFill Then GoTo DoAnother Else Exit Sub

End Sub

This procedure works as intended, so why is it an example of bad looping? Pro-
grammers generally frown on using a GoTo statement when not absolutely neces-
sary. Using GoTo statements to loop is contrary to the concept of structured coding
(see the “What Is Structured Programming?” sidebar). In fact, a GoTo statement makes
the code much more difficult to read because it’s almost impossible to represent a
loop using line indentations. In addition, this type of unstructured loop makes the
procedure more susceptible to error. Furthermore, using lots of labels results in
spaghetti code — code that appears to have little or no structure and flows
haphazardly.

Because VBA has several structured looping commands, you almost never have to
rely on GoTo statements for your decision making.

For-Next loops
The simplest type of good loop is a For-Next loop, which I’ve already used in a few
previous examples. Its syntax is:

For counter = start To end [Step stepval]
[instructions]
[Exit For]
[instructions]

Next [counter]

4799-2 ch08.F 6/11/01 9:30 AM Page 212

213Chapter 8 ✦ VBA Programming Fundamentals

Following is an example of a For-Next loop that doesn’t use the optional Step
value or the optional Exit For statement. This routine executes the Sum = Sum +
Sqr(Count) statement 100 times and displays the result — that is, the sum of the
square roots of the first 100 integers.

Sub SumSquareRoots()
Dim Sum As Double, Count As Integer
Sum = 0
For Count = 1 To 100

Sum = Sum + Sqr(Count)
Next Count
MsgBox Sum

End Sub

In this example, Count (the loop counter variable) started out as 1 and increased
by 1 each time the loop repeated. The Sum variable simply accumulates the square
roots of each value of Count.

When you use For-Next loops, it’s important to understand that the loop counter
is a normal variable — nothing special. As a result, it’s possible to change the value
of the loop counter within the block of code executed between the For and Next
statements. This is, however, a ba-a-ad practice and can cause unpredictable
results. In fact, you should take special precautions to ensure that your code does
not change the loop counter.

Caution

What Is Structured Programming?

Hang around with programmers, and sooner or later you’ll hear the term structured pro-
gramming. You’ll also discover that structured programs are considered superior to unstruc-
tured programs.

So what is structured programming? And can you do it with VBA?

The basic premise is that a routine or code segment should have only one entry point and
one exit point. In other words, a body of code should be a standalone unit, and program
control should not jump into or exit from the middle of this unit. As a result, structured pro-
gramming rules out the GoTo statement. When you write structured code, your program
progresses in an orderly manner and is easy to follow — as opposed to spaghetti code,
where a program jumps around.

A structured program is easier to read and understand than an unstructured one. More
important, it’s also easier to modify.

VBA is a structured language. It offers standard structured constructs, such as If-Then-
Else and Select Case, and the For-Next, Do Until, and Do While loops. Furthermore,
VBA fully supports modular code construction.

If you’re new to programming, it’s a good idea to form good structured programming habits
early.

4799-2 ch08.F 6/11/01 9:30 AM Page 213

214 Part III ✦ Understanding Visual Basic for Applications

You can also use a Step value to skip some values in the loop. Here’s the same pro-
cedure rewritten to sum the square roots of the odd numbers between 1 and 100:

Sub SumOddSquareRoots()
Sum = 0
For Count = 1 To 100 Step 2

Sum = Sum + Sqr(Count)
Next Count
MsgBox Sum

End Sub

In this procedure, Count starts out as 1 and then takes on values of 3, 5, 7, and so
on. The final value of Count used within the loop is 99. When the loop ends, the
value of Count is 101.

The following procedure performs the same task as the BadLoop example found at
the beginning of the “Looping blocks of instructions” section. I eliminated the GoTo
statement, however, converting a bad loop into a good loop that uses the For-Next
structure.

Sub GoodLoop()
StartVal = 1
NumToFill = 100
ActiveCell.Value = StartVal
For Cnt = 0 To NumToFill - 1
ActiveCell.Offset(Cnt, 0).Value = StartVal + Cnt

Next Cnt
End Sub

For-Next loops can also include one or more Exit For statements within the loop.
When this statement is encountered, the loop terminates immediately, as the fol-
lowing example demonstrates. This procedure determines which cell has the
largest value in column A of the active worksheet:

Sub ExitForDemo()
MaxVal = Application.WorksheetFunction.Max(Range(“A:A”))
For Row = 1 To 65536

Set TheCell = Range(“A1”).Offset(Row - 1, 0)
If TheCell.Value = MaxVal Then

MsgBox “Max value is in Row “ & Row
TheCell.Activate
Exit For

End If
Next Row

End Sub

The maximum value in the column is calculated by using Excel’s MAX function. This
value is then assigned to the MaxVal variable. The For-Next loop checks each cell
in the column. If the cell being checked is equal to MaxVal, the Exit For statement
ends the procedure. Before terminating the loop, though, the procedure informs the
user of the row location and then activates the cell.

4799-2 ch08.F 6/11/01 9:30 AM Page 214

215Chapter 8 ✦ VBA Programming Fundamentals

The ExitForDemo is presented to demonstrate how to use exit from a For-Next
loop. However, it is not the most efficient way to activate the largest value in a
range. In fact, a single statement will do the job:

Range(“A:A”).Find(Application.WorksheetFunction.Max _
(Range(“A:A”))).Activate

The previous examples use relatively simple loops. But you can have any number
of statements in the loop, and you can even nest For-Next loops inside other For-
Next loops. Here’s an example that uses nested For-Next loops to initialize a 10 ×
10 × 10 array with the value –1. When the procedure is finished, each of the 1,000
elements in MyArray will contain –1.

Sub NestedLoops()
Dim MyArray(1 to 10, 1 to 10, 1 to 10)
Dim i As Integer, j As Integer, k As Integer
For i = 1 To 10

For j = 1 To 10
For k = 1 To 10

MyArray(i, j, k) = -1
Next k

Next j
Next i

End Sub

Do While loops
A Do While loop is another type of looping structure available in VBA. Unlike a
For-Next loop, a Do While loop executes while a specified condition is met. A Do
While loop can have either of two syntaxes:

Do [While condition]
[instructions]
[Exit Do]
[instructions]

Loop

or

Do
[instructions]
[Exit Do]
[instructions]

Loop [While condition]

As you can see, VBA lets you put the While condition at the beginning or the end
of the loop. The difference between these two syntaxes involves the point in time
when the condition is evaluated. In the first syntax, the contents of the loop may
never be executed. In the second syntax, the contents of the loop are always exe-
cuted at least one time.

4799-2 ch08.F 6/11/01 9:30 AM Page 215

216 Part III ✦ Understanding Visual Basic for Applications

The following example uses a Do While loop with the first syntax.

Sub DoWhileDemo()
Do While Not IsEmpty(ActiveCell)

ActiveCell.Value = 0
ActiveCell.Offset(1, 0).Select

Loop
End Sub

This procedure uses the active cell as a starting point and then travels down the
column, inserting a zero into the active cell. Each time the loop repeats, the next
cell in the column becomes the active cell. The loop continues until VBA’s IsEmpty
function determines that the active cell is not empty.

The following procedure uses the second Do While loop syntax. The loop will
always be executed at least one time, even if the initial active cell is empty.

Sub DoWhileDemo2()
Do

ActiveCell.Value = 0
ActiveCell.Offset(1, 0).Select

Loop While Not IsEmpty(ActiveCell)
End Sub

The following is another Do While loop example. This procedure opens a text file,
reads each line, converts the text to uppercase, and then stores it in the active
sheet, beginning with cell A1 and continuing down the column. The procedure uses
VBA’s EOF function, which returns True when the end of the file has been reached.
The final statement closes the text file.

Sub DoWhileDemo1()
Open “c:\data\textfile.txt” For Input As #1
LineCt = 0
Do While Not EOF(1)
Line Input #1, LineOfText
Range(“A1”).Offset(LineCt, 0) = UCase(LineOfText)
LineCt = LineCt + 1

Loop
Close #1

End Sub

For additional information about reading and writing text files using VBA, see
Chapter 27.

Do While loops can also contain one or more Exit Do statements. When an Exit Do
statement is encountered, the loop ends immediately.

Do Until loops
The Do Until loop structure is very similar to the Do While structure. The differ-
ence is evident only when the condition is tested. In a Do While loop, the loop

Cross-
Reference

4799-2 ch08.F 6/11/01 9:30 AM Page 216

217Chapter 8 ✦ VBA Programming Fundamentals

executes while the condition is true. In a Do Until loop, the loop executes until the
condition is true.

Do Until also has two syntaxes:

Do [Until condition]
[instructions]
[Exit Do]
[instructions]

Loop

or

Do
[instructions]
[Exit Do]
[instructions]

Loop [Until condition]

The following example was originally presented for the Do While loop but has been
rewritten to use a Do Until loop. The only difference is the line with the Do state-
ment. This example makes the code a bit clearer because it avoids the negative
required in the Do While example.

Sub DoUntilDemo1()
Open “c:\data\textfile.txt” For Input As #1
LineCt = 0
Do Until EOF(1)

Line Input #1, LineOfText
Range(“A1”).Offset(LineCt, 0) = UCase(LineOfText)
LineCt = LineCt + 1

Loop
Close #1

End Sub

Summary
In this chapter, I discussed the fundamentals of programming in VBA, including vari-
ables, constants, data types, arrays, and VBA’s built-in functions. I also discussed
techniques for manipulating objects and controlling the execution of your
procedures.

Chapter 9 focuses on one of the two types of procedures you can write in VBA.

✦ ✦ ✦

4799-2 ch08.F 6/11/01 9:30 AM Page 217

4799-2 ch08.F 6/11/01 9:30 AM Page 218

Working with
VBA Sub
Procedures

A procedure holds a group of VBA statements that accom-
plishes a desired task. Most VBA code is contained in

procedures. This chapter focuses on Sub procedures, which
perform tasks but do not return discrete values. VBA also
supports Function procedures, which I discuss in Chapter 10.

Chapter 11 has many additional examples of procedures
that you can incorporate into your work.

About Procedures
A procedure is a series of VBA statements that resides in a
VBA module, which you access in the VBE. A module can hold
any number of procedures.

You have a number of ways to call, or execute, procedures. A
procedure is executed from beginning to end (but it can also
be ended prematurely).

A procedure can be any length, but many people prefer
to avoid creating extremely long procedures that perform
many different operations. You may find it easier to write
several smaller procedures, each with a single purpose.
Then design a main procedure that calls those other
procedures. This approach can make your code easier to
maintain.

Some procedures are written to receive arguments. An argu-
ment is simply information that is used by the procedure that
is “passed” to the procedure when it is executed. Procedure
arguments work much like the arguments you use in Excel
worksheet functions. Instructions within the procedure

Tip

Cross-
Reference

99C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Declaring and
creating VBA Sub
procedures

Executing
procedures

Passing arguments
to a procedure

Using error-handling
techniques

An example of
developing a useful
procedure

✦ ✦ ✦ ✦

4799-2 ch09.F 6/11/01 9:30 AM Page 219

220 Part III ✦ Understanding Visual Basic for Applications

generally perform logical operations on these arguments, and the results of the
procedure are usually based on those arguments.

Declaring a Sub procedure
A procedure declared with the Sub keyword must adhere to the following syntax:

[Private | Public][Static] Sub name ([arglist])
[instructions]
[Exit Sub]
[instructions]

End Sub

Private (Optional) Indicates that the procedure is accessible only to other
procedures in the same module.

Public (Optional) Indicates that the procedure is accessible to all other
procedures in all other modules in the workbook. If used in a module that
contains an Option Private Module statement, the procedure is not avail-
able outside the project.

Static (Optional) Indicates that the procedure’s variables are preserved
when the procedure ends.

Sub (Required) The keyword that indicates the beginning of a procedure.

name (Required) Any valid procedure name.

arglist (Optional) Represents a list of variables, enclosed in parentheses,
that receive arguments passed to the procedure. Use a comma to separate
arguments. If the procedure uses no arguments, a set of empty parentheses is
required.

instructions (Optional) Represents valid VBA instructions.

Exit Sub (Optional) A statement that forces an immediate exit from the
procedure prior to its formal completion.

End Sub (Required) Indicates the end of the procedure.

With a few exceptions, all VBA instructions in a module must be contained within
procedures. Exceptions include module-level variable declarations, user-defined
data type definitions, and a few other instructions that specify module-level
options (for example, Option Explicit).

Note

4799-2 ch09.F 6/11/01 9:30 AM Page 220

221Chapter 9 ✦ Working with VBA Sub Procedures

Scoping a procedure
In the preceding chapter, I noted that a variable’s scope determines the modules
and procedures in which the variable can be used. Similarly, a procedure’s scope
determines which other procedures can call it.

Public procedures
By default, procedures are public — that is, they can be called by other procedures
in any module in the workbook. It’s not necessary to use the Public keyword, but
programmers often include it for clarity. The following two procedures are both
public:

Sub First()
‘ ... [code goes here] ...
End Sub

Public Sub Second()
‘ ... [code goes here] ...
End Sub

Private procedures
Private procedures can be called by other procedures in the same module, but not
by procedures in other modules.

When you choose Excel’s Tools ➪ Macro ➪ Macros command, the Macro dialog box
displays only the public procedures. Therefore, if you have procedures that are
designed to be called only by other procedures in the same module, you should
make sure that the procedure is declared as Private. This prevents the user from
running the procedure from the Macro dialog box.

The following example declares a private procedure, named MySub:

Private Sub MySub()
‘ ... [code goes here] ...
End Sub

Note

Naming Procedures

Every procedure must have a name. The rules governing procedure names are generally the
same as for variable names. Ideally, a procedure’s name should describe what its contained
processes do. A good rule of thumb is to use a name that includes a verb and a noun (for
example, ProcessDate, PrintReport, Sort_Array, or CheckFilename). Avoid meaning-
less names such as DoIt, Update, and Fix.

Some programmers use sentence-like names that describe the procedure (for example,
WriteReportToTextFile and Get_Print_Options_ and_Print_Report). Although
long names are very descriptive and unambiguous, they are also more difficult to type.

4799-2 ch09.F 6/11/01 9:30 AM Page 221

222 Part III ✦ Understanding Visual Basic for Applications

You can force all procedures in a module to be private — even those declared with
the Public keyword — by including the following statement before your first Sub
statement:

Option Private Module

If you write this statement in a module, you can omit the Private keyword from
your Sub declarations.

Excel’s macro recorder normally creates new Sub procedures called Macro1,
Macro2, and so on. These procedures are all public procedures, and they will
never use any arguments.

Executing Procedures
In this section I describe the many ways to execute, or call, a VBA Sub procedure:

✦ With the Run ➪ Run Sub/UserForm command (in the VBE). Or you can press
the F5 shortcut key. Excel executes the procedure at the cursor position. This
method doesn’t work if the procedure requires one or more arguments.

✦ From Excel’s Macro dialog box (which you open by choosing Tools ➪ Macro ➪
Macros). Or you can press the Alt+F8 shortcut key to access the Macro
dialog box.

✦ Using the Ctrl key shortcut assigned to the procedure (assuming you
assigned one).

✦ By clicking a button or a shape on a worksheet. The button or shape must
have the procedure assigned to it.

✦ From another procedure you write.

✦ From a Toolbar button.

✦ From a custom menu that you develop.

✦ When an event occurs. These events include opening the workbook, saving
the workbook, closing the workbook, making a change to a cell, activating a
sheet, and many other things.

✦ From the Immediate window in the VBE. Just type the name of the procedure,
including any arguments that may apply, and press Enter.

Excel 5 and Excel 95 made it very easy to assign a macro to a new menu item on
the Tools menu. This feature was removed beginning with Excel 97.

I discuss these methods of executing procedures in the following sections.

In many cases, a procedure will not work properly unless it is in the appropriate
context. For example, if a procedure is designed to work with the active worksheet,

Note

Note

Tip

4799-2 ch09.F 6/11/01 9:30 AM Page 222

223Chapter 9 ✦ Working with VBA Sub Procedures

it will fail if a chart sheet is active. A good procedure incorporates code that checks
for the appropriate context and exits gracefully if it can’t proceed.

Executing a procedure with the Run ➪ Run Sub/
UserForm command
VBE’s Run ➪ Run Sub/UserForm menu command is used primarily to test a proce-
dure while you are developing it. You would never expect a user to have to activate
the VBE to execute a procedure. Use the Run ➪ Run Sub/UserForm command (or
F5) in the VBE to execute the current procedure (in other words, the procedure
that contains the cursor).

If the cursor is not located within a procedure when you issue the Run ➪ Run Sub/
UserForm command, VBE displays its Macro dialog box so that you can select a
procedure to execute.

Executing a procedure from the Macro dialog box
Choosing Excel’s Tools ➪ Macro ➪ Macros command displays the Macro dialog
box, shown in Figure 9-1 (you can also press Alt+F8 to access this dialog box). The
Macro dialog box lists all available Sub procedures. Use the Macros In drop-down
box to limit the scope of the macros displayed (for example, show only the macros in
the active workbook). The Macro dialog box does not display Function procedures. In
addition, it does not display Sub procedures declared with the Private keyword,
Sub procedures that require one or more arguments, or Sub procedures contained
in add-ins.

Procedures stored in an add-in are not listed in the Macro dialog box, but you still
can execute such a procedure if you know the name. Simply type the procedure
name into the Macro name field in the Macro dialog box, and click Run.

Figure 9-1: The Macro dialog box lists all
available procedures.

Tip

4799-2 ch09.F 6/11/01 9:30 AM Page 223

224 Part III ✦ Understanding Visual Basic for Applications

Executing a procedure using a Ctrl+
shortcut key combination
You can assign a Ctrl+shortcut key combination to any procedure that doesn’t use
any arguments. If you assign the Ctrl+U key combo to a procedure named Update,
for example, pressing Ctrl+U executes the Update procedure.

When you begin recording a macro, the Record Macro dialog box gives you the
opportunity to assign a shortcut key. However, you can assign a shortcut key at any
time. To assign a Ctrl shortcut key to a procedure (or change a procedure’s shortcut
key), follow these steps:

1. Activate Excel and choose the Tools ➪ Macro ➪ Macros command.

2. Select the appropriate procedure from the list box in the Macro dialog box.

3. Click the Options button to display the Macro Options dialog box (see
Figure 9-2).

Figure 9-2: The Macro Options
dialog box lets you assign a Ctrl
key shortcut and an optional
description to a procedure.

4. Enter a character into the text box labeled Ctrl+.

The character that you enter into the text box labeled Ctrl+ is case-sensitive.
If you enter a lowercase s, the shortcut key combo is Ctrl+S. If you enter an
uppercase S, the shortcut key combo is Ctrl+Shift+S.

5. Enter a description (optional). If you enter a description for a macro, it is dis-
played at the bottom of the Macro dialog box when the procedure is selected
in the list box.

6. Click OK to close the Macro Options dialog box, and click Close to close the
Macro dialog box.

If you assign one of Excel’s predefined shortcut key combinations to a procedure,
your key assignment takes precedence over the predefined key assignment. For
example, Ctrl+S is Excel’s predefined shortcut key for saving the active workbook.

Caution

4799-2 ch09.F 6/11/01 9:30 AM Page 224

225Chapter 9 ✦ Working with VBA Sub Procedures

But if you assign Ctrl+S to a procedure, pressing Ctrl+S no longer saves the active
workbook.

The following Ctrl+key combinations are not used by Excel: E, J, L, M, Q, and T.
Excel doesn’t use too many Ctrl+Shift+key combinations. In fact, you can safely
use any of them except F, O, and P.

Executing a procedure from a custom menu
As I describe in Chapter 23, Excel provides two ways for you to customize its menus:
using the View ➪ Toolbars ➪ Customize command or writing VBA code. The latter
method is preferable, but you can use either technique to assign a macro to a new
menu item.

Excel 5 and Excel 95 include a menu editor, which was removed beginning with
Excel 97.

Following are the steps required to display a new menu item on a menu and to
assign a macro to the menu item. It assumes that the new menu item is on the Data
menu, that the menu item text is Open Customer File, and that the procedure is
named OpenCustomerFile.

1. Choose the View ➪ Toolbars ➪ Customize command. Excel displays the
Customize dialog box.

When the Customize dialog box is displayed, Excel is in a special “custom-
ization” mode. The menus and toolbars are not active, but they can be
customized.

2. Click the Commands tab in the Customize dialog box.

3. Scroll down and click Macros in the Categories list.

4. In the Commands list, drag the first item (labeled Custom Menu Item) to the
bottom of the Data menu (after the Refresh Data menu item). The Data menu
drops down when you click it.

5. Right-click the new menu item (which is labeled Custom Menu Item) to
display a shortcut menu.

6. Enter a new name for the menu item: &Open Customer File in the text box
labeled Name (see Figure 9-3).

Note

Tip

4799-2 ch09.F 6/11/01 9:30 AM Page 225

226 Part III ✦ Understanding Visual Basic for Applications

Figure 9-3: Changing the text for a menu item

7. Click Assign Macro on the shortcut menu.

8. In the Assign Macro dialog box, select the OpenCustomerFile procedure from
the list of macros.

9. Click OK to close the Assign Macro dialog box, and click Close to close the
Customize dialog box.

After you follow the process mentioned above, the new menu item always
appears on the menu, even when the workbook that contains the macro is not
open. In other words, changes you make using the View ➪ Toolbars ➪ Customize
command are “permanent.” Selecting the new menu item opens the workbook if
it’s not already open.

Refer to Chapter 23 to learn how to use VBA to create menu items that are
displayed only when a particular workbook is open.

Cross-
Reference

Caution

4799-2 ch09.F 6/11/01 9:30 AM Page 226

227Chapter 9 ✦ Working with VBA Sub Procedures

Executing a procedure from another procedure
One of the most common ways to execute a procedure is from another procedure.
You have three ways to do this:

✦ Enter the procedure’s name followed by its arguments (if any) separated by
commas.

✦ Use the Call keyword followed by the procedure’s name and then its
arguments (if any) enclosed in parentheses and separated by commas.

✦ Use the Run method of the Application object. You can use this method
to execute other VBA procedures or XLM macros. The Run method is useful
when you need to run a procedure and the procedure’s name is assigned to a
variable. You can then pass the variable as an argument to the Run method.

The following example demonstrates the first method. In this case, the MySub
procedure processes some statements (not shown), executes the UpdateSheet
procedure, and then executes the rest of the statements.

Sub MySub()
‘ ... [code goes here] ...

UpdateSheet
‘ ... [code goes here] ...
End Sub

Sub UpdateSheet()
‘ ... [code goes here] ...
End Sub

The following example demonstrates the second method. The Call keyword
executes the Update procedure, which requires one argument; the calling proce-
dure passes the argument to the called procedure. I discuss procedure arguments
later in this chapter.

Sub MySub()
MonthNum = InputBox(“Enter the month number: “)
Call UpdateSheet(MonthNum)

‘ ... [code goes here] ...
End Sub

Sub UpdateSheet(MonthSeq)
‘ ... [code goes here] ...
End Sub

Even though it’s optional, some programmers always use the Call keyword just
to make it perfectly clear that another procedure is being called.

The next example uses the Run method to execute the UpdateSheet procedure,
and passes MonthNum as the argument:

Tip

4799-2 ch09.F 6/11/01 9:30 AM Page 227

228 Part III ✦ Understanding Visual Basic for Applications

Sub MySub()
MonthNum = InputBox(“Enter the month number: “)
Result = Application.Run(“UpdateSheet”, MonthNum)

‘ ... [code goes here] ...
End Sub

Sub UpdateSheet(MonthSeq)
‘ ... [code goes here] ...
End Sub

Perhaps the best reason to use the Run method is when the procedure name is
assigned to a variable. In fact, it’s the only way to execute a procedure in such a
way. The following example demonstrates this. The Main procedure uses VBA’s
WeekDay function to determine the day of the week (an integer between 1 and 7,
beginning with Sunday). The SubToCall variable is assigned a string that repre-
sents a procedure name. The Run method then calls the appropriate procedure
(either WeekEnd or Daily).

Sub Main()
Select Case WeekDay(Now)

Case 1: SubToCall = “WeekEnd”
Case 7: SubToCall = “WeekEnd”
Case Else: SubToCall = “Daily”

End Select
Application.Run SubToCall

End Sub

Sub WeekEnd()
MsgBox “Today is a weekend”

‘ Code to execute on the weekend
‘ goes here
End Sub

Sub Daily()
MsgBox “Today is not a weekend”

‘ Code to execute on the weekdays
‘ goes here
End Sub

Calling a procedure in a different module
If VBA can’t locate a called procedure in the current module, it looks for public
procedures in other modules in the same project.

If you need to call a private procedure from another procedure, both procedures
must reside in the same module.

You can’t have two procedures with the same name in the same module, but you
can have identically named procedures in different modules. You can force VBA to
execute an ambiguously named procedure — that is, another procedure in a different
module that has the same name. To do so, precede the procedure name with the
module name and a dot. For example, say that you define procedures named MySub

4799-2 ch09.F 6/11/01 9:30 AM Page 228

229Chapter 9 ✦ Working with VBA Sub Procedures

in Module1 and Module2. If you want a procedure in Module2 to call the MySub in
Module1, you can use either of the following statements:

Module1.MySub
Call Module1.MySub

If you do not differentiate between procedures that have the same name, you get an
Ambiguous name detected error message.

Calling a procedure in a different workbook
In some cases, you may need your procedure to execute another procedure defined
in a different workbook. To do so, you have two options: Establish a reference to the
other workbook, or use the Run method and specify the workbook name explicitly.

To add a reference to another workbook, select the VBE’s Tools ➪ References
command. Excel displays the References dialog box (see Figure 9-4), which lists
all available references, including all open workbooks. Simply check the box that
corresponds to the workbook that you want to add as a reference and click OK.
After you establish a reference, you can call procedures in the workbook as if they
were in the same workbook as the calling procedure.

Figure 9-4: The References dialog box lets you
establish a reference to another workbook.

A referenced workbook does not have to be open; it is treated like a separate
object library. Use the Browse button in the References dialog box to establish a
reference to a workbook that isn’t open. The workbook names that appear in the
list of references are listed by their VBE project names. By default, every project is
initially named VBAProject. Therefore, the list may contain several identically named
items. To distinguish a project, change its name in the Properties window of the VBE.
The list of references displayed in the References dialog box also includes object

4799-2 ch09.F 6/11/01 9:30 AM Page 229

230 Part III ✦ Understanding Visual Basic for Applications

libraries and ActiveX controls that are registered on your system. Your Excel 2002
workbooks always include references to the following object libraries:

✦ Visual Basic for Applications

✦ Microsoft Excel 10.0 Object Library

✦ OLE Automation

✦ Microsoft Office 10.0 Object Library

✦ Microsoft Forms 2.0 Object Library (optional, included only if your project
includes a UserForm)

In Excel 2002, any additional references that you add are also listed in your project
outline in the Project Explorer window in the VBE. These references are listed
under a node called References.

If you’ve established a reference to a workbook that contains the procedure
YourSub, for example, you can use either of the following statements to call
YourSub:

YourSub
Call YourSub

To precisely identify a procedure in a different workbook, specify the project name,
module name, and procedure name using the following syntax:

MyProject.MyModule.MySub

Alternatively, you can use the Call keyword:

Call MyProject.MyModule.MySub

Another way to call a procedure in a different open workbook is to use the Run
method of the Application object. This technique does not require that you estab-
lish a reference. The following statement executes the Consolidate procedure
located in a workbook named budget macros.xls:

Application.Run “‘budget macros.xls’!Consolidate”

Executing a procedure from a toolbar button
You can customize Excel’s toolbars to include buttons that execute procedures
when clicked. The procedure for assigning a macro to a toolbar button is virtually
identical to the procedure for assigning a macro to a menu item.

Assume that you want to assign a procedure to a toolbar button on a toolbar. Here
are the steps required to do so:

New
Feature

4799-2 ch09.F 6/11/01 9:30 AM Page 230

231Chapter 9 ✦ Working with VBA Sub Procedures

1. Choose the View ➪ Toolbars ➪ Customize command. Excel displays the
Customize dialog box.

When the Customize dialog box is displayed, Excel is in a special “custom-
ization” mode. The menus and toolbars are not active, but they can be
customized.

2. Click the Commands tab in the Customize dialog box.

3. Scroll down and click Macros in the Categories list.

4. In the Commands list, drag the second item (labeled Custom Button) to the
desired toolbar.

5. Right-click the new button to display a shortcut menu.

6. Enter a new name for the button in the text box labeled Name. This is the
“tooltip” text that appears when the mouse pointer moves over the button.
This step is optional; if you omit it, the tooltip displays Custom.

7. Right-click the new button and select Assign Macro from the shortcut menu.

Excel displays its Assign Macro dialog box.

8. Select the procedure from the list of macros.

9. Click OK to close the Assign Macro dialog box.

10. Click Close to close the Customize dialog box.

After you follow the process above, the new toolbar button always appears on the
assigned toolbar — even when the workbook that contains the macro is not open.
In other words, changes you make using the View ➪ Toolbars ➪ Customize com-
mand are “permanent.” Clicking the new toolbar button item opens the workbook
if it’s not already open.

I cover custom toolbars in Chapter 22.

Executing a procedure by clicking an object
Excel provides a variety of objects that you can place on a worksheet or chart
sheet, and you can attach a macro to any of these objects. These objects are avail-
able from three toolbars:

✦ The Drawing toolbar

✦ The Forms toolbar

✦ The Control Toolbox toolbar

In addition, you can assign a macro to pictures that you place on the worksheet
using the Insert ➪ Picture command. Right-click the picture and choose Assign
Macro.

Cross-
Reference

Caution

4799-2 ch09.F 6/11/01 9:30 AM Page 231

232 Part III ✦ Understanding Visual Basic for Applications

The Control Toolbox toolbar contains ActiveX controls, which are the same controls
that you use in a UserForm. The Forms toolbar, included for compatibility
purposes, contains similar controls (which are not ActiveX controls). The controls
on the Forms toolbar were designed for Excel 5 and Excel 95. However, they can
still be used in later versions (and may be preferable in some cases). The discus-
sion that follows applies to the Button control on the Forms toolbar. Refer to
Chapter 13 for information about using ActiveX controls on worksheets.

To assign a procedure to a Button object (which is on the Forms toolbar), follow
these steps:

1. Make sure the Forms toolbar is displayed.

2. Click the Button tool on the Forms toolbar.

3. Drag in the worksheet to create the button.

Note

Why Call Other Procedures?

If you’re new to programming, you may wonder why anyone would ever want to call a pro-
cedure from another procedure. You may ask, “Why not just put the code from the called
procedure into the calling procedure and keep things simple?”

One reason is to clarify your code. The simpler your code, the easier it is to maintain and
modify. Smaller routines are easier to decipher and then debug. Examine the accompany-
ing procedure, which does nothing but call other procedures. This procedure is very easy to
follow.

Sub Main()
Call GetUserOptions
Call ProcessData
Call CleanUp
Call CloseItDown

End Sub

Calling other procedures also eliminates redundancy. Suppose that you need to perform an
operation at ten different places in your routine. Rather than enter the code ten times, you
can write a procedure to perform the operation and then simply call the procedure ten
times.

Also, you may have a series of general-purpose procedures that you use frequently. If you
store these in a separate module, you can import the module to your current project and
then call these procedures as needed — which is much easier than copying and pasting the
code into your new procedures.

Creating several small procedures rather than a single large one is often considered good
programming practice. A modular approach not only makes your job easier, but also makes
life easier for the people who wind up working with your code.

4799-2 ch09.F 6/11/01 9:30 AM Page 232

233Chapter 9 ✦ Working with VBA Sub Procedures

If you press Alt while dragging, the button will conform to the sheet’s gridlines. Or,
press Shift while dragging to force a perfectly square button.

Excel jumps right in and displays the Assign Macro dialog box. Select the macro
you want to assign to the button, and click OK.

To assign a macro to a shape, create a shape using the Drawing toolbar. Right-click
the shape and choose Assign Macro from the shortcut menu.

Executing a procedure when an event occurs
You might want a procedure to be executed when a particular event occurs.
Examples of events include opening a workbook, entering data into a worksheet,
saving a workbook, clicking a CommandButton control, and many others. A proce-
dure that is executed when an event occurs is known as an event-handler proce-
dure. Event-handler procedures are characterized by the following:

✦ They have special names that are made up of an object, an underscore, and
the event name. For example, the procedure that is executed when a work-
book is opened is called Workbook_Open.

✦ They are stored in the code window for the particular object.

Chapter 19 is devoted to event-handler procedures.

Executing a procedure from the Immediate window
You also can execute a procedure by entering its name in the Immediate window of
the VBE. If the Immediate window is not visible, press Ctrl+G. The Immediate window
executes VBA statements as you enter them. To execute a procedure, simply enter
the name of the procedure in the Immediate window and press Enter.

This method can be quite useful when you’re developing a procedure because you
can insert commands to display results in the Immediate window. The following
procedure demonstrates this technique:

Sub ChangeCase()
MyString = “This is a test”
MyString = UCase(MyString)
Debug.Print MyString

End Sub

Figure 9-5 shows what happens when you enter ChangeCase in the Immediate
window: The Debug.Print statement displays the result immediately.

Cross-
Reference

Tip

4799-2 ch09.F 6/11/01 9:30 AM Page 233

234 Part III ✦ Understanding Visual Basic for Applications

Figure 9-5: Executing a procedure by entering its name in the Immediate window

Passing Arguments to Procedures
A procedure’s arguments provide it with data that it uses in its instructions. The
data that’s passed by an argument can be any of the following:

✦ A variable

✦ A constant

✦ An array

✦ An object

With regard to arguments, procedures are very similar to worksheet functions in
the following respects:

✦ A procedure may not require any arguments.

✦ A procedure may require a fixed number of arguments.

✦ A procedure may accept an indefinite number of arguments.

✦ A procedure may require some arguments, leaving others optional.

✦ A procedure may have all optional arguments.

For example, a few of Excel’s worksheet functions such as RAND use no arguments.
Others, such as COUNTIF, require two arguments. Others still, such as SUM, can use
an indefinite number of arguments (up to 30). Still other worksheet functions have

4799-2 ch09.F 6/11/01 9:30 AM Page 234

235Chapter 9 ✦ Working with VBA Sub Procedures

optional arguments. The PMT function, for example, can have five arguments (three
are required, two are optional).

Most of the procedures that you’ve seen so far in this book have been declared
without any arguments. They were declared with just the Sub keyword, the proce-
dure’s name, and a set of empty parentheses. Empty parentheses indicate that the
procedure does not accept arguments.

The following example shows two procedures. The Main procedure calls the
ProcessFile procedure three times (the Call statement is in a For-Next loop).
Before calling ProcessFile, however, a three-element array is created. Inside the
loop, each element of the array becomes the argument for the procedure call.
The ProcessFile procedure takes one argument (named TheFile). Notice that
the argument goes inside parentheses in the Sub statement. When ProcessFile
finishes, program control continues with the statement after the Call statement.

Sub Main()
File(1) = “dept1.xls”
File(2) = “dept2.xls”
File(3) = “dept3.xls”
For i = 1 To 3

Call ProcessFile(File(i))
Next i

End Sub

Sub ProcessFile(TheFile)
Workbooks.Open FileName:=TheFile

‘ ...[more code here]...
End Sub

You can also, of course, pass literals (that is, not variables) to a procedure. For
example,

Sub Main()
Call ProcessFile(“budget.xls”)

End Sub

You can pass an argument to a procedure two ways: by reference and by value.
Passing an argument by reference (the default method) simply passes the memory
address of the variable. Passing an argument by value, on the other hand, passes a
copy of the original variable. Consequently, changes to the argument within the
procedure are not reflected in the original variable.

The following example demonstrates this concept. The argument for the Process
procedure is passed by reference (the default method). After the Main procedure
assigns a value of 10 to MyValue, it calls the Process procedure and passes MyValue
as the argument. The Process procedure multiplies the value of its argument
(named YourValue) by 10. When Process ends and program control passes back
to Main, the MsgBox function displays MyValue: 100.

4799-2 ch09.F 6/11/01 9:30 AM Page 235

236 Part III ✦ Understanding Visual Basic for Applications

Sub Main()
MyValue = 10
Call Process(MyValue)
MsgBox MyValue

End Sub

Sub Process(YourValue)
YourValue = YourValue * 10

End Sub

If you don’t want the called procedure to modify any variables passed as arguments,
you can modify the called procedure’s argument list so that arguments are passed
to it by value rather than by reference. To do so, precede the argument with the
ByVal keyword. This technique causes the called routine to work with a copy of the
passed variable’s data, not the data itself. In the following procedure, for example,
the changes made to YourValue in the Process procedure do not affect the
MyValue variable in Main. As a result, the MsgBox function displays 10, not 100.

Sub Process(ByVal YourValue)
YourValue = YourValue * 10

End Sub

In most cases, you’ll be content to use the default reference method of passing
arguments. However, if your procedure needs to use data passed to it in an
argument — and you absolutely must keep the original data intact — you’ll want
to pass the data by value.

A procedure’s arguments can mix and match by value and by reference. Arguments
preceded with ByVal are passed by value; all others are passed by reference.

If you pass a variable defined as a user-defined data type to a procedure, it must
be passed by reference. Attempting to pass it by value generates an error.

Because I didn’t declare a data type for any of the arguments in the preceding
examples, all the arguments have been of the Variant data type. But a procedure
that uses arguments can define the data types directly in the argument list. The
following is a Sub statement for a procedure with two arguments of different data
types. The first is declared as an integer, and the second is declared as a string.

Sub Process(Iterations As Integer, TheFile As String)

When you pass arguments to a procedure, it’s important that the data that is passed
as the argument matches the argument’s data type. For example, if you call Process
in the preceding example and pass a string variable for the first argument, you get
an error: ByRef argument type mismatch.

Arguments are relevant to both Sub procedures and Function procedures. In fact,
arguments are more often used in Function procedures. In Chapter 10, where I
focus on Function procedures, I provide additional examples of using arguments
with your routines, including how to handle optional arguments.

Note

Note

4799-2 ch09.F 6/11/01 9:30 AM Page 236

237Chapter 9 ✦ Working with VBA Sub Procedures

Error-Handling Techniques
When a VBA procedure is running, errors can occur, as you undoubtedly know.
These include either syntax errors (which you must correct before you can execute
a procedure) or runtime errors (which occur while the procedure is running). This
section deals with runtime errors.

For error-handling procedures to work, the Break on All Errors setting must be
turned off. In the VBE, select Tools ➪ Options and click the General tab in the
Options dialog box. If Break on All Errors is selected, VBA ignores your error-
handling code. You’ll usually want to use the Break on Unhandled Errors option.

Normally, a runtime error causes VBA to stop, and the user sees a dialog box that
displays the error number and a description of the error. A good application doesn’t
make the user deal with these messages. Rather, it incorporates error-handling

Caution

Public Variables versus Passing Arguments
to a Procedure

In Chapter 8, I pointed out how a variable declared as Public (at the top of the module) is
available to all procedures in the module. In some cases, you may want to access a Public
variable rather than pass the variable as an argument when calling another procedure.

For example, the procedure that follows passes the value of MonthVal to the
ProcessMonth procedure:

Sub MySub()
Dim MonthVal as Integer

‘ ... [code goes here]
MonthVal = 4
Call ProcessMonth(MonthVal)

‘ ... [code goes here]
End Sub

An alternative approach is:

Public MonthVal as Integer

Sub MySub()
‘ ... [code goes here]

MonthVal = 4
Call ProcessMonth

‘ ... [code goes here]
End Sub

In the revised code, because MonthVal is a public variable, the ProcessMonth procedure
can access it, eliminating the need for an argument for the ProcessMonth procedure.

4799-2 ch09.F 6/11/01 9:30 AM Page 237

238 Part III ✦ Understanding Visual Basic for Applications

code to trap errors and take appropriate actions. At the very least, your error-
handling code can display a more meaningful error message than the one popped
up by VBA.

Appendix C lists all the VBA error codes and descriptions.

Trapping errors
You can use the On Error statement to specify what happens when an error occurs.
Basically, you have two choices:

✦ Ignore the error, and let VBA continue. You can later examine the Err object
to determine what the error was, and take action if necessary.

✦ Jump to a special error-handling section of your code to take action. This
section is placed at the end of the procedure, and marked by a label.

To cause your VBA code to continue when an error occurs, insert the following
statement in your code:

On Error Resume Next

Some errors are inconsequential, and can simply be ignored. But you may want to
determine what the error was. When an error occurs, you can use the Err object to
determine the error number. VBA’s Error function can be used to display the text
for Err.Value, which defaults to just Err. For example, the following statement
displays the same information as the normal Visual Basic error dialog box (the
error number and the error description):

MsgBox “Error” & Err & “: “ & Error(Err)

Figure 9-6 shows a VBA error message, and Figure 9-7 shows the same error
displayed in a message box. You can, of course, make the error message a bit
more meaningful to your end users by using more descriptive text.

Referencing Err is equivalent to accessing the Number property of the Err object.
Therefore, the following two statements have the same effect:

MsgBox Err
MsgBox Err.Number

Note

Cross-
Reference

4799-2 ch09.F 6/11/01 9:30 AM Page 238

239Chapter 9 ✦ Working with VBA Sub Procedures

Figure 9-6: VBA’s error messages aren’t
always user friendly.

Figure 9-7: You can create a message box to display
the error code and description.

You also use the On Error statement to specify a location in your procedure to
jump to when an error occurs. You use a label to mark the location. For example,

On Error GoTo ErrorHandler

Error-handling examples
The first example demonstrates an error that can safely be ignored. The
SpecialCells method selects cells that meet a certain criteria. (This method
is equivalent to selecting the Edit ➪ Go To command and clicking the Special
button to select, for example, all cells that contain formulas.)

In the example that follows, the SpecialCells method selects all the cells in the
current range selection that contain a formula that returns a number. Normally, if
no cells in the selection qualify, VBA generates an error message. Using the On
Error Resume Next statement simply prevents the error message from appearing.

Sub SelectFormulas()
On Error Resume Next
Selection.SpecialCells(xlFormulas, xlNumbers).Select
On Error GoTo 0

End Sub

Notice that the On Error GoTo 0 statement restores normal error handling before
the procedure ends.

The following procedure uses an additional statement to determine if an error did
occur:

4799-2 ch09.F 6/11/01 9:30 AM Page 239

240 Part III ✦ Understanding Visual Basic for Applications

Sub SelectFormulas2()
On Error Resume Next
Selection.SpecialCells(xlFormulas, xlNumbers).Select
If Err <> 0 Then MsgBox “No formula cells were found.”
On Error GoTo 0

End Sub

If the value of Err is not equal to 0, an error occurred, and a message box displays a
notice to the user.

The next example demonstrates error handling by jumping to a label.

Sub ErrorDemo()
On Error GoTo Handler
Selection.Value = 123
Exit Sub

Handler:
MsgBox “Cannot assign a value to the selection.”

End Sub

The procedure attempts to assign a value to the current selection. If an error
occurs (for example, a range is not selected or the sheet is protected), the assign-
ment statement results in an error. The On Error statement specifies a jump to the
Handler label if an error occurs. Notice the use of the Exit Sub statement before
the label. This prevents the error-handling code from being executed if no error
occurs. If this statement is omitted, the error message would be displayed even if
an error did not occur.

Sometimes, you can take advantage of an error to get information. The example that
follows simply checks to see whether a particular workbook is open. It does not use
any error handling.

Sub CheckForFile1()
FileName = “BUDGET.XLS”
FileExists = False

‘ Cycle through all workbooks
For Each book In Workbooks

If UCase(book.Name) = FileName Then
FileExists = True

End If
Next book

‘ Display appropriate message
If FileExists Then _

MsgBox FileName & “ is open.” Else _
MsgBox FileName & “ is not open.”

End Sub

Here, a For Each-Next loop cycles through all objects in the Workbooks collection.
If the workbook is open, the FileExists variable is set to True. Finally, a message
is displayed that tells the user whether the workbook is open.

4799-2 ch09.F 6/11/01 9:30 AM Page 240

241Chapter 9 ✦ Working with VBA Sub Procedures

The preceding routine can be rewritten to use error handling to determine whether
the file is open. In the example that follows, the On Error Resume Next statement
causes VBA to ignore any errors. The next instruction attempts to reference the
workbook by assigning the workbook to an object variable (using the Set keyword).
If the workbook is not open, an error occurs. The If-Then-Else structure checks
the value property of Err and displays the appropriate message.

Sub CheckForFile()
Dim x as Workbook
FileName = “BUDGET.XLS”
On Error Resume Next
Set x = Workbooks(FileName)
If Err = 0 Then

MsgBox FileName & “ is open.”
Else

MsgBox FileName & “ is not open.”
End If
On Error GoTo 0

End Sub

Chapter 11 presents several additional examples that use error handling.

A Realistic Example
In this chapter, I have provided you with the basic foundation for creating Sub
procedures. Most of the previous examples, I will admit, have been rather wimpy.
The remainder of this chapter is a real-life exercise that demonstrates many of the
concepts covered in this and the preceding two chapters.

This section describes the development of a useful utility that qualifies as an
application as defined in Chapter 5. More important, I demonstrate the process of
analyzing a problem and then solving it with VBA. A word of warning to the more
experienced users in the audience: I wrote this section with VBA newcomers in
mind. As a result, I don’t simply present the code, I also show how to find out what
you need to know to develop the code.

The completed application can be found on the companion CD-ROM.

The goal
The goal of this exercise is to develop a utility that rearranges a workbook by alpha-
betizing its sheets (something Excel cannot do on its own). If you tend to create
workbooks that consist of many sheets, you know that it can be difficult to locate a
particular sheet. If the sheets are ordered alphabetically, though, it’s much easier to
find a desired sheet.

On the
CD-ROM

Cross-
Reference

4799-2 ch09.F 6/11/01 9:30 AM Page 241

242 Part III ✦ Understanding Visual Basic for Applications

Project requirements
Where to begin? One way to get started is to list the requirements for your applica-
tion. As you develop your application, you can check your list to ensure that you’re
covering all the bases.

Here’s the list of requirements that I compiled for this example application:

1. It should sort the sheets (that is, worksheets and chart sheets) in the active
workbook in ascending order of their names.

2. It should be easy to execute.

3. It should always be available. In other words, the user shouldn’t have to open
a workbook to use this utility.

4. It should work properly for any open workbook.

5. It should not display any VBA error messages.

What you know
Often, the most difficult part of a project is figuring out where to start. In this case, I
started by listing things that I know about Excel that may be relevant to the project
requirements:

✦ Excel doesn’t have a command that sorts sheets. Therefore, recording a
macro to alphabetize the sheets is out of the question.

✦ I can move a sheet easily by dragging its sheet tab.

Mental note: Turn on the macro recorder and drag a sheet to a new location to
find out what kind of code this action generates.

✦ I’ll need to know how many sheets are in the active workbook. I can get this
information with VBA.

✦ I’ll need to know the names of all the sheets. Again, I can get this information
with VBA.

✦ Excel has a command that sorts data in worksheet cells.

Mental note: Maybe I can transfer the sheet names to a range and use this fea-
ture. Or, maybe VBA has a sorting method that I can take advantage of.

✦ Thanks to the Macro Options dialog box, it’s easy to assign a shortcut key to a
macro.

✦ If a macro is stored in the Personal Macro Workbook, it will always be
available.

✦ I need a way to test the application as I develop it. For certain, I don’t want to
be testing it using the same workbook in which I’m developing the code.

4799-2 ch09.F 6/11/01 9:30 AM Page 242

243Chapter 9 ✦ Working with VBA Sub Procedures

Mental note: Create a dummy workbook for testing purposes.

✦ If I develop the code properly, VBA won’t display any errors.

Mental note: Wishful thinking . . .

The approach
Although I still didn’t know exactly how to proceed, I could devise a preliminary,
skeleton plan that describes the general tasks required:

1. Identify the active workbook.

2. Get a list of all the sheet names in the workbook.

3. Count the sheets.

4. Sort them (somehow).

5. Rearrange the sheets in the sorted order.

What you need to know
I saw a few holes in the plan. I knew that I had to determine the following:

✦ How to identify the active workbook

✦ How to count the sheets in the active workbook

✦ How to get a list of the sheet names

✦ How to sort the list

✦ How to rearrange the sheets according to the sorted list

When you lack critical information about specific methods or properties, you can
consult this book or the online help. You may eventually discover what you need
to know. Your best bet, however, is to turn on the macro recorder and see what it
spits out when you perform some relevant actions.

Some preliminary recording
Here’s an example of using the macro recorder to learn about VBA. I started with a
workbook that contained three worksheets. Then I turned on the macro recorder
and specified my Personal Macro Workbook as the destination for the macro. With
the macro recorder running, I dragged the third worksheet to the first sheet posi-
tion. Here’s what the macro recorder spat out:

Sub Macro1()
Sheets(“Sheet3”).Select
Sheets(“Sheet3”).Move Before:=Sheets(1)

End Sub

Tip

4799-2 ch09.F 6/11/01 9:30 AM Page 243

244 Part III ✦ Understanding Visual Basic for Applications

I searched the online help for Move, and discovered that it’s a method that moves a
sheet to a new location in the workbook. It also takes an argument that specifies the
location for the sheet. Very relevant to the task at hand.

Next I needed to find out how many sheets were in the active workbook. I searched
for the word Count and found out that it’s a property of a collection. I activated the
Immediate window in the VBE and typed the following statement:

? ActiveWorkbook.Count

Error! After a little more thought, I realized that I needed to get a count of the
sheets within a workbook. So I tried this:

? ActiveWorkbook.Sheets.Count

Success. Figure 9-8 shows the result. More useful information.

Figure 9-8: Using VBE’s Immediate window to test a
statement

What about the sheet names? Time for another test. I entered the following state-
ment in the Immediate window:

? ActiveWorkbook.Sheets(1).Name

This told me that the name of the first sheet is Sheet3, which is correct. More good
information to keep in mind.

Then I remembered something about the For Each-Next construct: It is useful for
cycling through each member of a collection. After consulting the online help, I
created a short procedure to test it:

Sub Test()
For Each Sht In ActiveWorkbook.Sheets

MsgBox Sht.Name
Next Item

End Sub

Another success. This macro displayed three message boxes, each showing a differ-
ent sheet name.

4799-2 ch09.F 6/11/01 9:30 AM Page 244

245Chapter 9 ✦ Working with VBA Sub Procedures

Finally, it was time to think about sorting options. From the online help, I learned
that the Sort method applies to a Range object. So one option was to transfer the
sheet names to a range and then sort the range, but that seemed like overkill for
this application. I thought a better option was to dump the sheet names into an
array of strings and then sort the array by using VBA code.

Initial setup
Now I knew enough to get started writing some serious code. Before doing so,
however, I needed to do some initial setup work. To re-create my steps, follow
these instructions:

1. Create an empty workbook with five worksheets, named Sheet1, Sheet2,
Sheet3, Sheet4, and Sheet5.

2. Move the sheets around randomly so that they aren’t in any particular order.

3. Save the workbook as Test.xls.

4. Activate the VBE and select the Personal.xls project in the Project Window.

If Personal.xls doesn’t appear in the Project window in the VBE, this means
that you’ve never used the Personal Macro Workbook. To have Excel create
this workbook for you, simply record a macro (any macro) and specify the
Personal Macro Workbook as the destination for the macro.

5. Insert a new VBA module (use the Insert ➪ Module command).

6. Create an empty procedure called SortSheets (see Figure 9-9).

Figure 9-9: An empty procedure in a module located in the Personal
Macro Workbook

4799-2 ch09.F 6/11/01 9:30 AM Page 245

246 Part III ✦ Understanding Visual Basic for Applications

Actually, you can store this macro in any module in the Personal Macro
Workbook. However, it’s a good idea to keep each macro in a separate module.
That way, you can easily export the module and import it into a different
project later on.

7. Activate Excel. Use the Tools ➪ Macro ➪ Macros command (Options button) to
assign a shortcut key to this macro. The Ctrl+Shift+S key combination is a
good choice.

Code writing
Now it’s time to write some code. I knew that I needed to put the sheet names into
an array of strings. Because I won’t know yet how many sheets are in the active
workbook, I used a Dim statement with empty parentheses to declare the array. I
knew that I could use ReDim afterward to redimension the array for the proper
number of elements.

I entered the following code, which inserts the sheet names into the SheetNames
array. I also added a MsgBox function within the loop just to assure me that the
sheets’ names were indeed being entered into the array.

Sub SortSheets()
Dim SheetNames() as String
Dim i as Integer
Dim SheetCount as Integer
SheetCount = ActiveWorkbook.Sheets.Count
ReDim SheetNames(1 To SheetCount)
For i = 1 To SheetCount

SheetNames(i) = ActiveWorkbook.Sheets(i).Name
MsgBox SheetNames(i)

Next i
End Sub

To test the preceding code, I activated the Text.xls workbook and pressed Ctrl+
Shift+S. Five message boxes appeared, each displaying the name of a sheet in the
active workbook.

I’m a major proponent of testing your work as you go. When you’re convinced that
your code is working correctly, remove the MsgBox statement (these message
boxes become annoying after a while).

Rather than use the MsgBox function to test your work, you can use the Print
method of the Debug object to display information in the Immediate window. For
this example, use the following statement in place of the MsgBox statement:

Debug.Print SheetNames(i)

You may find this technique less intrusive than using MsgBox statements.

At this point, the SortSheets procedure simply creates an array of sheet names,
corresponding to the sheets in the active workbook. Two steps remain: Sort the

Tip

4799-2 ch09.F 6/11/01 9:30 AM Page 246

247Chapter 9 ✦ Working with VBA Sub Procedures

values in the SheetNames array, and then rearrange the sheets to correspond to the
sorted array.

Sort procedure writing
It was time to sort the SheetNames array. One option was to insert the sorting
code in the SortSheets procedure, but I thought a better approach was to write a
general-purpose sorting procedure that I could reuse with other projects (sorting
arrays is a common operation).

You may be a bit daunted by the thought of writing a sorting procedure. The good
news is that it’s relatively easy to find commonly used routines that you can use or
adapt. The Internet, of course, is a great source for such information.

You can sort an array in many ways. I chose the bubble sort method; although it’s
not a particularly fast technique, it’s easy to code. Blazing speed is not really a
necessary factor in this particular application.

The bubble sort method uses a nested For-Next loop to evaluate each array
element. If the array element is greater than the next element, the two elements
swap positions. This evaluation is repeated for every pair of items (that is, n–1
times).

In Chapter 11, I present some other sorting routines and compare them in terms
of speed.

Here’s the sorting procedure I developed:

Sub BubbleSort(List() As String)
‘ Sorts the List array in ascending order

Dim First As Integer, Last As Integer
Dim i As Integer, j As Integer
Dim Temp As String
First = LBound(List)
Last = UBound(List)
For i = First To Last - 1

For j = i + 1 To Last
If List(i) > List(j) Then

Temp = List(j)
List(j) = List(i)
List(i) = Temp

End If
Next j

Next i
End Sub

This procedure accepts one argument: a one-dimensional array named List. An
array passed to a procedure can be of any length. I used the LBound and UBound
functions to define the lower bound and upper bound of the array to the variables
First and Last, respectively.

Cross-
Reference

4799-2 ch09.F 6/11/01 9:30 AM Page 247

248 Part III ✦ Understanding Visual Basic for Applications

After I was satisfied that this procedure worked reliably, I modified SortSheets by
adding a call to the BubbleSort procedure, passing the SheetNames array as an
argument. At this point, my module looked like this:

Sub SortSheets()
Dim SheetNames() As String
Dim SheetCount as Integer
Dim i as Integer
SheetCount = ActiveWorkbook.Sheets.Count
ReDim SheetNames(1 To SheetCount)
For i = 1 To SheetCount

SheetNames(i) = ActiveWorkbook.Sheets(i).Name
Next i
Call BubbleSort(SheetNames)

End Sub

Sub BubbleSort(List() As String)
Dim First As Integer, Last As Integer
Dim i As Integer, j As Integer
Dim Temp As String
First = LBound(List)
Last = UBound(List)
For i = First To Last - 1

For j = i + 1 To Last
If List(i) > List(j) Then

Temp = List(j)
List(j) = List(i)
List(i) = Temp

End If
Next j

Next i
End Sub

When the SheetSort procedure ends, it contains an array that consists of the sorted
sheet names in the active workbook. To verify this, you can display the array
contents in the Debug window by adding the following code at the end of the
SortSheets procedure:

For i = 1 To SheetCount
Debug.Print SheetNames(i)

Next i

So far, so good. Now I merely had to write some code to rearrange the sheets to
correspond to the sorted items in the SheetNames array.

The code that I recorded earlier, again proved useful. Remember the instruction
that was recorded when I moved a sheet to the first position in the workbook?

Sheets(“Sheet3”).Move Before:=Sheets(1)

4799-2 ch09.F 6/11/01 9:30 AM Page 248

249Chapter 9 ✦ Working with VBA Sub Procedures

After a little thought, I was able to write a For-Next loop that would go through
each sheet and move it to its corresponding sheet location, specified in the
SheetNames array:

For i = 1 To SheetCount
Sheets(SheetNames(i)).Move Before:=Sheets(i)

Next i

For example, the first time through the loop, the loop counter (i) is 1. The first
element in the SheetNames array is (in this example) Sheet1. Therefore, the expres-
sion for the Move method within the loop evaluates to:

Sheets(“Sheet1”).Move Sheets(1)

The second time through the loop, the expression evaluates to:

Sheets(“Sheet2”).Move Sheets(2)

I then added the new code to the SortSheets procedure:

Sub SortSheets()
SheetCount = ActiveWorkbook.Sheets.Count
ReDim SheetNames(1 To SheetCount)
For i = 1 To SheetCount

SheetNames(i) = ActiveWorkbook.Sheets(i).Name
Next i
Call BubbleSort(SheetNames)
For i = 1 To SheetCount

ActiveWorkbook.Sheets(SheetNames(i)).Move _
Before:=ActiveWorkbook.Sheets(i)

Next i
End Sub

I did some testing and it seemed to work just fine for the Test.xls workbook.

Time to clean things up. I declared all the variables used in the procedures, and
then added a few comments and blank lines to make the code easier to read. The
SortSheets procedure now looked like the following:

Sub SortSheets()
‘ This routine sorts the sheets of the
‘ active workbook in ascending order.

Dim SheetNames() As String
Dim SheetCount As Integer
Dim i As Integer

‘ Determine the number of sheets & ReDim array
SheetCount = ActiveWorkbook.Sheets.Count
ReDim SheetNames(1 To SheetCount)

4799-2 ch09.F 6/11/01 9:30 AM Page 249

250 Part III ✦ Understanding Visual Basic for Applications

‘ Fill array with sheet names
For i = 1 To SheetCount

SheetNames(i) = ActiveWorkbook.Sheets(i).Name
Next i

‘ Sort the array in ascending order
Call BubbleSort(SheetNames)

‘ Move the sheets
For i = 1 To SheetCount

ActiveWorkbook.Sheets(SheetNames(i)).Move _
ActiveWorkbook.Sheets(i)

Next i
End Sub

Everything seemed to be working. To test the code further, I added a few more
sheets to Test.xls and changed some of the sheet names. It worked like a charm!

More testing
I was tempted to call it a day. However, the fact that the procedure worked with
the Test.xls workbook didn’t mean that it would work with all workbooks. To test it
further, I loaded a few other workbooks and retried the routine. I soon discovered
that the application was not perfect. In fact, it was far from perfect. I identified the
following problems:

✦ Workbooks with many sheets took a long time to sort because the screen was
continually updated during the move operations.

✦ The sorting didn’t always work. For example, in one of my tests, a sheet named
SUMMARY (all uppercase) appeared before a sheet named Sheet1. This problem
was caused by the BubbleSort procedure (an uppercase U is “greater than” a
lower case H).

✦ If there were no visible workbook windows, pressing the Ctrl+Shift+S shortcut
key combo caused the macro to fail.

✦ If the workbook’s structure was protected, the Move method failed.

✦ The Move method does not work properly if sheets are hidden. The sheet is
actually moved before the first nonhidden sheet. This unexpected behavior is
not documented, so we can only conclude that it is a bug in Excel.

✦ After sorting, the last sheet in the workbook became the active sheet.
Changing the active sheet is not a good practice; it’s better to keep the user’s
original sheet active.

✦ If I interrupted the macro by pressing Ctrl+Break, VBA displayed an error
message.

4799-2 ch09.F 6/11/01 9:30 AM Page 250

251Chapter 9 ✦ Working with VBA Sub Procedures

Fixing the problems
Fixing the screen-updating problem was a breeze. I inserted the following instruction
at the beginning of SortSheets to turn screen updating off:

Application.ScreenUpdating = False

It was also easy to fix the problem with the BubbleSort procedure: I used VBA’s
UCase function to convert the sheet names to uppercase. That way, all the compar-
isons were made using uppercase versions of the sheet names. The corrected line
read as follows:

If UCase(List(i)) > UCase(List(j)) Then

Another way to solve the “case” problem is to add the following statement to the
top of your module:

Option Text Compare

This statement causes VBA to perform string comparisons based on a case-
insensitive text sort order. In other words, A is considered the same as a.

To prevent the error message that appears when no workbooks are visible, I added
some error checking. If no active workbook exists, an error occurred. I used On
Error Resume Next to ignore the error, and then checked the value of Err. If Err is
not equal to 0, it means that an error occurred. Therefore, the procedure ends. The
error-checking code is:

On Error Resume Next
SheetCount = ActiveWorkbook.Sheets.Count
If Err <> 0 Then Exit Sub ‘ No active workbook

It occurred to me that I could avoid using On Error Resume Next. The following
statement is a more direct approach to determining whether a workbook is not
visible and doesn’t require any error handling:

If ActiveWorkbook Is Nothing Then Exit SubOp

There’s usually a good reason that a workbook’s structure is protected. I decided
that the best approach was to not attempt to unprotect the workbook. Rather, the
code should display a message box warning and let the user unprotect the work-
book and re-execute the macro. Testing for a protected workbook structure was
easy — the ProtectStructure property of a Workbook object returns True if a
workbook is protected. I added the following block of code:

‘ Check for protected workbook structure
If ActiveWorkbook.ProtectStructure Then

MsgBox ActiveWorkbook.Name & “ is protected.”, _
vbCritical, “Cannot Sort Sheets.”

Exit Sub
End If

Tip

4799-2 ch09.F 6/11/01 9:30 AM Page 251

252 Part III ✦ Understanding Visual Basic for Applications

Dealing with the problem that occurs with hidden sheets is tricky. One solution is
to use an array to keep track of each sheet’s hidden status (which is determined
by its Visible property). Then, write code to unhide the sheets, and re-hide them
after the sorting is done. I defined a new array (SheetHidden) and used this code
to identify the hidden sheets, and unhide them:

‘ Fill array with hidden status of sheets
For i = 1 To SheetCount

SheetHidden(i) = Not ActiveWorkbook.Sheets(i).Visible
‘ unhide hidden sheets

If SheetHidden(i) Then ActiveWorkbook.Sheets(i).Visible
= True

Next i

Then, when the sorting was finished, I used this code to re-hide the sheets that
were originally hidden:

‘ Re-hide sheets
For i = 1 To SheetCount

If SheetHidden(i) Then ActiveWorkbook.Sheets(i).Visible
= False

Next i

Because screen updating is turned off, unhiding and re-hiding the sheets takes
place “transparently.”

To reactivate the original active sheet after the sorting was performed, I wrote
code that assigned the original sheet to an object variable (OldActive), and then
activated that sheet when the routine was finished.

Pressing Ctrl+Break normally halts a macro, and VBA usually displays an error
message. But because one of my goals was to avoid VBA error messages, I needed
to insert a command to prevent this situation. From the online help, I discovered
that the Application object has an EnableCancelKey property that can disable
Ctrl+Break. So I added the following statement at the top of the routine:

Application.EnableCancelKey = xlDisabled

Be very careful when you disable the cancel key. If your code gets caught in an infi-
nite loop, there is no way to break out of it. For best results, insert this statement
only after you’re sure everything is working properly.

After I made all these corrections, the SortSheets procedure looked like Listing 9-1.

Caution

4799-2 ch09.F 6/11/01 9:30 AM Page 252

253Chapter 9 ✦ Working with VBA Sub Procedures

Listing 9-1: The final build for the SortSheets procedure

Sub SortSheets()
‘ This routine sorts the sheets of the
‘ active workbook in ascending order.

Dim SheetNames() As String
Dim SheetHidden() As Boolean
Dim i As Integer
Dim SheetCount As Integer
Dim VisibleWins As Integer
Dim Item As Object
Dim OldActive As Object

If ActiveWorkbook Is Nothing Then Exit Sub ‘ No active
workbook

SheetCount = ActiveWorkbook.Sheets.Count

‘ Check for protected workbook structure
If ActiveWorkbook.ProtectStructure Then

MsgBox ActiveWorkbook.Name & “ is protected.”, _
vbCritical, “Cannot Sort Sheets.”

Exit Sub
End If

‘ Disable Ctrl+Break
Application.EnableCancelKey = xlDisabled

‘ Get the number of sheets
SheetCount = ActiveWorkbook.Sheets.Count

‘ Redimension the arrays
ReDim SheetNames(1 To SheetCount)
ReDim SheetHidden(1 To SheetCount)

‘ Store a reference to the active sheet
Set OldActive = ActiveSheet

‘ Fill array with sheet names
For i = 1 To SheetCount

SheetNames(i) = ActiveWorkbook.Sheets(i).Name
Next i

‘ Fill array with hidden status of sheets
For i = 1 To SheetCount

SheetHidden(i) = Not ActiveWorkbook.Sheets(i).Visible
‘ unhide hidden sheets

If SheetHidden(i) Then ActiveWorkbook.Sheets(i).Visible
= True

Next i

Continued

4799-2 ch09.F 6/11/01 9:30 AM Page 253

254 Part III ✦ Understanding Visual Basic for Applications

Listing 9-1 (continued)

‘ Sort the array in ascending order
Call BubbleSort(SheetNames)

‘ Turn off screen updating
Application.ScreenUpdating = False

‘ Move the sheets
For i = 1 To SheetCount

ActiveWorkbook.Sheets(SheetNames(i)).Move _
Before:=ActiveWorkbook.Sheets(i)

Next i

‘ Re-hide sheets
For i = 1 To SheetCount

If SheetHidden(i) Then ActiveWorkbook.Sheets(i).Visible
= False

Next i

‘ Reactivate the original active sheet
OldActive.Activate

End Sub

Utility availability
Because the SortSheets macro is stored in the Personal Macro Workbook, it is
available whenever Excel is running. At this point, the macro can be executed by
selecting the macro’s name from the Macro dialog box (Alt+F8 displays this dialog
box), or by pressing Ctrl+Shift+F8.

If you like, you can also assign this macro to a new toolbar button or to a new menu
item. Procedures for doing this are described earlier in this chapter.

Evaluating the project
So there you have it. The utility meets all the original project requirements: It sorts
all sheets in the active workbook, it can be executed easily, it’s always available, it
seems to work for any workbook, and I have yet to see it display a VBA error
message.

The procedure still has one slight problem: The sorting is strict and may not always
be “logical.” For example, after sorting, Sheet11 is placed before Sheet2. Most
would want Sheet2 to be listed before Sheet11.

Note

4799-2 ch09.F 6/11/01 9:30 AM Page 254

255Chapter 9 ✦ Working with VBA Sub Procedures

The companion CD-ROM contains another version of the sheet sorting utility that
overcomes the problem described above — in most cases. This version of the utility
parses the sheet names into two components: the left-most text and the right-most
numbers (if any). The parsed data is stored on a worksheet, and the procedure
uses Excel’s built-in sorting to perform the sort using two sort keys. It’s still not
perfect because it won’t properly sort a sheet with a name like Sheet2Part1.

In this exercise, I tried to demonstrate the process of developing VBA procedures —
a valuable lesson even if you’re not yet a VBA veteran. I communicated the follow-
ing points:

✦ Developing a successful procedure is not necessarily a linear process.

✦ It’s often useful to use short procedures or the Immediate window to test
ideas or approaches before incorporating them into your work.

✦ Even though a procedure appears to work correctly, appearances can be
deceiving. Therefore, it’s important to test your work in a realistic situation.
For example, despite lots of testing on my part, it took someone else to
identify the problem that may occur when sheets are hidden.

✦ You can learn a lot by recording your actions and studying the code that is
recorded. Although I didn’t actually use any of the recorded code, I learned
several things by examining the code.

✦ A project’s original requirements aren’t always complete. In this example, I
didn’t think to require that the original active sheet remain the active sheet
after the sorting.

Summary
In this chapter, I presented a comprehensive list of ways to execute Sub proce-
dures, and I described how to use arguments. I also gave an example of developing
and debugging procedures.

In the next chapter, I focus on the other type of VBA procedures: Function
procedures.

✦ ✦ ✦

On the
CD-ROM

4799-2 ch09.F 6/11/01 9:30 AM Page 255

4799-2 ch09.F 6/11/01 9:30 AM Page 256

Creating
Function
Procedures

VBA enables you to create Sub procedures and Function
procedures. I covered Sub procedures in the preceding

chapter, and in this chapter I discuss Function procedures.

Chapter 11 has many useful and practical examples of
Function procedures. You can incorporate many of those
techniques into your work.

Sub Procedures versus
Function Procedures

You can think of a Sub procedure as a command that can
be executed either by the user or by another procedure.
Function procedures, on the other hand, usually return a sin-
gle value (or an array), just as Excel’s worksheet functions
and VBA’s built-in functions do. As with built-in functions,
your Function procedures can use arguments.

Function procedures are quite versatile and can be used in
two situations:

✦ As part of an expression in a VBA procedure

✦ In formulas that you create in a worksheet

In fact, you can use a Function procedure anywhere that you
can use an Excel worksheet function or a VBA built-in
function.

Cross-
Reference

1010C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

The difference
between Sub
procedures and
Function procedures

How to create custom
functions

About Function
procedures and
function arguments

Examples, examples,
examples

How to create a
function that emulates
Excel SUM function

How to debug
functions, deal with
the Paste Function
dialog box, and use
add-ins to store
custom functions

How to call the
Windows API
(Application
Programming
Interface) to perform
otherwise impossible
feats

✦ ✦ ✦ ✦

4799-2 ch10.F 6/11/01 9:31 AM Page 257

258 Part III ✦ Understanding Visual Basic for Applications

Why Create Custom Functions?
You are undoubtedly familiar with Excel’s worksheet functions; even novices know
how to use the most common worksheet functions, such as SUM, AVERAGE, and IF.
By my count, Excel contains more than 300 predefined worksheet functions, plus
additional functions available through the Analysis Toolpak add-in. If that’s not
enough, however, you can create custom functions by using VBA.

With all the functions available in Excel and VBA, you may wonder why you would
ever need to create new functions. The answer: to simplify your work. With a bit
of planning, custom functions are very useful in worksheet formulas and VBA
procedures.

Often, for example, you can create a custom function that can significantly shorten
your formulas. And shorter formulas are more readable and easier to work with. I
should also point out, however, that custom functions used in your formulas are
usually much slower than built-in functions.

As you create applications, you may notice that some procedures repeat certain
calculations. In such a case, consider creating a custom function that performs the
calculation. Then you can simply call the function from your procedure. A custom
function thus can eliminate the need for duplicated code, reducing errors.

Co-workers often can benefit from your specialized functions. And some may be
willing to pay you for custom functions that save them time and work.

Although many cringe at the thought of creating custom worksheet functions, the
process is not difficult. In fact, I enjoy creating custom functions. I especially like
how my custom functions appear in the Paste Function dialog box along with
Excel’s built-in functions, as if I’m reengineering the software in some way.

In this chapter, I tell you what you need to know to start creating custom functions,
and I provide lots of examples.

An Introductory Example
Without further ado, here’s an example of a VBA Function procedure.

A custom function
The following is a custom function defined in a VBA module. This function, named
Reverse, uses a single argument. The function reverses the characters in its argu-
ment (so that it reads backwards), and returns the result as a string.

4799-2 ch10.F 6/11/01 9:31 AM Page 258

259Chapter 10 ✦ Creating Function Procedures

Function Reverse(InString) As String
‘ Returns its argument, reversed

Dim i as Integer, StringLength as Integer
Reverse = “”
StringLength = Len(InString)
For i = StringLength To 1 Step -1

Reverse = Reverse & Mid(InString, i, 1)
Next i

End Function

I explain how this function works later, in the “Analyzing the custom function”
section.

When you create custom functions that will be used in a worksheet formula, make
sure that the code resides in a normal VBA module. If you place your custom func-
tions in a code module for a Sheet or ThisWorkbook, they will not work in your
formulas.

Using the function in a worksheet
When you enter a formula that uses the Reverse function, Excel executes the code
to get the value. Here’s an example of how you would use the function in a formula:

=Reverse(A1)

See Figure 10-1 for examples of this function in action. The formulas are in column
B, and they use the text in column A as their argument. As you can see, it returns its
single argument, but its characters are in reverse order.

Actually, the function works pretty much like any built-in worksheet function. You
can insert it in a formula by using the Insert ➪ Function command or the Insert
Function button (in the Insert Function dialog box, custom functions are located, by
default, in the User Defined category).

Figure 10-1: Using a custom function in a
worksheet formula

Caution

4799-2 ch10.F 6/11/01 9:31 AM Page 259

260 Part III ✦ Understanding Visual Basic for Applications

You can also nest custom functions and combine them with other elements in your
formulas. For example, the following (useless) formula uses the Reverse function
twice. The result is the original string:

=Reverse(Reverse(A1))

Using the function in a VBA procedure
The following VBA procedure, which is defined in the same module as the custom
Reverse function, first displays an input box to solicit some text from the user.
Then the procedure uses VBA’s built-in MsgBox function to display the user input
after it’s processed by the Reverse function (see Figure 10-2). The original input
appears as the caption in the message box.

Sub ReverseIt()
Dim UserInput as String
UserInput = InputBox(“Enter some text:”)
MsgBox Reverse(UserInput), , UserInput

End Sub

In the example shown in Figure 10-2, the string entered in response to the InputBox
function was Excel Power Programming With VBA. The MsgBox function displays
the reversed text.

Figure 10-2: Using a custom
function in a VBA procedure

Analyzing the custom function
Function procedures can be as complex as you need. Most of the time, they are
more complex and much more useful than this sample procedure. Nonetheless,
an analysis of this example may help you understand what is happening.

Here’s the code, again:

Function Reverse(InString) As String
‘ Returns its argument, reversed

Dim i as Integer, StringLength as Integer
Reverse = “”
StringLength = Len(InString)
For i = StringLength To 1 Step -1

Reverse = Reverse & Mid(InString, i, 1)
Next i

End Function

4799-2 ch10.F 6/11/01 9:31 AM Page 260

261Chapter 10 ✦ Creating Function Procedures

Notice that the procedure starts with the keyword Function, rather than Sub, fol-
lowed by the name of the function (Reverse). This custom function uses only one
argument (InString), enclosed in parentheses. As String defines the data type of
the function’s return value. (Excel uses the variant data type if none is specified.)

The second line is simply a comment (optional) that describes what the function
does. This is followed by a Dim statement for the two variables (i and
StringLength) used in the procedure.

Then the procedure initializes the result as an empty string. Note that I use the
function’s name as a variable here. When a function ends, it always returns the
current value of the variable that corresponds to the function’s name.

Next, VBA’s Len function determines the length of the input string and assigns this
value to the StringLength variable.

The next three instructions make up a For-Next loop. The procedure loops through
each character in the input (backwards) and builds the string. Notice that the Step
value in the For-Next loop is a negative number, causing the looping to proceed in
reverse. The instruction within the loop uses VBA’s Mid function to return a single
character from the input string. When the loop is finished, Reverse consists of the
input string, with the characters rearranged in reverse order. This string is the
value that the function returns.

The procedure ends with an End Function statement.

What Custom Worksheet Functions Can’t Do

As you develop custom functions, it’s important to understand a key distinction between
functions that you call from other VBA procedures and functions that you use in worksheet
formulas. Function procedures used in worksheet formulas must be “passive.” For example,
code within a Function procedure cannot manipulate ranges or change things on the work-
sheet. An example may make this clear.

You may be tempted to write a custom worksheet function that changes a cell’s formatting.
For example, it might be useful to have a formula that uses a custom function to change the
color of text in a cell based on the cell’s value. Try as you might, however, such a function is
impossible to write. No matter what you do, the function will always return an error.
Remember, a function simply returns a value. It cannot perform actions with objects.

4799-2 ch10.F 6/11/01 9:31 AM Page 261

262 Part III ✦ Understanding Visual Basic for Applications

Function Procedures
A custom Function procedure has a lot in common with a Sub procedure. (For more
information on Sub procedures, see Chapter 9.)

Declaring a function
The syntax for declaring a function is as follows:

[Public | Private][Static] Function name ([arglist])[As type]
[instructions]
[name = expression]
[Exit Function]
[instructions]
[name = expression]

End Function

In which:

Public (Optional) Indicates that the Function procedure is
accessible to all other procedures in all other modules in
all active Excel VBA projects.

Private (Optional) Indicates that the Function procedure is
accessible only to other procedures in the same module.

Static (Optional) Indicates that the values of variables declared
in the Function procedure are preserved between calls.

Function (Required) Is the keyword that indicates the beginning of
a procedure that returns a value or other data.

name (Required) Represents any valid Function procedure
name, which must follow the same rules as a variable
name. When the function finishes, the result is assigned
to its own name.

arglist (Optional) Represents a list of one or more variables that
represent arguments passed to the Function procedure.
The arguments are enclosed in parentheses. Use a
comma to separate pairs of arguments.

type (Optional) Is the data type returned by the Function
procedure.

instructions (Optional) Are any number of valid VBA instructions.

Exit Function (Optional) Is a statement that forces an immediate exit
from the Function procedure prior to its completion.

End Function (Required) Is a keyword that indicates the end of the
Function procedure.

4799-2 ch10.F 6/11/01 9:31 AM Page 262

263Chapter 10 ✦ Creating Function Procedures

The main thing to remember about a custom function written in VBA is that a value
is always assigned to its name a minimum of one time, generally when it has com-
pleted execution.

To create a custom function, start by inserting a VBA module. (Or you can use an
existing module.) Enter the keyword Function, followed by the function’s name
and a list of its arguments (if any) in parentheses. You can also declare the data
type of the return value by using the As keyword (this is optional, but recom-
mended). Insert the VBA code that performs the work, and make sure that the
appropriate value is assigned to the term corresponding to the function’s name at
least once within the body of the Function procedure. End the function with an End
Function statement.

Function names must adhere to the same rules for variable names. If you plan to
use your custom function in a worksheet formula, make sure the name is not in the
form of a cell address (for example, a function named J21 won’t work in a formula).
And, avoid using function names that correspond to Excel’s built-in function names.
If there is a function name conflict, Excel will always use its built-in function.

A function’s scope
In Chapter 9, I discussed the concept of a procedure’s scope (public or private).
The same discussion applies to functions: A function’s scope determines whether
it can be called by procedures in other modules or in worksheets.

Here are a few things to keep in mind about a function’s scope:

✦ If you don’t declare a function’s scope, its default is public.

✦ Functions declared As Private do not appear in Excel’s Paste Function dialog
box. Therefore, when you create a function that should be used only in a VBA
procedure, you should declare it private so that users don’t try to use it in a
formula.

✦ If your VBA code needs to call a function that’s defined in another workbook,
set up a reference to the other workbook by using VBE’s Tools ➪ References
command.

Executing Function procedures
Although you can execute a Sub procedure in many ways, you can execute a
Function procedure in only two ways:

✦ Call it from another procedure

✦ Use it in a worksheet formula

4799-2 ch10.F 6/11/01 9:31 AM Page 263

264 Part III ✦ Understanding Visual Basic for Applications

From a procedure
You can call custom functions from a procedure the same way you call built-in func-
tions. For example, after you define a function called SumArray, you can enter a
statement like the following:

Total = SumArray(MyArray)

This statement executes the SumArray function with MyArray as its argument,
returns the function’s result, and assigns it to the Total variable.

You also can use the Run method of the Application object. Here’s an example:

Total = Application.Run (“SumArray”, “MyArray”)

The first argument for the Run method is the function name. Subsequent arguments
represent the argument(s) for the function. The arguments for the Run method can
be literal strings (as shown above), numbers, or variables.

In a worksheet formula
Using custom functions in a worksheet formula is like using built-in functions,
except that you must ensure that Excel can locate the Function procedure. If the
Function procedure is in the same workbook, you don’t have to do anything special.
If it’s in a different workbook, you may have to tell Excel where to find it.

You can do so in three ways:

✦ Precede the function’s name with a file reference. For example, if you want to
use a function called CountNames that’s defined in an open workbook named
Myfuncs.xls, you can use the following reference:

=Myfuncs.xls!CountNames(A1:A1000)

If you insert the function with the Paste Function dialog box, the workbook
reference is inserted automatically.

✦ Set up a reference to the workbook. You do so with the VBE’s Tools ➪ References
command. If the function is defined in a referenced workbook, you don’t need to
use the worksheet name. Even when the dependent workbook is assigned as a
reference, the Paste Function dialog box continues to insert the workbook refer-
ence (although it’s not necessary).

✦ Create an add-in. When you create an add-in from a workbook that has Function
procedures, you don’t need to use the file reference when you use one of the
functions in a formula. The add-in must be installed, however. I discuss add-ins
in Chapter 21.

4799-2 ch10.F 6/11/01 9:31 AM Page 264

265Chapter 10 ✦ Creating Function Procedures

You’ll notice that, unlike Sub procedures, your Function procedures do not appear
in the Macro dialog box when you issue the Tools ➪ Macro ➪ Macros command.
In addition, you can’t choose a function when you issue the VBE’s Run ➪ Sub/
UserForm command (or press F5) if the cursor is located in a Function procedure
(you get the Macro dialog box that lets you choose a macro to run). As a result, you
need to do a bit of extra up-front work to test your functions as you’re developing
them. One approach is to set up a simple procedure that calls the function. If the
function is designed to be used in worksheet formulas, you’ll want to enter a simple
formula to test it.

Reinventing the Wheel

Most of Excel’s built-in functions are impossible to create in VBA. However, some can be
duplicated.

Just for fun, I wrote my own version of Excel’s UPPER function (which converts a string to all
uppercase) and named it UpCase:

Function UpCase(InString As String) As String
‘ Converts its argument to all uppercase.

Dim StringLength As Integer
Dim i As Integer
Dim ASCIIVal As Integer
Dim CharVal As Integer

StringLength = Len(InString)
UpCase = InString
For i = 1 To StringLength

ASCIIVal = Asc(Mid(InString, i, 1))
CharVal = 0
If ASCIIVal >= 97 And ASCIIVal <= 122 Then

CharVal = -32
Mid(UpCase, i, 1) = Chr(ASCIIVal + CharVal)

End If
Next i

End Function

I was curious to see how the custom function differed from the built-in function, so I cre-
ated a worksheet that called the function 10,000 times, using an argument that was 26
characters long. The worksheet took 13 seconds to calculate. I then substituted Excel’s
UPPER function and ran the test again. The recalculation time was virtually instantaneous.

I don’t claim that my UpCase function is the optimal algorithm for this task, but it’s safe to
say that a custom function will never match the speed of Excel’s built-in functions.

4799-2 ch10.F 6/11/01 9:31 AM Page 265

266 Part III ✦ Understanding Visual Basic for Applications

Function Arguments
Keep in mind the following points about Function procedure arguments:

✦ Arguments can be variables (including arrays), constants, literals, or
expressions.

✦ Some functions do not have arguments.

✦ Some functions have a fixed number of required arguments (from 1 to 60).

✦ Some functions have a combination of required and optional arguments.

If your formula uses a custom worksheet function and it returns #VALUE!, there is
an error in your function. The error could be caused by logical errors in your code,
by passing incorrect arguments to the function, or by performing an illegal action
(such as attempting to change the formatting of a cell). See “Debugging Func-
tions” later in this chapter.

Function Examples
In this section, I present a series of examples, demonstrating how to use argu-
ments effectively with functions. By the way, this discussion also applies to Sub
procedures.

All the function examples in this section are available on the companion
CD-ROM.

A function with no argument
Like Sub procedures, Function procedures need not have arguments. Excel, for
example, has a few built-in functions that don’t use arguments, including RAND(),
TODAY(), and NOW(). You can create similar functions.

Here’s a simple example of a function that doesn’t use an argument. The following
function returns the UserName property of the Application object. This name
appears in the Options dialog box (General tab) and is stored in the Windows
Registry.

Function User()
‘ Returns the name of the current user

User = Application.UserName
End Function

On the
CD-ROM

Note

4799-2 ch10.F 6/11/01 9:31 AM Page 266

267Chapter 10 ✦ Creating Function Procedures

When you enter the following formula, the cell returns the name of the current user
(assuming that it’s listed properly in the Registry):

=User()

When you use a function with no arguments in a worksheet formula, you must
include a set of empty parentheses. This requirement is not necessary if you call
the function in a VBA procedure, although including the empty parentheses does
make it clear that you’re calling a function.

To use this function in another procedure, you must assign it to a variable, use it in
an expression, or use it as an argument for another function.

The following example calls the User function and uses the return value as an argu-
ment for the MsgBox statement. The concatenation operator (&) joins the literal
string with the result of the User function.

Sub ShowUser()
MsgBox “Your name is “ & User()

End Sub

Another function with no argument
I used to use Excel’s RAND() function to quickly fill a range of cells with values. But I
didn’t like the fact that the random numbers change whenever the worksheet is
recalculated. So I usually had to convert the formulas to values by using the Edit ➪
Paste Special command (with the Values option).

Then I realized that I could create a custom function that returned random numbers
that didn’t change. I used VBA’s built-in Rnd function, which returns a random num-
ber between 0 and 1. The custom function is as follows:

Function StaticRand()
‘ Returns a random number that doesn’t
‘ change when recalculated

StaticRand = Rnd()
End Function

If you want to generate a series of random integers between 0 and 1000, you can use
a formula such as this:

=INT(StaticRand()*1000)

The values produced by this formula never change, unlike those created by the
built-in RAND() function.

Note

4799-2 ch10.F 6/11/01 9:31 AM Page 267

268 Part III ✦ Understanding Visual Basic for Applications

A function with one argument
This section describes a function for sales managers who need to calculate the
commissions earned by their sales forces. The calculations in this example are
based on the following table:

Monthly Sales Commission Rate

0–$9,999 8.0%

$10,000–$19,999 10.5%

$20,000–$39,999 12.0%

$40,000+ 14.0%

Controlling Function Recalculation

When you use a custom function in a worksheet formula, when is it recalculated?

Custom functions behave like Excel’s built-in worksheet functions. Normally, a custom func-
tion is recalculated only when it needs to be — which is only when any of the function’s
arguments are modified. You can, however, force functions to recalculate more frequently.
Adding the following statement to a Function procedure makes the function recalculate
whenever any cell is changed:

Application.Volatile True

The Volatile method of the Application object has one argument (either True or
False). Marking a Function procedure as volatile forces the function to be calculated when-
ever recalculation occurs for any cell in the worksheet.

For example, the custom StaticRand function can be changed to emulate Excel’s RAND()
function using the Volatile method, as follows:

Function NonStaticRand()
‘ Returns a random number that
‘ changes with each calculation

Application.Volatile True
NonStaticRand = Rnd()

End Function

Using the False argument of the Volatile method causes the function to be recalculated
only when one or more of its arguments change as a result of a recalculation (if a function
has no arguments, this method has no effect).

To force an entire recalculation, including nonvolatile custom functions, press Ctrl+Alt+F9.
This key combination, for example, will generate new random numbers for the
StaticRand function presented in this chapter.

4799-2 ch10.F 6/11/01 9:31 AM Page 268

269Chapter 10 ✦ Creating Function Procedures

Note that the commission rate is nonlinear, and depends on the month’s total sales.
Employees who sell more earn a higher commission rate.

There are several ways to calculate commissions for various sales amounts entered
into a worksheet. If you’re not thinking too clearly, you might waste lots of time and
come up with a lengthy formula such as this:

=IF(AND(A1>=0,A1<=9999.99),A1*0.08,
IF(AND(A1>=10000,A1<=19999.99),A1*0.105,
IF(AND(A1>=20000,A1<=39999.99),A1*0.12,
IF(A1>=40000,A1*0.14,0))))

This is a bad approach for a couple of reasons. First, the formula is overly complex,
making it difficult to understand. Second, the values are hard-coded into the for-
mula, making the formula difficult to modify.

A better (non-VBA) approach is to use a lookup table function to compute the com-
missions. For example,

=VLOOKUP(A1,Table,2)*A1

Yet another approach (which eliminates the need to use a lookup table) is to create
a custom function such as the following:

Function Commission(Sales)
Const Tier1 = 0.08
Const Tier2 = 0.105
Const Tier3 = 0.12
Const Tier4 = 0.14

‘ Calculates sales commissions
Select Case Sales

Case 0 To 9999.99: Commission = Sales * Tier1
Case 1000 To 19999.99: Commission = Sales * Tier2
Case 20000 To 39999.99: Commission = Sales * Tier3
Case Is >= 40000: Commission = Sales * Tier4

End Select
End Function

After you enter this function in a VBA module, you can use it in a worksheet for-
mula or call the function from other VBA procedures.

Entering the following formula into a cell produces a result of 3,000 (the amount,
25,000, qualifies for a commission rate of 12 percent):

=Commission(25000)

4799-2 ch10.F 6/11/01 9:31 AM Page 269

270 Part III ✦ Understanding Visual Basic for Applications

Even if you don’t need custom functions in a worksheet, creating Function proce-
dures can make your VBA coding much simpler. For example, if your VBA proce-
dure calculates sales commissions, you can use the exact same function and call it
from a VBA procedure. Here’s a tiny procedure that asks the user for a sales amount
and then uses the Commission function to calculate the commission due:

Sub CalcComm()
Dim Sales as Long
Sales = InputBox(“Enter Sales:”)
MsgBox “The commission is “ & Commission(Sales)

End Sub

The CalcComm procedure starts by displaying an input box that asks for the sales
amount. Then it displays a message box with the calculated sales commission for
that amount.

This Sub procedure works, but it is rather crude. Following is an enhanced version
that displays formatted values and keeps looping until the user clicks No (see
Figure 10-3).

Figure 10-3: Using a function to display the result of a
calculation

Sub CalcComm()
Dim Sales As Long
Dim Msg As String, Ans As String

‘ Prompt for sales amount
Sales = Val(InputBox(“Enter Sales:”, _
“Sales Commission Calculator”))

‘ Build the Message
Msg = “Sales Amount:” & vbTab & Format(Sales, “$#,##0.00”)
Msg = Msg & vbCrLf & “Commission:” & vbTab
Msg = Msg & Format(Commission(Sales), “$#,##0.00”)
Msg = Msg & vbCrLf & vbCrLf & “Another?”

‘ Display the result and prompt for another
Ans = MsgBox(Msg, vbYesNo, “Sales Commission Calculator”)
If Ans = vbYes Then CalcComm

End Sub

4799-2 ch10.F 6/11/01 9:31 AM Page 270

271Chapter 10 ✦ Creating Function Procedures

This function uses two VBA built-in constants: vbTab represents a tab (to space the
output) and vbCrLf specifies a carriage return and line feed (to skip to the next
line). VBA’s Format function displays a value in a specified format (in this case,
with a dollar sign, comma, and two decimal places).

In both of these examples, the Commission function must be available in the active
workbook; otherwise, Excel displays an error message saying that the function is
not defined.

A function with two arguments
Imagine that the aforementioned hypothetical sales managers implement a new
policy to help reduce turnover: The total commission paid is increased by 1 percent
for every year that the salesperson has been with the company.

I modified the custom Commission function (defined in the preceding section) so
that it takes two arguments. The new argument represents the number of years. Call
this new function Commission2:

Function Commission2(Sales, Years)
‘ Calculates sales commissions based on
‘ years in service

Const Tier1 = 0.08
Const Tier2 = 0.105
Const Tier3 = 0.12
Const Tier4 = 0.14
Select Case Sales

Case 0 To 9999.99: Commission2 = Sales * Tier1
Case 1000 To 19999.99: Commission2 = Sales * Tier2
Case 20000 To 39999.99: Commission2 = Sales * Tier3
Case Is >= 40000: Commission2 = Sales * Tier4

End Select
Commission2 = Commission2 + (Commission2 * Years / 100)

End Function

Pretty simple, eh? I just added the second argument (Years) to the Function state-
ment and included an additional computation that adjusts the commission.

Here’s an example of how you can write a formula using this function (it assumes
that the sales amount is in cell A1 and the number of years the salesperson has
worked is in cell B1):

=Commission2(A1,B1)

4799-2 ch10.F 6/11/01 9:31 AM Page 271

272 Part III ✦ Understanding Visual Basic for Applications

A function with an array argument
A Function procedure also can accept one or more arrays as arguments, process
the array(s), and return a single value. The following function accepts an array as
its argument and returns the sum of its elements:

Function SumArray(List) As Double
Dim Item As Variant
SumArray = 0
For Each Item In List

If WorksheetFunction.IsNumber(Item) Then _
SumArray = SumArray + Item

Next Item
End Function

Excel’s IsNumber function checks to see whether each element is a number before
adding it to the total. Adding this simple error-checking statement eliminates the
type mismatch error that occurs when you try to perform arithmetic with a string.

The following procedure demonstrates how to call this function from a Sub proce-
dure. The MakeList procedure creates a 100-element array and assigns a random
number to each element. Then the MsgBox function displays the sum of the values
in the array by calling the SumArray function.

Sub MakeList()
Dim Nums(1 To 100) As Double
Dim i as Integer
For i = 1 To 100

Nums(i) = Rnd * 1000
Next i
MsgBox SumArray(Nums)

End Sub

Because the SumArray function doesn’t declare the data type of its argument (it’s a
variant), the function also works in your worksheet formulas. For example, the fol-
lowing formula returns the sum of the values in A1:C10:

=SumArray(A1:C10)

You may notice that, when used in a worksheet formula, the SumArray function
works very much like Excel’s SUM function. One difference, however, is that
SumArray does not accept multiple arguments (SUM accepts up to 30 arguments).
Be aware that this example is for educational purposes only. Using the SumArray
function in a formula offers absolutely no advantages over the Excel SUM function.

4799-2 ch10.F 6/11/01 9:31 AM Page 272

273Chapter 10 ✦ Creating Function Procedures

A function with optional arguments
Many of Excel’s built-in worksheet functions use optional arguments. An example
is the LEFT function, which returns characters from the left side of a string. Its
syntax is

LEFT(text[,num_chars])

The first argument is required, but the second is optional. If the optional argument
is omitted, Excel assumes a value of 1. Therefore, the following two formulas return
the same result:

=LEFT(A1,1)
=LEFT(A1)

The custom functions that you develop in VBA also can have optional arguments.
You specify an optional argument by preceding the argument’s name with the key-
word Optional. In the argument list, optional arguments must appear after any
required arguments.

The following is an example of a custom function that uses an optional argument.
This function randomly chooses one cell from an input range and returns the cell’s
contents. If the second argument is True, the selected value changes whenever the
worksheet is recalculated (that is, the function is made volatile). If the second argu-
ment is False (or omitted), the function is not recalculated unless one of the cells
in the input range is modified.

Function Draw(RngAs Variant, Optional Recalc As Boolean =
False)
‘ Chooses one cell at random from a range

‘ Make function volatile if Recalc is True
Application.Volatile Recalc

‘ Determine a random cell
Draw = Rng(Int((Rng.Count) * Rnd + 1))

End Function

Notice that the second argument for Draw includes the Optional keyword, along
with a default value.

All the following formulas are valid, and the first two have the same effect:

=Draw(A1:A100)
=Draw(A1:A100,False)
=Draw(A1:A100,True)

This function might be useful for choosing lottery numbers, picking a winner from a
list of names, and so on.

4799-2 ch10.F 6/11/01 9:31 AM Page 273

274 Part III ✦ Understanding Visual Basic for Applications

A function that returns a VBA array
VBA includes a useful function called Array. The Array function returns a variant
that contains an array (that is, multiple values). If you’re familiar with array formu-
las in Excel, you’ll have a head start understanding VBA’s Array function. You enter
an array formula into a cell by pressing Ctrl+Shift+Enter. Excel inserts brackets
around the formula to indicate that it’s an array formula. See Chapter 3 for more
details on array formulas.

It’s important to understand that the array returned by the Array function is not
the same as a normal array that’s made up of elements of the variant data type. In
other words, a variant array is not the same as an array of variants.

The MonthNames function, which follows, is a simple example that uses VBA’s
Array function in a custom function:

Function MonthNames()
MonthNames = Array(“Jan”, “Feb”, “Mar”, “Apr”, _
“May”, “Jun”, “Jul”, “Aug”, “Sep”, “Oct”, _
“Nov”, “Dec”)

End Function

The MonthNames function returns a horizontal array of month names. You can
create a multicell array formula that uses the MonthNames function. Here’s how
to use it: Make sure that the function code is present in a VBA module. Then in a
worksheet, select multiple cells in a row (start by selecting 12 cells). Then enter
the formula that follows, followed by Ctrl+Shift+Enter:

=MonthNames()

Figure 10-4 shows the result. It’s important to understand that a single formula dis-
plays its result in 12 cells (in this case, in range B2:M2).

Figure 10-4: Using the MonthNames function in an array formula

Note

4799-2 ch10.F 6/11/01 9:31 AM Page 274

275Chapter 10 ✦ Creating Function Procedures

What if you’d like to generate a vertical list of month names? No problem, select a
vertical range and enter the following formula, followed by Ctrl+Shift+Enter:

=TRANSPOSE(MonthNames())

This formula uses the Excel TRANSPOSE function to convert the horizontal array to
a vertical array.

The following example is a variation on the MonthNames function:

Function MonthNames(Optional MIndex)
Dim AllNames As Variant
AllNames = Array(“Jan”, “Feb”, “Mar”, “Apr”, _
“May”, “Jun”, “Jul”, “Aug”, “Sep”, “Oct”, _
“Nov”, “Dec”)

If IsMissing(MIndex) Then
MonthNames = AllNames

Else
Select Case MIndex

Case Is >= 1
‘ Determine month value (for example, 13=1)

MonthVal = ((MIndex - 1) Mod 12)
MonthNames = AllNames(MonthVal)

Case Is <= 0 ‘ Vertical array
MonthNames = Application.Transpose(AllNames)

End Select
End If

End Function

Notice that I use VBA’s IsMissing function to test for a missing argument. In this
situation, it is not possible to specify the default value for the missing argument in
the argument list of the function, because the default value is defined within the
function. You can use the IsMissing function only if the optional argument is a
variant.

This enhanced function uses an optional argument that works as follows:

✦ If the argument is missing, the function returns a horizontal array of month
names.

✦ If the argument is less than or equal to 0, the function returns a vertical array
of month names. It uses Excel’s TRANSPOSE function to convert the array.

✦ If the argument is greater than or equal to 1, it returns the month name that
corresponds to the argument value. This procedure adds a slight twist, using
the Mod operator to determine the month value. The Mod operator returns the
remainder after dividing the first operand by the second. An argument of 13,
for example, returns 1. An argument of 24 returns 12, and so on.

You can use this function in a number of ways, as illustrated in Figure 10-5.

4799-2 ch10.F 6/11/01 9:31 AM Page 275

276 Part III ✦ Understanding Visual Basic for Applications

Figure 10-5: Different ways of passing an array or a single value
to a worksheet

Range A1:L1 contains the following formula entered as an array. Start by selecting
A1:L1, enter the formula, and then end it by pressing Ctrl+Shift+Enter.

=MonthNames()

Range A3:A14 contains integers from 1 to 12. Cell B3 contains the following (nonar-
ray) formula, which was copied to the 11 cells below it:

=MonthNames(A3)

Range D3:D14 contains the following formula entered as an array:

=MonthNames(-1)

Remember, to enter an array formula, you must press Ctrl+Shift+Enter.

The lower bound of an array created using the Array function is determined by
the lower bound specified with the Option Base statement at the top of the
module. If there is no Option Base statement, the default lower bound is 0.

A function that returns an error value
In some cases, you might want your custom function to return a particular error
value. Consider the Reverse function, which I presented earlier in this chapter:

Function Reverse(InString) As String
‘ Returns its argument, reversed

Dim i as Integer, StringLength as Integer
Reverse = “”
StringLength = Len(InString)

Note

4799-2 ch10.F 6/11/01 9:31 AM Page 276

277Chapter 10 ✦ Creating Function Procedures

For i = StringLength To 1 Step -1
Reverse = Reverse & Mid(InString, i, 1)

Next i
End Function

When used in a worksheet formula, this function reverses the contents of its single-
cell argument (which can be text or a value). Assume that you want this function to
work only with text strings. If the argument doesn’t contain a string, you want the
function to return an error value (#N/A).

You might be tempted simply to assign a string that looks like an Excel formula
error value. For example,

Reverse = “#N/A”

Although the string looks like an error value, it is not treated as such by other for-
mulas that may reference it. To return a real error value from a function, use VBA’s
CVErr function, which converts an error number to a real error.

Fortunately, VBA has built-in constants for the errors that you would want to return
from a custom function. These errors are Excel formula error values, not VBA run-
time error values. These constants are as follows:

✦ xlErrDiv0 (for #DIV/0!)

✦ xlErrNA (for #N/A)

✦ xlErrName (for #NAME?)

✦ xlErrNull (for #NULL!)

✦ xlErrNum (for #NUM!)

✦ xlErrRef (for #REF!)

✦ xlErrValue (for #VALUE!)

To return a #N/A error from a custom function, you can use a statement like this:

Reverse = CVErr(xlErrNA)

The revised Reverse function follows. This function uses Excel’s IsText function
to determine whether the argument contains text. If it does, the function proceeds
normally. If the cell doesn’t contain text (or is empty), the function returns the #N/A
error.

Function Reverse(InString) as Variant
‘ If a string, returns its argument, reversed
‘ Otherwise returns #N/A error

Dim i as Integer, StringLength as Integer

4799-2 ch10.F 6/11/01 9:31 AM Page 277

278 Part III ✦ Understanding Visual Basic for Applications

If Application.WorksheetFunction.IsText(InString) Then
Reverse = “”
StringLength = Len(InString)
For i = StringLength To 1 Step -1

Reverse = Reverse & Mid(InString, i, 1)
Next i

Else
Reverse = CVErr(xlErrNA)

End If
End Function

Notice that I also changed the data type for the function’s return value. Because
the function can now return something other than a string, I changed the data
type to variant.

A function with an indefinite number of arguments
Some of Excel’s worksheet functions take an indefinite number of arguments. A
familiar example is the SUM function, which has the following syntax:

SUM(number1,number2...)

The first argument is required, but you can have as many as 29 additional argu-
ments. Here’s an example of a SUM function with four range arguments:

=SUM(A1:A5,C1:C5,E1:E5,G1:G5)

You can even mix and match the argument types. For example, the following example
uses three arguments: the first is a range, the second is a value, and the third is an
expression.

=SUM(A1:A5,12,24*3)

You can create Function procedures that have an indefinite number of arguments.
The trick is to use an array as the last (or only) argument, preceded by the keyword
ParamArray.

ParamArray can apply only to the last argument in the procedure’s argument list.
It is always a variant data type, and it is always an optional argument (although
you don’t use the Optional keyword).

Following is a function that can have any number of single-value arguments (it
doesn’t work with multicell range arguments). It simply returns the sum of the
arguments.

Note

Note

4799-2 ch10.F 6/11/01 9:31 AM Page 278

279Chapter 10 ✦ Creating Function Procedures

Function SimpleSum(ParamArray arglist() As Variant) As Double
For Each arg In arglist

SimpleSum = SimpleSum + arg
Next arg

End Function

The SimpleSum function is not nearly as flexible as Excel’s SUM function. Try it out
using various types of arguments, and you’ll see that it fails unless each argument is
either a value or a reference to a single cell that contains a value.

Emulating Excel’s SUM Function
In this section, I present a custom function called MySum. Unlike the SimpleSum
function listed in the previous section, the MySum function emulates Excel’s SUM
function perfectly.

Before you look at the code for MySum, take a minute to think about Excel’s SUM
function. It is, in fact, very versatile. It can have as many as 30 arguments (even
“missing” arguments), and the arguments can be numerical values, cells, ranges,
text representations of numbers, logical values, and even embedded functions.
For example, consider the following formula:

=SUM(B1,5,”6”,,TRUE,SQRT(4),A1:A5)

This formula, which is a perfectly valid formula, contains all of the following types
of arguments, listed here in the order of their presentation:

✦ A single cell reference

✦ A literal value

✦ A string that looks like a value

✦ A missing argument

✦ A logical TRUE value

✦ An expression that uses another function

✦ A range reference

The MySum function (see Listing 10-1) handles all these argument types.

A workbook containing the MySum function is available on the companion
CD-ROM.

On the
CD-ROM

4799-2 ch10.F 6/11/01 9:31 AM Page 279

280 Part III ✦ Understanding Visual Basic for Applications

Listing 10-1: MySum function

Function MySum(ParamArray args() As Variant) As Variant
‘ Emulates Excel’s SUM function

‘ Variable declarations
Dim i As Variant
Dim TempRange As Range, cell As Range
Dim ECode As String
MySum = 0

‘ Process each argument
For i = 0 To UBound(args)

‘ Skip missing arguments
If Not IsMissing(args(i)) Then

‘ What type of argument is it?
Select Case TypeName(args(i))

Case “Range”
‘ Create temp range to handle full row/column
ranges

Set TempRange =
Intersect(args(i).Parent.UsedRange, args(i))

For Each cell In TempRange
If IsError(cell) Then

MySum = cell ‘ return the error
Exit Function

End If
If cell = True Or cell = False Then

MySum = MySum + 0
Else

If IsNumeric(cell) Or IsDate(cell) Then
_

MySum = MySum + cell
End If

Next cell
Case “Null” ‘ignore it
Case “Error” ‘return the error

MySum = args(i)
Exit Function

Case “Boolean”
‘ Check for literal TRUE and compensate

If args(i) = “True” Then MySum = MySum + 1
Case “Date”

MySum = MySum + args(i)
Case Else

MySum = MySum + args(i)
End Select

End If
Next i

End Function

4799-2 ch10.F 6/11/01 9:31 AM Page 280

281Chapter 10 ✦ Creating Function Procedures

As you study the code for MySum, keep the following points in mind:

✦ Missing arguments (determined by the IsMissing function) are simply
ignored.

✦ The procedure uses VBA’s TypeName function to determine the type of argu-
ment (Range, Error, and so on). Each argument type is handled differently.

✦ For a range argument, the function loops through each cell in the range and
adds its value to a running total.

✦ The data type for the function is variant because the function needs to return
an error if any of its arguments is an error value.

✦ If an argument contains an error (for example, #DIV0!), the MySum function
simply returns the error — just like Excel’s SUM function.

✦ Excel’s SUM function considers a text string to have a value of 0 unless it
appears as a literal argument (that is, as an actual value, not a variable).
Therefore, MySum adds the cell’s value only if it can be evaluated as a number
(VBA’s IsNumeric function is used for this).

✦ For range arguments, the function uses the Intersect method to create a tem-
porary range that consists of the intersection of the range and the sheet’s
used range. This handles cases in which a range argument consists of a com-
plete row or column, which would take forever to evaluate.

You may be curious about the relative speeds of SUM and MySum. MySum, of course,
is much slower, but just how much slower depends on the speed of your system
and the formulas themselves. On my system, a worksheet with 1,000 SUM formulas
recalculated instantly. After I replaced the SUM functions with MySum functions, it
took about 12 seconds. MySum may be improved a bit, but it can never come close
to SUM’s speed.

By the way, I hope you understand that the point of this example is not to create a
new SUM function. Rather, it demonstrates how to create custom worksheet func-
tions that look and work like those built into Excel.

Debugging Functions
When you’re using a formula in a worksheet to test a Function procedure, runtime
errors do not appear in the all-too-familiar pop-up error box. If an error occurs, the
formula simply returns an error value (#VALUE!). Luckily, this does not present a
problem for debugging functions because you have several possible workarounds:

✦ Place MsgBox functions at strategic locations to monitor the value of specific
variables. Fortunately, message boxes in Function procedures do pop up when
the procedure is executed. But make sure that you have only one formula in the
worksheet that uses your function, or message boxes will appear for each for-
mula that is evaluated, a repetition that will quickly become annoying.

4799-2 ch10.F 6/11/01 9:31 AM Page 281

282 Part III ✦ Understanding Visual Basic for Applications

✦ Test the procedure by calling it from a Sub procedure, not from a worksheet
formula. Runtime errors are displayed in the usual manner, and you can either
fix the problem (if you know it) or jump right into the debugger.

✦ Set a breakpoint in the function, and then step through the function. You then
can access all the standard debugging tools. To set a breakpoint, move the cursor
to the statement at which you want to pause execution, and select Debug ➪
Toggle Breakpoint (or press F9).

✦ Use one or more temporary Debug.Print statements in your code to write
values to the VBE’s Immediate window. For example, if you want to monitor
a value inside of a loop, use something like the following routine:

Function VowelCount(r)
Count = 0
For i = 1 To Len(r)

Ch = UCase(Mid(r, i, 1))
If Ch Like “[AEIOU]” Then

Count = Count + 1
Debug.Print Ch, i

End If
Next i
VowelCount = Count

End Function

In this case, the values of two variables, Ch and i, are printed to the
Immediate window whenever the Debug.Print statement is encountered.
Figure 10-6 shows the result when the function has an argument of
Mississippi.

Figure 10-6: Using the Immediate window to display
results while a function is running

Dealing with the Insert Function Dialog Box
Excel’s Insert Function dialog box is a handy tool. When creating a worksheet formula,
this tool lets you select a particular worksheet function from a list of functions (see
Figure 10-7). These functions are grouped into various categories to make it easier
to locate a particular function. The Insert Function dialog box also displays your
custom worksheet functions and prompts you for a function’s arguments.

4799-2 ch10.F 6/11/01 9:31 AM Page 282

283Chapter 10 ✦ Creating Function Procedures

Figure 10-7: Inserting a custom function
into a formula

Custom Function procedures defined with the Private keyword do not appear in
the Paste Function dialog box (although they can still be entered into formulas
manually). If you develop a function for exclusive use of your other VBA proce-
dures, you should declare it using the Private keyword.

By default, custom functions are listed under the User Defined category, but you
can have them appear under a different category if you like. You also can add some
text to describe the function (I highly recommend this step).

In versions prior to Excel 2002, the Insert Function dialog box was known as the
Paste Function dialog box. This dialog box is enhanced in Excel 2002, and has a
new look, plus the ability to search for a function by keyword. Unfortunately, this
search feature cannot be used to locate custom functions created in VBA.

Specifying a function category
Oddly, Excel does not provide a direct way to assign a custom function to a cate-
gory. If you would like your custom function to appear in a function category other
than User Defined, you need to do so by writing and executing some VBA code.

The following statement assigns the function named Commission to the Financial
category (category number 1):

Application.MacroOptions Macro:=”Commission”, Category:=1

You only need to execute this statement one time (not each time the workbook is
opened). From then on, every time the workbook is opened, the function will
appear in the category you specified.

Note

New
Feature

Note

4799-2 ch10.F 6/11/01 9:31 AM Page 283

284 Part III ✦ Understanding Visual Basic for Applications

Table 10-1 lists the category numbers that you can use. Notice that a few of these
categories (10 through 13) are normally not displayed in the Paste Function dialog
box. If you assign your function to one of these categories, the category will appear
in the dialog box.

Table 10-1
Function Categories

Category Number Category Name

0 All (no specific category)

1 Financial

2 Date & Time

3 Math & Trig

4 Statistical

5 Lookup & Reference

6 Database

7 Text

8 Logical

9 Information

10 Commands

11 Customizing

12 Macro Control

13 DDE/External

14 User Defined

15 Engineering

Adding a function description
When you select a function in the Insert Function dialog box, a brief description
of the function appears (see Figure 10-8). You can specify a description for your
custom function two ways: Use the Macro dialog box, or write VBA code.

4799-2 ch10.F 6/11/01 9:31 AM Page 284

285Chapter 10 ✦ Creating Function Procedures

Figure 10-8: Excel’s Insert Function dialog
box displays brief descriptions of functions.

If you don’t provide a description for your custom function, the Paste Function dia-
log box displays the following text: “Choose the help button for help on this func-
tion and its arguments.” In most cases, of course, the help description is not
accurate.

Describing your function in the Macro dialog box
Follow these steps to provide a description for a custom function:

1. Create the function in the VBE.

2. Activate Excel, and select Tools ➪ Macro ➪ Macros (or press Alt+F8).

The Macro dialog box lists available procedures, but your functions will not
be in the list.

3. Type the name of your function in the Macro Name box.

4. Click the Options button to display the Macro Options dialog box.

5. Enter the function description in the Description box (see Figure 10-9). The
Shortcut key field is irrelevant for functions.

Note

4799-2 ch10.F 6/11/01 9:31 AM Page 285

286 Part III ✦ Understanding Visual Basic for Applications

Figure 10-9: Providing a function
description in the Macro Options
dialog box

6. Click OK, and then click Cancel.

After you perform the preceding steps, the Insert Function dialog box displays the
description you entered in Step 5 when the function is selected.

For information on creating a custom help topic accessible from the Function
Wizard, refer to Chapter 24.

When you use the Insert Function dialog box to enter a function, the Function
Arguments dialog box is displayed after you click OK. For built-in functions, the
Function Arguments dialog box displays a description for each of the function’s
arguments. Unfortunately, you cannot provide such descriptions for custom func-
tion arguments.

Excel 2002 displays the Function Arguments dialog box in place of the Formula
Palette dialog box, used in previous versions.

Describing your function with VBA code
Another way to provide a description for a custom function is to write VBA code.
The following statement assigns a description for the function named Commission:

Application.MacroOptions _
Macro:= “Commission”, _
Description:= “Calculates sales commissions”

You need to execute this statement only one time (not each time the workbook is
opened).

Using Add-ins to Store Custom Functions
You might prefer to store frequently used custom functions in an add-in file. A pri-
mary advantage of doing this is that the functions can be used in formulas without
a filename qualifier.

New
Feature

Cross-
Reference

4799-2 ch10.F 6/11/01 9:31 AM Page 286

287Chapter 10 ✦ Creating Function Procedures

Assume that you have a custom function named ZapSpaces and that it’s stored in
Myfuncs.xls. To use this function in a formula in a workbook other than
Myfuncs.xls, you need to enter the following formula:

=Myfuncs.xls!ZapSpaces(A1:C12)

If you create an add-in from Myfuncs.xls and the add-in is loaded, you can omit
the file reference and enter a formula such as the following:

=ZapSpaces(A1:C12)

I discuss add-ins in Chapter 21.

Using the Windows API
VBA can borrow methods from other files that have nothing to do with Excel or
VBA — for example, the DLL (Dynamic Link Library) files that Windows and other
software use. As a result, you can do things with VBA that would otherwise be out-
side the language’s scope.

The Windows API (Application Programming Interface) is a set of functions available
to Windows programmers. When you call a Windows function from VBA, you’re
accessing the Windows API. Many of the Windows resources used by Windows pro-
grammers are available in DLLs, which store programs and functions and are linked
at runtime rather than at compile time.

Excel itself uses several DLLs, for example. The code in many of these DLLs could
have been compiled right into the excel.exe executable, but the designers chose to
store it in DLLs, which are loaded only when needed. This technique makes Excel’s
main executable file smaller. In addition, it is a more efficient use of memory
because the library is loaded only when it’s needed.

DLLs are also used to share code. For example, most Windows programs use dialog
boxes to open and save files. Windows comes with a DLL that has the code to gen-
erate several standard dialog boxes. Programmers thus can call this DLL rather
than write their own routines.

If you’re a C programmer, you can produce your own DLLs and use them from VBA.
Microsoft’s Visual Basic language also has the capability to create DLL files that can
be called from Excel.

Windows API examples
Before you can use a Windows API function, you must declare the function at the
top of your code module. If the code module is not a standard VBA module (that is,
it’s a code module for a UserForm, Sheet, or ThisWorkbook), you must declare the
API function as Private.

Cross-
Reference

4799-2 ch10.F 6/11/01 9:31 AM Page 287

288 Part III ✦ Understanding Visual Basic for Applications

Declaring an API function is a bit tricky; it must be declared precisely. The declara-
tion statement tells VBA:

✦ Which API function you’re using

✦ In which library the API function is located

✦ The API function’s arguments

After you declare an API function, you can use it in your VBA code.

Determining the Windows directory
Following is an example of an API function declaration:

Declare Function GetWindowsDirectoryA Lib “kernel32” _
(ByVal lpBuffer As String, ByVal nSize As Long) As Long

This function, which has two arguments, returns the name of the directory in which
Windows is installed (something that is not normally possible using VBA). After
calling the function, the Windows directory is contained in lpBuffer, and the
length of the directory string is contained in nSize.

After inserting the Declare statement at the top of your module, you can access
the function by calling the GetWindowsDirectoryA function. The following is an
example of calling the function and displaying the result in a message box:

Sub ShowWindowsDir()
Dim WinPath As String
Dim WinDir As String
WinPath = Space(255)
WinDir = Left(WinPath, GetWindowsDirectoryA _
(WinPath, Len(WinPath)))

MsgBox WinDir, vbInformation, “Windows Directory”
End Sub

Executing the ShowWindowsDir procedure displays a message box with the
Windows directory. Usually, Windows is installed in C:\WINDOWS, but that is not
guaranteed. Windows NT is often installed in C:\WINNT, but not always.

Often, you’ll want to create a wrapper for API functions. In other words, you’ll create
your own function that uses the API function. This greatly simplifies using the API
function. Here’s an example of a wrapper VBA function:

Function WindowsDir() As String
‘ Returns the Windows directory

Dim WinPath As String
WinPath = Space(255)
WindowsDir = Left(WinPath, GetWindowsDirectoryA _

(WinPath, Len(WinPath)))
End Function

4799-2 ch10.F 6/11/01 9:31 AM Page 288

289Chapter 10 ✦ Creating Function Procedures

After declaring this function, you can call it from another procedure:

Msgbox WindowsDir()

You can even use the function in a worksheet formula:

=WindowsDir()

The reason for using API calls is to perform an action that would otherwise be
impossible (or at least very difficult). If your application needs to find the path of
the Windows directory, you could search all day and not find a function in Excel or
VBA to do the trick. But knowing how to access the Windows API may solve your
problem.

Detecting the Shift key
Here’s another example: Suppose you’ve written a VBA macro that will be executed
from a toolbar button. Furthermore, suppose you want the macro to perform differ-
ently if the user presses the Shift key when the button is clicked. Normally, there is
no way to detect whether the Shift key is pressed. But you can use the GetKeyState
API function to find out. The GetKeyState function tells you whether a particular
key is pressed. It takes a single argument, nVirtKey, which represents the code for
the key you are interested in.

The following code demonstrates how to detect whether the Shift key is pressed
when the Button_Click event-handler procedure is executed. Notice that I define a
constant for the Shift key (using a hexadecimal value) and then use this constant as
the argument for GetKeyState. If GetKeyState returns a value less than zero, it
means that the Shift key was pressed; otherwise, the Shift key was not pressed.

Declare Function GetKeyState Lib “user32” _
(ByVal nVirtKey As Long) As Integer

Sub Button_Click()
Const VK_SHIFT As Integer = &H10
If GetKeyState(VK_SHIFT) < 0 Then

MsgBox “Shift is pressed”
Else

MsgBox “Shift is not pressed”
End If

End Sub

A workbook on the companion CD-ROM demonstrates how to detect the follow-
ing keys (as well as any combinations): Ctrl, Shift, Alt.

On the
CD-ROM

4799-2 ch10.F 6/11/01 9:31 AM Page 289

290 Part III ✦ Understanding Visual Basic for Applications

Learning more about API functions
Working with the Windows API functions can be tricky. Many programming refer-
ence books list the declarations for common API calls and often provide examples.
Usually, you can simply copy the declarations and use the functions without really
understanding the details. In reality (at least the reality that I’ve seen), most Excel
programmers take a cookbook approach to API functions. The Internet has hun-
dreds of examples that can be copied and pasted and that work quite reliably.

Chapter 11 has several additional examples of using Windows API functions.

The companion CD-ROM includes a file named win32api.txt, a text file that con-
tains Windows API declarations and constants. You can open this file with a text
editor and copy the appropriate declarations to a VBA module.

When you work with API calls, system crashes during testing are not uncommon,
so save your work often.

If you develop applications that need to work in all versions of Excel, be aware of
some potentially serious compatibility issues that arise when you use API calls. For
example, if you develop an application using Excel 97 or later that uses API calls,
the application will not run with Excel 5 — even if you save the workbook in the
Excel 5 format — because Excel 5 is a 16-bit application. Excel 97 and later versions
are 32-bit applications. Excel 2002 is a 32-bit application (and uses 32-bit API
calls) and Excel 5 is a 16-bit application. Refer to Chapter 26 for additional infor-
mation and tips on how to circumvent this problem.

Summary
In this chapter, I explained how to create and use custom VBA functions. These
functions can be used in worksheet formulas and in other VBA procedures. I also
described how to call Windows API functions.

The next chapter contains many examples that demonstrate the techniques
discussed in this and previous chapters.

✦ ✦ ✦

Cross-
Reference

Caution

On the
CD-ROM

Cross-
Reference

4799-2 ch10.F 6/11/01 9:31 AM Page 290

VBA
Programming
Examples and
Techniques

Ibelieve that learning programming concepts is accelerated
by a heavy emphasis on examples. And based on the feed-

back that I’ve received from readers of previous editions of
this book, I have plenty of company. VBA programmers espe-
cially benefit from a hands-on approach. A well-thought-out
example usually communicates a concept much better than a
description of the underlying theory. I decided, therefore, not
to write a reference book that painstakingly describes every
nuance of VBA. Rather, I prepared numerous examples to
demonstrate useful Excel programming techniques.

The previous chapters in this section provide enough informa-
tion to get you started. The online help system provides all
the details I left out. In this chapter, I pick up the pace and
present examples that solve practical problems while further-
ing your knowledge of VBA.

I’ve categorized this chapter’s examples into six groups:

✦ Working with ranges

✦ Working with workbooks and sheets

✦ VBA techniques

✦ Functions useful in your VBA procedures

✦ Functions you can use in worksheet formulas

✦ Windows API calls

Subsequent chapters in this book present additional
feature-specific examples: charts, pivot tables, events, User-
Forms, and so on.

Cross-
Reference

1111C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Examples of using
VBA to work with
ranges

Examples of using
VBA to work with
workbooks and
sheets

Custom functions for
use in your VBA
procedures and in
worksheet formulas

Examples of
miscellaneous VBA
tricks and techniques

Examples of using
Windows API
functions

✦ ✦ ✦ ✦

4799-2 ch11.F 6/11/01 9:31 AM Page 291

292 Part III ✦ Understanding Visual Basic for Applications

Working with Ranges
The examples in this section demonstrate how to manipulate worksheet ranges
with VBA.

The examples in this section are available on the companion CD-ROM.

Copying a range
Excel’s macro recorder is useful not so much for generating usable code as for
discovering the names of relevant objects, methods, and properties. The code
that’s generated by the macro recorder isn’t always the most efficient, but it can
usually provide you lots of useful insights.

For example, recording a simple copy-and-paste operation generates five lines of
VBA code:

Sub Macro1()
Range(“A1”).Select
Selection.Copy
Range(“B1”).Select
ActiveSheet.Paste
Application.CutCopyMode = False

End Sub

Notice that the generated code selects the cells. But in VBA, it’s not necessary to
select an object to work with it. You would never learn this important point by
mimicking the preceding recorded macro code, where two lines incorporate the
Select method. This procedure can be replaced with the following much simpler
routine, which takes advantage of the fact that the Copy method can use an argument
that represents the destination for the copied range:

Sub CopyRange()
Range(“A1”).Copy Range(“B1”)

End Sub

On the
CD-ROM

Using the Examples in this Chapter

Not all the examples in this chapter are intended to be standalone programs. They are,
however, set up as executable procedures that you can adapt for your own applications.

I urge you to follow along on your computer as you read this chapter. Better yet, modify the
examples and see what happens. I guarantee that this hands-on experience will help more
than reading a reference book.

4799-2 ch11.F 6/11/01 9:31 AM Page 292

293Chapter 11 ✦ VBA Programming Examples and Techniques

Both of these macros assume that a worksheet is active and that the operation
takes place on the active worksheet. To copy a range to a different worksheet or
workbook, simply qualify the range reference for the destination. The following
example copies a range from Sheet1 in File1.xls to Sheet2 in File2.xls. Because the
references are fully qualified, this example works regardless of which workbook
is active.

Sub CopyRange2()
Workbooks(“File1.xls”).Sheets(“Sheet1”).Range(“A1”).Copy _
Workbooks(“File2.xls”).Sheets(“Sheet2”).Range(“A1”)

End Sub

Another way to approach this task is to use object variables to represent the
ranges, as the following example demonstrates:

Sub CopyRange3()
Set Rng1 = Workbooks(“File1.xls”). _
Sheets(“Sheet1”).Range(“A1”)

Set Rng2 = Workbooks(“File2.xls”). _
Sheets(“Sheet2”).Range(“A1”)

Rng1.Copy Rng2
End Sub

As you might expect, copying is not limited to one single cell at a time. The following
procedure, for example, copies a large range. Notice that the destination consists of
only a single cell (which represents the upper left cell for the destination).

Sub CopyRange4()
Range(“A1:C800”).Copy Range(“D1”)

End Sub

Moving a range
The VBA instructions for moving a range are very similar to those for copying a
range, as the following example demonstrates. The difference is that you use the
Cut method instead of the Copy method. Note that you need to specify only the
upper-left cell for the destination range.

The following example moves 18 cells (in A1:C6) to a new location, beginning at
cell H1:

Sub MoveRange1()
Range(“A1:C6”).Cut Range(“H1”)

End Sub

Copying a variably sized range
In many cases, you need to copy a range of cells, but you don’t know the exact row
and column dimensions of the range. For example, you might have a workbook that
tracks weekly sales. The number of rows changes weekly as you add new data.

4799-2 ch11.F 6/11/01 9:31 AM Page 293

294 Part III ✦ Understanding Visual Basic for Applications

Figure 11-1 shows a very common type of worksheet. This range consists of several
rows, and the number of rows changes each week. Because you don’t know the
exact range address at any given time, writing a macro to copy the range requires
some additional coding.

Figure 11-1: This range can consist of any number of rows.

The following macro demonstrates how to copy this range from Sheet1 to Sheet2
(beginning at cell A1). It uses the CurrentRegion property, which returns a Range
object that corresponds to the block of cells around a particular cell (in this
case, A1).

Sub CopyCurrentRegion2()
Range(“A1”).CurrentRegion.Copy _
Sheets(“Sheet2”).Range(“A1”)

End Sub

Using the CurrentRegion property is equivalent to choosing the Edit ➪ Go To
command, clicking the Special button, and selecting the Current Region option. To
see how this works, record your actions while you issue that command. Generally,
the CurrentRegion property setting consists of a rectangular block of cells
surrounded by one or more blank rows or columns.

Selecting or otherwise identifying various
types of ranges
Much of the work you will do in VBA will involve working with ranges — either
selecting a range or identifying a range so you can do something with the cells.

In previous versions of Excel, recording a macro that selects cells (such as
Ctrl+Shift+→) was a hit or miss proposition. The macro recorder in Excel 2002
seems to handle these types of selections much better than in previous versions.
However, it’s always a good idea to check your recorded code very carefully to
make sure that the selection code works as you intended.

In addition to the CurrentRegion property (discussed above), you should also be
aware of the End method of the Range object. The End method takes one argument,

New
Feature

Note

4799-2 ch11.F 6/11/01 9:31 AM Page 294

295Chapter 11 ✦ VBA Programming Examples and Techniques

which determines the direction in which the selection is extended. The following
statement selects a range from the active cell to the last nonempty cell:

Range(ActiveCell, ActiveCell.End(xlDown)).Select

As you may expect, three other constants simulate key combinations in the other
directions: xlUp, xlToLeft, and xlToRight.

Be careful when using the End method. If the active cell is at the perimeter of a
range, or the range contains one or more empty cells, the End method may not
produce the desired results.

The companion CD-ROM includes a workbook that demonstrates several common
types of range selections. When you open this workbook, you’ll see a new menu
command, Selection Demo. This menu contains commands that enable the user to
make various types of selections, as shown in Figure 11-2.

Figure 11-2: This workbook demonstrates how to select variably sized ranges
using VBA.

The following macro is in the example workbook. The SelectCurrentRegion
macro simulates pressing Ctrl+Shift+*.

Sub SelectCurrentRegion()
ActiveCell.CurrentRegion.Select

End Sub

Caution

4799-2 ch11.F 6/11/01 9:31 AM Page 295

296 Part III ✦ Understanding Visual Basic for Applications

Often, you won’t want to actually select the cells. Rather, you’ll want to work with
them in some way (for example, format them). The cell-selecting procedures can
easily be adapted. The following procedure was adapted from SelectCurrentRegion.
This procedure doesn’t select cells; it creates a Range object and then applies
formatting to the range. The other procedures in the example workbook can also
be adapted in this manner.

Sub FormatCurrentRegion()
Set WorkRange = ActiveCell.CurrentRegion
WorkRange.Font.Bold = True

End Sub

Prompting for a cell value
The following procedure demonstrates how to ask the user for a value and then
insert it into cell A1 of the active worksheet:

Sub GetValue1()
Range(“A1”).Value = InputBox(“Enter the value”)

End Sub

Tips for Working with Ranges

When you work with ranges, keep the following points in mind:

✦ Your code doesn’t need to select a range to work with it.

✦ If your code does select a range, its worksheet must be active. You can use the
Activate method of the Worksheets collection to activate a particular sheet.

✦ The macro recorder doesn’t always generate the most efficient code. Often, you can
create your macro by using the recorder and then edit the code to make it more
efficient.

✦ It’s a good idea to use named ranges in your VBA code. For example, referring to
Range(“Total”) is better than Range(“D45”). In the latter case, if you add a row
above row 45, the cell address will change. You would then need to modify the
macro so it uses the correct range address (D46).

✦ If you rely on the macro recorder when selecting ranges by using shortcut keys (for
example, Ctrl+Shift+→ to select to the end of a row), examine your code carefully.
Excel sometimes records hard-coded references to the actual cells you selected.

✦ When running a macro that works on each cell in the current range selection, the
user might select entire columns or rows. In most cases, you don’t want to loop
through every cell in the selection. Your macro should create a subset of the selec-
tion consisting of only the nonblank cells.

✦ Excel allows multiple selections. For example, you can select a range, press Ctrl, and
select another range. You can test for this in your macro and take appropriate action.

4799-2 ch11.F 6/11/01 9:31 AM Page 296

297Chapter 11 ✦ VBA Programming Examples and Techniques

Figure 11-3 shows how the input box looks.

Figure 11-3: The InputBox function gets a
value from the user to be inserted into a cell.

This procedure has a problem, however. If the user clicks the Cancel button in the
input box, the procedure deletes any data already in the cell. The following modifi-
cation checks for the Cancel button clicks and takes no action:

Sub GetValue2()
UserEntry = InputBox(“Enter the value”)
If UserEntry <> “” Then Range(“A1”).Value = UserEntry

End Sub

In many cases, you’ll need to validate the user’s entry in the input box. For example,
you may require a number between 1 and 12. The following example demonstrates
one way to validate the user’s entry. In this example, an invalid entry is ignored and
the input box is displayed again. This cycle keeps repeating until the user enters a
valid number or clicks Cancel.

Sub GetValue3()
Dim MinVal As Integer, MaxVal As Integer
Dim UserEntry As String
Dim Msg As String
Dim IntEntry As Integer
MinVal = 1
MaxVal = 12
Msg = “Enter a value between “ & MinVal & “ and “ & MaxVal
Do

UserEntry = InputBox(Msg)
If UserEntry = “” Then Exit Sub
If IsNumeric(UserEntry) Then

IntEntry = CInt(UserEntry)
If IntEntry >= MinVal And IntEntry <= MaxVal Then

Exit Do
End If

End If
Msg = “Your previous entry was INVALID.”
Msg = Msg & vbNewLine
Msg = Msg & “Enter a value between “ & _

MinVal & “ and “ & MaxVal
Loop
ActiveSheet.Range(“A1”).Value = UserEntry

End Sub

4799-2 ch11.F 6/11/01 9:31 AM Page 297

298 Part III ✦ Understanding Visual Basic for Applications

As you can see in Figure 11-4, the code also changes the message displayed if the
user makes an invalid entry.

Figure 11-4: Validating a user’s entry
using the VBA InputBox function

Entering a value in the next empty cell
A common requirement is to enter a value into the next empty cell in a column or
row. The following example prompts the user for a name and a value and then
enters the data into the next empty row (see Figure 11-5).

Figure 11-5: A macro for inserting data into the next empty row in a worksheet

Sub GetData()
Dim NextRow As Long
Dim Entry1 As String, Entry2 As String

Do
NextRow = Range(“A65536”).End(xlUp).Row + 1
Entry1 = InputBox(“Enter the name”)
If Entry1 = “” Then Exit Sub
Entry2 = InputBox(“Enter the amount”)
If Entry2 = “” Then Exit Sub
Cells(NextRow, 1) = Entry1
Cells(NextRow, 2) = Entry2

Loop
End Sub

4799-2 ch11.F 6/11/01 9:31 AM Page 298

299Chapter 11 ✦ VBA Programming Examples and Techniques

Notice that the loop continues indefinitely. I use Exit Sub statements to get out of
the loop when the user clicks Cancel.

To keep things simple, this procedure doesn’t perform any validation.

Notice the statement that determines the value of the NextRow variable. If you don’t
understand how this works, try the manual equivalent: Activate cell A65536 (the
last cell in column A). Then press End, followed by Up Arrow. At this point, the last
nonblank cell in column A will be selected. The Row property returns this row number,
and it is incremented by 1 in order to get the row of the cell below it (the next
empty row).

Note that this technique of selecting the next empty cell has a slight glitch. If the
column is completely empty, it will calculate Row 2 as the next empty row.

Pausing a macro to get a user-selected range
You may create a macro that needs to pause while the user specifies a range of
cells. The procedure in this section describes how to do this using Excel’s
InputBox function.

Do not confuse Excel’s InputBox function with VBA’s InputBox function.
Although these two functions have the same name, they are not the same.

The Sub procedure that follows demonstrates how to pause a macro and let the
user select a cell:

Sub GetUserRange()
Dim UserRange As Range

Output = 565
Prompt = “Select a cell for the output.”
Title = “Select a cell”

‘ Display the Input Box
On Error Resume Next
Set UserRange = Application.InputBox(_

Prompt:=Prompt, _
Title:=Title, _
Default:=ActiveCell.Address, _
Type:=8) ‘Range selection

On Error GoTo 0

Note

Note

4799-2 ch11.F 6/11/01 9:31 AM Page 299

300 Part III ✦ Understanding Visual Basic for Applications

‘ Was the Input Box canceled?
If UserRange Is Nothing Then

MsgBox “Canceled.”
Else

UserRange.Range(“A1”) = Output
End If

End Sub

The input box is shown in Figure 11-6.

Figure 11-6: Using an input box
to pause a macro

Specifying a Type argument of 8 is the key to this procedure. Also, note the use of
On Error Resume Next. This statement ignores the error that occurs if the user
clicks the Cancel button. If so, the UserRange object variable is not defined. This
example displays a message box with the text Canceled. If the user clicks OK, the
macro continues. Using On Error GoTo 0 resumes normal error handling.

By the way, it’s not necessary to check for a valid range selection. Excel takes care
of this for you.

Make sure ScreenUpdating is turned on. Otherwise, you won’t be able to select a
cell.

Counting selected cells
You may create a macro that works with the selected range of cells. You can use the
Count property of the Range object to determine how many cells are contained in a
range selection (or any range, for that matter). For example, the following statement
displays a message box that contains the number of cells in the current selection:

MsgBox Selection.Count

If the active sheet contains a range named data, the following statement assigns
the number of cells in the data range to a variable named CellCount:

CellCount = Range(“data”).Count

Caution

4799-2 ch11.F 6/11/01 9:31 AM Page 300

301Chapter 11 ✦ VBA Programming Examples and Techniques

You can also determine how many rows or columns are contained in a range. The
following expression calculates the number of columns in the currently selected
range:

Selection.Columns.Count

And, of course, you can also use the Rows property to determine the number of
rows in a range. The following statement counts the number of rows in a range
named data and assigns the number to a variable named RowCount:

RowCount = Range(“data”).Rows.Count

Determining the type of selected range
Excel supports several types of range selections:

✦ A single cell

✦ A contiguous range of cells

✦ One or more entire columns

✦ One or more entire rows

✦ The entire worksheet

✦ Any combination of the above (that is, a multiple selection)

As a result, when your VBA procedure processes a selected range, you can’t make
any presumptions about what that range might be.

In the case of a multiple range selection, the Range object comprises separate
areas. To determine whether a selection is a multiple selection, use the Areas
method, which returns an Areas collection. This collection represents all the
ranges within a multiple range selection.

You can use an expression like the following to determine whether a selected range
has multiple areas:

NumAreas = Selection.Areas.Count

If the NumAreas variable contains a value greater than one, the selection is a multiple
selection.

The AboutRangeSelection procedure uses the AreaType custom function
listed here:

4799-2 ch11.F 6/11/01 9:31 AM Page 301

302 Part III ✦ Understanding Visual Basic for Applications

Function AreaType(RangeArea As Range) As String
‘ Returns the type of a range in an area

Select Case True
Case RangeArea.Cells.Count = 1

AreaType = “Cell”
Case RangeArea.Count = Cells.Count

AreaType = “Worksheet”
Case RangeArea.Rows.Count = Cells.Rows.Count

AreaType = “Column”
Case RangeArea.Columns.Count = Cells.Columns.Count

AreaType = “Row”
Case Else

AreaType = “Block”
End Select

End Function

This function accepts a Range object as its argument and returns one of four strings
that describe the area: Cell, Worksheet, Column, Row, or Block. The function uses
a Select Case construct to determine which of four comparison expressions is
True. For example, if the range consists of a single cell, the function returns Cell. If
the number of cells in the range is equal to the number of cells in the worksheet, it
returns Worksheet. If the number of rows in the range equals the number of rows in
the worksheet, it returns Column. If the number of columns in the range equals the
number of columns in the worksheet, the function returns Row. If none of the Case
expressions is True, the function returns Block.

Notice that the comparison doesn’t involve absolute numbers. For example, rather
than use 65,536 to determine whether the range is a column, it uses Cells.
Count. Because of this, the function works properly even with Excel 5 and Exce 97
(which contain only 16,384 rows).

A workbook on the companion CD-ROM contains a procedure (named
AboutRangeSelection) that uses the AreaType function to display a mes-
sage box that describes the current range selection. Figure 11-7 shows an exam-
ple. Understanding how this routine works will give you a good foundation for
working with Range objects.

You may be surprised to discover that Excel allows multiple selections to be iden-
tical. For example, if you hold down Ctrl and click five times in cell A1, the selection
will have five identical areas. The AboutRangeSelection procedure takes this
into account.

Looping through a selected range efficiently
A common task is to create a macro that evaluates each cell in a range and performs
an operation if the cell meets a certain criterion. Listing 11-1 provides an example
of such a macro. In this example, the SelectiveColor1 procedure applies a red

Note

On the
CD-ROM

Note

4799-2 ch11.F 6/11/01 9:31 AM Page 302

303Chapter 11 ✦ VBA Programming Examples and Techniques

background to all cells in the selection that have a negative value. The background
of other cells is reset.

Figure 11-7: The AboutRangeSelection procedure analyzes the currently
selected range.

Listing 11-1: Coloring all negative cells’ backgrounds red

Sub SelectiveColor1()
‘ Makes cell background red if the value is negative

If TypeName(Selection) <> “Range” Then Exit Sub
Const REDINDEX = 3
Application.ScreenUpdating = False
For Each cell In Selection

If cell.Value < 0 Then
cell.Interior.ColorIndex = REDINDEX

Else
cell.Interior.ColorIndex = xlNone

End If
Next cell

End Sub

The SelectiveColor1 procedure certainly works, but it has a serious flaw. For
example, what if the selection consists of an entire column? Or ten columns? Or the
entire worksheet? The user would probably give up before all the cells were evalu-
ated. A better solution (SelectiveColor2) is shown in Listing 11-2.

4799-2 ch11.F 6/11/01 9:31 AM Page 303

304 Part III ✦ Understanding Visual Basic for Applications

Listing 11-2: Improving this procedure to include wider,
multiple-column ranges

Sub SelectiveColor2()
‘ Makes cell background red if the value is negative

Dim FormulaCells As Range
Dim ConstantCells As Range

Const REDINDEX = 3

‘ Ignore errors
On Error Resume Next

Application.ScreenUpdating = False

‘ Create subsets of original selection
Set FormulaCells = Selection.SpecialCells _
(xlFormulas, xlNumbers)

Set ConstantCells = Selection.SpecialCells _
(xlConstants, xlNumbers)

‘ Process the formula cells
If Not FormulaCells Is Nothing Then

For Each cell In FormulaCells
If cell.Value < 0 Then _
cell.Font.ColorIndex = REDINDEX

Next cell
End If

‘ Process the constant cells
If Not ConstantCells Is Nothing Then

For Each cell In ConstantCells
If cell.Value < 0 Then
cell.Interior.ColorIndex = REDINDEX

Else
cell.Interior.ColorIndex = xlNone

End If
Next cell

End If
End Sub

This procedure performs some extra steps that make it very efficient. I used
the SpecialCells method to generate two subsets of the selection: One subset
includes only the cells with numeric constants; the other subset includes only the
cells with numeric formulas. Then I processed the cells in these subsets by using
two For Each-Next constructs. The net effect: Only nonblank cells are evaluated,
speeding up the macro considerably.

4799-2 ch11.F 6/11/01 9:31 AM Page 304

305Chapter 11 ✦ VBA Programming Examples and Techniques

The On Error statement is necessary because the SpecialCells method gener-
ates an error if no cells qualify. This statement also handles situations in which a
range is not selected when the procedure is executed.

Deleting all empty rows
The following procedure deletes all empty rows in the active worksheet. This routine
is fast and efficient because it doesn’t check all rows. It checks only the rows in the
“used range,” which is determined using the UsedRange property of the Worksheet
object.

Sub DeleteEmptyRows()
Dim LastRow As Long, r As Long
LastRow = ActiveSheet.UsedRange.Rows.Count
LastRow = LastRow + ActiveSheet.UsedRange.Row - 1
Application.ScreenUpdating = False
For r = LastRow To 1 Step -1

If Application.CountA(Rows(r)) = 0 Then Rows(r).Delete
Next r

End Sub

The first step is to determine the last used row, and assign this row number to the
LastRow variable. This is not as simple as you may think, because the used range
may or may not begin in Row 1. Therefore, LastRow is calculated by determining
the number of rows in the used range, adding the first row number in the used
range, and subtracting 1.

The procedure uses Excel’s COUNTA worksheet function to determine whether a row
is empty. If this function returns 0 for a particular row, then the row is empty. Notice
that the procedure works on the rows from bottom to top, and uses a negative step
value in the For-Next loop. This is necessary because deleting rows causes all
subsequent rows to “move up” in the worksheet. If the looping occurred from top
to bottom, the counter within the loop would not be accurate after a row is deleted.

Determining whether a range is contained
in another range
The following InRange function accepts two arguments, both Range objects. The
function returns True if the first range is contained in the second range.

Function InRange(rng1, rng2) As Boolean
‘ Returns True if rng1 is a subset of rng2

InRange = False
If rng1.Parent.Parent.Name = rng2.Parent.Parent.Name Then

If rng1.Parent.Name = rng2.Parent.Name Then
If Union(rng1, rng2).Address = rng2.Address Then

InRange = True
End If

Note

4799-2 ch11.F 6/11/01 9:31 AM Page 305

306 Part III ✦ Understanding Visual Basic for Applications

End If
End If

End Function

The InRange function may appear a bit more complex than it need be because the
code needs to ensure that the two ranges are in the same worksheet and workbook.
Notice that the procedure uses the Parent property, which returns an object’s
container object. For example, the following expression returns the name of the
worksheet for the rng1 object reference:

rng1.Parent.Name

The following expression returns the name of the workbook for rng1:

rng1.Parent.Parent.Name

VBA’s Union function returns a Range object that represents the union of two
Range objects. The union is the cells that the two ranges have in common. If the
address of the union of the two ranges is the same as the address of the second
range, that means the first range is contained within the second range.

Determining a cell’s data type
Excel provides a number of built-in functions that can help determine the type
of data contained in a cell. These include ISTEXT, ISLOGICAL, and ISERROR. In
addition, VBA includes functions such as IsEmpty, IsDate, and IsNumeric.

The following CellType function accepts a range argument and returns a string
(Blank, Text, Logical, Error, Date, Time, or Value) that describes the data type of
the upper-left cell in the range. You can use this function in a worksheet formula
or from another VBA procedure.

Function CellType(Rng)
‘ Returns the cell type of the upper left
‘ cell in a range

Application.Volatile
Set Rng = Rng.Range(“A1”)
Select Case True

Case IsEmpty(Rng)
CellType = “Blank”

Case WorksheetFunction.IsText(Rng)
CellType = “Text”

Case WorksheetFunction.IsLogical(Rng)
CellType = “Logical”

Case WorksheetFunction.IsErr(Rng)
CellType = “Error”

Case IsDate(Rng)
CellType = “Date”

Case InStr(1, Rng.Text, “:”) <> 0
CellType = “Time”

Case IsNumeric(Rng)

4799-2 ch11.F 6/11/01 9:31 AM Page 306

307Chapter 11 ✦ VBA Programming Examples and Techniques

CellType = “Value”
End Select

End Function

Notice the use of the Set Rng statement. The CellType function accepts a range
argument of any size but this statement causes it to operate only on the upper-left
cell in the range.

Reading and writing ranges
Many spreadsheet tasks involve transferring the values from an array to a range,
or from a range to an array. For some reason, Excel reads from ranges much faster
than it writes to ranges. The WriteReadRange procedure shown in Listing 11-3
demonstrates the relative speeds of writing and reading a range.

This procedure creates an array and then uses For-Next loops to write the array to
a range and then read the range back into the array. It calculates the time required
for each operation by using the Excel Timer function.

Listing 11-3: Benchmarking read and write operations
involving ranges

Sub WriteReadRange()
Dim MyArray()
Dim Time1 As Date
Dim NumElements As Long, i As Long
Dim WriteTime As String, ReadTime As String
Dim Msg As String

NumElements = 60000
ReDim MyArray(1 To NumElements)

‘ Fill the array
For i = 1 To NumElements

MyArray(i) = i
Next i

‘ Write the array to a range
Time1 = Timer
For i = 1 To NumElements

Cells(i, 1) = MyArray(i)
Next i
WriteTime = Format(Timer - Time1, “00:00”)

‘ Read the range into the array
Time1 = Timer
For i = 1 To NumElements

MyArray(i) = Cells(i, 1)

Continued

4799-2 ch11.F 6/11/01 9:31 AM Page 307

308 Part III ✦ Understanding Visual Basic for Applications

Listing 11-3: (continued)

Next i
ReadTime = Format(Timer - Time1, “00:00”)

‘ Show results
Msg = “Write: “ & WriteTime
Msg = Msg & vbCrLf
Msg = Msg & “Read: “ & ReadTime
MsgBox Msg, vbOKOnly, NumElements & “ Elements”

End Sub

On my system, it took 15 seconds to write a 60,000-element array to a range but
only 4 seconds to read the range into an array.

A better way to write to a range
The example in the previous section uses a For-Next loop to transfer the contents
of an array to a worksheet range. In this section, I demonstrate a more efficient way
to accomplish this.

Let’s start with the example in Listing 11-4, which illustrates the most obvious (but
not most efficient) way to fill a range. This example uses a For-Loop to insert its
values in a range.

Listing 11-4: Filling a range by brute force

Sub LoopFillRange()
‘ Fill a range by looping through cells

Dim CellsDown As Long, CellsAcross As Integer
Dim CurrRow As Long, CurrCol As Integer
Dim StartTime As Date
Dim CurrVal As Long

‘ Get the dimensions
CellsDown = Val(InputBox(“How many cells down?”))
CellsAcross = Val(InputBox(“How many cells across?”))

‘ Record starting time
StartTime = Timer

‘ Loop through cells and insert values
CurrVal = 1
Application.ScreenUpdating = False
For CurrRow = 1 To CellsDown

For CurrCol = 1 To CellsAcross

4799-2 ch11.F 6/11/01 9:31 AM Page 308

309Chapter 11 ✦ VBA Programming Examples and Techniques

ActiveCell.Offset(CurrRow - 1, _
CurrCol - 1).Value = CurrVal
CurrVal = CurrVal + 1

Next CurrCol
Next CurrRow

‘ Display elapsed time
Application.ScreenUpdating = True
MsgBox Format(Timer - StartTime, “00.00”) & “ seconds”

End Sub

The example in Listing 11-5 demonstrates a faster way to produce the same result.
This code inserts the values into an array and then uses a single statement to trans-
fer the contents of an array to the range.

Listing 11-5: Borrowing arrays to fill ranges faster

Sub ArrayFillRange()
‘ Fill a range by transferring an array

Dim CellsDown As Long, CellsAcross As Integer
Dim i As Long, j As Integer
Dim StartTime As Date
Dim TempArray() As Long
Dim TheRange As Range
Dim CurrVal As Long

‘ Get the dimensions
CellsDown = Val(InputBox(“How many cells down?”))
CellsAcross = Val(InputBox(“How many cells across?”))

‘ Record starting time
StartTime = Timer

‘ Redimension temporary array
ReDim TempArray(1 To CellsDown, 1 To CellsAcross)

‘ Set worksheet range
Set TheRange = ActiveCell.Range(Cells(1, 1), _

Cells(CellsDown, CellsAcross))

‘ Fill the temporary array
CurrVal = 0
Application.ScreenUpdating = False
For i = 1 To CellsDown

For j = 1 To CellsAcross
TempArray(i, j) = CurrVal + 1
CurrVal = CurrVal + 1

Continued

4799-2 ch11.F 6/11/01 9:31 AM Page 309

310 Part III ✦ Understanding Visual Basic for Applications

Listing 11-5 (continued)

Next j
Next i

‘ Transfer temporary array to worksheet
TheRange.Value = TempArray

‘ Display elapsed time
Application.ScreenUpdating = True
MsgBox Format(Timer - StartTime, “00.00”) & “ seconds”

End Sub

On my system, using the loop method to fill a 500 × 256 cell range (128,000 cells)
took 202.34 seconds. The array transfer method took only 0.77 seconds to generate
the same results — more than 250 times faster! The moral of this story? If you need
to transfer large amounts of data to a worksheet, avoid looping whenever possible.

Transferring one-dimensional arrays
The example in the preceding section involves a two-dimensional array, which
works out nicely for row-and-column-based worksheets.

When transferring a one-dimensional array to a range, the range must be
horizontal — that is, one row with multiple columns. If you have to use a
vertical range instead, you must first transpose the array to make it vertical.
You can use Excel’s TRANSPOSE function to do this. The following example
transfers a 100-element array to a vertical worksheet range (A1:A100):

Range(A1:A100).Value = _
Application.WorksheetFunction.Transpose(MyArray)

Transferring a range to a variant array
This section discusses yet another way to work with worksheet data in VBA. The
following example transfers a range of cells to a two-dimensional variant array.
Then, message boxes display the upper bounds for each dimension of the variant
array.

Sub RangeToVariant()
Dim x As Variant
x = Range(“A1:L600”)
MsgBox UBound(x, 1)
MsgBox UBound(x, 2)

End Sub

4799-2 ch11.F 6/11/01 9:31 AM Page 310

311Chapter 11 ✦ VBA Programming Examples and Techniques

In this example, the first message box displays 600 (the number of rows in the origi-
nal range), and the second message box displays 12 (the number of columns). You’ll
find that transferring the range data to a variant array is virtually instantaneous.

The following example reads a range into a variant array, performs a simple multi-
plication operation on each element in the array, and then transfers the variant
array back to the range:

Sub RangeToVariant2()
Dim UserRange As Range
Dim x As Variant
Dim r As Long, c As Integer

Set UserRange = Range(“A1:L600”)

‘ Read the data into the variant
x = Range(“A1:L50”)

‘ Loop through the variant array
For r = 1 To UBound(x, 1)

For c = 1 To UBound(x, 2)
‘ Multiply by 2

x(r, c) = x(r, c) * 2
Next c

Next r

‘ Transfer the variant back to the sheet
Range(“A1:L50”) = x

End Sub

Again, you’ll find that this procedure runs amazingly fast.

Selecting the maximum value in a range
The GoToMax procedure in Listing 11-6 activates the worksheet cell that contains
the maximum value. The procedure determines the maximum value in the selected
range; but if a single cell is selected, it determines the maximum value for the entire
worksheet. Next, it uses the Find method to locate the value and select the cell.

Listing 11-6: Moving the pointer to the cell containing the
greatest value

Sub GoToMax()
‘ Activates the cell with the largest value

Dim WorkRange as Range
Dim MaxVal as Double

Continued

4799-2 ch11.F 6/11/01 9:31 AM Page 311

312 Part III ✦ Understanding Visual Basic for Applications

Listing 11-6 (continued)

‘ Exit if a range is not selected
If TypeName(Selection) <> “Range” Then Exit Sub

‘ If one cell is selected, search entire worksheet;
‘ Otherwise, search the selected range

If Selection.Count = 1 Then
Set Workrange = Cells

Else
Set Workrange = Selection

End If

‘ Determine the maximum value
MaxVal = Application.Max(Workrange)

‘ Find it and select it
On Error Resume Next
Workrange.Find(What:=MaxVal, _

After:=Workrange.Range(“A1”), _
LookIn:=xlValues, _
LookAt:=xlPart, _
SearchOrder:=xlByRows, _
SearchDirection:=xlNext, MatchCase:=False _
).Select

If Err <> 0 Then MsgBox “Max value was not found: “ _
& MaxVal

End Sub

You’ll notice that the arguments for the Find method correspond to the controls in
Excel’s Find and Replace dialog box.

Selecting all cells with a particular format
The example in this section demonstrates how to use the FindFormat method to
locate and select all cells in a worksheet that contain a particular format. When
these cells are selected, you can then do what you want with them — change the
formatting, delete them, etc. Figure 11-8 shows an example.

The FindFormat property is new to Excel 2002. Consequently, this procedure will
not work with earlier versions of Excel.

New
Feature

4799-2 ch11.F 6/11/01 9:31 AM Page 312

313Chapter 11 ✦ VBA Programming Examples and Techniques

Figure 11-8: Selecting all cells with a particular format

The SelectByFormat procedure is as follows:

Sub SelectByFormat()
‘ Selects cells based on their formatting

‘ Make sure version is Excel 2002 or later
If Val(Application.Version) < 10 Then

MsgBox “This requires Excel 2002 or later.”
Exit Sub

End If

Dim FirstCell As Range, FoundCell As Range
Dim AllCells As Range

‘ Specify the formatting to look for
With Application.FindFormat

.Clear

.Interior.ColorIndex = 6 ‘yellow

.Font.Bold = True
End With

‘ Look for the first matching cell
Set FirstCell = Cells.Find(What:=””, SearchFormat:=True)

‘ If nothing was found, then exit
If FirstCell Is Nothing Then

MsgBox “No matching cells were found.”
Exit Sub

End If

‘ Initialize AllCells

4799-2 ch11.F 6/11/01 9:31 AM Page 313

314 Part III ✦ Understanding Visual Basic for Applications

Set AllCells = FirstCell
Set FoundCell = FirstCell

‘ Loop until the FirstCell is found again
Do

Set FoundCell = Cells.FindNext(After:=FoundCell)
Set AllCells = Union(FoundCell, AllCells)
If FoundCell.Address = FirstCell.Address Then Exit Do

Loop

‘ Select the found cells and inform the user
AllCells.Select
MsgBox “ Matching cells found: “ & AllCells.Count

End Sub

The procedure starts by setting properties of the FindFormat object. In this exam-
ple, the formatting to be searched for consists of two components: a yellow interior
and bold text. You can, of course, change this to any formatting you like.

The Find method is used to locate the first qualifying cell. The Find method’s What
argument is set to an empty string. This is because the search involves only format-
ting, not cell contents. Also, the SearchFormat argument is True because we are, in
fact, searching for formatting.

If the formatting is not found, the user is informed and the code ends. Otherwise,
the found cell is assigned to the AllCells object variable (which stores all of the
found cells). A loop uses the FindNext method to continue searching. The search
continues until the cell found first is found again. Finally, all of the found cells are
selected in the worksheet and the user is given the count.

This procedure will not locate cells that have a particular formatting as a result of
Excel’s conditional formatting feature.

Working with Workbooks and Sheets
The examples in this section demonstrate various ways to use VBA to work with
workbooks and worksheets.

The examples in this section are available on the companion CD-ROM.

Saving all workbooks
The following procedure loops through all workbooks in the Workbooks collection,
and saves each file that has been saved previously:

On the
CD-ROM

Note

4799-2 ch11.F 6/11/01 9:31 AM Page 314

315Chapter 11 ✦ VBA Programming Examples and Techniques

Public Sub SaveAllWorkbooks()
Dim Book As Workbook
For Each Book In Workbooks

If Book.Path <> “” Then Book.Save
Next Book

End Sub

Notice the use of the Path property. If a workbook’s Path property is empty, that
means the file has never been saved (it’s a new workbook). This procedure ignores
such workbooks and only saves the workbooks that have a nonempty Path
property.

Saving and closing all workbooks
The following procedure loops through the Workbooks collection. The code saves
and closes all workbooks.

Sub CloseAllWorkbooks()
Dim Book As Workbook
For Each Book In Workbooks

If Book.Name <> ThisWorkbook.Name Then
Book.Close savechanges:=True

End If
Next Book
ThisWorkbook.Close savechanges:=True

End Sub

Notice that the procedure uses an If statement to determine if the workbook is the
workbook that contains the code. This is necessary because closing the workbook
that contains the procedure would end the code and subsequent workbooks would
not be affected.

Accessing workbook properties
Excel’s File ➪ Properties command displays a dialog box that contains information
about the active workbook. You can access the properties from VBA. The following
procedure, for example, displays the date and time when the active workbook was
saved:

Sub LastSaved()
Dim SaveTime As String
On Error Resume Next
SaveTime = ActiveWorkbook. _
BuiltinDocumentProperties(“Last Save Time”).Value

If SaveTime = “” Then
MsgBox ActiveWorkbook.Name & “ has not been saved.”

Else
MsgBox “Saved: “ & SaveTime, , ActiveWorkbook.Name

End If
End Sub

4799-2 ch11.F 6/11/01 9:31 AM Page 315

316 Part III ✦ Understanding Visual Basic for Applications

If the workbook has not been saved, attempting to access the Last Save Time
property will generate an error. The On Error statement causes this error to be
ignored. The If-Then-Else structure checks the value of the SaveTime variable
and displays the appropriate message. If this variable is empty, it means the file was
not saved. Figure 11-9 shows an example of this procedure’s result.

Figure 11-9: Displaying the date and time a workbook was
saved

Quite a few other built-in properties are available, but they are not all relevant to
Excel. Consult the online help for a complete list of built-in properties.

Synchronizing worksheets
If you use multisheet workbooks, you probably know that Excel cannot “synchro-
nize” the sheets in a workbook. In other words, there is no automatic way to force
all sheets to have the same selected range and upper left cell. The VBA macro that
follows uses the active worksheet as a base, and then performs the following on all
other worksheets in the workbook:

✦ Selects the same range as the active sheet

✦ Makes the upper left cell the same as the active sheet

Following is the listing for the subroutine:

Sub SynchSheets()
‘ Duplicates the active sheet’s active cell upperleft cell
‘ Across all worksheets

If TypeName(ActiveSheet) <> “Worksheet” Then Exit Sub
Dim UserSheet As Worksheet, sht As Worksheet
Dim TopRow As Long, LeftCol As Integer
Dim UserSel As String

Application.ScreenUpdating = False

‘ Remember the current sheet
Set UserSheet = ActiveSheet

‘ Store info from the active sheet
TopRow = ActiveWindow.ScrollRow
LeftCol = ActiveWindow.ScrollColumn
UserSel = ActiveWindow.RangeSelection.Address

Note

4799-2 ch11.F 6/11/01 9:31 AM Page 316

317Chapter 11 ✦ VBA Programming Examples and Techniques

‘ Loop through the worksheets
For Each sht In ActiveWorkbook.Worksheets

If sht.Visible Then ‘skip hidden sheets
sht.Activate
Range(UserSel).Select
ActiveWindow.ScrollRow = TopRow
ActiveWindow.ScrollColumn = LeftCol

End If
Next sht

‘ Restore the original position
UserSheet.Activate
Application.ScreenUpdating = True

End Sub

VBA Techniques
The examples in this section illustrate common VBA techniques that you may be
able to adapt to your own projects.

The examples in this section are available on the companion CD-ROM.

Toggling a Boolean property
A Boolean property is one that is either True or False. The easiest way to toggle a
Boolean property is to use the Not operator, as shown in the following example,
which toggles the WrapText property of a selection.

Sub ToggleWrapText()
‘ Toggles text wrap alignment for selected cells

If TypeName(Selection) = “Range” Then
Selection.WrapText = Not ActiveCell.WrapText

End If
End Sub

Note that the active cell is used as the basis for toggling. When a range is selected
and the property values in the cells are inconsistent (for example, some cells are
bold and others are not), it is considered mixed, and Excel uses the active cell to
determine how to toggle. If the active cell is bold, for example, all cells in the selec-
tion are made not bold when you click the Bold toolbar button. This simple proce-
dure mimics the way Excel works, which is usually the best practice.

Note also that this procedure uses the TypeName function to check whether the
selection is a range. If it isn’t, nothing happens.

On the
CD-ROM

4799-2 ch11.F 6/11/01 9:31 AM Page 317

318 Part III ✦ Understanding Visual Basic for Applications

You can use the Not operator to toggle many other properties. For example, to tog-
gle the display of row and column borders in a worksheet, use the following code:

ActiveWindow.DisplayHeadings = Not _
ActiveWindow.DisplayHeadings

To toggle the display of grid lines in the active worksheet, use the following code:

ActiveWindow.DisplayGridlines = Not _
ActiveWindow.DisplayGridlines

Determining the number of printed pages
If you need to determine the number of printed pages for a worksheet printout, you
can use Excel’s Print Preview feature and view the page count displayed at the bot-
tom of the screen. The following VBA procedure that follows calculates the number
of printed pages for the active sheet by counting the number of horizontal and ver-
tical page breaks:

Sub PageCount()
MsgBox (ActiveSheet.HPageBreaks.Count + 1) * _
(ActiveSheet.VPageBreaks.Count + 1)

End Sub

The following VBA procedure loops through all worksheets in the active workbook
and displays the total number of printed pages:

Sub ShowPageCount()
Dim PageCount As Integer
Dim sht As Worksheet
PageCount = 0
For Each sht In Worksheets

PageCount = PageCount + (sht.HPageBreaks.Count + 1) * _
(sht.VPageBreaks.Count + 1)

Next sht
MsgBox “Total Pages = “ & PageCount

End Sub

Displaying the date and time
If you understand the serial number system that Excel uses to store dates and
times, you won’t have any problems using dates and times in your VBA procedures.

The DateAndTime procedure displays a message box with the current date and
time, as depicted in Figure 11-10. This example also displays a personalized mes-
sage in the message box’s title bar.

4799-2 ch11.F 6/11/01 9:31 AM Page 318

319Chapter 11 ✦ VBA Programming Examples and Techniques

Figure 11-10: A message box displaying the date and time

The procedure shown in Listing 11-7 uses the Date function as an argument for the
Format function. The result is a string with a nicely formatted date. I used the same
technique to get a nicely formatted time.

Listing 11-7: Displaying the current date and time

Sub DateAndTime()
TheDate = Format(Date, “Long Date”)
TheTime = Format(Time, “Medium Time”)

‘ Determine greeting based on time
Select Case Time

Case Is < TimeValue(“12:00”): Greeting = “Good Morning,
“

Case Is >= TimeValue(“17:00”): Greeting = “Good
Evening, “

Case Else: Greeting = “Good Afternoon, “
End Select

‘ Append user’s first name to greeting
FullName = Application.UserName
SpaceInName = InStr(1, FullName, “ “, 1)

‘ Handle situation when name has no space
If SpaceInName = 0 Then SpaceInName = Len(FullName)
FirstName = Left(FullName, SpaceInName)
Greeting = Greeting & FirstName

‘ Show the message
MsgBox TheDate & vbCrLf & TheTime, vbOKOnly, Greeting

End Sub

In the preceding example, I used named formats (“Long Date” and “Medium Time”)
to ensure that the macro will work properly regardless of the user’s international
settings. You can, however, use other formats. For example, to display the date in
mm/dd/yy format, you can use a statement like the following:

TheDate = Format(Date, “mm/dd/yy”)

4799-2 ch11.F 6/11/01 9:31 AM Page 319

320 Part III ✦ Understanding Visual Basic for Applications

I used a Select Case construct to base the greeting displayed in the message box’s
title bar on the time of day. VBA time values work just as they do in Excel. If the
time is less than .5 (noon), it’s morning. If it’s greater than .7083 (5 p.m.), it’s
evening. Otherwise, it’s afternoon. I took the easy way out and used VBA’s
TimeValue function, which returns a time value from a string.

The next series of statements determines the user’s first name, as recorded in the
General tab in the Options dialog box. I used VBA’s InStr function to locate the
first space in the user’s name. When I first wrote this procedure, I didn’t consider a
user name that has no space. So when I ran this procedure on a machine with a
user’s name of Nobody, the code failed — which goes to show you that I can’t think
of everything, and even the simplest procedures can run aground. (By the way, if
the user’s name is left blank, Excel always substitutes the name User.) The solution
to this problem was to use the length of the full name for the SpaceInName variable
so the Left function extracts the full name.

The MsgBox function concatenates the date and time but uses the built-in vbCrLf
constant to insert a line break between them. vbOKOnly is a predefined constant
that returns 0, causing the message box to appear with only an OK button. The final
argument is the Greeting, constructed earlier in the procedure.

Getting a list of fonts
If you need to get a list of all installed fonts, you’ll find that Excel does not provide a
direct way to retrieve that information. One approach is to read the font names
from the Font control on the Formatting toolbar.

The following procedure displays a list of the installed fonts in column A of the
active worksheet. It uses the FindControl method to locate the Font control on
the Formatting toolbar. If this control is not found (for example, it was removed by
the user) a temporary CommandBar is created and the Font control is added to it.

Refer to Chapter 22 for more information about working with CommandBar
controls.

Sub ShowInstalledFonts()
Dim FontList As CommandBarControl
Dim TempBar As CommandBar
Dim i As Integer

Set FontList = Application.CommandBars(“Formatting”). _
FindControl(ID:=1728)

‘ If Font control is missing, create a temp CommandBar
If FontList Is Nothing Then

Set TempBar = Application.CommandBars.Add

Cross-
Reference

4799-2 ch11.F 6/11/01 9:31 AM Page 320

321Chapter 11 ✦ VBA Programming Examples and Techniques

Set FontList = TempBar.Controls.Add(ID:=1728)
End If

‘ Put the fonts into column A
Range(“A:A”).ClearContents
For i = 0 To FontList.ListCount - 1

Cells(i + 1, 1) = FontList.List(i + 1)
Next i

‘ Delete temp CommandBar if it exists
On Error Resume Next
TempBar.Delete

End Sub

Sorting an array
Although Excel has a built-in command to sort worksheet ranges, VBA doesn’t offer
a method to sort arrays. One viable, but cumbersome, workaround is to transfer
your array to a worksheet range, sort it using Excel’s commands, and then return
the result to your array. But if speed is essential, it’s better to write a sorting rou-
tine in VBA.

In this section, I describe four different sorting techniques:

✦ Worksheet Sort transfers an array to a worksheet range, sorts it, and transfers
it back to the array. This procedure accepts an array as its only argument and
is limited to arrays with no more than 65,536 elements — the number of rows
in a worksheet.

✦ Bubble Sort is a simple sorting technique (also used in the Chapter 9 sheet-
sorting example). Although easy to program, the bubble-sorting algorithm is
not the fastest sorting technique, especially when the number of elements is
large.

✦ Quick Sort is a much faster sorting routine than Bubble Sort, but it is also
more difficult to understand.

✦ Counting Sort is lightning fast but also difficult to understand.

The companion CD-ROM includes a workbook application that demonstrates
these sorting methods. This workbook is useful for comparing the techniques
with arrays of varying sizes.

Figure 11-11 shows the dialog box for this project. I tested the sorting procedures
with seven different array sizes, ranging from 100 to 100,000 elements (random
numbers). The arrays contained random numbers (of type double).

On the
CD-ROM

4799-2 ch11.F 6/11/01 9:31 AM Page 321

322 Part III ✦ Understanding Visual Basic for Applications

Figure 11-11: Comparing the time
required to perform sorts of various
array sizes

Table 11-1 shows the results of my tests. A 0.00 entry means that the sort was virtu-
ally instantaneous (less than .01 second).

Table 11-1
Sorting Times in Seconds for Four Sort Algorithms

Using Randomly Filled Arrays

Array Excel Worksheet VBA Bubble VBA Quick VBA Counting
Elements Sort Sort Sort Sort

100 0.05 0.00 0.05 0.00

500 0.06 0.11 0.05 0.00

1,000 0.11 0.44 0.11 0.00

5,000 0.55 8.89 0.77 0.00

10,000 1.16 31.69 1.75 0.06

50,000 6.98 788.62 10.21 0.22

100,000 N/A N/A 20.60 0.44

I then performed a second series of tests using an array that was almost sorted.
These results are shown in Table 11-2.

4799-2 ch11.F 6/11/01 9:31 AM Page 322

323Chapter 11 ✦ VBA Programming Examples and Techniques

Table 11-2
Sorting Times in Seconds for Four Sort Algorithms

Using Nearly Sorted Arrays

Array Excel Worksheet VBA Bubble VBA Quick VBA Counting
Elements Sort Sort Sort Sort

100 0.05 0.00 0.00 0.00

500 0.05 0.11 0.00 0.00

1,000 0.11 0.27 0.11 0.00

5,000 0.33 7.09 0.55 0.05

10,000 1.15 32.02 1.70 0.06

50,000 3.35 718.52 9.23 0.22

100,000 N/A N/A 24.61 0.44

As you can see, none of these algorithms is affected much by whether the array is
in random order or partially sorted.

The Worksheet Sort algorithm is amazingly fast, especially when you consider that
the array is transferred to the sheet, sorted, and then transferred back to the array.
If the array is almost sorted, the Worksheet Sort technique is even faster.

The Bubble Sort algorithm is reasonably fast with small arrays, but for larger arrays
(more than 5,000 elements), forget it. The Quick Sort algorithm is a winner, but the
Counting Sort wins by a long shot.

Processing a series of files
One reason for using macros, of course, is to repeat an operation a number of
times. The example in Listing 11-8 demonstrates how to execute a macro on several
different files stored on disk. This example — which may help you set up your own
routine for this type of task — prompts the user for a file specification and then pro-
cesses all matching files. In this case, processing consists of importing the file and
entering a series of summary formulas that describe the data in the file.

Listing 11-8: A macro that processes multiple stored files

Sub BatchProcess()
Dim FS As FileSearch
Dim FilePath As String, FileSpec As String
Dim i As Integer

Continued

4799-2 ch11.F 6/11/01 9:31 AM Page 323

324 Part III ✦ Understanding Visual Basic for Applications

Listing 11-8 (continued)

‘ Specify path and file spec
FilePath = ThisWorkbook.Path & “\”
FileSpec = “text??.txt”

‘ Create a FileSearch object
Set FS = Application.FileSearch
With FS

.LookIn = FilePath

.FileName = FileSpec

.Execute
‘ Exit if no files are found

If .FoundFiles.Count = 0 Then
MsgBox “No files were found”
Exit Sub

End If
End With

‘ Loop through the files and process them
For i = 1 To FS.FoundFiles.Count

Call ProcessFiles(FS.FoundFiles(i))
Next i

End Sub

This example uses three additional files, which are also provided on the
CD-ROM: Text01.txt, Text02.txt, and Text03.txt. You’ll need to modify the routine
to import other text files. This procedure uses the FileSearch object, so it will
work in Excel 2000 or later.

The matching files are retrieved by the FileSearch object, and the procedure uses
a For-Next loop to process the files. Within the loop, the processing is done by
calling the ProcessFiles procedure, which follows. This simple procedure uses
the OpenText method to import the file and then inserts five formulas. You may, of
course, substitute your own routine in place of this one:

Sub ProcessFiles(FileName As String)
‘ Import the file

Workbooks.OpenText FileName:=FileName, _
Origin:=xlWindows, _
StartRow:=1, _
DataType:=xlFixedWidth, _
FieldInfo:= _
Array(Array(0, 1), Array(3, 1), Array(12, 1))

‘ Enter summary formulas
Range(“D1”).Value = “A”
Range(“D2”).Value = “B”

On the
CD-ROM

4799-2 ch11.F 6/11/01 9:31 AM Page 324

325Chapter 11 ✦ VBA Programming Examples and Techniques

Range(“D3”).Value = “C”
Range(“E1:E3”).Formula = “=COUNTIF(B:B,D1)”
Range(“F1:F3”).Formula = “=SUMIF(B:B,D1,C:C)”

End Sub

Some Useful Functions for Use in Your Code
In this section, I present some custom “utility” functions that you may find useful in
your own applications and that may provide inspiration for creating similar func-
tions. These functions are most useful when called from another VBA procedure.
Therefore, they are declared using the Private keyword and thus will not appear in
Excel’s Insert Function dialog box.

The examples in this section are available on the companion CD-ROM.

The FileExists function
This function takes one argument (a path with filename) and returns True if the file
exists:

Private Function FileExists(fname) As Boolean
‘ Returns TRUE if the file exists

FileExists = (Dir(fname) <> “”)
End Function

The FileNameOnly function
This function accepts one argument (a path with filename) and returns only the file-
name. In other words, it strips out the path.

Private Function FileNameOnly(pname) As String
‘ Returns the filename from a path/filename string

Dim i As Integer, length As Integer, temp As String
length = Len(pname)
temp = “”
For i = length To 1 Step -1

If Mid(pname, i, 1) = Application.PathSeparator Then
FileNameOnly = temp
Exit Function

End If
temp = Mid(pname, i, 1) & temp

Next i
FileNameOnly = pname

End Function

On the
CD-ROM

4799-2 ch11.F 6/11/01 9:31 AM Page 325

326 Part III ✦ Understanding Visual Basic for Applications

The FileNameOnly function works with any path and filename (even if the file does
not exist). If the file exists, the following function is a simpler way to strip off the
path and return only the filename.

Private Function FileNameOnly2(pname) As String
FileNameOnly2 = Dir(pname)

End Function

The PathExists function
This function accepts one argument (a path) and returns True if the path exists:

Private Function PathExists(pname) As Boolean
‘ Returns TRUE if the path exists

Dim x As String
On Error Resume Next
x = GetAttr(pname) And 0
If Err = 0 Then PathExists = True _
Else PathExists = False

End Function

The RangeNameExists function
This function accepts a single argument (a range name) and returns True if the
range name exists in the active workbook:

Private Function RangeNameExists(nname) As Boolean
‘ Returns TRUE if the range name exists

Dim n As Name
RangeNameExists = False
For Each n In ActiveWorkbook.Names

If UCase(n.Name) = UCase(nname) Then
RangeNameExists = True
Exit Function

End If
Next n

End Function

The SheetExists function
This function accepts one argument (a worksheet name) and returns True if the
worksheet exists in the active workbook:

Private Function SheetExists(sname) As Boolean
‘ Returns TRUE if sheet exists in the active workbook

Dim x As Object
On Error Resume Next
Set x = ActiveWorkbook.Sheets(sname)

4799-2 ch11.F 6/11/01 9:31 AM Page 326

327Chapter 11 ✦ VBA Programming Examples and Techniques

If Err = 0 Then SheetExists = True _
Else SheetExists = False

End Function

The WorkbookIsOpen function
This function accepts one argument (a workbook name) and returns True if the
workbook is open:

Private Function WorkbookIsOpen(wbname) As Boolean
‘ Returns TRUE if the workbook is open

Dim x As Workbook
On Error Resume Next
Set x = Workbooks(wbname)
If Err = 0 Then WorkbookIsOpen = True _

Else WorkbookIsOpen = False
End Function

Testing for Membership in a Collection

The following function procedure is a “generic” function that you can use to determine
whether an object is a member of a collection:

Private Function IsInCollection(Coln As Object, _
Item As String) As Boolean
Dim Obj As Object
On Error Resume Next
Set Obj = Coln(Item)
IsInCollection = Not Obj Is Nothing

End Function

This function accepts two arguments: the collection (an object), and the item (a string) that
may or may not be a member of the collection. The function attempts to create an object
variable that represents the item in the collection. If the attempt is successful, the function
returns True; otherwise it returns False.

You can use the IsInCollection function in place of three other functions listed in this
chapter: RangeNameExists, SheetExists, and WorkbookIsOpen. To determine if a range
named Data exists in the active workbook, call the IsInCollection function with this
statement:

MsgBox IsInCollection(ActiveWorkbook.Names, “Data”)

To determine whether a workbook named Budget is open, use this statement:

MsgBox IsInCollection(Workbooks, “budget.xls”)

To determine whether the active workbook contains a sheet named Sheet1, use this
statement.

MsgBox IsInCollection(ActiveWorkbook.Worksheets, “Sheet1”)

4799-2 ch11.F 6/11/01 9:31 AM Page 327

328 Part III ✦ Understanding Visual Basic for Applications

Retrieving a value from a closed workbook
VBA does not include a method to retrieve a value from a closed workbook file. You
can, however, take advantage of Excel’s ability to work with linked files. This sec-
tion contains a VBA function (GetValue, which follows) that retrieves a value from
a closed workbook. It does so by calling an XLM macro.

Private Function GetValue(path, file, sheet, ref)
‘ Retrieves a value from a closed workbook

Dim arg As String

‘ Make sure the file exists
If Right(path, 1) <> “\” Then path = path & “\”
If Dir(path & file) = “” Then

GetValue = “File Not Found”
Exit Function

End If

‘ Create the argument
arg = “‘“ & path & “[“ & file & “]” & sheet & “‘!” & _
Range(ref).Range(“A1”).Address(, , xlR1C1)

‘ Execute an XLM macro
GetValue = ExecuteExcel4Macro(arg)

End Function

The GetValue function takes four arguments:

path The drive and path to the closed file (e.g., “d:\files”)

file The workbook name (e.g., “budget.xls”)

sheet The worksheet name (e.g., “Sheet1”)

ref The cell reference (e.g., “C4”)

The following Sub procedure demonstrates how to use the GetValue function. It
simply displays the value in cell A1 in Sheet1 of a file named 99Budget.xls, located
in the XLFiles\Budget directory on drive C.

Sub TestGetValue()
p = “c:\XLFiles\Budget”
f = “99Budget.xls”
s = “Sheet1”
a = “A1”
MsgBox GetValue(p, f, s, a)

End Sub

Another example follows. This procedure reads 1,200 values (100 rows and 12
columns) from a closed file, and places the values into the active worksheet.

4799-2 ch11.F 6/11/01 9:31 AM Page 328

329Chapter 11 ✦ VBA Programming Examples and Techniques

Sub TestGetValue2()
p = “c:\XLFiles\Budget”
f = “99Budget.xls”
s = “Sheet1”
Application.ScreenUpdating = False
For r = 1 To 100

For c = 1 To 12
a = Cells(r, c).Address
Cells(r, c) = GetValue(p, f, s, a)

Next c
Next r
Application.ScreenUpdating = True

End Sub

The GetValue function does not work if used in a worksheet formula. Actually,
there is no need to use this function in a formula. You can simply create a link for-
mula to retrieve a value from a closed file.

Some Useful Worksheet Functions
The examples in this section are custom functions that can be used in worksheet
formulas. Remember, these Function procedures must be defined in a VBA module
(not a code module associated with ThisWorkbook, a sheet, or a UserForm).

The examples in this section are available on the companion CD-ROM.

Returning cell formatting information
This section contains a number of custom functions that return information about a
cell’s formatting. These functions are useful if you need to sort data based on for-
matting (for example, sort such that all bold cells are together).

You’ll find that these functions aren’t always updated automatically. This is
because changing formatting, for example, doesn’t trigger Excel’s recalculation
engine. To force a global recalculation (and update all of the custom functions),
press Ctrl+Alt+F9.

The following function returns TRUE if its single-cell argument has bold formatting:

Function ISBOLD(cell) As Boolean
‘ Returns TRUE if cell is bold

ISBOLD = cell.Range(“A1”).Font.Bold
End Function

Caution

On the
CD-ROM

Note

4799-2 ch11.F 6/11/01 9:31 AM Page 329

330 Part III ✦ Understanding Visual Basic for Applications

The following function returns TRUE if its single-cell argument has italic formatting:

Function ISITALIC(cell) As Boolean
‘ Returns TRUE if cell is italic

ISITALIC = cell.Range(“A1”).Font.Italic
End Function

Both of the preceding functions will return an error if the cell has mixed
formatting — for example, only some characters are bold. The following function
returns TRUE only if all characters in the cell are bold.

Function ALLBOLD(cell) As Boolean
‘ Returns TRUE if all characters in cell
‘ are bold

If IsNull(cell.Font.Bold) Then
ALLBOLD = False

Else
ALLBOLD = cell.Font.Bold

End If
End Function

The FILLCOLOR function, which follows, returns an integer that corresponds to the
color index of the cell’s interior (the cell’s fill color). If the cell’s interior is not filled,
the function returns –4142.

Function FILLCOLOR(cell) As Integer
‘ Returns an integer corresponding to
‘ cell’s interior color

FILLCOLOR = cell.Range(“A1”).Interior.ColorIndex
End Function

Displaying the date a file was saved or printed
An Excel workbook contains several built-in document properties, accessible from
the BuiltinDocumentProperties property of the Workbook object. The following
function returns the date and time that the workbook was last saved:

Function LASTSAVED()
Application.Volatile
LASTSAVED = ThisWorkbook. _
BuiltinDocumentProperties(“Last Save Time”)

End Function

The following function is similar, but it returns the date and time when the work-
book was last printed or previewed.

4799-2 ch11.F 6/11/01 9:31 AM Page 330

331Chapter 11 ✦ VBA Programming Examples and Techniques

Function LASTPRINTED()
Application.Volatile
LASTPRINTED = ThisWorkbook. _
BuiltinDocumentProperties(“Last Print Date”)

End Function

If you use these functions in a formula, you may need to force a recalculation
(Ctrl+Alt+F9) to get the current values of these properties.

Quite a few additional built-in properties are available, but Excel does not use all
of them. For example, attempting to access the “Number of Bytes” property will
generate an error.

Understanding object parents
As you know, Excel’s object model is a hierarchy: objects are contained in other
objects. At the top of the hierarchy is the Application object. Excel contains
other objects, and these objects contain other objects, and so on. The following
hierarchy depicts how a Range object fits into this scheme:

Application Object

Workbook Object

Worksheet Object

Range Object

In the lingo of object-oriented programming, a Range object’s parent is the
Worksheet object that contains it. A Worksheet object’s parent is the Workbook
object that contains the worksheet, and a Workbook object’s parent is the
Application object.

How can this information be put to use? Examine the SheetName VBA function that
follows. This function accepts a single argument (a range) and returns the name of
the worksheet that contains the range. It uses the Parent property of the Range
object. The Parent property returns an object: the object that contains the Range
object.

Function SheetName(ref) As String
SheetName = ref.Parent.Name

End Function

The next function, WorkbookName, returns the name of the workbook for a particu-
lar cell. Notice that it uses the Parent property twice. The first Parent property
returns a Worksheet object, and the second Parent property returns a Workbook
object.

Note

4799-2 ch11.F 6/11/01 9:31 AM Page 331

332 Part III ✦ Understanding Visual Basic for Applications

Function WorkbookName(ref) As String
WorkbookName = ref.Parent.Parent.Name

End Function

The AppName function, which follows, carries this exercise to the next logical level,
accessing the Parent property three times. This function returns the name of the
Application object for a particular cell. It will, of course, always return Microsoft
Excel.

Function AppName(ref) As String
AppName = ref.Parent.Parent.Parent.Name

End Function

Counting cells between two values
The following function, named COUNTBETWEEN, returns the number of values in a
range (first argument) that fall between values represented by the second and third
arguments:

Function COUNTBETWEEN(InRange, num1, num2) As Long
‘ Counts number of values between num1 and num2

With Application.WorksheetFunction
COUNTBETWEEN = .CountIf(InRange, “>=” & num1) - _

.CountIf(InRange, “>” & num2)
End With

End Function

Note that this function uses Excel’s COUNTIF function. In fact, the COUNTBETWEEN
function is essentially a “wrapper” that can simplify your formulas.

Following is an example formula that uses the COUNTBETWEEN function. The formula
returns the number of cells in A1:A100 that are greater than or equal to 10 and less
than or equal to 20.

=COUNTBETWEEN(A1:A100,10,20)

Using this VBA function is simpler than entering the following lengthy formula:

=(COUNTIF(A1:A100)>=10)-(COUNTIF(A1:A100)>=20)

Counting visible cells in a range
The COUNTVISIBLE function, which follows, accepts a range argument and returns
the number of visible cells in the range. A cell is not visible if it’s in a hidden row or
a hidden column.

4799-2 ch11.F 6/11/01 9:31 AM Page 332

333Chapter 11 ✦ VBA Programming Examples and Techniques

Function COUNTVISIBLE(rng)
‘ Counts visible cells

Dim CellCount As Long
Dim cell As Range
Application.Volatile
CellCount = 0
Set rng = Intersect(rng.Parent.UsedRange, rng)
For Each cell In rng

If Not IsEmpty(cell) Then
If Not cell.EntireRow.Hidden And _

Not cell.EntireColumn.Hidden Then _
CellCount = CellCount + 1

End If
Next cell
COUNTVISIBLE = CellCount

End Function

This function loops through each cell in the range, and first checks to see if the cell
is empty. If it’s not empty, then it checks the hidden properties of the cell’s row and
column. If either the row or column is hidden, then the CellCount variable is
incremented.

The COUNTVISIBLE function is useful when you’re working with AutoFilters or out-
lines. Both of these features make use of hidden rows.

Excel’s SUBTOTAL function (with a first argument of 2 or 3) is also useful for
counting visible cells in an AutoFiltered list. The SUBTOTAL function, however,
doesn’t work properly if cells are hidden in a nonfiltered list.

Determining the last nonempty cell in a column or row
In this section, I present two useful functions: LASTINCOLUMN returns the contents
of the last nonempty cell in a column; LASTINROW returns the contents of the last
nonempty cell in a row. Each function accepts a range as its single argument. The
range argument can be a complete column (for LASTINCOLUMN) or a complete row
(for LASTINROW). If the supplied argument is not a complete column or row, the
function uses the column or row of the upper-left cell in the range. For example, the
following formula returns the last value in column B:

=LASTINCOLUMN(B5)

The following formula returns the last value in row 7:

=LASTINROW(C7:D9)

The LASTINCOLUMN function
The LASTINCOLUMN function follows:

Tip

4799-2 ch11.F 6/11/01 9:31 AM Page 333

334 Part III ✦ Understanding Visual Basic for Applications

Function LASTINCOLUMN(rng As Range)
Application.Volatile
Set LastCell = rng.Parent.Cells(Rows.Count, rng.Column) _

.End(xlUp)
LASTINCOLUMN = LastCell.Value
If IsEmpty(LastCell) Then LASTINCOLUMN = “”
If rng.Parent.Cells(Rows.Count, rng.Column) <> “” Then _

LASTINCOLUMN = rng.Parent.Cells(Rows.Count, rng.Column)
End Function

This function is rather complicated, so here are a few points that may help you
understand it:

✦ Application.Volatile causes the function to be executed whenever the
sheet is calculated.

✦ Rows.Count returns the number of rows in the worksheet. I used this, rather
than hard-code the value 65536, for forward compatibility (a future version of
Excel may contain more rows).

✦ rng.Column returns the column number of the upper left cell in the rng
argument.

✦ Using rng.Parent causes the function to work properly even if the rng argu-
ment refers to a different sheet or workbook.

✦ The End method (with the xlUp argument) is equivalent to activating the last
cell in a column and then pressing End, followed by Up Arrow.

✦ The IsEmpty function checks if the cell is empty. If so, it returns an empty
string. Without this statement, an empty cell would be returned as 0.

✦ The final If statement checks the last cell in the column. If it is not empty, the
function returns the contents of that cell.

The LASTINROW function
The LASTINROW function follows. This is very similar to the LASTINCOLUMN
function.

Function LASTINROW(rng As Range)
Application.Volatile
Set LastCell = rng.Parent.Cells(rng.Row, Columns.Count) _

.End(xlToLeft)
LASTINROW = LastCell.Value
If IsEmpty(LastCell) Then LASTINROW = “”
If rng.Parent.Cells(rng.Row, Columns.Count) <> “” Then _

LASTINROW = rng.Parent.Cells(rng.Row, Columns.Count)
End Function

4799-2 ch11.F 6/11/01 9:31 AM Page 334

335Chapter 11 ✦ VBA Programming Examples and Techniques

Does a string match a pattern?
The ISLIKE function is very simple (but also very useful). This function returns
True if a text string matches a specified pattern.

This function, which follows, is remarkably simple. As you can see, the function is
essentially a “wrapper” that lets you take advantage of VBA’s powerful Like opera-
tor in your formulas.

Function ISLIKE(text As String, pattern As String) As Boolean
‘ Returns true if the first argument is like the second

If text Like pattern Then ISLIKE = True _
Else ISLIKE = False

End Function

This ISLIKE function takes two arguments:

text A text string or a reference to a cell that contains a text string

pattern A string that contains wildcard characters according to the
following list:

Character(s) in pattern Matches in text

? Any single character

* Zero or more characters

Any single digit (0@nd9)

[charlist] Any single character in charlist

[!charlist] Any single character not in charlist

The following formula returns TRUE because * matches any number of characters.
It returns TRUE if the first argument is any text that begins with “g”.

=ISLIKE(“guitar”,”g*”)

The following formula returns TRUE because ? matches any single character. If the
first argument were “Unit12”, the function would return FALSE.

=ISLIKE(“Unit1”,”Unit?”)

The next formula returns TRUE because the first argument is a single character in
the second argument.

=ISLIKE(“a”,”[aeiou]”)

The following formula returns TRUE if cell A1 contains either a, e, i, o, u, A, E, I, O,
or U. Using the UPPER function for the arguments makes the formula not case
sensitive.

4799-2 ch11.F 6/11/01 9:31 AM Page 335

336 Part III ✦ Understanding Visual Basic for Applications

=ISLIKE(UPPER(A1),UPPER (“[aeiou]”))

The following formula returns TRUE if cell A1 contains a value that begins with 1
and has exactly three digits (that is, any integer between 100 and 199).

=ISLIKE(A1,”1##”)

Extracting the nth element from a string
ExtractElement is a custom worksheet function (which can also be called from a
VBA procedure) that extracts an element from a text string. For example, if a cell
contains the following text, you can use the ExtractElement function to extract
any of the substrings between the hyphens.

123-456-789-0133-8844

The following formula, for example, returns 0133, which is the fourth element in the
string. The string uses a hyphen (-) as the separator.

=ExtractElement(“123-456-789-0133-8844”,4,”-”)

The ExtractElement function uses three arguments:

Txt The text string from which you’re extracting. This can be a
literal string or a cell reference.

n An integer that represents the element to extract.

Separator A single character used as the separator.

If you specify a space as the Separator character, multiple spaces are treated as
a single space, which is almost always what you want. If n exceeds the number of
elements in the string, the function returns an empty string.

The VBA code for the ExtractElement function follows:

Function ExtractElement(Txt, n, Separator) As String
‘ Returns the nth element of a text string, where the
‘ elements are separated by a specified separator character

Dim Txt1 As String, TempElement As String
Dim ElementCount As Integer, i As Integer

Txt1 = Txt
‘ If space separator, remove excess spaces

If Separator = Chr(32) Then Txt1 = Application.Trim(Txt1)

‘ Add a separator to the end of the string
If Right(Txt1, Len(Txt1)) <> Separator Then _

Txt1 = Txt1 & Separator

Note

4799-2 ch11.F 6/11/01 9:31 AM Page 336

337Chapter 11 ✦ VBA Programming Examples and Techniques

‘ Initialize
ElementCount = 0
TempElement = “”

‘ Extract each element
For i = 1 To Len(Txt1)

If Mid(Txt1, i, 1) = Separator Then
ElementCount = ElementCount + 1
If ElementCount = n Then

‘ Found it, so exit
ExtractElement = TempElement
Exit Function

Else
TempElement = “”

End If
Else

TempElement = TempElement & Mid(Txt1, i, 1)
End If

Next i
ExtractElement=””

End Function

A multifunctional function
This example describes a technique that may be helpful in some situations: making
a single worksheet function act like multiple functions. For example, the following
VBA listing is for a custom function called StatFunction. It takes two arguments:
the range (rng) and the operation (op). Depending on the value of op, the function
returns a value computed using any of the following worksheet functions: AVERAGE,
COUNT, MAX, MEDIAN, MIN, MODE, STDEV, SUM, or VAR.

For example, you can use this function in your worksheet as follows:

=STATFUNCTION(B1:B24,A24)

The result of the formula depends on the contents of cell A24, which should be a
string such as Average, Count, Max, and so on. You can adapt this technique for
other types of functions.

Function STATFUNCTION(rng, op)
Select Case UCase(op)

Case “SUM”
STATFUNCTION = WorksheetFunction.Sum(rng)

Case “AVERAGE”
STATFUNCTION = WorksheetFunction.Average(rng)

Case “MEDIAN”
STATFUNCTION = WorksheetFunction.Median(rng)

Case “MODE”
STATFUNCTION = WorksheetFunction.Mode(rng)

Case “COUNT”
STATFUNCTION = WorksheetFunction.Count(rng)

4799-2 ch11.F 6/11/01 9:32 AM Page 337

338 Part III ✦ Understanding Visual Basic for Applications

Case “MAX”
STATFUNCTION = WorksheetFunction.Max(rng)

Case “MIN”
STATFUNCTION = WorksheetFunction.Min(rng)

Case “VAR”
STATFUNCTION = WorksheetFunction.Var(rng)

Case “STDEV”
STATFUNCTION = WorksheetFunction.StDev(rng)

Case Else
STATFUNCTION = CVErr(xlErrNA)

End Select
End Function

The SHEETOFFSET function: Version 1
You probably know that Excel’s support for “3D workbooks” is limited. For example,
if you need to refer to a different worksheet in a workbook, you must include the
worksheet’s name in your formula. This is not a big problem . . . until you attempt
to copy the formula across other worksheets. The copied formulas continue to
refer to the original worksheet name, and the sheet references are not adjusted as
they would be in a true 3D workbook.

The example discussed in this section is a VBA function (named SHEETOFFSET) that
enables you to address worksheets in a relative manner. For example, you can refer
to cell A1 on the previous worksheet using this formula:

=SHEETOFFSET(-1,A1)

The first argument represents the relative sheet, and it can be positive, negative, or
zero. The second argument must be a reference to a single cell. You can copy this
formula to other sheets, and the relative referencing will be in effect in all the
copied formulas.

The VBA code for the SHEETOFFSET function follows:

Function SHEETOFFSET(offset, Ref)
‘ Returns cell contents at Ref, in sheet offset

Application.Volatile
SHEETOFFSET = Sheets(Application.Caller.Parent.Index _
+ offset).Range(Ref.Address)

End Function

This function works fine in most cases. However, if your worksheet contains Chart
sheets, the function will fail if it attempts to reference a cell on a Chart sheet.

4799-2 ch11.F 6/11/01 9:32 AM Page 338

339Chapter 11 ✦ VBA Programming Examples and Techniques

The SHEETOFFSET function: Version 2
The revised SHEETOFFSET function follows. This version is a bit more complex, but
it eliminates the problem described in the preceding section. This version of
SHEETOFFSET essentially ignores any non-Worksheet sheets in the workbook.

Function SHEETOFFSET2(offset, Ref)
‘ Returns cell contents at Ref, in sheet offset

Dim WBook As Workbook
Dim WksCount As Integer, i As Integer
Dim CallerSheet As String, CallerIndex As Integer
Application.Volatile

‘ Create an array consisting only of Worksheets
Set WBook = Application.Caller.Parent.Parent
Dim Wks() As Worksheet
WksCount = 0
For i = 1 To WBook.Sheets.Count

If TypeName(WBook.Sheets(i)) = “Worksheet” Then
WksCount = WksCount + 1
ReDim Preserve Wks(1 To WksCount)
Set Wks(WksCount) = WBook.Sheets(i)

End If
Next i

‘ Determine the position of the calling sheet
CallerSheet = Application.Caller.Parent.Name
For i = 1 To UBound(Wks)

If CallerSheet = Wks(i).Name Then CallerIndex = i
Next i

‘ Get the value
SHEETOFFSET2 = Wks(CallerIndex + _
offset).Range(Ref.Address)

End Function

Returning the maximum value across all worksheets
If you need to determine the maximum value in cell B1 across a number of work-
sheets, you would use a formula such as this:

=MAX(Sheet1:Sheet4!B1)

This formula returns the maximum value in cell B1 for Sheet1, Sheet4, and all of the
sheets in between.

But what if you add a new sheet (Sheet5) after Sheet4? Your formula won’t adjust
automatically, so you need to edit it to include the new sheet reference:

=MAX(Sheet1:Sheet5!B1)

4799-2 ch11.F 6/11/01 9:32 AM Page 339

340 Part III ✦ Understanding Visual Basic for Applications

The MAXALLSHEETS function, which follows, accepts a single-cell argument, and
returns the maximum value in that cell across all worksheets in the workbook. The
formula that follows, for example, returns the maximum value in cell B1 for all
sheets in the workbook:

=MAXALLSHEETS(B1)

If you add a new sheet, there’s no need to edit the formula:

Function MAXALLSHEETS(cell)
Dim MaxVal As Double
Dim Addr As String
Dim Wksht As Object
Application.Volatile
Addr = cell.Range(“A1”).Address
MaxVal = -9.9E+307
For Each Wksht In cell.Parent.Parent.Worksheets

If Wksht.Name = cell.Parent.Name And _
Addr = Application.Caller.Address Then

‘ avoid circular reference
Else

If IsNumeric(Wksht.Range(Addr)) Then
If Wksht.Range(Addr) > MaxVal Then _
MaxVal = Wksht.Range(Addr).Value

End If
End If

Next Wksht
If MaxVal = -9.9E+307 Then MaxVal = 0
MAXALLSHEETS = MaxVal

End Function

The For each statement uses the following expression to access the Workbook:

cell.Parent.Parent.Worksheets

The parent of the cell is a worksheet, and the parent of the worksheet is the work-
book. Therefore, the For Each-Next loop cycles among all worksheets in the work-
book. The first If statement inside of the loop performs a check to see if the cell
being checked is the cell that contains the function. If so, that cell is ignored to
avoid a circular reference error.

This function can be modified easily to perform other cross-worksheet calcula-
tions: Minimum, Average, Sum, and so on.

Returning an array of nonduplicated random integers
The function in this section, RANDOMINTEGERS, returns an array of nonduplicated
integers. The function is intended to be used in a multicell array formula. Figure
11-12 shows a worksheet that uses the following formula in the range A1:D10:

{=RANDOMINTEGERS()}

Note

4799-2 ch11.F 6/11/01 9:32 AM Page 340

341Chapter 11 ✦ VBA Programming Examples and Techniques

This formula was entered into the entire range using Ctrl+Shift+Enter. The formula
returns an array of nonduplicated integers, arranged randomly. Because 40 cells
contain the formula, the integers range from 1 to 40.

Figure 11-12: An array formula generates nonduplicated consecutive
integers, arranged randomly.

The code for RANDOMINTEGERS follows:

Function RANDOMINTEGERS()
Dim FuncRange As Range
Dim V() As Variant, ValArray() As Variant
Dim CellCount As Double
Dim i As Integer, j As Integer
Dim r As Integer, c As Integer
Dim Temp1 As Variant, Temp2 As Variant
Dim RCount As Integer, CCount As Integer
Randomize

‘ Create Range object
Set FuncRange = Application.Caller

‘ Return an error if FuncRange is too large
CellCount = FuncRange.Count
If CellCount > 1000 Then

RANDOMINTEGERS = CVErr(xlErrNA)
Exit Function

End If

‘ Assign variables
RCount = FuncRange.Rows.Count
CCount = FuncRange.Columns.Count
ReDim V(1 To RCount, 1 To CCount)

4799-2 ch11.F 6/11/01 9:32 AM Page 341

342 Part III ✦ Understanding Visual Basic for Applications

ReDim ValArray(1 To 2, 1 To CellCount)

‘ Fill array with random numbers
‘ and consecutive integers

For i = 1 To CellCount
ValArray(1, i) = Rnd
ValArray(2, i) = i

Next i

‘ Sort ValArray by the random number dimension
For i = 1 To CellCount

For j = i + 1 To CellCount
If ValArray(1, i) > ValArray(1, j) Then

Temp1 = ValArray(1, j)
Temp2 = ValArray(2, j)
ValArray(1, j) = ValArray(1, i)
ValArray(2, j) = ValArray(2, i)
ValArray(1, i) = Temp1
ValArray(2, i) = Temp2

End If
Next j

Next i

‘ Put the randomized values into the V array
i = 0
For r = 1 To RCount

For c = 1 To CCount
i = i + 1
V(r, c) = ValArray(2, i)

Next c
Next r
RANDOMINTEGERS = V

End Function

Randomizing a range
The RANGERANDOMIZE function, which follows, accepts a range argument and
returns an array that consists of the input range — in random order:

Function RANGERANDOMIZE(rng)
Dim V() As Variant, ValArray() As Variant
Dim CellCount As Double
Dim i As Integer, j As Integer
Dim r As Integer, c As Integer
Dim Temp1 As Variant, Temp2 As Variant
Dim RCount As Integer, CCount As Integer
Randomize

‘ Return an error if rng is too large
CellCount = rng.Count
If CellCount > 1000 Then

RANGERANDOMIZE = CVErr(xlErrNA)

4799-2 ch11.F 6/11/01 9:32 AM Page 342

343Chapter 11 ✦ VBA Programming Examples and Techniques

Exit Function
End If

‘ Assign variables
RCount = rng.Rows.Count
CCount = rng.Columns.Count
ReDim V(1 To RCount, 1 To CCount)
ReDim ValArray(1 To 2, 1 To CellCount)

‘ Fill ValArray with random numbers
‘ and values from rng

For i = 1 To CellCount
ValArray(1, i) = Rnd
ValArray(2, i) = rng(i)

Next i

‘ Sort ValArray by the random number dimension
For i = 1 To CellCount

For j = i + 1 To CellCount
If ValArray(1, i) > ValArray(1, j) Then

Temp1 = ValArray(1, j)
Temp2 = ValArray(2, j)
ValArray(1, j) = ValArray(1, i)
ValArray(2, j) = ValArray(2, i)
ValArray(1, i) = Temp1
ValArray(2, i) = Temp2

End If
Next j

Next i

‘ Put the randomized values into the V array
i = 0
For r = 1 To RCount

For c = 1 To CCount
i = i + 1
V(r, c) = ValArray(2, i)

Next c
Next r
RANGERANDOMIZE = V

End Function

The code is very similar to that for the RANDOMINTEGERS function.

Figure 11-13 shows the function in use. The array formula in B2:B11 is:

{=RANGERANDOMIZE(A2:A11)}

This formula returns the contents of A2:A11, but in random order.

4799-2 ch11.F 6/11/01 9:32 AM Page 343

344 Part III ✦ Understanding Visual Basic for Applications

Figure 11-13: The RANGERANDOMIZE function
returns the contents of a range, in random order.

Windows API Calls
One of VBA’s most important features is the capability to use functions that are
stored in Dynamic Link Libraries (DLLs). The examples in this section use common
Windows API calls.

The API declarations that you can use depend on your version of Excel. If you
attempt to use a 32-bit API function with 16-bit Excel 5, you’ll get an error.
Similarly, if you attempt to use a 16-bit API function with 32-bit Excel 95 or later,
you’ll get an error. The examples in this section are for 32-bit Excel.

I discuss this and other compatibility issues in detail in Chapter 25.

Determining file associations
In Windows, many file types are associated with a particular application. This asso-
ciation makes it possible to double-click the file to load it into its associated
application.

The following function, named GetExecutable, uses a Windows API call to get the
full path to the application associated with a particular file. For example, your sys-
tem has many files with a .txt extension — one named Readme.txt is probably in
your Windows directory right now. You can use the GetExecutable function to
determine the full path of the application that opens when the file is double-clicked.

Windows API declarations must appear at the top of your VBA module.Note

Cross-
Reference

Note

4799-2 ch11.F 6/11/01 9:32 AM Page 344

345Chapter 11 ✦ VBA Programming Examples and Techniques

Function GetExecutable(strFile As String) As String
Dim strPath As String
Dim intLen As Integer
strPath = Space(255)
intLen = FindExecutableA(strFile, “\”, strPath)
GetExecutable = Trim(strPath)

End Function

Figure 11-14 shows the result of calling the GetExecutable function, with an argu-
ment of c:\windows\readme.txt. In this case, the windows NOTEPAD.EXE pro-
gram is associated with the file.

Figure 11-14: Determining the path of the application associated
with a particular file

Determining default printer information
The example in this section uses a Windows API function to return information
about the active printer. The information is contained in a single text string. The
example parses the string and displays the information in a more readable format.

Private Declare Function GetProfileStringA Lib “kernel32” _
(ByVal lpAppName As String, ByVal lpKeyName As String, _
ByVal lpDefault As String, ByVal lpReturnedString As _
String, ByVal nSize As Long) As Long

Sub DefaultPrinterInfo()
Dim strLPT As String * 255
Dim Result As String
Call GetProfileStringA _
(“Windows”, “Device”, “”, strLPT, 254)

Result = Application.Trim(strLPT)
ResultLength = Len(Result)

Comma1 = Application.Find(“,”, Result, 1)
Comma2 = Application.Find(“,”, Result, Comma1 + 1)

‘ Gets printer’s name
Printer = Left(Result, Comma1 - 1)

‘ Gets driver
Driver = Mid(Result, Comma1 + 1, Comma2 - Comma1 - 1)

‘ Gets last part of device line
Port = Right(Result, ResultLength - Comma2)

4799-2 ch11.F 6/11/01 9:32 AM Page 345

346 Part III ✦ Understanding Visual Basic for Applications

‘ Build message
Msg = “Printer:” & Chr(9) & Printer & Chr(13)
Msg = Msg & “Driver:” & Chr(9) & Driver & Chr(13)
Msg = Msg & “Port:” & Chr(9) & Port

‘ Display message
MsgBox Msg, vbInformation, “Default Printer Information”

End Sub

The ActivePrinter property of the Application object returns the name of
the active printer (and lets you change it), but there’s no direct way to determine
what printer driver or port is being used. That’s why this function is useful.

Figure 11-15 shows a sample message box returned by this procedure.

Figure 11-15: Getting information about the active printer
using a Windows API call

Determining the current video mode
The example in this section uses Windows API calls to determine a system’s current
video mode. If your application needs to display a certain amount of information on
one screen, knowing the display size helps you scale the text accordingly.

‘32-bit API declaration
Declare Function GetSystemMetrics Lib “user32” _
(ByVal nIndex As Long) As Long

Public Const SM_CXSCREEN = 0
Public Const SM_CYSCREEN = 1

Sub DisplayVideoInfo()
vidWidth = GetSystemMetrics(SM_CXSCREEN)
vidHeight = GetSystemMetrics(SM_CYSCREEN)

Msg = “The current video mode is: “
Msg = Msg & vidWidth & “ X “ & vidHeight
MsgBox Msg

End Sub

Figure 11-16 shows the message box returned by this procedure when running on a
system set to 1600 x 1024 resolution.

Note

4799-2 ch11.F 6/11/01 9:32 AM Page 346

347Chapter 11 ✦ VBA Programming Examples and Techniques

Figure 11-16: Using a Windows API call to determine the
video display mode

Adding sound to your applications
By itself, Excel doesn’t have much to offer in the area of sound — VBA’s Beep com-
mand is about as good as it gets. However, with a few simple API calls, your applica-
tion can play WAV or MIDI files.

The text-to-speech feature in Excel 2002 extends the sound capability quite a bit.
In fact, Excel 2002 can “speak” text by using the Speak method of the Speech
object. The examples in this section focus on playing sound files.

Not all systems support sound. To determine whether a system supports sound,
use the CanPlaySounds method. Here’s an example:

If Not Application.CanPlaySounds Then
MsgBox “Sorry, sound is not supported on your system.”
Exit Sub

End If

Playing a WAV file
The following example contains the API function declaration plus a simple proce-
dure to play a sound file called dogbark.wav, which is presumed to be in the same
directory as the workbook:

Private Declare Function PlaySound Lib “winmm.dll” _
Alias “PlaySoundA” (ByVal lpszName As String, _
ByVal hModule As Long, ByVal dwFlags As Long) As Long

Const SND_SYNC = &H0
Const SND_ASYNC = &H1
Const SND_FILENAME = &H20000

Sub PlayWAV()
WAVFile = “dogbark.wav”
WAVFile = ThisWorkbook.Path & “\” & WAVFile
Call PlaySound(WAVFile, 0&, SND_ASYNC Or SND_FILENAME)

End Sub

In the preceding example, the WAV file is played asynchronously. This means execu-
tion continues while the sound is playing. To stop code execution while the sound
is playing, use this statement instead:

Call PlaySound(WAVFile, 0&, SND_SYNC Or SND_FILENAME)

New
Feature

4799-2 ch11.F 6/11/01 9:32 AM Page 347

348 Part III ✦ Understanding Visual Basic for Applications

Playing a MIDI file
If the sound file is a MIDI file, you’ll need to use a different API call. The PlayMIDI
procedure starts playing a MIDI file. Executing the StopMIDI procedure stops play-
ing the MIDI file. This example uses a file named xfiles.mid.

Private Declare Function mciExecute Lib “winmm.dll” _
(ByVal lpstrCommand As String) As Long

Sub PlayMIDI()
MIDIFile = “xfiles.mid”
MIDIFile = ThisWorkbook.Path & “\” & MIDIFile
mciExecute (“play “ & MIDIFile)

End Sub

Sub StopMIDI()
MIDIFile = “xfiles.mid”
MIDIFile = ThisWorkbook.Path & “\” & MIDIFile
mciExecute (“stop “ & MIDIFile)

End Sub

Playing sound from a worksheet function
The Alarm function, which follows, is designed to be used in a worksheet formula.
It uses a Windows API function to play a sound file when a cell meets a certain
condition.

Declare Function PlaySound Lib “winmm.dll” _
Alias “PlaySoundA” (ByVal lpszName As String, _
ByVal hModule As Long, ByVal dwFlags As Long) As Long

Function ALARM(Cell, Condition)
Dim WAVFile As String
Const SND_ASYNC = &H1
Const SND_FILENAME = &H20000
If Evaluate(Cell.Value & Condition) Then

WAVFile = ThisWorkbook.Path & “\sound.wav”
Call PlaySound(WAVFile, 0&, SND_ASYNC Or SND_FILENAME)
ALARM = True

Else
ALARM = False

End If
End Function

The Alarm function accepts two arguments: a cell reference and a “condition”
(expressed as a string). The following formula, for example, uses the Alarm func-
tion to play a WAV file when the value in cell B13 is greater than or equal to 1000.

=ALARM(B13,”>=1000”)

4799-2 ch11.F 6/11/01 9:32 AM Page 348

349Chapter 11 ✦ VBA Programming Examples and Techniques

The function uses VBA’s Evaluate function to determine whether the cell’s value
matches the specified criterion. When the criterion is met (and the alarm has
sounded), the function returns True; otherwise, it returns False.

Reading from and writing to the Registry
Most Windows applications use the Windows Registry database to store settings
(see Chapter 4 for some additional information about the Registry). Your VBA pro-
cedures can read values from the Registry and write new values to the Registry.
Doing so requires the following Windows API declarations:

Private Declare Function RegOpenKeyA Lib “ADVAPI32.DLL” _
(ByVal hKey As Long, ByVal sSubKey As String, _
ByRef hkeyResult As Long) As Long

Private Declare Function RegCloseKey Lib “ADVAPI32.DLL” _
(ByVal hKey As Long) As Long

Private Declare Function RegSetValueExA Lib “ADVAPI32.DLL” _
(ByVal hKey As Long, ByVal sValueName As String, _
ByVal dwReserved As Long, ByVal dwType As Long, _
ByVal sValue As String, ByVal dwSize As Long) As Long

Private Declare Function RegCreateKeyA Lib “ADVAPI32.DLL” _
(ByVal hKey As Long, ByVal sSubKey As String, _
ByRef hkeyResult As Long) As Long

Private Declare Function RegQueryValueExA Lib “ADVAPI32.DLL” _
(ByVal hKey As Long, ByVal sValueName As String, _
ByVal dwReserved As Long, ByRef lValueType As Long, _
ByVal sValue As String, ByRef lResultLen As Long) As Long

I developed two “wrapper” functions that simplify the task of working with the
Registry: GetRegistry and WriteRegistry. These functions are available on
the companion CD-ROM. This workbook includes a procedure that demonstrates
reading from the Registry and writing to the Registry.

Reading from the Registry
The GetRegistry function returns a setting from the specified location in the
Registry. It takes three arguments:

RootKey A string that represents the branch of the Registry to
address. This string may be one of the following:

HKEY_CLASSES_ROOT

HKEY_CURRENT_USER

HKEY_LOCAL_MACHINE

HKEY_USERS

On the
CD-ROM

4799-2 ch11.F 6/11/01 9:32 AM Page 349

350 Part III ✦ Understanding Visual Basic for Applications

HKEY_CURRENT_CONFIG

HKEY_DYN_DATA

Path The full path of the Registry category being addressed.

RegEntry The name of the setting to retrieve.

Here’s an example. If you’d like to find out the current setting for the active window
title bar , you can call GetRegistry as follows (notice that the arguments are not
case sensitive):

RootKey = “hkey_current_user”
Path = “Control Panel\Colors”
RegEntry = “ActiveTitle”
MsgBox GetRegistry(RootKey, Path, RegEntry), _
vbInformation, Path & “\RegEntry”

The message box will display three values, representing the RGB value of the color.

Writing to the Registry
The WriteRegistry function writes a value to the Registry at a specified location.
If the operation is successful, the function returns True; otherwise, it returns False.
WriteRegistry takes the following arguments (all of them are strings):

RootKey A string that represents the branch of the Registry to address.
This string may be one of the following:

HKEY_CLASSES_ROOT

HKEY_CURRENT_USER

HKEY_LOCAL_MACHINE

HKEY_USERS

HKEY_CURRENT_CONFIG

HKEY_DYN_DATA

Path The full path in the Registry. If the path doesn’t exist, it is created.

RegEntry The name of the Registry category to which the value will be
written. If it doesn’t exist, it is added.

RegVal The value that you are writing.

Here’s an example that writes a value representing the time and date Excel was
started to the Registry. The information is written in the area that stores Excel’s
settings.

4799-2 ch11.F 6/11/01 9:32 AM Page 350

351Chapter 11 ✦ VBA Programming Examples and Techniques

Sub Auto_Open()
RootKey = “hkey_current_user”
Path = “software\microsoft\office\10.0\excel\LastStarted”
RegEntry = “DateTime”
RegVal = Now()
If WriteRegistry(RootKey, Path, RegEntry, RegVal) Then

msg = RegVal & “ has been stored in the registry.”
Else msg = “An error occurred”

End If
MsgBox msg

End Sub

If you store this routine in your personal macro workbook, the setting is automati-
cally updated whenever you start Excel.

Summary
In this chapter, I presented dozens of examples to help you better understand the
capabilities of VBA.

The next chapter focuses on one class of Excel applications: utility programs.

✦ ✦ ✦

An Easier Way to Access the Registry

If you want to use the Windows Registry to store and retrieve settings for your Excel appli-
cations, you don’t have to bother with the Windows API calls. Rather, you can use VBA’s
GetSetting and SaveSetting functions.

These two functions are described in the online help, so I won’t cover the details here.
However, it’s important to understand that these functions work only with the following key
name:

HKEY_CURRENT_USER\Software\VB and VBA Program Settings

In other words, you can’t use these functions to access any key in the Registry. Rather, these
functions are most useful for storing information about your Excel application that you need
to maintain between sessions.

4799-2 ch11.F 6/11/01 9:32 AM Page 351

4799-2 ch11.F 6/11/01 9:32 AM Page 352

Working with
UserForms

The four chapters in this part cover custom dialog boxes
(also known as UserForms). Chapter 12 presents some

built-in alternatives to creating custom UserForms. Chapter 13
provides an introduction to UserForms and the various con-
trols you can use. Chapters 14 and 15 present many examples
of custom dialog boxes, ranging from basic to advanced.

✦ ✦ ✦ ✦

In This Part

Chapter 12
Custom Dialog Box
Alternatives

Chapter 13
Introducing
UserForms

Chapter 14
UserForm Examples

Chapter 15
Advanced UserForm
Techniques

✦ ✦ ✦ ✦

P A R T

IVIV

4799-2 PO4.F 6/11/01 9:32 AM Page 353

4799-2 PO4.F 6/11/01 9:32 AM Page 354

Custom Dialog
Box Alternatives

Dialog boxes are, perhaps, the most important user inter-
face element in Windows programs. Virtually every

Windows program uses them. And most users have a good
understanding of how they work. Excel developers implement
custom dialog boxes by creating UserForms.

Before I get into the nitty gritty of creating UserForms, you
may find it helpful to understand some of Excel’s built-in tools
that display dialog boxes. That’s the focus of this chapter.

Before You Create That UserForm . . .
In some cases, you can save yourself the trouble of creating a
custom dialog box by using one of several prebuilt dialog boxes:

✦ An input box

✦ A message box

✦ A dialog box for selecting a file to open

✦ A dialog box for specifying a filename and location for a
save operation

✦ A dialog box for specifying a directory

✦ A dialog box for data entry

I describe these dialog boxes in the following sections.

Using an Input Box
An input box is a simple dialog box that allows the user to make
a single entry. For example, you can use an input box to let the
user enter text, a number, or even select a range. There are actu-
ally two InputBox functions: one from VBA and one from Excel.

1212C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Using an input box to
get user input

Using a message box
to display messages
or get a simple
response

Selecting a file from
a dialog box

Selecting a directory

Displaying Excel’s
built-in dialog boxes

✦ ✦ ✦ ✦

4799-2 ch12.F 6/11/01 9:32 AM Page 355

356 Part IV ✦ Working with UserForms

VBA’s InputBox function
The syntax for VBA’s InputBox function is:

InputBox(prompt[,title][,default][,xpos][,ypos][,helpfile,
context])

prompt Required. The text displayed in the input box.

title Optional. The caption of the input box window.

default Optional. The default value to be displayed in the
dialog box.

xpos, ypos Optional. The screen coordinates at the upper left corner
of the window.

helpFile, context Optional. The helpfile and help topic.

The InputBox function prompts the user for a single bit of information. The func-
tion always returns a string, so it may be necessary to convert the results to a
value.

The prompt may consist of about 1,024 characters (more or less, depending on the
width of the characters used). In addition, you can provide a title for the dialog box,
a default value, and specify its position on the screen. And you can specify a cus-
tom help topic; if you do, the input box includes a Help button.

The following example, whose output is shown in Figure 12-1, uses VBA’s InputBox
function to ask the user for his or her full name. The code then extracts the first
name and displays a greeting, using a message box.

Figure 12-1: VBA’s InputBox function
at work

Sub GetName()
Dim UserName As String
Dim FirstSpace As Integer
Do Until UserName <> “”

UserName = InputBox(“Enter your full name: “, _
“Identify Yourself”)

4799-2 ch12.F 6/11/01 9:32 AM Page 356

357Chapter 12 ✦ Custom Dialog Box Alternatives

Loop
FirstSpace = InStr(UserName, “ “)
If FirstSpace <> 0 Then

UserName = Left(UserName, FirstSpace - 1)
End If
MsgBox “Hello “ & UserName

End Sub

Notice that this InputBox function is written in a Do Until loop to ensure that
something is entered when the input box appears. If the user clicks Cancel or
doesn’t enter any text, UserName contains an empty string and the input box reap-
pears. The procedure then attempts to extract the first name by searching for the
first space character (using the InStr function), and then using the Left function
to extract all characters before the first space. If a space character is not found, the
entire name is used as entered.

As I mentioned, the InputBox function always returns a string. If the string
returned by the InputBox function looks like a number, you can convert it to a
value using VBA’s Val function. Or, you can use Excel’s InputBox method,
described next.

Excel’s InputBox method
Using Excel’s InputBox method (rather than VBA’s InputBox function) offers three
advantages:

✦ You can specify the data type returned

✦ The user can specify a worksheet range by dragging in the worksheet

✦ Input validation is performed automatically

The syntax for the InputBox method is:

object.InputBox(prompt,title,default,left,top,helpFile,context,
type)

prompt Required. The text displayed in the input box.

title Optional. The caption in the input box window.

default Optional. The default value to be returned by the function, if
the user enters nothing.

left, top Optional. The screen coordinates at the upper left corner of
the window.

helpFile, context Optional. The helpfile and help topic.

type Optional. A code for the data type returned, as listed in
Table 12-1.

4799-2 ch12.F 6/11/01 9:32 AM Page 357

358 Part IV ✦ Working with UserForms

Table 12-1
Codes to Determine the Data Type

Returned by Excel’s InputBox Method

Code Meaning

0 A formula

1 A number

2 A string (text)

4 A logical value (True or False)

8 A cell reference, as a range object

16 An error value, such as #N/A

64 An array of values

Excel’s InputBox method is quite versatile. To allow more than one data type to be
returned, use the sum of the pertinent codes. For example, to display an input box
that can accept text or numbers, set type equal to 3 (that is, 1 + 2, or “number” plus
“text”). If you use 8 for the type argument, the user can enter a cell or range
address manually, or point to a range in the worksheet.

The EraseRange procedure, which follows, uses the InputBox method to allow the
user to select a range to erase (see Figure 12-2). The user can either type the range
address manually, or use the mouse to select the range in the sheet.

The InputBox method with a type argument of 8 returns a Range object (note the
Set keyword). This range is then erased (by using the Clear method). The default
value displayed in the input box is the current selection’s address. The On Error
statement ends the procedure if the input box is canceled.

Sub EraseRange()
Dim UserRange As Range
DefaultRange = Selection.Address
On Error GoTo Canceled
Set UserRange = Application.InputBox _

(Prompt:=”Range to erase:”, _
Title:=”Range Erase”, _
Default:=DefaultRange, _
Type:=8)

UserRange.Clear
UserRange.Select

Canceled:
End Sub

4799-2 ch12.F 6/11/01 9:32 AM Page 358

359Chapter 12 ✦ Custom Dialog Box Alternatives

Figure 12-2: Using the InputBox method to specify a range

Yet another advantage of using Excel’s InputBox method is that Excel performs
input validation automatically. In the GetRange example, if you enter something
other than a range address, Excel displays an informative message and lets the user
try again (see Figure 12-3).

Figure 12-3: Excel’s InputBox method performs
validation automatically.

VBA’s MsgBox Function
VBA’s MsgBox function is an easy way to display a message to the user, or to get a
simple response (such as OK or Cancel). I use the MsgBox function in many of this
book’s examples as a way to display a variable’s value.

The official syntax for MsgBox is as follows:

MsgBox(prompt[,buttons][,title][,helpfile, context])

4799-2 ch12.F 6/11/01 9:32 AM Page 359

360 Part IV ✦ Working with UserForms

prompt Required. The text displayed in the message box.

buttons Optional. A numeric expression that determines which
buttons and icon are displayed in the message box. See
Table 12-2.

title Optional. The caption in the message box window.

helpFile, context Optional. The helpfile and help topic.

You can easily customize your message boxes because of the flexibility of the but-
tons argument. (Table 12-2 lists the many constants that you can use for this argu-
ment.) You can specify which buttons to display, whether an icon appears, and
which button is the default.

Table 12-2
Constants Used for Buttons in the MsgBox Function

Constant Value Description

vbOKOnly 0 Display OK button only

vbOKCancel 1 Display OK and Cancel buttons

vbAbortRetryIgnore 2 Display Abort, Retry, and Ignore buttons

vbYesNoCancel 3 Display Yes, No, and Cancel buttons

vbYesNo 4 Display Yes and No buttons

vbRetryCancel 5 Display Retry and Cancel buttons

vbCritical 16 Display Critical Message icon

vbQuestion 32 Display Warning Query icon

vbExclamation 48 Display Warning Message icon

vbInformation 64 Display Information Message icon

vbDefaultButton1 0 First button is default

vbDefaultButton2 256 Second button is default

vbDefaultButton3 512 Third button is default

vbDefaultButton4 768 Fourth button is default

vbSystemModal 4096 All applications are suspended until the user
responds to the message box (may not work under
all conditions)

You can use the MsgBox function by itself (to simply display a message) or assign
its result to a variable. When MsgBox does return a result, it represents the button
clicked by the user. The following example displays a message and does not return
a result:

4799-2 ch12.F 6/11/01 9:32 AM Page 360

361Chapter 12 ✦ Custom Dialog Box Alternatives

Sub MsgBoxDemo()
MsgBox “Click OK to continue”

End Sub

To get a response from a message box, you can assign the results of the MsgBox
function to a variable. In the following code, I use some built-in constants
(described in Table 12-3) to make it easier to work with the values returned by
MsgBox:

Sub GetAnswer()
Ans = MsgBox(“Continue?”, vbYesNo)
Select Case Ans

Case vbYes
‘ ...[code if Ans is Yes]...

Case vbNo
‘ ...[code if Ans is No]...

End Select
End Sub

Table 12-3
Constants Used for MsgBox Return Value

Constant Value Button Clicked

vbOK 1 OK

vbCancel 2 Cancel

vbAbort 3 Abort

vbRetry 4 Retry

vbIgnore 5 Ignore

vbYes 6 Yes

vbNo 7 No

Actually, it’s not even necessary to use a variable to utilize the result of a message
box. The following procedure displays a message box with Yes and No buttons. If
the user doesn’t click the Yes button, the procedure ends.

Sub GetAnswer2()
If MsgBox(“Continue?”, vbYesNo) <> vbYes Then Exit Sub

‘ ...[code if Yes button is not clicked]...
End Sub

The following function example uses a combination of constants to display a mes-
sage box with a Yes button, a No button, and a question mark icon; the second but-
ton is designated as the default button (see Figure 12-4). For simplicity, I assigned
these constants to the Config variable.

4799-2 ch12.F 6/11/01 9:32 AM Page 361

362 Part IV ✦ Working with UserForms

Private Function ContinueProcedure() As Boolean
Dim Config As Integer
Dim Ans As Integer
Config = vbYesNo + vbQuestion + vbDefaultButton2
Ans = MsgBox(“An error occurred. Continue?”, Config)
If Ans = vbYes Then ContinueProcedure = True _

Else ContinueProcedure = False
End Function

The ContinueProcedure function can be called from another procedure. For exam-
ple, the following statement calls the ContinueProcedure function (which displays
the message box). If the function returns False (that is, the user selects No), the
procedure ends. Otherwise, the next statement would be executed.

If Not ContinueProcedure Then Exit Sub

Figure 12-4: The buttons argument of the MsgBox function
determines which buttons appear.

If you would like to force a line break in the message, use the vbCrLf (or
vbNewLine) constant in the text. The following example displays the message in
three lines:

Sub MultiLine()
Dim Msg As String
Msg = “This is the first line” & vbCrLf
Msg = Msg & “Second line” & vbCrLf
Msg = Msg & “Last line”
MsgBox Msg

End Sub

You can also insert a tab character by using the vbTab constant. The following pro-
cedure uses a message box to display the values in a 20 × 8 range of cells (see
Figure 12-5). It separates the columns by using a vbTab constant, and inserts a new
line by using the vbCrLF constant. The MsgBox function accepts a maximum string
length of 1,023 characters, which will limit the number of cells you can display.

Sub ShowRange()
Dim Msg As String
Dim r As Integer, c As Integer
Msg = “”

4799-2 ch12.F 6/11/01 9:32 AM Page 362

363Chapter 12 ✦ Custom Dialog Box Alternatives

For r = 1 To 20
For c = 1 To 8

Msg = Msg & Cells(r, c) & vbTab
Next c
Msg = Msg & vbCrLf

Next r
MsgBox Msg

End Sub

Chapter 15 includes a VBA example that emulates the MsgBox function.Cross-
Reference

Another Type of Message Box

Excel can access the Windows Scripting Host (Wscript) and display another type of message
box by using the Popup method of the Shell object. This alternative message box differs
from the standard message box in two ways: It can dismiss itself after a specified period of
time; and it’s possible to display the message box with no buttons.

The following example displays a message box. If the user does not dismiss it within five
seconds, it is dismissed automatically.

Sub PopupDemo()
Dim WshShell As IWshShell
Dim Msg As String
Set WshShell = CreateObject(“Wscript.Shell”)
Msg = “This message will self-destruct in 5 seconds.”
Title = “A friendly reminder”
WshShell.Popup Msg, 5, Title, 7 + vbInformation
Set WshShell = Nothing

End Sub

The first Set statement creates the Shell object and assigns it to the WshShell variable.
The first argument for the Popup method represents the text to be displayed. The second
argument specifies the number of seconds to display the message box. The third argument
is the title bar text. The final argument specifies the buttons and icon to be displayed (it
works just like the buttons argument for the MsgBox function).

If you decide to use this alternate message box, be aware that system administrators often
disable the Windows Scripting Host because of the threat of viruses. If the Windows
Scripting Host is disabled, the code will generate an error.

4799-2 ch12.F 6/11/01 9:32 AM Page 363

364 Part IV ✦ Working with UserForms

Figure 12-5: This message box displays text
with tabs and line breaks.

Excel’s GetOpenFilename Method
If your application needs to ask the user for a filename, you can use the InputBox
function. But this approach often leads to typographical errors. A better approach
is to use the GetOpenFilename method of the Application object, which ensures
that your application gets a valid filename (as well as its complete path).

This method displays the normal Open dialog box (displayed when you select the
File ➪ Open command) but does not actually open the file specified. Rather, the
method returns a string that contains the path and filename selected by the user.
Then you can do whatever you want with the filename. The syntax for this method
is as follows (all arguments are optional):

object.GetOpenFilename(FileFilter, FilterIndex, Title,
ButtonText, MultiSelect)

FileFilter Optional. A string specifying file-filtering criteria.

FilterIndex Optional. The index numbers of the default file-filtering
criteria.

Title Optional. The title of the dialog box. If omitted, the title is
“Open.”

ButtonText For Macintosh only.

MultiSelect Optional. If True, multiple filenames can be selected. The
default value is False.

4799-2 ch12.F 6/11/01 9:32 AM Page 364

365Chapter 12 ✦ Custom Dialog Box Alternatives

The FileFilter argument determines what appears in the dialog box’s Files of type
drop-down list. The argument consists of pairs of file filter strings followed by the
wildcard file filter specification, with each part and each pair separated by commas.
If omitted, this argument defaults to:

“ All Files (*.*),*.*”

Notice that the first part of this string (All Files (*.*)) is the text displayed in
the Files of type drop-down list. The second part (*.*) actually determines which
files are displayed.

The following instruction assigns a string to a variable named Filt. This string can
then be used as a FileFilter argument for the GetOpenFilename method. In this
case, the dialog box will allow the user to select from four different file types (plus
an “all files” option). Notice that I used VBA’s line continuation sequence to set up
the Filt variable; doing so makes it much easier to work with this rather compli-
cated argument.

Filt = “Text Files (*.txt),*.txt,” & _
“Lotus Files (*.prn),*.prn,” & _
“Comma Separated Files (*.csv),*.csv,” & _
“ASCII Files (*.asc),*.asc,” & _
“All Files (*.*),*.*”

The FilterIndex argument specifies which FileFilter is the default, and the title argu-
ment is text that is displayed in the title bar. If the multiSelect argument is True, the
user can select multiple files, all of which are returned in an array.

The following example prompts the user for a filename. It defines five file filters.

Sub GetImportFileName()
Dim Filt As String
Dim FilterIndex As Integer
Dim Title As String
Dim FileName As String

‘ Set up list of file filters
Filt = “Text Files (*.txt),*.txt,” & _

“Lotus Files (*.prn),*.prn,” & _
“Comma Separated Files (*.csv),*.csv,” & _
“ASCII Files (*.asc),*.asc,” & _
“All Files (*.*),*.*”

‘ Display *.* by default
FilterIndex = 5

4799-2 ch12.F 6/11/01 9:32 AM Page 365

366 Part IV ✦ Working with UserForms

‘ Set the dialog box caption
Title = “Select a File to Import”

‘ Get the file name
FileName = Application.GetOpenFilename _

(FileFilter:=Filt, _
FilterIndex:=FilterIndex, _
Title:=Title)

‘ Exit if dialog box canceled
If FileName = False Then

MsgBox “No file was selected.”
Exit Sub

End If

‘ Display full path and name of the file
MsgBox “You selected “ & FileName

End Sub

Figure 12-6 shows the dialog box that appears when this procedure is executed.

Figure 12-6: The GetOpenFilename method displays a
customizable dialog box.

The following example is similar to the previous example. The difference is that the
user can press Ctrl or Shift and select multiple files when the dialog box is dis-
played. Notice that I check for the Cancel button click by determining if FileName
is an array. If the user doesn’t click Cancel, the result is an array that consists of at
least one element. In this example, a list of the selected files is displayed in a mes-
sage box.

4799-2 ch12.F 6/11/01 9:32 AM Page 366

367Chapter 12 ✦ Custom Dialog Box Alternatives

Sub GetImportFileName2()
Dim Filt As String
Dim FilterIndex As Integer
Dim FileName As Variant
Dim Title As String
Dim i As Integer
Dim Msg As String

‘ Set up list of file filters
Filt = “Text Files (*.txt),*.txt,” & _

“Lotus Files (*.prn),*.prn,” & _
“Comma Separated Files (*.csv),*.csv,” & _
“ASCII Files (*.asc),*.asc,” & _
“All Files (*.*),*.*”

‘ Display *.* by default
FilterIndex = 5

‘ Set the dialog box caption
Title = “Select a File to Import”

‘ Get the file name
FileName = Application.GetOpenFilename _

(FileFilter:=Filt, _
FilterIndex:=FilterIndex, _
Title:=Title, _
MultiSelect:=True)

‘ Exit if dialog box canceled
If Not IsArray(FileName) Then

MsgBox “No file was selected.”
Exit Sub

End If

‘ Display full path and name of the files
For i = LBound(FileName) To UBound(FileName)

Msg = Msg & FileName(i) & vbCrLf
Next i
MsgBox “You selected:” & vbCrLf & Msg

End Sub

Notice that the FileName variable is defined as a variant (not a string, as in the pre-
vious example). This is done because FileName can, potentially, hold an array
rather than a single file name.

Excel’s GetSaveAsFilename Method
The GetSaveAsFilename method is very similar to the GetOpenFilename method.
It displays a Save As dialog box and lets the user select (or specify) a file. It returns
a filename and path but doesn’t take any action.

The syntax for this method is:

4799-2 ch12.F 6/11/01 9:32 AM Page 367

368 Part IV ✦ Working with UserForms

object.GetSaveAsFilename(InitialFilename, FileFilter,
FilterIndex, Title, ButtonText)

The arguments are:

InitialFilename Optional. Specifies the suggested filename.

FileFilter Optional. A string specifying file-filtering criteria.

FilterIndex Optional. The index number of the default file-filtering
criteria.

Title Optional. The title of the dialog box.

ButtonText For Macintosh only.

Prompting for a Directory
If you need to get a filename, the simplest solution is to use the GetOpenFileName
method, as described above. But if you only need to get a directory name, the solu-
tion will depend on which version of Excel you (and your users) have.

This section describes two ways to prompt for a directory. The first method is more
complicated but works with Excel 97 and later. The second method is much easier
but requires Excel 2002.

Using a Windows API function to select a directory
In this section, I present a function named GetDirectory that displays the dialog
box shown in Figure 12-7 and returns a string that represents the selected directory.
If the user clicks Cancel, the function returns an empty string. This technique will
work with Excel 97 and later versions.

Figure 12-7: Use an API function
to display this dialog box.

4799-2 ch12.F 6/11/01 9:32 AM Page 368

369Chapter 12 ✦ Custom Dialog Box Alternatives

The GetDirectory function takes one argument, which is optional. This argument
is a string that will be displayed in the dialog box. If the argument is omitted, the
dialog box displays Select a folder as the message.

The companion CD-ROM contains a workbook that demonstrates this procedure.

Following are the API declarations required at the beginning of the workbook mod-
ule. This function also uses a custom data type, called BROWSEINFO.

‘32-bit API declarations
Declare Function SHGetPathFromIDList Lib “shell32.dll” _
Alias “SHGetPathFromIDListA” (ByVal pidl As Long, ByVal _
pszPath As String) As Long

Declare Function SHBrowseForFolder Lib “shell32.dll” _
Alias “SHBrowseForFolderA” (lpBrowseInfo As BROWSEINFO) _
As Long

Public Type BROWSEINFO
hOwner As Long
pidlRoot As Long
pszDisplayName As String
lpszTitle As String
ulFlags As Long
lpfn As Long
lParam As Long
iImage As Long

End Type

The GetDirectory function follows:

Function GetDirectory(Optional Msg) As String
Dim bInfo As BROWSEINFO
Dim path As String
Dim r As Long, x As Long, pos As Integer

‘ Root folder = Desktop
bInfo.pidlRoot = 0&

‘ Title in the dialog
If IsMissing(Msg) Then

bInfo.lpszTitle = “Select a folder.”
Else

bInfo.lpszTitle = Msg
End If

‘ Type of directory to return
bInfo.ulFlags = &H1

On the
CD-ROM

4799-2 ch12.F 6/11/01 9:32 AM Page 369

370 Part IV ✦ Working with UserForms

‘ Display the dialog
x = SHBrowseForFolder(bInfo)

‘ Parse the result
path = Space$(512)
r = SHGetPathFromIDList(ByVal x, ByVal path)
If r Then

pos = InStr(path, Chr$(0))
GetDirectory = Left(path, pos - 1)

Else
GetDirectory = “”

End If
End Function

The simple procedure that follows demonstrates how to use the GetDirectory
function in your code. Executing this procedure displays the dialog box. When the
user clicks OK the MsgBox function displays the full path of the selected directory.
If the user clicks Cancel, the message box displays Canceled.

Sub GetAFolder1()
‘ For Excel 97 or later

Dim Msg As String
Dim UserFile As String
Msg = “Please select a location for the backup.”
UserFile = GetDirectory(Msg)
If UserFile = “” Then

MsgBox “Canceled”
Else

MsgBox UserFile
End If

End Sub

Unfortunately, there is no easy way to specify a default or starting directory.

Using the FileDialog object to select a directory
If users of your application all use Excel 2002, you may prefer to use a simpler tech-
nique that makes use of the FileDialog object.

The FileDialog object is new to Excel 2002. Therefore, this technique will not
work with earlier versions of Excel.

The following procedure displays a dialog box, which allows the user to select a
directory. The selected directory name (or Canceled) is then displayed using the
MsgBox function.

Sub GetAFolder2()
‘ For Excel 2002

With Application.FileDialog(msoFileDialogFolderPicker)

New
Feature

Note

4799-2 ch12.F 6/11/01 9:32 AM Page 370

371Chapter 12 ✦ Custom Dialog Box Alternatives

.InitialFileName = Application.DefaultFilePath & “\”

.Title = “Please select a location for the backup”

.Show
If .SelectedItems.Count = 0 Then

MsgBox “Canceled”
Else

MsgBox .SelectedItems(1)
End If

End With
End Sub

The FileDialog object lets you specify the starting directory by specifying a value
for the InitialFileName property. In this case, the code uses Excel’s default file
path as the starting directory.

Displaying Excel’s Built-In Dialog Boxes
Code that you write in VBA can execute Excel’s menu commands. And, if the com-
mand leads to a dialog box, your code can “make choices” in the dialog box
(although the dialog box itself isn’t displayed). For example, the following VBA
statement is equivalent to selecting the Edit ➪ Go To command, specifying range
A1:C3, and clicking OK. But the Go To dialog box never appears (which is what you
want).

Application.Goto Reference:=Range(“A1:C3”)

In some cases, however, you may want to display one of Excel’s built-in dialog
boxes so the end user can make the choices. There are two ways to do this:

✦ Access the Dialogs collection of the Application object.

✦ Execute a menu item directly.

I discuss each of these techniques in the sections that follow.

Using the Dialogs collection
The Dialogs collection of the Application object consists of 258 members that
represent most of Excel’s built-in dialog boxes. Each has a predefined constant to
make it easy to specify the dialog box that you need. For example, Excel’s Go To
dialog box is represented by the constant xlDialogFormulaGoto.

Use the Show method to actually display the dialog box. Here’s an example that dis-
plays the Go To dialog box (see Figure 12-8):

Application.Dialogs(xlDialogFormulaGoto).Show

4799-2 ch12.F 6/11/01 9:32 AM Page 371

372 Part IV ✦ Working with UserForms

Figure 12-8: This dialog box was displayed with a
VBA statement.

When the Go To dialog box is shown, the user can specify a named range or enter a
cell address to go to. This dialog box is the one that appears when you choose the
Edit ➪ Go To command (or press F5).

You can also write code to determine how the user dismissed the dialog box. Do
this by using a variable. In the following statement, the Result variable will be True
if the user clicked OK, and False if the user clicked Cancel or pressed Esc.

Result = Application.Dialogs(xlDialogFormulaGoto).Show

Contrary to what you might expect, the Result variable does not hold the range
that was specified in the Go To dialog box.

It’s important to understand that this feature is not documented very well. The
online help is very sketchy, and it doesn’t mention the fact that displaying one of
Excel’s dialog boxes via VBA code may not always work exactly the same as using a
menu command to display the dialog box. Consequently, you may have to do some
experimentation to make sure your code performs as it should.

In the case of the Go To dialog box, you’ll notice that the Special button is grayed
out when the dialog is shown using a VBA statement. This button normally displays
the Go To Special dialog box. To display the Go To Special dialog box using VBA
code, use this statement:

Application.Dialogs(xlDialogSelectSpecial).Show

Another potential problem is that you can’t display some “tabbed” dialog boxes
correctly. For example, there is no way to show the Format Cells dialog box with the
tabs. Rather, you can only show one tab at a time. The following statement displays
the Alignment tab of the Format Cells dialog box (see Figure 12-9):

Application.Dialogs(xlDialogAlignment).Show

To show other tabs in the Format Cells dialog box, use any of these constants:
xlDialogFormatNumber, xlDialogBorder, xlDialogCellProtection,
xlDialogPatterns, or xlDialogFontProperties. Notice that there is no consis-
tency in the naming of these constants.

4799-2 ch12.F 6/11/01 9:32 AM Page 372

373Chapter 12 ✦ Custom Dialog Box Alternatives

Figure 12-9: The Alignment tab of the
Format Cells dialog box

Learning more about built-in dialog boxes
You can get a list of all of the dialog box constants by consulting the online help, or
by using the Object Browser. Follow these steps to display the members of the
Dialogs collection in the Object Browser:

1. In a VBA module, press F2 to bring up the Object Browser.

2. In the Object Browser dialog box, select Excel from the top list.

3. Type xlDialog in the second list.

4. Click the binoculars button.

Attempting to display a built-in dialog box in an incorrect context will result in an
error. For example, if you select a series in a chart and then attempt to display the
xlDialogFontProperties dialog box, you’ll get an error message because that
dialog box is not appropriate for that selection.

Using arguments with built-in dialog boxes
Most of the built-in dialog boxes also accept arguments, which (usually) corre-
spond to the controls on the dialog box. For example, the Cell Protection dialog box
(invoked by using the xlDialogCellProtection constant) uses two arguments:
locked and hidden. If you want to display that dialog box with both of these options
checked, use the following statement:

Application.Dialogs(xlDialogCellProtection).Show True, True

Caution

4799-2 ch12.F 6/11/01 9:32 AM Page 373

374 Part IV ✦ Working with UserForms

The arguments for each of the built-in dialog boxes are listed in the online help. To
locate the help topic, search for Built-In Dialog Box Argument Lists. Unfortunately,
the online help provides no explanation of what the arguments are used for!

According to the help file, the Go To dialog box (invoked by using the
xlDialogFormulaGoTo constant) takes two arguments: reference and corner. The
reference argument is used to provide a default range that appears in the Reference
box. The corner reference is a logical value that specifies whether to display the ref-
erence so it appears in the upper left corner of the window. Here’s an example that
uses both of these arguments:

Application.Dialogs(xlDialogFormulaGoto). _
Show Range(“Z100”), True

As you may have surmised, successfully using the Dialogs collection may require
some trial and error.

Executing a menu item directly
The second technique to display a built-in dialog box requires some knowledge of
toolbars (officially known as CommandBar objects). For now, be aware that you can
“execute” a menu item. And you can take advantage of the fact that selecting a
menu item displays a dialog box.

I cover CommandBars extensively in Chapters 22 and 23.

The following statement, for example, is equivalent to selecting the Go To menu
item on the Edit menu:

Application.CommandBars(“Worksheet Menu Bar”). _
Controls(“Edit”).Controls(“Go To...”).Execute

This statement, when executed, displays the Go To dialog box. Notice that the
menu item captions must match exactly (including the ellipses after “Go To”).

Unlike using the Dialogs collection, this technique does not allow you to specify
default values for the dialog boxes.

The examples in this section use language-specific references to the CommandBar
controls. Consequently, these statements will work only in English language ver-
sions of Excel. For applications that will be used with other language versions of
Excel, you can use the FindControl method, along with the Id property for the
command. See Chapter 22 for more information.

Caution

Cross-
Reference

4799-2 ch12.F 6/11/01 9:32 AM Page 374

375Chapter 12 ✦ Custom Dialog Box Alternatives

In the previous section, I pointed out a problem with accessing the Dialogs collec-
tion: It’s not possible to display a tabbed dialog box. That problem doesn’t exist
when you execute a menu command. The following statement, for example, dis-
plays the Format Cells dialog box (with all of its tabs):

Application.CommandBars(“Worksheet Menu Bar”). _
Controls(“Format”).Controls(“Cells...”).Execute

By the way, the Execute method also works with toolbar controls that don’t dis-
play a dialog box. The following statement, for example, is equivalent to clicking the
Bold button on the Formatting toolbar:

Application.CommandBars(“Formatting”).Controls(“Bold”).Execute

I can’t think of any reason to do this, however. A more efficient way to toggle the
Bold property of the selected cells is to use a statement like this:

Selection.Font.Bold = Not Selection.Font.Bold

Summary
In this chapter, I discussed some built-in tools that may eliminate the need to create
a custom UserForm.

✦ ✦ ✦

4799-2 ch12.F 6/11/01 9:32 AM Page 375

4799-2 ch12.F 6/11/01 9:32 AM Page 376

Introducing
UserForms

Excel developers have always had the ability to create
custom dialog boxes for their applications. Beginning

with Excel 97, things changed substantially. UserForms have
replaced the clunky old dialog sheets, and you have much
more control over your custom dialog boxes. However, for
compatibility purposes, Excel 97 and later still support Excel
5/95 dialog sheets. The good news is that its much easier to
work with UserForms, and they offer lots of new capabilities.

Excel makes it relatively easy to create custom dialog boxes
for your applications. In fact, you can duplicate the look and
feel of almost all of Excel’s dialog boxes. This chapter pro-
vides an introduction and overview of UserForms.

How Excel Handles Custom Dialog
Boxes

A custom dialog box is created on a UserForm, and you
access UserForms in the Visual Basic Editor.

Following is the typical sequence that you will follow when
you create a UserForm:

1. Insert a new UserForm into your workbook’s VBProject.

2. Write a procedure that will display the UserForm. This
procedure will be located in a VBA module (not in the
code module for the UserForm).

3. Add controls to the UserForm.

4. Adjust some of the properties of the controls you added.

5. Write “event-handler” procedures for the controls.
These procedures, which are located in the code win-
dow for the UserForm, are executed when various
events (such as a button click) occur.

1313C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Creating, showing,
and unloading
UserForms

A discussion of the
UserForm controls
available to you

Setting the properties
of UserForm controls

Controlling
UserForms with VBA
procedures

A hands-on example
of creating a
UserForm

An introduction to the
types of events
relevant to UserForms
and controls

Customizing your
control Toolbox

A handy checklist for
creating UserForms

✦ ✦ ✦ ✦

4799-2 ch13.F 6/11/01 9:37 AM Page 377

378 Part IV ✦ Working with UserForms

Inserting a New UserForm
To insert a new UserForm, activate the VBE (Alt+F11), select your workbook’s pro-
ject from the Project window, and select Insert ➪ UserForm. UserForms have names
like UserForm1, UserForm2, and so on.

You can change the name of a UserForm to make it easier to identify. Select the
form and use the Properties window to change the Name property (press F4 if the
Properties window is not displayed). Figure 13-1 shows the Properties window
when an empty UserForm is selected.

Figure 13-1: The Properties window for an empty UserForm

A workbook can have any number of UserForms, and each UserForm holds a single
custom dialog box.

Displaying a UserForm
To display a UserForm, use the Show method of the UserForm object. The following
procedure, which is contained in a normal VBA module, displays UserForm1:

Sub ShowForm
UserForm1.Show

End Sub

When the UserForm is displayed, it remains visible on-screen until it is dismissed.
Usually, you’ll add a CommandButton to the UserForm that executes a procedure
that dismisses the UserForm. The procedure can either unload the UserForm (with

Tip

4799-2 ch13.F 6/11/01 9:37 AM Page 378

379Chapter 13 ✦ Introducing UserForms

the Unload command) or hide the UserForm (with the Hide method of the
UserForm object). This concept will become clearer later in the chapter.

If the name of the UserForm is stored as a string variable, you can use the Add
method to add the UserForm to the UserForms collection and then use the Show
method of the UserForms collection. Here’s an example that assigns the name of a
UserForm to the MyForm variable and then displays the UserForm.

MyForm = “UserForm1”
UserForms.Add(MyForm).Show

This technique might be useful if your project contains several UserForms and the
UserForm to be shown is determined by your code.

Adding Controls to a UserForm
To add controls to a UserForm, use the Toolbox (the VBE does not have menu com-
mands that add controls). If the Toolbox is not displayed, select View ➪ Toolbox.
Figure 13-2 shows the Toolbox.

Figure 13-2: Use the Toolbox to add controls to a UserForm.

Just click the Toolbox button that corresponds to the control you want to add, and
then click inside the dialog box to create the control (using its default size). Or, you
can click the control and then drag in the dialog box to specify the dimensions for
the control.

When you add a new control, it is assigned a name that combines the control type
with the numeric sequence for that type of control. For example, if you add a
CommandButton control to an empty UserForm, it is named CommandButton1. If
you then add a second CommandButton, it is named CommandButton2.

It’s a good idea to rename all the controls that you will be manipulating with your
VBA code. Doing so lets you refer to meaningful names (such as
ProductListBox), rather than generic names such as ListBox1. To change the
name of a control, use the Properties window in the VBA. Just select the object
and enter a new name.

Tip

4799-2 ch13.F 6/11/01 9:37 AM Page 379

380 Part IV ✦ Working with UserForms

Controls Available to You
In the sections that follow, I briefly describe the controls available to you in the
Toolbox.

Your UserForms can also use other ActiveX controls. See “Customizing the
Toolbox,” later in this chapter.

CheckBox
A CheckBox control is useful for getting a binary choice: yes or no, true or false, on
or off, and so on. When a CheckBox is checked, it has a value of True; when it’s not
checked, the CheckBox’s value is False.

ComboBox
A ComboBox control is similar to a ListBox control. A ComboBox, however, is a
drop-down box, and it displays only one item at a time. Another difference is that
the user may be allowed to enter a value that does not appear in the list of items.

CommandButton
Every dialog box that you create will probably have at least one CommandButton.
Usually, you’ll want to have a CommandButton labeled OK and another labeled
Cancel.

Frame
A Frame control is used to enclose other controls. You do this either for aesthetic
purposes or to logically group a set of controls. A frame is particularly useful when
the dialog box contains more than one set of OptionButton controls.

Image control
An Image control is used to display a graphic image, which can come from a file or
pasted from the clipboard. You might want to use an Image control to display your
company’s logo in a dialog box. The graphics image is stored in the workbook. That
way, if you distribute your workbook to someone else, it is not necessary to include
a copy of the graphics file.

Some graphics files are very large, and using such images can make your work-
book increase dramatically in size. For best results, use graphics sparingly, or use
small graphics files.

Caution

Cross-
Reference

4799-2 ch13.F 6/11/01 9:37 AM Page 380

381Chapter 13 ✦ Introducing UserForms

Label
A Label control simply displays text in your dialog box.

ListBox
The ListBox control presents a list of items, and the user can select an item (or
multiple items). ListBox controls are very flexible. For example, you can specify a
worksheet range that holds the ListBox items, and this range can consist of multiple
columns. Or you can fill the ListBox with items using VBA.

MultiPage
A MultiPage control lets you create tabbed dialog boxes, like the one that appears
when you choose the Tools ➪ Options command. By default, a MultiPage control
has two pages. To add additional pages, right-click a tab and select New Page from
the shortcut menu.

OptionButton
OptionButtons are useful when the user needs to select one item from a small num-
ber of choices. OptionButtons are always used in groups of at least two. When an
OptionButton is selected, the other OptionButtons in its group are unselected.

If your UserForm contains more than one set of OptionButtons, each set of
OptionButtons must have the same GroupName property value. Otherwise, all
OptionButtons become part of the same set. Alternatively, you can enclose the
OptionButtons in a Frame control, which automatically groups the OptionButtons
contained in the frame.

RefEdit
The RefEdit control is used when you need to let the user select a range in a
worksheet.

ScrollBar
The ScrollBar control is similar to a SpinButton control. The difference is that the
user can drag the ScrollBar’s button to change the control’s value in larger incre-
ments. The ScrollBar control is most useful for selecting a value that extends across
a wide range of possible values.

4799-2 ch13.F 6/11/01 9:37 AM Page 381

382 Part IV ✦ Working with UserForms

SpinButton control
The SpinButton control lets the user select a value by clicking on either of two
arrows, one to increase the value and the other to decrease the value. A SpinButton
is often used in conjunction with a TextBox control or Label control, which displays
the current value of the SpinButton.

TabStrip
A TabStrip control is similar to a MultiPage control, but it’s not as easy to use. A
TabStrip control, unlike a MultiPage control, does not serve as a container for other
objects. Generally, you’ll find that the MultiPage control is much more versatile.

TextBox
A TextBox control lets the user input text.

ToggleButton
A ToggleButton control has two states: on or off. Clicking on the button toggles
between these two states, and the button changes its appearance. Its value is either
True (pressed) or False (not pressed). This is not exactly a “standard” control, and
using two OptionButtons or one CheckBox may be a better choice.

Adjusting UserForm Controls
After a control is placed in a dialog box, you can move and resize it using standard
mouse techniques.

You can select multiple controls by Shift-clicking, or by clicking and dragging to
lasso a group of controls.

A UserForm may contain vertical and horizontal grid lines that help you align the
controls you add. When you add or move a control, it snaps to the grid to help you
line up the controls. If you don’t like to see these grid lines, you can turn them off
by choosing Tools ➪ Options in the VBE. In the Options dialog box, select the
General tab and set your desired options in the Form Grid Settings section.

The Format menu in the VBE window provides several commands to help you pre-
cisely align and space the controls in a dialog box. Before you use these commands,
select the controls you want to work with. These commands work just as you would
expect, so I don’t explain them here. Figure 13-3 shows a dialog box with several
OptionButton controls about to be aligned.

Tip

4799-2 ch13.F 6/11/01 9:37 AM Page 382

383Chapter 13 ✦ Introducing UserForms

Using Controls on a Worksheet

Many of the UserForm controls can be embedded directly into a worksheet. These controls
are accessible from the Control Toolbox toolbar (in Excel, not VBE). Adding such controls to
a worksheet requires much less effort than creating a dialog box. In addition, you may not
have to create any macros, because you can link a control to a worksheet cell. For example,
if you insert a CheckBox control on a worksheet, you can link it to a particular cell by setting
its LinkedCell property. When the CheckBox is checked, the linked cell displays TRUE.
When the CheckBox is unchecked, the linked cell displays FALSE.

The accompanying figure shows a worksheet that contains some embedded controls.

Adding controls to a worksheet can be a bit confusing, because controls can come from
either of two toolbars:

✦ Forms toolbar. These controls are insertable objects (and are compatible with Excel
5 and Excel 95).

✦ Control Toolbox toolbar. These are ActiveX controls. These controls are a subset of
those that are available for use on UserForms. These controls work only with Excel
97 and later versions, and are not compatible with Excel 5 and Excel 95.

You can use the controls from either of these toolbars, but it’s important that you under-
stand the distinctions between them. The controls from the Forms toolbar work much dif-
ferently than the ActiveX controls.

Continued

4799-2 ch13.F 6/11/01 9:37 AM Page 383

384 Part IV ✦ Working with UserForms

Figure 13-3: Using the Format ➪ Align command to change the alignment of controls

When you select multiple controls, the last control you select appears with white
handles rather than the normal black handles. The control with the white handles
is used as the model against which the other black-handled controls are com-
pared for size or position.

Tip

Continued

When you use the Control Toolbox toolbar to add a control to a worksheet, Excel goes into
design mode. In this mode, you can adjust the properties of any controls on your work-
sheet, add or edit event-handler procedures for the control, or change its size or position. To
display the Properties window for an ActiveX control, right-click the control and select
Properties from the shortcut menu.

For simple buttons, I often use the Button control on the Forms toolbar because it lets me
attach any macro to it. If I use a CommandButton control from the Control Toolbox, clicking
it will execute its event-handler procedure (for example, CommandButton1_Click) in the
code module for the Sheet object — you can’t attach just any macro to it.

When Excel is in design mode, you can’t try out the controls. To test the controls, you must
exit design mode by clicking the Exit Design Mode button on the Control Toolbox toolbar.

This workbook, plus another that demonstrates all worksheet controls, are available on the
companion CD-ROM.

4799-2 ch13.F 6/11/01 9:37 AM Page 384

385Chapter 13 ✦ Introducing UserForms

Adjusting a Control’s Properties
Every control has a number of properties that determine how the control looks and
behaves. You can change a control’s properties:

✦ At design time when you’re developing the UserForm. You use the Properties
window for this.

✦ During runtime when the UserForm is being displayed for the user. You use
VBA instructions to change a control’s properties at runtime.

Using the Properties window
In the VBE, the Properties window adjusts to display the properties of the selected
item (which can be a control or the UserForm itself). In addition, you can select a
control using the drop-down list at the top of the Properties window (see Figure
13-4).

Figure 13-4: Selecting a control
(OptionButton3) from the drop-down list
at the top of the Properties window

The Properties window has two tabs. The Alphabetic tab displays the properties
for the selected object in alphabetical order. The Categorized tab displays them
grouped into logical categories. Both tabs contain the same properties, but in a
different order.

To change a property, just click it and specify the new property. Some properties
can take on a finite number of values, selectable from a list. If so, the Properties
window will display a button with a downward pointing arrow. Click the button
and you’ll be able to select the property’s value from the list. For example, the
TextAlign property can have any of the following values: 1 - fmTextAlignLeft, 2 -
fmTextAlignCenter, or 3 - fmTextAlignRight.

Note

4799-2 ch13.F 6/11/01 9:37 AM Page 385

386 Part IV ✦ Working with UserForms

A few properties (for example, Font and Picture) display a small button with an
ellipsis when selected. Click the button to display a dialog box associated with the
property.

The Image control’s Picture property is worth mentioning because you can either
select a graphic file that contains the image, or paste an image from the clipboard.
When pasting an image, first copy it to the clipboard, then select the Picture prop-
erty for the Image control and press Ctrl+V to paste the clipboard contents.

If you select two or more controls at once, the Properties window displays only
the properties that are common to the selected controls.

The UserForm itself has many properties that you can adjust. These properties are
then used as defaults for controls that you add to the UserForm. For example, if
you change the UserForm’s Font property, all controls added to the UserForm will
use that font.

Common properties
Although each control has its own unique set of properties, many controls have
some common properties. For example, every control has a Name property and
properties that determine its size and position (Height, Width, Left, and Right).

If you’re going to manipulate a control using VBA, it’s an excellent idea to provide a
meaningful name for the control. For example, the first OptionButton that you add
to a UserForm has a default name of OptionButton1. You refer to this object in
your code using a statement such as:

OptionButton1.Value = True

But if you give the OptionButton a more meaningful name (such as obLandscape),
you can use a statement such as:

obLandscape.Value = True

Many people find it helpful to use a name that also identifies the type of object. In
the preceding example, I use “ob” as the prefix to identify the fact that this control
is an OptionButton.

You can adjust the properties of several controls at once. For example, you may
have several OptionButtons, and you want them to be left-aligned. You can simply
select all of the OptionButtons, then change the Left property in the Properties
box. All of the selected controls will then take on that new Left property value.

Tip

Tip

Note

4799-2 ch13.F 6/11/01 9:37 AM Page 386

387Chapter 13 ✦ Introducing UserForms

Learning more about properties
The best way to learn about the various properties for a control is to use the online
help. Simply click on a property in the Property window and press F1. Figure 13-5
shows an example of the type of help provided for a property.

Figure 13-5: The online help provides information about each property for every control.

Accommodating keyboard users
Many users prefer to navigate through a dialog box using the keyboard: The Tab
and Shift+Tab keystrokes cycle through the controls, and pressing a hot key oper-
ates the control. To make sure that your dialog box works properly for keyboard
users, you must be mindful of two issues: tab order and accelerator keys.

Changing the tab order
The tab order determines the sequence in which the controls are activated when
the user presses Tab or Shift+Tab. It also determines which control has the initial
focus. If a user is entering text into a TextBox control, for example, the TextBox
has the focus. If the user clicks an OptionButton, the OptionButton has the focus.
The control that’s first in the tab order has the focus when a dialog box is first
displayed.

4799-2 ch13.F 6/11/01 9:37 AM Page 387

388 Part IV ✦ Working with UserForms

To set the tab order of your controls, choose View ➪ Tab Order. You can also right-
click the dialog box and choose Tab Order from the shortcut menu. In either case,
Excel displays the Tab Order dialog box shown in Figure 13-6. The Tab Order dialog
box lists all the controls, the sequence of which corresponds to the order in which
controls pass the focus between each other in the UserForm. To move a control,
select it and click the arrow keys up or down. You can choose more than one con-
trol (click while pressing Shift or Ctrl) and move them all at once.

Figure 13-6: Use the Tab Order
dialog box to specify the tab order
of the controls.

Alternately, you can set an individual control’s position in the tab order using the
Properties window. The first control in the tab order has a TabIndex property of 0.
Changing the TabIndex property for a control may also affect the TabIndex prop-
erty of other controls. These adjustments are made automatically to ensure that no
control has a TabIndex greater than the number of controls. If you want to remove
a control from the tab order, set its TabStop property to False.

Some controls, such as Frame and MultiPage, act as containers for other controls.
The controls inside a container have their own tab order. To set the tab order for a
group of OptionButtons inside a Frame control, select the Frame control before
you choose the View ➪ Tab Order command.

Setting hot keys
You can assign an accelerator key, or “hot key,” to most dialog box controls. This
allows the user to access the control by pressing Alt+ the hot key. Use the
Accelerator property in the Properties window for this purpose.

Some controls, such as a TextBox, don’t have an Accelerator property because
they don’t display a Caption. You still can allow direct keyboard access to these
controls using a Label control. Assign an accelerator key to the Label, and put it
ahead of the TextBox in the tab order.

Tip

Note

4799-2 ch13.F 6/11/01 9:37 AM Page 388

389Chapter 13 ✦ Introducing UserForms

Displaying and Closing UserForms
In this section, I provide an overview of using VBA to work with UserForms.

Displaying a UserForm
To display a UserForm from VBA, you create a procedure that uses the Show
method of the UserForm object. You cannot display a UserForm without using at
least one line of VBA code. If your UserForm is named UserForm1, the following
procedure displays the dialog box on that form:

Sub ShowDialog()
UserForm1.Show

End Sub

This procedure must be located in a standard VBA module, not in the code module
for the UserForm.

VBA also has a Load statement. Loading a UserForm loads it into memory, but it is
not visible until you use the Show method. To load a UserForm, use a statement like
this:

Load UserForm1

If you have a complex UserForm, you might want to load it into memory before it is
needed so it will appear more quickly when you use the Show method. In the major-
ity of situations, however, it’s not necessary to use the Load statement.

Testing a UserForm

You’ll usually want to test your UserForm while you’re developing it. There are three ways
that you can test a UserForm without actually calling it from a VBA procedure:

✦ Choose the Run ➪ Run Sub/UserForm command

✦ Press F5

✦ Click the Run Sub/UserForm button on the Standard toolbar

These three techniques all trigger the UserForm’s Initialize event. When a dialog box is dis-
played in this test mode, you can try out the tab order and the accelerator keys.

4799-2 ch13.F 6/11/01 9:37 AM Page 389

390 Part IV ✦ Working with UserForms

Closing a UserForm
To close a UserForm, use the Unload command. For example:

Unload UserForm1

Or, you can use the following:

Unload Me

Normally, your VBA code should include the Unload command after the UserForm
has performed its actions. For example, your UserForm may have a
CommandButton that serves as an OK button. Clicking this button executes a
macro. One of the statements in the macro will unload the UserForm. The UserForm
remains visible on the screen until the macro that contains the Unload statement
finishes.

When a UserForm is unloaded, its controls are reset to their original values. In
other words, your code will not be able to access the user’s choices after the
UserForm is unloaded. If the user’s choice must be used later on (after the
UserForm is unloaded), you need to store the value in a Public variable, declared
in a standard VBA module. Or, you could store the value in a worksheet cell.

A UserForm is automatically unloaded when the user clicks the Close button (the
“x” in the UserForm’s title bar). This action also triggers a UserForm QueryClose
event, followed by a UserForm Terminate event.

UserForms also have a Hide method. When you invoke this method, the UserForm
disappears, but it remains loaded in memory, so your code can still access the vari-
ous properties of the controls. Here’s an example of a statement that hides a
UserForm:

UserForm1.Hide

Or, you can use the following:

Me.Hide

If for some reason you would like your UserForm to disappear immediately while its
macro is executing, use the Hide method at the top of the procedure, and follow it
with a DoEvents command. For example, in the following procedure, the UserForm
disappears immediately when CommandButton1 is clicked. The last statement in the
procedure unloads the UserForm.

Private Sub CommandButton1_Click()
Me.Hide
DoEvents
For r = 1 To 10000

Cells(r, 1) = r

Note

4799-2 ch13.F 6/11/01 9:37 AM Page 390

391Chapter 13 ✦ Introducing UserForms

Next r
Unload Me

End Sub

In Chapter 15, I describe how to display a progress indicator, which takes advan-
tage of the fact that a UserForm remains visible while the macro executes.

About event-handler procedures
Once the UserForm is displayed, the user interacts with it — selecting an item from
a ListBox, clicking a CommandButton, and so on. In official terminology, the user
causes an event to occur. For example, clicking a CommandButton raises the Click
event for the CommandButton. You will need to write procedures that are executed
when these events occur. These procedures are sometimes known as event-handler
procedures.

Event-handler procedures must be located in the code window for the UserForm.
However, your event-handler procedure can call another procedure that’s located
in a standard VBA module.

Your VBA code can change the properties of the controls while the UserForm is dis-
played (that is, at runtime). For example, you may assign to a ListBox control a pro-
cedure that changes the text in a Label when an item is selected. This type of
manipulation will become clearer later in this chapter.

Creating a UserForm: An Example
If you’ve never created a UserForm, you may want to walk through the example in
this section. The example includes step-by-step instructions for creating a simple
dialog box and developing a VBA procedure to support the dialog box.

This example uses a UserForm to get two pieces of information: a person’s name
and sex. The dialog box uses a TextBox control to get the name, and three
OptionButtons to get the sex (Male, Female, or Unknown). The information col-
lected in the dialog box is then sent to the next blank row in a worksheet.

Creating the UserForm
Figure 13-7 shows the finished UserForm for this example. For best results, start
with a new workbook with only one worksheet in it. Then follow these steps:

Note

Cross-
Reference

4799-2 ch13.F 6/11/01 9:37 AM Page 391

392 Part IV ✦ Working with UserForms

Figure 13-7: This dialog box asks the user
to enter a name and a sex.

1. Press Alt+F11 to activate the VBE.

2. In the Project window, select the workbook’s project, and choose Insert ➪
UserForm to add an empty UserForm.

3. The UserForm’s Caption property will have its default value: UserForm1. Use
the Properties window to change the UserForm’s Caption property to Get
Name and Sex (if the Properties window isn’t visible, press F4).

4. Add a Label control and adjust the properties as follows:

Property Value

Accelerator N

Caption Name:

TabIndex 0

5. Add a TextBox control and adjust the properties as follows:

Property Value

Name TextName

TabIndex 1

6. Add a Frame control and adjust the properties as follows:

4799-2 ch13.F 6/11/01 9:37 AM Page 392

393Chapter 13 ✦ Introducing UserForms

Property Value

Caption Sex

TabIndex 2

7. Add an OptionButton control inside the Frame and adjust the properties as
follows:

Property Value

Accelerator M

Caption Male

Name OptionMale

TabIndex 0

8. Add another OptionButton control inside the Frame and adjust the properties
as follows:

Property Value

Accelerator F

Caption Female

Name OptionFemale

TabIndex 1

9. Add yet another OptionButton control inside the Frame and adjust the proper-
ties as follows:

Property Value

Accelerator U

Caption Unknown

Name OptionUnknown

TabIndex 2

Value True

4799-2 ch13.F 6/11/01 9:37 AM Page 393

394 Part IV ✦ Working with UserForms

10. Add a CommandButton control outside the frame and adjust the properties as
follows:

Property Value

Caption OK

Default True

Name OKButton

TabIndex 3

11. Add another CommandButton control and adjust the properties as follows:

Property Value

Caption Cancel

Cancel True

Name CancelButton

TabIndex 4

When you are creating several controls that are similar, you may find it easier to
copy an existing control rather than create a new one. To copy a control, press Ctrl
while you drag the control to make a new copy of it. Then adjust the properties on
the copied control.

Writing code to display the dialog box
Next, you add a CommandButton to the worksheet. This button will execute a
procedure that displays the UserForm. Here’s how:

1. Activate Excel (Alt+F11 is the shortcut key combination).

2. Right-click any toolbar, and select Control Toolbox from the shortcut menu.
Excel displays its Control Toolbox toolbar, which closely resembles the VBE
Toolbox.

3. Use the Control Toolbox toolbar to add a CommandButton to the worksheet.
Click the CommandButton tool, then drag in the worksheet to create the
button.

Tip

4799-2 ch13.F 6/11/01 9:37 AM Page 394

395Chapter 13 ✦ Introducing UserForms

If you like, you can change the caption for the worksheet CommandButton. To
do so, right-click the button and select CommandButton Object ➪ Edit from
the shortcut menu. You can then edit the text that appears on the
CommandButton.

4. Double-click the CommandButton.

This activates the VBE. More specifically, the code module for the worksheet
will be displayed, with an empty event-handler procedure for the worksheet’s
CommandButton.

5. Enter a single statement in the CommandButton1_Click procedure (see Figure
13-8). This short procedure uses the Show method of an object (UserForm1) to
display the UserForm.

Figure 13-8: The CommandButton1_Click procedure
is executed when the button on the worksheet is clicked.

Trying it out
The next step is to try out the procedure that displays the dialog box.

When you click the CommandButton on the worksheet, you’ll find that nothing
happens. Rather, the button is selected. That’s because Excel is still in Design
Mode — which happens automatically when you insert a control using the Control
Toolbox toolbar. To exit Design Mode, click the button on the Control Toolbox tool-
bar labeled Exit Design Mode.

When you exit Design Mode, clicking the button will display the UserForm (see
Figure 13-9).

When the dialog box is displayed, enter some text into the text box and click OK.
You’ll find that nothing happens — which is understandable because you haven’t
yet created any event-handler procedures for the UserForm.

Note

4799-2 ch13.F 6/11/01 9:37 AM Page 395

396 Part IV ✦ Working with UserForms

Figure 13-9: The CommandButton’s Click event procedure displays
the UserForm.

Click the Close button in the UserForm’s title bar to get rid of the dialog box.

Adding event-handler procedures
In this section, I explain how to write the procedures that will handle the events
that occur when the UserForm is displayed. To continue our example, do the
following:

1. Press Alt+F11 to activate the VBE.

2. Make sure the UserForm is displayed, and double-click its Cancel button. This
will activate the Code window for the UserForm, and insert an empty proce-
dure named CancelButton_Click. Notice that this procedure consists of the
object’s name, an underscore character, and the event that it handles.

3. Modify the procedure as follows (this is the event-handler for the
CancelButton’s Click event):

Private Sub CancelButton_Click()
Unload UserForm1

End Sub

This procedure, which is executed when the user clicks the Cancel button,
simply unloads the UserForm.

4. Press Shift+F7 to redisplay UserForm1 (or click the View Object icon at the
top of the Project Explorer window).

5. Double-click the OK button and enter the following procedure (this is the
event-handler for the OKButton’s Click event):

Note

4799-2 ch13.F 6/11/01 9:37 AM Page 396

397Chapter 13 ✦ Introducing UserForms

Private Sub OKButton_Click()
‘ Make sure Sheet1 is active

Sheets(“Sheet1”).Activate

‘ Determine the next empty row
NextRow = _
Application.WorksheetFunction.CountA(Range(“A:A”)) + 1

‘ Transfer the name
Cells(NextRow, 1) = TextName.Text

‘ Transfer the sex
If OptionMale Then Cells(NextRow, 2) = “Male”
If OptionFemale Then Cells(NextRow, 2) = “Female”
If OptionUnknown Then Cells(NextRow, 2) = “Unknown”

‘ Clear the controls for the next entry
TextName.Text = “”
OptionUnknown = True
TextName.SetFocus

End Sub

6. Activate Excel and click the CommandButton again to display the UserForm.
Run the procedure again.

You’ll find that the UserForm controls now function correctly. Figure 13-10
shows how this looks in action.

Figure 13-10: Using the custom dialog box

Here’s how the OKButton_Click procedure works: First, the procedure makes sure
that the proper worksheet (Sheet1) is active. It then uses Excel’s COUNTA function
to determine the next blank cell in column A. Next, it transfers the text from the
TextBox to column A. It then uses a series of If statements to determine which

4799-2 ch13.F 6/11/01 9:37 AM Page 397

398 Part IV ✦ Working with UserForms

OptionButton was selected, and writes the appropriate text (Male, Female, or
Unknown) to column B. Finally, the dialog box is reset to make it ready for the next
entry. Notice that clicking OK doesn’t close the dialog box. To end data entry (and
unload the UserForm), click the Cancel button.

Validating the data
Play around with this example some more, and you’ll find that it has a small prob-
lem: It doesn’t ensure that the user actually enters a name into the text box. The
following code is inserted in the OKButton_Click procedure before the text is
transferred to the worksheet. It ensures that the user enters a name (well, at least
some text) in the TextBox. If the TextBox is empty, a message appears and the focus
is set to the TextBox so that the user can try again. The Exit Sub statement ends
the procedure with no further action.

‘ Make sure a name is entered
If TextName.Text = “” Then

MsgBox “You must enter a name.”
TextName.SetFocus
Exit Sub

End If

Now it works
After making all these modifications, you’ll find that the dialog box works flawlessly
(don’t forget to test the hot keys). In real life, you’d probably need to collect more
information than just name and sex. However, the same basic principles apply. You
just need to deal with more UserForm controls.

UserForm Events
Each UserForm control (as well as the UserForm itself) is designed to respond
to certain types of events, and these events can be triggered by a user or by
Excel. For example, clicking a CommandButton generates a Click event for the
CommandButton. You can write code that is executed when a particular event
occurs.

Some actions generate multiple events. For example, clicking the upward arrow of a
SpinButton control generates a SpinUp event and also a Change event. When a
UserForm is displayed using the Show method, Excel generates an Initialize
event and an Activate event for the UserForm.

Excel also supports events associated with a Sheet object, Chart objects, and
the ThisWorkbook object. I discuss these types of events in Chapter 18.

Cross-
Reference

4799-2 ch13.F 6/11/01 9:37 AM Page 398

399Chapter 13 ✦ Introducing UserForms

Learning about events
To find out which events are supported by a particular control:

1. Add a control to a UserForm.

2. Double-click the control to activate the code module for the UserForm. The
VBE will insert an empty event-handler procedure for the default event for the
control.

3. Click the drop-down list in the upper-right corner of the module window and
you’ll see a complete list of events for the control (see Figure 13-11).

Figure 13-11: The event list for a CheckBox control

4. Select an event from the list, and the VBE will create an empty event-handler
procedure for you.

To find out specific details about an event, consult the online help. The help sys-
tem also lists the events available for each control.

Event-handler procedures incorporate the name of the object in the procedure’s
name. Therefore, if you change the name of a control, you’ll also need to make the
appropriate changes to the control’s event-handler procedure(s). The name
changes are not performed automatically! To make things easy on yourself, it’s a
good idea to provide names for your controls before you begin creating event-
handler procedures.

UserForm events
Several events are associated with showing and unloading a UserForm:

Caution

Note

4799-2 ch13.F 6/11/01 9:37 AM Page 399

400 Part IV ✦ Working with UserForms

Initialize Occurs before a UserForm is loaded or shown, but does not
occur if the UserForm was previously hidden.

Activate Occurs when a UserForm is shown.

Deactivate Occurs when a UserForm is deactivated, but does not occur
if the form is hidden

QueryClose Occurs before a UserForm is unloaded

Terminate Occurs after the UserForm is unloaded

Often, it’s critical that you choose the appropriate event for your event-handler
procedure and that you understand the order in which the events occur. Using the
Show method invokes the Initialize and Activate events (in that order).
Using the Load command invokes only the Initialize event. Using the
Unload command triggers the QueryClose and Terminate events (in that
order). Using the Hide method doesn’t trigger either of these events.

The companion CD-ROM contains a workbook that monitors all of these events,
and displays a message box when an event occurs. If you’re confused about
UserForm events, studying the code in this example should clear things up.

Example: SpinButton events
To help clarify the concept of events, this section takes a close look at the events
associated with a SpinButton control.

The companion CD-ROM contains a workbook that demonstrates the sequence
of events that occur for a SpinButton and the UserForm that contains it. The
workbook contains a series of event-handler routines — one for each SpinButton
and UserForm event. Each of these routines simply displays a message box that
tells you the event that just fired.

Table 12-3 lists all of the events for the SpinButton control.

Table 13-1
SpinButton Events

Event Description

AfterUpdate Occurs after the control is changed through the user interface

BeforeDragOver Occurs when a drag-and-drop operation is in progress

BeforeDropOrPaste Occurs when the user is about to drop or paste data onto the
control

BeforeUpdate Occurs before the control is changed

Change Occurs when the Value property changes

On the
CD-ROM

On the
CD-ROM

Note

4799-2 ch13.F 6/11/01 9:37 AM Page 400

401Chapter 13 ✦ Introducing UserForms

Event Description

Enter Occurs before the control actually receives the focus from a
control on the same UserForm

Error Occurs when the control detects an error and cannot return
the error information to a calling program

Exit Occurs immediately before a control loses the focus to another
control on the same form

KeyDown Occurs when the user presses a key and the object has the
focus

KeyPress Occurs when the user presses any key that produces a
typeable character

KeyUp Occurs when the user releases a key and the object has the
focus

SpinDown Occurs when the user clicks the lower (or left) SpinButton
arrow

SpinUp Occurs when the user clicks the upper (or right) SpinButton
arrow

A user can operate a SpinButton control by clicking it with the mouse, or (if the
control has the focus) using the up arrow or down arrow keys.

Mouse-initiated events
When the user clicks the upper SpinButton arrow, the following events occur in this
precise order:

1. Enter (triggered only if the SpinButton did not already have the focus)

2. Change

3. SpinUp

Keyboard-initiated events
The user can also press Tab to set the focus to the SpinButton, and then use the up
arrow key to increment the control. If so, the following events occur (in this order):

1. Enter

2. KeyDown

3. Change

4. SpinUp

4799-2 ch13.F 6/11/01 9:37 AM Page 401

402 Part IV ✦ Working with UserForms

What about changes via code?
The SpinButton control can also be changed by VBA code — which also triggers the
appropriate event(s). For example, the following statement sets SpinButton1’s
Value property to zero, and also triggers the Change event for the SpinButton
control — but only if the SpinButton’s value was not already 0:

SpinButton1.Value = 0

You might think that you could disable events by setting the EnableEvents prop-
erty of the Application object to False. Unfortunately, this property only applies
to events that involve true Excel objects: Workbooks, Worksheets, and Charts.

Pairing a SpinButton with a TextBox
A SpinButton has a Value property, but this control doesn’t have a caption in
which to display its value. In many cases, however, you will want the user to see the
SpinButton’s value. And sometimes you’ll want the user to be able to change the
SpinButton’s value directly instead of clicking the SpinButton repeatedly.

The solution is to pair a SpinButton with a TextBox, which enables the user to spec-
ify a value by typing it into the TextBox directly, or by clicking the SpinButton to
increment or decrement the value in the TextBox.

Figure 13-12 shows a simple example. The SpinButton’s Min property is 1, and its
Max property is 100. Therefore, clicking the SpinButton’s arrows will change its
value to an integer between 1 and 100.

Figure 13-12: This SpinButton is paired with a
TextBox.

This workbook is available on the companion CD-ROM.

The code required to “link” a SpinButton with a TextBox is relatively simple. It’s
basically a matter of writing event-handler procedures to ensure that the
SpinButton’s Value property is in sync with the TextBox’s Text property.

The following procedure is executed whenever the SpinButton’s Change event is
triggered. That is, the procedure is executed when the user clicks the SpinButton,
or changes its value by pressing the up arrow or down arrow.

On the
CD-ROM

4799-2 ch13.F 6/11/01 9:37 AM Page 402

403Chapter 13 ✦ Introducing UserForms

Private Sub SpinButton1_Change()
TextBox1.Text = SpinButton1.Value

End Sub

The procedure simply assigns the SpinButton’s Value to the Text property of the
TextBox control. Here, the controls have their default names (SpinButton1 and
TextBox1). If the user enters a value directly into the TextBox, its Change event it
triggered and the following procedure is executed:

Private Sub TextBox1_Change()
NewVal = Val(TextBox1.Text)
If NewVal >= SpinButton1.Min And _

NewVal <= SpinButton1.Max Then _
SpinButton1.Value = NewVal

End Sub

This procedure starts by using VBA’s Val function to convert the text in the
TextBox to a value (if the TextBox contains a string, the Val function returns 0).
The next statement determines if the value is within the proper range for the
SpinButton. If so, the SpinButton’s Value property is set to the value entered in
the TextBox.

The example is set up so that clicking the OK button (which is named OKButton)
transfers the SpinButton’s value to the active cell. The event-handler for this
CommandButton’s Click event is as follows:

Private Sub OKButton_Click()
‘ Enter the value into the active cell

If CStr(SpinButton1.Value) = TextBox1.Text Then
ActiveCell = SpinButton1.Value
Unload Me

Else
MsgBox “Invalid entry.”, vbCritical
TextBox1.SetFocus
TextBox1.SelStart = 0
TextBox1.SelLength = Len(TextBox1.Text)

End If
End Sub

This procedure does one final check: It makes sure that the text entered in the
TextBox matches the SpinButton’s value. This is necessary in the case of an invalid
entry. For example, should the user enter 3r into the TextBox, the SpinButton’s
value would not be changed, and the result placed in the active cell would not be
what the user intended. Notice that the SpinButton’s Value property is converted
to a string using the CStr function. This ensures that the comparison will not gener-
ate an error if a value is compared to text. If the SpinButton’s value does not match
the TextBox’s contents, a message box is displayed. Notice that the focus is set to
the TextBox object, and the contents are selected (using the SelStart and
SelLength properties). This makes it very easy for the user to correct the entry.

4799-2 ch13.F 6/11/01 9:37 AM Page 403

404 Part IV ✦ Working with UserForms

Referencing UserForm Controls
When working with controls on a UserForm, the VBA code is usually contained in
the code window for the UserForm. You can also refer to UserForm controls from a
general VBA module. To do so, you need to qualify the reference to the control by
specifying the UserForm name. For example, consider the following procedure,
which is located in a VBA module. It simply displays the UserForm named
UserForm1.

Sub GetData()
UserForm1.Show

End Sub

Assume that UserForm1 contains a text box (named TextBox1), and you want to
provide a default value for the text box. You could modify the procedure as follows:

About the Tag Property

Every UserForm and control has a Tag property. This property doesn’t represent anything
specific, and, by default, is empty. You can use the Tag property to store information for
your own use.

For example, you may have a series of TextBox controls in a UserForm. The user may be
required to enter text into some, but not all of them. You can use the Tag property to iden-
tify (for your own use) which fields are required. In this case, you can set the Tag property
to a string such as Required. Then when you write code to validate the user’s entries, you
can refer to the Tag property.

The following example is a function that examines all TextBox controls on UserForm1 and
returns the number of “required” TextBox controls that are empty:

Function EmptyCount()
Dim ctl As Control
EmptyCount= 0
For Each ctl In UserForm1.Controls
If TypeName(ctl) = “TextBox” Then
If ctl.Tag = “Required” Then
If ctl.Text = “” Then

EmptyCount = EmptyCount + 1
End If

End If
End If

Next ctl
End Function

As you work with UserForms, you will probably think of other uses for the Tag property.

4799-2 ch13.F 6/11/01 9:37 AM Page 404

405Chapter 13 ✦ Introducing UserForms

Sub GetData()
UserForm1.TextBox1.Value = “John Doe”
UserForm1.Show

End Sub

Another way to set the default value is to take advantage of the UserForm’s
Initialize event. You can write code in the UserForm_Initialize procedure,
which is located in the code module for the UserForm. Here’s an example:

Private Sub UserForm_Initialize()
TextBox1.Value = “John Doe”

End Sub

Notice that, when the control is referenced in the code module for the UserForm,
there is no need to qualify the references with the UserForm name. However, quali-
fying references to controls does have an advantage: You will then be able to take
advantage of the Auto List Members feature, which lets you choose the control
names from a drop down list. Rather than use the actual name of the UserForm, it
is preferable to use Me.Then, if you change the name of the UserForm, you will not
need to replace the references in your code.

Understanding the Controls Collection

The controls on a UserForm comprise a collection. For example, the following statement
displays the number of controls on UserForm1:

MsgBox UserForm1.Controls.Count

There is not a collection of each control type. For example, there is no collection of
CommandButton controls. However, you can determine the type of control using the
TypeName function. The following procedure uses a For Each structure to loop through
the Controls collection, and then displays the number of CommandButton controls on
UserForm1:

Sub CountButtons()
Dim cbCount As Integer
Dim ctl as Control
cbCount = 0
For Each ctl In UserForm1.Controls

If TypeName(ctl) = “CommandButton” Then _
cbCount = cbCount + 1

Next ctl
MsgBox cbCount

End Sub

4799-2 ch13.F 6/11/01 9:37 AM Page 405

406 Part IV ✦ Working with UserForms

Customizing the Toolbox
When a UserForm is active in the VBE, the Toolbox displays the controls that you
can add to the UserForm. This section describes ways to customize the Toolbox.

Changing icons or tip text
If you would prefer a different icon or different tip text for a particular tool, right-
click the tool and select Customize xxx from the shortcut menu (where xxx is the
control’s name). This brings up a new dialog box that lets you change the Tool Tip
Text, edit the icon, or load a new icon image from a file.

Adding new pages
The Toolbox, initially, contains a single tab. Right-click this tab and select New Page
to add a new tab to the Toolbox. You can also change the text displayed on the tab
by selecting Rename from the shortcut menu.

Customizing or combining controls
A very handy feature lets you customize a control and then save it for future use.
You can, for instance, create a CommandButton control that’s set up to serve as
an OK button. For example, you can set the following properties: Width, Height,
Caption, Default, and Name. Then drag the customized CommandButton to the
Toolbox. This will create a new control. Right-click the new control to rename it or
change its icon.

You can also create a new Toolbox entry that consists of multiple controls. For
example, you can create two CommandButtons that represent a UserForm’s OK and
Cancel buttons. Customize them as you want and then select them both and drag
them to the Toolbox. In this case, you can use this new Toolbox control to add two
customized buttons in one fell swoop.

This also works with controls that act as containers. For example, create a Frame
control and add four customized OptionButtons, neatly spaced and aligned. Then
drag the Frame to the Toolbox to create a customized Frame control.

You might want to place your customized controls on a separate page in the
Toolbox. This lets you export the entire page so you can share it with other Excel
users. To export a Toolbox page, right-click the tab and select Export Page.

The companion CD-ROM contains a .PAG file that contains some customized con-
trols. You can import this file as a new page in your Toolbox. Right-click a tab and
select Import Page. Then locate the .PAG file. Your Toolbox will resemble Figure
13-13.

On the
CD-ROM

Tip

4799-2 ch13.F 6/11/01 9:37 AM Page 406

407Chapter 13 ✦ Introducing UserForms

Figure 13-13: The Toolbox, with a new page of controls

Adding new ActiveX controls
UserForms can contain other ActiveX controls developed by Microsoft or other
vendors. To add an additional ActiveX control to the toolbox, right-click the
Toolbox and select Additional Controls. This will display the dialog box shown in
Figure 13-14.

Figure 13-14: The Additional Controls dialog
box lets you add other ActiveX controls.

The Additional Controls dialog box lists all ActiveX controls that are installed on
your system. Select the control(s) that you want to add, then click OK to add an
icon for each selected control.

Not all ActiveX controls that are installed on your system will work in Excel
UserForms. In fact, most of them probably won’t work. Also, some controls require
a license in order to use them in an application. If you (or the users of your appli-
cation) aren’t licensed to use a particular control, an error will occur.

Caution

4799-2 ch13.F 6/11/01 9:37 AM Page 407

408 Part IV ✦ Working with UserForms

Creating UserForm “Templates”
You might find that when you design a new UserForm, you tend to add the same
controls each time. For example, every UserForm might have two CommandButtons
that serve as OK and Cancel buttons. In the previous section, I described how to
create a new control that combines these two (customized) buttons into a single
control. Another option is to create your UserForm “template” and then export it so
it can be imported into other projects. An advantage is that the event-handler code
for the controls is stored with the template.

Start by creating a UserForm that contains all of the controls and customizations
that you would need to re-use in other projects. Then make sure the UserForm is
selected and choose File ➪ Export File (or press Ctrl+E). You’ll be prompted for a
filename. Then when you start your next project, select File ➪ Import File to load
the saved UserForm.

A UserForm Checklist
Before you unleash a UserForm on end users, be sure that everything is working
correctly. The following checklist should help you identify potential problems.

✦ Are similar controls the same size?

✦ Are the controls evenly spaced?

✦ Is the dialog box too overwhelming? If so, you may want to group the controls
using a MultiPage control.

Emulating Excel’s Dialog Boxes

The look and feel of Windows dialog boxes differ from program to program. When devel-
oping applications for Excel, it’s best to try to mimic Excel’s dialog box style whenever
possible.

In fact, a good way to learn how to create effective dialog boxes is to try to copy one of
Excel’s dialog boxes down to the smallest detail. For example, make sure that you get all
the hot keys defined and be sure that the tab order is the same. To re-create one of Excel’s
dialog boxes, you need to test it under various circumstances and see how it behaves. I
guarantee that your analysis of Excel’s dialog boxes will improve your own dialog boxes.

You will find that it’s impossible to duplicate some of Excel’s dialog boxes. For example,
when you choose the Find All option in Excel 2002’s Find and Replace dialog box, the dia-
log box becomes resizable. It is not possible to create a resizable UserForm.

4799-2 ch13.F 6/11/01 9:37 AM Page 408

409Chapter 13 ✦ Introducing UserForms

✦ Can every control be accessed with a hot key?

✦ Are any of the hot keys duplicated?

✦ Is the tab order set correctly?

✦ Will your VBA code take appropriate action if the user presses Esc or clicks
the Close button on the UserForm?

✦ Are there any misspellings in the text?

✦ Does the dialog box have an appropriate caption?

✦ Will the dialog box display properly at all video resolutions? Sometimes labels
that display properly with a high-resolution display will appear cut-off in VGA
display mode.

✦ Are the controls grouped logically (by function)?

✦ Do ScrollBar and SpinButton controls allow valid values only?

✦ Are ListBoxes set properly (Single, Multi, or Extended)?

Summary
In this chapter, I introduced you to custom dialog boxes (UserForms) and provided
an overview of the controls you can use in your dialog boxes. I also presented
several examples, illustrating how to create UserForms and use them with VBA.

In the next chapter, I offer many more examples of VBA procedures and UserForms.

✦ ✦ ✦

4799-2 ch13.F 6/11/01 9:37 AM Page 409

4799-2 ch13.F 6/11/01 9:37 AM Page 410

UserForm
Examples

This chapter presents lots of useful and informative exam-
ples that introduce you to some additional techniques

that involve UserForms. You may be able to adapt these tech-
niques to your own work. All of the examples are available on
the CD-ROM that accompanies this book.

Creating a UserForm “Menu”
Sometimes, you may want to use a UserForm as a type of
menu. This section presents two ways to do this: using
CommandButtons, or using a ListBox.

Using CommandButtons
Figure 14-1 shows an example of a UserForm that uses
CommandButton controls as a simple menu. Setting up this
sort of thing is very easy, and the code behind the UserForm
is very straightforward. Each CommandButton has its own
event-handler procedure. For example, the following proce-
dure is executed when CommandButton1 is clicked:

Private Sub CommandButton1_Click()
Call Macro1
Unload Me

End Sub

This procedure simply calls Macro1 and closes the UserForm.
The other buttons have similar event-handler procedures.

1414C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Using a UserForm for
a simple menu

Selecting ranges from
a UserForm

Using a UserForm as
a splash screen

Changing the size of
a UserForm while it’s
displayed

Zooming and
scrolling a sheet from
a UserForm

Understanding
various techniques
that involve a ListBox
control

Using the MultiPage
control

✦ ✦ ✦ ✦

4799-2 ch14.F 6/11/01 9:38 AM Page 411

412 Part IV ✦ Working with UserForms

Figure 14-1: This dialog box uses CommandButtons as a
menu.

Using a ListBox
Figure 14-2 shows another example that uses a ListBox as a menu. Before the
UserForm is displayed, its Initialize event-handler procedure is called. This proce-
dure, which follows, uses the AddItem method to add six items to the ListBox:

Private Sub UserForm_Initialize()
With ListBox1

.AddItem “Macro1”

.AddItem “Macro2”

.AddItem “Macro3”

.AddItem “Macro4”

.AddItem “Macro5”

.AddItem “Macro6”
End With

End Sub

Figure 14-2: This dialog box uses a ListBox as a
menu.

The Execute button also has a procedure to handle its click event:

Private Sub ExecuteButton_Click()
Select Case ListBox1.ListIndex

Case -1
MsgBox “Select a macro from the list.”
Exit Sub

Case 0: Call Macro1
Case 1: Call Macro2
Case 2: Call Macro3
Case 3: Call Macro4

4799-2 ch14.F 6/11/01 9:38 AM Page 412

413Chapter 14 ✦ UserForm Examples

Case 4: Call Macro5
Case 5: Call Macro6

End Select
Unload Me

End Sub

This procedure accesses the ListIndex property of the ListBox to determine
which item is selected (if the ListIndex is –1, it means nothing is selected). Then the
appropriate macro is executed.

Excel, of course, also lets you create “real” menus and toolbars. Refer to Chapters
22 and 23 for details.

Selecting Ranges
Several of Excel’s built-in dialog boxes allow the user to specify a range. For exam-
ple, the Goal Seek dialog box asks the user to select two ranges. The user can either
type the range name directly, or use the mouse to point and click in a sheet.

Your UserForms can also provide this type of functionality, thanks to the RefEdit
control. The RefEdit control doesn’t look exactly like the range selection control
used in Excel’s built-in dialogs, but it works the same. If the user clicks the small
button on the right side of the control, the dialog box disappears temporarily and a
small range selector is displayed (which is exactly what happens with Excel’s built-
in dialog boxes).

Figure 14-3 shows a UserForm that contains a RefEdit control. This dialog box per-
forms a simple mathematical operation on all nonformula (and nonempty) cells in
the selected range. The operation that’s performed corresponds to the selected
OptionButton.

Figure 14-3: The RefEdit control shown here allows
the user to select a range.

Following are a few things to keep in mind when using a RefEdit control:

✦ The RefEdit control returns a text string that represents a range address. You
can convert this string to a Range object using a statement such as:

Set UserRange = Range(RefEdit1.Text)

Cross-
Reference

4799-2 ch14.F 6/11/01 9:38 AM Page 413

414 Part IV ✦ Working with UserForms

✦ It’s a good practice to initialize the RefEdit control to display the current
range selection. You can do so in the UserForm_Initialize procedure using
a statement such as:

RefEdit1.Text = ActiveWindow.RangeSelection.Address

✦ Don’t assume that RefEdit will always return a valid range address. Pointing to
a range isn’t the only way get text into this control. The user can type any
text, and edit or delete the displayed text. Therefore, you’ll need to make sure
the range is valid. The following code is an example of a way to check for a
valid range. If an invalid range is detected, the user is given a message and
focus is set to the RefEdit control so the user can try again.

On Error Resume Next
Set UserRange = Range(RefEdit1.Text)
If Err <> 0 Then

MsgBox “Invalid range selected”
RefEdit1.SetFocus
Exit Sub

End If
On Error GoTo 0

✦ The user can also click the worksheet tabs while selecting a range with the
RefEdit control. Therefore, you can’t assume that the selection will be on the
active sheet. However, if a different sheet is selected, the range address will be
preceded by a sheet name. For example:

Sheet2!A1:$C:4

✦ If you need to get a single cell selection from the user, you can pick out the
upper left cell of a selected range by using a statement such as:

Set OneCell = Range(RefEdit1.Text).Range(“A1”)
As I discuss in Chapter 12, you can also use VBA’s InputBox function to allow the
user to select a range.

Creating a “Splash Screen”
Some developers like to display some introductory information when the applica-
tion is opened. This is commonly known as a splash screen. You are undoubtedly
familiar with Excel’s splash screen, which appears for a few seconds as Excel is
loading.

You can create a splash screen for your Excel application with a UserForm. This
example is essentially a UserForm that is displayed automatically, and then dis-
misses itself after five seconds. Follow these instructions to create a splash screen
for your project:

Cross-
Reference

4799-2 ch14.F 6/11/01 9:38 AM Page 414

415Chapter 14 ✦ UserForm Examples

1. Create your workbook.

2. Activate the VBE and insert a new UserForm into the project. The code in this
example assumes this form is named UserForm1.

3. Place any controls you like on UserForm1. For example, you may want to
insert an Image control that has your company’s logo. Figure 14-4 shows an
example.

Figure 14-4: This splash screen is displayed briefly when the workbook
is opened.

4. Insert the following procedure into the code module for the ThisWorkbook
object:

Private Sub Workbook_Open()
UserForm1.Show

End Sub

5. Insert the following procedure into the code module for UserForm1 (this
assumes a 5-second delay):

Private Sub UserForm_Activate()
Application.OnTime Now + _
TimeValue(“00:00:05”), “KillTheForm”

End Sub

6. Insert the following procedure into a general VBA module:

Private Sub KillTheForm()
Unload UserForm1

End Sub

4799-2 ch14.F 6/11/01 9:38 AM Page 415

416 Part IV ✦ Working with UserForms

When the workbook is opened, the Workbook_Open procedure is executed.
This procedure displays the UserForm. At that time, its Activate event
occurs, which triggers the UserForm_Activate procedure. This procedure
uses the OnTime method of the Application object to execute a procedure
named KillTheForm at a particular time. In this case, the time is five seconds
after the activation event. The KillTheForm procedure simply unloads the
UserForm.

7. As an option, you can add a small CommandButton named CancelButton, set
its Cancel property to True, and insert the following event-handler procedure
in the UserForm’s code module:

Private Sub CancelButton_Click()
KillTheForm

End Sub

Doing so lets the user cancel the splash screen before the time has expired by
pressing Esc. You can stash this small button behind another object so it
won’t be visible.

Keep in mind that the splash screen is not displayed until the workbook is entirely
loaded. In other words, if you would like to display the splash screen to give the
user something to look at while the workbook is loading, this technique won’t fill
the bill.

Disabling a UserForm’s Close Button
When a UserForm is displayed, clicking the Close button (the X in the upper right
corner) will unload the form. You might have a situation in which you don’t want
this to happen. For example, you may require that the UserForm be closed only by
clicking a particular CommandButton.

Although you can’t actually disable the Close button, you can prevent the user from
closing a UserForm by clicking it. You can do so by monitoring the UserForm’s
QueryClose event.

The following procedure, which is located in the code module for the UserForm, is
executed before the form is closed (that is, when the QueryClose event occurs):

Private Sub UserForm_QueryClose _
(Cancel As Integer, CloseMode As Integer)
If CloseMode = vbFormControlMenu Then

MsgBox “Click the OK button to close the form.”
Cancel = True

End If
End Sub

Caution

4799-2 ch14.F 6/11/01 9:38 AM Page 416

417Chapter 14 ✦ UserForm Examples

The UserForm_QueryClose procedure uses two arguments. The CloseMode argu-
ment contains a value that indicates the cause of the QueryClose event. If
CloseMode is equal to vbFormControlMenu (a built-in constant), that means the
user clicked the Close button. In such a case a message is displayed, the Cancel
argument is set to True, and the form is not actually closed.

Keep in mind that a user can press Ctrl+Break to break out of the macro. In this
example, pressing Ctrl+Break while the UserForm is displayed will cause the
UserForm to be dismissed. To prevent this from happening, execute the following
statement prior to displaying the UserForm:

Application.EnableCancelKey = xlDisabled

Make sure your application is debugged before you add this statement. Otherwise,
you’ll find that it’s impossible to break out of an accidental endless loop.

Changing a Dialog Box’s Size
Many applications use dialog boxes that change their own size. For example, Excel’s
AutoFormat dialog box (displayed when you select Format ➪ AutoFormat) increases
its height when the user clicks the Options button.

This example demonstrates how to get a UserForm to change its size dynamically.
Changing a dialog box’s size is done by altering the Width or Height property of
the UserForm object.

Figure 14-5 shows the dialog box as it is first displayed, and Figure 14-6 shows it
after the user clicks the Options button. Notice that the button’s caption changes,
depending on the size of the UserForm.

Figure 14-5: A sample dialog box in
its standard mode

As you’re creating the UserForm, set it to its largest size to enable you to work with
the controls. Then use the UserForm_Initialize procedure to set it to its default
(smaller) size.

Note

4799-2 ch14.F 6/11/01 9:38 AM Page 417

418 Part IV ✦ Working with UserForms

Figure 14-6: The same dialog box enlarged
to show some options

This example displays a list of worksheets in the active workbook, and lets the user
select which sheets to print. Following is the event-handler that’s executed when
the CommandButton named OptionsButton is clicked:

Private Sub OptionsButton_Click()
If OptionsButton.Caption = “Options >>” Then

Me.Height = 164
OptionsButton.Caption = “<< Options”

Else
Me.Height = 128
OptionsButton.Caption = “Options >>”

End If
End Sub

This procedure examines the Caption of the CommandButton, and sets the
UserForm’s Height property accordingly.

When controls are not displayed because they are outside of the visible portion of
the UserForm, the accelerator keys for such controls continue to function. In this
example, the user can press the Alt+L hot key (to select the Landscape mode
option) even if that option is not visible. To block access to nondisplayed controls,
you can write code to disable the controls when they are not displayed.

Zooming and Scrolling a
Sheet from a UserForm

When you display a dialog box, it’s often helpful if the user can scroll through the
worksheet to examine various ranges. Normally, this is impossible while a dialog
box is displayed.

Note

4799-2 ch14.F 6/11/01 9:38 AM Page 418

419Chapter 14 ✦ UserForm Examples

Beginning with Excel 2000, a UserForm can be “modeless.” This means that the
user doesn’t have to dismiss the dialog box before activating the workbook and
doing other work in Excel. The Show method of the UserForm object defaults to
displaying the form modally. To display a modeless dialog box, use an instruction
such as:

UserForm1.Show vbModeless

The example in this section demonstrates how to use ScrollBar controls to allow
sheet scrolling and zooming while a dialog box is displayed. Figure 14-7 shows how
the example dialog box is set up. When the UserForm is displayed, the user can
adjust the worksheet’s zoom factor (from 10% to 400% by using the ScrollBar at the
top). The two ScrollBars in the bottom section of the dialog box allow the user to
scroll the worksheet horizontally or vertically.

Figure 14-7: Here, ScrollBar controls allow zooming and
scrolling of the worksheet.

If you look at the code for this example, you’ll see that it’s remarkably simple. The
controls are initialized in the UserForm_Initialize procedure, which follows:

Private Sub UserForm_Initialize()
LabelZoom.Caption = ActiveWindow.Zoom

‘ Zoom
With ScrollBarZoom

.Min = 10

.Max = 400

.SmallChange = 1

.LargeChange = 10

.Value = ActiveWindow.Zoom
End With

‘ Horizontally scrolling
With ScrollBarColumns

Note

4799-2 ch14.F 6/11/01 9:38 AM Page 419

420 Part IV ✦ Working with UserForms

.Min = 1

.Max = 256

.Value = ActiveWindow.ScrollColumn

.LargeChange = 25

.SmallChange = 1
End With

‘ Vertically scrolling
With ScrollBarRows

.Min = 1

.Max = ActiveSheet.Rows.Count

.Value = ActiveWindow.ScrollRow

.LargeChange = 25

.SmallChange = 1
End With

End Sub

This procedure sets various properties of the ScrollBar controls using values based
on the active window.

When the ScrollBarZoom control is used, the ScrollBarZoom_Change procedure
(which follows) is executed. This procedure sets the ScrollBar control’s Value to
the ActiveWindow’s Zoom property value. It also changes a label to display the cur-
rent zoom factor.

Private Sub ScrollBarZoom_Change()
With ActiveWindow

.Zoom = ScrollBarZoom.Value
LabelZoom = .Zoom & “%”

End With
End Sub

Worksheet scrolling is accomplished by the two procedures that follow. These pro-
cedures set the ScrollRow or ScrollColumns property of the ActiveWindow
object equal to the appropriate ScrollBar control value.

Private Sub ScrollBarColumns_Change()
ActiveWindow.ScrollColumn = ScrollBarColumns.Value

End Sub

Private Sub ScrollBarRows_Change()
ActiveWindow.ScrollRow = ScrollBarRows.Value

End Sub

ListBox Techniques
The ListBox control is extremely versatile, but it can be a bit tricky to work with.
This section consists of a number of simple examples that demonstrate common
techniques that involve the ListBox control.

4799-2 ch14.F 6/11/01 9:38 AM Page 420

421Chapter 14 ✦ UserForm Examples

In most cases, the techniques described in this section also work with a
ComboBox control.

About the ListBox control
Following are a few points to keep in mind when working with ListBox controls.
Examples in the sections that follow demonstrate many of these points.

✦ The items in a ListBox can be retrieved from a range of cells (specified by the
RowSource property), or they can be added using VBA code (using the
AddItem method).

✦ A ListBox can be set up to allow a single selection or a multiple selection. This
is determined by the MultiSelect property.

✦ If a ListBox is not set up for a multiple selection, the value of the ListBox can
be linked to a worksheet cell by using the ControlSource property.

✦ It’s possible to display a ListBox with no items selected (the ListIndex prop-
erty will be –1). However, once an item is selected, it’s not possible for the
user to unselect all items.

✦ A ListBox can contain multiple columns (controlled by the ColumnCount
property), and even a descriptive header (controlled by the ColumnHeads
property).

✦ The vertical height of a ListBox displayed in a UserForm window isn’t always
the same as the vertical height when the UserForm is actually displayed.

✦ The items in a ListBox can be displayed as check boxes if multiple selection is
allowed, or as option buttons if a single selection is allowed. This is controlled
by the ListStyle property.

For complete details on the properties and methods for a ListBox control, consult
the online help.

Adding items to a ListBox control
Before displaying a UserForm that uses a ListBox control, you’ll probably need to
fill the ListBox with items. You can fill a ListBox at design time using items stored in
a worksheet range, or at runtime using VBA to add the items to the ListBox.

The two examples in this section presume that:

✦ You have a UserForm named UserForm1.

✦ This UserForm contains a ListBox control named ListBox1.

✦ The workbook contains a sheet named Sheet1, and range A1:A12 contains the
items to be displayed in the ListBox.

Note

Note

4799-2 ch14.F 6/11/01 9:38 AM Page 421

422 Part IV ✦ Working with UserForms

Adding items to a ListBox at design time
To add items to a ListBox at design time, the ListBox items must be stored in a
worksheet range. Use the RowSource property to specify the range that contains
the ListBox items. Figure 14-8 shows the Properties window for a ListBox control.
The RowSource property is set to Sheet1!A1:A12. When the UserForm is dis-
played, the ListBox will contain the 12 items in this range. The items appear in the
ListBox at design time, as soon as you specify the range for the RowSource
property.

Make sure that you include the worksheet name when you specify the
RowSource property; otherwise, the ListBox will use the specified range on the
active worksheet.In some cases, you may need to fully qualify the range by includ-
ing the workbook name. For example: [Book1.xls]Sheet1!A1:A12

Figure 14-8: Setting the RowSource property at design time

Adding items to a ListBox at runtime
To add ListBox items at runtime, you have two choices:

✦ Set the RowSource property to a range address using code.

✦ Write code that uses the AddItem method to add the ListBox items.

As you might expect, you can set the RowSource property via code rather than with
the Properties window. For example, the following procedure sets the RowSource
property for a ListBox before displaying the UserForm. In this case, the items con-
sist of the cell entries in a range named Categories on the Budget worksheet.

UserForm1.ListBox1.RowSource = “Budget!Categories”
UserForm1.Show

Caution

4799-2 ch14.F 6/11/01 9:38 AM Page 422

423Chapter 14 ✦ UserForm Examples

If the ListBox items are not contained in a worksheet range, you can write VBA code
to fill the ListBox before the dialog box appears. The procedure fills the ListBox
with the names of the months using the AddItem method.

Sub ShowUserForm2()
‘ Fill the list box

With UserForm2.ListBox1
.RowSource=””
.AddItem “January”
.AddItem “February”
.AddItem “March”
.AddItem “April”
.AddItem “May”
.AddItem “June”
.AddItem “July”
.AddItem “August”
.AddItem “September”
.AddItem “October”
.AddItem “November”
.AddItem “December”

End With
UserForm2.Show

End Sub

In the preceding code, notice that I set the RowSource property to an empty
string. This is to avoid a potential error that occurs if the Properties window has a
nonempty RowSource setting. If you try to add items to a ListBox that has a non-
null RowSource setting, you’ll get a “permission denied” error.

You can also use the AddItem method to retrieve ListBox items from a range. Here’s
an example that fills a ListBox with the contents of A1:A12 on Sheet1.

For Row = 1 To 12
UserForm1.ListBox1.AddItem Sheets(“Sheet1”).Cells(Row, 1)

Next Row

If your data is stored in a one-dimensional array, you can assign the array to the
ListBox with a single instruction. For example, assume you have an array named
dData that contains 50 elements. The following statement will create a 50-item list
in ListBox1:

ListBox1.List = dData

Adding only unique items to a ListBox
In some cases, you may need to fill a ListBox with unique (nonduplicated) items
from a list. For example, assume you have a worksheet that contains customer data.
One of the columns might contain the state (see Figure 14-9). You would like to fill a
ListBox with the state name of your customers, but you don’t want to include dupli-
cate state names.

Caution

4799-2 ch14.F 6/11/01 9:38 AM Page 423

424 Part IV ✦ Working with UserForms

Figure 14-9: A Collection object is used to fill a
ListBox with the unique items from Column B.

One technique involves using a Collection object. You can add items to a
Collection object with the following syntax:

object.Add item, key, before, after

The key argument, if used, must be a unique text string that specifies a separate key
that can be used to access a member of the collection. The important word here is
unique. If you attempt to add a nonunique key to a collection, an error occurs and
the item is not added. We can take advantage of this situation and use it to create a
collection that consists only of unique items.

The following procedure demonstrates. It starts by declaring a new Collection
object named NoDupes. It assumes that a range named Data contains a list of items,
some of which may be duplicated.

The code loops through the cells in the range and attempts to add the cell’s value
to the NoDupes collection. It also uses the cell’s value (converted to a string) for the
key argument. Using the On Error Resume Next statement causes VBA to ignore
the error that occurs if the key is not unique. When an error occurs, the item is not
added to the collection — which is just what we want. The procedure then transfers
the items in the NoDupes collection to the ListBox. The UserForm also contains a
label that displays the number of unique items.

Sub RemoveDuplicates1()
Dim AllCells As Range, Cell As Range
Dim NoDupes As New Collection

On Error Resume Next
For Each Cell In Range(“Data”)

NoDupes.Add Cell.Value, CStr(Cell.Value)

4799-2 ch14.F 6/11/01 9:38 AM Page 424

425Chapter 14 ✦ UserForm Examples

Next Cell
On Error GoTo 0

‘ Add the non-duplicated items to a ListBox
For Each Item In NoDupes

UserForm1.ListBox1.AddItem Item
Next Item

‘ Display the count
UserForm1.Label1.Caption = _
“Unique items: “ & NoDupes.Count

‘ Show the UserForm
UserForm1.Show

End Sub

A slightly more sophisticated version of this example is available on the CD-ROM.

Determining the selected item
The examples in preceding sections merely display a UserForm with a ListBox filled
with various items. These procedures omit a key point: how to determine which
item or items were selected by the user.

This discussion assumes a “single selection” ListBox object — one whose
MultiSelect property is set to 0.

To determine which item was selected, access the ListBox’s Value property. The
statement that follows, for example, displays the text of the selected item in
ListBox1.

MsgBox ListBox1.Value

If no item is selected, this statement will generate an error.

If you need to know the position of the selected item in the list (rather than the con-
tent of that item) you can access the ListBox’s ListIndex property. The following
example uses a message box to display the item number of the selected ListBox
item:

MsgBox “You selected item #” & ListBox1.ListIndex

If no item is selected, the ListIndex property will return –1.

The numbering of items in a ListBox begins with 0, not 1. Therefore, the
ListIndex of the first item is 0, and the ListIndex of the last item is equivalent
to the value of the ListCount property minus 1.

Note

Note

On the
CD-ROM

4799-2 ch14.F 6/11/01 9:38 AM Page 425

426 Part IV ✦ Working with UserForms

Determining multiple selections
Normally, a ListBox’s MultiSelect property is 0, which means that the user can
select only one item in the ListBox.

If the ListBox allows multiple selections (that is, if its MultiSelect property is
either 1 or 2), trying to access the ListIndex or Value properties will result in an
error. Instead, you need to use the Selected property, which returns an array
whose first item has an index of 0. For example, the following statement displays
True if the first item in the ListBox list is selected:

MsgBox ListBox1.Selected(0)

The companion CD-ROM contains a workbook that demonstrates how to identify
the selected item(s) in a ListBox. It works for single-selection and multiple-selec-
tion ListBoxes.

The following code, from the example workbook on the CD-ROM, loops through
each item in the ListBox. If the item was selected, it appends the item’s text to a
variable called Msg. Finally, the names of all the selected items are displayed in a
message box.

Private Sub OKButton_Click()
Msg = “”
For i = 0 To ListBox1.ListCount - 1

If ListBox1.Selected(i) Then _
Msg = Msg & ListBox1.List(i) & vbCrLf

Next i
MsgBox “You selected: “ & vbCrLf & Msg
Unload Me

End Sub

Figure 14-10 shows the result when multiple ListBox items are selected.

Multiple lists in a single ListBox
This example demonstrates how to create a ListBox in which the contents change
depending on the user’s selection from a group of OptionButtons.

Figure 14-11 shows the sample UserForm. The ListBox gets its items from a work-
sheet range. The procedures that handle the Click event for the OptionButton con-
trols simply sets the ListBox’s RowSource property to a different range. One of
these procedures follows:

Private Sub obMonths_Click()
ListBox1.RowSource = “Sheet1!Months”

End Sub

Clicking the OptionButton named obMonths changes the RowSource property of
the ListBox to use a range named Months on Sheet1.

On the
CD-ROM

4799-2 ch14.F 6/11/01 9:38 AM Page 426

427Chapter 14 ✦ UserForm Examples

Figure 14-10: This message box displays a list of items selected in a ListBox.

Figure 14-11: The contents of this ListBox depend on the
OptionButton selected.

ListBox item transfer
Some applications require a user to select several items from a list. It’s often useful
to create a new list of the selected items. For an example of this situation, check out
the Attach Toolbars dialog box that appears when you click the Attach button in
the Customize dialog box (which appears when you choose View ➪ Toolbars ➪
Customize).

Figure 14-12 shows a dialog box with two ListBoxes. The Add button adds the item
selected in the left ListBox to the right ListBox. The Delete button removes the
selected item from the list on the right. A check box determines the behavior when

4799-2 ch14.F 6/11/01 9:38 AM Page 427

428 Part IV ✦ Working with UserForms

a duplicate item is added to the list. If the Allow duplicates check box is not
checked, a message box appears if the user attempts to add an item that’s already
on the list.

Figure 14-12: Building a list from another list

The code for this example is relatively simple. Here’s the procedure that is exe-
cuted when the user clicks the Add button:

Private Sub AddButton_Click()
If ListBox1.ListIndex = -1 Then Exit Sub
If Not cbDuplicates Then

‘ See if item already exists
For i = 0 To ListBox2.ListCount - 1

If ListBox1.Value = ListBox2.List(i) Then
Beep
Exit Sub

End If
Next i

End If
ListBox2.AddItem ListBox1.Value

End Sub

The code for the Delete button is even simpler:

Private Sub DeleteButton_Click()
If ListBox2.ListIndex = -1 Then Exit Sub
ListBox2.RemoveItem ListBox2.ListIndex

End Sub

Notice that both of these routines check to make sure that an item is actually
selected. If the ListBox’s ListIndex property is –1, no items are selected and the
procedure ends.

Moving items in a ListBox
The example in this section demonstrates how to allow the user to move items up
or down in a ListBox. The VBE uses this type of technique to let you control the tab
order of the items in a UserForm.

4799-2 ch14.F 6/11/01 9:38 AM Page 428

429Chapter 14 ✦ UserForm Examples

Figure 14-13 shows a dialog box that contains a ListBox and two CommandButtons.
Clicking the Move Up button moves the selected item up in the ListBox; clicking the
Move Down button moves the selected item down.

Figure 14-13: The buttons allow the user to move items
up or down in the ListBox.

The event-handler procedures for the two CommandButtons follow:

Private Sub MoveUpButton_Click()
If ListBox1.ListIndex <= 0 Then Exit Sub
NumItems = ListBox1.ListCount
Dim TempList()
ReDim TempList(0 To NumItems - 1)

‘ Fill array with list box items
For i = 0 To NumItems - 1

TempList(i) = ListBox1.List(i)
Next i

‘ Selected item
ItemNum = ListBox1.ListIndex

‘ Exchange items
TempItem = TempList(ItemNum)
TempList(ItemNum) = TempList(ItemNum - 1)
TempList(ItemNum - 1) = TempItem
ListBox1.List = TempList

‘ Change the list index
ListBox1.ListIndex = ItemNum - 1

End Sub

Private Sub MoveDownButton_Click()
If ListBox1.ListIndex = ListBox1.ListCount - 1 Then Exit

Sub
NumItems = ListBox1.ListCount
Dim TempList()
ReDim TempList(0 To NumItems - 1)

‘ Fill array with list box items
For i = 0 To NumItems - 1

TempList(i) = ListBox1.List(i)
Next i

‘ Selected item
ItemNum = ListBox1.ListIndex

‘ Exchange items
TempItem = TempList(ItemNum)

4799-2 ch14.F 6/11/01 9:38 AM Page 429

430 Part IV ✦ Working with UserForms

TempList(ItemNum) = TempList(ItemNum + 1)
TempList(ItemNum + 1) = TempItem
ListBox1.List = TempList

‘ Change the list index
ListBox1.ListIndex = ItemNum + 1

End Sub

These procedures work fairly well, but you’ll find that for some reason, relatively
rapid clicking doesn’t always register. For example, you may click the Move Down
button three times in quick succession, but the item only moves one or two posi-
tions. The solution is to add a new DblClick event-handler for each
CommandButton. These procedures, which simply call the Click procedures, are
as follows:

Private Sub MoveUpButton_DblClick _
(ByVal Cancel As MSForms.ReturnBoolean)
Call MoveUpButton_Click

End Sub

Private Sub MoveDownButton_DblClick _
(ByVal Cancel As MSForms.ReturnBoolean)
Call MoveDownButton_Click

End Sub

Working with multicolumn ListBox controls
A normal ListBox has a single column for its contained items. You can, however,
create a ListBox that displays multiple columns and, optionally, column headers.
Figure 14-14 shows an example of a multicolumn ListBox that gets its data from a
worksheet range.

Figure 14-14: This ListBox displays a three-column list, with column headers.

4799-2 ch14.F 6/11/01 9:38 AM Page 430

431Chapter 14 ✦ UserForm Examples

To set up a multicolumn ListBox that uses data stored in a worksheet range:

1. Make sure the ListBox’s ColumnCount property is set to the correct number of
columns.

2. Specify the correct multicolumn range in the Excel worksheet as the ListBox’s
RowSource property.

3. If you want to display column heads like the ListBox in Figure 14-14, set the
ColumnHeads property to True. Do not include the column headings on the
worksheet in the range setting for the RowSource property. VBA will instead
automatically use the row directly above the first row of the RowSource
range.

4. Adjust the column widths by assigning a series of values, specified in points
(1/72 of one inch) separated by semicolons, to the ColumnWidths property.
For example, for a three-column list box, the ColumnWidths property might
be set to the following text string:

100;40;30

5. Specify the appropriate column as the BoundColumn property. The bound col-
umn specifies which column is referenced when an instruction polls the
ListBox’s Value property.

To fill a ListBox with multicolumn data without using a range, you first create a two-
dimensional array, and then assign the array to the ListBox’s List property. The
following statements demonstrate, using a 12 row by 2 column array named Data.
The two-column ListBox shows the month names in column 1, and the number of
the days in the month in column 2 (see Figure 14-15). Notice that the procedure sets
the ColumnCount property to 2.

Private Sub UserForm_Initialize()
‘ Fill the list box

Dim Data(1 To 12, 1 To 2)
For i = 1 To 12

Data(i, 1) = Format(DateSerial(2001, i, 1), “mmmm”)
Next i
For i = 1 To 12

Data(i, 2) = Day(DateSerial(2001, i + 1, 1) - 1)
Next i
ListBox1.ColumnCount = 2
ListBox1.List = Data

End Sub

4799-2 ch14.F 6/11/01 9:38 AM Page 431

432 Part IV ✦ Working with UserForms

Figure 14-15: A two-column ListBox, filled with data
stored in an array

There appears to be no way to specify column headers for the ColumnHeads
property when the list source is a VBA array.

Using a ListBox to select worksheet rows
The example in this section is actually a useful utility. It displays a ListBox that con-
sists of the entire used range of the active worksheet (see Figure 14-16). The user
can select multiple items in the ListBox. Clicking the All button selects all items,
and clicking the None button deselects all items. Clicking OK selects those corre-
sponding rows in the worksheet. You can, of course, select multiple noncontiguous
rows directly in the worksheet by pressing Ctrl as you click the row borders.
However, you may find that selecting rows is easier using this method.

Figure 14-16: This ListBox makes it easy to
select rows in a worksheet.

Selecting multiple items is possible because the ListBox’s MultiSelect property is
set to 1 - fmMultiSelectMulti. The “check boxes” on each item are displayed
because the ListBox’s ListStyle property is set to 1 - fmListStyleOption.

Note

4799-2 ch14.F 6/11/01 9:38 AM Page 432

433Chapter 14 ✦ UserForm Examples

The UserForm’s Initialize procedure follows. This procedure creates a Range
object named rng that consists of the active sheet’s used range. Additional code
sets the ListBox’s ColumnCount and RowSource properties, and adjusts the
ColumnWidths property such that the ListBox columns are proportional to the col-
umn widths in the worksheet.

Private Sub UserForm_Initialize()
ColCnt = ActiveSheet.UsedRange.Columns.Count
Set rng = ActiveSheet.UsedRange
With ListBox1

.ColumnCount = ColCnt

.RowSource = rng.Address
cw = “”
For c = 1 To .ColumnCount

cw = cw & rng.Columns(c).Width & “;”
Next c
.ColumnWidths = cw
.ListIndex = 0

End With
End Sub

The All and None buttons (named SelectAllButton and SelectNoneButton, respec-
tively) have simple event-handler procedures, and are as follows:

Private Sub SelectAllButton_Click()
For r = 0 To ListBox1.ListCount - 1

ListBox1.Selected(r) = True
Next r

End Sub

Private Sub SelectNoneButton_Click()
For r = 0 To ListBox1.ListCount - 1

ListBox1.Selected(r) = False
Next r

End Sub

The OKButton_Click procedure follows. This procedure creates a Range object
named RowRange that consists of the rows that correspond to the selected items in
the ListBox. To determine if a row was selected, the code examines the Selected
property of the ListBox control. Notice that it uses the Union function to add addi-
tional ranges to the RowRange object.

Private Sub OKButton_Click()
Dim RowRange As Range
RowCnt = 0
For r = 0 To ListBox1.ListCount - 1

If ListBox1.Selected(r) Then
RowCnt = RowCnt + 1
If RowCnt = 1 Then

Set RowRange = ActiveSheet.Rows(r + 1)

4799-2 ch14.F 6/11/01 9:38 AM Page 433

434 Part IV ✦ Working with UserForms

Else
Set RowRange = _
Union(RowRange, ActiveSheet.Rows(r + 1))

End If
End If

Next r
If Not RowRange Is Nothing Then RowRange.Select
Unload Me

End Sub

Using a ListBox to activate to a sheet
The example in this section is just as useful as it is instructive. This example uses a
multicolumn ListBox to display a list of sheets within the active workbook. The
columns represent:

✦ The sheet’s name

✦ The type of sheet (worksheet, chart, or Excel 5/95 dialog sheet)

✦ The number of nonempty cells in the sheet

✦ Whether the sheet is visible

Figure 14-17 shows an example of the dialog box.

Figure 14-17: This dialog box lets
the user activate a sheet.

The code in the UserForm_Initialize procedure (which follows) creates a two-
dimensional array, and collects the information by looping through the sheets in
the active workbook. It then transfers this array to the ListBox.

Private Sub UserForm_Initialize()
Dim SheetData() As String
Set OriginalSheet = ActiveSheet
ShtCnt = ActiveWorkbook.Sheets.Count
ReDim SheetData(1 To ShtCnt, 1 To 4)
ShtNum = 1
For Each Sht In ActiveWorkbook.Sheets

4799-2 ch14.F 6/11/01 9:38 AM Page 434

435Chapter 14 ✦ UserForm Examples

If Sht.Name = ActiveSheet.Name Then _
ListPos = ShtNum - 1

SheetData(ShtNum, 1) = Sht.Name
Select Case TypeName(Sht)

Case “Worksheet”
SheetData(ShtNum, 2) = “Sheet”
SheetData(ShtNum, 3) = _
Application.CountA(Sht.Cells)

Case “Chart”
SheetData(ShtNum, 2) = “Chart”
SheetData(ShtNum, 3) = “N/A”

Case “DialogSheet”
SheetData(ShtNum, 2) = “Dialog”
SheetData(ShtNum, 3) = “N/A”

End Select
If Sht.Visible Then

SheetData(ShtNum, 4) = “True”
Else

SheetData(ShtNum, 4) = “False”
End If
ShtNum = ShtNum + 1

Next Sht
With ListBox1

.ColumnWidths = “100 pt;30 pt;40 pt;50 pt”

.List = SheetData

.ListIndex = ListPos
End With

End Sub

The ListBox1_Click procedure follows:

Private Sub ListBox1_Click()
If cbPreview Then _

Sheets(ListBox1.Value).Activate
End Sub

The value of the CheckBox control (named cbPreview) determines whether the
selected sheet is previewed when the user clicks an item in the ListBox.

Clicking the OK button (named OKButton) executes the OKButton_Click proce-
dure, which follows:

Private Sub OKButton_Click()
Dim UserSheet As Object
Set UserSheet = Sheets(ListBox1.Value)
If UserSheet.Visible Then

UserSheet.Activate
Else

If MsgBox(“Unhide sheet?”, _
vbQuestion + vbYesNoCancel) = vbYes Then
UserSheet.Visible = True
UserSheet.Activate

Else

4799-2 ch14.F 6/11/01 9:38 AM Page 435

436 Part IV ✦ Working with UserForms

OriginalSheet.Activate
End If

End If
Unload Me

End Sub

The OKButton_Click procedure creates an object variable that represents the
selected sheet. If the sheet is visible, it is activated. If it’s not visible, the user is pre-
sented with a message box asking if it should be unhidden. If the user responds in
the affirmative, the sheet is unhidden and activated. Otherwise, the original sheet
(stored in an object variable named OriginalSheet) is activated.

Double-clicking an item in the ListBox has the same result as clicking the OK but-
ton. The ListBox1_DblClick procedure, which follows, simply calls the
OKButton_Click procedure.

Private Sub ListBox1_DblClick(ByVal Cancel As
MSForms.ReturnBoolean)

Call OKButton_Click
End Sub

Using the MultiPage Control
The MultiPage control is very useful for UserForms that must display many con-
trols. The MultiPage control lets you group the choices, and place each group on a
separate tab.

Figure 14-18 shows several examples of a UserForm that contains a MultiPage con-
trol. In this case, the control has three pages, each with its own tab. As you can see,
the MultiPage control is very versatile, giving you a great deal of control over its
appearance and functionality. The figure shows the result of the four settings for
the MultiPage’s TabOrientation property.

The Toolbox also contains a control named TabStrip. As far as I can tell, the
MultiPage control is much more versatile, and I can’t think of a single reason to
use the TabStrip control.

Using a MultiPage control can be a bit tricky. The following are some things to keep
in mind when using this control:

✦ The tab (or page) that’s displayed up front is determined by the control’s
Value function. A value of 0 displays the first tab, a value of 1 displays the
second tab, and so on.

✦ By default, a MultiPage control has two pages. To add a new page in the VBE,
right-click a tab and select New Page from the shortcut menu.

Note

4799-2 ch14.F 6/11/01 9:38 AM Page 436

437Chapter 14 ✦ UserForm Examples

Figure 14-18: MultiPage groups your controls on pages, making them accessible
from a tab.

✦When you’re working with a MultiPage control, just click a tab to set the prop-
erties for that particular page. The Properties window will display the proper-
ties that you can adjust.

✦ You may find it difficult to select the actual MultiPage control, because click-
ing the control selects a page within the control. To select the control itself,
click its border. Or, you can use the Tab key to cycle among all the controls.
Yet another option is to select the MultiPage control from the drop-down list
in the Properties window.

✦ If your MultiPage control has lots of tabs, you can set its MultiRow property
to True to display the tabs in more than one row.

✦ If you prefer, you can display buttons instead of tabs. Just change the Style
property to 1. If the Style property value is 2, the MultiPage control won’t
display tabs or buttons.

✦ The TabOrientation property determines the location of the tabs on the
MultiPage control. Figure 14-18 shows the result of each of the four
TabOrientation property settings.

✦ For each page, you can set a transition effect by changing the
TransitionEffect property. For example, clicking a tab can cause the new
page to “push” the former page out of the way. Use the TransitionPeriod
property to set the speed of the transition effect.

The next chapter contains several examples that use the MultiPage control.Cross-
Reference

4799-2 ch14.F 6/11/01 9:38 AM Page 437

438 Part IV ✦ Working with UserForms

Summary
This chapter provided several UserForm examples that demonstrate common tech-
niques. It also included many examples using the ListBox control.

The next chapter contains additional, more advanced examples of UserForms.

✦ ✦ ✦

4799-2 ch14.F 6/11/01 9:38 AM Page 438

Advanced
UserForm
Techniques

Displaying a Progress Indicator
One of the most common requests among Excel developers
involves progress indicators. A progress indicator is a graphi-
cal “thermometer” type display that shows the progress of a
task such as a lengthy macro.

Before Excel 97, creating a progress indicator was a difficult
task. But now, it’s relatively easy. In this section, I describe
how to create three types of progress indicators for:

✦ A macro that’s not initiated by a UserForm (a standalone
progress indicator).

✦ A macro that is initiated by a UserForm. In this case, the
UserForm makes use of a MultiPage control that displays
the progress indicator while the macro is running.

✦ A macro that is initiated by a UserForm. In this case, the
UserForm increases in height and the progress indicator
appears at the bottom of the dialog box.

Using a progress indicator requires that you are (somehow)
able to gauge how far along your macro may be in completing
its given task. How you do this will vary, depending on the
macro. For example, if your macro writes data to cells (and
you know the number of cells that will be written to), it’s a
simple matter to write code that calculates the percent
completed.

1515C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Displaying a
progress indicator
(three techniques)

Creating a “wizard:”
an interactive series
of dialog boxes

Creating a function
that emulates VBA’s
MsgBox function

Using modeless
UserForms

Handling multiple
objects with a single
event-handler

Using a dialog box
to select a color

Displaying cell
information in a
UserForm

Displaying a chart in
a UserForm (two
techniques)

Displaying a
complete spreadsheet
in a UserForm

Using an enhanced
data form

✦ ✦ ✦ ✦

4799-2 ch15.F 6/11/01 9:38 AM Page 439

440 Part IV ✦ Working with UserForms

It’s important to understand that a progress indicator will slow down your macro a
bit due to the extra overhead of having to update it. If speed is absolutely critical,
you may prefer to forgo a progress indicator.

Creating a standalone progress indicator
This section describes how to set up a UserForm to display the progress of a
macro.

This example is available on the companion CD-ROM.

Building the UserForm
Follow these steps to create the UserForm that will be used to display the progress
of your task:

1. Insert a new UserForm and change its Caption property setting to Progress.

2. Add a Frame control and name it FrameProgress.

3. Add a Label control inside the Frame and name it LabelProgress. Remove
the label’s caption, and make its background color (BackColor property) red.
The label’s size and placement do not matter for now.

On the
CD-ROM

Caution

Displaying Progress in the Status Bar

A simple way to display the progress of a macro is to use Excel’s status bar. The advantage
is that it’s very easy to program. The disadvantage is that most users aren’t accustomed to
watching the status bar, and would prefer a more visual display.

To write text to the status bar, use a statement such as:

Application.StatusBar = “Please wait...”

You can, of course, update the status bar as your macro progresses. For example, if you
have a variable named Pct that represents the percent completed, you can write code that
periodically executes a statement such as this:

Application.StatusBar = “Processing... “ & Pct & “% Completed”

When your macro finishes, reset the status bar to its normal state with the following
statement:

Application.StatusBar = False

4799-2 ch15.F 6/11/01 9:38 AM Page 440

441Chapter 15 ✦ Advanced UserForm Techniques

4. Add another label above the frame to describe what’s going on (optional).

5. Adjust the UserForm and controls so they look something like Figure 15-1.

You can, of course, apply any other type of formatting to the controls. For example,
I changed the SpecialEffect property for the Frame control shown in Figure 15-1.

Figure 15-1: This UserForm will serve as a
progress indicator.

Creating the event-handler procedures
The trick here involves running a procedure automatically when the UserForm is
displayed. One option is to use the Initialize event. However, this event occurs
before the UserForm is actually displayed so it’s not appropriate. The Activate
event, on the other hand, is triggered at the time the UserForm is displayed, so it’s
perfect for this application.

Insert the following procedure in the code window for the UserForm. This proce-
dure simply calls a procedure named Main when the UserForm is displayed. The
Main procedure, which is stored in a VBA module, is the actual macro that will be
running while the progress indicator is displayed.

Private Sub UserForm_Activate()
Call Main

End Sub

The Main procedure follows. This demo routine simply inserts random numbers
into the active worksheet. As it does so, it changes the width of the Label control
and displays the percentage completed in the Frame’s caption. This procedure is
just for exercising the progress bar; you may, of course, substitute your own for
more meaningful purposes.

Sub Main()
‘ Inserts random numbers on the active worksheet

Cells.Clear
Counter = 1
RowMax = 200
ColMax = 25
For r = 1 To RowMax

4799-2 ch15.F 6/11/01 9:38 AM Page 441

442 Part IV ✦ Working with UserForms

For c = 1 To ColMax
Cells(r, c) = Int(Rnd * 1000)
Counter = Counter + 1

Next c
PctDone = Counter / (RowMax * ColMax)
Call UpdateProgress(PctDone)

Next r
Unload UserForm1

End Sub

The Main procedure contains a loop (two loops, actually). Inside of the loop is a
call to the UpdateProgress procedure. This procedure, which follows, takes one
argument: a value between 0 and 100 that represents the progress of the macro.

Sub UpdateProgress(Pct)
With UserForm1
.FrameProgress.Caption = Format(Pct, “0%”)
.LabelProgress.Width = Pct * (.FrameProgress.Width - 10)
.Repaint

End With
End Sub

Creating the start-up procedure
All that’s missing is a procedure to display the UserForm. Enter the following proce-
dure in a VBA module:

Sub ShowDialog()
UserForm1.LabelProgress.Width = 0
UserForm1.Show

End Sub

How it works
When you execute the ShowDialog procedure, the Label object’s width is set to 0.
Then the Show method of the UserForm1 object displays the UserForm (which is
the progress indicator). When the UserForm is displayed, its Activate event is
triggered, which executes the Main procedure. The Main procedure periodically
updates the width of the label. Notice that the procedure uses the Repaint method
of the UserForm object. Without this statement, the changes to the label would not
be updated. Before the procedure ends, the last statement unloads the UserForm.

To customize this technique, you’ll need to figure out how to determine the per-
centage completed and assign it to the PctDone variable.

Showing progress using a MultiPage control
In the preceding example, the macro was not initiated by a UserForm. If your lengthy
macro is kicked off by presenting a UserForm, the technique described in this
section is a better solution. It assumes the following:

4799-2 ch15.F 6/11/01 9:38 AM Page 442

443Chapter 15 ✦ Advanced UserForm Techniques

✦ Your project is completed and debugged

✦ Your project uses a UserForm (without a MultiPage control) to initiate a
lengthy macro

✦ You have a way to gauge the progress of your macro

The companion CD-ROM contains an example that demonstrates this technique.

Modifying your UserForm
This step assumes that you have a UserForm all set up. You’ll add a MultiPage con-
trol. The first page of the MultiPage control will contain all of your original controls.
The second page will contain the controls that display the progress indicator. When
the macro begins executing, VBA code will change the Value property of the
MultiPage control. This will effectively hide the original controls and display the
progress indicator.

The first step is to add a MultiPage control to your UserForm. Then move all of the
existing controls on the UserForm and paste them to Page1 of the MultiPage con-
trol.

Next activate Page2 of the MultiPage control and set it up as in Figure 15-2. This is
essentially the same combination of controls used in the example in the previous
section.

1. Add a Frame control and name it FrameProgress.

2. Add a Label control inside of the Frame and name it LabelProgress. Remove
the label’s caption, and make its background color red.

3. Add another label to describe what’s going on (optional).

Figure 15-2: Page2 of the MultiPage control will
display the progress indicator.

On the
CD-ROM

4799-2 ch15.F 6/11/01 9:38 AM Page 443

444 Part IV ✦ Working with UserForms

4. Next, activate the MultiPage control itself (not a page on the control) and set
its Style property to 2 - fmTabStyleNone (this will hide the tabs). The
easiest way to select the MultiPage control is to use the drop-down list in
the Properties window. You’ll probably need to adjust the size of the
MultiPage control to account for the fact that the tabs are not displayed.

Inserting the UpdateProgress procedure
Insert the following procedure in the code module for the UserForm:

Sub UpdateProgress(Pct)
With UserForm1
.FrameProgress.Caption = Format(Pct, “0%”)
.LabelProgress.Width = Pct * (.FrameProgress.Width - 10)
.Repaint

End With
End Sub

This procedure will be called from the main macro, and will do the actual updating
of the progress indicator.

Modifying your procedure
You’ll need to modify the procedure that is executed when the user clicks the OK
Button — the Click event-handler procedure for the button, named OK_Click. First,
insert the following statement at the top of your procedure:

MultiPage1.Value = 1

This statement activates Page2 of the MultiPage control (the page that displays the
progress indicator).

In the next step, you’re pretty much on your own. You’ll need to write code to
calculate the percent completed, and assign this value to a variable named
PctDone. Most likely, this calculation will be performed inside of a loop. Then
insert the following statement, which will update the progress indicator:

Call UpdateProgress(PctDone)

How it works
This technique is very straightforward and, as you’ve seen, it involves only one
UserForm. The code switches pages of the MultiPage control, and converts your
normal dialog box into a progress indicator.

4799-2 ch15.F 6/11/01 9:38 AM Page 444

445Chapter 15 ✦ Advanced UserForm Techniques

Showing progress without using a MultiPage control
The example in this section is similar to the example in the previous section.
However, this technique is simpler because it does not use a MultiPage control.
Rather, the progress indicator is stored at the bottom of the UserForm — but the
UserForm’s height is reduced such that the progress indicator controls are not visi-
ble. When it’s time to display the progress indicator, the UserForm’s height is
increased, which makes the progress indicator visible.

The companion CD-ROM contains an example that demonstrates this technique.

Figure 15-3 shows the UserForm in the VBE. The Height property of the UserForm
is 162. However, before the UserForm is displayed, the Height is changed to 128
(which means the progress indicator controls are not visible to the user). When the
user clicks OK, VBA code changes the Height property to 162 using the following
statement:

Me.Height = 162

Figure 15-3: The progress indicator will be hidden
by reducing the height of the UserForm.

Creating Wizards
Many applications incorporate “wizards” to guide users through an operation.
Excel’s Text Import Wizard is a good example. A wizard is essentially a series of dia-
log boxes that solicit information from the user. Often, the user’s choices in earlier
dialog boxes influence the contents of later dialog boxes. In most wizards, the user
is free to go forward or backward through the dialog box sequence, or click the
Finish button to accept all defaults.

On the
CD-ROM

4799-2 ch15.F 6/11/01 9:38 AM Page 445

446 Part IV ✦ Working with UserForms

You can, of course, create wizards using VBA and a series of UserForms. However,
I’ve found that the most efficient way to create a wizard is to use a single UserForm
and a MultiPage control.

Figure 15-4 shows an example of a simple four-step wizard, which consists of a sin-
gle UserForm that contains a MultiPage control. Each step of the wizard displays a
different page in the MultiPage control.

If you need to create a wizard, the example workbook on the CD-ROM will serve
as a good starting point. This is a four-step wizard that collects information and
inserts it into a worksheet.

The sections that follow describe how I created the example wizard.

Setting up the MultiPage control
Start with a new UserForm, and add a MultiPage control. By default, this control
contains two pages. Right-click the MultiPage tab and insert enough new pages to
handle your wizard (one page for each wizard step). The example on the CD-ROM
is a four-step wizard, so the MultiPage control has four pages. The names of the
MultiPage tabs are irrelevant. The MultiPage control’s Style property will eventu-
ally be set to 2 - fmTabStyleNone. While working on the UserForm, you’ll want to
keep the tabs visible to make it easier to access various pages.

Figure 15-4: This four-step wizard uses a MultiPage control.

On the
CD-ROM

4799-2 ch15.F 6/11/01 9:38 AM Page 446

447Chapter 15 ✦ Advanced UserForm Techniques

Add the desired controls to each page of the MultiPage control. This will, of course,
vary depending on your application. You may need to resize the MultiPage control
as you work in order to have room for the controls.

Adding the buttons
Next, add the buttons that control the progress of the wizard. These buttons are
placed outside of the MultiPage control, since they are used while any of the pages
are displayed. Most wizards have four buttons:

✦ Cancel. Cancels the wizard.

✦ Back. Returns to the previous step. During Step 1, this button should be
disabled.

✦ Next. Advances to the next step. During the last step, this button should be
disabled.

✦ Finish. Finishes the wizard.

In some cases, the user is allowed to click the Finish button at any time, and
accept the defaults for items that were skipped over. In other cases, the wizard
requires a user response for some items. If this is the case, the Finish button is dis-
abled until all required input is made. The example on the CD-ROM requires an
entry in the TextBox in Step 1.

In the example, these CommandButtons are named CancelButton, BackButton,
NextButton, and FinishButton.

Programming the buttons
Each of the four wizard buttons requires a procedure to handle its Click event. The
event-handler for CancelButton follows. This procedure uses a MsgBox function
(see Figure 15-5) to verify that the user really wants to exit. If the user clicks the Yes
button, the UserForm is unloaded with no action taken. This type of verification, of
course, is optional.

Private Sub CancelButton_Click()
Msg = “Cancel the wizard?”
Ans = MsgBox(Msg, vbQuestion + vbYesNo, APPNAME)
If Ans = vbYes Then Unload Me

End Sub

Figure 15-5: Clicking the Cancel button displays a
message box.

Note

4799-2 ch15.F 6/11/01 9:38 AM Page 447

448 Part IV ✦ Working with UserForms

The event-handler procedures for the Back and Next buttons follow:

Private Sub BackButton_Click()
MultiPage1.Value = MultiPage1.Value - 1
UpdateControls

End Sub

Private Sub NextButton_Click()
MultiPage1.Value = MultiPage1.Value + 1
UpdateControls

End Sub

These two procedures are very simple. They change the Value property of the
MultiPage control, and then call another procedure named UpdateControls
(which follows).

The UpdateControls procedure in Listing 15-1 is responsible for enabling and
disabling the BackButton and NextButton controls.

Listing 15-1: These procedures enable the
key controls in the wizard.

Sub UpdateControls()
Select Case MultiPage1.Value

Case 0
BackButton.Enabled = False
NextButton.Enabled = True

Case MultiPage1.Pages.Count - 1
BackButton.Enabled = True
NextButton.Enabled = False

Case Else
BackButton.Enabled = True
NextButton.Enabled = True

End Select

‘ Update the caption
Me.Caption = APPNAME & “ Step “ _
& MultiPage1.Value + 1 & “ of “ _
& MultiPage1.Pages.Count

‘ The Name field is required
If tbName.Text = “” Then

FinishButton.Enabled = False
Else

FinishButton.Enabled = True
End If

End Sub

4799-2 ch15.F 6/11/01 9:38 AM Page 448

449Chapter 15 ✦ Advanced UserForm Techniques

The procedure changes the UserForm’s caption to display the current step and the
total number of steps (APPNAME is a public constant, defined in Module1). It then
examines the name field on the first page (a TextBox named tbName). This is a
“required” field, so the Finish button can’t be clicked if it’s empty. If the TextBox is
empty, the FinishButton is disabled; otherwise, it’s enabled.

Programming dependencies
In most wizards, a user’s response on a particular step may affect what’s displayed
in a subsequent step. In the CD-ROM example, the user indicates which products he
or she uses in Step 3, and then rates those products in Step 4. The OptionButtons
for a product’s rating are visible only if the user has indicated a particular product.

Programmatically, this is accomplished by monitoring the MultiPage’s Change
event. Whenever the value of the MultiPage is changed (by clicking the Back or
Next button), the MultiPage1_Change procedure is executed. If the MultiPage con-
trol is on the last tab (Step 4), the procedure examines the values of the CheckBox
controls in Step 3 and makes the appropriate adjustments in Step 4.

In this example, the code uses two arrays of controls — one for the product
CheckBox controls (Step 3), and one for the Frame controls (Step 4). The code uses
a For-Next loop to hide the Frames for the products that are not used, and adjusts
their vertical positioning. If none of the check boxes in Step 3 is checked, every-
thing in Step 4 is hidden except a TextBox that displays Click Finish to exit (if
a name is entered in Step 1) or A name is required in Step 1 (if a name is not
entered in Step 1). The MultiPage1_Change procedure is shown in Listing 15-2.

Listing 15-2: Bringing up the page corresponding
to the user’s choice

Private Sub MultiPage1_Change()
‘ Set up the Ratings page?

If MultiPage1.Value = 3 Then
‘ Create an array of CheckBox controls

Dim ProdCB(1 To 3) As MSForms.CheckBox
Set ProdCB(1) = cbExcel
Set ProdCB(2) = cbWord
Set ProdCB(3) = cbAccess

‘ Create an array of Frame controls
Dim ProdFrame(1 To 3) As MSForms.Frame
Set ProdFrame(1) = FrameExcel
Set ProdFrame(2) = FrameWord
Set ProdFrame(3) = FrameAccess

Continued

4799-2 ch15.F 6/11/01 9:38 AM Page 449

450 Part IV ✦ Working with UserForms

Listing 15-2 (continued)

TopPos = 22
FSpace = 8
AtLeastOne = False

‘ Loop through all products
For i = 1 To 3

If ProdCB(i) Then
ProdFrame(i).Visible = True
ProdFrame(i).Top = TopPos
TopPos = TopPos + ProdFrame(i).Height + FSpace
AtLeastOne = True

Else
ProdFrame(i).Visible = False

End If
Next i

‘ Uses no products?
If AtLeastOne Then

lblHeadings.Visible = True
Image4.Visible = True
lblFinishMsg.Visible = False

Else
lblHeadings.Visible = False
Image4.Visible = False
lblFinishMsg.Visible = True
If tbName = “” Then

lblFinishMsg.Caption = _
“A name is required in Step 1.”

Else
lblFinishMsg.Caption = _
“Click Finish to exit.”

End If
End If

End If
End Sub

Performing the task
When the user clicks the Finish button, the wizard performs its task: transferring
the information from the UserForm to the next empty row in the worksheet. This
procedure, shown in Listing 15-3, is very straightforward. It starts by determining
the next empty worksheet row and assigns this value to a variable (r). The remain-
der of the procedure simply translates the values of the controls and enters data
into the worksheet.

4799-2 ch15.F 6/11/01 9:38 AM Page 450

451Chapter 15 ✦ Advanced UserForm Techniques

Listing 15-3: Inserting the acquired data into the worksheet

Private Sub FinishButton_Click()
r = Application.WorksheetFunction. _
CountA(Range(“A:A”)) + 1

‘ Insert the name
Cells(r, 1) = tbName.Text

‘ Insert the gender
Select Case True

Case obMale: Cells(r, 2) = “Male”
Case obFemale: Cells(r, 2) = “Female”
Case obNoAnswer: Cells(r, 2) = “Unknown”

End Select

‘ Insert usage
Cells(r, 3) = cbExcel
Cells(r, 4) = cbWord
Cells(r, 5) = cbAccess

‘ Insert ratings
If obExcel1 Then Cells(r, 6) = “”
If obExcel2 Then Cells(r, 6) = 0
If obExcel3 Then Cells(r, 6) = 1
If obExcel4 Then Cells(r, 6) = 2
If obWord1 Then Cells(r, 7) = “”
If obWord2 Then Cells(r, 7) = 0
If obWord3 Then Cells(r, 7) = 1
If obWord4 Then Cells(r, 7) = 2
If obAccess1 Then Cells(r, 8) = “”
If obAccess2 Then Cells(r, 8) = 0
If obAccess3 Then Cells(r, 8) = 1
If obAccess4 Then Cells(r, 8) = 2

‘ Unload the form
Unload Me

End Sub

Final steps
Once you’ve tested your wizard and everything seems to be working, then you can
set the MultiPage control’s Style property to 2 - fmTabStyleNone.

4799-2 ch15.F 6/11/01 9:38 AM Page 451

452 Part IV ✦ Working with UserForms

Emulating the MsgBox Function
VBA’s MsgBox function is a bit unusual since, unlike most functions, it displays a
dialog box. But, like other functions, it also returns a value: an integer that repre-
sents which button the user clicked.

This example discusses a custom function that I created that emulates VBA’s
MsgBox function. On first thought, creating such a function might seem rather easy.
Think again! The MsgBox function is extraordinarily versatile, due to the arguments
it accepts. Consequently, creating a function to emulate MsgBox is no small feat.

The point of this exercise is not to create an alternative messaging function. Rather,
it’s to demonstrate how to develop a relatively complex function that also incorpo-
rates a UserForm. However, some people might like the idea of being able to cus-
tomize their messages. If so, you’ll find that this function is very easy to customize.
For example, you can change the font, colors, button text, and so on.

I named my pseudo-MsgBox function MyMsgBox. The emulation is not perfect.
MyMsgBox has the following limitations:

✦ It does not support the Helpfile argument (which adds a Help button that,
when clicked, opens a Help file).

✦ It does not support the Context argument (which specifies the context ID for
the Help file).

✦ It does not support the “system modal” option, which puts everything in
Windows on hold until you respond to the dialog.

The syntax for MyMsgBox is:

MyMsgBox(prompt[, buttons] [, title])

This syntax is exactly the same as the MsgBox syntax, except that it doesn’t use the
last two optional arguments (Helpfile and Context). MyMsgBox also uses the
same pre-defined constants as MsgBox: vbOKOnly, vbQuestion,
vbDefaultButton1, and so on.

You might want to examine the MsgBox listing in the online help to become famil-
iar with its arguments.

MyMsgBox code
The MyMsgBox function makes use of a UserForm named MyMsgBoxForm. The func-
tion itself, which follows, is very short. The bulk of the work is done in the
UserForm_Initialize procedure.

Note

4799-2 ch15.F 6/11/01 9:38 AM Page 452

453Chapter 15 ✦ Advanced UserForm Techniques

The complete code for the MyMsgBox function is too lengthy to list here, but it’s
available in a workbook on the companion CD-ROM.

Public Prompt1 As String
Public Buttons1 As Integer
Public Title1 As String
Public UserClick As Integer

Function MyMsgBox(ByVal Prompt As String, _
Optional ByVal Buttons As Integer, _
Optional ByVal Title As String) As Integer
Prompt1 = Prompt
Buttons1 = Buttons
Title1 = Title
MyMsgBoxForm.Show
MyMsgBox = UserClick

End Function

Figure 15-6 shows MyMsgBox in action (I used a different font for the message text).

Figure 15-6: The result of the MsgBox emulation function
(using a different font)

Here’s the code I used to execute the function:

Prompt = “You are about to wipe out your entire hard drive.”
Prompt = Prompt & vbCrLf & vbCrLf & “OK to continue?”
Buttons = vbQuestion + vbYesNo
Title = “We have a problem”
Ans = MyMsgBox(Prompt, Buttons, Title)

How it works
Notice the use of four Public variables. The first three (Prompt1, Buttons1,
and Title1) represent the arguments that are passed to the function. The other
variable (UserClick) represents the values returned by the function. The
UserForm_Initialize procedure needs a way to get this information and send
it back to the function, and using Public variables is the only way to accomplish
that.

On the
CD-ROM

4799-2 ch15.F 6/11/01 9:38 AM Page 453

454 Part IV ✦ Working with UserForms

The UserForm (shown in Figure 15-7) contains four Image controls (one for each of
the four possible icons), three CommandButton controls, and a TextBox control.

Figure 15-7: The UserForm for the MyMsgBox function.

The code in the UserForm_Initialize procedure examines the arguments and
does the following:

✦ Determines which, if any, image to display (and hides the others)

✦ Determines which button(s) to display (and hides the others)

✦ Determines which button is the default button

✦ Centers the buttons in the dialog box

✦ Determines the captions for the CommandButtons

✦ Determines the position of the text within the dialog box

✦ Determines how wide to make the dialog box (it uses an API call to get the
video resolution)

✦ Determines how tall to make the dialog box

✦ Displays the UserForm

Three additional event-handler procedures are included (one for each
CommandButton). These routines determine which button was clicked, and
returns a value for the function by setting a value for the UserClick variable.

Interpreting the second argument (buttons) is a bit challenging. This argument can
consist of a number of constants added together. For example, the second argu-
ment can be something like:

VbYesNoCancel + VbQuestion + VbDefaultButton3

4799-2 ch15.F 6/11/01 9:38 AM Page 454

455Chapter 15 ✦ Advanced UserForm Techniques

This argument creates a three-button MsgBox with “(Yes, No, and Cancel),” displays
the Question icon, and makes the third button the default button. The actual argu-
ment is 547 (3 + 32 + 512). The challenge was pulling three pieces of information
from a single number. The solution involves converting the argument to a binary
number, and then having the interpreter examine specific bits. For example, 547 in
binary is 1000100011. Binary digits 4 through 6 determine the image displayed, dig-
its 8 through 10 determine which buttons to display, and digits 1 and 2 determine
which button is the default button.

Using the MyMsgBox function
To use this function in your own project, export the MyMsgBoxMod module and the
MyMsgBoxForm UserForm. Then import these two files into your project.

A Modeless Dialog Box
Most dialog boxes that you encounter are modal dialog boxes, which must be dis-
missed from the screen before the user can do anything with the underlying appli-
cation. Some dialogs, however, are modeless, which means the user may continue to
work in the application while the dialog box is displayed.

Excel 2000 was the first version of Excel to support modeless custom dialog boxes.
Therefore, this feature will not work with earlier versions of Excel.

To display a modeless UserForm, use a statement such as:

UserForm1.Show vbModeless

The word vbModeless is a built-in constant that has a value of 0. Therefore, the
following statement works identically:

UserForm1.Show 0

Figure 15-8 shows a modeless dialog box that displays information about the active
cell. When the dialog box is displayed, the user is free to move the cell cursor and
activate other sheets.

This example is available on the companion CD-ROM.

The trick here is determining when to update the information in the dialog box. To
do so, the example monitors two workbook events: SheetSelectionChange and
SheetActivate. These event-handler procedures are located in the code module
for the ThisWorkbook object.

On the
CD-ROM

Note

4799-2 ch15.F 6/11/01 9:38 AM Page 455

456 Part IV ✦ Working with UserForms

Figure 15-8: This modeless dialog box remains visible while the user
continues working.

Refer to Chapter 18 for additional information about events.

The event-handler procedures follow:

Private Sub Workbook_SheetSelectionChange _
(ByVal Sh As Object, ByVal Target As Range)
Call UpdateBox

End Sub

Private Sub Workbook_SheetActivate(ByVal Sh As Object)
Call UpdateBox

End Sub

These procedures call the UpdateBox procedure, which follows:

Sub UpdateBox()
With UserForm1

‘ Make sure a worksheet is active
If TypeName(ActiveSheet) <> “Worksheet” Then

.lblFormula.Caption = “N/A”

.lblNumFormat.Caption = “N/A”

.lblLocked.Caption = “N/A”
Exit Sub

End If

Cross-
Reference

4799-2 ch15.F 6/11/01 9:38 AM Page 456

457Chapter 15 ✦ Advanced UserForm Techniques

.Caption = “Cell: “ & ActiveCell.Address(False, False)
‘ Formula

If ActiveCell.HasFormula Then
.lblFormula.Caption = ActiveCell.Formula

Else
.lblFormula.Caption = “(none)”

End If
‘ Number format

.lblNumFormat.Caption = ActiveCell.NumberFormat
‘ Locked

.lblLocked.Caption = ActiveCell.Locked
End With

End Sub

The UpdateBox procedure changes the UserForm’s caption to show the active cell’s
address, then it updates the three Label controls (lblFormula, lblNumFormat, and
lblLocked).

Following are a few points to help you understand how this example works:

✦ The UserForm is displayed “modeless” so that you can still access the work-
sheet while it’s displayed. Modeless UserForms are not supported in Excel 97
or earlier versions.

✦ Code at the top of the procedure checks to make sure that the active sheet is
a worksheet. If the sheet is not a worksheet, the Label controls are assigned
the text N/A.

✦ The UserForm has a check box (Auto update). When checked, the UserForm is
updated automatically.

✦ The workbook uses a class module to monitor two events for all open work-
books: the SheetSelectionChange event and the SheetActivate event. As
a result, the code to display the information about the current cell is executed
automatically whenever these events occur in any workbook (assuming that
the Auto update option is in effect). Some actions (such as changing a cell’s
number format) do not trigger either of these events. Therefore, the UserForm
also contains an Update button.

Refer to Chapter 29 for more information about class modules.

✦ The counts displayed for the cell precedents and dependents field include
cells in the active sheet only. This is a limitation of the Precedents and
Dependents properties.

✦ The information is displayed in Label controls on the UserForm. Because the
length of the information will vary, VBA code is used to size and vertically
space the labels — and also change the height of the UserForm if necessary.

Cross-
Reference

4799-2 ch15.F 6/11/01 9:38 AM Page 457

458 Part IV ✦ Working with UserForms

Figure 15-9 shows a much more sophisticated version of this example (it’s also
on the CD-ROM). This version displays quite a bit of additional information about
the selected cell. Long-time Excel users may notice the similarity with the Info
window — a feature that was removed from Excel several years ago. The code is
too lengthy to display here, but you can view the well-commented code in the
example workbook.

Figure 15-9: This UserForm displays information
about the active cell.

Multiple Buttons, One Event-Handler
Every CommandButton on a UserForm must have its own procedure to handle its
Click event. For example, if you have two CommandButtons, you’ll need at least
two event-handler procedures:

Private Sub CommandButton1_Click()
‘ Code goes here
End Sub

Private Sub CommandButton2_Click()
‘ Code goes here
End Sub

In other words, you cannot assign a macro to execute when any CommandButton is
clicked. Each Click event-handler is “hard-wired” to its CommandButton. You can,
however, have each event-handler call another all-inclusive macro in the event-
handler procedures, but you’ll need to pass an argument to indicate which
button was clicked. In the following examples, clicking either CommandButton1
or CommandButton2 both execute the ButtonClick procedure, and the single
argument tells the ButtonClick procedure which button was clicked.

4799-2 ch15.F 6/11/01 9:38 AM Page 458

459Chapter 15 ✦ Advanced UserForm Techniques

Private Sub CommandButton1_Click()
Call ButtonClick(1)
End Sub

Private Sub CommandButton2_Click()
Call ButtonClick(2)
End Sub

If your UserForm has many CommandButtons, setting up all of these event-handlers
can get tedious. You might prefer to have a single procedure that could determine
which button was clicked, and take the appropriate action.

This section describes a way around this limitation by using a Class Module to
define a new class.

This example is available on the companion CD-ROM.

Procedure
The following steps describe how to re-create the example workbook:

1. Create your UserForm as usual, and add several CommandButtons (the exam-
ple on the CD contains 16 CommandButttons).This example assumes the form
is named UserForm1.

2. Insert a class module into your project (use Insert ➪ Class Module), give it the
name BtnClass, and. enter the following code. You will need to customize the
ButtonGroup_Click procedure.

Public WithEvents ButtonGroup As MsForms.CommandButton

Private Sub ButtonGroup_Click()
Msg = “You clicked “ & ButtonGroup.Name & vbCrLf _
& vbCrLf
Msg = Msg & “Caption: “ & ButtonGroup.Caption _
& vbCrLf
Msg = Msg & “Left Position: “ & ButtonGroup.Left _
& vbCrLf
Msg = Msg & “Top Position: “ & ButtonGroup.Top
MsgBox Msg, vbInformation, ButtonGroup.Name

End Sub

3. Insert a normal VBA module and enter the following code. This routine simply
displays the UserForm:

Sub ShowDialog()
UserForm1.Show

End Sub

On the
CD-ROM

4799-2 ch15.F 6/11/01 9:38 AM Page 459

460 Part IV ✦ Working with UserForms

4. In the code module for the UserForm, enter the code in Listing 15-4. This pro-
cedure is kicked off by the UserForm’s Initialize event. Notice that the
code excludes a button named OKButton from the “button group.” Therefore,
clicking the OKButton does not execute the ButtonGroup_Click procedure.

Listing 15-4: Establishing the Buttons() object array

Dim Buttons() As New BtnClass

Private Sub UserForm_Initialize()
Dim ButtonCount As Integer
Dim ctl As Control

‘ Create the Button objects
ButtonCount = 0
For Each ctl In UserForm1.Controls

If TypeName(ctl) = “CommandButton” Then
If ctl.Name <> “OKButton” Then ‘Skip the OKButton

ButtonCount = ButtonCount + 1
ReDim Preserve Buttons(1 To ButtonCount)
Set Buttons(ButtonCount).ButtonGroup = ctl

End If
End If

Next ctl
End Sub

After performing these steps, you can execute the ShowDialog procedure to dis-
play the UserForm. Clicking any of the CommandButtons (except the OKButton)
executes the ButtonGroup_Click procedure. Figure 15-10 shows an example of
the message displayed when a button is clicked.

Figure 15-10: The ButtonGroup_Click procedure describes
the button that was clicked.

4799-2 ch15.F 6/11/01 9:38 AM Page 460

461Chapter 15 ✦ Advanced UserForm Techniques

Adapting this technique
You can adapt this technique to work with other types of controls. You’ll need to
change the type name in the Public WithEvents declaration. For example, if you
have OptionButtons instead of CommandButtons, use a declaration statement like
this:

Public WithEvents ButtonGroup As MsForms.OptionButton

A Color Picker Dialog
This example is similar to the example in the previous section, but a bit more com-
plex. The example workbook demonstrates a technique to display a UserForm that
allows the user to select a color from the Workbook’s color palette (which consists
of 56 colors).

The example is actually a function (named GetAColor) that displays a UserForm
and returns a color value.

This example is available on the companion CD-ROM.

The GetAColor function follows:

Public ColorValue As Variant
Dim Buttons(1 To 56) As New ColorButtonClass

Function GetAColor() As Variant
‘ Displays a UserForm and returns a
‘ color value - or False if no color is selected

Dim ctl As Control
Dim ButtonCount As Integer
ButtonCount = 0
For Each ctl In UserForm1.Controls

‘ The 56 color buttons have their ‘
‘ Tag property set to “ColorButton”

If ctl.Tag = “ColorButton” Then
ButtonCount = ButtonCount + 1
Set Buttons(ButtonCount).ColorButton = ctl

‘ Get colors from the active workbook’s palette
Buttons(ButtonCount).ColorButton.BackColor = _

ActiveWorkbook.Colors(ButtonCount)
End If

Next ctl
UserForm1.Show
GetAColor = ColorValue

End Function

On the
CD-ROM

4799-2 ch15.F 6/11/01 9:38 AM Page 461

462 Part IV ✦ Working with UserForms

The UserForm contains 56 CommandButton controls, which are colored using the
colors in the active workbook’s palette.

You can access the GetAColor function with a statement such as the following:

UserColor = GetAColor()

Executing this statement displays the UserForm and assigns a color value to the
UserColor variable. The color corresponds to the color selected by the user.

Figure 15-11 shows the UserForm (it looks better in color), which contains 56
CommandButton controls. The BackColor property of each button corresponds
to one of the colors in the workbook’s color palette. Clicking a button unloads the
UserForm and provides a value for the function to return.

Figure 15-11: This dialog box lets the user select a color
by clicking a button.

The example file on the accompanying CD-ROM contains the following:

✦ A UserForm (UserForm1) that contains a dialog box with 56 CommandButtons
(plus a few other accoutrements).

✦ A class module (ColorButtonClass) that defines a ColorButton class.

✦ A VBA module (Module1) that contains a Function procedure (GetAColor).

✦ Two examples that demonstrate the GetAColor Function procedure.

The GetAColor procedure sets up the UserForm and displays it. It later returns the
color value of the selected button. If the user clicks Cancel, GetAColor returns
False. As the user moves the mouse pointer over the color buttons, the Color
Sample image displays the color.

The code behind this UserForm is rather lengthy, so it’s not listed here. You can,
however, open the workbook from the CD-ROM and examine the code.

4799-2 ch15.F 6/11/01 9:38 AM Page 462

463Chapter 15 ✦ Advanced UserForm Techniques

Displaying a Chart in a UserForm
With Excel 5 or Excel 95, it was very easy to display a “live” chart in a custom dialog
box (using a dialog sheet): Just copy a chart and paste it into your dialog sheet.
Oddly, there is no direct way to display a chart in a UserForm. You can, of course,
copy the chart and paste it to the Picture property of an Image control, but this
creates a static image of the chart and will not display any changes to the chart.
Although UserForms are vastly superior to the old dialog sheets, this is one area
that Microsoft seems to have overlooked.

You can still use dialog sheets in Excel 97 or later. Therefore, you are certainly free
to use a dialog sheet to display a live chart in a dialog box.

This section describes two methods to display a chart in a UserForm.

Method 1: Save the chart as a file
Just because Microsoft doesn’t allow a live chart to be displayed in a UserForm,
doesn’t mean it can’t be done! Figure 15-12 shows a UserForm with a chart dis-
played in an Image object. The chart actually resides on a worksheet, and the
UserForm always displays the current chart. This technique works by copying the
chart to a temporary graphics file, then setting the Image control’s Picture prop-
erty to the temporary file.

Figure 15-12: With a bit of trickery, a UserForm
can display “live” charts.

General steps
To display a chart in a UserForm, follow these general steps:

1. Create your chart or charts as usual.

2. Insert a UserForm and then add an Image control.

Note

4799-2 ch15.F 6/11/01 9:38 AM Page 463

464 Part IV ✦ Working with UserForms

3. Write VBA code to save the chart as a GIF file, and then set the Image control’s
Picture property to the GIF file. You need to use VBA’s LoadPicture function
to do this.

4. Add other bells and whistles as desired. For example, the UserForm in the
demo file contains controls that let you change the chart type. Alternatively,
you could write code to display multiple charts.

Saving a chart as a GIF file
The following code demonstrates how to create a GIF file (named temp.gif) from a
chart (in this case, the first chart object on the sheet named Data):

Set CurrentChart = Sheets(“Data”).ChartObjects(1).Chart
Fname = ThisWorkbook.Path & “\temp.gif”
CurrentChart.Export FileName:=Fname, FilterName:=”GIF”

When this code is executed, you’ll see a pop-up window that displays the progress.
In response to a common question, I’m not aware of any way to suppress this
progress display.

Changing the Image control’s Picture property
If the Image control on the UserForm is named Image1, the following statement
loads the image (represented by the Fname variable) into the Image control:

Image1.Picture = LoadPicture(Fname)

This technique works fine, but you may notice a slight delay as the chart is saved
and then retrieved. On a fast system, however, this delay is barely noticeable.

Method 2: Use the OWC ChartSpace control
As I mentioned in Chapter 13, a UserForm may contain other controls that aren’t
normally included in the Toolbox. Microsoft includes the “Office Web Components”
(OWC) with Office 2002, and you can use the Web Component controls in your
UserForms. Figure 15-13 shows an example of a UserForm that contains a
ChartSpace control.

This technique does not allow you to display an existing Excel chart on a
UserForm. Rather, you must write code that creates the chart in the ChartSpace
control.

Making the ChartSpace control available
The first step is to add the ChartSpace control to your Toolbox. Right-click the tool-
box to display the Additional Controls dialog box. Scroll down the list and place a
check mark next to Microsoft Office Chart 10.0 (if you’re using Excel 2000, the item
will be named Microsoft Office Chart 9.0). Click OK, and your Toolbox will have a
new icon.

Note

Note

4799-2 ch15.F 6/11/01 9:38 AM Page 464

465Chapter 15 ✦ Advanced UserForm Techniques

Figure 15-13: This UserForm contains a Spreadsheet control.

Adding the ChartSpace control to a UserForm
Adding a ChartSpace control to your UserForm works just like any of the standard
controls. When the control is added, you won’t see a chart displayed. It is, after all,
just a chart space control. You’ll need to write code that creates the actual chart.

Creating the chart
The following code, which is located in the UserForm code module, creates a chart
using data stored on a worksheet. The category labels are in A2:A13, and the chart
data is in B2:B13. It assumes that the ChartSpace object is named ChartSpace1.

Sub CreateChart()
Dim Chart1 As ChChart ‘WCChart
Dim Series1 As ChSeries ‘WCSeries
Dim r As Integer
Dim XValues(1 To 12)
Dim DataValues(1 To 12)

‘ Add a chart to the ChartSpace
Set Chart1 = ChartSpace1.Charts.Add

‘ Give it a title
With Chart1

.HasTitle = True

.Title.Caption = Range(“B1”)
End With

4799-2 ch15.F 6/11/01 9:38 AM Page 465

466 Part IV ✦ Working with UserForms

For r = 2 To 13
XValues(r - 1) = Cells(r, 1)
DataValues(r - 1) = Cells(r, 2)

Next r

‘ Create a chart series
Set Series1 = Chart1.SeriesCollection.Add

‘ Specify chart type and data
With Series1

.Type = chChartTypeColumnClustered

.SetData chDimCategories, chDataLiteral, XValues

.SetData chDimValues, chDataLiteral, DataValues
End With

End Sub

The code starts with variable declaration. If you’re using Excel 2000, note that the
objects have a different type name. For example, the chart object is of type
WCChart (not chChart). Similarly, the chart series object is of type WCSeries (not
chSeries). Two arrays are declared: one to hold the category labels (XValues), and
one to hold the data (DataValues).

The Set statement creates a Chart object within the ChartSpace. This Chart object
is named Chart1. The next block of statements sets the chart’s title, using the label
in cell B1. A For-Next loop reads the worksheet data into the arrays.

The next Set statement adds a series to the chart, and the Series object is named
Series1. The With-End With block of code specifies the chart type (a standard
column chart), and specifies the data for the series.

You’ll find documentation for the OWC objects on your hard drive. These help files
are installed when the OWC is installed. Or, you can use the Object Browser to learn
more about the properties and methods of these controls.

It’s important to understand that the object model for creating a chart in the OWC
does not correspond to the object model for creating a chart in Excel. Chapter 18
explains how to use VBA to manipulate “real” Excel charts.

Figure 15-14 shows a slightly more sophisticated version of this example. In this
case, the user can choose which data will appear in the chart; this version also
includes an option to export the chart as a GIF file.

This application is available on the companion CD-ROM. You’ll find two versions
on the CD: one for Excel 2000 (using OWC 9.0), and one for Excel 2002 (using
OWC 10.0).

On the
CD-ROM

Note

4799-2 ch15.F 6/11/01 9:38 AM Page 466

467Chapter 15 ✦ Advanced UserForm Techniques

Figure 15-14: This UserForm contains a ChartSpace control (part of the Office Web
Components).

Displaying a Spreadsheet in a UserForm
Not content to simply display a chart in a UserForm? How about an entire spread-
sheet?

Using the Office Web Components

The Office Web Components were designed to create interactive Web pages. The compo-
nents include a Spreadsheet, a Chart, and a Pivot Table. When you create an application
that uses the OWC, anyone who uses your application must have the OWC installed on his
or her computer.

The OWC is included with Microsoft Office 2000 and Microsoft Office 2002. Installation is
not automatic. In other words, you can’t assume that all Microsoft Office 2000 users have
the OWC installed on their system (they may have chosen not to install it). To confuse mat-
ters even more, the Small Business Edition of Microsoft Office 2000 does not even include
the OWC.

Therefore, you should use caution before deciding to include any OWC controls in your
Excel application. If your application will have general distribution, you’ll probably want to
avoid using the OWC.

4799-2 ch15.F 6/11/01 9:38 AM Page 467

468 Part IV ✦ Working with UserForms

Figure 15-15 shows an example of a UserForm that contains a Microsoft Office
Spreadsheet 10.0 control. This control can contain an entire interactive spread-
sheet, complete with formulas and formatting. In fact, this Spreadsheet control
has a significant advantage over a standard Excel sheet: Its dimensions are 18,278
columns by 262,144 rows. This is nearly 300 times as many cells as a standard
Excel worksheet!

Figure 15-15: This UserForm contains a Spreadsheet control.

Making the Spreadsheet control available
First, you’ll need to add the Spreadsheet control to your Toolbox. Right-click the
toolbox to display the Additional Controls dialog box. Scroll down the list and place
a check mark next to Microsoft Office Spreadsheet 10.0 (if you’re using Excel 2000,
the item will be named Microsoft Office Spreadsheet 9.0). Click OK to add the new
icon to your Toolbox.

Adding the Spreadsheet control to a UserForm
Adding a Spreadsheet control to your UserForm works just like any of the standard
controls. When the control is added to the UserForm, you’ll see a three-sheet
spreadsheet. As you’ll see, this spreadsheet can be customized quite a bit.

A simple example
This example uses a Spreadsheet control to create a simple loan payment calculator
in a UserForm. The finished product is shown in Figure 15-16. The user can enter
loan information into column B, and the monthly payment is calculated (using a
formula) and displayed in the bottom right cell.

4799-2 ch15.F 6/11/01 9:38 AM Page 468

469Chapter 15 ✦ Advanced UserForm Techniques

This example is primarily for illustration only. Using a Spreadsheet control is
overkill. It is much more efficient to use EditBox controls to get the information,
and calculate the loan payment using VBA code.

Figure 15-16: This UserForm uses
a Spreadsheet control for a simple
loan payment calculator.

To create this UserForm, start with a new workbook and follow the steps presented
next. Make sure you’ve added the Spreadsheet control to your Toolbox.

1. Insert a new UserForm, and add a Spreadsheet control. Don’t change its
default name (Spreadsheet1).

By default, the spreadsheet displays with a toolbar, row and column headings,
scroll bars, and a sheet selector tab. To keep the interface as clean as possi-
ble, we’ll get rid of these items later.

2. Select any cell in the Spreadsheet control, then right-click and choose
Commands and Options from the shortcut menu.

You’ll see the tabbed dialog box shown in Figure 15-17.

3. Click the Workbook tab and delete Sheet2 and Sheet3. Then remove the check
marks from Horizontal scrollbar, Vertical scrollbar, Sheet selector, and
Toolbar.

4. In column A, enter the text shown in Figure 15-16. Then adjust the width of
column A so it’s wide enough to handle the text.

5. Enter some number into B1:B3. Then enter the following formula into cell B5:

=PMT(B2/12,B3,-B1)

6. Select B1:B3, and click the Format tab in the Commands and Options dialog
box. Click the “key” icon to unlock the selected cells (the other cells will
remain locked, which is the default).

7. Click the Sheet tab in the Commands and Options dialog box. In the Viewable
range box, enter A1:B5.

This essentially hides all of the unused rows and columns.

Note

4799-2 ch15.F 6/11/01 9:38 AM Page 469

470 Part IV ✦ Working with UserForms

8. Next, remove the check mark from the check boxes labeled Row headers and
Column headers.

9. Finally, add two CommandButton controls. One, named CancelButton, will be
the Cancel button. The other (named PasteButton) will execute code that
pastes the calculated result to the active cell in the Excel worksheet.

Figure 15-17: Use this dialog box to customize
the Spreadsheet control.

Now it’s time to add some VBA code. In the preceding steps, the three input cells
were unlocked. Locking cells, however, has no effect unless the sheet is protected
(just like Excel). Therefore, we’ll add some code to protect the sheet when the
UserForm is initialized. You could protect the sheet at design time (using the
Commands and Options dialog box), but that makes it impossible to edit the
sheet — and it’s easy to forget to protect it again after you make changes. Protecting
the sheet at runtime ensures that the sheet will be protected and the user can only
change the input cells.

The simple code that follows does the job:

Private Sub UserForm_Initialize()
Spreadsheet1.ActiveSheet.Protect

End Sub

The UserForm button labeled Paste Payment, when clicked, executes the following
code:

Private Sub PasteButton_Click()
ActiveCell.Value = Spreadsheet1.Range(“B5”)
Unload Me

End Sub

4799-2 ch15.F 6/11/01 9:38 AM Page 470

471Chapter 15 ✦ Advanced UserForm Techniques

This procedure simply puts the contents of cell B5 (from the Spreadsheet control)
into the active cell on the Excel worksheet, and then unloads the UserForm.

Finally, we’ll need an event-handler procedure for the Cancel button:

Private Sub CancelButton_Click()
Unload Me

End Sub

I really can’t think of too many good reasons to use a Spreadsheet control in a
UserForm. However, it’s nice to know that this feature is available should you
need it.

An Enhanced Data Form
Next, here is one of the more complex UserForms you’ll encounter. I designed it as a
replacement for Excel’s Data Form, shown in Figure 15-18. You’ll recall this is the
dialog box that appears when you select Data ➪ Form.

Figure 15-18: Excel’s Data Form

Like Excel’s Data Form, my Enhanced Data Form works with a list in a worksheet.
But as you can see in Figure 15-19, it has a dramatically different appearance and
offers several advantages.

4799-2 ch15.F 6/11/01 9:38 AM Page 471

472 Part IV ✦ Working with UserForms

Figure 15-19: The author’s Enhanced Data Form

Description
The Enhanced Data Form features the following enhancements:

✦ It handles any number of records and fields. Excel’s Data Form is limited to 32
fields.

✦ The dialog box is always the same size, with scrollable fields. Excel’s Data
Form’s dialog isn’t scrollable, and can take up the entire screen!

✦ The record displayed in the dialog is always visible on-screen, and is high-
lighted so you know exactly where you are. Excel’s Data Form doesn’t scroll
the screen for you, and does not highlight the current record.

✦ At startup, the dialog box always displays the record at the active cell. Excel’s
Data Form always starts with the first record in the database.

✦ When you close the dialog, the current record is selected for you. Excel’s Data
Form doesn’t change your selection when you exit.

✦ It lets you insert a new record at any position in the database. Excel’s Data
Form adds new records only at the end of the database.

✦ It includes an Undo button for Data Entry, Insert Record, Delete Record, and
New Record. Excel’s Data Form includes only a Restore button.

✦ Search criteria are stored in a separate panel, so you always know exactly
what you’re searching for. The search criteria are not always apparent in
Excel’s Data Form.

✦ Supports approximate matches while searching (*, ?, and #). Excel’s Data
Form does not.

✦ The complete VBA source code is available, so you can customize it to your
needs. Data Form is not written in VBA and cannot be customized.

4799-2 ch15.F 6/11/01 9:38 AM Page 472

473Chapter 15 ✦ Advanced UserForm Techniques

The Enhanced Data Form is a commercial product (sort of). It can be used and dis-
tributed freely, but access to the complete VBA source is available only for a mod-
est fee.

Installing the add-in
To try out the Enhanced Data Form, install the add-in:

1. Copy the dataform.xla file from the CD-ROM to a directory on your hard drive.

2. In Excel, select Tools ➪ Add-Ins.

3. In the Add-Ins dialog box, click Browse and locate the dataform.xla in the
directory from Step 1.

Using the Enhanced Data Form
When the Enhanced Data Form add-in is installed, a new menu command is avail-
able: Data ➪ JWalk Enhanced Data Form. You can use the Enhanced Data Form to
work with any worksheet database.

Summary
This chapter provides several more advanced examples of UserForms. Studying the
code provided will help you become a master of UserForms.

This chapter concludes Part IV. Subsequent chapters include additional UserForm
examples.

✦ ✦ ✦

Note

4799-2 ch15.F 6/11/01 9:38 AM Page 473

4799-2 ch15.F 6/11/01 9:38 AM Page 474

Advanced
Programming
Techniques

The six chapters in this part cover additional topics that
are often considered advanced. The first three chapters

discuss how to develop utilities and how to use VBA to work
with pivot tables and charts. Chapter 19 covers the topic of
event-handling, which enables you to execute procedures
automatically when certain events occur. Chapter 20
describes how to work with other applications, and Chapter
21 discusses the topic of add-ins.

✦ ✦ ✦ ✦

In This Part

Chapter 16
Developing Excel
Utilities with VBA

Chapter 17
Working with Pivot
Tables

Chapter 18
Working with Charts

Chapter 19
Understanding
Excel’s Events

Chapter 20
Interacting with Other
Applications

Chapter 21
Creating and Using
Add-Ins

✦ ✦ ✦ ✦

P A R T

VV

4799-2 PO5.F 6/11/01 9:38 AM Page 475

4799-2 PO5.F 6/11/01 9:38 AM Page 476

Developing
Excel Utilities
with VBA

This chapter is about Excel utilities. A utility, in general, is
something that enhances software, adding useful fea-

tures or making existing features more accessible. As you’ll
see, creating utilities for Excel is an excellent way to make a
great product even better.

About Excel Utilities
A utility isn’t an end product, such as a quarterly report.
Rather, it’s a tool that helps you produce an end product
(such as a quarterly report). An Excel utility is (almost
always) an add-in that enhances Excel with new features or
capabilities.

Excel is an extraordinary program that gets new features
with every release. But as good as Excel is, many users soon
develop a wish list of features that they would like to see
added to the software. For example, some users who turn off
the grid-line display want a feature that toggles this attribute
so that they don’t have to go through the tedious Tools ➪
Options command. Users who work with dates might want a
pop-up calendar feature to facilitate entering dates into cells.
And some users desire an easier way to export a range of data
to a separate file.

Utilities don’t need to be complicated. Some of the most use-
ful ones are actually very simple. For example, the following
VBA procedure is a utility that toggles the grid-line display in
the active window:

1616C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

About Excel utilities
and utilities in
general

Why use VBA to
develop utilities

What you need to
know to develop
good utilities

Step-by-step details
for developing a
useful Excel utility to
manipulate text in
cells

Where to go for
more Excel utilities

✦ ✦ ✦ ✦

4799-2 ch16.F 6/11/01 9:39 AM Page 477

478 Part V ✦ Advanced Programming Techniques

Sub ToggleGridDisplay()
ActiveWindow.DisplayGridlines = _

Not ActiveWindow.DisplayGridlines
End Sub

You can store this macro in your Personal Macro Workbook so that it’s always avail-
able. For quicker access, you can assign the macro to a toolbar button, a new menu
item, a right-click shortcut menu, or a keystroke combination.

Several of the examples in Part IV are actually utilities, or easily can be turned into
utilities.

Using VBA to Develop Utilities
When I received the beta version of Excel 5, I was blown away by VBA’s potential.
VBA was light-years ahead of Excel’s powerful XLM macro language, and it made
Excel the clear leader among spreadsheets in terms of programming.

In an effort to learn VBA, I wrote a collection of Excel utilities using only VBA. I fig-
ured that I would learn the language more quickly if I gave myself a tangible goal.
The result was a product I call the Power Utility Pak for Excel, which is available to
you at no charge as a benefit of buying this book. Use the coupon in the back of the
book to order your copy.

I learned several things from my initial efforts on this project:

✦ VBA can be difficult to grasp at first, but it becomes easier with practice.

✦ Experimentation is the key to mastering VBA. Every project usually involves
dozens of small coding experiments that eventually lead to a finished product.

✦ VBA enables you to extend Excel in a way that is entirely consistent with
Excel’s look and feel, including menus, toolbars, and dialog boxes.

✦ Excel can do almost anything. When you reach a dead end, chances are
there’s another path that leads to a solution.

Few other software packages include such an extensive set of tools that enable the
end user to extend the software.

What Makes a Good Utility?
An Excel utility, of course, should ultimately make your job easier or more efficient.
But if you’re developing utilities for other users, what makes an Excel utility valu-
able? I’ve put together a list of elements that are common to good utilities:

Cross-
Reference

4799-2 ch16.F 6/11/01 9:39 AM Page 478

479Chapter 16 ✦ Developing Excel Utilities with VBA

✦ It adds something to Excel. This may be a new feature, a way to combine exist-
ing features, or just a way to make an existing feature easier to use.

✦ It’s general in nature. Ideally, a utility should be useful under a wide variety of
conditions. Of course, it’s more difficult to write a general-purpose utility than
it is to write one that works in a highly defined environment.

✦ It’s flexible. The best utilities provide many options to handle various
situations.

✦ It looks, works, and feels like an Excel command. Although it’s tempting to add
your own special touch to utilities, other users will find them easier to use if
they look and act like familiar Excel commands.

✦ It provides help for the user when needed. In other words, it requires documen-
tation that’s thorough and accessible.

✦ It traps errors. An end user should never see a VBA error message. Any error
messages that appear should be ones that you write.

✦ Its effects are undoable. Users who don’t like the result caused by your utility
should be able to reverse their path.

Text Tools: The Anatomy of a Utility
In this section, I describe an Excel utility that I developed (and is part of my Power
Utility Pak). The Text Tools utility enables the user to manipulate text in a selected
range of cells. Specifically, this utility enables the user to do the following:

✦ Change the case of the text (uppercase, lowercase, or proper case)

✦ Add characters to the beginning or the end, or at a specific character position

✦ Remove characters from the beginning or the end, or from a specific position
within the string

✦ Remove excess spaces (or all spaces)

Background
Excel has many text functions that can manipulate text strings in useful ways. For
example, you can uppercase the text in a cell, delete characters from text, remove
spaces, and so on. But to perform any of these operations, you have to write formu-
las, copy them, convert the formulas to values, and paste the values over the origi-
nal text. In other words, Excel doesn’t make it particularly easy to modify text.
Wouldn’t it be nice if Excel had some text manipulation tools that didn’t require
formulas?

4799-2 ch16.F 6/11/01 9:39 AM Page 479

480 Part V ✦ Advanced Programming Techniques

By the way, many good utility ideas come from statements that begin, “Wouldn’t it
be nice if . . .”

Project goals for Text Tools
The first step in designing a utility is to envision exactly how you want the utility to
work. Here’s my original plan, stated in the form of ten goals:

✦ It will have the same look and feel of other Excel commands. In other words, it
will have a dialog box that looks like Excel’s dialog boxes.

✦ It will be accessible from the Tools menu.

✦ It will operate with the current selection of cells (including multiple selections),
and it will enable the user to modify the range selection while the dialog box is
displayed.

✦ Its main features will consist of tools to change the case of text, add new text
to the strings, delete a fixed number of characters from the text, and remove
spaces from the text in each cell.

✦ It also will enable the user to display key statistics about selected cells.

✦ It will enable the user to request the preceding types of changes to nontext
cells as well as to text cells.

✦ It will have no effect on cells that contain formulas.

✦ It will be fast and efficient. For example, if the user selects an entire range, the
utility should ignore the empty cells in the column.

✦ It will enable the user to undo the changes.

✦ It will have online help available.

How it works
When the Text Tools workbook opens, it creates a new menu item on the Tools
menu: Text Tools. Selecting this item executes the StartTextTools procedure,
which checks to make sure that Excel is in the proper context (a worksheet is
active and it is not protected) and then displays the main Text Tools dialog box.

The user can specify various modifications and click the Apply button to perform
them. The changes are visible in the worksheet, and the dialog box remains dis-
played. Each operation can be undone, or the user can perform additional text
modifications. Clicking the Help button displays a help dialog box, and clicking the
Exit button dismisses the dialog box.

Figure 16-1 shows an example of the Text Tools utility in use.

4799-2 ch16.F 6/11/01 9:39 AM Page 480

481Chapter 16 ✦ Developing Excel Utilities with VBA

Figure 16-1: Using the Text Tools utility to change text to proper case

The Text Tools workbook
The Text Tools workbook consists of the following components:

✦ One worksheet. Every workbook must have at least one worksheet. I take
advantage of this fact and use the worksheet named HelpSheet to store user
help text.

✦ Two VBA modules. One (modMenus) contains the code to create and delete the
menu item; the other (modMain) contains the code to display the main
UserForm. The code that does the actual work is stored in the code modules
for the UserForms.

✦ Two UserForms. One (FormMain) is the main dialog box; the other
(FormMenus) is used to display help.

The Text Tools utility is available on the CD-ROM that accompanies this book. This
is a standalone version of the tool that is included with the Power Utility Pak.

The FormMain UserForm
When I create a utility, I usually begin by designing the user interface, which in this
case is the main dialog box. Creating the dialog box forces me to think through the
project one more time.

On the
CD-ROM

4799-2 ch16.F 6/11/01 9:39 AM Page 481

482 Part V ✦ Advanced Programming Techniques

The MainForm UserForm contains a MultiPage control, with four pages that corre-
spond to the main features in the utility. Figure 16-2 shows the four pages of the
MultiPage control.

Figure 16-2: The FormMain UserForm contains a MultiPage control with four pages.

The controls contained in the MultiPage control are very straightforward, so I won’t
explain them (you can refer to the code for details). The MainForm UserForm also
contains additional controls outside of the MultiPage control:

✦ A RefEdit control. The UserForm_Initialize procedure displays the address
of the current range selection. And, of course, the RefEdit control allows the
user to select a different range at any time.

✦ Help button. This is a CommandButton control that displays an image. Clicking
the button displays the FormHelp UserForm.

✦ Undo button. Clicking this button reverses the effect of the most recent text
manipulation.

✦ Stats button. Clicking this CommandButton displays a message box that shows
key statistics for the text in the selected cells.

4799-2 ch16.F 6/11/01 9:39 AM Page 482

483Chapter 16 ✦ Developing Excel Utilities with VBA

✦ Exit button. Clicking this CommandButton unloads the UserForm.

✦ Apply button. Clicking this CommandButton applies the text manipulation
options specified in the current page of the MultiPage control.

You may notice that this utility violates one of my design “rules” outlined earlier in
this chapter (see “What Makes a Good Utility?”). Unlike most of Excel’s built-in dia-
log boxes, the MainForm dialog box does not have an OK or Cancel button, and
clicking the Apply button does not dismiss the dialog box. The original version of Text
Tools had an OK button and was designed so that clicking OK performed the task
and closed the dialog box. User feedback, however, convinced me to change the
design. Many people, it turns out, like to perform several different manipulations at
one time. Therefore, I changed the utility to accommodate user preferences.

The modMain module
The modMain module contains a simple procedure that kicks off the utility.

Declarations
Following are the declarations at the top of the modMain module:

Public Const APPNAME As String = “Text Tools”

‘Custom data type for undoing
Type OrigData

OldText As Variant
Address As String

End Type

I declare a public constant containing a string that stores the name of the applica-
tion. This string is used in the message boxes, and also is used as the caption for
the menu item that’s created (see “Create menu and delete menu procedures” later
in this chapter).

I also create a custom data type named OrigData. As you’ll see, this data type is
used to store information so an operation can be undone.

The StartTextTools procedure
The StartTextTools procedure follows:

Sub StartTextTools()
If ValidContext(True, True, False, False, False, True) Then _

FormMain.Show
End Sub

As you can see, it’s rather simple. It calls a custom Boolean function (ValidContext)
that determines whether the current context is appropriate for the utility. If
ValidContext returns True, then the FormMain UserForm appears.

Note

4799-2 ch16.F 6/11/01 9:39 AM Page 483

484 Part V ✦ Advanced Programming Techniques

This function takes six arguments (each Boolean):

✦ VisWin. If True, the function determines whether at least one window is
visible.

✦ Wksht. If True, the function determines whether a worksheet is active.

✦ RngSel. If True, the function determines whether a range is selected.

✦ MultSel. If True, the function determines whether the selected range is a mul-
tiple selection.

✦ Chart. If True, the function determines whether a chart or Chart sheet is
selected.

✦ Prot. If True, the function determines whether the contents of the active
sheet are protected.

The values of these arguments determine what gets checked by the ValidContext
function. For example, if the first argument (VisWin) is True, the function checks to
see whether at least one window is visible. If the second argument (Wksht) is True,
the function checks to see whether a worksheet is active. If any of these requested
checks come up negative, the ValidContext function does two things: It displays a
message box that describes the problem (see Figure 16-3) and returns False to the
calling procedure.

Figure 16-3: The ValidContext function
displays this message if the worksheet
is protected.

The Text Tools utility requests the following checks from the ValidContext
function:

✦ VisWin. At least one window must be visible.

✦ Wksht. A worksheet must be active.

✦ Prot. The sheet may not be protected.

The Text Tools utility doesn’t require a range selection; it uses the RangeSelection
property to determine the selected range in the UserForm_Initialize procedure
for FormMain. It also works well with a multiple range selection.

I wrote the ValidContext function to be a “general-purpose” function that can be
used in other applications. In other words, there is nothing in the function that

Note

4799-2 ch16.F 6/11/01 9:39 AM Page 484

485Chapter 16 ✦ Developing Excel Utilities with VBA

makes it specific to the Text Tools utility. All of the utilities in my Power Utility Pak
use this function.

The ValidContext function is shown in Listing 16-1.

Listing 16-1: Certifying that the utility can run in the current
context of the worksheet

Function ValidContext(VisWin, Wksht, RngSel, MultSel, _
Chart, Prot) As Boolean

Dim VisWinCnt As Integer
Dim Win As Window

Const MsgVisWin As String = _
“A workbook must be active in order to use this utility.”
Const MsgWksht As String = _
“A worksheet must be active in order to use this utility.”
Const MsgRngSel As String = _
“This utility requires a range selection.” & vbCrLf & _
“Select a range and try again.”

Const MsgMultSel As String = _
“This utility does not allow a multiple range selection.” _

& vbCrLf & “Select a single range and try again.”
Const MsgChart As String = _
“Select a chart or Chart sheet before using this utility.”
Const MsgProt As String = _
“This utility does not work when the sheet is protected.” _
& vbCrLf & “Unprotect the worksheet and try again.”

ValidContext = True

‘ Check for a visible window?
If VisWin Then

VisWinCnt = 0
For Each Win In Application.Windows

If Win.Visible Then VisWinCnt = VisWinCnt + 1
Next
If VisWinCnt = 0 Then

MsgBox MsgVisWin, vbCritical, APPNAME
ValidContext = False
Exit Function

End If
End If

‘ Check for a worksheet?
If Wksht Then

If TypeName(ActiveSheet) <> “Worksheet” Then
MsgBox MsgWksht, vbCritical, APPNAME
ValidContext = False

Continued

4799-2 ch16.F 6/11/01 9:39 AM Page 485

486 Part V ✦ Advanced Programming Techniques

Listing 16-1 (continued)

Exit Function
End If

End If

‘ Check for a range selection?
If RngSel Then

If TypeName(Selection) <> “Range” Then
MsgBox MsgRngSel, vbCritical, APPNAME
ValidContext = False
Exit Function

End If
End If

‘ Check for multiple selection?
If MultSel Then

If TypeName(Selection) = “Range” Then
If Selection.Areas.Count > 1 Then

MsgBox MsgMultSel, vbCritical, APPNAME
Exit Function

End If
End If

End If

‘ Check for a chart selection?
If Chart Then

If ActiveChart Is Nothing Then
MsgBox MsgChart, vbCritical, APPNAME
ValidContext = False
Exit Function

End If
End If

‘ Check for protected sheet?
If Prot Then

If ActiveSheet.ProtectContents Then
MsgBox MsgProt, vbCritical, APPNAME
ValidContext = False
Exit Function

End If
End If

End Function

The ApplyButton_Click procedure
All work done by the Text Tools utility is performed by VBA code contained in the
code module for the FormMain object. The ApplyButton_Click procedure in
Listing 16-2 is executed when the user clicks the Apply button.

4799-2 ch16.F 6/11/01 9:39 AM Page 486

487Chapter 16 ✦ Developing Excel Utilities with VBA

Listing 16-2: Applying the chosen changes without dismissal
of the dialog box

Private Sub ApplyButton_Click()
‘ Perform the selected operation

Dim i As Integer
Dim WorkRange As Range

‘ Validate Range reference
If Not ValidReference(RefEdit1.Text) Then

MsgBox “Invalid range.”, vbInformation, APPNAME
Application.ScreenUpdating = True
With RefEdit1

.SelStart = 0

.SelLength = 100

.SetFocus
End With
Exit Sub

End If

‘ Figure out what to do
Application.ScreenUpdating = False
Select Case MultiPage1.Value

Case 0: Call ChangeCaseTab
Case 1: Call AddTextTab
Case 2: Call RemoveTextTab
Case 3: Call RemoveSpacesTab

End Select
Application.ScreenUpdating = True

End Sub

The ApplyButton_Click procedure is relatively simple. First, it calls a custom
function (ValidReference) to determine whether the RefEdit control contains a
valid range address. If not, it displays a message, selects the text in the RefEdit
control, and makes a quick exit.

The ValidReference function follows. This function returns True if its single argu-
ment contains a valid range reference. It relies on the fact that VBA generates an
error when you try to create an invalid Range object.

Function ValidReference(ref As String) As Boolean
‘ Returns True if ref is a valid range reference

Dim x As Range
On Error Resume Next
Set x = Range(ref)
If Err = 0 Then ValidReference = True _

Else ValidReference = False
End Function

4799-2 ch16.F 6/11/01 9:39 AM Page 487

488 Part V ✦ Advanced Programming Techniques

The reason that the ApplyButton_Click procedure is so short is because it calls
other procedures, depending on the value of the MultiPage control. And, the value
of the MultiPage control determines which task the user is requesting. (Remember,
the first page of a MultiPage control has a value of 0, not 1.) These “task” proce-
dures are described and listed in the following section.

Notice that the ApplyButton_Click procedure does not unload the UserForm.
Therefore, the user can perform other text manipulations. Clicking the Exit button
is the only way to unload the UserForm. The Click event-handler for this button
follows:

Private Sub ExitButton_Click()
Unload Me

End Sub

The “task” procedures
In this section, I describe the four procedures that actually perform the work for
the Text Tools utility.

Changing the case of text
The first page of the MultiPage control (see Figure 16-4) enables the user to change
the case of text in the selected cells. The text can be converted to UPPERCASE,
lowercase, or Proper Case.

Figure 16-4: This page enables the user
to change the case of text.

The ApplyButton_Click procedure calls the ChangeCaseTab procedure if the
MultiPage’s Value property is 0 (that is, the first page is active). Listing 16-3
shows the complete ChangeCaseTab procedure.

4799-2 ch16.F 6/11/01 9:39 AM Page 488

489Chapter 16 ✦ Developing Excel Utilities with VBA

Listing 16-3: Altering the case of text in cells

Sub ChangeCaseTab()
Dim WorkRange As Range
Dim Cell As Range
Dim CellCount As Long

Set WorkRange = CreateWorkRange(Range(RefEdit1.Text), _
True)
If WorkRange Is Nothing Then Exit Sub

CellCount = 0
ReDim LocalUndo(CellCount)

‘ Process the cells
For Each Cell In WorkRange

‘ Store info for undoing
CellCount = CellCount + 1
ReDim Preserve LocalUndo(CellCount)
LocalUndo(CellCount).OldText = Cell.Value
LocalUndo(CellCount).Address = Cell.Address

‘ Change the case
Select Case True

Case ChangeCaseProper
Cell.Value = Application.Proper(Cell.Value)

Case ChangeCaseUpper
Cell.Value = UCase(Cell.Value)

Case ChangeCaseLower
Cell.Value = LCase(Cell.Value)

End Select
Next Cell

‘ Update the Undo button
UndoButton.Enabled = True
UndoButton.Caption = “Undo Case Change”

End Sub

A key element in this procedure is the creation of a Range object named WorkRange.
The WorkRange object contains a subset of the user’s range selection that consists
of only the nonempty cells that contain text and not a formula. If no cell qualifies,
the function returns Nothing.

The CreateWorkRange function (which creates and returns a Range object)
accepts two arguments:

4799-2 ch16.F 6/11/01 9:39 AM Page 489

490 Part V ✦ Advanced Programming Techniques

r A Range object. In this case, it’s the range selected by the user
and displayed in the RefEdit control.

TextOnly If True, the created object excludes nontext cells.

The CreateWorkRange function in Listing 16-4 is a general-purpose function that is
not specific to the Text Tools utility.

Listing 16-4: The CreateWorkRange function

Function CreateWorkRange(r As Range, TextOnly As Boolean) As
Range
‘ Creates a range object that consists of nonempty and
‘ nonformula cells. If TextOnly is True, the object
‘ excludes numeric cells

Set CreateWorkRange = Nothing
Select Case r.Count

Case 1 ‘ one cell is selected
If r.HasFormula Then Exit Function
If TextOnly Then

If IsNumeric(r.Value) Then
Exit Function

Else
Set CreateWorkRange = r

End If
Else

If Not IsEmpty(r) Then Set CreateWorkRange = r
End If

Case Else ‘More than one cell is selected
On Error Resume Next
If TextOnly Then

Set CreateWorkRange = _
r.SpecialCells(xlConstants, xlTextValues)

If Err <> 0 Then Exit Function
Else

Set CreateWorkRange = _
r.SpecialCells(xlConstants, xlTextValues +

xlNumbers)
If Err <> 0 Then Exit Function

End If
End Select

End Function

The CreateWorkRange function makes heavy use of the SpecialCells property.
To learn more about the SpecialCells property, try recording a macro while mak-
ing various selections in Excel’s Go To Special dialog box. You can display this dialog
box by pressing F5 and then clicking the Special button in the Go To dialog box.

Note

4799-2 ch16.F 6/11/01 9:39 AM Page 490

491Chapter 16 ✦ Developing Excel Utilities with VBA

You’ll notice a quirk when you use the Go To Special dialog box. Normally it oper-
ates on the current range selection. For example, if an entire column is selected,
then the result is a subset of that column. But if a single cell is selected, it operates
on the entire worksheet. Because of this, the CreateWorkRange function checks
the number of cells in the range passed to it.

Once the WorkRange object is created, the ChangeCaseTab procedure continues to
process each cell in the WorkRange. Before the procedure ends, it enables the Undo
button and adds a descriptive caption.

Later in this chapter, I discuss how the Undo feature works.

Adding text
The second page of the MultiPage control (see Figure 16-5) enables the user to add
characters to the contents of the selected cells. The text can be added at the begin-
ning, at the end, or after a specified character position.

Figure 16-5: This page enables the user
to add text to the contents of the selected cells.

The ApplyButton_Click procedure calls the AddTextTab procedure if the
MultiPage’s Value is 1 (that is, the second page is active). Listing 16-5 presents
the complete AddTextTab procedure.

Listing 16-5: Inserting properly filtered text into cells by way
of the dialog box

Sub AddTextTab()
Dim WorkRange As Range
Dim Cell As Range
Dim NewText As String

Continued

Cross-
Reference

4799-2 ch16.F 6/11/01 9:39 AM Page 491

492 Part V ✦ Advanced Programming Techniques

Listing 16-5 (continued)

Dim InsPos As Integer
Dim CellCount As Long

Set WorkRange = _
CreateWorkRange(Range(RefEdit1.Text), cbIgnoreNonText1)

If WorkRange Is Nothing Then Exit Sub

NewText = TextToAdd.Text
If NewText = “” Then Exit Sub

‘ Check for potential invalid formulas
If OptionAddToLeft And Left(NewText, 1) Like “[=+-]” Then

MsgBox “That text would create an invalid formula.”, _
vbInformation, APPNAME

With TextToAdd
.SelStart = 0
.SelLength = Len(.Text)
.SetFocus

End With
Exit Sub

End If

‘ Add text to the middle?
If OptionAddToMiddle Then

InsPos = Val(InsertPos.Caption)
If InsPos = 0 Then Exit Sub

End If

‘ Loop through the cells
CellCount = 0
ReDim LocalUndo(CellCount)
For Each Cell In WorkRange
With Cell

‘ Store info for undoing
CellCount = CellCount + 1
ReDim Preserve LocalUndo(CellCount)
With LocalUndo(CellCount)

.OldText = Cell.Value

.Address = Cell.Address
End With

If OptionAddToLeft Then .Value = NewText & .Value
If OptionAddToRight Then .Value = .Value & NewText
If OptionAddToMiddle Then

If InsPos > Len(.Value) Then
.Value = .Value & NewText

Else
.Value = Left(.Value, InsPos) & NewText & _

Right(.Value, Len(.Value) - InsPos)
End If

4799-2 ch16.F 6/11/01 9:39 AM Page 492

493Chapter 16 ✦ Developing Excel Utilities with VBA

End If
End With

Next Cell

‘ Update the Undo button
UndoButton.Enabled = True
UndoButton.Caption = “Undo Add Text”

End Sub

This procedure is similar in structure to ChangeCaseTab. Notice that this proce-
dure catches an error that would occur if the user tried to insert a plus, minus, or
equals sign as the first character of a cell. Such an insertion would cause Excel to
interpret the cell contents as an invalid formula.

Removing text
The third page of the MultiPage control (see Figure 16-6) enables the user to
remove text from the selected cells. A specific number of characters can be
removed from the beginning or end, or starting at a specified character position.

Figure 16-6: This page enables the user
to remove characters from the selected text.

The ApplyButton_Click procedure calls the RemoveTextTab procedure if the
MultiPage’s Value property is 2 (that is, the third page is active). Listing 16-6
presents the complete RemoveTextTab procedure.

Listing 16-6: Removing text from cells by way of the dialog box

Sub RemoveTextTab()
Dim WorkRange As Range
Dim Cell As Range

Continued

4799-2 ch16.F 6/11/01 9:39 AM Page 493

494 Part V ✦ Advanced Programming Techniques

Listing 16-6 (continued)

Dim NumToDel As Integer
Dim CellCount As Long

Set WorkRange = _
CreateWorkRange(Range(RefEdit1.Text), cbIgnoreNonText2)

If WorkRange Is Nothing Then Exit Sub

NumToDel = Val(CharstoDelete.Caption)
If NumToDel = 0 Then Exit Sub

‘ Process the cells
ReDim LocalUndo(0)
CellCount = 0
For Each Cell In WorkRange
With Cell

‘ Store info for undoing
CellCount = CellCount + 1
ReDim Preserve LocalUndo(CellCount)
LocalUndo(CellCount).OldText = .Value
LocalUndo(CellCount).Address = .Address

If Len(Cell.Value) <= NumToDel Then _
NumToDel = Len(.Value)

Select Case True
Case OptionDeleteFromLeft

.Value = Right(.Value, Len(.Value) - NumToDel)
Case OptionDeleteFromRight

.Value = Left(.Value, Len(.Value) - NumToDel)
Case OptionDeleteFromMiddle

.Value = RemoveChars(.Value, _
CInt(BeginChar.Caption), NumToDel)

End Select
End With

Next Cell

‘ Update the Undo button
UndoButton.Enabled = True
UndoButton.Caption = “Undo Remove Text”

End Sub

The RemoveTextTab procedure is, again, similar in structure to the other proce-
dures called by ApplyButton_Click. If the characters are to be removed from the
middle of the text, it calls a Function procedure, RemoveChars, to do the work.

The RemoveChars function procedure follows. This procedure removes a specified
number of characters (n), beginning at a specified character position (b) from a
string (t).

4799-2 ch16.F 6/11/01 9:39 AM Page 494

495Chapter 16 ✦ Developing Excel Utilities with VBA

Private Function RemoveChars(t, b, n) As String
Dim k As Integer
Dim Temp As String
Temp = “”
For k = 1 To Len(t)

If k < b Or k >= b + n Then
Temp = Temp & Mid(t, k, 1)

End If
Next k
RemoveChars = Temp

End Function

Removing spaces
The fourth page of the MultiPage control (see Figure 16-7) enables the user to
remove spaces from the selected cells.

Figure 16-7: This page enables the user
to remove spaces from the selected text.

The ApplyButton_Click procedure calls the RemoveSpacesTab procedure if the
MultiPage’s value is 3 (that is, the fourth page is active). Listing 16-7 shows the
complete RemoveSpacesTab procedure.

Listing 16-7: Filtering unnecessary spaces from textual cells

Sub RemoveSpacesTab()
Dim WorkRange As Range
Dim Cell As Range
Dim CellCount As Long

Set WorkRange = CreateWorkRange _
(Range(RefEdit1.Text), True)
If WorkRange Is Nothing Then Exit Sub

Continued

4799-2 ch16.F 6/11/01 9:39 AM Page 495

496 Part V ✦ Advanced Programming Techniques

Listing 16-7 (continued)

‘ Process the cells
CellCount = 0
ReDim LocalUndo(CellCount)

For Each Cell In WorkRange
With Cell

‘ Store info for undoing
CellCount = CellCount + 1
ReDim Preserve LocalUndo(CellCount)
LocalUndo(CellCount).OldText = .Value
LocalUndo(CellCount).Address = .Address
Select Case True

Case OptionRemoveExcess
.Value = _
Application.WorksheetFunction.Trim(.Value)

Case OptionRemoveLeft
.Value = LTrim(.Value)

Case OptionRemoveRight
.Value = RTrim(.Value)

Case OptionRemoveBoth
.Value = Trim(.Value)

Case OptionRemoveAllSpaces
.Value = RemoveSpaces(.Value)

End Select
End With

Next Cell

‘ Update the Undo button
UndoButton.Enabled = True
UndoButton.Caption = “Undo Remove Spaces”

Notice that the first option (Remove all excess spaces) uses an Excel worksheet
function. The second and third options use VBA functions. The final option
(Remove all spaces from the text) uses a custom function, which follows:

Private Function RemoveSpaces(t) As String
‘ Removes all spaces from a string

Dim NumChars As Integer
Dim i As Integer
NumChars = Len(t)
RemoveSpaces = “”
For i = 1 To NumChars

If Mid(t, i, 1) <> “ “ Then _
RemoveSpaces = RemoveSpaces & Mid(t, i, 1)

Next i
End Function

4799-2 ch16.F 6/11/01 9:39 AM Page 496

497Chapter 16 ✦ Developing Excel Utilities with VBA

The undo technique
Unlike Excel’s Undo feature, the undo technique used in the Text Tools utility is a
single level. In other words, the user can undo only the most recent operation.
Refer to the sidebar “Undoing a VBA Procedure” for additional information about
using Undo with your applications.

In the Text Tools utility, recall that the modMain VBA module declared a custom
data type named OrigData. This declaration is as follows:

Type OrigData
OldText As Variant
Address As String

End Type

The OrigData datatype consists of two elements: OldText (contains the previous
cell contents) and Address (the range address of the cell).

Each of the four “task” procedures creates an array (named LocalUndo) of type
OrigData. Then before each cell is modified, the following code is executed:

‘ Store info for undoing
CellCount = CellCount + 1
ReDim Preserve LocalUndo(CellCount)
LocalUndo(CellCount).OldText = .Value
LocalUndo(CellCount).Address = .Address

The last step in each of these four procedures updates the Undo button on the
FormMain UserForm. For example, the code in the RemoveTextTab procedures is as
follows:

‘ Update the Undo button
UndoButton.Enabled = True
UndoButton.Caption = “Undo Remove Text”

When each of these procedures finishes, the LocalUndo array is filled with data
that contains, for each cell, its previous contents and address. If the user clicks the
Undo button, the UndoButton_Click procedure is executed. This procedure
follows:

Private Sub UndoButton_Click()
Dim i As Integer
Application.ScreenUpdating = False

‘ Restore the previous contents
For i = 1 To UBound(LocalUndo)

Range(LocalUndo(i).Address).Value =
LocalUndo(i).OldText

Next i
Application.ScreenUpdating = True

4799-2 ch16.F 6/11/01 9:39 AM Page 497

498 Part V ✦ Advanced Programming Techniques

‘ Update the Undo button
UndoButton.Caption = “Undo”
UndoButton.Enabled = False

End Sub

This procedure simply loops through the LocalUndo array and inserts the previous
contents of each cell.

The companion CD-ROM contains an example that demonstrates how to enable
the Edit ➪ Undo command after a VBA procedure is executed.

The ShowStats procedure
Clicking the Stats button displays a message box that contains information about
the contents of the selected cells. Figure 16-8 shows an example.

Figure 16-8: Clicking the Stats button shows a message box
like this one.

On the
CD-ROM

Undoing a VBA Procedure

Computer users have become accustomed to the ability to “undo” an operation. Almost
every operation you perform in Excel can be undone. Even better, beginning with Excel 97,
the program features multiple levels of undo.

If you program in VBA, you may have wondered whether it’s possible to undo the effects of
a procedure. The answer is yes. The qualified answer is it’s not always easy.

Making the effects of your VBA procedures undoable isn’t automatic. Your procedure needs
to store the previous state so that it can be restored if the user chooses the Edit ➪ Undo
command. How you do this can vary depending on what the procedure does. In extreme
cases, you might need to save an entire worksheet. If your procedure modifies a range, for
example, you need to save only the contents of that range.

The Application object contains an OnUndo method, which lets the programmer specify text
to appear on the Edit ➪ Undo menu, and a procedure to execute if the user selects Edit ➪

Undo. For example, the following statement causes the Undo menu item to display “Undo
my cool macro.” If the user selects Edit ➪ Undo my cool macro, the UndoMyMacro proce-
dure is executed:

Application.OnUndo “Undo my cool macro”, “UndoMyMacro”

4799-2 ch16.F 6/11/01 9:39 AM Page 498

499Chapter 16 ✦ Developing Excel Utilities with VBA

Listing 16-8 shows the complete event-handler for the statistics procedure.

Listing 16-8: Displaying information about cells in the
worksheet

Private Sub StatsButton_Click()
‘ Displays statistics about the selection

Dim WorkRange As Range
Dim NumWords As Integer
Dim NumChars As Integer
Dim CellLength As Integer
Dim NonBlanks As Integer
Dim Cell As Range
Dim Msg As String
Dim Words As Integer
Dim Contents As String
Dim i As Integer

‘ Validate range reference
If Not ValidReference(RefEdit1.Text) Then

MsgBox “Invalid range.”, vbInformation, APPNAME
With RefEdit1

.SelStart = 0

.SelLength = 100

.SetFocus
End With
Exit Sub

End If

Set WorkRange = CreateWorkRange(Range(RefEdit1.Text), _
True)
If WorkRange Is Nothing Then

MsgBox _
“The range contains no non-formula cells with text.”, _
vbInformation, APPNAME
Exit Sub

End If

NonBlanks = WorkRange.Count
NumWords = 0
NumChars = 0
For Each Cell In WorkRange

CellLength = Len(Cell.Value)
NumChars = NumChars + CellLength
Contents = Application.Trim(Cell.Value)
Words = 1
For i = 1 To Len(Contents)

If Mid(Contents, i, 1) = “ “ Then _
Words = Words + 1

Next i

Continued

4799-2 ch16.F 6/11/01 9:39 AM Page 499

500 Part V ✦ Advanced Programming Techniques

Listing 16-8 (continued)

If Len(Contents) = 0 Then Words = 0 ‘Accounts for
‘ empty cells

NumWords = NumWords + Words
Next Cell
Msg = “Current Selection Statistics” & vbCrLf & vbCrLf
Msg = Msg & “Nonempty cells:” & Chr(9) & NonBlanks _
& Chr(13)
Msg = Msg & “Words:” & Chr(9) & Chr(9) & NumWords _
& Chr(13)
Msg = Msg & “Characters:” & Chr(9) & NumChars & Chr(13)
Msg = Msg & “Avg. length:” & Chr(9) & Format(NumChars _
/ NonBlanks, “#.00”)
MsgBox Msg, vbInformation, APPNAME
Exit Sub

End Sub

The ShowStats procedure is lengthy but quite straightforward. Notice that this
procedure validates the range reference (displayed in the RefEdit control) and
displays an error if it contains an invalid range.

User help technique
There are many ways to provide online help. The Text Tools utility uses a simple
technique that reads text stored in a worksheet, and displays it in a UserForm.
Column A contains the help topics, and Column B contains the help text. The help
topics are read into a ComboBox control, and the help topics are displayed in a
Label control.

Chapter 24 describes this method (and others) of providing user help.

Figure 16-9 shows how the help dialog box (contained in FormHelp) looks when the
user clicks the Help button on the FormMain UserForm.

Create menu and delete menu procedures
The only element of Text Tools that I haven’t discussed is the menu item used
to invoke the utility. When the workbook opens, its Workbook_Open procedure
(located in the ThisWorkbook object module) is executed. This procedure is very
simple.

Private Sub Workbook_Open()
Call CreateMenu

End Sub

Cross-
Reference

4799-2 ch16.F 6/11/01 9:39 AM Page 500

501Chapter 16 ✦ Developing Excel Utilities with VBA

Figure 16-9: User help is displayed in
a UserForm with a ComboBox and a
Label control.

The Workbook_BeforeClose procedure, executed when the workbook is closed, is
equally simple.

Private Sub Workbook_BeforeClose(Cancel As Boolean)
Call DeleteMenu

End Sub

The CreateMenu and DeleteMenu procedures are located in the modMenus
VBA module. CreateMenu adds a new menu item to the Tools menu, and the
DeleteMenu procedure removes that menu item. You can examine this code on
your own.

Refer to Chapter 23 for detailed information on menu manipulation techniques.

Evaluation of the project
The previous sections described each component of the Text Tools utility. At this
point, it’s useful to revisit the original project goals to see whether they were met.
The original goals, along with my comments, are as follows:

✦ It will have the same look and feel of other Excel commands. In other words, it
will have a dialog box that looks like Excel’s dialog boxes. As I noted earlier, the
Text Tools utility deviates from Excel’s normal look and feel by using an Apply
button rather than an OK button. In light of the enhanced usability, I think this
is quite reasonable.

✦ It will be accessible from the Tools menu. Accomplished.

✦ It will operate with the current selection of cells (including multiple selections),
and it will enable the user to modify the range selection while the dialog box is
displayed. Accomplished.

Cross-
Reference

4799-2 ch16.F 6/11/01 9:39 AM Page 501

502 Part V ✦ Advanced Programming Techniques

✦ Its main features will consist of tools to change the case of text, add new text to
the strings, delete a fixed number of characters from the text, and remove spaces
from the text in each cell. Accomplished.

✦ It also will enable the user to display key statistics about the selected cells.
Accomplished.

✦ It will enable the user to request the preceding types of changes on nontext cells
as well as text cells. Accomplished.

✦ It will have no effect on cells that contain formulas. Accomplished.

✦ It will be fast and efficient. For example, if the user selects an entire range, the
utility should ignore empty cells. Accomplished.

✦ It will enable the user to undo the changes. Accomplished, but in a nonstandard
way.

✦ It will have online help available. Accomplished, but in a nonstandard way.

Understand the Text Tools utility
If you don’t fully understand how this utility works, I urge you to load the workbook
and use the Debugger to step through the code. Try it out with different types of
selections, including an entire worksheet. You will see that, regardless of the size of
the original selection, only the appropriate cells are processed and empty cells are
completely ignored. If a worksheet has only one cell with text in it, the utility oper-
ates just as quickly whether you select that cell or the entire worksheet.

For the best results, you might want to convert the Text Tools utility workbook to
an add-in. Refer to Chapter 21 for more information about creating add-ins.

More About Excel Utilities
I wrap up this chapter with a few closing words about Excel utilities.

You can use the coupon in the back of this book to order a free copy of my Power
Utility Pak (see Figure 16-10). This product includes several dozen useful utilities
(plus many custom worksheet functions). The complete VBA source code also is
available for a small fee. You can get a feel for how the product works by installing
the shareware version, available on the companion CD-ROM.

In addition to the Power Utility Pak, several other utility packages exist, and they
can be downloaded from the Internet. A good starting point for locating additional
Web utilities is my Web site. Visit The Spreadsheet Page at http://www.j-walk.
com/ss.

Cross-
Reference

4799-2 ch16.F 6/11/01 9:39 AM Page 502

503Chapter 16 ✦ Developing Excel Utilities with VBA

Figure 16-10: The author’s Power Utility Pak contains many useful Excel utilities.

Summary
In this chapter, I discussed why you might want to develop Excel utilities with VBA.
I also presented and explained the VBA code for my Text Tools utility. As you gain
more experience with programming Excel, you’ll probably have some ideas for cre-
ating your own utilities. This chapter should provide you with enough background
information to give you a jump-start.

✦ ✦ ✦

4799-2 ch16.F 6/11/01 9:39 AM Page 503

4799-2 ch16.F 6/11/01 9:39 AM Page 504

Working with
Pivot Tables

Excel’s pivot table feature is, arguably, its most innovative
and powerful feature. Pivot tables first appeared in Excel

5, and the feature remains unique to Excel (no other spread-
sheet has anything that comes close to it). As you probably
know, creating a pivot table from a database or list enables
you to summarize data in ways that otherwise would not be
possible — and it’s amazingly fast. You also can write VBA
code to generate and modify pivot tables.

Excel’s pivot table feature was enhanced significantly in
Excel 2000. It uses more efficient data caching, and it also
supports PivotCharts. A PivotChart is a chart linked to a
pivot table. Consequently, some of the material in this
chapter does not apply to Excel 97 or earlier.

This chapter is not an introduction to pivot tables. It assumes
that you’re familiar with this feature and understand how to
create and modify pivot tables manually.

An Introductory Example
This section gets the ball rolling with a simple example of
using VBA to create a pivot table.

Figure 17-1 shows a very simple worksheet database. It con-
tains four fields: SalesRep, Region, Month, and Sales. Each
record describes the sales for a particular sales representa-
tive in a particular month.

Note

1717C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

What you need to
know to create pivot
tables with VBA

Examples of VBA
procedures that
create pivot tables

An example of how
to use VBA to modify
an existing pivot
table

✦ ✦ ✦ ✦

4799-2 ch17.F 6/11/01 9:39 AM Page 505

506 Part V ✦ Advanced Programming Techniques

Figure 17-1: This simple database is a good
candidate for a pivot table.

Creating a pivot table
Figure 17-2 shows a pivot table created from the data. This pivot table summarizes
the sales by sales representative and month. This pivot table is set up with the
following fields:

Region A page field in the pivot table

SalesRep A row field in the pivot table

Month A column field in the pivot table

Sales A data field in the pivot table that uses the Sum function

Figure 17-2: A pivot table created from the data in
Figure 17-1

4799-2 ch17.F 6/11/01 9:39 AM Page 506

507Chapter 17 ✦ Working with Pivot Tables

I turned on the macro recorder before I created this pivot table. The code that was
generated follows:

Sub Macro1()
‘ Recorded macro

Range(“A1”).Select
ActiveWorkbook.PivotCaches.Add _

(SourceType:=xlDatabase, _
SourceData:=”Sheet1!R1C1:R13C4”). _
CreatePivotTable _
TableDestination:=””, _
TableName:=”PivotTable1”, _
DefaultVersion:=xlPivotTableVersion10

ActiveSheet.PivotTableWizard _
TableDestination:=ActiveSheet.Cells(3, 1)

ActiveSheet.Cells(3, 1).Select

With ActiveSheet.PivotTables(“PivotTable1”). _
PivotFields(“Region”)
.Orientation = xlPageField
.Position = 1

End With

With ActiveSheet.PivotTables(“PivotTable1”). _
PivotFields(“SalesRep”)
.Orientation = xlRowField
.Position = 1

End With

With ActiveSheet.PivotTables(“PivotTable1”). _
PivotFields(“Month”)
.Orientation = xlColumnField
.Position = 1

End With
ActiveSheet.PivotTables(“PivotTable1”). _

AddDataField ActiveSheet.PivotTables(“PivotTable1”). _
PivotFields(“Sales”), “Sum of Sales”, xlSum

End Sub

How the macro recorder generates code for you depends on how you built the
pivot table. In the preceding example, I created a pivot table, which was empty
unti I dragged in the fields from the PivotTable toolbar. The alternate method is to
click the Layout button in the second step of the PivotTable Wizard and lay out the
pivot table before it’s created.

You can, of course, execute the recorded macro to create another identical pivot
table. If you do this, make sure the sheet with the data is active when you execute
the macro.

4799-2 ch17.F 6/11/01 9:39 AM Page 507

508 Part V ✦ Advanced Programming Techniques

Examining the recorded code
VBA code that works with pivot tables can be confusing. To make any sense of the
recorded macro, you need to know about a few relevant objects, all of which are
thoroughly explained in the online help.

PivotCaches A collection of PivotCache objects in a Workbook
object.

PivotTables A collection of PivotTable objects in a Worksheet
object.

PivotFields A collection of fields in a PivotTable object.

PivotItems A collection of individual data items within a field
category.

CreatePivotTable A PivotCache object method that creates a pivot table
using the data in a pivot cache.

PivotTableWizard A Worksheet object method that creates a pivot table.
As you’ll see in the next section, this method isn’t
necessary.

Cleaning up the recorded code
As with most recorded macros, the preceding example is not as efficient as it could
be. It can be simplified to make it more understandable. Listing 17-1 generates the
same pivot table as the procedure previously listed.

Listing 17-1: A more efficient way to generate
a pivot table in VBA

Sub CreatePivotTable()
Dim PTCache As PivotCache
Dim PT As PivotTable

Set PTCache = ActiveWorkbook.PivotCaches.Add _
(SourceType:=xlDatabase, _
SourceData:=Range(“A1”).CurrentRegion.Address)

Set PT = PTCache.CreatePivotTable _
(TableDestination:=””, _
TableName:=”PivotTable1”)

With PT
.PivotFields(“Region”).Orientation = xlPageField
.PivotFields(“Month”).Orientation = xlColumnField

4799-2 ch17.F 6/11/01 9:39 AM Page 508

509Chapter 17 ✦ Working with Pivot Tables

.PivotFields(“SalesRep”).Orientation = xlRowField

.PivotFields(“Sales”).Orientation = xlDataField
End With

End Sub

The CreatePivotTable procedure is simplified (and may be easier to understand)
because it declares two object variables: PTCache and PT. These take the place of
the indexed references to ActiveSheet.PivotCaches and ActiveSheet.
PivotTables. A new PivotCache object is created using the Add method. Then a
new PivotTable object is created using the CreatePivotTable method of the
PivotCaches collection. The last section of the code adds the fields to the pivot
table and specifies their location within it (page, column, row, or data field).

Notice that the original macro “hard coded” the data range used to create the
PivotCache object (that is, "Sheet1!R1C1:R13C4"). In the CreatePivotTable
procedure, the pivot table is based on the current region surrounding Cell A1. This
ensures that the macro will continue to work properly when more data is added.

The code also could be more general through the use of indices rather than literal
strings for the PivotFields collections. This way, if the user changes the column
headings, the code will still work. For example, more general code would use
PivotFields(1) rather than PivotFields("Region").

As always, the best way to master this topic is to record your actions within a
macro to find out its relevant objects, methods, and properties. Then study the
online help topics to understand how everything fits together. In almost every case,
you’ll need to modify the recorded macros. Or, once you understand how to work
with pivot tables, you can write code from scratch and avoid the macro recorder.

Creating a More Complex Pivot Table
In this section, I present VBA code to create a relatively complex pivot table.

The data
Figure 17-3 shows part of a worksheet database. This table contains 15,840 rows
containing hierarchical budget data for a corporation. There are five divisions, and
each division contains eleven departments. Each department has four budget cate-
gories, and each budget category contains several budget items. Budgeted and
actual amounts are included for each of the twelve months.

Note

4799-2 ch17.F 6/11/01 9:39 AM Page 509

510 Part V ✦ Advanced Programming Techniques

This workbook is available on the companion CD-ROM.

Figure 17-3: The data in this workbook will be summarized in a pivot table.

The pivot table
Figure 17-4 shows a pivot table created from the data. Notice that the pivot table
contains a calculated field named Variance, plus four calculated items, Q1, Q2, Q3,
and Q4, which calculate quarterly totals.

On the
CD-ROM

4799-2 ch17.F 6/11/01 9:39 AM Page 510

511Chapter 17 ✦ Working with Pivot Tables

Figure 17-4: A pivot table created from the data in Figure 17-3

The code that created the pivot table
The VBA code that created the pivot table is shown in Listing 17-2.

Listing 17-2: Creating a compartmentalized pivot table

Sub CreatePivotTable()
Dim PTCache As PivotCache
Dim PT As PivotTable

Application.ScreenUpdating = False

‘ Delete PivotSheet if it exists
On Error Resume Next
Application.DisplayAlerts = False
Sheets(“PivotSheet”).Delete
On Error GoTo 0
Application.DisplayAlerts = True

Continued

4799-2 ch17.F 6/11/01 9:39 AM Page 511

512 Part V ✦ Advanced Programming Techniques

Listing 17-2 (continued)

‘ Create a Pivot Cache
Set PTCache = ActiveWorkbook.PivotCaches.Add(_
SourceType:=xlDatabase, _
SourceData:=Range(“A1”).CurrentRegion.Address)

‘ Add new worksheet
Worksheets.Add
ActiveSheet.Name = “PivotSheet”

‘ Create the Pivot Table from the Cache
Set PT = PTCache.CreatePivotTable(_
TableDestination:=Sheets(“PivotSheet”).Range(“A1”), _
TableName:=”BudgetPivot”)

With PT
‘ Add fields

.PivotFields(“DEPARTMENT”).Orientation = xlRowField

.PivotFields(“MONTH”).Orientation = xlColumnField

.PivotFields(“DIVISION”).Orientation = xlPageField

.PivotFields(“BUDGET”).Orientation = xlDataField

.PivotFields(“ACTUAL”).Orientation = xlDataField

‘ Add a calculated field to compute variance
.CalculatedFields.Add “Variance”, “=BUDGET-ACTUAL”
.PivotFields(“Variance”).Orientation = xlDataField

‘ Add calculated items
.PivotFields(“MONTH”).CalculatedItems.Add _
“Q1”, “= Jan+Feb+Mar”

.PivotFields(“MONTH”).CalculatedItems.Add _
“Q2”, “= Apr+May+Jun”

.PivotFields(“MONTH”).CalculatedItems.Add _
“Q3”, “= Jul+Aug+Sep”

.PivotFields(“MONTH”).CalculatedItems.Add _
“Q4”, “= Oct+Nov+Dec”

‘ Move the calculated items
.PivotFields(“MONTH”).PivotItems(“Q1”).Position = 4
.PivotFields(“MONTH”).PivotItems(“Q2”).Position = 8
.PivotFields(“MONTH”).PivotItems(“Q3”).Position = 12
.PivotFields(“MONTH”).PivotItems(“Q4”).Position = 16

‘ Change the captions
.PivotFields(“Sum of BUDGET”).Caption = “Budget ($)”
.PivotFields(“Sum of ACTUAL”).Caption = “Actual ($)”
.PivotFields(“Sum of Variance”).Caption =”Variance ($)”

End With
Application.ScreenUpdating = True

End Sub

4799-2 ch17.F 6/11/01 9:39 AM Page 512

513Chapter 17 ✦ Working with Pivot Tables

How it works
The second CreatePivotTable procedure in Listing 17-2 starts by deleting the
PivotSheet worksheet if it already exists. It then creates a PivotCache object,
inserts a new worksheet named PivotSheet, and creates the pivot table. The code
then adds the following fields to the pivot table:

Department A row field

Month A column field

Division A page field

Budget A data field

Actual A data field

Next, the procedure uses the Add method of the CalculatedFields collection to
create the calculated field Variance, which subtracts the Actual amount from the
Budget amount. The code then adds four calculated items to compute the quarterly
totals. By default, the calculated items are added to the right side of the pivot table,
so additional code is required to move them adjacent to the months to which they
refer (for example, Q1 is placed after March). Finally, the code changes the captions
displayed in the pivot table. For example, Sum of Budget is replaced by Budget ($).

I created this procedure by recording my actions while I created and modified the
pivot table. Then I cleaned up the code to make it more readable and efficient.

Creating a Pivot Table from
an External Database

In the preceding example, the source data was in a worksheet. As you probably
know, Excel also enables you to use an external data source to create a pivot table.
The example in this section demonstrates how to write VBA code to create a pivot
table based on data stored in an Access database file.

The database consists of a single table that is identical to the data used in the pre-
vious example.

The code that creates the pivot table is shown in Listing 17-3. It assumes that the
budget.mdb database file is stored in the same directory as the workbook.

Note

Note

4799-2 ch17.F 6/11/01 9:39 AM Page 513

514 Part V ✦ Advanced Programming Techniques

Listing 17-3: Generating a pivot table from
an external database

Sub CreatePivotTableFromDB()
Dim PTCache As PivotCache
Dim PT As PivotTable

‘ Delete PivotSheet if it exists
On Error Resume Next
Application.DisplayAlerts = False
Sheets(“PivotSheet”).Delete
On Error GoTo 0

‘ Create a Pivot Cache
Set PTCache = ActiveWorkbook.PivotCaches.Add _
(SourceType:=xlExternal)

‘ Connect to database, and do query
DBFile = ThisWorkbook.Path & “\budget.mdb”
ConString = “ODBC;DSN=MS Access Database;DBQ=” & DBFile

QueryString = “SELECT * FROM BUDGET”
With PTCache

.Connection = ConString

.CommandText = QueryString
End With

‘ Add new worksheet
Worksheets.Add
ActiveSheet.Name = “PivotSheet”

‘ Create pivot table
Set PT = PTCache.CreatePivotTable(_
TableDestination:=Sheets(“PivotSheet”).Range(“A1”), _
TableName:=”BudgetPivot”)

‘ Add fields
With PT

‘ Add fields
.PivotFields(“DEPARTMENT”).Orientation = xlRowField
.PivotFields(“MONTH”).Orientation = xlColumnField
.PivotFields(“DIVISION”).Orientation = xlPageField
.PivotFields(“BUDGET”).Orientation = xlDataField
.PivotFields(“ACTUAL”).Orientation = xlDataField

End With
End Sub

4799-2 ch17.F 6/11/01 9:39 AM Page 514

515Chapter 17 ✦ Working with Pivot Tables

Notice that the SourceType argument for the Add method of the PivotCaches col-
lection is specified as xlExternal. In the example in the previous section (which
used data in a worksheet database), the SourceType argument was xlDatabase.

The PivotCache object needs the following information to retrieve the data from
the external file:

✦ A connection string. This describes the type of data source and the filename. In
this example, the connection string specifies an ODBC data source that is a
Microsoft Access file named budget.mdb.

✦ A query string. This is a Structured Query Language (SQL) statement that
determines which records and fields are returned. In this example, the entire
Budget table is selected.

This information is passed to the PivotCache object by setting the Connection
and CommandText properties. Once the data is stored in the pivot cache, the pivot
table is created using the CreatePivotTable method.

SQL is a standard language for performing database queries. For more informa-
tion, consult the online help. Better yet, you might want to purchase a book that
deals exclusively with SQL. Several such books are available from Hungry Minds,
Inc.

Creating Multiple Pivot Tables
The final example creates a series of pivot tables that summarize data collected in a
customer survey. That data is stored in a worksheet database (see Figure 17-5) and
consists of 100 rows. Each row contains the respondent’s sex, plus a numerical
rating using a 1-to-5 scale for each of the 14 survey items.

Note

4799-2 ch17.F 6/11/01 9:39 AM Page 515

516 Part V ✦ Advanced Programming Techniques

Figure 17-5: Creating a series of pivot tables will summarize this survey data.

Figure 17-6 shows a few of the resulting pivot tables. Each pivot table provides a
frequency distribution of a survey item, broken down by sex.

Figure 17-6: A VBA procedure created these pivot tables.

The VBA code that created the pivot tables is presented in Listing 17-4.

4799-2 ch17.F 6/11/01 9:39 AM Page 516

517Chapter 17 ✦ Working with Pivot Tables

Listing 17-4: Creating multiple pivot tables from
a complex external database

Sub MakePivotTables()
‘ This procedure creates 14 pivot tables

Dim PTCache As PivotCache
Dim PT As PivotTable
Dim SummarySheet As Worksheet
Dim ItemName As String
Dim Row As Integer, i As Integer

Application.ScreenUpdating = False

‘ Delete Summary sheet if it exists
On Error Resume Next
Application.DisplayAlerts = False
Sheets(“Summary”).Delete
On Error GoTo 0
Application.DisplayAlerts = True

‘ Add Summary sheet
Set SummarySheet = Worksheets.Add
ActiveSheet.Name = “Summary”

‘ Create Pivot Cache
Set PTCache = ActiveWorkbook.PivotCaches.Add(_
SourceType:=xlDatabase, _
SourceData:=Sheets(“SurveyData”).Range(“A1”). _
CurrentRegion.Address)

Row = 1
For i = 1 To 14

ItemName = Sheets(“SurveyData”).Cells(1, i + 2)
‘ Create pivot table

Set PT = PTCache.CreatePivotTable _
(TableDestination:=SummarySheet.Cells(Row, 1), _
TableName:=ItemName)

Row = Row + 11

‘ Add the fields
With PT.PivotFields(ItemName)

.Orientation = xlDataField

.Name = “Freq”
End With

With PT.PivotFields(ItemName)
.Orientation = xlDataField
.Name = “Pct”
.Calculation = xlPercentOfTotal

End With

Continued

4799-2 ch17.F 6/11/01 9:39 AM Page 517

518 Part V ✦ Advanced Programming Techniques

Listing 17-4 (continued)

PT.AddFields RowFields:=Array(ItemName, “Data”)
PT.PivotFields(“Sex”).Orientation = xlColumnField
PT.PivotFields(“Data”).Orientation = xlColumnField

Next i

‘ Replace numbers with descriptive text
SummarySheet.Activate
With Columns(“A:A”)

.Replace “1”, “Strongly Disagree”

.Replace “2”, “Disagree”

.Replace “3”, “Undecided”

.Replace “4”, “Agree”

.Replace “5”, “Strongly Agree”
End With

‘ Adjust column widths
Columns(“A:G”).EntireColumn.AutoFit

End Sub

Notice that the pivot tables are created within a loop, and all come from a single
PivotCache object. The Row variable keeps track of the start of each pivot table.
After the pivot tables are created, the code replaces the numeric categories in the
first column with text (for example, 1 is replaced with Strongly Agree). Finally, the
column widths are adjusted.

Modifying Pivot Tables
An Excel pivot table is designed to be flexible. For example, users can easily change
a row field to a column field and hide certain items in the pivot table that are not
relevant to their current needs. You may want to provide your own interface to
make it even easier for the user to make certain pivot table changes. The example
in this section presents a pivot table that can be controlled by a series of
OptionButtons and two CheckBox controls, as shown in Figure 17-7.

The pivot table contains four additional calculated items (Q1, Q2, Q3, and Q4),
which compute quarterly totals. The VBA code that’s executed when OptionButton1
(Months Only) is clicked is shown in Listing 17-5. The procedure is straightforward
and similar to the event-handler procedures for the other OptionButtons.

4799-2 ch17.F 6/11/01 9:39 AM Page 518

519Chapter 17 ✦ Working with Pivot Tables

Figure 17-7: The user can use the controls to adjust the
pivot table.

Listing 17-5: Responding to a user request to
adjust a pivot table option

Private Sub OptionButton1_Click()
‘ Months only

Application.ScreenUpdating = False
With ActiveSheet.PivotTables(1).PivotFields(“Month”)

.PivotItems(“Jan”).Visible = True

.PivotItems(“Feb”).Visible = True

.PivotItems(“Mar”).Visible = True

.PivotItems(“Apr”).Visible = True

.PivotItems(“May”).Visible = True

.PivotItems(“Jun”).Visible = True

.PivotItems(“Jul”).Visible = True

.PivotItems(“Aug”).Visible = True

.PivotItems(“Sep”).Visible = True

.PivotItems(“Oct”).Visible = True

.PivotItems(“Nov”).Visible = True

.PivotItems(“Dec”).Visible = True

.PivotItems(“Q1”).Visible = False

.PivotItems(“Q2”).Visible = False

.PivotItems(“Q3”).Visible = False

.PivotItems(“Q4”).Visible = False
End With

End Sub

4799-2 ch17.F 6/11/01 9:39 AM Page 519

520 Part V ✦ Advanced Programming Techniques

The CheckBox controls simply toggle the display of the grand totals. These event-
handler procedures follow:

Private Sub CheckBox1_Click()
‘ Column Grand Totals

Application.ScreenUpdating = False
ActiveSheet.PivotTables(1).ColumnGrand = CheckBox1.Value

End Sub

Private Sub CheckBox2_Click()
‘ Row Grand Totals

Application.ScreenUpdating = False
ActiveSheet.PivotTables(1).RowGrand = CheckBox2.Value

End Sub

Pivot tables, of course, can be modified in many other ways. As I’ve mentioned, the
easiest way to create VBA code that modifies pivot tables is to turn on the macro
recorder while you make the changes manually. Then adjust the code and copy it
to the event-handler procedures for your controls.

Summary
This chapter provided several examples of how to create and modify pivot tables
using VBA code.

In the next chapter, I present VBA techniques to manipulate charts.

✦ ✦ ✦

4799-2 ch17.F 6/11/01 9:39 AM Page 520

Working with
Charts

By any standard, Excel’s charting feature is impressive. A
chart displays data of virtually any type that’s stored in

a worksheet. Excel supports more than 100 different chart
types, and you have almost complete control over nearly
every aspect of each chart.

About Charts
Due to its richness, a chart is simply packed with objects,
each of which has its own properties and methods. Because
of this, manipulating charts with VBA can be a bit of a chal-
lenge. In this chapter, I discuss the key concepts that you
need to understand in order to write VBA code that generates
or manipulates charts. The secret, as you’ll see, is a good
understanding of the object hierarchy for charts. First, a bit of
background about Excel charts.

Chart locations
In Excel, a chart can be located in either of two places within
a workbook:

✦ As an embedded object on a worksheet. A worksheet
can contain any number of embedded charts.

✦ In a separate chart sheet. A chart sheet holds a single
chart.

An embedded chart can also reside on an Excel 5/95 dia-
log sheet. And, as I discuss later in this chapter (see
“Storing multiple charts on a chart sheet”), you can also
store embedded charts on a chart sheet.

Note

1818C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Essential background
information on Excel
charts

The difference
between embedded
charts and chart
sheets

Understanding the
Chart object model

Using the macro
recorder to help you
learn about Chart
objects

Examples of common
charting tasks using
VBA

Examples of more
complex charting
macros

Some interesting (and
useful) chart-making
tricks

✦ ✦ ✦ ✦

4799-2 ch18.F 6/11/01 9:39 AM Page 521

522 Part V ✦ Advanced Programming Techniques

Most charts are created manually, using the ChartWizard. But, as you’ll see, you can
also create charts using VBA. And, of course, you can use VBA to modify existing
charts.

The fastest way to create a chart on a new sheet is to select your data and press
F11. Excel creates a new chart sheet and uses the default chart type.

A key concept when working with charts is the “active chart.” When the user clicks
an embedded chart or activates a chart sheet, a Chart object is activated. In VBA,
the ActiveChart property returns the activated Chart object (if any). You can
write code to work with this Chart object, much like you can write code to work
with the Workbook object returned by the ActiveWorkbook property.

Here’s an example. If a chart is activated, the following statement will display the
Name property for the Chart object:

MsgBox ActiveChart.Name

If a chart is not activated, the preceding statement will generate an error.

As you’ll see later in this chapter, it’s not necessary to activate a chart in order to
manipulate it with VBA.

The Chart object model
To get a feel for the number of objects involved when working with charts, turn on
the macro recorder, create a chart, and perform some routine chart editing tasks.
You might be surprised by the amount of code Excel generates. When you first start
exploring the object model for a Chart object, you’ll probably be very confused . . .
which is not surprising, since the object model is very confusing. It’s also very
deep.

For example, assume that you want to change the title displayed in an embedded
chart. The top-level object, of course, is the Application object (Excel). The
Application object contains a Workbook object, and the Workbook object con-
tains a Worksheet object. The Worksheet object contains a ChartObject object,
which contains a Chart object. The Chart object has a ChartTitle object, and the
ChartTitle object contains a Characters object. The Text property of the
Characters object stores the text that’s displayed as the chart’s title. In other
words, the Characters object is at the seventh hierarchical object level.

Here’s another way to look at this hierarchy for an embedded chart:

Application
Workbook
Worksheet

ChartObject

Note

Tip

4799-2 ch18.F 6/11/01 9:39 AM Page 522

523Chapter 18 ✦ Working with Charts

Chart
ChartTitle

Characters

Your VBA code must, of course, follow this object model precisely. For example, to
set a chart’s title to YTD Sales, you can write a VBA instruction like this:

WorkSheets(“Sheet1”).ChartObjects(1).Chart.ChartTitle. _
Characters.Text = “YTD Sales”

Alternatively, you can access the Text property of the ChartTitle object:

WorkSheets(“Sheet1”).ChartObjects(1).Chart.ChartTitle. _
.Text = “YTD Sales”

Using the Characters object is necessary if you need to format individual charac-
ters within the text.

This statement assumes the active workbook as the Workbook object. The state-
ment works with the first item in the ChartObjects collection on the work-
sheet named Sheet1. The Chart property returns the actual Chart object. The
ChartTitle property returns the ChartTitle object, and the Characters prop-
erty returns the Characters object. What you’re really interested in is the Text
property of this Characters object.

For a chart sheet, the object hierarchy is a bit different since it doesn’t involve the
Worksheet object or the ChartObject object. For example, here’s the hierarchy for
the Characters object for a chart in a chart sheet:

Application
Workbook
Chart

ChartTitle
Characters

In terms of VBA, you could use this statement to set the chart title to YTD Sales.

Sheets(“Chart1”).ChartTitle.Characters.Text = “YTD Sales”

Or, you can set the Text property of the ChartTitle object directly:

Sheets(“Chart1”).ChartTitle.Text = “YTD Sales”

In other words, a chart sheet is actually a Chart object and it has no containing
ChartObject object. Put another way, the parent object for an embedded chart is a
ChartObject object and the parent object for a chart on a separate chart sheet is a
Workbook object.

Both of the following statements will display a message box with the word Chart
in it:

4799-2 ch18.F 6/11/01 9:39 AM Page 523

524 Part V ✦ Advanced Programming Techniques

MsgBox TypeName(Sheets(“Sheet1”).ChartObjects(1).Chart)

Msgbox TypeName(Sheets(“Chart1”))

When you create a new embedded chart, you’re adding to the ChartObjects
collection contained in a particular worksheet (there is no Charts collection for a
worksheet). When you create a new chart sheet, you’re adding to the Charts col-
lection and the Sheets collection for a particular workbook.

Recording Chart Macros
Perhaps the best way to become familiar with the Chart object model is to turn on
the macro recorder while you create and manipulate charts. Even though the macro
recorder tends to generate lots of extraneous and inefficient code, the recorded
code will still give you insights regarding the objects, properties, and methods you
need to know about.

Excel’s macro recorder always activates a chart and then uses the ActiveChart
property to return the actual Chart object. In Excel, it’s not necessary to select an
object (or activate a chart) in order to work with it in VBA. And, as I mentioned, the
macro recorder generates lots of extraneous code. Therefore, if efficiency is among
your goals, you should never actually use unedited recorded macros, especially
those that manipulate charts.

Macro recorder output
I turned on the macro recorder while I created a chart (shown in Figure 18-1) and
then performed some simple customizations to it.

Figure 18-1: This chart was created while Excel’s macro recorder was turned on.

Note

4799-2 ch18.F 6/11/01 9:39 AM Page 524

525Chapter 18 ✦ Working with Charts

Following is a listing of the code generated by the macro recorder:

Sub Macro1()
Range(“A1:F2”).Select
Charts.Add
ActiveChart.ChartType = xlColumnClustered
ActiveChart.SetSourceData _
Source:=Sheets(“Sheet1”).Range(“A1:F2”), _
PlotBy:=xlRows

ActiveChart.Location _
Where:=xlLocationAsObject, _
Name:=”Sheet1”

ActiveChart.HasLegend = False
ActiveChart.ApplyDataLabels _
Type:=xlDataLabelsShowValue, LegendKey:=False

ActiveChart.HasDataTable = False
ActiveChart.Axes(xlCategory).Select
Selection.TickLabels.Orientation = xlHorizontal
ActiveChart.ChartTitle.Select
Selection.Font.Bold = True
Selection.AutoScaleFont = True
With Selection.Font

.Name = “Arial”

.Size = 12

.Strikethrough = False

.Superscript = False

.Subscript = False

.OutlineFont = False

.Shadow = False

.Underline = xlUnderlineStyleNone

.ColorIndex = xlAutomatic

.Background = xlAutomatic
End With
ActiveChart.PlotArea.Select
Selection.Top = 18
Selection.Height = 162
ActiveChart.ChartArea.Select
ActiveChart.Axes(xlValue).Select
With ActiveChart.Axes(xlValue)

.MinimumScaleIsAuto = True

.MaximumScale = 0.6

.MinorUnitIsAuto = True

.MajorUnitIsAuto = True

.Crosses = xlAutomatic

.ReversePlotOrder = False

.ScaleType = xlLinear
End With

End Sub

4799-2 ch18.F 6/11/01 9:39 AM Page 525

526 Part V ✦ Advanced Programming Techniques

The “cleaned up” macro
Much of the code generated for the macro in the previous section is not necessary;
it sets values for properties that really don’t need to be set. Following is a listing for
my edited macro. This performs exactly like the macro in the previous section, but
it’s significantly shorter and more efficient. Setting the ScreenUpdating property
to False eliminates the screen refreshing.

Sub CleanedMacro()
Application.ScreenUpdating = False
Charts.Add
ActiveChart.Location _
Where:=xlLocationAsObject, Name:=”Sheet1”

With ActiveChart
.SetSourceData Range(“A1:F2”)
.HasTitle = True
.ChartType = xlColumnClustered
.HasLegend = False
.ApplyDataLabels Type:=xlDataLabelsShowValue
.Axes(xlCategory).TickLabels.Orientation = xlHorizontal
.ChartTitle.Font.Bold = True
.ChartTitle.Font.Size = 12
.PlotArea.Top = 18
.PlotArea.Height = 162
.Axes(xlValue).MaximumScale = 0.6
.Deselect

End With
Application.ScreenUpdating = True

End Sub

When you create a chart using the Add method of the Charts collection, the cre-
ated chart is always a chart sheet. In the preceding code, the Location method
moves the chart to a worksheet.

The Location method of the Chart object is interesting, because it essentially cre-
ates a new object rather than relocating an existing object. To demonstrate, execute
the following code:

Sub Test()
Charts.Add
MsgBox ActiveChart.Name
ActiveChart.Location _
Where:=xlLocationAsObject, Name:=”Sheet1”

MsgBox ActiveChart.Name
End Sub

This procedure adds a chart (a chart sheet) and then displays a message box that
shows the name of the active chart. Then the Location method moves the chart to
a worksheet. The next message box displays the name of active chart, which is dif-
ferent from the previous active chart. The original Chart object ceases to exit, and
is replaced with a new Chart object contained in a ChartObject object.

Note

4799-2 ch18.F 6/11/01 9:39 AM Page 526

527Chapter 18 ✦ Working with Charts

A workbook that contains both the recorded macro and the “cleaned up” macro
is included on the companion CD-ROM so you can compare the performance.

Common VBA Charting Techniques
In this section, I describe how to perform some common tasks that involve charts.

Activating a chart
When a user clicks on an embedded chart, the chart is activated. Your VBA code
can activate an embedded chart using the Activate method. Here’s an example:

ActiveSheet.ChartObjects(“Chart 1”).Activate

If the chart is on a chart sheet, use a statement like this:

Sheets(“Chart1”).Activate

Once a chart is activated, you can refer to it in your code with ActiveChart. For
example, the following instruction displays the name of the active chart. If there is
no active chart, the statement generates an error:

MsgBox ActiveChart.Name

To modify a chart with VBA, it’s not necessary to activate it. The two procedures
that follow have exactly the same effect (they change the embedded chart named
Chart 1 to an area chart). The first procedure activates the chart before perform-
ing the manipulations; the second one doesn’t.

Sub ModifyChart1()
ActiveSheet.ChartObjects(“Chart 1”).Activate
ActiveChart.Type = xlArea
ActiveChart.Deselect

End Sub

Sub ModifyChart2()
ActiveSheet.ChartObjects(“Chart 1”).Chart.Type = xlArea

End Sub

A chart embedded on a worksheet can easily be converted to a chart sheet. To do
so manually, just activate the embedded chart and select Chart ➪ Location. In the
Chart Location dialog box, select the As new sheet option and specify a name. This
action essentially copies the Chart object (contained in a ChartObject object) to
a chart sheet and then destroys its containing ChartObject object.

On the
CD-ROM

4799-2 ch18.F 6/11/01 9:39 AM Page 527

528 Part V ✦ Advanced Programming Techniques

You can also convert an embedded chart to a chart sheet with VBA. Here’s an exam-
ple that converts the first ChartObject on a worksheet named Sheet1 to a chart
sheet named MyChart:

Sub ConvertChart1()
Sheets(“Sheet1”).ChartObjects(1).Chart. _
Location xlLocationAsNewSheet, “MyChart”

End Sub

The following example does just the opposite of the preceding procedure: It con-
verts the chart on a chart sheet named MyChart to an embedded chart on the
worksheet named Sheet1.

Sub ConvertChart2()
Charts(“MyChart”) _
.Location xlLocationAsObject, “Sheet1”

End Sub

Using the Location method also activates the relocated chart.

When you activate a chart contained in a ChartObject, the chart is actually con-
tained in a window that is normally invisible. To see an embedded chart in its own
window, right-click the ChartObject and select Chart Window from the shortcut
menu. The embedded chart will remain on the worksheet, but the chart will also
appear in its own floating window (see Figure 18-2). You can move and resize this
window (but you can’t maximize it). If you move the window, you’ll notice that the
embedded chart is still displayed in its original location. Activating any other win-
dow will make the ChartObject window invisible again.

Figure 18-2: Displaying an embedded chart in a window

Note

4799-2 ch18.F 6/11/01 9:40 AM Page 528

529Chapter 18 ✦ Working with Charts

The following VBA code displays the window for the first ChartObject on the
active sheet:

ActiveSheet.ChartObjects(1).Activate
ActiveChart.ShowWindow = True

For a practical application of using a window to display an embedded chart, see
“Printing embedded charts on a full page,” later in this chapter.

Deactivating a chart
When you record a macro that deactivates a chart, you’ll find that the macro
recorder generates a statement such as:

ActiveWindow.Visible = False

This statement does indeed deactivate the chart, but it is certainly not very clear as
to why the chart is deactivated. When writing macros that work with charts, you
may prefer to use the Deselet method to deactivate a chart:

ActiveChart.Deselect

These two statements have slightly different effects. When an embedded chart is
the active chart, executing Deselect method does not select any cells on the work-
sheet. Setting the Visible property of the ActiveWindow object to False, however,
causes the previously selected range to be re-selected.

Determining whether a chart is activated
A common type of macro performs some manipulations on the active chart (the
chart selected by a user). For example, a macro might change the chart’s type,
apply colors, or change the font size.

The question is, how can your VBA code determine if the user has actually selected
a chart? By selecting a chart, I mean activating a chart sheet, or activating an
embedded chart by clicking it. Your first inclination might be to check the
TypeName property of the Selection, as in this expression:

TypeName(Selection) = “Chart”

This expression above evaluates to True if a chart sheet is active, but it won’t be
True if an embedded chart is selected. Rather, when an embedded chart is selected,
the actual selection will be an object within the Chart object. For example, the
selection might be a Series object, a ChartTitle object, a Legend object, a
PlotArea object, etc.

Cross-
Reference

4799-2 ch18.F 6/11/01 9:40 AM Page 529

530 Part V ✦ Advanced Programming Techniques

The ChartIsSelected function, which follows, returns True if a chart sheet is
active or if an embedded chart is activated, and returns False if a chart is not
activated:

Private Function ChartIsSelected() As Boolean
ChartIsSelected = Not ActiveChart Is Nothing

End Function

This function determines if the ActiveChart object is Nothing. If so, then a chart is
not activated.

Deleting from ChartObjects or charts
To delete all ChartObject objects on a worksheet, you can simply use the Delete
method of the ChartObjects collection:

ActiveSheet.ChartObjects.Delete

To delete all chart sheets in the active workbook, use the following statement:

ActiveWorkbook.Charts.Delete

Normally, deleting sheets causes Excel to display a warning like the one shown in
Figure 18-3. The user must reply to this prompt in order for the macro to continue.
To eliminate this prompt, use the following series of statements:

Application.DisplayAlerts = False
ActiveWorkbook.Charts.Delete
Application.DisplayAlerts = True

Figure 18-3: Attempting to delete one or more chart sheets
results in this message.

Applying chart formatting
The following example applies several different types of formatting to the active
chart:

Sub ChartMods1()
With ActiveChart

.Type = xlArea

.ChartArea.Font.Name = “Arial”

4799-2 ch18.F 6/11/01 9:40 AM Page 530

531Chapter 18 ✦ Working with Charts

.ChartArea.Font.FontStyle = “Regular”

.ChartArea.Font.Size = 9

.PlotArea.Interior.ColorIndex = xlNone

.Axes(xlValue).TickLabels.Font.Bold = True

.Axes(xlCategory).TickLabels.Font.Bold = True

.HasLegend = True

.Legend.Position = xlBottom
End With

End Sub

A chart must be active, or this routine will generate an error. Also, notice that the
code sets the HasLegend property to True. This is to avoid an error that would
occur when trying to set the Position property of the Legend object if the chart
had no legend.

Following is another version of the ChartMods procedure. In this case, it works on a
specific chart: the one contained in a ChartObject named Chart 1, located on
Sheet1. Notice that the chart is never activated.

Sub ChartMods2()
With Sheets(“Sheet1”).ChartObjects(“Chart 1”).Chart

.Type = xlArea

.ChartArea.Font.Name = “Arial”

.ChartArea.Font.FontStyle = “Regular”

.ChartArea.Font.Size = 9

.PlotArea.Interior.ColorIndex = xlNone

.Axes(xlValue).TickLabels.Font.Bold = True

.Axes(xlCategory).TickLabels.Font.Bold = True

.HasLegend = True

.Legend.Position = xlBottom
End With

End Sub

Looping through all charts
In some cases, you may need to perform an operation on all charts. This example
changes the chart type of every embedded chart on the active sheet. The proce-
dure uses a For-Next loop to cycle through each object in the ChartObjects
collection, then accesses the Chart object in each and changes its ChartType
property. An Area chart is specified by using the predefined constant xlArea.
Consult the online help for other chart type constants.

Sub ChangeChartType()
Dim chtobj as ChartObject
For Each chtobj In ActiveSheet.ChartObjects

chtobj.Chart.ChartType = xlArea
Next chtobj

End Sub

4799-2 ch18.F 6/11/01 9:40 AM Page 531

532 Part V ✦ Advanced Programming Techniques

The following macro performs the same operation as the preceding procedure, but
works on all the chart sheets in the active workbook:

Sub ChangeChartType2()
Dim cht as Chart
For Each cht In ActiveWorkbook.Charts

cht.ChartType = xlArea
Next cht

End Sub

The following example changes the legend font for all charts on the active sheet. It
uses a For-Next loop to process all ChartObject objects:

Sub LegendMod()
Dim chtobj as ChartObject
For Each chtobj In ActiveSheet.ChartObjects

With chtobj.Chart.Legend.Font
.Name = “Arial”
.FontStyle = “Bold”
.Size = 12

End With
Next chtobj

End Sub

Sizing and aligning ChartObjects
A ChartObject object has standard positional and sizing properties that you can
access with your VBA code. The following example resizes all ChartObject objects
on Sheet1 so they match the dimensions of the ChartObject named Chart 1. It
also arranges the ChartObject objects so they appear one after the other along
the left side of the worksheet.

Sub ResizeAndArrangeChartObjects()
Dim W As Double, H As Double
Dim TopPos As Double
Dim chtobj As ChartObject

W = ActiveSheet.ChartObjects(“Chart 1”).Width
H = ActiveSheet.ChartObjects(“Chart 1”).Height
TopPos = 0
For Each chtobj In ActiveSheet.ChartObjects

With chtobj
.Width = W
.Height = H
.Left = 0
.Top = TopPos

End With
TopPos = TopPos + H

Next chtobj
End Sub

4799-2 ch18.F 6/11/01 9:40 AM Page 532

533Chapter 18 ✦ Working with Charts

The TopPos variable keeps track of the vertical location for the next chart. Each
time through the loop, this variable is incremented by the value of H (which is the
height of each ChartObject).

More Charting Examples
In this section, I describe some additional charting techniques. I discuss two exam-
ples that demonstrate how to use VBA to change the data used by a chart.

Working with PivotCharts

Excel 2000 introduced a new facet to charting: PivotCharts. This handy feature lets you cre-
ate a dynamic chart that’s attached to a PivotTable. The PivotChart displays the current lay-
out of the PivotTable graphically. When you create a PivotTable, you have an option of
creating a PivotTable alone, or a PivotChart which also includes an associated PivotTable. To
create a PivotChart from an existing PivotTable, activate the PivotTable and click the
ChartWizard button. The chart is created on a new chart sheet. By default, a new PivotChart
always appears on a chart sheet (see the accompanying figure). However, you can use the
Chart ➪ Location command to convert it to an embedded chart.

When Microsoft adds a new feature to Excel, it also needs to augment Excel’s object model
so the new feature is exposed and can be controlled by VBA. In the case of PivotCharts,
you’ll find a new object called a PivotLayout object, located in the Chart object. The best
way to become familiar with this object is to record your actions as you modify a PivotChart,
and examine the code produced. Then you can learn more about the objects, properties,
and methods by consulting the online help.

4799-2 ch18.F 6/11/01 9:40 AM Page 533

534 Part V ✦ Advanced Programming Techniques

Using names in a SERIES formula
As you probably know, a chart can consist of any number of series, and the data
used by each series is determined by the range references in its SERIES formula.
For more about this topic, see the sidebar, “Understanding a Chart’s SERIES
Formula.”

In some cases, using range names in the SERIES formulas in a chart can greatly sim-
plify things if you need to change the chart’s source data using VBA. For example,
consider the following SERIES formula:

=SERIES(,Sheet1!A1:A6,Sheet1!B1:B6,1)

Understanding a Chart’s SERIES Formula

The data used in each series in a chart is determined by its SERIES formula. When you select
a data series in a chart, the SERIES formula appears in the formula bar. This is not a “real”
formula. In other words, you can’t use it in a cell and you can’t use worksheet functions
within the SERIES formula. You can, however, edit the arguments in the SERIES formula.

A SERIES formula has the following syntax:

=SERIES(name, category_labels, values, order)

name (Optional) The name used in the legend. If the chart has only one series,
the name argument is used as the title.

category_labels (Optional) The range that contains the labels for the category
axis. If omitted, Excel uses consecutive integers beginning with 1.

values The range that contains the values.

order An integer that specifies the plotting order of the series (relevant only if the
chart has more than one series).

Range references in a SERIES formula are always absolute, and they always include the
sheet name. For example:

=SERIES(Sheet1!B1,,Sheet1!B2:B7,1)

A range reference can consist of a noncontiguous range. If so, each range is separated by a
comma and the argument is enclosed in parentheses. In the following SERIES formula, the
values range consists of B2:B3 and B5:B7:

=SERIES(,,(Sheet1!B2:B3,Sheet1!B5:B7),1)

You can substitute range names for the range references. If you do so, Excel changes the
reference in the SERIES formula to include the workbook. For example:

=SERIES(Sheet1!B1,,budget.xls!MyData,1)

4799-2 ch18.F 6/11/01 9:40 AM Page 534

535Chapter 18 ✦ Working with Charts

You can define range names for the two ranges (for example, Categories and
Data), and then edit the SERIES formula so it uses the range names instead of the
range references. The edited formula would be:

=SERIES(,Sheet1!Categories,Sheet1!Data,1)

Once you’ve defined the names and edited the SERIES formula, your VBA code can
work with the names, and the changes will be reflected in the chart. For example,
the following statement redefines the “refers to” range as Data:

Range(“B1:B12”).Name = “Data”

After executing this statement, the chart will update itself and use the new defini-
tion of Data.

The Resize method of the Range object is useful for resizing a named range. For
example, the following code expands the range named Data to include one addi-
tional row:

With Range(“Data”)
.Resize(.Rows.Count + 1, 1).Name = “Data”

End With

Specifying the data used by a chart
The examples in this section describe VBA techniques that enable you to change
the data used by a chart.

Figure 18-4: This chart always displays the data from the row of the active cell.

Tip

4799-2 ch18.F 6/11/01 9:40 AM Page 535

536 Part V ✦ Advanced Programming Techniques

Changing chart data based on the active cell
Figure 18-4 displays a chart based on the data in the row of the active cell. As the
user moves the cell pointer, the chart is updated automatically.

This example uses an event-handler for the Worksheet object. The
SelectionChange event occurs whenever the user changes the selection by mov-
ing the cell pointer. The event-handler procedure for this event (which is located in
the code module for the Sheet1 object) is as follows:

Private Sub Worksheet_SelectionChange(ByVal Target _
As Excel.Range)

Call UpdateChart
End Sub

In other words, every time the user moves the cell cursor, the
Worksheet_SelectionChange procedure is executed. This procedure calls the
UpdateChart procedure, which follows:

Sub UpdateChart()
If Sheets(“Sheet1”).CheckBox1 Then

Set TheChartObj = ActiveSheet.ChartObjects(1)
Set TheChart = TheChartObj.Chart
UserRow = ActiveCell.Row
If UserRow < 3 Or IsEmpty(Cells(UserRow, 1)) Then

TheChartObj.Visible = False
Else

Set CatTitles = Range(“A2:F2”)
Set SrcRange = Range(Cells(UserRow, 1), _
Cells(UserRow, 6))
Set SourceData = Union(CatTitles, SrcRange)
TheChart.SetSourceData _
Source:=SourceData, PlotBy:=xlRows

TheChartObj.Visible = True
End If

End If
End Sub

The first step is to determine if the Auto Update Chart check box is checked. If this
check box is not checked, nothing happens. The UserRow variable contains the row
number of the active cell. The If statement checks to make sure that the active cell
is in a row that contains data (the data starts in row 3). If the cell cursor is in a row
that doesn’t have data, the ChartObject object is hidden. Otherwise, the code cre-
ates a Range object (CatTitle) that holds the category titles and another Range
object (SrcRange) that contains the data for the row. These two Range objects
are joined using VBA’s Union function and assigned to a Range object named
SourceData. Finally, the SourceData range is assigned to the chart using the
SetSourceData method of the Chart object.

4799-2 ch18.F 6/11/01 9:40 AM Page 536

537Chapter 18 ✦ Working with Charts

Changing chart data using a ComboBox
The next example uses a ComboBox control on a chart sheet to allow the user to
select a chart. Figure 18-5 shows how this looks:

Figure 18-5: Selecting from the ComboBox changes the source data
for the chart.

The ComboBox used in this example is from the Forms toolbar (not the Control
Toolbox toolbar). For some reason, Excel does not let you add ActiveX controls to
a chart sheet.

This workbook is available on the companion CD-ROM.

A macro named DropDown1_Change is attached to the ComboBox. When the user
makes a selection from the ComboBox, the following procedure is executed:

Sub DropDown1_Change()
ListIndex = Charts(1).DropDowns(1).Value
Call UpdateChart(ListIndex)

End Sub

This procedure calls the UpdateChart procedure, and passes an integer that repre-
sents the user’s choice. Following is the listing of the UpdateChart procedure. This
is very similar to the UpdateChart procedure in the previous section.

On the
CD-ROM

Note

4799-2 ch18.F 6/11/01 9:40 AM Page 537

538 Part V ✦ Advanced Programming Techniques

Sub UpdateChart(Item)
‘ Updates the chart using the selected dropdown item

Dim TheChart As Chart
Dim DataSheet As Worksheet
Dim CatTitles As Range, SrcRange As Range
Dim SourceData As Range

Set TheChart = Sheets(“Chart1”)
Set DataSheet = Sheets(“Sheet1”)

With DataSheet
Set CatTitles = .Range(“A1:F1”)
Set SrcRange = .Range(.Cells(Item + 2, 1), _
.Cells(Item + 2, 6))

End With
Set SourceData = Union(CatTitles, SrcRange)

With TheChart
.SetSourceData Source:=SourceData, PlotBy:=xlRows
.ChartTitle.Left = TheChart.ChartArea.Left
.Deselect

End With
End Sub

Determining a chart’s source data: Method 1
Assume you have an embedded chart like the one shown in Figure 18-6. This chart
displays data for three months. You would like to write a VBA procedure that
extends the chart’s source data to use the three additional months. If your VBA
code created the chart and is “aware” of the chart’s data source, it’s fairly simple to
extend the range. But if your code needs to work with any arbitrary chart, you’ll
find that using VBA to determine the source data used by the chart is not an easy
task.

Figure 18-6: What’s the best way to determine which ranges are
used by this chart?

4799-2 ch18.F 6/11/01 9:40 AM Page 538

539Chapter 18 ✦ Working with Charts

The Series object
It’s my opinion that Excel’s object model has a serious flaw: There is no direct way
to determine the ranges used in a chart. Let’s look at what the object model does
provide.

The Series object is contained in a Chart object. The SeriesCollection is a col-
lection of Series objects for a particular Chart object. If a chart plots two data
series, it will have two Series objects. You can refer to a particular Series object
by its index number. The following expression, for example, creates an object vari-
able that represents the first Series object in the active chart:

Set MySeries = ActiveChart.SeriesCollection(1)

A Series object has many properties, but I’ll list three that seem relevant to this
discussion:

✦ Formula property. Returns or sets the SERIES formula for the Series object.
When you select a series in a chart, its SERIES formula is displayed in the for-
mula bar. The Formula property returns this formula as a string.

✦ Values property. Returns or sets a collection of all the values in the series.
This can be a range on a worksheet or an array of constant values, but not a
combination of both.

✦ XValues property. Returns or sets an array of x values for a chart series. The
XValues property can be set to a range on a worksheet or to an array of
values — but it can’t be a combination of both.

So if your code needs to determine the data range used by a particular chart series,
it’s obvious that the Values property of the Series object is just the ticket. And,
you can use the XValues property to get the range that contains the x values (or
category labels). In theory, that certainly seems correct . . . but in practice, it doesn’t
work. When you assign a range to the XValues property, you are actually assigning
the Value property of each cell in the range (that is, an array of values).

A simple demonstration
To demonstrate why accessing the Value property doesn’t produce the results you
need, start with a new workbook and create the simple chart shown in Figure 18-7.
The chart uses A1:A3 as its Values range (and has no XValues range).

Insert a VBA module and enter the following procedure:

Sub Test1()
Dim DataRange As Range
Set DataRange = ActiveSheet.Range(“A1:A2”)
ActiveSheet.ChartObjects(1). _
Chart.SeriesCollection(1).Values = DataRange

End Sub

4799-2 ch18.F 6/11/01 9:40 AM Page 539

540 Part V ✦ Advanced Programming Techniques

Figure 18-7: Use this chart to discover why Values
and XValues don’t work as you might expect.

This procedure changes the source data for the chart’s series to use the data in
A1:A2. Execute the procedure, and you’ll find that the chart will now display only
two columns.

Next, try running the following procedure:

Sub Test2()
Dim DataRange As Range
Set DataRange = Sheets(“Sheet1”).ChartObjects(1). _
Chart.SeriesCollection(1).Values

End Sub

This procedure attempts to create a Range object named DataRange from the
chart’s series. When you execute this procedure, you’ll get an error message:
Object required. The problem is, the Values property for the Series object (the
member of the collection named SeriesCollection) always returns an array —
never a Range object. If you don’t believe me, execute this statement, which uses
VBA’s IsArray function to determine if its argument is an array:

MsgBox IsArray(Sheets(“Sheet1”).ChartObjects(1). _
Chart.SeriesCollection(1).Values)

Specifically, the Values property returns a variant array. Unfortunately, there is no
direct way to get a Range object for a Series object.

Try executing this procedure:

Sub Test3()
Dim ChartData As Variant
ChartData = Sheets(“Sheet1”).ChartObjects(1). _
Chart.SeriesCollection(1).Values

For i = 1 To UBound(ChartData)

4799-2 ch18.F 6/11/01 9:40 AM Page 540

541Chapter 18 ✦ Working with Charts

MsgBox ChartData(i)
Next i

End Sub

In this case, ChartData is defined as a variant. A For-Next loop displays each item
in the variant array.

When you set the Values property for a Series object, you can specify a Range
object or an array. But when you read this property, it is always an array. In other
words, a variant can receive a Range object, but it can’t give one back.

Creating a custom function
By now, you should know that when Excel has a deficiency, you can often use VBA
to create your own solution. That’s exactly what I did. This section describes a VBA
function that returns a Range object for a Series object.

The next section describes a class module that simplifies this entire process.

The function, named GetChartRange, takes three arguments:

✦ cht: A Chart object

✦ series: An integer that corresponds to the Series number in the
SeriesCollection object

✦ ValsOrX: A string, either “values” or “xvalues” (not case-sensitive)

The following statements demonstrate how to use the GetChartRange function:

Set MyChart = ActiveSheet.ChartObjects(1).Chart
Set DataRange = GetChartRange(MyChart, 1, “values”)
MsgBox DataRange.Address

The first statement above creates an object variable for the Chart object of inter-
est. The second statement creates a Range object by calling the GetChartRange
function procedure. The Range that’s returned by the DataRange function will con-
tain the data plotted in the first Series on the chart. The third statement simply
displays the address for the range.

The GetChartRange procedure works by parsing the SERIES formula (a text
string), and extracting the range addresses. The GetChartRange does have one
limitation: It will not work if the chart series uses a noncontiguous range. When a
series uses a noncontiguous range, the range references in the SERIES formula
are enclosed in parentheses and separated by a comma. GetChartRange parses
the SERIES formula by searching for commas. If the SERIES formula contains
more than three commas, it’s using a noncontiguous range . . . and the parsing
algorithm doesn’t work.

Caution

Cross-
Reference

Note

4799-2 ch18.F 6/11/01 9:40 AM Page 541

542 Part V ✦ Advanced Programming Techniques

The GetChartRange procedure is available on the companion CD-ROM. The
workbook also contains procedures to demonstrate the function, as shown in
Figure 18-8.

Figure 18-8: The GetChartRange procedure determines the ranges used by a chart.

The GetChartRange procedure is provided here in Listing 18-1.

Listing 18-1: Parsing Excel’s SERIES function to find a chart’s
source range

Function GetChartRange(cht As Chart, series As Integer, _
ValOrX As String) As Range
‘ cht: A Chart object
‘ series: Integer representing the Series
‘ ValOrX: String, either “values” or “xvalues”

Dim Sf As String
Dim CommaCnt As Integer
Dim Commas() As Integer
Dim ListSep As String * 1
Dim Temp As String
Dim i as Integer

Set GetChartRange = Nothing
On Error Resume Next

On the
CD-ROM

4799-2 ch18.F 6/11/01 9:40 AM Page 542

543Chapter 18 ✦ Working with Charts

‘ Get the SERIES formula
Sf = cht.SeriesCollection(series).Formula

‘ Check for noncontiguous ranges by counting commas
‘ Also, store the character position of the commas

CommaCnt = 0
ListSep = Application.International(xlListSeparator)
For i = 1 To Len(Sf)

If Mid(Sf, i, 1) = ListSep Then
CommaCnt = CommaCnt + 1
ReDim Preserve Commas(CommaCnt)
Commas(CommaCnt) = i

End If
Next i
If CommaCnt > 3 Then Exit Function

‘ XValues or Values?
Select Case UCase(ValOrX)

Case “XVALUES”
‘ Text between 1st and 2nd commas in SERIES Formula

Temp = Mid(Sf, Commas(1) + 1, Commas(2) - _
Commas(1) - 1)
Set GetChartRange = Range(Temp)

Case “VALUES”
‘ Text between the 2nd and 3rd commas in SERIES Formula

Temp = Mid(Sf, Commas(2) + 1, Commas(3) - _
Commas(2) - 1)
Set GetChartRange = Range(Temp)

End Select
End Function

Determining a chart’s source data: Method 2
The GetChartRange function described in the previous section is handy, but the
technique described in this section may be more useful. It uses a class module to
create a new object class called ChartSeries. The GetChartRange function, as
you recall, allows you to identify the ranges used in a chart’s SERIES formula. The
ChartSeries class is much more versatile, and it enables your code to perform
two jobs: identify the ranges used in a SERIES formula, and change the ranges.

ChartSeries class properties
When the ChartSeries class module is present in your workbook, you can create a
new ChartSeries object, and use VBA code to access the following properties:

4799-2 ch18.F 6/11/01 9:40 AM Page 543

544 Part V ✦ Advanced Programming Techniques

✦ Chart (read/write)

✦ ChartSeries (read/write)

✦ SeriesName (read/write)

✦ XValues (read/write)

✦ Values (read/write)

✦ PlotOrder (read/write)

✦ SeriesNameType (read-only)

✦ XValuesType (read-only)

✦ ValuesType (read-only)

✦ PlotOrderType (read-only)

All of these properties are defined in the ChartSeries class module. Notice that
some of the properties are read-only. For read-only properties, you can write code
to identify the property values, but they cannot be changed.

The code for the ChartSeries class is too lengthy to present here. A workbook
that demonstrates the use of the ChartSeries class is available on the com-
panion CD-ROM. The code is well-documented so you can examine it to see how
it works. The class module can be copied to any other workbook.

Using the ChartSeries class
Before you use the ChartSeries class, make sure that you’ve copied the
ChartSeries class module to your workbook. The simple procedure that follows
demonstrates how to use the ChartSeries class. It assumes that the first work-
sheet contains a ChartObject.

Sub ChartSeriesDemo()
Dim MySeries As New ChartSeries
MySeries.Chart = Sheets(1).ChartObjects(1).Chart
MySeries.ChartSeries = 1
If MySeries.ValuesType = “Range” Then

MsgBox MySeries.Values.Address
Else

MsgBox MySeries.Values
End If

End Sub

The procedure starts by declaring the MySeries variable as a ChartSeries object.
Next it assigns the first chart on the first worksheet to the Chart property. The next
statement specifies the series number (1), and assigns it to the ChartSeries
property.

The Select Case statement accesses the ValuesType property. This property
indicates the type of data used in the series, and returns a string: either Range or

On the
CD-ROM

4799-2 ch18.F 6/11/01 9:40 AM Page 544

545Chapter 18 ✦ Working with Charts

Array. If the data is a range, a message box displays the address. If the data is con-
tained in an array, a message box displays the array contents. Figure 18-9 shows the
result of running the ChartSeriesDemo procedure.

Figure 18-9: Using a class module to identify data used in a chart

Another example of the ChartSeries class
Figure 18-10 shows a chart that is “interactive.” The chart plots data stored in
columns A and B, and buttons on the chart allow the user to change the chart so it
shows more or fewer months of data. Using the ChartSeries class makes this type
of coding relatively easy.

Figure 18-10: Using a class module to change the data used in a chart

4799-2 ch18.F 6/11/01 9:40 AM Page 545

546 Part V ✦ Advanced Programming Techniques

When the Fewer Months button is clicked, the following procedure is executed:

Private Sub CommandButton1_Click()
‘ Changes the XValues and Values to display fewer months

Dim TheChart As Chart
Dim MySeries As New ChartSeries
Set TheChart = ActiveSheet.ChartObjects(1).Chart
With MySeries

‘specify the chart
.Chart = TheChart
‘specify the series
.ChartSeries = 1

‘make sure the Xvalues is a range
If .XValuesType = “Range” Then

‘make sure at least one point is charted
numrows = .XValues.Rows.Count
If numrows <> 1 Then _
Set NewRange = .XValues.Resize(numrows - 1, 1)

If numrows > 1 Then .XValues = NewRange
End If

‘make sure the Values is a range
If .ValuesType = “Range” Then

‘make sure at least one point is charted
numrows = .Values.Rows.Count
If numrows <> 1 Then _ Set NewRange =

.Values.Resize(numrows - 1, 1)
If numrows > 1 Then .Values = NewRange

End If
End With

End Sub

This procedure creates a new ChartSeries object. It accesses the XValues prop-
erty (which returns a Range object), and then resizes the range by using the
Resize method of the Range object. After the range is reduced by one row, the
new range is assigned to the XValues property. The code then performs a similar
operation on the Values property of the ChartSeries object.

The code to show more data is very similar. The only difference is that the XValues
and Values ranges are resized to include an additional row.

Refer to Chapter 29 for more information about creating and using class modules.

Displaying arbitrary data labels on a chart
One of the most frequent complaints about Excel’s charting is its inflexible data
labeling feature. For example, consider the XY chart in Figure 18-11. It might be

Cross-
Reference

4799-2 ch18.F 6/11/01 9:40 AM Page 546

547Chapter 18 ✦ Working with Charts

useful to display the associated name for each data point. However, you can search
all day and you’ll never find the Excel command that lets you do this automatically
(such a command doesn’t exist). Data labels are limited to the values only . . .
unless you want to edit each data label manually and replace it with text of your
choice.

Figure 18-11: An XY chart with no data labels

Listing 18-2 presents a simple procedure that works with the first chart on the
active sheet. It prompts the user for a range and then loops through the Points
collection and changes the Text property to the values found in the range.

Listing 18-2: Retrieving data point labels from field names in
the worksheet

Sub DataLabelsFromRange()
Dim DLRange As Range
Dim Cht As Chart
Dim i As Integer

‘ Specify chart
Set Cht = ActiveSheet.ChartObjects(1).Chart

‘ Prompt for a range
On Error Resume Next
Set DLRange = Application.InputBox _
(prompt:=”Range for data labels?”, Type:=8)

If DLRange Is Nothing Then Exit Sub
On Error GoTo 0

Continued

4799-2 ch18.F 6/11/01 9:40 AM Page 547

548 Part V ✦ Advanced Programming Techniques

Listing 18-2 (continued)

‘ Add data labels
Cht.SeriesCollection(1).ApplyDataLabels _
Type:=xlDataLabelsShowValue, _
AutoText:=True, _
LegendKey:=False

‘ Loop through the Points, and set the data labels
Pts = Cht.SeriesCollection(1).Points.Count
For i = 1 To Pts

Cht.SeriesCollection(1). _
Points(i).DataLabel.Text = DLRange(i)

Next i
End Sub

This example is available on the companion CD-ROM.

Figure 18-12 shows the chart after running the DataLabelsFromRange procedure
and specifying A2:A9 as the data range.

Figure 18-12: This XY chart has data labels, thanks to a VBA procedure.

The preceding procedure is rather crude, and does very little error checking. In
addition, it only works with the first Series object. The Power Utility Pak (avail-
able by using the coupon in the back of the book) includes a much more sophis-
ticated data labeling utility.

Note

On the
CD-ROM

4799-2 ch18.F 6/11/01 9:40 AM Page 548

549Chapter 18 ✦ Working with Charts

Displaying a chart in a UserForm
In Chapter 15, I described a way to display a chart in a UserForm. The technique
saves the chart as a GIF file and then loads the GIF file into an Image control on the
UserForm.

The example in this section uses that same technique, but adds a new twist: The
chart is created on the fly and uses the data in the row of the active cell. Figure
18-13 shows an example.

Figure 18-13: The chart in this UserForm is created on the fly from the
data in the active row.

The UserForm for this example is very simple. It contains an Image control and a
CommandButton (Close). The worksheet that contains the data has a button that
executes the following procedure:

Sub ShowChart()
Dim UserRow As Long
UserRow = ActiveCell.Row
If UserRow < 2 Or IsEmpty(Cells(UserRow, 1)) Then

MsgBox _
“Move the cell cursor to a row that contains data.”
Exit Sub

End If
CreateChart UserRow
UserForm1.Show

End Sub

4799-2 ch18.F 6/11/01 9:40 AM Page 549

550 Part V ✦ Advanced Programming Techniques

Since the chart is based on the data in the row of the active cell, the procedure
warns the user if the cell cursor is in an invalid row. If the active cell is appropriate,
ShowChart calls the CreateChart procedure to create the chart, then displays the
UserForm.

The CreateChart procedure shown in Listing 18-3 accepts one argument, which
represents the row of the active cell. This procedure originated from a macro
recording that I cleaned up to make more general.

Listing 18-3: Automatically generating a chart without user
interaction

Sub CreateChart(r)
Dim TempChart As Chart
Dim CatTitles As Range
Dim SrcRange As Range, SourceData As Range

Application.ScreenUpdating = False

Set CatTitles = ActiveSheet.Range(“A2:F2”)
Set SrcRange = ActiveSheet.Range(Cells(r, 1), Cells(r, 6))
Set SourceData = Union(CatTitles, SrcRange)

‘ Add a chart
Set TempChart = Charts.Add

‘ Fix it up
With TempChart

.ChartType = xlColumnClustered

.SetSourceData Source:=SourceData, PlotBy:=xlRows

.HasLegend = False

.ApplyDataLabels Type:=xlDataLabelsShowValue, _
LegendKey:=False
.ChartTitle.Font.Size = 14
.ChartTitle.Font.Bold = True
.Axes(xlValue).MaximumScale = 0.6
.Axes(xlCategory).TickLabels.Font.Size = 10
.Axes(xlCategory).TickLabels.Orientation = _
xlHorizontal
.Location Where:=xlLocationAsObject, Name:=”Sheet1”

End With

‘ Adjust the ChartObject’s size With
ActiveSheet.ChartObjects(1)

.Width = 300

.Height = 150

.Visible = False

4799-2 ch18.F 6/11/01 9:40 AM Page 550

551Chapter 18 ✦ Working with Charts

End With
End Sub

When the CreateChart procedure ends, the worksheet contains a ChartObject
with a chart of the data in the row of the active cell. However, the ChartObject is
not visible because ScreenUpdating was turned off and its Visible property was
set to False.

The final instruction of the ShowChart procedure loads the UserForm. Following is
a listing of the UserForm_Initialize procedure. This procedure saves the chart
as a GIF file, deletes the ChartObject, and loads the GIF file into the Image control.

Private Sub UserForm_Initialize()
Dim CurrentChart As Chart
Dim Fname As String

Set CurrentChart = ActiveSheet.ChartObjects(1).Chart

‘ Save chart as GIF
Fname = ThisWorkbook.Path & Application.PathSeparator _
& “temp.gif”
CurrentChart.Export FileName:=Fname, FilterName:=”GIF”
ActiveSheet.ChartObjects(1).Delete

‘ Show the chart
Image1.Picture = LoadPicture(Fname)
Application.ScreenUpdating = True

End Sub

This workbook is available on the companion CD-ROM.

Understanding Chart Events
Excel supports several events associated with charts. For example, when a chart is
activated, it generates an Activate event. The Calculate event occurs after the
chart receives new or changed data. You can, of course, write VBA code that gets
executed when a particular event occurs.

Refer to Chapter 19 for additional information about events.

Table 18-1 lists all of the chart events supported by Excel 97 and later versions.

Cross-
Reference

On the
CD-ROM

4799-2 ch18.F 6/11/01 9:40 AM Page 551

552 Part V ✦ Advanced Programming Techniques

Table 18-1
Events Recognized by the Chart Object

Event Action that triggers the event

Activate A chart sheet or embedded chart is activated.

BeforeDoubleClick An embedded chart is double-clicked. This event occurs before
the default double-click action.

BeforeRightClick An embedded chart is right-clicked. The event occurs before the
default right-click action.

Calculate New or changed data is plotted on a chart.

Deactivate A chart is deactivated.

DragOver A range of cells is dragged over a chart.

DragPlot A range of cells is dragged and dropped onto a chart.

MouseDown A mouse button is pressed while the pointer is over a chart.

MouseMove The position of the mouse pointer changes over a chart.

MouseUp A mouse button is released while the pointer is over a chart.

Resize A chart is resized.

Select A chart element is selected.

SeriesChange The value of a chart data point is changed.

An example of using Chart events
To program an event-handler for an event taking place on a chart sheet, your VBA
code must reside in the code module for the Chart object. To activate this code
module, double-click the Chart item in the Project window. Then in the code mod-
ule, select Chart from the Object drop-down list on the left, and select the event
from the Procedure drop-down list on the right (see Figure 18-14).

Because there is not a code module for embedded charts, the procedure described
in this section works only for chart sheets. You can also handle events for embed-
ded charts, but you must do some initial set-up work that involves creating a class
module. This procedure is described later, in “Enabling events for an embedded
chart.”

4799-2 ch18.F 6/11/01 9:40 AM Page 552

553Chapter 18 ✦ Working with Charts

Figure 18-14: Selecting an event in the code module for a Chart object

The example that follows simply displays a message when the user activates a
chart sheet, deactivates a chart sheet, or selects any element on the chart. I cre-
ated a workbook with a chart sheet, then I wrote three event-handler procedures
named:

Chart_Activate Executed when the chart sheet is activated.

Chart_Deactivate Executed when the chart sheet is deactivated.

Chart_Select Executed when an element on the chart sheet is
selected.

The Chart_Activate procedure follows:

Private Sub Chart_Activate()
Dim msg As String
msg = “Hello “ & Application.UserName & vbCrLf & vbCrLf
msg = msg & “You are now viewing the six-month sales “
msg = msg & “summary for Products 1-3.” & vbCrLf & vbCrLf
msg = msg & _
“Click an item in the chart to find out what it is.”
MsgBox msg, vbInformation, ActiveWorkbook.Name

End Sub

This procedure simply displays a message whenever the chart is activated. See
Figure 18-15.

4799-2 ch18.F 6/11/01 9:40 AM Page 553

554 Part V ✦ Advanced Programming Techniques

Figure 18-15: Activating the chart causes Chart_Activate to display this message.

The Chart_Deactivate procedure that follows also displays a message, only when
the chart sheet is deactivated:

Private Sub Chart_Deactivate()
Dim msg As String
msg = “Thanks for viewing the chart.”
MsgBox msg, , ActiveWorkbook.Name

End Sub

The Chart_Select procedure that follows is executed whenever an item on the
chart is selected:

Private Sub Chart_Select(ByVal ElementID As Long, _
ByVal Arg1 As Long, ByVal Arg2 As Long)
Dim Id As String
Select Case ElementID

Case xlChartArea: Id = “ChartArea”
Case xlChartTitle: Id = “ChartTitle”
Case xlPlotArea: Id = “PlotArea”
Case xlLegend: Id = “Legend”
Case xlFloor: Id = “Floor”
Case xlWalls: Id = “Walls”
Case xlCorners: Id = “Corners”
Case xlDataTable: Id = “DataTable”
Case xlSeries: Id = “Series”
Case xlDataLabel: Id = “DataLabel”
Case xlTrendline: Id = “Trendline”
Case xlErrorBars: Id = “ErrorBars”

4799-2 ch18.F 6/11/01 9:40 AM Page 554

555Chapter 18 ✦ Working with Charts

Case xlXErrorBars: Id = “XErrorBars”
Case xlYErrorBars: Id = “YErrorBars”
Case xlLegendEntry: Id = “LegendEntry”
Case xlLegendKey: Id = “LegendKey”
Case xlAxis: Id = “Axis”
Case xlMajorGridlines: Id = “MajorGridlines”
Case xlMinorGridlines: Id = “MinorGridlines”
Case xlAxisTitle: Id = “AxisTitle”
Case xlUpBars: Id = “UpBars”
Case xlDownBars: Id = “DownBars”
Case xlSeriesLines: Id = “SeriesLines”
Case xlHiLoLines: Id = “HiLoLines”
Case xlDropLines: Id = “DropLines”
Case xlRadarAxisLabels: Id = “RadarAxisLabels”
Case xlShape: Id = “Shape”
Case xlNothing: Id = “Nothing”
Case Else: Id = “Some unknown thing”

End Select
MsgBox “Selection type:” & Id

End Sub

This procedure displays a message box that contains a description of the selected
item. When the Select event occurs, the ElementID argument contains an integer
that corresponds to what was selected. The Arg1 and Arg2 arguments provide
additional information about the selected item (see the online help for details). The
Select Case structure converts the built-in constants to descriptive strings.

Enabling events for an embedded chart
As I noted in the previous section, Chart events are automatically enabled for chart
sheets, but not for charts embedded in a worksheet. To use events with an embed-
ded chart, you need to perform the following steps:

Create a class module
In the VB Editor window, select your project in the Project window and select
Insert ➪ Class Module. This will add a new (empty) class module to your project.
If you like, you can use the Properties window to give the class module a more
descriptive name.

Declare a public Chart object
The next step is to declare a Public variable that will be used as the class name.
The variable should be of type Chart, and it must be declared in the class module
using the WithEvents keyword. If you omit the WithEvents keyword, the object
will not respond to events. Following is an example of such a declaration:

Public WithEvents myChartClass As Chart

4799-2 ch18.F 6/11/01 9:40 AM Page 555

556 Part V ✦ Advanced Programming Techniques

Connect the declared object with your chart
Before your event-handler procedures will run, you must connect the declared
object in the class module with your embedded chart. You do this by declaring an
object of type Class1 (or whatever your class module is named). This should be a
module-level object variable, declared in a regular VBA module (not in the class
module). Here’s an example:

Dim MyChart As New MyChartClass

Then you must write code to actually instantiate the object, such as this instruction:

Set myChart.myChartClass = ActiveSheet.ChartObjects(1).Chart

After the preceding statement is executed, the myChartClass object in the class
module points to the first embedded chart on the active sheet. Consequently, the
event-handler procedures in the class module will execute when the events occur.

Write event-handler procedures for the chart class
In this section, I describe how to write event-handler procedures in the class mod-
ule. Recall that the class module must contain a declaration such as:

Public WithEvents myChartClass As Chart

After this new object has been declared using the WithEvents keyword, it appears
in the Object drop-down list box in the class module. When you select the new
object in the Object box, the valid events for that object are listed in the Procedure
drop-down box on the right (see Figure 18-16).

Figure 18-16: The Procedure list displays valid events for the new Chart object.

4799-2 ch18.F 6/11/01 9:40 AM Page 556

557Chapter 18 ✦ Working with Charts

The following example is a simple event-handler procedure that is executed when
the embedded chart is activated. This procedure simply pops up a message box
that displays the name of the Chart object’s parent (which is a ChartObject
object).

Private Sub myChartClass_Activate()
MsgBox myChartClass.Parent.Name & “ was activated!”

End Sub

The companion CD-ROM contains a workbook that demonstrates the concepts
described in this section.

Example: Using Chart events with an embedded chart
The example in this section provides a practical demonstration of the information
presented in the previous section. The example shown in Figure 18-17 consists of an
embedded chart that functions as a clickable image map. Clicking one of the chart
columns activates a worksheet that shows detailed data for the region.

Figure 18-17: This chart serves as a clickable image map.

The workbook is set up with four worksheets. The sheet named Main contains the
embedded chart. The other sheets are named North, South, and West. Formulas in
B1:B4 sum the data in the respective sheets, and this summary data is plotted in
the chart. Clicking a column in the chart triggers an event, and the event-handler
procedure activates the appropriate sheet so the user can view the details for the
desired region.

On the
CD-ROM

4799-2 ch18.F 6/11/01 9:40 AM Page 557

558 Part V ✦ Advanced Programming Techniques

The workbook contains a class module named EmbChartClass, and also a normal
VBA module named Module1. For demonstration purposes, the Main worksheet
also contains two buttons: One executes a procedure named EnableChartEvents,
the other executes a procedure named DisableChartEvents (both are located in
Module1). In addition, each of the other worksheets contains a button that exe-
cutes the ReturntoMain macro that reactivates the Main sheet.

The complete listing of Module1 follows:

Dim SummaryChart As New EmbChartClass

Sub EnableChartEvents()
‘ Called by worksheet button

Range(“A1”).Select
Set SummaryChart.myChartClass = _
Worksheets(1).ChartObjects(1).Chart

End Sub

Sub DisableChartEvents()
‘ Called by worksheet button

Set SummaryChart.myChartClass = Nothing
Range(“A1”).Select

End Sub

Sub ReturnToMain()
‘ Called by worksheet button

Sheets(“Main”).Activate
End Sub

The first instruction declares a new object variable SummaryChart to be of type
EmbChartClass— which, as you recall, is the name of the class module. When the
user clicks the Enable Chart Events button, the embedded chart is assigned to the
SummaryChart object, which, in effect, enables the events for the chart. Listing 18-4
shows the class module for EmbChartClass.

Clicking the chart generates a MouseDown event, which executes the
myChartClass_MouseDown procedure. This procedure uses the GetChartElement
method to determine what element of the chart was clicked. The GetChartElement
method returns information about the chart element at specified X and Y coordi-
nates (information that is available via the arguments for the
myChartClass_MouseDown procedure.

Listing 18-4: Reacting to which column has been clicked on

Public WithEvents myChartClass As Chart

Private Sub myChartClass_MouseDown(ByVal Button As Long, _
ByVal Shift As Long, ByVal X As Long, ByVal Y As Long)

4799-2 ch18.F 6/11/01 9:40 AM Page 558

559Chapter 18 ✦ Working with Charts

Dim IDnum As Long
Dim a As Long, b As Long

‘ The next statement returns values for
‘ IDNum, a, and b

myChartClass.GetChartElement X, Y, IDnum, a, b

‘ Was a series clicked?
If IDnum = xlSeries Then

Select Case b
Case 1

Sheets(“North”).Activate
Case 2

Sheets(“South”).Activate
Case 3

Sheets(“West”).Activate
End Select

End If
Range(“A1”).Select

End Sub

This workbook is available on the companion CD-ROM.

Charting Tricks
I conclude this chapter by sharing a few charting tricks that I’ve discovered over
the years. Some of these techniques may be useful in your applications, and others
are simply for fun. At the very least, studying them may give you some new insights
into the object model for charts.

Printing embedded charts on a full page
When an embedded chart is selected, you can print the chart by choosing File ➪
Print. The embedded chart will be printed on a full page by itself (just as if it were
on a chart sheet), yet it will remain an embedded chart.

The following macro prints all embedded charts on the active sheet, and each chart
is printed on a full page:

Sub PrintEmbeddedCharts()
For Each chtObj In ActiveSheet.ChartObjects

chtObj.Chart.Print
Next chtObj

End Sub

On the
CD-ROM

4799-2 ch18.F 6/11/01 9:40 AM Page 559

560 Part V ✦ Advanced Programming Techniques

Creating a “dead chart”
Normally, an Excel chart uses data stored in a range. Change the data in the range,
and the chart is updated automatically. In some cases, you may want to “unlink” the
chart from its data ranges and produce a “dead chart” (a chart that never changes).
For example, if you plot data generated by various what-if scenarios, you may want
to save a chart that represents some baseline so you can compare it with other
scenarios.

There are two ways to create such a chart:

✦ Paste it as a picture. Activate the chart and choose Edit ➪ Copy. Then press the
Shift key and select Edit ➪ Paste Picture (the Paste Picture command is avail-
able only if you press Shift when you select the Edit menu). The result will be
a picture of the copied chart.

✦ Convert the range references to arrays. Click on a chart series and then click
the formula bar. Press F9 to convert the ranges to an array. Repeat this for
each series in the chart.

The xl8galry.xls file uses this technique. This file is a special workbook used by
Excel to store its custom chart formats. If you open this workbook, you’ll find 20
chart sheets. Each chart sheet has “dummy” data, which uses an array rather than
a range as its source.

Another way to create a dead chart is to use VBA to assign an array rather than a
range to the XValues or Values properties of the Series object.

Controlling a data series by hiding data
Figure 18-18 shows a chart that displays daily data for 365 days. What if you only
want to plot, say, the data for February? You could, of course, redefine the chart’s
data range. Or, you could take advantage of Excel’s AutoFilter command.

By default, a chart does not display data that’s hidden. Since Excel’s AutoFilter
feature works by hiding rows that don’t meet your criteria, it’s a simple solution.
Select Data ➪ Filter ➪ AutoFilter to turn on the AutoFilter mode. Each row heading
in the filtered list displays a drop-down arrow. Click the arrow and select Custom
from the list. Then enter filter criteria that will select the dates that you want to
plot. The setting shown in Figure 18-19, for example, hides all rows except those
that have a date in February.

Note

4799-2 ch18.F 6/11/01 9:40 AM Page 560

561Chapter 18 ✦ Working with Charts

Figure 18-18: You can use Excel’s AutoFilter feature to plot only a subset of the data.

This workbook is available on the companion CD-ROM.

Figure 18-19: Use the Custom AutoFilter
dialog box to filter a list.

The resulting chart is shown in Figure 18-20.

On the
CD-ROM

4799-2 ch18.F 6/11/01 9:40 AM Page 561

562 Part V ✦ Advanced Programming Techniques

Figure 18-20: Only visible cells are displayed in a chart.

If this technique doesn’t seem to be working, you need to change a setting for the
chart. Activate the chart, then choose Tools ➪ Options. In the Options dialog box,
click the Chart tab and place a check mark next to Plot visible cells only. Also, to
ensure that the chart doesn’t disappear when its rows are hidden, set its position-
ing to Don’t move or size with cells. Use the Format ➪ Selected Chart Area com-
mand to change this setting.

Storing multiple charts on a chart sheet
Most Excel users who take the time to think about it would agree that a chart sheet
holds a single chart. Most of the time, that’s a true statement. However, it’s cer-
tainly possible to store multiple charts on a single chart sheet. In fact, Excel lets
you do this directly. If you activate an embedded chart and then select Chart ➪
Location, Excel displays its Chart Location dialog box. If you select the As new
sheet option and specify an existing chart sheet as the location, the chart will
appear on top of the chart in the chart sheet.

Most of the time, you’ll want to add embedded charts to an empty chart sheet. To
create an empty chart sheet, select a single blank cell and press F11.

One advantage of storing multiple charts on a chart sheet is that you can take
advantage of the View ➪ Sized with Window command to automatically scale the
charts to the window size and dimensions. Figure 18-21 shows an example of a
chart sheet that contains six embedded charts.

Note

4799-2 ch18.F 6/11/01 9:40 AM Page 562

563Chapter 18 ✦ Working with Charts

Figure 18-21: This chart sheet contains six embedded charts.

This workbook is available on the companion CD-ROM.

Using linked pictures in a chart
Excel has a feature that lets you display a data table inside of a chart. You can select
this option in Step 3 of the ChartWizard. The data table option displays a table that
shows the values used in a chart. This is a handy feature, but it’s not very flexible.
For example, your formatting options are limited, and you have no control over the
position of the data table (it always appears below the chart).

An alternative to the data table is to use a linked picture of a range. Figure 18-22
shows an example.

On the
CD-ROM

4799-2 ch18.F 6/11/01 9:40 AM Page 563

564 Part V ✦ Advanced Programming Techniques

Figure 18-22: This chart contains a linked picture of a range used
in the chart.

To create a linked picture in a chart, first create the chart as you normally would.
Then:

1. Select the range that you would like to include in the chart.

2. Select Edit ➪ Copy.

3. Activate the chart.

4. Press Shift, and then select Edit ➪ Paste Picture. This pastes an unlinked pic-
ture of the range.

5. To create the link, select the picture and then type a reference to the range in
the formula bar. The easiest way to do this is to type an equals sign, and then
reselect the range.

The picture now contains a live link to the range. If you change the values or cell
formatting, they will be reflected in the linked picture.

This workbook is available on the companion CD-ROM.On the
CD-ROM

4799-2 ch18.F 6/11/01 9:40 AM Page 564

565Chapter 18 ✦ Working with Charts

Animated charts
Most people don’t realize it, but Excel is capable of performing simple animations.
For example, you can animate shapes and charts. Consider the XY chart shown in
Figure 18-23.

Figure 18-23: A simple VBA procedure will turn this graph into an
interesting animation.

The X values (column A) depend on the value in cell A1. The value in each row is
the previous row’s value, plus the value in A1. Column B contains formulas that
calculate the SIN of the corresponding value in column A. The following simple
procedure produces an interesting animation. It simply changes the value in cell A1,
which causes the values in the X and Y ranges to change.

Sub AnimateChart()
Range(“A1”) = 0
For i = 1 To 150

Range(“A1”) = Range(“A1”) + 0.035
Next i
Range(“A1”) = 0

End Sub

The companion CD-ROM contains a workbook that includes this animated chart,
plus several other animation examples.

On the
CD-ROM

4799-2 ch18.F 6/11/01 9:40 AM Page 565

566 Part V ✦ Advanced Programming Techniques

Creating a hypocycloid chart
Even if you hated your high school trigonometry class, you’ll probably like the
example in this section — which relies heavily on trigonometric functions. The
workbook shown in Figure 18-24 can display an infinite number of dazzling hypocy-
cloid curves. A hypocycloid curve is the path formed by a point on a circle that
rolls inside of another circle. This, as you may recall from your childhood, is the
same technique used in Hasbro’s popular Spirograph toy.

Figure 18-24: This workbook generates an infinite number of hypocycloid curves.

This workbook is available on the companion CD-ROM.

The chart is an XY chart. The X and Y data are generated using formulas stored in
columns A and B. The Scrollbar controls at the top let you adjust the three parame-
ters that determine the look of the chart. These controls are linked to cells B1, B2,
and B3. These are controls from the Forms toolbar, and are not ActiveX controls. In
addition, the chart has a Random button that generates random values for the
three parameters.

On the
CD-ROM

4799-2 ch18.F 6/11/01 9:40 AM Page 566

567Chapter 18 ✦ Working with Charts

The workbook contains only one macro (which follows), which is executed when
the Random button is clicked. This macro simply generates three random numbers
between 1 and 250 and inserts them into the worksheet.

Sub Random_Click()
Randomize
Range(“B1”) = Int(Rnd * 250)
Range(“B2”) = Int(Rnd * 250)
Range(“B3”) = Int(Rnd * 250)

End Sub

Creating a “clock” chart
Figure 18-25 shows an XY chart formatted to look like a clock. It not only looks like a
clock, it also functions as a clock. I can’t think of a single reason why anyone would
need to display a clock like this on a worksheet, but creating the workbook was
challenging and you may find it instructive.

Figure 18-25: This clock is fully functional,
and is actually an XY chart in disguise.

This workbook is available on the companion CD-ROM.

Besides the clock chart, the workbook contains a text box that displays the time as
a normal string, as shown in Figure 18-26. Normally this is hidden, but it can be
displayed by deselecting the Analog clock check box.

On the
CD-ROM

4799-2 ch18.F 6/11/01 9:40 AM Page 567

568 Part V ✦ Advanced Programming Techniques

Figure 18-26: Displaying a digital clock in
a worksheet is much easier, but not as fun
to create.

As you explore this workbook from the CD-ROM, here are a few things to keep in
mind:

✦ The ChartObject is named ClockChart, and it covers up a range named
DigitalClock, which is used to display the time digitally.

✦ The two buttons on the worksheet are from the Forms toolbar, and each has a
macro assigned (StartClock and StopClock).

✦ The check box control (named cbClockType) on the worksheet is from the
Forms toolbar, not from the Control Toolbox toolbar. Clicking the object exe-
cutes a procedure named cbClockType_Click, which simply toggles the
Visible property of the ChartObject. When it’s invisible, the digital clock is
revealed.

✦ The chart is an XY chart with four Series objects. These series represent the
hour hand, the minute hand, the second hand, and the 12 numbers.

✦ The UpdateClock procedure is executed when the Start Clock button is
clicked. This procedure determines which clock is visible and performs the
appropriate updating.

✦ The UpdateClock procedure uses the OnTime method of the Application
object. This method lets you execute a procedure at a specific time. Before
the UpdateClock procedure ends, it sets up a new OnTime event that will
occur in one second. In other words, the UpdateClock procedure is called
every second.

✦ The UpdateClock procedure uses some basic trigonometry to determine the
angles at which to display the hands on the clock.

✦ Unlike most charts, this one does not use any worksheet ranges for its data.
Rather, the values are calculated in VBA and transferred directly to the
Values and XValues properties of the chart’s Series object.

4799-2 ch18.F 6/11/01 9:40 AM Page 568

569Chapter 18 ✦ Working with Charts

Drawing with an XY chart
The final example has absolutely no practical value, but you may find it interesting . . .
and maybe even a bit entertaining. The worksheet consists of an embedded XY chart,
along with a number of controls (these are controls from the Forms toolbar; and are
not ActiveX controls).

This workbook is available on the companion CD-ROM.

Clicking one of the arrow buttons draws a line in the chart, the size of which is
determined by the “step” value, which is set with one of the Spinner controls. With
a little practice (and patience), you can create simple sketches. Figure 18-27 shows
an example.

Figure 18-27: This drawing is actually an embedded XY chart.

Clicking an arrow button executes a macro that adds two values to a range: an X
value and a Y value. It then redefines two range names (XRange and YRange) that
are used in the chart’s SERIES formula. Particularly handy is the multilevel Undo
button. Clicking this button simply erases the last two values in the range, and then
redefines the range names. Additional accoutrements include the ability to change
the color of the line, and display “smoothed” lines.

On the
CD-ROM

4799-2 ch18.F 6/11/01 9:40 AM Page 569

570 Part V ✦ Advanced Programming Techniques

Summary
In this chapter, I introduced the object model for charts, and showed how to write
VBA code to create and manipulate charts.

This chapter included several examples that made use of events. In the next chap-
ter, I cover the concept of events in detail.

✦ ✦ ✦

4799-2 ch18.F 6/11/01 9:40 AM Page 570

Understanding
Excel’s Events

In several previous chapters in this book, I presented exam-
ples of VBA “event-handler” procedures. An event-handler

procedure is a specially named procedure that is executed
when a specific event occurs. A simple example is the
CommandButton1_Click procedure that is executed when
the user clicks a CommandButton stored on a UserForm or on
a worksheet.

Excel is capable of monitoring a wide variety of events, and
executing your VBA code when a particular event occurs.
Following are just a few examples of the types of events that
Excel can recognize:

✦ A workbook is opened or closed

✦ A window is activated

✦ A worksheet is activated or deactivated

✦ Data is entered into a cell, or the cell is edited

✦ A workbook is saved

✦ A worksheet is calculated

✦ An object is clicked

✦ The data in a chart is updated

✦ A particular key or key combination is pressed

✦ A cell is double-clicked

✦ A particular time of day occurs

This chapter provides comprehensive coverage of the con-
cept of Excel events, and I include many examples that you
can adapt to your own needs. As you’ll see, understanding
events can give your Excel applications a powerful edge.

1919C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

An overview of the
types of events Excel
can monitor

Essential background
information for
working with events

Examples of
Workbook events,
Worksheet events,
Chart events, and
UserForm events

Using Application
events to monitor all
open workbooks

Examples of
processing time-
based events and
keystroke events

✦ ✦ ✦ ✦

4799-2 ch19.F 6/11/01 9:40 AM Page 571

572 Part V ✦ Advanced Programming Techniques

Event Types That Excel Can Monitor
Excel is programmed to monitor many different events that occur. These events
may be classified as the following:

✦ Workbook events. Events that occur for a particular workbook. Examples of
such events include Open (the workbook is opened or created), BeforeSave
(the workbook is about to be saved), and NewSheet (a new sheet is added).

✦ Worksheet events. Events that occur for a particular worksheet. Examples
include Change (a cell on the sheet is changed), SelectionChange (the user
moves the cell indicator), and Calculate (the worksheet is recalculated).

✦ Chart events. Events that occur for a particular chart. These events include
Select (an object in the chart is selected) and SeriesChange (a value of a
data point in a series is changed). To monitor events for an embedded chart,
you use a class module as demonstrated in Chapter 17.

✦ Application events. Events that occur for the application (Excel). Examples
include NewWorkbook (a new workbook is created), WorkbookBeforeClose
(any workbook is about to be closed), and SheetChange (a cell in any open
workbook is altered). To monitor Application-level events, you need to use
a class module.

✦ UserForm events. Events that occur for a particular UserForm or an object
contained on the UserForm. For example, a UserForm has an Initialize
event (occurs before the UserForm is displayed), and a CommandButton on a
UserForm has a Click event (occurs when the button is clicked).

✦ Events not associated with objects. The final category consists of two useful
Application-level events that I call “On-” events: OnTime and OnKey. These
work in a different manner than other events.

This chapter is organized according to the preceding list. Within each section, I
provide examples to demonstrate some of the events.

What You Should Know about Events
This section provides some essential information relevant to working with events
and writing event-handler procedures.

Understanding event sequences
As you’ll see, some actions trigger multiple events. For example, when you insert a
new worksheet into a workbook, this action triggers three Application-level
events:

4799-2 ch19.F 6/11/01 9:40 AM Page 572

573Chapter 19 ✦ Understanding Excel’s Events

✦ WorkbookNewSheet: Occurs when a new worksheet is added.

✦ SheetDeactivate event: Occurs when the active worksheet is deactivated.

✦ SheetActivate event: Occurs when the newly added worksheet is activated.

Event sequencing is a bit more complicated than you might think. The events
listed above are Application-level events. When adding a new worksheet, addi-
tional events occur at the Workbook level and at the Worksheet level.

At this point, just keep in mind that events fire in a particular sequence, and know-
ing what the sequence is can be critical when writing event-handler procedures.
Later in this chapter, I describe how to determine the order of the events that occur
for a particular action (see “Monitoring Application-level events”).

Where to put event-handler procedures
VBA newcomers often wonder why their event-handler procedures aren’t being exe-
cuted when the corresponding event occurs. The answer is almost always because
these procedures are located in the wrong place.

In the VB Editor window, each project is listed in the Projects window. The project
components are arranged in a collapsible list, as shown in Figure 19-1.

Figure 19-1: The components for each VBA
Project are listed in the Project window.

Each of the following components has its own code module:

✦ Sheet objects (for example, Sheet1, Sheet2, and so on).

✦ Chart objects (that is, chart sheets).

✦ ThisWorkbook object.

Note

4799-2 ch19.F 6/11/01 9:40 AM Page 573

574 Part V ✦ Advanced Programming Techniques

✦ General VBA modules. You never put event-handler procedures in a general
(that is, nonobject) module.

✦ Class modules.

Even though the event-handler procedure must be located in the correct module,
the procedure can call other standard procedures stored in other modules. For
example, the following event-handler procedure, located in the module for the
ThisWorkbook object, calls a procedure named WorkbookSetup, which could be
stored in a regular VBA module:

Private Sub Workbook_Open()
Call WorkbookSetup

End Sub

Disabling events
By default, all events are enabled. To disable all events, execute the following VBA
instruction:

Application.EnableEvents = False

To enable events, use:

Application.EnableEvents = True

Disabling events does not apply to events triggered by UserForm controls — for
example, the Click event generated by clicking a CommandButton control on a
UserForm.

Why would you need to disable events? The main reason is to prevent an infinite
loop of cascading events.

For example, suppose that cell A1 of your worksheet must always contain a value
less than or equal to 12. You can write some code that is executed whenever data is
entered into a cell to validate the cell’s contents. In this case, you are monitoring
the Change event for a Worksheet using a procedure named Worksheet_Change.
Your procedure checks the user’s entry, and if the entry isn’t less than or equal to
12, it displays a message and then clears that entry. The problem is, clearing the
entry with your VBA code generates a new Change event, so your event-handler
procedure is executed again. This is not what you want to happen, so you need to
disable events before you clear the cell, and then enable events again so you can
monitor the user’s next entry.

Another way to prevent an infinite loop of cascading events is to declare a Static
Boolean variable at the beginning of your event-handler procedure, such as this:

Static AbortProc As Boolean

Note

4799-2 ch19.F 6/11/01 9:40 AM Page 574

575Chapter 19 ✦ Understanding Excel’s Events

Whenever the procedure needs to make its own changes, set the AbortProc vari-
able to True (otherwise, make sure it is set to False). Insert the following code at
the top of the procedure:

If AbortProc Then
AbortProc = False
Exit Sub

End if

The event procedure is reentered, but the True state of AbortProc causes the
procedure to end. In addition, AbortProc is reset back to False.

For a practical example of validating data, see “Validating data entry,” later in this
chapter.

Disabling events in Excel applies to all workbooks. For example, if you disable
events in your procedure and then open another workbook that has, say, a
Workbook_Open procedure, that procedure will not execute.

Caution

Cross-
Reference

Programming Events in Older Versions of Excel

Versions of Excel prior to Office 97 also supported events, but the programming techniques
required to take advantage of those were quite different from those described in this chapter.

For example, if you have a procedure named Auto_Open stored in a regular VBA module,
this procedure will be executed when the workbook is opened. Beginning with Excel 97,
the Auto_Open procedure is supplemented by the Workbook_Open event-handler proce-
dure, stored in the code module for the ThisWorkbook object, and executed prior to
Auto_Open.

Before Excel 97, it was often necessary to explicitly set up events. For example, if you
needed to execute a procedure whenever data was entered into a cell, you would need to
execute a statement such as:

Sheets(“Sheet1”).OnEntry = “ValidateEntry”

This statement instructs Excel to execute the procedure named ValidateEntry whenever
data is entered into a cell. With Excel 97 and later, you simply create a procedure named
Worksheet_Change and store it in the code module for the Sheet1 object.

For compatibility reasons, Excel 97 and later versions still support the older event mecha-
nism (although they no longer are documented in the online help system). If you’re devel-
oping applications that will be used only with Excel 97 or later, you’ll definitely want to use
the techniques described in this chapter.

4799-2 ch19.F 6/11/01 9:40 AM Page 575

576 Part V ✦ Advanced Programming Techniques

Entering event-handler code
Every event-handler procedure has a predetermined name. Following are some
examples of event-handler procedure names:

Worksheet_SelectionChange
Workbook_Open
Chart_Activate
Class_Initialize

You can declare the procedure by typing it manually, but a much better approach is
to let the VB Editor do it for you.

Figure 19-2 shows the code module for the ThisWorkbook object. To insert a proce-
dure declaration, select Workbook from the objects list on the left. Then select the
event from the procedures list on the right. When you do so, you’ll get a procedure
“shell” that contains the procedure declaration line and an End Sub statement.

Figure 19-2: The best way to create an event procedure is
to let the VB Editor do it for you.

For example, if you select Workbook from the objects list and Open from the proce-
dures list, the VB Editor will insert the following (empty) procedure:

Private Sub Workbook_Open()

End Sub

Your code, of course, goes between these two statements.

4799-2 ch19.F 6/11/01 9:40 AM Page 576

577Chapter 19 ✦ Understanding Excel’s Events

Event-handler procedures that use arguments
Some event-handler procedures use an argument list. For example, you may need to
create an event-handler procedure to monitor the SheetActivate event for a work-
book. If you use the technique described in the previous section, the VB Editor will
create the following procedure:

Private Sub Workbook_SheetActivate(ByVal Sh As Object)

End Sub

This procedure uses one argument (Sh), which represents the sheet that was acti-
vated. In this case, Sh is declared as an Object datatype rather than a Worksheet
datatype. That’s because the activated sheet can also be a chart sheet.

Your code can, of course, make use of the data passed as an argument. The follow-
ing procedure is executed whenever a sheet is activated. It displays the type and
name of the activated sheet by using VBA’s TypeName function and accessing the
Name property of the object passed in the argument:

Private Sub Workbook_SheetActivate(ByVal Sh As Object)
MsgBox TypeName(Sh) & vbCrLf & Sh.Name

End Sub

Several event-handler procedures use a Boolean argument named Cancel. For
example, the declaration for a workbook’s BeforePrint event is as follows:

Private Sub Workbook_BeforePrint(Cancel As Boolean)

The value of Cancel passed to the procedure is False. However, your code can
set Cancel to True, which will cancel the printing. The following example
demonstrates:

Private Sub Workbook_BeforePrint(Cancel As Boolean)
Msg = “Have you loaded the 5164 label stock?”
Ans = MsgBox(Msg, vbYesNo, “About to print...”)
If Ans = vbNo Then Cancel = True

End Sub

The Workbook_BeforePrint procedure is executed before the workbook is
printed. This routine displays the message box shown in Figure 19-3. If the user
clicks the No button, Cancel is set to True and nothing is printed.

The BeforePrint event also occurs when the user previews a worksheet.Note

4799-2 ch19.F 6/11/01 9:40 AM Page 577

578 Part V ✦ Advanced Programming Techniques

Figure 19-3: You can cancel the print operation by changing
the Cancel argument.

Unfortunately, Excel does not provide a sheet-level BeforePrint event. Therefore,
your code cannot determine what is about to be printed.

Workbook-Level Events
Workbook-level events are events that occur within a particular workbook. Table
19-1 lists the workbook events, along with a brief description of each. Workbook
event-handler procedures are stored in the code module for the ThisWorkbook
object.

Table 19-1
Workbook Events

Event Action that triggers the event

Activate A workbook is activated.

AddinInstall A workbook is installed as an add-in.

AddinUninstall A workbook is uninstalled as an add-in.

BeforeClose A workbook is about to be closed.

BeforePrint A workbook (or anything in it) is about to be printed
or previewed.

BeforeSave A workbook is about to be saved.

Deactivate A workbook is deactivated.

NewSheet A new sheet is created in a workbook.

Open A workbook is opened.

PivotTableCloseConnection* An external data source connection for a pivot table
is closed.

PivotTableOpenConnection* An external data source connection for a pivot table
is opened.

SheetActivate Any sheet is activated.

SheetBeforeDoubleClick Any worksheet is double-clicked. This event occurs
before the default double-click action.

4799-2 ch19.F 6/11/01 9:40 AM Page 578

579Chapter 19 ✦ Understanding Excel’s Events

Event Action that triggers the event

SheetBeforeRightClick Any worksheet is right-clicked. This event occurs
before the default right-click action.

SheetCalculate Any worksheet is calculated (or recalculated).

SheetChange Any worksheet is changed by the user or by an
external link.

SheetDeactivate Any sheet is deactivated.

SheetFollowHyperlink A hyperlink on a sheet is clicked.

SheetPivotTableUpdate* A pivot table is updated with new data.

SheetSelectionChange The selection on any worksheet is changed.

WindowActivate Any workbook window is activated.

WindowDeactivate Any workbook window is deactivated.

WindowResize Any workbook window is resized.

* These events occur only in Excel 2002, and are not supported in previous versions.

If you need to monitor events for any workbook, you need to work with
Application-level events (see “Application Events,” later in this chapter).
The remainder of this section presents examples of using Workbook-level
events. All of the example procedures that follow must be located in the
code module for the ThisWorkbook object. If you put them into any other
type of code module, they won’t work.

The Open event
One of the most common events that is monitored is the Open event for a work-
book. This event is triggered when the workbook (or add-in) is opened, and exe-
cutes the Workbook_Open procedure. A Workbook_Open procedure can do almost
anything, and often is used for tasks such as:

✦ Displaying welcome messages

✦ Opening other workbooks

✦ Setting up custom menus or toolbars

✦ Activating a particular sheet or cell

✦ Ensuring that certain conditions are met. For example, a workbook may
require that a particular add-in is installed.

✦ Setting up certain automatic features. For example, you can define key combi-
nations (see “The OnKey event” later in this chapter).

Cross-
Reference

4799-2 ch19.F 6/11/01 9:40 AM Page 579

580 Part V ✦ Advanced Programming Techniques

✦ Setting a worksheet’s ScrollArea property (which isn’t stored with the
workbook).

✦ Setting UserInterfaceOnly protection for worksheets, so your code can
operate on protected sheets. This setting is an argument for the Protect
method and is not stored with the workbook.

If the user holds down the Shift key when opening a workbook, the workbook’s
Workbook_Open procedure will not execute.

Following is a simple example of a Workbook_Open procedure. It uses VBA’s
Weekday function to determine the day of the week. If it’s Friday, a message box
appears, reminding the user to perform a weekly file backup. If it’s not Friday,
nothing happens.

Private Sub Workbook_Open()
If Weekday(Now) = vbFriday Then

Msg = “Today is Friday. Make sure that you “
Msg = Msg & “do your weekly backup!”
MsgBox Msg, vbInformation

End If
End Sub

The Activate event
The following procedure is executed whenever the workbook is activated. This
procedure simply maximizes the active window.

Private Sub Workbook_Activate()
ActiveWindow.WindowState = xlMaximized

End Sub

The SheetActivate event
The following procedure is executed whenever the user activates any sheet in the
workbook. If the sheet is a worksheet, the code simply selects cell A1. If the sheet is
not a worksheet, nothing happens. This procedure uses VBA’s TypeName function to
ensure that the activated sheet is a worksheet (as opposed to a chart sheet).

Private Sub Workbook_SheetActivate(ByVal Sh As Object)
If TypeName(Sh) = “Worksheet” Then _

Range(“A1”).Select
End Sub

An alternative method to avoid the error that occurs when you try to select a cell
on a chart sheet is to simply ignore the error.

Caution

4799-2 ch19.F 6/11/01 9:40 AM Page 580

581Chapter 19 ✦ Understanding Excel’s Events

Private Sub Workbook_SheetActivate(ByVal Sh As Object)
On Error Resume Next
Range(“A1”).Select

End Sub

The NewSheet event
The following procedure is executed whenever a new sheet is added to the work-
book. The sheet is passed to the procedure as an argument. Since a new sheet can
be either a worksheet or a chart sheet, this procedure determines the sheet type. If
it’s a worksheet, the code inserts a date and time stamp in cell A1.

Private Sub Workbook_NewSheet(ByVal Sh As Object)
If TypeName(Sh) = “Worksheet” Then _
Range(“A1”) = “Sheet added “ & Now()

End Sub

The BeforeSave event
The BeforeSave event occurs before the workbook is actually saved. As you know,
using the File ➪ Save command sometimes brings up the Save As dialog box. This
happens if the workbook has never been saved, or if it was opened in read-only
mode.

When the Workbook_BeforeSave procedure is executed, it receives an argument
(SaveAsUI) that lets you identify if the Save As dialog box will be displayed. The
following example demonstrates:

Private Sub Workbook_BeforeSave _
(ByVal SaveAsUI As Boolean, Cancel As Boolean)
If SaveAsUI Then

MsgBox “Click OK to display the Save As dialog box.”
End If

End Sub

When the user attempts to save the workbook, the Workbook_BeforeSave proce-
dure is executed. If the save operation will bring up Excel’s Save As dialog box, the
SaveAsUI variable is True. The procedure above checks this variable and displays
a message only if the Save As dialog box will be displayed. If the procedure sets the
Cancel argument to True, the file will not be saved.

The Deactivate event
The following example demonstrates the Deactivate event. This procedure is exe-
cuted whenever the workbook is deactivated, and essentially never lets the user
deactivate the workbook. When the Deactivate event occurs, the code re-activates
the workbook and displays a message.

4799-2 ch19.F 6/11/01 9:40 AM Page 581

582 Part V ✦ Advanced Programming Techniques

Private Sub Workbook_Deactivate()
Me.Windows(1).Activate
MsgBox “Sorry, you may not leave this workbook”

End Sub

I do not recommend using procedures — such as this one — that attempt to “take
over” Excel. It can be very frustrating and confusing for the user. Rather, I would
recommend training the user how to use your application correctly.

This simple example illustrates the importance of understanding event sequences.
If you try out this procedure, you’ll see that it works well if the user attempts to
activate another workbook. However, it’s important to understand that the work-
book Deactivate event is also triggered by the following actions:

✦ Closing the workbook

✦ Opening a new workbook

✦ Minimizing the workbook

In other words, this procedure may not perform as it was originally intended. It
does prevent the user from activating a different workbook directly, but he or she
can close the workbook, open a new one, or minimize the workbook. The message
box will still appear, but the actions will occur anyway.

The BeforePrint event
The BeforePrint event occurs when the user requests a print or a print preview,
but before the printing or previewing actually occurs. The event uses a Cancel
argument, so your code can cancel the printing or previewing by setting the Cancel
variable to True. Unfortunately, there is no way to determine if the BeforePrint
event was triggered by a print request or a preview request.

Before Excel 2002, users were often dismayed to discover that it was not possible
to print a workbook’s full path in the page header or footer. Excel 2002 solves this
problem by adding a new option to the Header and Footer dialog boxes (accessed
from the Page Setup dialog box).

If you’re still using an older version of Excel, the only solution is to write code that
inserts the workbook’s path into the header or footer. The Workbook_BeforePrint
event is perfect for this. The following code demonstrates:

Private Sub Workbook_BeforePrint(Cancel As Boolean)
For Each sht In ThisWorkbook.Sheets

sht.PageSetup.LeftFooter = _
“&8” & ThisWorkbook.FullName

Next sht
End Sub

Note

4799-2 ch19.F 6/11/01 9:40 AM Page 582

583Chapter 19 ✦ Understanding Excel’s Events

This procedure loops through each sheet in the workbook and sets the LeftFooter
property of the PageSetup object to the FullName property of the workbook
(which is the filename and path). It also sets the font size to 8 points.

This example exposes an inconsistency in Excel’s object model. To change the font
size of header or footer text, you must use a string that contains a special format-
ting code. In the example above, “&8” is the code for 8-point font. Ideally, there
should be a Font object available for page headers and footers. To find out the
other formatting codes available, consult the online help (or record a macro while
you access the Page Setup dialog box).

When testing BeforePrint event-handlers, you can save time (and paper) by
previewing rather than actually printing.

The BeforeClose event
The BeforeClose event occurs before a workbook is closed. This event is often
used in conjunction with a Workbook_Open event-handler. For example, you might
use the Workbook_Open procedure to create a custom menu for your workbook,
and then use the Workbook_BeforeClose procedure to delete the custom menu
when the workbook is closed. That way, the custom menu is available only when
the workbook is open.

As you know, if you attempt to close a workbook that hasn’t been saved, Excel dis-
plays a prompt asking if you want to save the workbook before closing, as shown in
Figure 19-4.

Figure 19-4: When this message appears,
Workbook_BeforeClose has already done
its thing.

A potential problem can arise because by the time the user sees this message, the
BeforeClose event has already occurred — which means that your
Workbook_BeforeClose procedure has already executed.

Consider this scenario: You need to display a custom menu when a particular work-
book is open. Therefore, your workbook uses a Workbook_Open procedure to cre-
ate the menu when the workbook is opened, and it uses a Workbook_BeforeClose
procedure to remove the menu when the workbook is closed. These two event-
handler procedures follow. Both of these call other procedures, which are not
shown here.

Caution

Tip

Note

4799-2 ch19.F 6/11/01 9:40 AM Page 583

584 Part V ✦ Advanced Programming Techniques

Private Sub Workbook_Open()
Call CreateMenu

End Sub

Private Sub Workbook_BeforeClose(Cancel As Boolean)
Call DeleteMenu

End Sub

As I noted above, Excel’s “Do you want to save . . .” prompt occurs after the
Workbook_BeforeClose event-handler runs. So if the user clicks Cancel, the work-
book remains open, but the custom menu item has already been deleted!

One solution to this problem is to bypass Excel’s prompt and write your own code
in the Workbook_BeforeClose procedure to ask the user to save the workbook.
The following code demonstrates:

Private Sub Workbook_BeforeClose(Cancel As Boolean)
Dim Msg As String
If Me.Saved Then

Call DeleteMenu
Exit Sub

Else
Msg = “Do you want to save the changes you made to “
Msg = Msg & Me.Name & “?”
Ans = MsgBox(Msg, vbQuestion + vbYesNoCancel)
Select Case Ans

Case vbYes
Me.Save
Call DeleteMenu

Case vbNo
Me.Saved = True
Call DeleteMenu

Case vbCancel
Cancel = True

End Select
End If

End Sub

This procedure checks the Saved property of the Workbook object to determine if
the workbook has been saved. If so, no problem — the DeleteMenu procedure is
executed and the workbook is closed. But if the workbook has not been saved, the
procedure displays a message box that duplicates the one that Excel would nor-
mally show. If the user clicks Yes, the workbook is saved, the menu is deleted, and
the workbook is closed. If the user clicks No, the code sets the Saved property of
the Workbook object to True (but doesn’t actually save the file), and deletes the
menu. If the user clicks Cancel, the BeforeClose event is canceled and the proce-
dure ends without deleting the menu.

4799-2 ch19.F 6/11/01 9:40 AM Page 584

585Chapter 19 ✦ Understanding Excel’s Events

Worksheet Events
The events for a Worksheet object are some of the most useful. As you’ll see, moni-
toring these events can make your applications perform feats that would otherwise
be impossible.

The events in this section apply only to worksheets. There are no specific trappable
events for Excel 5/95 dialog sheets or XLM macro sheets.

Table 19-2 lists the worksheet events, with a brief description of each.

Table 19-2
Worksheet Events

Event Action that triggers the event

Activate The worksheet is activated.

BeforeDoubleClick The worksheet is double-clicked.

BeforeRightClick The worksheet is right-clicked.

Calculate The worksheet is calculated (or recalculated).

Change Cells on the worksheet are changed by the user or by an
external link.

Deactivate The worksheet is deactivated.

FollowHyperlink A hyperlink on the sheet is clicked.

PivotTableUpdate* A pivot table on the sheet is updated.

SelectionChange The selection on the worksheet is changed.

* This event occurs only in Excel 2002, and is not supported in previous versions.

Remember that the code for a worksheet event must be stored in the code module
for the specific worksheet.

To quickly activate the code module for a worksheet, right-click the sheet tab, and
choose View Code.

The Change event
The Change event is triggered when any cell in a worksheet is changed by the user
or by an external link. The Change event is not triggered when a calculation gener-
ates a different value for a formula, or when an object is added to the sheet.

Tip

Note

4799-2 ch19.F 6/11/01 9:40 AM Page 585

586 Part V ✦ Advanced Programming Techniques

When the Worksheet_Change procedure is executed, it receives a Range object as
its Target argument. This Range object represents the changed cell or range that
triggered the event. The following example displays a message box that shows the
address of the Target range:

Private Sub Worksheet_Change(ByVal Target As Excel.Range)
MsgBox “Range “ & Target.Address & “ was changed.”

End Sub

To get a better feel for the types of actions that generate a Change event for a work-
sheet, enter the preceding procedure in the code module for a Worksheet object.
After entering this procedure, activate Excel and make some changes to the work-
sheet using various techniques. Every time the Change event occurs, you’ll see a
message box that displays the address of the range that was changed.

When I ran this procedure, I discovered some interesting quirks. Some actions that
should trigger the event don’t, and other actions that should not trigger the event do!

✦ Changing the formatting of a cell does not trigger the Change event (as
expected), but using the Edit ➪ Clear Formats command does trigger the
event.

✦ Adding, editing, or deleting a cell comment does not trigger the Change event.

✦ Pressing Del generates an event even if the cell is empty to start with.

✦ Cells that are changed by using Excel commands may or may not trigger the
Change event. For example, the Data ➪ Form command and the Data ➪ Sort
command do not trigger the event. But the Tools ➪ Spelling command and the
Edit ➪ Replace command do trigger the Change event.

✦ If your VBA procedure changes a cell, it does trigger the Change event.

As you can see from the preceding list, it’s not a good idea to rely on the Change
event to detect cell changes for critical applications.

To add to the confusion, triggers for the Change event vary, depending on the ver-
sion of Excel. For versions earlier than Excel 2002, filling a range using the Edit ➪

Fill command does not generate a Change event. Nor does using the Edit ➪

Delete command to delete cells.

Monitoring a specific range for changes
The Change event occurs when any cell on the worksheet is changed. But in most
cases all you care about are changes made to a specific cell or range. When the
Worksheet_Change event-handler procedure is called, it receives a Range object
as its argument. This Range object represents the cell or cells that were changed.

Note

4799-2 ch19.F 6/11/01 9:40 AM Page 586

587Chapter 19 ✦ Understanding Excel’s Events

Assume that your worksheet has a range named InputRange, and you would like to
monitor changes made only within this range. There is no Change event for a Range
object, but you can perform a quick check within the Worksheet_Change proce-
dure. The following procedure demonstrates:

Private Sub Worksheet_Change(ByVal Target As Excel.Range)
Dim VRange As Range
Set VRange = Range(“InputRange”)
If Not Intersect(Target, VRange) Is Nothing Then _

MsgBox “A changed cell is in the input range.”
End Sub

This example uses a Range object variable named VRange, which represents the
worksheet range that you are interested in monitoring for changes. The procedure
uses VBA’s Intersect function to determine if the Target range (passed to the
procedure in its argument) is contained in VRange. The Intersect function returns
an object that consists of all the cells that are contained in both of its arguments. If
the Intersect function returns Nothing, then the ranges have no cells in common.
The Not operator is used so the expression returns True if the ranges do have at
least one cell in common. Therefore, if the changed range has any cells in common
with the range named InputRange, a message box is displayed. Otherwise, the
procedure ends and nothing happens.

Tracking cell changes in a comment
The following example adds a notation to the cell’s comment each time the cell is
changed (as determined by the Change event). The state of a CheckBox, embedded
on the worksheet, determines if the change is added to the comment. Figure 19-5
shows an example of a comment for a cell that has been changed several times.

Figure 19-5: The Worksheet_Change procedure appends the comment
with each cell change.

4799-2 ch19.F 6/11/01 9:40 AM Page 587

588 Part V ✦ Advanced Programming Techniques

This example is available on the companion CD-ROM.

Private Sub Worksheet_Change(ByVal Target As Excel.Range)
If CheckBox1 Then
For Each cell In Target

With cell
On Error Resume Next
OldText = .Comment.Text
If Err <> 0 Then .AddComment
NewText = OldText & “Changed to “ & cell.Text & _
“ by “ & Application.UserName & “ at “ & Now &

vbLf
.Comment.Text NewText
.Comment.Visible = True
.Comment.Shape.Select
Selection.AutoSize = True
.Comment.Visible = False

End With
Next cell

End If
End Sub

Because the object passed to the Worksheet_Change procedure can consist of a
multicell range, the procedure loops through each cell in the Target range. If the
cell doesn’t already contain a comment, one is added. Then new text is appended to
the existing comment text (if any).

This example is primarily for instructional purposes. If you really need to track
changes in a worksheet, Excel’s Tools ➪ Track Changes feature does a much
better job.

Validating data entry
Excel’s Data Validation feature is a useful tool, but it suffers from a potentially seri-
ous problem. When you paste data to a cell that uses data validation, the pasted
value not only fails to get validated, it also deletes the validation rules associated
with the cell! This fact makes the Data Validation feature practically worthless for
critical applications. In this section, I demonstrate how you can make use of the
Change event for a worksheet to create your own data validation procedure.

The companion CD-ROM contains two versions of this example. One uses the
EnableEvents property to prevent cascading Change events, the other uses a
Static variable (see “Disabling events,” earlier in this chapter).

Listing 19-1 presents a procedure that is executed when a cell is changed by the
user. The validation is restricted to the range named InputRange. Values entered
into this range must be integers between 1 and 12.

On the
CD-ROM

Note

On the
CD-ROM

4799-2 ch19.F 6/11/01 9:40 AM Page 588

589Chapter 19 ✦ Understanding Excel’s Events

Listing 19-1: Determining whether a cell entry
is to be validated

Private Sub Worksheet_Change(ByVal Target As Excel.Range)
Dim VRange As Range, cell As Range
Dim Msg As String
Dim ValidateCode As Variant
Set VRange = Range(“InputRange”)
For Each cell In Target

If Union(cell, VRange).Address = VRange.Address Then
ValidateCode = EntryIsValid(cell)
If ValidateCode = True Then

Exit Sub
Else

Msg = “Cell “ & cell.Address(False, False) _
& “:”
Msg = Msg & vbCrLf & vbCrLf & ValidateCode
MsgBox Msg, vbCritical, “Invalid Entry”
Application.EnableEvents = False
cell.ClearContents
cell.Activate
Application.EnableEvents = True

End If
End If

Next cell
End Sub

The Worksheet_Change procedure creates a Range object (named VRange) that
represents the worksheet range that is validated. Then it loops through each cell
in the Target argument, which represents the cell or cells that were changed. The
code determines if each cell is contained in the range to be validated. If so, it passes
the cell as an argument to a custom function (EntryIsValid), which returns True if
the cell is a valid entry.

If the entry is not valid, the EntryIsValid function returns a string that describes
the problem, and the user is informed via a message box (see Figure 19-6). When
the message box is dismissed, the invalid entry is cleared from the cell and the cell
is activated. Notice that events are disabled before the cell is cleared. If events were
not disabled, clearing the cell would produce a Change event that causes an end-
less loop.

Figure 19-6: This message box describes the problem
when the user makes an invalid entry.

4799-2 ch19.F 6/11/01 9:40 AM Page 589

590 Part V ✦ Advanced Programming Techniques

The EntryIsValid function procedure is presented in Listing 19-2.

Listing 19-2: Validating an entry just made
into a restricted range

Private Function EntryIsValid(cell) As Variant
‘ Returns True if cell is an integer between 1 and 12
‘ Otherwise it returns a string that describes the problem

‘ Numeric?
If Not WorksheetFunction.IsNumber (cell) Then

EntryIsValid = “Non-numeric entry.”
Exit Function

End If
‘ Integer?

If CInt(cell) <> cell Then
EntryIsValid = “Integer required.”
Exit Function

End If
‘ Between 1 and 12?

If cell < 1 Or cell > 12 Then
EntryIsValid = “Valid values are between 1 and 12.”
Exit Function

End If
‘ It passed all the tests

EntryIsValid = True
End Function

The SelectionChange event
The following procedure demonstrates the SelectionChange event. It’s executed
whenever the user makes a new selection on the worksheet.

Private Sub Worksheet_SelectionChange(ByVal Target _
As Excel.Range)

Cells.Interior.ColorIndex = xlNone
With ActiveCell

.EntireRow.Interior.ColorIndex = 36

.EntireColumn.Interior.ColorIndex = 36
End With

End Sub

This procedure shades the row and column of the active cell, which makes it very
easy to identify the active cell. The first statement removes the background color
for all cells in the worksheet. Next, the entire row and column of the active cell is
shaded light yellow. Figure 19-7 shows the shading in effect; trust me, it’s yellow.

4799-2 ch19.F 6/11/01 9:40 AM Page 590

591Chapter 19 ✦ Understanding Excel’s Events

Figure 19-7: Moving the cell cursor causes the active cell’s row and column
to be shaded.

This example is available on the companion CD-ROM.

You won’t want to use the procedure if your worksheet contains background
shading, because it will be wiped out.

The BeforeRightClick event
When the user right-clicks in a worksheet, Excel displays a shortcut menu. If, for
some reason, you’d like to prevent the shortcut menu from appearing in a particu-
lar sheet, you can trap the RightClick event. The following procedure sets the
Cancel argument to True, which cancels the RightClick event and thereby
cancels the shortcut menu. Instead, a message box is displayed.

Private Sub Worksheet_BeforeRightClick _
(ByVal Target As Excel.Range, Cancel As Boolean)
Cancel = True
MsgBox “The shortcut menu is not available.”

End Sub

Chapter 24 describes other methods to disable shortcut menus.Cross-
Reference

Caution

On the
CD-ROM

4799-2 ch19.F 6/11/01 9:40 AM Page 591

Chart Events
By default, events are enabled only for charts that reside on a Chart sheet. To work
with events for an embedded chart, you need to create a class module.

Refer to Chapter 18 for examples that deal with Chart events. Chapter 18 also
describes how to create a class module to enable events for embedded charts.

Table 19-3 contains a list of the chart events, and a brief description of each.

Table 19-3
Events Recognized by a Chart Sheet

Event Action that triggers the event

Activate The chart sheet or embedded chart is activated.

BeforeDoubleClick The chart sheet or an embedded chart is double-clicked. This
event occurs before the default double-click action.

BeforeRightClick The chart sheet or an embedded chart is right-clicked. The event
occurs before the default right-click action.

Calculate New or changed data is plotted on a chart.

Deactivate The chart is deactivated.

DragOver A range of cells is dragged over a chart.

DragPlot A range of cells is dragged and dropped onto a chart.

MouseDown A mouse button is pressed while the pointer is over a chart.

MouseMove The position of the mouse pointer changes over a chart.

MouseUp A mouse button is released while the pointer is over a chart.

Resize The chart is resized.

Select A chart element is selected.

SeriesChange The value of a chart data point is changed.

Application Events
In previous sections, I discussed Workbook events and Worksheet events. Those
events are monitored for a particular workbook. If you would like to monitor events
for all open workbooks or all worksheets, you use Application level events.

Cross-
Reference

592 Part V ✦ Advanced Programming Techniques

4799-2 ch19.F 6/11/01 9:40 AM Page 592

593Chapter 19 ✦ Understanding Excel’s Events

Using the Object Browser to Locate Events

The Object Browser is a useful tool that can help you learn about objects and their proper-
ties and methods. It can also help you find out which objects support a particular event. For
example, say you’d like to find out which objects support the MouseMove event. Activate the
VB Editor and press F2 to display the Object Browser window. Make sure <All Libraries> is
selected and then type MouseMove and click the binoculars icon (see the accompanying
figure).

The Object Browser displays a list of matching items. Events are indicated with a small yel-
low lightning bolt. From this list, you can see which objects support the MouseMove event.
Most of the objects located are controls in the MSForms library, home of the UserForm con-
trol. But you can also see that Excel’s Chart object supports the MouseMove event.

Notice how the list is divided into three columns: Library, Class, and Members. The match
for the item you’re searching for may appear in any of these columns. This brings up a cru-
cial point: The name of an event or term belonging to one library or class may be the same
as that for another belonging to a different library or class — although they probably do not
share the same functionality. So be sure to click each item in the Object Browser list and
check the status bar at the bottom of the list for the syntax. You might find, for instance, that
one class or library treats an event differently.

4799-2 ch19.F 6/11/01 9:40 AM Page 593

594 Part V ✦ Advanced Programming Techniques

Creating event-handler procedures to handle Application events always
requires a class module and some set-up work.

Table 19-4 lists the Application events, with a brief description of each.

Table 19-4
Events Recognized by the Application Object

Event Action that triggers the event

NewWorkbook A new workbook is created.

SheetActivate Any sheet is activated.

SheetBeforeDoubleClick Any worksheet is double-clicked. This event occurs
before the default double-click action.

SheetBeforeRightClick Any worksheet is right-clicked. This event occurs before
the default right-click action.

SheetCalculate Any worksheet is calculated (or recalculated).

SheetChange Cells in any worksheet are changed by the user or by an
external link.

SheetDeactivate Any sheet is deactivated.

SheetFollowHyperlink A hyperlink is clicked.

SheetPivotTableUpdate* Any pivot table is updated.

SheetSelectionChange The selection changes on any worksheet except a chart
sheet.

WindowActivate Any workbook window is activated.

WindowDeactivate Any workbook window is deactivated.

WindowResize Any workbook window is resized.

WorkbookActivate Any workbook is activated.

WorkbookAddinInstall A workbook is installed as an add-in.

WorkbookAddinUninstall Any add-in workbook is uninstalled.

WorkbookBeforeClose Any open workbook is closed.

WorkbookBeforePrint Any open workbook is printed.

WorkbookBeforeSave Any open workbook is saved.

WorkbookDeactivate Any open workbook is deactivated.

WorkbookNewSheet A new sheet is created in any open workbook.

Note

4799-2 ch19.F 6/11/01 9:40 AM Page 594

595Chapter 19 ✦ Understanding Excel’s Events

Event Action that triggers the event

WorkbookOpen A workbook is opened.

WorkbookPivotTable An external data source connection for any pivot table
CloseConnection* is closed.

WorkbookPivotTable An external data source connection for any pivot table
OpenConnection* is opened.

* These events occur only in Excel 2002, and are not supported in previous versions.

Enabling Application-level events
To make use of Application-level events, you need to:

1. Create a new class module.

2. Set a name for this class module in the Properties window under Name.

By default, VBA gives each new class module a default name such as Class1,
Class2, etc. You may prefer a more meaningful name.

3. In the class module, declare a public Application object using the
WithEvents keyword. For example:

Public WithEvents XL As Application

4. Create a variable that you will use to refer to the declared Application
object in the class module. This should be a module-level object variable,
declared in a regular VBA module (not in the class module). For example:

Dim X As New Class1

5. Connect the declared object with the Application object. This is often done
in a Workbook_Open procedure. For example:

Set X.XL = Application

6. Write event-handler procedures in the class module.

This procedure is virtually identical to that required to use events with an embed-
ded chart. See Chapter 18.

Determining when a workbook is opened
The example in this section keeps track of every workbook that is opened by stor-
ing information in a text file. I started by inserting a new class module, and naming
it AppClass. The code in the class module is:

Cross-
Reference

4799-2 ch19.F 6/11/01 9:40 AM Page 595

596 Part V ✦ Advanced Programming Techniques

Public WithEvents AppEvents As Application

Private Sub AppEvents_WorkbookOpen _
(ByVal Wb As Excel.Workbook)
Call UpdateLogFile(Wb)

End Sub

This declares AppEvents as an Application object with events. The
AppEvents_WorkbookOpen procedure will be called whenever a workbook is
opened. This event-handler procedure calls UpdateLogFile, and passes the Wb
variable, which represents the workbook that was opened. I then added a VBA mod-
ule and inserted the following code:

Dim AppObject As New AppClass

Sub Init()
‘ Called by Workbook_Open

Set AppObject.AppEvents = Application
End Sub

Sub UpdateLogFile(Wb)
txt = Wb.FullName
txt = txt & “,” & Date & “,” & Time
txt = txt & “,” & Application.UserName
Fname = ThisWorkbook.Path & “\logfile.txt”
Open Fname For Append As #1
Write #1, txt
Close #1
MsgBox txt

End Sub

Notice at the top that the AppObject variable is declared as type AppClass; this is
the name of the class module. The call to Init is in the Workbook_Open procedure,
which is in the code module for ThisWorkbook. This procedure is as follows:

Private Sub Workbook_Open()
Call Init

End Sub

The UpdateLogFile procedure opens a text file, or creates it if it doesn’t exist. It
then writes key information about the workbook that was opened: The filename and
full path, the date, the time, and the user name.

The Workbook_Open procedure calls the Init procedure. Therefore, when the
workbook opens, the Init procedure creates the object variable.

This example is available on the companion CD-ROM. Make sure you copy the
file to your hard drive before using it. The text file is written to the same directory
as the workbook, so the code will fail if the workbook is stored on a CD-ROM
drive.

On the
CD-ROM

4799-2 ch19.F 6/11/01 9:40 AM Page 596

597Chapter 19 ✦ Understanding Excel’s Events

Monitoring Application-level events
To get a feel for the event generation process, you might find it helpful to see a list
of events that get generated as you go about your work.

The companion CD-ROM contains a workbook that displays each Application-
level event as it occurs. Actually, there are two versions of this workbook. The ver-
sion for Excel 2000 and later displays the events in a modeless UserForm, as shown
in Figure 19-8. The version for Excel 97 displays each event in a message box (Excel
97 does not support modeless UserForms).

Figure 19-8: This workbook uses a class module to monitor all
Application-level events.

The workbook contains a class module with 21 procedures defined, one for each
Application-level event. Here’s an example of one of them:

Private Sub XL_NewWorkbook(ByVal Wb As Excel.Workbook)
LogEvent “NewWorkbook: “ & Wb.Name

End Sub

Each of these procedures calls the LogEvent procedure and passes an argument
that consists of the event name and the object. The LogEvent procedure follows:

Sub LogEvent(txt)
EventNum = EventNum + 1
With UserForm1

With .lblEvents
.AutoSize = False
.Caption = .Caption & vbCrLf & txt
.Width = UserForm1.FrameEvents.Width - 20
.AutoSize = True

4799-2 ch19.F 6/11/01 9:40 AM Page 597

598 Part V ✦ Advanced Programming Techniques

End With
.FrameEvents.ScrollHeight = .lblEvents.Height + 20
.FrameEvents.ScrollTop = EventNum * 20

End With
End Sub

The LogEvent procedure updates the UserForm by modifying the Caption property
of the Label control named lblEvents. The procedure also adjusts the ScrollHeight
and ScrollTop properties of the Frame named FrameEvents, which contains the
Label. Adjusting these properties causes the most recently added text to be visible
while older text scrolls out of view.

UserForm Events
A UserForm supports quite a few events, and each control placed on a UserForm
has its own set of events. Table 19-5 lists the UserForm events that you can trap.

Table 19-5
Events Recognized by a UserForm

Event Action that triggers the event

Activate The UserForm is activated.

AddControl A control is added at runtime.

BeforeDragOver A drag-and-drop operation is in progress while the pointer is over
the form.

BeforeDropOrPaste When the user is about to drop or paste data; i.e., when the user
has released the mouse button.

Click A mouse click while the pointer is over the form.

DblClick A mouse double-click while the pointer is over the form.

Deactivate The UserForm is deactivated.

Error A control detects an error and cannot return the error information
to a calling program.

Initialize The UserForm is about to be shown.

KeyDown A key is pressed.

KeyPress The user presses any ANSI key.

KeyUp A key is released.

Layout A UserForm changes size.

4799-2 ch19.F 6/11/01 9:40 AM Page 598

599Chapter 19 ✦ Understanding Excel’s Events

Event Action that triggers the event

MouseDown A mouse button is pressed.

MouseMove The mouse is moved.

MouseUp A mouse button is released.

QueryClose Occurs before a UserForm closes.

RemoveControl A control is removed from the UserForm at runtime.

Resize The UserForm is resized.

Scroll The UserForm is scrolled.

Terminate The UserForm is terminated.

Zoom The UserForm is zoomed.

Many of the examples in Chapters 13 through 15 demonstrate event-handling for
UserForms and UserForm controls.

Events Not Associated with an Object
The events that I discussed previously in this chapter are all associated with an
object (Application, Workbook, Sheet, etc.). In this section, I discuss two addi-
tional “rogue” events: OnTime and OnKey. These events are not associated with an
object. Rather, these events are accessed using methods of the Application
object.

Unlike the other events discussed in this chapter, you program these “On-” events
in a general VBA module.

The OnTime event
The OnTime event occurs at a specified time of day. The following example demon-
strates how to program Excel so it beeps and then displays a message at 3:00 p.m.:

Sub SetAlarm()
Application.OnTime TimeValue(“15:00:00”), “DisplayAlarm”

End Sub

Sub DisplayAlarm()
Beep
MsgBox “Wake up. It’s time for your afternoon break!”

End Sub

Note

Cross-
Reference

4799-2 ch19.F 6/11/01 9:40 AM Page 599

600 Part V ✦ Advanced Programming Techniques

In this example, the SetAlarm procedure uses the OnTime method of the
Application object to set up the OnTime event. This method takes two argu-
ments: the time (3:00 p.m., in the example) and the procedure to execute when
the time occurs (DisplayAlarm in the example). After SetAlarm is executed, the
DisplayAlarm procedure will be called at 3:00 p.m., bringing up the message in
Figure 19-9.

Figure 19-9: This message box was programmed to
display at a particular time of day.

If you want to schedule an event relative to the current time — for example, 20
minutes from now — you can write an instruction like this:

Application.OnTime Now + TimeValue(“00:20:00”), “DisplayAlarm”

You can also use the OnTime method to schedule a procedure on a particular day.
The following statement runs the DisplayAlarm procedure at 12:01 a.m. on April 1,
2002:

Application.OnTime DateSerial(2002, 4, 1) + _
TimeValue(“00:00:01”), “DisplayAlarm”

The OnTime method has two additional arguments. If you plan to use this
method, you should refer to the online help for complete details.

The analog clock example in Chapter 18 uses the OnTime event to cause a proce-
dure to execute every second.

The OnKey event
While you’re working, Excel constantly monitors what you type. Because of this,
you can set up a keystroke or a key combination that, when pressed, executes a
particular procedure.

The following example uses the OnKey method to set up an OnKey event. This event
reassigns the PgDn and PgUp keys. After the Setup_OnKey procedure is executed,
pressing PgDn executes the PgDn_Sub procedure, and pressing PgUp executes the
PgUp_Sub procedure. The net effect is that pressing PgDn moves the cursor down
one row and pressing PgUp moves the cursor up one row.

Cross-
Reference

Note

4799-2 ch19.F 6/11/01 9:40 AM Page 600

601Chapter 19 ✦ Understanding Excel’s Events

Sub Setup_OnKey()
Application.OnKey “{PgDn}”, “PgDn_Sub”
Application.OnKey “{PgUp}”, “PgUp_Sub”

End Sub

Sub PgDn_Sub()
On Error Resume Next
ActiveCell.Offset(1, 0).Activate

End Sub

Sub PgUp_Sub()
On Error Resume Next
ActiveCell.Offset(-1, 0).Activate

End Sub

Notice that the key codes are enclosed in curly brackets, not parentheses. For a
complete list of the keyboard codes, consult the online help. Search for OnKey.

In the preceding examples, I used On Error Resume Next to ignore any errors
that were generated. For example, if the active cell is in the first row, trying to move
up one row causes an error. Also, if the active sheet is a chart sheet, an error will
occur because there is no such thing as an active cell in a chart sheet.

By executing the following procedure, you cancel the OnKey events and return
these keys to their normal functionality:

Sub Cancel_OnKey()
Application.OnKey “{PgDn}”
Application.OnKey “{PgUp}”

End Sub

Contrary to what you might expect, using an empty string as the second argument
for the OnKey method does not cancel the OnKey event. Rather, it causes Excel to
simply ignore the keystroke and do nothing at all. For example, the following
instruction tells Excel to ignore Alt+F4 (the percent sign represents the Alt key):

Application.OnKey “%{F4}”, “”

Although you can use the OnKey method to assign a shortcut key for executing a
macro, it’s better to use the Macro Options dialog box for this task. For more
details, see “Executing a procedure with a Ctrl+shortcut key combination” in
Chapter 9.

Cross-
Reference

Note

4799-2 ch19.F 6/11/01 9:40 AM Page 601

602 Part V ✦ Advanced Programming Techniques

Summary
This chapter described how to write code that executes when a particular event
occurs.

In the next chapter, I discuss some VBA techniques that you can use to control
other applications from Excel.

✦ ✦ ✦

4799-2 ch19.F 6/11/01 9:40 AM Page 602

Interacting
with Other
Applications

In the early days of personal computing, interapplication
communication was rare. In the pre-multitasking era, users

had no choice but to use one program at a time. Interapplica-
tion communication was usually limited to importing files; even
copying information and pasting it into another application —
something that virtually every user now takes for granted —
was impossible.

Nowadays, most software is designed to support at least some
type of communication with other applications. At the very
least, most Windows programs support the clipboard for
copy-and-paste operations between applications. Many
Windows products support Dynamic Data Exchange (DDE),
and other products (especially the newer products) also sup-
port Automation. In this chapter, I outline the ways in which
your Excel applications can interact with other applications.
Of course, I also provide several examples.

Starting Another Application
It’s often useful to start up another application from Excel. For
example, you may want to execute a communications pro-
gram or even a DOS batch file from Excel. Or, as an application
developer, you may want to make it easy for a user to access
the Windows Control Panel.

VBA’s Shell function makes launching other programs rela-
tively easy. Listing 20-1 presents a procedure that starts the
Windows Character Map application, which enables the user
to insert a special character.

2020C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Starting or activating
another application
from Excel

Displaying Windows
Control Panel dialogs

Using Automation
to control another
application

A simple example of
using ADO to retrieve
data

Using SendKeys as
a last resort

✦ ✦ ✦ ✦

4799-2 ch20.F 6/11/01 9:41 AM Page 603

604 Part V ✦ Advanced Programming Techniques

Listing 20-1: Launching a Windows utility application

Sub RunCharMap()
On Error Resume Next
Program = “Charmap.exe”
TaskID = Shell(Program, 1)
If Err <> 0 Then

MsgBox “Cannot start “ & Program, vbCritical, “Error”
End If

End Sub

You’ll recognize the application this procedure launches in Figure 20-1.

By the way, if you’re using Excel 2002, the Windows Character Map program is no
longer necessary. You can take advantage of the new Insert ➪ Symbol command.

Figure 20-1: Running the Windows Character Map program from Excel

The Shell function returns a task identification number for the application. You
can use this number later to activate the task. The second argument for the Shell
function determines how the application is displayed (1 is the code for a normal
size window, with the focus).

If the Shell function is not successful, it generates an error. Therefore, this proce-
dure uses an On Error statement to display a message if the file cannot be found or
some other error occurs.

It’s important to understand that your VBA code does not pause while the applica-
tion that was started with the Shell function is running. In other words, the Shell

4799-2 ch20.F 6/11/01 9:41 AM Page 604

605Chapter 20 ✦ Interacting with Other Applications

function runs the application asynchronously. If the procedure has more instruc-
tions after the Shell function is executed, they are executed concurrently with the
newly loaded program. If any instruction requires user intervention (for example,
displaying a message box), Excel’s title bar flashes while the other application is
active.

In some cases, you may want to launch an application with the Shell function, but
you need your VBA code to “pause” until the application is closed. For example, the
launched application may generate a file that is used later in your code. Although
you can’t pause the execution of your code, you can create a loop that does nothing
except monitor the application’s status. Listing 20-2 shows an example that displays
a message box when the application launched by the Shell function has ended.

Listing 20-2: Waiting for an application to end

Declare Function OpenProcess Lib “kernel32” _
(ByVal dwDesiredAccess As Long, _
ByVal bInheritHandle As Long, _
ByVal dwProcessId As Long) As Long

Declare Function GetExitCodeProcess Lib “kernel32” _
(ByVal hProcess As Long, _
lpExitCode As Long) As Long

Sub RunCharMap2()
Dim TaskID As Long
Dim hProc As Long
Dim lExitCode As Long

ACCESS_TYPE = &H400
STILL_ACTIVE = &H103

Program = “Charmap.exe”
On Error Resume Next

‘ Shell the task
TaskID = Shell(Program, 1)

‘ Get the process handle
hProc = OpenProcess(ACCESS_TYPE, False, TaskID)

If Err <> 0 Then
MsgBox “Cannot start “ & Program, vbCritical, “Error”
Exit Sub

End If

Do ‘Loop continuously
‘ Check on the process

GetExitCodeProcess hProc, lExitCode

Continued

4799-2 ch20.F 6/11/01 9:41 AM Page 605

606 Part V ✦ Advanced Programming Techniques

Listing 20-2 (continued)

‘ Allow event processing
DoEvents

Loop While lExitCode = STILL_ACTIVE

‘ Task is finished, so show message
MsgBox Program & “ is finished”

End Sub

While the launched program is running, this procedure continually calls the
GetExitCodeProcess function from within a Do-Loop structure, testing for its
returned value (lExitCode). When the program is finished, lExitCode returns
a different value, the loop ends, and the VBA code resumes executing.

Both of the preceding examples are available on the companion CD-ROM.

Most versions of Windows provide a Start command, which can also be used as an
argument for the Shell function. The Start command is not available in Windows
NT. The Start command is a string literal that starts a Windows application from a
DOS window. Using the Start command, you need specify only the name of a docu-
ment file — not the executable file. The program associated with that document
file’s extension is executed, and the file is automatically loaded. For example, the
following instructions start up the installed Web browser application — that is, the
application associated with the .htm extension — and load an HTML document
named homepage.htm.

WebPage = “c:\web\homepage.htm”
Shell “Start “ & WebPage

Or, you can use an e-mail address to start the default e-mail client:

Email = “mailto:bgates@microsoft.com”
Shell “Start “ & Email

If you would like to use this type of functionality with Windows NT (or another ver-
sion of Windows that doesn’t support the Start command), you’ll need to use the
Windows ShellExecute API function. The API declaration follows (this code goes
at the top of a VBA module):

Private Declare Function ShellExecute Lib “shell32.dll” _
Alias “ShellExecuteA” (ByVal hWnd As Long, _
ByVal lpOperation As String, ByVal lpFile As String, _
ByVal lpParameters As String, ByVal lpDirectory As String, _
ByVal nShowCmd As Long) As Long

On the
CD-ROM

4799-2 ch20.F 6/11/01 9:41 AM Page 606

607Chapter 20 ✦ Interacting with Other Applications

The following procedure demonstrates how to call the ShellExecute function:

Sub OpenFile()
File = “http://www.microsoft.com”
Call ShellExecute(0&, vbNullString, File, _

vbNullString, vbNullString, vbNormalFocus)
End Sub

The file can be a URL or any local file. For example, you can use this to open a
graphic file (such as a JPG or BMP file) using the default graphic viewer.

If the application that you want to start is one of several Microsoft applications,
you can use the ActivateMicrosoftApp method of the Application object.
For example, the following procedure starts Word:

Sub StartWord()
Application.ActivateMicrosoftApp xlMicrosoftWord

End Sub

If Word is already running when the preceding procedure is executed, it is activated.
The other constants available for this method are xlMicrosoftPowerPoint,
xlMicrosoftMail, xlMicrosoftAccess, xlMicrosoftFoxPro,
xlMicrosoftProject, and xlMicrosoftSchedulePlus.

Activating Another Application
Beware of a potential problem: You may find that if an application is already run-
ning, using the Shell function could start another instance of it. In most cases,
you’ll want to activate the instance that’s running, not start another instance of it.

The following StartCalculator uses the AppActivate statement to activate
an application if it’s already running (in this case, the Windows Calculator). The
argument for AppActivate is the caption of the application’s title bar. If the
AppActivate statement generates an error, it means the Calculator is not running.
Therefore, the routine starts the application.

Sub StartCalculator()
AppFile = “Calc.exe”
On Error Resume Next
AppActivate “Calculator”
If Err <> 0 Then

Err = 0
CalcTaskID = Shell(AppFile, 1)
If Err <> 0 Then MsgBox “Can’t start Calculator”

End If
End Sub

Tip

4799-2 ch20.F 6/11/01 9:41 AM Page 607

608 Part V ✦ Advanced Programming Techniques

This example is available on the companion CD-ROM.

Running Control Panel Dialog
Boxes and Wizards

Windows provides quite a few system dialog boxes and wizards, most of which are
accessible from the Windows Control Panel. You may need to display one or more
of these from your Excel application. For example, you may want to display the
Windows Date/Time Properties dialog box shown in Figure 20-2.

Figure 20-2: Using VBA to display a Control
Panel dialog box

The key to running other system dialog boxes is knowing the argument for the
Shell function. The following procedure happens to know the argument for the
Date/Time dialog box:

Sub ShowDateTimeDlg()
Arg = “rundll32.exe shell32.dll,Control_RunDLL timedate.cpl”
On Error Resume Next
TaskID = Shell(Arg)
If Err <> 0 Then

MsgBox (“Cannot start the application.”)
End If

End Sub

A workbook that demonstrates 50 arguments, depicted in Figure 20-3, is avail-
able on the companion CD-ROM.

On the
CD-ROM

On the
CD-ROM

4799-2 ch20.F 6/11/01 9:41 AM Page 608

609Chapter 20 ✦ Interacting with Other Applications

Figure 20-3: This workbook demonstrates
how to run system dialog boxes from Excel.

Automation
You can write an Excel macro to control Microsoft Word. More accurately, the Excel
macro will control the most important component of Word: its so-called automation
server. In such circumstances, Excel is called the client application and Word the
server application. Or you can write a Visual Basic application to control Excel. The
process of one application’s controlling another is sometimes known as OLE
Automation and other times known as ActiveX Automation (Microsoft has a ten-
dency to change its own terminology quite frequently).

The concept behind Automation is quite appealing. A developer who needs to
generate a chart, for example, can just reach into another application’s grab bag of
objects, fetch a Chart object, and then manipulate its properties and use its meth-
ods. Automation, in a sense, blurs the boundaries between applications. An end
user may be working with an Access object and not even realize it.

Some applications, such as Excel, can function as either a client application or a
server application. Other applications can function only as client applications or
only as server applications.

In this section, I demonstrate how to use VBA to access and manipulate the objects
exposed by other applications. The examples use Microsoft Word, but the concepts
apply to any application that exposes its objects for Automation — which accounts
for an increasing number of applications.

Working with foreign objects
As you know, you can use Excel’s Insert ➪ Object command to embed an object
such as a Word document in a worksheet. In addition, you can create an object and
manipulate it with VBA. (This action is the heart of Automation.) When you do so,
you usually have full access to the object. For developers, this technique is gener-
ally more beneficial than embedding the object in a worksheet. When an object is
embedded, the user must know how to use the Automation object’s application. But
when you use VBA to work with the object, you can program the object so that the
user can manipulate it by an action as simple as a button click.

Note

4799-2 ch20.F 6/11/01 9:41 AM Page 609

610 Part V ✦ Advanced Programming Techniques

Early versus late binding
Before you can work with an external object, you must create an instance of the
object. This can be done in either of two ways: early binding or late binding. Binding
refers to matching the function calls written by the programmer to the actual code
that implements the function.

Early binding
At design time, you create a reference to the object library using the Tools ➪
References command in the VBE, which brings up the dialog box shown in
Figure 20-4.

Figure 20-4: Attaching a reference to an object
library file

In Excel 2002, the Project Explorer window contains a list of all the references
that you’ve added to your project.

After the reference to the object library is established, you can use the Object
Browser shown in Figure 20-5 to view the object names, methods, and properties.

When you use early binding, you must establish a reference to a version-specific
object library. For example, you can specify either Microsoft Word 8.0 Object
Library, Microsoft Word 9.0 Object Library, or Microsoft Word 10.0 Object Library.
Then you use a statement like the following to create the object:

Dim WordApp As New Word.Application

Using early binding to create the object by setting a reference to the object library
usually is more efficient and yields better performance. Early binding is an option
only if the object that you are controlling has a separate type library or object
library file. You also need to ensure that the user of the application actually has a
copy of the specific library installed.

New
Feature

4799-2 ch20.F 6/11/01 9:41 AM Page 610

611Chapter 20 ✦ Interacting with Other Applications

Figure 20-5: Using the Object Browser to learn about the objects in a referenced library

Early binding also enables you to use constants that are defined in the object
library. For example, Word (like Excel) contains many predefined constants that
you can use in your VBA code. If you use early binding, you can use the constants
in your code. If you use late binding, you’ll need to use the actual value rather than
the constant. Another advantage in using early binding is that you can take advan-
tage of the VBE’s Object Browser and Auto List Members option to make it easier to
access properties and methods; this feature doesn’t work when you use late bind-
ing because the type of the object is known only at runtime.

Late binding
At runtime, you use either the CreateObject function to create the object or the
GetObject function to obtain a saved instance of the object. Such an object is
declared as a generic Object type, and its object reference is resolved at runtime.

It is possible to use late binding even when you don’t know which version of the
application is installed on the user’s system. For example, the following code, which
works with Word 97 and later, creates a Word object:

Dim WordApp As Object
Set WordApp = CreateObject(“Word.Application”)

If multiple versions of Word are installed, you can create an object for a specific
version. The following statement, for example, uses Word 2000:

Set WordApp = CreateObject(“Word.Application.9”)

4799-2 ch20.F 6/11/01 9:41 AM Page 611

612 Part V ✦ Advanced Programming Techniques

The Registry key for Word’s Automation object and the reference to the Application
object in VBA just happen to be the same: Word.Application. They do not, how-
ever, refer to the same thing. When you declare an object As Word.Application or
As New Word.Application, the term refers to the Application object in the Word
library. But when you invoke the function CreateObject(“Word.Application”),
the term refers to the moniker by which the latest version of Word is known in the
Windows System Registry. This isn’t the case for all Automation objects, although
it is true for the main Office XP components. If the user replaces Word 2000
with Word 2002, CreateObject(“Word.Application”) will continue to work
properly, referring to the new application. If Word 2002 is removed, however,
CreateObject(“Word.Application.10”), which uses the alternate version-
specific moniker for Word 2002, will fail to work.

The CreateObject function used on an Automation object such as Word.
Application or Excel.Application always creates a new instance of that
Automation object. That is, it starts up a new and separate copy of the automa-
tion part of the program. Even if an instance of the Automation object is already
running, a new instance is started, and then an object of the specified type is created.

To use the current instance, or to start the application and have it load a file, use
the GetObject function.

If you need to automate an Office application, it is recommended that you early
bind to the earliest version of the product that you expect could be installed on
your client’s system. For example, if you need to be able to automate Word 97, Word
2000, and Word 2002, you should use the type library for Word 97 to maintain com-
patibility with all three versions. This, of course, will mean that you can’t make use
of features found in the later version of Word.

GetObject vs. CreateObject

VBA’s GetObject and CreateObject functions both return a reference to an object, but
they work in different ways.

The CreateObject function is used to create an interface to a new instance of an
application. Use this function when the application is not running. If an instance of the
application is already running, a new instance is started. For example, the following statement
starts Excel, and the object returned in XLApp is a reference to the Excel.Application
object it created.

Set XLApp = CreateObject(“Excel.Application”)

The GetObject function is used with an application that’s already running, or to start an
application with a file already loaded. The following statement, for example, starts Excel with
the file Myfile.xls already loaded. The object returned in XLBook is a reference to the
Workbook object (the Myfile.xls file).

Set XLBook = GetObject(“C:\Myfile.xls”)

4799-2 ch20.F 6/11/01 9:41 AM Page 612

613Chapter 20 ✦ Interacting with Other Applications

A simple example
The following example demonstrates how to create a Word object using late bind-
ing. This procedure creates the object, displays the version number, closes the
Word application, and then destroys the object (freeing the memory it used).

Sub GetWordVersion()
Dim WordApp As Object
Set WordApp = CreateObject(“Word.Application”)
MsgBox WordApp.Version
WordApp.Quit
Set WordApp = Nothing

End Sub

The Word object that’s created is invisible. If you’d like to see the object while it’s
being manipulated, set its Visible property to True, as follows:

WordApp.Visible = True

This example can also be programmed using early binding. Before doing so, use the
Tools ➪ References command to set a reference to the Word object library. Then
you can use the following code:

Sub GetWordVersion()
Dim WordApp As New Word.Application
MsgBox WordApp.Version
WordApp.Quit
Set WordApp = Nothing

End Sub

Controlling Word from Excel
The example in this section demonstrates an Automation session using Word. The
MakeMemos procedure creates three customized memos in Word and then saves
each document to a file. The information used to create the memos is stored in a
worksheet, shown in Figure 20-6.

Figure 20-6: Word automatically generates three memos based
on this Excel data.

Note

4799-2 ch20.F 6/11/01 9:41 AM Page 613

614 Part V ✦ Advanced Programming Techniques

The MakeMemos procedure, presented in Listing 20-3, starts by creating an object
called WordApp. The routine cycles through the three rows of data in Sheet1 and
uses Word’s properties and methods to create each memo and save it to disk. A
range named Message (in cell E6) contains the text used in the memo.

Listing 20-3: Generating Word documents
from an Excel VBA program

Sub MakeMemos()
‘ Creates memos in word using Automation

Dim WordApp As Object

‘ Start Word and create an object (late binding)
Set WordApp = CreateObject(“Word.Application”)

‘ Information from worksheet
Set Data = Sheets(“Sheet1”).Range(“A1”)
Message = Sheets(“Sheet1”).Range(“Message”)

‘ Cycle through all records in Sheet1
Records = Application.CountA(Sheets(“Sheet1”).Range(“A:A”))
For i = 1 To Records

‘ Update status bar progress message
Application.StatusBar = “Processing Record “ & i

‘ Assign current data to variables
Region = Data.Cells(i, 1).Value
SalesNum = Data.Cells(i, 2).Value
SalesAmt = Format(Data.Cells(i, 3).Value, “#,000”)

‘ Determine the file name
SaveAsName = ThisWorkbook.Path & “\” & Region & “.doc”

‘ Send commands to Word
With WordApp

.Documents.Add
With .Selection

.Font.Size = 14

.Font.Bold = True

.ParagraphFormat.Alignment = 1

.TypeText Text:=”M E M O R A N D U M”

.TypeParagraph

.TypeParagraph

.Font.Size = 12

.ParagraphFormat.Alignment = 0

.Font.Bold = False

.TypeText Text:=”Date:” & vbTab & _
Format(Date, “mmmm d, yyyy”)

.TypeParagraph

4799-2 ch20.F 6/11/01 9:41 AM Page 614

615Chapter 20 ✦ Interacting with Other Applications

.TypeText Text:=”To:” & vbTab & Region & _
“ Manager”
.TypeParagraph
.TypeText Text:=”From:” & vbTab & _

Application.UserName
.TypeParagraph
.TypeParagraph
.TypeText Message
.TypeParagraph
.TypeParagraph
.TypeText Text:=”Units Sold:” & vbTab & _
SalesNum
.TypeParagraph
.TypeText Text:=”Amount:” & vbTab & _
Format(SalesAmt, “$#,##0”)

End With
.ActiveDocument.SaveAs FileName:=SaveAsName

End With
Next i

‘ Kill the object
WordApp.Quit
Set WordApp = Nothing

‘ Reset status bar
Application.StatusBar = “”
MsgBox Records & “ memos were created and saved in “ & _
ThisWorkbook.Path

End Sub

Figure 20-7 shows a document created by the MakeMemos procedure.

Creating this macro involved several steps. I started by recording a macro in Word. I
recorded my actions while creating a new document, adding and formatting some
text, and saving the file. That Word macro provided the information I needed about
the appropriate properties and methods. I then copied the macro to an Excel module.
Notice that I used With-End With. I added a dot before each instruction between
With and End With. For example, the original Word macro contained (among others)
the following instruction:

Documents.Add

I modified the macro as follows:

With WordApp
.Documents.Add

‘ more instructions here
End With

4799-2 ch20.F 6/11/01 9:41 AM Page 615

616 Part V ✦ Advanced Programming Techniques

The macro I recorded in Word used a few of Word’s built-in constants. Because this
example uses late binding, I had to substitute actual values for those constants. I
was able to learn the values by using the Immediate window in Word’s VBE.

Figure 20-7: An Excel procedure created this document.

Controlling Excel from another application
You can, of course, also control Excel from another application (such as a Visual
Basic program or a Word macro). For example, you may want to perform some
calculations in Excel and return the result to a Word document.

You can create any of the following Excel objects with the adjacent functions:

Application object CreateObject(“Excel.Application”)

Workbook object CreateObject(“Excel.Sheet”)

Chart object CreateObject(“Excel.Chart”)

Listing 20-4 shows a procedure that is located in a VBA module in a Word 2002
document. This procedure creates an Excel Worksheet object — whose moniker
is “Excel.Sheet”— from an existing workbook.

4799-2 ch20.F 6/11/01 9:41 AM Page 616

617Chapter 20 ✦ Interacting with Other Applications

Listing 20-4: Producing an Excel worksheet
on a Word 2000 document

Sub MakeExcelChart()
Dim XLSheet As Object

‘ Create a new document
Documents.Add

‘ Prompt for values
StartVal = InputBox(“Starting Value?”)
PctChange = InputBox(“Percent Change?”)

‘ Create Sheet object
Wbook = ThisDocument.Path & “\projections.xls”
Set XLSheet = GetObject(Wbook, “Excel.Sheet”).ActiveSheet

‘ Put values in sheet
XLSheet.Range(“StartingValue”) = StartVal
XLSheet.Range(“PctChange”) = PctChange
XLSheet.Calculate

‘ Insert page heading
Selection.Font.Size = 14
Selection.Font.Bold = True
Selection.TypeText “Monthly Increment: “ & _
Format(PctChange, “0.0%”)

Selection.TypeParagraph
Selection.TypeParagraph

‘ Copy data from sheet & paste to document
XLSheet.Range(“data”).Copy
Selection.Paste

‘ Copy chart and paste to document
XLSheet.ChartObjects(1).Copy
Selection.PasteSpecial _

Link:=False, _
DataType:=wdPasteMetafilePicture, _
Placement:=wdInLine, DisplayAsIcon:=False

‘ Kill the object
Set XLSheet = Nothing

End Sub

The initial workbook is shown in Figure 20-8. The MakeExcelChart procedure
prompts the user for two values and inserts the values into the worksheet.

4799-2 ch20.F 6/11/01 9:41 AM Page 617

618 Part V ✦ Advanced Programming Techniques

Figure 20-8: A VBA procedure in Word uses this worksheet.

Recalculating the worksheet updates a chart. The data and the chart are then
copied from the Excel object and pasted into a new document. The results are
shown in Figure 20-9.

Figure 20-9: The Word VBA procedure uses Excel to create
this document.

4799-2 ch20.F 6/11/01 9:41 AM Page 618

619Chapter 20 ✦ Interacting with Other Applications

Working with ADO
ADO (ActiveX Data Objects) is an object model that enables you to access data
stored in a variety of database formats. Importantly, this methodology allows you
to use a single object model for all your databases. This is currently the preferred
data access methodology, and should not be confused with DAO (Data Access
Objects).

This section presents a simple example that uses ADO to retrieve data from an
Access database.

ADO programming is a very complex topic. If you have a need to access external
data in your Excel application, you’ll probably want to invest in one or more books
that cover this topic in detail.

The following example retrieves data from an Access database named budget.mdb.
This database contains one table (named Budget), and the table has seven fields.
This example retrieves the data in which the Item field contains the text Lease and
the Division field contains the text N. America. The qualifying data is stored in a
Recordset object, and the data is then transferred to a worksheet (see Figure 20-10).

Sub ADO_Demo()
‘ This demo requires a reference to
‘ the Microsoft ActiveX Data Objects 2.x Library

Dim DBFullName As String
Dim Cnct As String, Src As String
Dim Connection As ADODB.Connection
Dim Recordset As ADODB.Recordset
Dim Col As Integer

Cells.Clear

‘ Database information
DBFullName = ThisWorkbook.Path & “\budget.mdb”

‘ Open the connection
Set Connection = New ADODB.Connection
Cnct = “Provider=Microsoft.Jet.OLEDB.4.0; “
Cnct = Cnct & “Data Source=” & DBFullName & “;”
Connection.Open ConnectionString:=Cnct

‘ Create RecordSet
Set Recordset = New ADODB.Recordset
With Recordset

‘ Filter
Src = “SELECT * FROM Budget WHERE Item = ‘Lease’ “

Note

4799-2 ch20.F 6/11/01 9:41 AM Page 619

620 Part V ✦ Advanced Programming Techniques

Src = Src & “and Division = ‘N. America’”
.Open Source:=Src, ActiveConnection:=Connection

‘ Write the field names
For Col = 0 To Recordset.Fields.Count - 1

Range(“A1”).Offset(0, Col).Value = _
Recordset.Fields(Col).Name

Next

‘ Write the recordset
Range(“A1”).Offset(1, 0).CopyFromRecordset Recordset

End With
Set Recordset = Nothing
Connection.Close
Set Connection = Nothing

End Sub

This example, along with the Access database, is available on the companion
CD-ROM.

Figure 20-10: This data was retrieved from an Access database.

‘Create a reference to the Outlook object library

Sub SendAMessage(ToWhom As String, About As String, Message As
String)
Dim oOutl As New Outlook.Application
Dim oNS As Outlook.NameSpace
Dim oMail As Outlook.MailItem

On the
CD-ROM

4799-2 ch20.F 6/11/01 9:41 AM Page 620

621Chapter 20 ✦ Interacting with Other Applications

Set oNS = oOutl.GetNamespace(“MAPI”)
oNS.Logon ‘ requests user name and password
Set oMail = oOutl.CreateItem(olMailItem)
With oMail
.Subject = About
.Recipients.Add ToWhom
.Body = Message
.Send

End With
oNS.Logoff
Set oNS = Nothing

End Sub

Sub Demo()
SendAMessage ToWhom:=”Susan”, About:=”Job done”, _

Message:=”All the material you have sent has been
processed”
End Sub

Using SendKeys
Not all applications support Automation. In some cases, you can still control some
aspects of the application even if it doesn’t support Automation. You can use
Excel’s SendKeys method to send keystrokes to an application, simulating actions
that a user might perform.

Although using the SendKeys method may seem like a good solution, you’ll find
that this can be very tricky. A potential problem is that it relies on a specific user
interface. If a later version of the program you’re sending keystrokes has a different
user interface, your application may no longer work. Consequently, you should use
SendKeys only as a last resort.

Sub TestKeys()
Shell “calc.Exe”, vbNormalFocus
AppActivate “Calculator”
For I=1 To 100
SendKeys I & “*2=”, True

Next
End Sub

SendKeys is documented in the online help system, which describes how to send
nonstandard keystrokes, such as Alt key combinations.

The CellToDialer procedure in Listing 20-5 demonstrates the use of SendKeys.

4799-2 ch20.F 6/11/01 9:41 AM Page 621

622 Part V ✦ Advanced Programming Techniques

Listing 20-5: Having Excel dial the phone, one key at a time

Sub CellToDialer()
‘ Transfers active cell contents to Dialer
‘ And then dials the phone

‘ Get the phone number
CellContents = ActiveCell.Value
If CellContents = “” Then

MsgBox “Select a cell that contains a phone number.”
Exit Sub

End If

‘ Activate (or start) Dialer
Appname = “Dialer”
AppFile = “Dialer.exe”
On Error Resume Next
AppActivate (Appname)
If Err <> 0 Then

Err = 0
TaskID = Shell(AppFile, 1)
If Err <> 0 Then MsgBox “Can’t start “ & AppFile

End If

‘ Transfer cell contents to Dialer
Application.SendKeys “%n” & CellContents, True

‘ Click Dial button
Application.SendKeys “%d”

‘ Application.SendKeys “{TAB}~”, True
End Sub

When executed from a worksheet, this procedure starts the Windows Dialer appli-
cation in Figure 20-11, which dials the phone. If Dialer is not running, it starts Dialer.
The macro uses SendKeys to transfer the contents of the active cell to the Windows
Dialer application, and then “clicks” the Dial button.

4799-2 ch20.F 6/11/01 9:41 AM Page 622

623Chapter 20 ✦ Interacting with Other Applications

Figure 20-11: SendKeys transfers the phone number in the
active cell to Windows Dialer.

Summary
In this chapter, I touched on some of the ways you can automate the process of
Excel’s working in tandem with other applications. These ways include using
Automation to execute and/or activate other applications and using SendKeys.

The next chapter describes how to create an add-in from an Excel workbook.

✦ ✦ ✦

4799-2 ch20.F 6/11/01 9:41 AM Page 623

4799-2 ch20.F 6/11/01 9:41 AM Page 624

Creating and
Using Add-Ins

One of Excel’s most useful features for developers is the
capability to create add-ins. In this chapter, I explain

the benefits of using add-ins, and I show you how to create
your own add-ins by using only the tools built into Excel.

What Is an Add-In?
Generally speaking, a spreadsheet add-in is something added
to a spreadsheet to give it additional functionality. For exam-
ple, Excel ships with several add-ins. One of the most popular
is the Analysis ToolPak, which adds statistical and analysis
capabilities that are not built into Excel.

Some add-ins (such as the Analysis ToolPak) provide new
worksheet functions that can be used in formulas. The new
features usually blend in well with the original interface, so
they appear to be part of the program (this is referred to as
seamless integration).

Comparing an add-in to a
standard workbook
Any knowledgeable Excel user can create an add-in from an
XLS workbook; no additional software or programming tools
are required. Any XLS file can be converted to an add-in, but
not all XLS files are appropriate for add-ins. An Excel add-in
is basically a normal XLS workbook with the following
differences:

✦ The IsAddin property of the ThisWorkbook object is
True.

2121C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

An overview of add-
ins, and why this
concept is important
for developers

Details about Excel’s
Add-In Manager

How to create an
add-in, including a
hands-on example

How XLA files differ
from XLS files

Examples of VBA
code that
manipulates add-ins

How to optimize
your add-in for
speed and size

✦ ✦ ✦ ✦

4799-2 ch21.F 6/11/01 9:41 AM Page 625

626 Part V ✦ Advanced Programming Techniques

✦ The workbook window is hidden in such a way that it can’t be unhidden using
the Window ➪ Unhide command. This means that you can’t display work-
sheets or chart sheets contained in an add-in (unless you write code to copy
the sheet to a standard workbook).

✦ An add-in is not a member of the Workbooks collection. Rather, it’s a member
of the AddIns collection. However, you can access an add-in by using the
Workbooks collection (see “Collection membership,” later in this chapter).

✦ Add-ins can be loaded and unloaded using the Tools ➪ Add-Ins command.

✦ The Macro dialog box does not display the names of the macros contained in
an add-in.

✦ A custom worksheet function stored within an add-in can be used in formulas
without your having to precede its name with the source workbook’s filename.

By default, an add-in has an .xla file extension. This is not a requirement, however.
An add-in file can have any extension that you like.

Why create add-ins?
You might decide to convert your XLS application into an add-in for any of the
following reasons:

✦ To restrict access to your code and worksheets. When you distribute an applica-
tion as an add-in and you protect it with a password, users can’t view or mod-
ify the sheets or VBA code in the workbook. Therefore, if you use proprietary
techniques in your application, you can prevent anyone from copying the
code, or at least make it more difficult to do so.

✦ To avoid confusion. If a user loads your application as an add-in, the file is not
visible and is therefore less likely to confuse novice users or get in the way.
Unlike a hidden XLS workbook, an add-in can’t be unhidden.

✦ To simplify access to worksheet functions. Custom worksheet functions stored
within an add-in don’t require the workbook name qualifier. For example, if
you store a custom function named MOVAVG in a workbook named Newfuncs.
xls, you must use a syntax like the following to use this function in a different
workbook:

=Newfuncs.xls!MOVAVG(A1:A50)

But if this function is stored in an add-in file that’s open, you can use a much
simpler syntax because you don’t need to include the file reference:

=MOVAVG(A1:A50)

✦ To provide easier access for users. Once you identify the location of your add-
in, it appears in the Add-Ins dialog box with a friendly name and a description
of what it does.

Note

4799-2 ch21.F 6/11/01 9:41 AM Page 626

627Chapter 21 ✦ Creating and Using Add-Ins

✦ To gain better control over loading. Add-ins can be opened automatically when
Excel starts, regardless of the directory in which they are stored.

✦ To avoid displaying prompts when unloading. When an add-in is closed, the
user never sees the “Save change in xxx?” prompt.

Understanding Excel’s Add-In Manager
The most efficient way to load and unload add-ins is with Excel’s Add-Ins dialog
box, which you access by choosing Tools ➪ Add-Ins. This command displays the
Add-Ins dialog box, shown in Figure 21-1. The list box contains the names of all add-
ins that Excel knows about, and check marks identify add-ins that are open. You can
open and close add-ins from this dialog box by checking or unchecking the check
boxes.

The Add-Ins dialog box for Excel 2002 features a new button: Automation. Use this
button to install a COM add-in. Although Excel 2000 supports COM add-ins, it
didn’t provide a direct way to install them.

You can also open most add-in files by choosing the File ➪ Open command.
Because an add-in is never the active workbook, you can’t close an add-in by
choosing File ➪ Close. You can remove the add-in only by exiting and restarting
Excel or by executing VBA code to close the add-in. Opening an add-in with the
File ➪ Open command opens the file, but the add-in is not officially “installed.”

When you open an add-in, you may or may not notice anything different about
Excel. In almost every case, however, the user interface changes in some way: Excel
displays either a new menu, one or more new menu items on an existing menu, or a
toolbar. For example, when you open the Analysis ToolPak add-in, this add-in gives
you a new menu item on the Tools menu: Data Analysis. When you open Excel’s
Euro Currency Tools add-in, you’ll get a new toolbar named EuroValue. If the add-in
contains only custom worksheet functions, the new functions appear in the Insert
Function dialog box.

Caution

New
Feature

About COM Add-Ins

Excel 2000 and later versions also support COM (Component Object Model) add-ins. These
files have a DLL or EXE file extension. A COM add-in can be written so it works with all
Office applications that support add-ins. An additional advantage is that the code is com-
piled, thereby offering better security. Unlike XLA add-ins, a COM add-in cannot contain
Excel sheets or charts. COM add-ins are developed with Visual Basic 5 (or later), or with the
Office Developer Edition. Discussion of creating COM add-in procedures is well beyond the
scope of this book.

4799-2 ch21.F 6/11/01 9:41 AM Page 627

628 Part V ✦ Advanced Programming Techniques

Figure 21-1: The Add-Ins dialog box

Creating an Add-In
As I noted earlier, you can convert any workbook to an add-in, but not all work-
books are appropriate candidates for add-ins. Generally, a workbook that benefits
most from being converted to an add-in is one that contains macros — especially
general-purpose macro procedures. A workbook that consists only of worksheets
would be inaccessible as an add-in because worksheets within add-ins are hidden
from the user. You can, however, write code that copies all or part of a sheet from
your add-in to a visible workbook.

Creating an add-in from a workbook is simple. The following steps describe how to
create an add-in from a normal workbook file:

1. Develop your application, and make sure everything works properly.

Don’t forget to include a way to execute the macro or macros in the add-in.
You might want to add a new menu or menu item or to create a custom
toolbar. See Chapter 23 for details on customizing menus and Chapter 22 for
a discussion of custom toolbars.

2. Test the application by executing it when a different workbook is active.

This simulates the application’s behavior when it’s used as an add-in because
an add-in is never the active workbook.

3. Activate the VBE, and select the workbook in the Project window. Choose
Tools ➪ xxx Properties, and click the Protection tab. Select the Lock project
for viewing check box, and enter a password (twice). Click OK.

This step is necessary only if you want to prevent others from viewing or
modifying your macros or custom dialog boxes.

4799-2 ch21.F 6/11/01 9:41 AM Page 628

629Chapter 21 ✦ Creating and Using Add-Ins

4. Reactivate Excel and choose File ➪ Properties, click the Summary tab, and
enter a brief descriptive title in the Title field and a longer description in the
Comments field.

This step is not required, but it makes the add-in easier to use by displaying
descriptive text in the Add-Ins dialog box.

5. Select File ➪ Save As.

6. In the Save As dialog box, select Microsoft Excel add-in (*.xla) from the Save
as type drop-down list.

7. Click Save. A copy of the workbook is saved (with an .xla extension), and the
original XLS workbook remains open.

A workbook being converted to an add-in must have at least one worksheet. For
example, if your workbook contains only chart sheets or Excel 5/95 dialog sheets,
the Microsoft Excel add-in (*.xla) option does not appear in the Save As dialog
box. Also, this option appears only when a worksheet is active when you issue the
File ➪ Save As command.

An Add-In Example
In this section, I discuss the steps involved in creating a useful add-in. The example
uses the Text Tools utility that I described in Chapter 16.

The XLS version of the Text Tools utility is available on the companion CD-ROM.
You can use this file to create the described add-in.

Setting up the workbook
In this example, you’ll be working with a workbook that has already been developed
and debugged. The workbook consists of the following items:

On the
CD-ROM

Caution

A Few Words About Security

Microsoft has never promoted Excel as a product that creates applications in which the
source code is secure. The password feature provided in Excel is sufficient to prevent casual
users from accessing parts of your application that you’d like to keep hidden. Excel 2002
includes stronger security than previous versions, but it is possible that your passwords can
be cracked. If you must be absolutely sure that no one ever sees your code or formulas,
Excel is not your best choice as a development platform.

4799-2 ch21.F 6/11/01 9:41 AM Page 629

630 Part V ✦ Advanced Programming Techniques

✦ A worksheet named HelpSheet. This contains the help text that describes the
utility.

✦ A UserForm named FormHelp. This dialog box is used to display help. The
code module for this UserForm contains several event-handler procedures.

✦ A UserForm named FormMain. This dialog box serves as the primary user
interface. The code module for this UserForm contains several event-handler
procedures.

✦ A VBA module named modMenus. This contains the code that creates and
deletes a menu item (Tools ➪ Text Tools).

✦ A VBA module named modMain. This contains several procedures, including a
procedure that displays the FormMain UserForm.

In addition, the ThisWorkbook module contains two event-handler procedures
(Workbook_Open and Workbook_BeforeClose) that call other procedures to
create and delete the menu item.

See Chapter 16 for details about how the Text Tools utility works.

Testing the workbook
Before converting this workbook to an add-in, you need to test it. To simulate what
happens when the workbook is an add-in, you should test the workbook when a
different workbook is active. Remember, an add-in is never the active workbook.

Open a new workbook, and try out the various features in the Text Tools utility. Do
everything you can think of to try to make it fail. Better yet, seek the assistance of
someone unfamiliar with the application to give it a crash test.

Adding descriptive information
I recommend entering a description of your add-in, but this step is not required.
Choose the File ➪ Properties command, which opens the Properties dialog box.
Then click the Summary tab, as shown in Figure 21-2.

Enter a title for the add-in in the Title field. This text appears in the Add-Ins dialog
box. In the Comments field, enter a description. This information appears at the
bottom of the Add-Ins dialog box when the add-in is selected.

Cross-
Reference

4799-2 ch21.F 6/11/01 9:41 AM Page 630

631Chapter 21 ✦ Creating and Using Add-Ins

Figure 21-2: Use the Properties dialog
box to enter descriptive information
about your add-in.

Creating the add-in
To create the add-in, do the following:

1. Activate the VBE, and select the workbook in the Project window.

2. Select Debug ➪ Compile. This step forces a compilation of the VBA code, and
identifies any syntax errors so you can correct them. When you save a file as
an add-in, Excel creates the add-in even if it contains syntax errors.

3. Choose Tools ➪ TextTools Properties, and click the Protection tab. Select the
Lock project for viewing check box and enter a password (twice). Click OK. If
you don’t need to protect the project, you can skip this step.

By default, all VB projects are named VBProject. In this example, the project
name was changed to TextTools.

4. Save the workbook.

5. Activate the worksheet, and choose File ➪ Save As. Excel displays its Save As
dialog box.

6. In the Save as type drop-down list, select Microsoft Excel add-in (*.xla).

7. Click Save. A new add-in file is created, and the original XLS version remains
open.

4799-2 ch21.F 6/11/01 9:41 AM Page 631

632 Part V ✦ Advanced Programming Techniques

Installing the add-in
To avoid confusion, close the XLS workbook before installing the add-in created
from that workbook.

To install an add-in, do the following:

1. Choose the Tools ➪ Add-Ins command. Excel displays the Add-Ins dialog box.

2. Click the Browse button, and locate the add-in you just created. After you find
your new add-in, the Add-Ins dialog box displays the add-in in its list. As
shown in Figure 21-3, the Add-Ins dialog box also displays the descriptive
information you provided in the Properties dialog box.

About Excel’s Add-In Manager

You access Excel’s Add-In Manager by selecting the Tools ➪ Add-Ins command, which dis-
plays the Add-Ins dialog box. This dialog box lists the names of all the available add-ins.
Those that are checked are open.

In VBA terms, the Add-In dialog box lists the Title property of each AddIn object in the
AddIns collection. Each add-in that appears with a check mark has its Installed property
set to True.

You can install an add-in by checking its box, and you can de-install an installed add-in by
removing the check mark from its box. To add an add-in to the list, use the Browse button
to locate its file. By default, the Add-In dialog box lists files of the following types:

✦ XLA: An add-in created from an XLS file

✦ XLL: A standalone DLL file, written in C and compiled

If you click the Automation button (available only in Excel 2002), you’ll be able to browse
for COM add-ins. Note that the Automation Servers dialog box will probably list many files,
and the file list is not limited to COM add-ins that work with Excel.

You can enroll an add-in file into the AddIns collection with the Add method of VBA’s
AddIns collection, but you can’t remove one using VBA. You can also open an add-in using
VBA by setting the AddIn object’s Installed property to True. Setting it to False closes the
add-in.

The Add-In Manager stores the installed status of the add-ins in the Windows Registry when
you exit Excel. Therefore, all add-ins that are installed when you close Excel are automati-
cally opened the next time you start Excel.

4799-2 ch21.F 6/11/01 9:41 AM Page 632

633Chapter 21 ✦ Creating and Using Add-Ins

Figure 21-3: The Add-Ins dialog box,
with the new add-in selected

3. Click OK to close the dialog box and open the add-in.

When the Text Tools add-in is opened, the Tools menu displays the new menu item
that executes the StartTextTool procedure in the add-in.

Distributing the add-in
You can distribute this add-in to other Excel users simply by giving them a copy of
the XLA file (they don’t need the XLS version) along with instructions on how to
install it. If you have the Developer’s Edition of Office 2002, you can use the Setup
Wizard to create a Setup.exe file that your users can easily make sense of. After
they install the add-in, the new Text Tools command appears on the Tools menu. If
you locked the file with a password, your macro code cannot be viewed or modified
by others unless they know the password.

Modifying the add-in
If you want to modify an add-in, first open it and then unlock it. To unlock it, acti-
vate the VBE, and double-click its project’s name in the Project window. You’ll be
prompted for the password. Make your changes, and then save the file from the
VBE (using the File ➪ Save command).

If you create an add-in that stores its information in a worksheet, you must set its
workbook’s IsAddIn property to False before you can view that workbook in Excel.
You do this in the Properties window shown in Figure 21-4 when the ThisWorkbook
object is selected. After you’ve made your changes, make sure you set the IsAddIn
property back to True before you save the file. If you leave the IsAddIn property
set to False, the file is saved as a regular workbook, although it still has the .xla
extension. At this point, attempting to install this file by using the Add-Ins dialog
box results in an error.

4799-2 ch21.F 6/11/01 9:41 AM Page 633

634 Part V ✦ Advanced Programming Techniques

Figure 21-4: Making an add-in
not an add-in

Creating an Add-In: A Checklist

Before you release your add-in to the world, take a few minutes to run through this check-
list:

✦ Did you test your add-in with all supported platforms and Excel versions?

✦ Did you give your VB project a new name? By default, every project is named
VBProject. It’s a good idea to give your project a more meaningful name.

✦ Does your add-in make any assumptions about the user’s directory structure or
directory names?

✦ When you use the Add-Ins dialog box to load your add-in, is its name and descrip-
tion correct and appropriate?

✦ If your add-in uses VBA functions that aren’t designed to be used in a worksheet,
have you declared the functions as Private? If not, these functions will appear in
the Paste Function dialog box.

✦ Did you force a recompile of your add-in to ensure that it contains no syntax errors?

✦ Did you account for any international issues? For example, if your add-in creates a
new item on the Tools menu, will it fail if the Tools menu has a non-English name?

✦ Is your add-in file optimized for speed? See “Optimizing the Performance of Add-
Ins” later in this chapter.

4799-2 ch21.F 6/11/01 9:41 AM Page 634

635Chapter 21 ✦ Creating and Using Add-Ins

Comparing XLA and XLS Files
This section begins by comparing an add-in XLA file to its XLS source file. Later in
this chapter, I discuss methods that you can use to optimize the performance of
your add-in. I describe a technique that may reduce its file size, which makes it load
more quickly and use less disk space and memory.

File size and structure
An add-in based on an XLS source file is exactly the same size as the original. The
VBA code in XLA files is not compressed or optimized in any way, so faster perfor-
mance is not among the benefits of using an add-in.

Collection membership
An add-in is a member of the AddIns collection but not an “official” member of the
Workbooks collection. You can refer to an add-in by referencing the Workbooks
collection and supplying the add-in’s filename as its index. The following instruction
creates an object variable that represents an add-in named Myaddin.xla:

Set TestAddin = Workbooks(“Myaddin.xla”)

Add-ins cannot be referenced by an index number in the Workbooks collection. If
you use the following code to loop through the Workbooks collection, the
Myaddin.xla workbook is not displayed:

For Each w in Application.Workbooks
MsgBox w.Name

Next w

The following For-Next loop, on the other hand, displays Myaddin.xla — assuming
that Excel “knows” about it — in the Add-Ins dialog:

For Each a in Application.AddIns
MsgBox a.Name

Next a

Windows
Ordinary XLS workbooks are displayed in one or more windows. For example, the
following statement displays the number of windows for the active workbook:

MsgBox ActiveWorkbook.Windows.Count

4799-2 ch21.F 6/11/01 9:41 AM Page 635

636 Part V ✦ Advanced Programming Techniques

You can manipulate the visibility of each window for an XLS workbook by using the
Window ➪ Hide command or by changing the Visible property. The following code
hides all windows for the active workbook:

For Each Win In ActiveWorkbook.Windows
Win.Visible = False

Next Win

Add-in files are never visible, and they don’t officially have windows, even though
they have unseen worksheets. Consequently, they don’t appear in the windows list
when you select the Window command. If Myaddin.xla is open, the following state-
ment returns 0:

MsgBox Workbooks(“Myaddin.xla”).Windows.Count

Sheets
Add-in XLA files, like XLS files, can have any number of worksheets or chart sheets.
But, as I noted earlier in this chapter, an XLS file must have at least one worksheet
to convert it to an add-in.

When an add-in is open, your VBA code can access its contained sheets as if it were
an ordinary workbook. Because add-in files aren’t part of the Workbooks collection,
though, you must reference an add-in by its name, not by an index number. The fol-
lowing example displays the value in cell A1 of the first worksheet in Myaddin.xla,
which is assumed to be open:

MsgBox Workbooks(“Myaddin.xla”).Worksheets(1) _
.Range(“A1”).Value

If your add-in contains a worksheet that you would like the user to see, you can
copy it to an open workbook, or create a new workbook from the sheet.

The following code, for example, copies the first worksheet from an add-in and
places it in the active workbook (as the last sheet):

Sub CopySheetFromAddin()
Set AddinSheet = Workbooks(“Myaddin.xla”).Sheets(1)
NumSheets = ActiveWorkbook.Sheets.Count
AddinSheet.Copy After:=ActiveWorkbook.Sheets(NumSheets)

End Sub

Creating a new workbook from a sheet within an add-in is even simpler:

Sub CreateNewWorkbook()
Workbooks(“Myaddin.xla”).Sheets(1).Copy

End Sub

4799-2 ch21.F 6/11/01 9:41 AM Page 636

637Chapter 21 ✦ Creating and Using Add-Ins

The preceding examples assume that the code is in a file other than the add-in file.
VBA code within an add-in should always use ThisWorkbook to qualify refer-
ences to sheets or ranges within the add-in. For example, the following statement
is assumed to be in a VBA module in an add-in file. This statement displays the
value in cell A1 on Sheet 1.

MsgBox ThisWorkbook.Sheets(“Sheet1”).Range(“A1”).Value

Accessing VBA procedures in an add-in
Accessing the VBA procedures in an add-in is a bit different from accessing proce-
dures in a normal XLS workbook. First of all, when you issue the Tools ➪ Macro
command, the Macro dialog box does not display macro names belonging to open
add-ins. It’s almost as if Excel is trying to prevent you from accessing them.

If you know the name of the procedure, you can enter it directly into the Macro
dialog box and click Run to execute it. The Sub procedure must be in a general
VBA module, not in a code module for an object.

Because procedures contained in an add-in don’t appear in the Macro dialog box,
you must provide other means to access them. Your choices include direct meth-
ods, such as shortcut keys, custom menus, and custom toolbars, as well as indirect
methods, such as event-handlers. One such candidate, for example, may be the
OnTime method, which executes a procedure at a specific time of day.

You can use the Run method of the Application object to execute a procedure in
an add-in. For example,

Application.Run “Myaddin.xla!DisplayNames”

Another option is to use the Tools ➪ References command in the VBE to enable a
reference to the add-in. Then you can refer directly to one of its procedures in your
VBA code without the filename qualifier. In fact, you don’t need to use the Run
method; you can call the procedure directly as long as it’s not declared as Private.
The following statement executes a procedure named DisplayNames in an add-in
that has been added as a reference:

Call DisplayNames

Even when a reference to the add-in has been established, its macro names do
not appear in the Macro dialog box.

Function procedures defined in an add-in work just like those defined in an XLS
workbook. They’re easy to access because Excel displays their names in the Insert
Function dialog box, under the User Defined category. The only exception is if the

Note

Tip

Note

4799-2 ch21.F 6/11/01 9:41 AM Page 637

638 Part V ✦ Advanced Programming Techniques

Sleuthing a Protected Add-In

The Macro dialog box does not display the names of procedures contained in add-ins. But
what if you’d like to run such a procedure, but the add-in is protected so you can’t view the
code to determine the name of the procedure? Use the Object Browser!

To illustrate, use the Tools ➪ Add-Ins command to install the Lookup Wizard add-in. This
add-in is distributed with Excel and is protected, so you can’t view the code.

1. Activate the VBE, and select the Lookup.xla project in the Project window.

2. Press F2 to activate the Object Browser.

3. In the Libraries drop-down list, select lookup. This displays all the classes in the
Lookup.xla add-in, as depicted in the following figure.

4. Select various items in the Classes list to see what class they are and the members
they contain.

In the example above, the Lookup_Common class is a module, and its members consist of a
number of variables, constants, procedures, and functions. One of these procedures,
DoLookupCommand, sounds like it may be the main procedure that starts the wizard. To test
this theory, activate Excel, and choose Tools ➪ Macro ➪ Macros. Type DoLookupCommand
in the Macro Name box, and click Run. Sure enough! You’ll see the first dialog box of the
Lookup Wizard.

Armed with this information, you can write VBA code to start the Lookup Wizard.

4799-2 ch21.F 6/11/01 9:41 AM Page 638

639Chapter 21 ✦ Creating and Using Add-Ins

Function procedure was declared with the Private keyword; then the function
does not appear there. That’s why it’s a good idea to declare custom functions as
Private if they will be used only by other VBA procedures and are not designed to
be used in worksheet formulas.

To see an add-in that does not declare its functions as Private, install Microsoft’s
Lookup Wizard add-in. Then click the Insert Function button. You’ll find more than
three dozen nonworksheet functions listed in the User Defined category of the
Insert Function dialog box. These functions are not intended to be used in a work-
sheet formula.

As I discussed earlier, you can use worksheet functions contained in add-ins with-
out the workbook name qualifier. For example, if you have a custom function named
MOVAVG stored in the file Newfuncs.xls, you would use the following instruction to
address the function from a worksheet belonging to a different workbook:

=Newfuncs.xls!MOVAVG(A1:A50)

But if this function is stored in an add-in file that’s open, you can omit the file refer-
ence and write the following instead:

=MOVAVG(A1:A50)

Manipulating Add-Ins with VBA
In this section, I present information that will help you write VBA procedures that
manipulate add-ins.

The AddIns collection
The AddIns collection consists of all add-ins that Excel knows about. These add-ins
can either be installed or not. The Tools ➪ Add-Ins command displays the Add-Ins
dialog box, which lists all members of the AddIns collection. Those entries accom-
panied by a check mark are installed.

Adding an item to the AddIns collection
The add-in files that make up the AddIns collection can be stored anywhere. Excel
maintains a partial list of these files and their locations in the Windows Registry.
For Excel 2002, this list is stored at:

HKEY_CURRENT_USER\Software\Microsoft\Office\10.0\Excel\Add-in
Manager

Note

4799-2 ch21.F 6/11/01 9:41 AM Page 639

640 Part V ✦ Advanced Programming Techniques

You can use the Windows Registry Editor (Regedit.exe) to view this Registry key.
Note that the “standard” add-ins that are shipped with Excel do not appear in this
Registry key. In addition, add-in files stored in the following directory will also
appear in the list (but will not be listed in the Registry):

Windows\Application Data\Microsoft\AddIns

You can add a new AddIn object to the AddIns collection either manually or pro-
grammatically using VBA. To add a new add-in to the collection manually, select
Tools ➪ Add-Ins, click the Browse button, and locate the add-in.

To enroll a new member of the AddIns collection with VBA, use the collection’s Add
method. Here’s an example:

Application.AddIns.Add “c:\files\newaddin.xla”

After the preceding instruction is executed, the AddIns collection has a new mem-
ber, and the Add-Ins dialog box shows a new item in its list. If the add-in already
exists in the collection, nothing happens, and an error is not generated.

If the add-in you’re enrolling is on a removable disk (for example, a floppy disk or
CD-ROM), you can also copy the file to Excel’s library directory with the Add method.
The following example copies Myaddin.xla from drive A and adds it to the AddIns
collection. The second argument (True, in this case) specifies whether the add-in
should be copied. If the add-in resides on a hard drive, the second argument may be
ignored.

Application.AddIns.Add “a:\Myaddin.xla”, True

Enrolling a new workbook into the AddIns collection does not install it. To install
the add-in, set its Installed property to True.

The Windows Registry does not actually get updated until Excel closes normally.
Therefore, if Excel ends abnormally (that is, if it crashes), the add-in’s name will
not get added to the Registry and the add-in will not be part of the AddIns
collection when Excel restarts.

Removing an item from the AddIns collection
Oddly, there is no direct way to remove an add-in from the AddIns collection. The
AddIns collection does not have a Delete or Remove method. One way to remove
an add-in from the Add-Ins dialog box is to edit the Windows Registry database
(using Regedit.exe). After you do this, the add-in will not appear in the Add-Ins
dialog box the next time you start Excel. Note that this method is not guaranteed
to work with all add-in files.

Caution

Note

4799-2 ch21.F 6/11/01 9:41 AM Page 640

641Chapter 21 ✦ Creating and Using Add-Ins

Another way to remove an add-in from the AddIns collection is to delete, move, or
rename its XLA file. You’ll get a warning like the one in Figure 21-5 the next time you
try to install or uninstall the add-in, along with an opportunity to remove it from the
AddIns collection.

Figure 21-5: One very direct way to remove a
member of the AddIns collection

AddIn object properties
An AddIn object is a single member of the AddIns collection. For example, to dis-
play the filename of the first member of the AddIns collection, use the following:

Msgbox AddIns(1).Name

An AddIn object has 14 properties, which you can read about in the online help.
Five of these properties are “hidden” properties. Some of the terminology is a bit
confusing, so I’ll discuss a few of the more important properties.

Name
This property holds the filename of the add-in. Name is a read-only property, so you
can’t change the name of the file by changing the Name property.

Path
This property holds the drive and path where the add-in file is stored. It does not
include a final backslash or the filename.

FullName
This property holds the add-in’s drive, path, and filename. This property is a bit
redundant because this information is also available from the Name and Path
properties. The following instructions produce exactly the same message:

MsgBox AddIns(1).Path & “\” & AddIns(1).Name
MsgBox AddIns(1).FullName

4799-2 ch21.F 6/11/01 9:41 AM Page 641

642 Part V ✦ Advanced Programming Techniques

Title
This hidden property holds a descriptive name for the add-in. The Title property
is what appears in the Add-Ins dialog box. This property is read-only, and the only
way to add or change the Title property of an add-in is to use the File ➪ Properties
command (click the Summary tab, and enter text into the Title field). You must use
this menu command with the XLS version of the file before converting it to an
add-in.

Typically, a member of a collection is addressed by way of its Name property
setting. The AddIns collection is different; it uses the Title property instead.
The following example displays the filename for the View Manager add-in (that is,
Views.xls), whose Title property is “View Manager”.

Sub ShowName()
MsgBox AddIns(“View Manager”).Name

End Sub

You can, of course, also reference a particular add-in with its index number if you
happen to know it.

Comments
This hidden property stores text that is displayed in the Add-Ins dialog box when
a particular add-in is selected. Comments is a read-only property. The only way to
change it is to use the Properties dialog box before you convert the workbook to an
add-in. Comments can be as long as 255 characters, but the Add-Ins dialog box can
display only about 100 characters.

Installed
The Installed property is True if the add-in is currently installed — that is, if it is
checked in the Add-Ins dialog box. Setting the Installed property to True opens
the add-in. Setting it to False unloads it. Here’s an example of how to install (that is,
open) the MS Query add-in with VBA:

Sub InstallQuery()
AddIns(“MS Query Add-In”).Installed = True

End Sub

After this procedure is executed, the Add-Ins dialog box displays a check mark next
to MS Query Add-In. If the add-in is already installed, setting its Installed property
to True has no effect. To remove this add-in (uninstall it), simply set the Installed
property to False.

If the add-in was opened with the File ➪ Open command, it is not considered to
be officially installed. Consequently, its Installed property is False.

Caution

4799-2 ch21.F 6/11/01 9:41 AM Page 642

643Chapter 21 ✦ Creating and Using Add-Ins

The following procedure displays the number of add-ins in the AddIns collection
and the number of those that are installed. You’ll find that the count does not
include add-ins that were opened with the File ➪ Open command.

Sub CountInstalledAddIns()
Dim Count As Integer
Dim Item As AddIn
Dim Msg As String
Count = 0
For Each Item In AddIns

If Item.Installed Then Count = Count + 1
Next Item
Msg = “Add-ins: “ & AddIns.Count & Chr(13)
Msg = Msg & “Installed: “ & Count
MsgBox Msg

End Sub

The next procedure loops through all add-ins in the AddIns collection and unin-
stalls any add-in that’s installed. This procedure does not affect add-ins that were
opened with the File ➪ Open command.

Sub UninstallAll()
Dim Count As Integer
Dim Item As AddIn
Count = 0
For Each Item In AddIns

If Item.Installed Then
Item.Installed = False
Count = Count + 1

End If
Next Item
MsgBox Count & “ Add-Ins Uninstalled.”

End Sub

You can determine whether a particular workbook is an add-in by accessing its
IsAddIn property. This is not a read-only property, so you can also convert a
workbook to an add-in by setting the IsAddIn property to True.

Accessing an add-in as a workbook
As I mentioned earlier, there are two ways to open an add-in file: with the File ➪
Open command and with the Tools ➪ Add-Ins command. The latter method is the
preferred method for the following reason: When you open an add-in with the File ➪
Open command, its Installed property is not set to True. Therefore, you cannot
close the file using the Add-Ins dialog box. In fact, the only way to close such an
add-in is with a VBA statement such as the following:

Workbooks(“Myaddin.xla”).Close

Note

4799-2 ch21.F 6/11/01 9:41 AM Page 643

644 Part V ✦ Advanced Programming Techniques

Using the Close method on an installed add-in removes the add-in from memory,
but it does not set its Installed property to False. Therefore, the Add-Ins dialog
box still lists the add-in as installed, which can be very confusing. The proper way
to remove an installed add-in is to set its Installed property to False.

As you may have surmised, Excel’s add-in capability is a bit quirky. Therefore, as a
developer, you’ll need to pay particular attention to issues involving installing and
uninstalling add-ins.

AddIn object events
An AddIn object has two events: AddInInstall (generated when it is installed)
and AddInUninstall (generated when it is uninstalled). You can write event-
handler procedures for these events in the ThisWorkbook object for the add-in.

The following example is displayed as a message when the add-in is installed:

Private Sub Workbook_AddinInstall()
MsgBox ThisWorkbook.Name & _
“ add-in in has been installed.”

End Sub

Don’t confuse the AddInInstall event with the Open event. The
AddInInstall event occurs only when the add-in is first installed. If you need to
execute code every time the add-in is opened, use a Workbook_Open procedure.

For additional information about events, see Chapter 19.

Optimizing the Performance of Add-Ins
It should be obvious that you want your add-in to be as fast and efficient as possi-
ble. In this section, I describe some techniques that you may find helpful.

Code speed
If you ask a dozen Excel programmers to automate a particular task, chances are
you’ll get a dozen different approaches. Most likely, not all these approaches will
perform equally well.

Following are a few tips that you can use to ensure that your code runs as quickly
as possible:

✦ Set the Application.ScreenUpdating property to False when writing data
to a worksheet.

Cross-
Reference

Note

Caution

4799-2 ch21.F 6/11/01 9:41 AM Page 644

645Chapter 21 ✦ Creating and Using Add-Ins

✦ Declare the data type for all variables used, and in your finalized code, avoid
variants whenever possible. Use an Option Explicit statement at the top of
each module to force variable declaration.

✦ Create object variables to avoid lengthy object references. For example, if
you’re working with a Series object for a chart, create an object variable
using code like this:

Dim S1 As Series
Set S1 = ActiveWorkbook.Sheets(1).ChartObjects(1). _
Chart.SeriesCollection(1)

✦ Declare object variables as a specific object type, not As Object.

✦ Use the With-End With construct, when appropriate, to set multiple properties
or call multiple methods for a single object.

✦ Remove all extraneous code. This is especially important if you’ve used the
macro recorder to create procedures.

✦ If possible, manipulate data with VBA arrays rather than worksheet ranges.
Reading and writing to a worksheet takes much longer than manipulating data
in memory. This is not a firm rule, however. For best results, test both
options.

✦ Avoid linking UserForm controls to worksheet cells. Doing so may trigger a
recalculation whenever the user changes the UserForm control.

✦ Compile your code before creating the add-in. This may increase the file size,
but it eliminates the need for Excel to compile the code before executing the
procedures.

File size
Excel workbooks (including add-ins) have always suffered from a serious problem:
bloat. You may have noticed that the size of your files tends to increase over time,
even if you don’t add any new content. This is especially true if you delete a lot of
code and then replace it with other code. Making lots of changes to worksheets also
seems to add to file bloat.

If you want to make your add-in — or any workbook, for that matter — as small as
possible, you’ll need to re-create your workbook. Here’s how:

1. Make a backup of your application, and keep it in a safe place.

2. Activate the VBE, and export all the components for your project that contain
VBA code (modules, code modules, UserForms, and possibly ThisWorkbook,
worksheet, and chart modules). Make a note of the filenames and the location.

3. Create a new workbook.

4. Copy the contents of all the worksheets from your original application to
worksheets in the new workbook. Be especially careful if you used named
ranges in your workbook — they must be re-created.

4799-2 ch21.F 6/11/01 9:41 AM Page 645

646 Part V ✦ Advanced Programming Techniques

5. Import the components you exported in Step 2.

6. Compile the code.

7. If applicable, reattach any toolbars that were attached to your original work-
book.

8. Save the new workbook.

9. Test the new workbook thoroughly to ensure that nothing was lost in the
process.

There’s an excellent chance that the newly created file will be much smaller than
your original. The size reduction depends on many factors, but I’ve been able to
reduce the size of my XLA files by as much as 55 percent with this process.

Special Problems with Add-Ins
Add-ins are great, but you should realize by now that there’s no free lunch. Add-ins
present their share of problems — or should I say challenges? In this section, I
discuss some issues that you need to know about if you’ll be developing add-ins for
widespread user distribution.

Ensuring that an add-in is installed
In some cases, you may need to ensure that your add-in is installed properly (that
is, opened using the Tools ➪ Add-Ins command, not the File ➪ Open command). This
section describes a technique that determines just that. If it isn’t properly installed,
VBA installs it (by attaching it to the AddIns collection, if necessary) and uses the
message shown in Figure 21-6 to tell the user what was done.

Figure 21-6: When attempting to open the add-in
incorrectly, the user sees this message.

Listing 21-1 presents the code module for this example’s ThisWorkbook object.
This technique relies on the fact that the AddInInstall event occurs before the
Open event for the workbook.

4799-2 ch21.F 6/11/01 9:41 AM Page 646

647Chapter 21 ✦ Creating and Using Add-Ins

Listing 21-1: Ensuring that an accessible add-in is properly
installed and workable

Dim InstalledProperly As Boolean

Private Sub Workbook_AddinInstall()
InstalledProperly = True

End Sub

Private Sub Workbook_Open()
If Not ThisWorkbook.IsAddin Then Exit Sub

If Not InstalledProperly Then
‘ Add it to the AddIns collection

If Not InAddInCollection(ThisWorkbook) Then _
AddIns.Add FileName:=ThisWorkbook.FullName

‘ Install it
AddInTitle = GetTitle(ThisWorkbook)
Application.EnableEvents = False
AddIns(AddInTitle).Installed = True
Application.EnableEvents = True

‘ Inform user
Msg = ThisWorkbook.Name & _
“ has been installed as an add-in. “

Msg = Msg & _
“Use the Tools Add-Ins command to uninstall it.”

MsgBox Msg, vbInformation, AddInTitle
End If

End Sub

If the add-in is installed properly, the Workbook_AddinInstall procedure is exe-
cuted. This procedure sets the Boolean variable InstalledProperly to True. If the
add-in was opened using the File ➪ Open command, the Workbook_AddinInstall
procedure is not executed, so the InstalledProperly variable has its default
value (False).

When the Workbook_Open procedure is executed, it first checks to make sure the
workbook is an add-in. If it isn’t, the procedure ends. If the workbook is an add-in,
the routine checks the value of InstalledProperly. If the add-in was installed
properly, the procedure ends. If not, the code executes a custom function to deter-
mine whether the add-in is a member of the AddIns collection. If it is not in the col-
lection, it is added. The procedure ends by installing the file as an add-in and then
informing the user. The net effect is that using File ➪ Open to open the add-in actu-
ally installs it properly — and the user receives a brief lesson in the use of add-ins.

4799-2 ch21.F 6/11/01 9:41 AM Page 647

648 Part V ✦ Advanced Programming Techniques

The preceding code uses two custom functions, shown in Listing 21-2. The
InAddInCollection returns True if a workbook passed as an argument is a
member of the AddIns collection. The GetTitle function returns the Title
property for an add-in workbook.

Listing 21-2: Filling in for Excel’s missing add-in properties

Function InAddInCollection(wb) As Boolean
Dim Item As AddIn
For Each Item In AddIns

If Item.Name = wb.Name Then
InAddInCollection = True

End If
Next Item

End Function

Function GetTitle(wb) As String
Dim Item As AddIn
GetTitle = “”
For Each Item In AddIns

If Item.Name = wb.Name Then
GetTitle = Item.Title

End If
Next Item

End Function

Referencing other files
If your add-in uses other files, you need to be especially careful when distributing
the application. You can’t assume anything about the storage structure of the sys-
tem that users will run the application on. The easiest approach is to insist that all
files for the application be copied to a single directory. Then you can use the Path
property of your application’s workbook to build path references to all other files.

For example, if your application uses a custom help file, be sure that the help file is
copied to the same directory as the application itself. Then you can use a proce-
dure like the following to make sure that the help file can be located:

Sub GetHelp()
Dim Path As String
Path = ThisWorkbook.Path
Application.Help Path & “\USER.HLP”

End Sub

4799-2 ch21.F 6/11/01 9:41 AM Page 648

649Chapter 21 ✦ Creating and Using Add-Ins

If your application uses API calls to standard Windows DLLs, you can assume that
these can be found by Windows. But if you use custom DLLs, the best practice is to
make sure that they are installed in the Windows\System directory (which may or
may not be named Windows\System). You’ll need to use the GetSystemDirectory
Windows API function to determine the exact path of the System directory.

Specifying the proper Excel version
If your add-in makes use of any features unique to Excel 2002, you’ll want to warn
users who attempt to open the add-in using an earlier version. The following code
does the trick:

Sub CheckVersion()
If Val(Application.Version) < 10 Then

MsgBox “This works only with Excel 2002 or later”
ThisWorkbook.Close

End If
End Sub

The Version property of the Application object returns a string. For example,
this might return 10.0a. This procedure uses VBA’s Val function, which ignores
everything after the first alpha character.

See Chapter 26 for additional information about compatibility.

Summary
In this chapter, I covered add-ins and described what they are, how to create them,
and how to manipulate them using VBA.

In the next chapter, I demonstrate how to use VBA to interact with other applications.

✦ ✦ ✦

Cross-
Reference

4799-2 ch21.F 6/11/01 9:41 AM Page 649

4799-2 ch21.F 6/11/01 9:41 AM Page 650

Developing
Applications

The chapters in this part deal with important elements of
creating user-oriented applications. Chapters 22 and 23

provide information on creating custom toolbars and menus.
Chapter 24 presents several different ways to provide online
help for your applications. In Chapter 25, I present some basic
information about developing user-oriented applications, and
I describe such an application in detail.

✦ ✦ ✦ ✦

In This Part

Chapter 22
Creating Custom
Toolbars

Chapter 23
Creating Custom
Menus

Chapter 24
Providing Help for
Your Applications

Chapter 25
Developing User-
Oriented
Applications

✦ ✦ ✦ ✦

P A R T

VIVI

4799-2 PO6.F 6/11/01 9:41 AM Page 651

4799-2 PO6.F 6/11/01 9:41 AM Page 652

Creating Custom
Toolbars

Toolbars, of course, are a pervasive user interface element
found in virtually all software these days. Excel is defi-

nitely not a toolbar-deficient product. It comes with more than
four dozen built-in toolbars, and it’s easy to construct new
toolbars or customize existing ones either manually or using
VBA. In this chapter, I describe how to create and modify
toolbars.

About Command Bars
Beginning with Excel 97, Microsoft introduced a completely
new way of handling toolbars. Technically, a toolbar is known
as a CommandBar object. In fact, what’s commonly called a
toolbar is actually one of three types of command bars:

Toolbar A floating bar with one or more click-
able controls. This chapter focuses on
this type of command bar.

Menu bar The two built-in menu bars are
Worksheet Menu Bar and Chart Menu
Bar (see Chapter 23).

Shortcut menu The menu that pops up when you
right-click an object (see Chapter 23).

Because a menu bar is also a command bar, virtually all
the information in this chapter also applies to menu bars.
In Chapter 23, I discuss the nuances of dealing with cus-
tom menus.

Cross-
Reference

2222C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

An overview of
command bars,
which include
toolbars

Understanding how
Excel keeps track of
toolbars

Customizing toolbars
manually

Lots of examples that
demonstrate how to
use VBA to
manipulate toolbars

✦ ✦ ✦ ✦

4799-2 ch22.F 6/11/01 9:42 AM Page 653

654 Part VI ✦ Developing Applications

Toolbar Manipulations
The following list summarizes the ways in which you can customize toolbars in
Excel:

✦ Remove controls from built-in toolbars. You can get rid of controls that you
never use and free up a few pixels of screen space.

✦ Add controls to built-in toolbars. You can add as many controls as you want to
any toolbar. These controls can be custom buttons or buttons from other tool-
bars, or they can come from the stock of controls that Excel provides.

✦ Create new toolbars. You can create as many new toolbars as you like, with
toolbar controls from any source.

✦ Change the functionality of built-in toolbar controls. You do this by attaching
your own macro to a built-in control.

✦ Change the image that appears on any toolbar control. Excel includes a rudi-
mentary but functional toolbar button editor, although there are several other
image-changing techniques.

You can perform these customizations manually by using the Customize dialog box.
This dialog box can be displayed using a number of different commands: select
View ➪ Toolbars ➪ Customize, select the Tools ➪ Customize command, or right-click
any toolbar and choose Customize. In addition, you can customize toolbars by writ-
ing VBA code.

Don’t be afraid to experiment with toolbars. If you mess up a built-in toolbar, you
can easily reset it to its default state. Just access the Customize dialog box and
click the Toolbars tab. Then select the toolbar in the list, and click the Reset button.

How Excel Handles Toolbars
Before you start working with custom toolbars, it’s important to understand how
Excel deals with toolbars in general. You may be surprised.

Storing toolbars
Toolbars can be attached to XLS (worksheet) or XLA (add-in) files, which makes it
easy to distribute custom toolbars with your applications (see “Distributing tool-
bars” later in this chapter). You can attach any number of toolbars to a workbook.
When the user opens your file, the attached toolbars automatically appear. An
exception occurs if a toolbar with the same name already exists. In such a case, the
new toolbar does not replace the existing one.

Note

4799-2 ch22.F 6/11/01 9:42 AM Page 654

655Chapter 22 ✦ Creating Custom Toolbars

Excel stores toolbar information in an XLB file, which resides in Windows’s main
directory (\WINDOWS or \WINNT). The exact name (and location) of this file
varies.

Why is this XLB file important? Assume that a colleague gives you an Excel work-
book that has a custom toolbar stored in it. When you open the workbook, the tool-
bar appears. You examine the workbook but decide that you’re not interested in it.
Nonetheless, when you exit Excel, the custom toolbar is added to your XLB file. If
you make any toolbar changes — from the minor adjustment of a built-in toolbar to
the introduction of a custom toolbar — the XLB file is resaved when you exit Excel.
Because the entire XLB file is loaded every time you start Excel, the time it takes to
start and exit Excel increases significantly as the XLB file grows in size. Plus, all
those toolbars eat up memory and system resources. Therefore, it’s in your best
interest to delete custom toolbars that you never use. Use the View ➪ Toolbars ➪
Customize command to do this.

If you upgrade to Excel 2002 from a previous version, the information in your old
XLB file will not be migrated to Excel 2002. In other words, you will lose any tool-
bar customizations that you’ve made.

When toolbars don’t work correctly
Excel’s approach to storing toolbars can cause problems. Suppose you’ve developed
an application that uses a custom toolbar, and you’ve attached that toolbar to the
application’s workbook. The first time an end user opens the workbook, the toolbar
is displayed. When the user closes Excel, your toolbar is saved in the user’s XLB
file. If the user alters the toolbar in any way — for example, if he or she accidentally
removes a button — the next time your application is opened, the correct toolbar
does not appear. Rather, the user sees the altered toolbar, which now lacks an impor-
tant button. In other words, a toolbar attached to a workbook is not displayed if the
user already has a toolbar with the same name. In many cases, this is not what you
want to happen.

Fortunately, you can write VBA code to prevent this scenario. The trick is never to
allow your custom toolbar to be added to the user’s toolbar collection. The best
way to do this is to create the toolbar on the fly every time the workbook is opened
and then delete it when your application closes. With this process, the toolbar is
never stored in the user’s XLB file. You might think that creating a toolbar on the fly
would be a slow process. As you’ll see later in this chapter, creating toolbars with
VBA is amazingly fast.

Manipulating Toolbars and Buttons Manually
Excel makes it easy for you to create new toolbars and modify existing toolbars. In
fact, you may not even have to use VBA to work with toolbars, because you can do
just about all your toolbar customization without it.

Note

4799-2 ch22.F 6/11/01 9:42 AM Page 655

656 Part VI ✦ Developing Applications

It’s important to understand that any customizations you make to a toolbar, either
built-in or custom, are “permanent.” In other words, the changes remain in effect
even when you restart Excel. These toolbar changes are not associated with a par-
ticular workbook. To restore a toolbar to its original state, you must reset it.

About command bar customization mode
To perform any type of manual toolbar (or menu) customization, Excel needs to be
in what I call command bar customization mode. You can put Excel into this mode by
using any of these techniques:

✦ Select View ➪ Toolbars ➪ Customize.

✦ Select Tools ➪ Customize.

✦ Right-click any toolbar or menu, and select Customize from the shortcut
menu.

When Excel is in command bar customization mode, the Customize dialog box is
displayed, and you can manipulate toolbars and menus any way you like. You’ll find
that you can right-click menus and toolbars to get a handy shortcut menu (see
Figure 22-1). After you’ve made your customization, click the Close button in the
Customize dialog box.

The Customize dialog box includes three tabs:

Toolbars Lists all the available toolbars, including custom toolbars you
have created. The list box also includes the two menu bars
(Worksheet Menu Bar and Chart Menu Bar), plus any other
custom menu bars.

Commands Lists by category all the available built-in commands. Use this
tab to add new items to a toolbar or menu bar.

Options Lets you select various options that relate to toolbars and
menus. These include icon size, screen tips, and menu
animations.

The Options tab of the Customize dialog box contains an option called Always
show full menus. I strongly recommend that you turn this option on. When this
option is off, incomplete menus are displayed. Apparently, Microsoft thought this
option would lessen confusion for beginners. In fact, it usually has the opposite
effect.

In the sections that follow, I briefly describe how to perform some common toolbar
modifications manually, using the Customize dialog box.

Tip

Caution

4799-2 ch22.F 6/11/01 9:42 AM Page 656

657Chapter 22 ✦ Creating Custom Toolbars

Figure 22-1: In command bar customization mode, you can alter all toolbars
and menus.

Hiding or displaying a toolbar
The Toolbars tab in the Customize dialog box displays every toolbar (built-in tool-
bars and custom toolbars). Add a check mark to display a toolbar; remove the
check mark to hide it. The changes take effect immediately.

Creating a new toolbar
Click the New button, and then enter a name in the New Toolbar dialog box. Excel
creates and displays an empty toolbar. You can then add buttons (or menu com-
mands) to the new toolbar.

Figure 22-2 shows a custom toolbar that I created manually. This toolbar, called
Custom Formatting, contains the formatting tools that I use most frequently. Notice
that this toolbar includes drop-down menus as well as standard toolbar buttons.

Figure 22-2: A custom toolbar that contains
formatting tools

4799-2 ch22.F 6/11/01 9:42 AM Page 657

658 Part VI ✦ Developing Applications

Renaming a custom toolbar
Select a custom toolbar from the list, and click the Rename button. Enter a new
name in the Rename Toolbar dialog box. You cannot rename a built-in toolbar.

Deleting a custom toolbar
Select a custom toolbar from the list, and click the Delete button. You cannot delete
a built-in toolbar.

Resetting a built-in toolbar
Select a built-in toolbar from the list, and click the Reset button. The toolbar is
restored to its default state. If you’ve added any custom tools to the toolbar, they
are removed. If you’ve removed any of the default tools, they are restored. The
Reset button is disabled when a custom toolbar is selected.

Moving and copying controls
When Excel is in command bar customization mode (that is, the Customize dialog
box is displayed), you can copy and move toolbar controls freely among any visible
toolbars. To move a control, drag it to its new location, either within the current
toolbar or on a different toolbar. To copy a control, press Ctrl while you drag that
control to another toolbar. You can also copy a control within the same toolbar.

Inserting a new control
To add a new control to a toolbar, use the Commands tab of the Customize dialog
box shown in Figure 22-3.

Figure 22-3: The Commands tab contains
a list of every available built-in control.

4799-2 ch22.F 6/11/01 9:42 AM Page 658

659Chapter 22 ✦ Creating Custom Toolbars

Here, the controls are arranged in 17 categories. When you select a category, the
controls in that category appear to the right. To find out what a control does, select
it and click the Description button. To add a control to a toolbar, locate it in the
Commands list, and then click and drag it to the toolbar.

Adding a toolbar button that executes a macro
To create a new toolbar button to which you will attach a macro, activate the
Commands tab of the Customize dialog box, and then choose Macros from the
Categories list. Drag the command labeled Custom Button to your toolbar (by
default, this button has a smiley face image).

After adding the button, right-click it and select your options from the menu shown
in Figure 22-4. You’ll want to change the name, assign a macro, and (I hope) change
the image.

Selecting Change Button Image from the shortcut menu displays a list of 42
images. This is a tiny subset of all of the available images you can use. See
“Adjusting a toolbar button image” later in this chapter.

Figure 22-4: Customizing a toolbar button

Note

4799-2 ch22.F 6/11/01 9:42 AM Page 659

660 Part VI ✦ Developing Applications

Distributing toolbars
In this section, I describe how to distribute custom toolbars to others, and I outline
what you need to be aware of to prevent problems.

Attaching a toolbar to a workbook
To store a toolbar in a workbook file, select View ➪ Toolbars ➪ Customize to display
the Customize dialog box. Click the Attach button to bring up the Attach Toolbars
dialog box, shown in Figure 22-5. This dialog box lists all the custom toolbars in the
Toolbars collection in the list box on the left. Toolbars already stored in the work-
book are shown in the list box on the right.

Figure 22-5: The Attach Toolbars dialog box

To attach a toolbar, select it and click the Copy button. When a toolbar in the right
list box is selected, the Copy button reads “Delete”; you can click it to remove a
selected toolbar from a workbook.

Oddly, there is no way to attach or detach toolbars from a workbook with VBA.
These operations must be performed manually.

The copy of the toolbar stored in the workbook always reflects its contents at the
time you attach it. If you modify the toolbar after attaching it, the changed version
is not automatically stored in the workbook. You must manually remove the old
toolbar and then attach the edited toolbar.

A toolbar that’s attached to a workbook automatically appears when the workbook
is opened, unless the workspace already has a toolbar by the same name. See “How
Excel Handles Toolbars” earlier in this chapter.

Distributing a toolbar with an add-in
As I mentioned in Chapter 21, distributing an application as an add-in is often the
preferred method for end users. Not surprisingly, an add-in can also include one or
more custom toolbars. But you need to be aware of a potential glitch.

Caution

Note

4799-2 ch22.F 6/11/01 9:42 AM Page 660

661Chapter 22 ✦ Creating Custom Toolbars

Here’s a typical scenario: You create an application that uses a custom toolbar. The
buttons on that toolbar execute VBA procedures in the application’s workbook. You
attach the toolbar to the workbook and save the workbook. You create an add-in
from the workbook. You close the XLS version of the application. You install the
add-in. You click a button on the custom toolbar and the XLS file opens!

Your intent, of course, is to have the toolbar buttons execute procedures in the
add-in, not the XLS file. But when you attach the toolbar to the workbook, the tool-
bar is saved in its current state. In that state, the workbook includes references to
the macros in the XLS file. Consequently, clicking a button opens the XLS file so that
the macro can be executed. You could manually (or via VBA) change the OnAction
property of each toolbar button so it refers to the add-in version (the XLA file). A
better approach, however, is to write code to create the toolbar on the fly when the
add-in is opened. I discuss this topic in detail later in the chapter.

Manipulating the CommandBars Collection
The CommandBars collection, contained in the Application object, is a collection
of all CommandBar objects. Each CommandBar object has a collection of Controls.
All these objects have properties and methods that enable you to control toolbars
with VBA procedures.

In this section, I provide some key background information that you should know
about before you start writing code to manipulate toolbars. As always, a thorough
understanding of the object model will make your task much easier.

You manipulate Excel command bars (including toolbars) by using objects located
within the CommandBars collection. This collection consists of the following items:

✦ All 54 of Excel 2002’s built-in toolbars.

✦ Any other custom toolbars that you create.

✦ A built-in menu bar named Worksheet Menu Bar. This appears when a work-
sheet is active.

✦ A built-in menu bar named Chart Menu Bar. This appears when a chart sheet
is active.

✦ Any other custom menu bars that you create.

✦ All 58 of Excel 2002’s built-in shortcut menus.

4799-2 ch22.F 6/11/01 9:42 AM Page 661

662 Part VI ✦ Developing Applications

Command bar types
As I mentioned at the beginning of this chapter, there are actually three types of
command bars, each of which is distinguished by its Type property. Possible set-
tings for the Type property of the CommandBars collection are shown in the follow-
ing table. VBA provides built-in constants for the command bar types.

Type Description Constant

0 Toolbar msoBarTypeNormal

1 Menu Bar msoBarTypeMenuBar

2 Shortcut Menu msoBarTypePopUp

Listing all CommandBar objects
If you’re curious about the objects in the CommandBars collection, the following
procedure should be enlightening. Executing this procedure generates a list (shown
in Figure 22-6) of all CommandBar objects in the CommandBars collection. For Excel
2002, it lists a total of 114 built-in command bars, plus any custom menu bars or
toolbars. For each command bar, the procedure lists its Index, Name, Type property
settings (displayed as Toolbar, Menu Bar, or Shortcut), and whether it’s a built-in
command bar.

New Toolbars in Excel 2002

If you’re upgrading from a previous version of Excel, you’ll notice several new toolbars.
Compared to Excel 2000, Excel 2002 has 13 new toolbars:

Borders Drawing Canvas Organization Chart

Envelope Protection Clipboard

Diagram PivotTable Field List Task Pane

Draw Border Insert Shape Text to Speech

Online Meeting

You might be surprised to learn that the Task Pane is actually a toolbar — a very nonstandard
toolbar. It contains a single control.

4799-2 ch22.F 6/11/01 9:42 AM Page 662

663Chapter 22 ✦ Creating Custom Toolbars

Figure 22-6: VBA code produced this list of all
CommandBar objects.

Sub ShowCommandBarNames()
Dim Row As Integer
Dim cbar As CommandBar
Cells.Clear
Row = 1
For Each cbar In CommandBars

Cells(Row, 1) = cbar.Index
Cells(Row, 2) = cbar.Name
Select Case cbar.Type

Case msoBarTypeNormal
Cells(Row, 3) = “Toolbar”

Case msoBarTypeMenuBar
Cells(Row, 3) = “Menu Bar”

Case msoBarTypePopUp
Cells(Row, 3) = “Shortcut”

End Select
Cells(Row, 4) = cbar.BuiltIn
Row = Row + 1

Next cbar
End Sub

4799-2 ch22.F 6/11/01 9:42 AM Page 663

664 Part VI ✦ Developing Applications

When you work with toolbars, you can turn on the macro recorder to see what’s
happening in terms of VBA code. Most (but not all) of the steps you take while
customizing toolbars generate VBA code. By examining this code, you can discover
how the object model for toolbars is put together. The object model actually is
fairly simple and straightforward.

Creating a command bar
In VBA, you create a new toolbar using the Add method of the CommandBars collec-
tion. The following instruction creates a new toolbar with a default name, such as
Custom 1. The created toolbar is initially empty (has no controls) and is not visible
(its Visible property is False).

CommandBars.Add

More often, you’ll want to set some properties when you create a new toolbar. The
following example demonstrates one way to do this:

Sub CreateAToolbar()
Dim TBar As CommandBar
Set TBar = CommandBars.Add
With TBar

.Name = “MyToolbar”

.Top = 0

.Left = 0

.Visible = True
End With

End Sub

The CreateAToolbar procedure uses the Add method of the CommandBars collection
to add a new toolbar and create an object variable, Tbar, that represents this new
toolbar. Subsequent instructions provide a name for the toolbar, set its position to
the extreme upper-left corner of the screen, and make it visible. The Top and Left
properties specify the position of the toolbar, and these settings represent screen
coordinates, not Excel’s window coordinates.

When you access the CommandBars collection in a code module for a UserForm,
ThisWorkbook, Sheet, or Chart, you must precede the references with the
Application object. For example:

Application.CommandBars.Add

If your code is in a standard VBA module, this is not necessary.

Note

Note

4799-2 ch22.F 6/11/01 9:42 AM Page 664

665Chapter 22 ✦ Creating Custom Toolbars

Referring to command bars
You can refer to a particular CommandBar object by its Index or its Name property.
For example, the Standard toolbar has an Index property setting of 3, so you can
refer to this toolbar in either of the following ways:

CommandBars(3)
CommandBars(“Standard”)

If you use a name, be aware that it is case-insensitive. In other words, you can use
Standard, STANDARD, standard, etc.

Index numbering for command bars is not consistent across versions of Excel! For
example, in Excel 2002, the 3-D Settings toolbar has an Index of 58. In Excel
2000, the WordArt toolbar has an Index of 58. If your application must work in
different versions of Excel, you should use the Name property instead of the Index
property.

Deleting a command bar
To delete a custom toolbar, use the Delete method of the CommandBar object. You
can refer to the object by its index number (if you know it) or its name. The follow-
ing instruction deletes the toolbar named MyToolbar:

CommandBars(“MyToolbar”).Delete

If the toolbar doesn’t exist, the instruction generates an error. To avoid the error
message when you attempt to delete a toolbar that may or may not exist, the sim-
plest solution is to ignore the error. The following code deletes MyToolbar if it
exists. If it doesn’t exist, no error message is displayed.

On Error Resume Next
CommandBars(“MyToolbar”).Delete
On Error GoTo 0

Another approach is to create a custom function that determines whether a partic-
ular toolbar is in the CommandBars collection. The following function accepts a
single argument (a potential CommandBar object name) and returns True if the
command bar exists. This function loops through the CommandBars collection
and exits if it finds a command bar with a name that matches the argument.

Function CommandBarExists(n) As Boolean
Dim cb As CommandBar
For Each cb In CommandBars

If UCase(cb.Name) = UCase(n) Then
CommandBarExists = True

Caution

4799-2 ch22.F 6/11/01 9:42 AM Page 665

666 Part VI ✦ Developing Applications

Exit Function
End If

Next cb
CommandBarExists = False

End Function

Properties of command bars
The following are some of the more useful properties of a CommandBar object:

BuiltIn Read-only. True if the object is one of Excel’s built-in
command bars.

Left The command bar’s left position in pixels.

Name The command bar’s display name.

Position An integer that specifies the position of the command bar.

Possible values are as follows:

msoBarLeft— The command bar is docked on the left.

msoBarTop— The command bar is docked on the top.

msoBarRight— The command bar is docked on the right.

msoBarBottom— The command bar is docked on the
bottom.

msoBarFloating— The command bar isn’t docked.

msoBarPopup— The command bar is a shortcut menu.

Protection An integer that specifies the type of protection for the
command bar.

Possible values are as follows:

msoBarNoProtection— (Default) Not protected. The
command bar can be customized by the user.

msoBarNoCustomize— Cannot be customized.

msoBarNoResize— Cannot be resized.

msoBarNoMove— Cannot be moved.

msoBarNoChangeVisible— Its visibility state cannot be
changed by the user.

msoBarNoChangeDock— Cannot be docked to a different
position.

msoBarNoVerticalDock— Cannot be docked along the left
or right edge of the window.

msoBarNoHorizontalDock— Cannot be docked along the
top or bottom edge of the window.

4799-2 ch22.F 6/11/01 9:42 AM Page 666

667Chapter 22 ✦ Creating Custom Toolbars

Top The command bar’s top position in pixels.

Type Returns an integer that represents the type of command bar.
Possible values are:

msoBarTypeNormal— Toolbar

msoBarTypeMenuBar— Menu Bar

msoBarTypePopUp— Shortcut Menu

Visible True if the command bar is visible.

The VBA examples in the following sections demonstrate the use of some of the
command bar properties.

Counting custom toolbars
The following function returns the number of custom toolbars. It loops through the
CommandBars collection and increments a counter if the command bar represented
by cb is a toolbar and if its BuiltIn property is False.

Function CustomToolbars()
Dim cb As CommandBar
Dim Count As Integer
Count = 0
For Each cb In CommandBars

If cb.Type = msoBarTypeNormal Then
If Not cb.BuiltIn Then

Count = Count + 1
End If

End If
Next cb
CustomToolbars = Count

End Function

Preventing a toolbar from being modified
The Protection property of a CommandBar object provides you with many options
for protecting a CommandBar. The following instruction sets the Protection property
for a toolbar named MyToolbar:

CommandBars(“MyToolbar”).Protection = msoBarNoCustomize

After this instruction is executed, the user is unable to customize the toolbar.

The Protection constants are additive, which means that you can apply different
types of protection with a single command. For example, the following instructions
adjust the MyToolbar toolbar so that it cannot be customized or moved:

Set cb = CommandBars(“MyToolbar”)
cb.Protection = msoBarNoCustomize + msoBarNoMove

4799-2 ch22.F 6/11/01 9:42 AM Page 667

668 Part VI ✦ Developing Applications

Creating an “autosense” toolbar
Many of Excel’s built-in toolbars seem to have some intelligence; they appear when
you’re working in a specific context and disappear when you stop working in that
context. For example, the Chart toolbar normally appears when you are working on
a chart, and it disappears when you stop working on the chart. At one time,
Microsoft referred to this feature as toolbar autosensing, but it stopped using that
term in later versions. For lack of a better name, I’ll continue to use autosensing to
refer to this automatic toolbar behavior.

To disable autosensing for a particular toolbar, just close the toolbar while you’re
working in the context in which it normally appears. To reenable it, make the tool-
bar visible again while you’re working in its context.

You may want to program toolbar autosensing for your application. For example, you
might want to make a toolbar visible only when a certain worksheet is activated or
when a cell in a particular range is activated. Thanks to Excel’s support for events,
this sort of programming is relatively easy.

The procedure in Listing 22-1 creates a toolbar when the workbook is opened and
uses one of its worksheets’ SelectionChange events to determine whether the
active cell is contained in a range named ToolbarRange. If so, the toolbar is made
visible; if not, the toolbar is hidden. In other words, the toolbar is visible only when
the active cell is within a specific range of the worksheet.

This procedure, which is called by the Workbook_Open procedure, creates a simple
toolbar named AutoSense. The four toolbar buttons are set up to execute proce-
dures named Button1, Button2, Button3, and Button4. Note that, before creating
the toolbar, the code deletes the existing toolbar of the same name (if it exists).

Listing 22-1: The toolbar created here is visible only when
the cell pointer falls within a given range.

Sub CreateToolbar()
‘ Creates a demo toolbar named “AutoSense”

Dim AutoSense As CommandBar
Dim Button As CommandBarButton

‘ Delete the existing toolbar if it exists
On Error Resume Next
CommandBars(“AutoSense”).Delete
On Error GoTo 0

‘ Create the toolbar
Set AutoSense = CommandBars.Add

Note

4799-2 ch22.F 6/11/01 9:42 AM Page 668

669Chapter 22 ✦ Creating Custom Toolbars

For i = 1 To 4
Set Button = AutoSense.Controls.Add(msoControlButton)
With Button

.OnAction = “Button” & i

.FaceId = i + 37
End With

Next i
AutoSense.Name = “AutoSense”

End Sub

The event-handler procedure for the SelectionChange event (which is located in
the code module for Sheet1) is as follows:

Private Sub Worksheet_SelectionChange(ByVal Target As _
Excel.Range)

If Union(Target, Range(“ToolbarRange”)).Address = _
Range(“ToolbarRange”).Address Then
CommandBars(“AutoSense”).Visible = True

Else
CommandBars(“AutoSense”).Visible = False

End If
End Sub

This procedure checks the active cell. If it’s contained within a range named
ToolbarRange, the AutoSense toolbar’s Visible property is set to True; other-
wise, it is set to False.

The workbook also contains a Workbook_BeforeClose procedure that deletes the
AutoSense toolbar when the workbook is closed. This technique, of course, can be
adapted to provide other types of autosensing capability for a toolbar.

For a comprehensive discussion of the types of events Excel recognizes, see
Chapter 19.

Hiding (and later restoring) all toolbars
Some developers like to “take over” Excel when their application is loaded. For
example, they like to hide all toolbars, the status bar, and the formula bar. It’s only
proper, however, for them to clean up when their application is closed. This
includes restoring the toolbars that were originally visible.

The example in this section describes a way to hide all toolbars and then restore
them when the application is closed. The HideAllToolbars procedure is called
from the Workbook_Open event-handler, and the RestoreToolbars procedure is
called by the Workbook_BeforeClose event-handler.

Cross-
Reference

4799-2 ch22.F 6/11/01 9:42 AM Page 669

670 Part VI ✦ Developing Applications

The code keeps track of which toolbars were visible by storing their names in a
worksheet named TBSheet. When the workbook closes, the RestoreToolbars
subroutine reads these cells and displays the toolbars. Using a worksheet to store
the toolbar names is safer than using a VBA array (which can lose its values). Both
procedures are shown in Listing 22-2.

Listing 22-2: Removing all toolbars and then restoring them

Sub HideAllToolbars()
Dim TB As CommandBar
Dim TBNum As Integer
Dim TBSheet As Worksheet
Set TBSheet = Sheets(“TBSheet”)

Application.ScreenUpdating = False

‘ Clear the sheet
TBSheet.Cells.Clear

‘ Hide all visible toolbars and store
‘ their names

TBNum = 0
For Each TB In CommandBars

If TB.Type = msoBarTypeNormal Then
If TB.Visible Then

TBNum = TBNum + 1
TB.Visible = False
TBSheet.Cells(TBNum, 1) = TB.Name

End If
End If

Next TB
Application.ScreenUpdating = True

End Sub

Sub RestoreToolbars()
Dim TBSheet As Worksheet

Dim cell As Range

Set TBSheet = Sheets(“TBSheet”)
Application.ScreenUpdating = False

‘ Unhide the previously displayed the toolbars
On Error Resume Next
For Each cell In TBSheet.Range(“A:A”) _
.SpecialCells(xlCellTypeConstants)
CommandBars(cell.Value).Visible = True

Next cell
Application.ScreenUpdating = True

End Sub

4799-2 ch22.F 6/11/01 9:42 AM Page 670

671Chapter 22 ✦ Creating Custom Toolbars

In some cases, you may find that hiding the visible toolbars is insufficient. For
example, the autosensing toolbars will still appear in their appropriate context.
One solution is to set the Enabled property to False for all the toolbars that you
don’t want to appear.

Referring to controls in a command bar
A CommandBar object such as a toolbar contains Control objects. These objects
are mainly toolbar buttons and menu items.

The following Test procedure displays the Caption property for the first Control
object contained in the Standard toolbar, which has an index of 3:

Sub Test()
MsgBox CommandBars(3).Controls(1).Caption

End Sub

When you execute this procedure, you’ll see the message box shown in Figure 22-7
(assuming that your Standard toolbar has not been modified).

Using index numbers for command bar controls works regardless of the user’s
setting of the Always show full menus option (located in the Options tab of the
Customize dialog box).

Figure 22-7: Displaying the Caption property for a control

Rather than use an index number to refer to a control, you can use its Caption
property setting. The following procedure produces the same result as the
previous one:

Sub Test2()
MsgBox CommandBars(“Standard”).Controls(“New”).Caption

End Sub

Referring to a control by using its caption is language dependent. Therefore, the
example above will not work in non-English language versions of Excel. The solu-
tion is to use the FindControl method to locate the control using its Id prop-
erty. This is described in Chapter 23.

Caution

Note

4799-2 ch22.F 6/11/01 9:42 AM Page 671

672 Part VI ✦ Developing Applications

If you display the Caption property for a control, you’ll see that it probably
includes an ampersand (&). The letter following the ampersand is the underlined
hot key in the displayed text (for example, &New). When you refer to a command
bar control by using its Caption property, there is no need to include the
ampersand.

In some cases, Control objects may contain other Control objects. For exam-
ple, the first control on the Drawing toolbar contains other controls (this also
demonstrates that you can include menu items on a toolbar). The concept of
Controls within Controls will become clearer in Chapter 23, when I discuss
menus.

Listing the controls on a command bar
The following procedure displays the Caption property for each Control object
within a CommandBar object. This example uses the Standard toolbar.

Sub ShowControlCaptions()
Dim Cbar as CommandBar
Set CBar = CommandBars(“Standard”)
Cells.Clear
Row = 1
For Each ctl In CBar.Controls

Cells(Row, 1) = ctl.Caption
Row = Row + 1

Next ctl
End Sub

The output of the ShowControlCaptions procedure is shown in Figure 22-8.

Listing all controls on all toolbars
The following procedure loops through all command bars in the collection. If the
command bar is a toolbar — that is, if its Type property is set to 1 — another loop
displays the Caption for each toolbar button.

Sub ShowAllToolbarControls()
Dim row As Integer
Dim Cbar As CommandBar
Dim ctl As CommandBarControl

Cells.Clear
row = 1
For Each Cbar In CommandBars

If Cbar.Type = msoBarTypeNormal Then
Cells(row, 1) = Cbar.Name

Cross-
Reference

4799-2 ch22.F 6/11/01 9:42 AM Page 672

673Chapter 22 ✦ Creating Custom Toolbars

Figure 22-8: A list of the captions for
each control on the Standard toolbar

For Each ctl In Cbar.Controls
Cells(row, 2) = ctl.Caption
row = row + 1

Next ctl
End If

Next Cbar
End Sub

Partial output of the ShowAllToolbarControls procedure is shown in Figure 22-9.

Adding a control to a command bar
To add a new control to a CommandBar object, use the Add method of the Controls
collection object. The following instruction adds a new control to a toolbar named
MyToolbar. Its Type property is set to the msoControlButton constant, which
creates a standard button.

CommandBars(“MyToolbar”).Controls.Add _
Type:=msoControlButton

The toolbar button added in the preceding instruction is just a blank button; click-
ing it has no effect. Most of the time, you’ll want to set some properties when you
add a new button to a toolbar. The following code adds a new control, gives it an
image through the FaceId property, assigns a macro by way of the OnAction
property, and specifies a caption:

4799-2 ch22.F 6/11/01 9:42 AM Page 673

674 Part VI ✦ Developing Applications

Figure 22-9: A list of the captions for each control
on all toolbars

Sub AddButton()
Dim NewBtn As CommandBarButton
Set NewBtn = CommandBars(“MyToolbar”).Controls.Add _
(Type:=msoControlButton)

With NewBtn
.FaceId = 300
.OnAction = “MyMacro”
.Caption = “Tooltip goes here”

End With
End Sub

The AddButton procedure creates an object variable (NewBtn) that represents the
added control. The With-End With construct then sets the properties for the
object.

Deleting a control from a command bar
To delete a control from a CommandBar object, use the Delete method of the
Controls collection. The following instruction deletes the first control on a
toolbar named MyToolbar:

CommandBars(“MyToolbar”).Controls(1).Delete

4799-2 ch22.F 6/11/01 9:42 AM Page 674

675Chapter 22 ✦ Creating Custom Toolbars

You can also specify the control by referring to its caption. The following instruc-
tion deletes a control that has a caption of SortButton:

CommandBars(“MyToolbar”).Controls(“SortButton”).Delete

Properties of command bar controls
As you’ve seen, command bar controls have a number of properties that determine
how the controls look and work. Following is a list of a few of the more useful prop-
erties for command bar controls:

BeginGroup If True, a separator bar appears before the control.

BuiltIn Read-only. True if the control is one of Excel’s built-in
controls.

Caption The text that is displayed for the control. If the control shows
only an image, the caption appears when you move the
mouse pointer over the control.

Enabled If True, the control can be clicked.

FaceID A number that represents a graphic image displayed next to
the control’s text.

Id Read-only. A code number for a predefined Excel command.

OnAction The name of a VBA procedure to be executed when the user
clicks the control.

State Determines whether a control appears “pressed.”. This prop-
erty is available only for a CommandBarButton control.

Style Determines whether the control appears with a caption
and/or image. This property is available only for
CommandBarButton and CommandBarComboBox controls.

ToolTipText Text that appears when the user moves the mouse pointer
over the control.

Type An integer that determines the type of the control.

Setting a control’s Style property
The Style property of a control determines its appearance (this property applies
only to CommandBarButton and CommandBarComboBox controls). This property is
usually specified using a built-in constant. For example, to display a button with an
image and text, set the Style property to msoButtonIconAndCaption. Following
are valid style settings for a CommandBarButton:

✦ msoButtonAutomatic

✦ msoButtonCaption

✦ msoButtonIcon

4799-2 ch22.F 6/11/01 9:42 AM Page 675

676 Part VI ✦ Developing Applications

✦ msoButtonIconAndCaption

✦ msoButtonIconAndCaptionBelow

✦ msoButtonIconAndWrapCaption

✦ msoButtonIconAndWrapCaptionBelow

✦ msoButtonWrapCaption

For a CommandBarComboBox, the valid settings are msoComboLabel or
msoComboNormal.

Figure 22-10 shows a toolbar with seven command button controls, each demon-
strating a different style.

A workbook that creates this toolbar is available on the companion CD-ROM.

Figure 22-10: The seven values of the Style property for a
command button control

The text displayed on a control is the control’s Caption property, and its image is
determined by the value of the FaceID property.

Adjusting a toolbar button image
When you’re in Excel’s command bar customization mode, you can right-click any
toolbar button and select Change Button Image. Doing so displays a list of 42
images from which you can select. Most of the time, none of these images is exactly
what you need. Therefore, you must specify the image with VBA.

The image (if any) displayed on a toolbar control is determined by its FaceId prop-
erty. For an image to be displayed, the control’s Style property can be set to any
value except msoButtonCaption.

The following instruction sets the FaceId property of the first button on the
MyToolbar toolbar image to 45, which is the code number for a mailbox icon:

CommandBars(“MyToolbar”).Controls(1).FaceId = 45

How does one determine the code number for a particular image? Well, there’s trial
and error . . . and there’s also a free utility that I developed called FaceID Identifier.
This add-in makes it easy to determine the FaceID value for a particular image.
When the add-in is installed, choose Face ID Identifier from the Tools menu. You’ll

Note

On the
CD-ROM

4799-2 ch22.F 6/11/01 9:42 AM Page 676

677Chapter 22 ✦ Creating Custom Toolbars

see a UserForm that shows all possible command bar images. When you move the
mouse pointer over an image, the FaceID value is displayed in a text box (see
Figure 22-11).

Figure 22-11: The author’s FaceId Identifier add-in
shows the FaceId values for built-in toolbar images.

The FaceID Identifier add-in is available on the companion CD-ROM.

Adjusting a control’s Visible property
The Visible property determines if a particular toolbar is hidden or displayed.
Setting this property to False does not delete the toolbar. The following procedure,
which causes lots of on-screen action, simply reverses the Visible property of
each toolbar. Hidden toolbars are displayed, and visible toolbars are hidden. To
return things to normal, execute the procedure a second time.

Sub ToggleAllToolbars()
Dim cb As CommandBar
On Error Resume Next
For Each cb In CommandBars

If cb.Type = msoBarTypeNormal Then
cb.Visible = Not cb.Visible

End If
Next cb

End Sub

The On Error Resume Next statement is present to prevent the error message
that occurs when certain Excel 2002 toolbars are accessed in the incorrect context.
Specifically, the toolbars that must be accessed in the correct context are Pivot
Table Field List, Online Meeting, and Document Recovery.

Note

On the
CD-ROM

4799-2 ch22.F 6/11/01 9:42 AM Page 677

678 Part VI ✦ Developing Applications

Changing a control’s caption dynamically
The procedure in Listing 22-3 creates a toolbar that contains a single button. The
caption on this button displays the number format string for the active cell (see
Figure 22-12). The procedure uses Worksheet events to monitor when the selection
is changed. When a SelectionChange event occurs, a procedure is executed that
changes the caption in the button.

Figure 22-12: This toolbar button displays the number format for the active cell.

Listing 22-3: Showing the user the current
cell’s number format

Sub MakeNumberFormatDisplay()
Dim TBar As CommandBar
Dim NewBtn As CommandBarButton

‘ Delete existing toolbar if it exists
On Error Resume Next
CommandBars(“Number Format”).Delete
On Error GoTo 0

‘ Create a new toolbar
Set TBar = CommandBars.Add
With TBar

.Name = “Number Format”

.Visible = True
End With

‘ Add a button control
Set NewBtn = CommandBars(“Number Format”).Controls.Add _
(Type:=msoControlButton)

With NewBtn
.Caption = “”

4799-2 ch22.F 6/11/01 9:42 AM Page 678

679Chapter 22 ✦ Creating Custom Toolbars

.OnAction = “ChangeNumFormat”
.TooltipText = “Click to change the number format”
.Style = msoButtonCaption

End With
Call UpdateToolbar

End Sub

For more information about events, see Chapter 19.

The UpdateToolbar procedure, which follows, simply copies the NumberFormat
property of the ActiveCell to the Caption property of the button control:

Sub UpdateToolbar()

On Error Resume Next
CommandBars(“Number Format”). _
Controls(1).Caption = ActiveCell.NumberFormat

If Err <> 0 Then CommandBars(“Number Format”). _
Controls(1).Caption = “”

End Sub

The button’s OnAction property is set to a procedure named ChangeNumFormat,
which follows. This procedure displays the Number tab of Excel’s Format Cells
dialog box (see Figure 22-13).

Figure 22-13: Clicking the button enables
the user to select a new number format.

Cross-
Reference

4799-2 ch22.F 6/11/01 9:42 AM Page 679

680 Part VI ✦ Developing Applications

Sub ChangeNumFormat()
Application.Dialogs(xlDialogFormatNumber).Show
Call UpdateToolbar

End Sub

The technique described in this section works quite well, but it does have a flaw: If
the user changes the number format with a button on the Formatting toolbar, the
display in the Number Format is not changed, because changing the number format
of a cell does not trigger a trappable event.

Assigning a custom macro to a built-in button
Each of Excel’s built-in toolbar buttons executes a specific internal procedure. It’s
possible to assign your own macro to a built-in button. To do so, just use the
OnAction property. The following instruction assigns a macro to the Sort
Ascending toolbar button.

CommandBars(“Standard”).Controls(“Sort Ascending”) _
.OnAction = “ShowMsg”

After executing the instruction, clicking the Sort Ascending button will no longer
work. Rather, it will execute the ShowMsg VBA procedure.

To return the button to its normal functionality, assign an empty string to its
OnAction property:

CommandBars(“Standard”).Controls(“Sort Ascending”) _
.OnAction = “”

“Executing” a command bar button
Command bar controls have an Execute method. When invoked, this method runs
the internal procedure assigned to a built-in control. For example, executing the
following instruction is equivalent to clicking the Sort Ascending button on the
Standard toolbar:

CommandBars(“Standard”).Controls(“Sort Ascending”).Execute

Using the Execute method with a custom command bar button runs the macro
assigned to its OnAction property.

Using other types of command bar controls
A standard toolbar button is just one type of five control types that you can add to
a toolbar. The control type is determined by the Type property of the control.

The online help entices you with descriptions and images of 23 control types (see
Figure 22-14). Most of these, however, cannot be added to a command bar. You may
recognize many of these controls because they are used in Excel’s built-in toolbars.
I have no idea why they are listed and described, if they cannot be used.

4799-2 ch22.F 6/11/01 9:42 AM Page 680

681Chapter 22 ✦ Creating Custom Toolbars

Figure 22-14: The online help describes many controls that aren’t
available to you.

The built-in constants for the control types that you can add to a command bar are
as follows:

msoControlButton A standard button.

msoControlEdit An edit box.

msoControlComboBox A combo box.

msoControlDropdown A drop-down list.

msoControlButtonPopup A button that, when clicked, displays other
controls. Use this control to create a menu with
menu items.

The Type property for a Control object is a read-only property that’s set when
the control is created. In other words, you can’t change a control’s type after it has
been created.

The MakeMonthList procedure in Listing 22-4 creates a new toolbar, adds a drop-
down list control, and fills that control with the names of each month. It also sets
the OnAction property so that clicking the control executes a procedure named
PasteMonth. The resulting toolbar is shown in Figure 22-15.

Note

4799-2 ch22.F 6/11/01 9:42 AM Page 681

682 Part VI ✦ Developing Applications

Figure 22-15: This toolbar contains a drop-down list control, with an attached macro.

Listing 22-4: Attaching a drop-down list to a command bar

Sub MakeMonthList()
Dim TBar As CommandBar
Dim NewDD As CommandBarControl

‘ Delete existing toolbar if it exists
On Error Resume Next
CommandBars(“MonthList”).Delete
On Error GoTo 0

‘ Create a new toolbar
Set TBar = CommandBars.Add
With TBar

.Name = “MonthList”

.Visible = True
End With

‘ Add a DropDown control
Set NewDD = CommandBars(“MonthList”).Controls.Add _
(Type:=msoControlDropdown)

With NewDD
.Caption = “DateDD”
.OnAction = “PasteMonth”
.Style = msoButtonAutomatic

‘ Fill it with month name
For i = 1 To 12

.AddItem Format(DateSerial(1, i, 1), “mmmm”)
Next i
.ListIndex = 1

End With
End Sub

4799-2 ch22.F 6/11/01 9:42 AM Page 682

683Chapter 22 ✦ Creating Custom Toolbars

The PasteMonth procedure follows:

Sub PasteMonth()
‘ Puts the selected month in the active cell

On Error Resume Next
With CommandBars(“MonthList”).Controls(“DateDD”)

ActiveCell.Value = .List(.ListIndex)
End With

End Sub

The workbook has an additional twist: It uses a Worksheet_SelectionChange
event-handler. This procedure, which follows, is executed whenever the user makes
a new selection on the worksheet. The procedure determines whether the active
cell contains a month name. If so, it sets the ListIndex property of the drop-down
list control in the toolbar.

Private Sub Worksheet_SelectionChange(ByVal Target _
As Excel.Range)

For i = 1 To 12
Set ActCell = Target.Range(“A1”)
If ActCell.Value = Format(DateSerial(1, i, 1), _
“mmmm”) Then

CommandBars(“MonthList”).Controls(“DateDD”) _
.ListIndex = i
Exit Sub

End If
Next i

End Sub

Summary
In this chapter, I described how to use Excel’s built-in toolbars and how to
customize toolbars for your applications.

The next chapter discusses two other types of command bars: menus and shortcut
menus.

✦ ✦ ✦

4799-2 ch22.F 6/11/01 9:42 AM Page 683

4799-2 ch22.F 6/11/01 9:42 AM Page 684

Creating Custom
Menus

Virtually every Windows program has a menu system,
which usually serves as the primary user interface

element. The Windows standard places the menu bar directly
beneath the application’s title bar. In addition, many programs
now implement another type of menu: shortcut menus.
Typically, right-clicking an item displays a context-sensitive
shortcut menu containing relevant commands.

Excel uses both types of menus, and developers have almost
complete control over Excel’s entire menu system, including
shortcut menus. This chapter tells you everything you need
to know about working with Excel’s menus.

A Few Words about Excel’s
Menu Bar

If you’ve read Chapter 22, you already know that a menu bar
(like a toolbar) is a CommandBar object. In fact, the techniques
described in Chapter 22 also apply to menu bars.

So how does a menu bar differ from a toolbar? In general, a
menu bar is displayed at the top of the Excel window, directly
below the title bar. When clicked, the top-level controls on a
menu bar display a drop-down list of menu items. A menu bar
may also contain three window control buttons (Minimize,
Restore, and Close) that are displayed only when a workbook
window is maximized. Toolbars, on the other hand, usually
consist of graphic icons and do not display any control but-
tons. These rules are definitely not hard and fast. You can, if
desired, add traditional toolbar buttons to a menu bar or add
traditional menu items to a toolbar. You can even move a menu
bar from its traditional location and make it free-floating.

2323C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

An overview of
Excel’s menu system

Types of menu
modifications you
can make

How to manipulate
menus with VBA

Various menu
programming
techniques used
with events

A useful (and very
easy) technique for
creating custom
menus

A procedure for
replacing standard
menu conventions
with your own

How to customize the
shortcut menus

4799-2 ch23.F 6/11/01 9:42 AM Page 685

686 Part VI ✦ Developing Applications

What You Can Do with Excel’s Menus
Typical Excel users get by just fine with the standard menus. Because you’re read-
ing this book, however, you’re probably not the typical Excel user. You may want to
modify menus to make your life easier and to make life easier for the folks who use
the spreadsheets that you develop.

To modify Excel’s menus, you can remove elements, add elements, and change
elements. In addition, you can temporarily replace Excel’s standard menu bar with
one of your own creation. You can change Excel’s menus two ways: manually, or
with VBA code.

When you close Excel, it saves any changes that you’ve made to the menu system,
and these changes appear the next time you open Excel. The information about
menu modifications is stored in an XLB file, usually located in your Windows
directory.

See Chapter 22 for more information about the XLB file.

In most cases, you won’t want your menu modifications to be saved between ses-
sions. Generally, you’ll need to write VBA code to change the menus while a par-
ticular workbook is open and then change them back when the workbook closes.
Therefore, you’ll need VBA code to modify the menu when the workbook is
opened and more VBA code to return the menus to normal when the workbook is
closed.

Menu terminology
Menu terminology is often a bit confusing at first because many of the terms are
similar. The following list presents the official Excel menu terminology that I refer to
in this chapter:

✦ Command bar. An object that can function as a menu bar, a shortcut menu, or
a toolbar. It is represented by the CommandBar object in the Microsoft Office
object library.

✦ Menu bar. The row of words that appears directly below the application’s title
bar. Excel has two menu bars: One is displayed when a worksheet is active,
and the other is displayed when a chart sheet is active or when an embedded
chart is activated.

✦ Menu. A single, top-level element of a menu bar. For example, both of Excel’s
menu bars have a File menu.

✦ Menu item. An element that appears in the drop-down list when you select a
menu. For example, the first menu item under the File menu is New. Menu
items also appear in submenus and shortcut menus.

Note

Cross-
Reference

4799-2 ch23.F 6/11/01 9:42 AM Page 686

687Chapter 23 ✦ Creating Custom Menus

✦ Separator bar. A horizontal line that appears between two menu items. The
separator bar is used to group similar menu items.

✦ Submenu. A second-level menu that is under some menus. For example, the
Edit menu has a submenu called Clear.

✦ Submenu item. A menu item that appears in the list when you select a sub-
menu. For example, the Edit ➪ Clear submenu contains the following submenu
items: All, Formats, Contents, and Comments.

✦ Shortcut menu. The floating list of menu items that appears when you right-
click a selection or an object. The shortcut menu that appears depends on the
current context.

✦ Enabled. A menu item that can be used. If a menu item isn’t enabled, its text
appears grayed, and it can’t be used.

✦ Checked. The status of a menu item that represents an on/off or True/False
state. A menu item can display a graphical box that is checked or unchecked.
The View ➪ Status Bar menu item is an example.

✦ Image. A small graphic icon that appears next to some menu items. In VBA
terms, the code associated with each image is known as a FaceID.

✦ Shortcut key combination. A keystroke combination that serves as an alternate
method to execute a menu item. The shortcut key combination is displayed at
the right side of the menu item. For example, Ctrl+S is the shortcut key combi-
nation for File ➪ Save.

Removing menu elements
You can remove any part of Excel’s menu system: menu items, menus, and entire
menu bars. For example, if you don’t want the end users of your application fiddling
with the display, you can remove the View menu from the Worksheet Menu Bar. You
can also remove one or more menu items from a menu. If you remove the New menu
item from the File menu, for example, users can’t use the menu to create a new
workbook. Finally, you can eliminate Excel’s menu bar and replace it with one that
you’ve created. You might do this if you want your application to be completely
under the control of your macros.

It’s important to remember that simply removing menu bars, menus, or menu
items does not affect the alternate method of accomplishing some actions.
Specifically, if there are corresponding shortcut keys, toolbar buttons, or shortcut
menus that perform the same action as a menu command, those alternate meth-
ods still work. For example, if you remove the New menu item from the File menu,
the user can still use the New Workbook toolbar button, the Ctrl+N shortcut key,
the Task Pane (in Excel 2002), or the Desktop shortcut menu to create a new
workbook.

Caution

4799-2 ch23.F 6/11/01 9:42 AM Page 687

688 Part VI ✦ Developing Applications

Adding menu elements
You can add custom menus to built-in menu bars, and you can add custom menu
items to a built-in menu. In fact, you can create an entirely new menu bar if you like.
For example, you might develop an application that doesn’t require any of Excel’s
built-in menus. A simple solution is to create a new menu bar that consists of cus-
tom menus and custom menu items that execute your macros. You can hide Excel’s
normal menu bar and replace it with your own.

Changing menu elements
If you get bored with Excel’s standard menu text, you can change it to something
else — for instance, you can change the Tools menu to the Stuff menu. You can also
assign your own macros to built-in menu items. You have many other options for
changing menu elements, including rearranging the order of the menus on a menu
bar (for example, to make the Help menu appear first instead of last).

Moving Up from Excel 5/95?

If you’ve customized menus using Excel 5 or Excel 95, you can pretty much forget every-
thing you ever learned. Beginning with Excel 97, menu customization has changed signifi-
cantly in the following respects:

✦ A menu bar is actually a toolbar in disguise. If you don’t believe me, grab the
vertical bars at the very left of the menu bar and drag the bar away. You’ll end up
with a floating toolbar. The official (VBA) term for both menus and toolbars is
command bar.

✦ The Excel 5/95 Menu Editor is gone. To edit a menu manually, you use the View ➪

Toolbars ➪ Customize command. Understand, however, that Excel 5/95 workbooks
that contain menus customized using the old Menu Editor still work in Excel 97 and
later. However, to make any changes to these modified menus, you must do so in
Excel 5/95.

✦ There is no easy way to assign a VBA macro to a new menu item on the Tools
menu. This was a piece of cake with Excel 5/95. Later in this chapter, however, I pro-
vide VBA code that you can use to add a new menu item to the Tools menu.

✦ Excel 2000 and later, by default, displays only the most recently used menu items.
In my opinion, this is one of the worst ideas Microsoft has come up with. I can’t
imagine why anyone would want the order of his or her menu items to be shifting
around. Fortunately, this feature can be disabled in the Options panel of the
Customize dialog box.

4799-2 ch23.F 6/11/01 9:42 AM Page 688

689Chapter 23 ✦ Creating Custom Menus

Be careful if you change the captions for Excel’s menus. Some Excel developers
rely on the standard menu captions when they create new menus -- and their
code will fail if you’ve modified your menu captions. As you’ll see later in this
chapter, using the FindControl method in your code will eliminate these
problems.

The remainder of this chapter focuses on writing VBA code to modify menus.

Chapter 22 provides background information about the Customize dialog box.

VBA Examples
In this section, I present some practical examples of VBA code that manipulates
Excel’s menus.

Listing menu information
The ListMenuInfo procedure, which follows, may be instructive. It displays the
caption for each item (menu, menu item, and submenu item) on the Worksheet
Menu Bar.

Sub ListMenuInfo()
Dim row As Integer
Dim Menu As CommandBarControl
Dim MenuItem As CommandBarControl
Dim SubMenuItem As CommandBarControl
row = 1
On Error Resume Next
For Each Menu In CommandBars(1).Controls

For Each MenuItem In Menu.Controls
For Each SubMenuItem In MenuItem.Controls

Cells(row, 1) = Menu.Caption

Cross-
Reference

Caution

Referencing the CommandBars Collection

The CommandBars collection is a member of the Application object. When you reference
this collection in a regular VBA module, you can omit the reference to the Application
object (it is assumed). For example, the following statement (contained in a standard VBA
module) displays the name of the first element of the CommandBars collection:

MsgBox CommandBars(1).Name

When you reference the CommandBars collection from a code module for a ThisWorkbook
object, you must precede it with a reference to the Application object, like this:

MsgBox Application.CommandBars(1).Name

4799-2 ch23.F 6/11/01 9:42 AM Page 689

690 Part VI ✦ Developing Applications

Cells(row, 2) = MenuItem.Caption
Cells(row, 3) = SubMenuItem.Caption
row = row + 1

Next SubMenuItem
Next MenuItem

Next Menu
End Sub

Figure 23-1 shows a portion of the ListMenuInfo procedure’s output.

Figure 23-1: A portion of the output from the ListMenuInfo
procedure

A workbook that contains this procedure is available on the companion CD-ROM.

I use On Error Resume Next to avoid the error message that appears when the
procedure attempts to access a submenu item that doesn’t exist.

Adding a new menu to a menu bar
In this section, I describe how to use VBA to add a new menu to the Worksheet
Menu Bar. The Worksheet Menu Bar is the first item in the CommandBars collection,
so you can reference it one of two ways:

Note

On the
CD-ROM

4799-2 ch23.F 6/11/01 9:42 AM Page 690

691Chapter 23 ✦ Creating Custom Menus

CommandBars(“Worksheet Menu Bar”)
CommandBars(1)

In VBA terms, you use the Add method to append a new control to the Controls
collection. The new control is a “pop-up control” of type msoControlPopup. You
can specify the new control’s position; if you don’t, the new menu is added to the
end of the menu bar.

Adding a new menu is a two-step process:

1. Use the Add method to create an object variable that refers to the new con-
trol. Arguments for the Add method enable you to specify the control’s type,
its ID (useful only if you’re adding a built-in menu), its position, and whether
it’s a temporary control that will be deleted when Excel closes.

2. Adjust the properties of the new control. For example, you’ll probably want to
specify a Caption property and an OnAction property.

Menu-Making Conventions

You may have noticed that menus in Windows programs typically adhere to some estab-
lished conventions. No one knows where these conventions came from, but you should fol-
low them if you want to give the impression that you know what you’re doing. When you
modify menus, keep the following points in mind:

✦ Tradition dictates that the File menu is always first and the Help menu is always last.

✦ Menu text is always proper case. The first letter of each word is uppercase, except
for minor words such as the, a, and and.

✦ A top-level menu does not cause any action. In other words, each menu must have
at least one menu item.

✦ Menu items are usually limited to three or fewer words.

✦ Every menu item should have a hot key (underlined letter) that’s unique within the
menu.

✦ A menu item that displays a dialog box is followed by an ellipsis (...).

✦ Menu item lists should be kept relatively short. Sometimes, submenus provide a
good alternative to long lists. If you must have a lengthy list of menu items, use sep-
arator bars to group items into logical groups.

✦ If possible, disable menu items that are not appropriate in the current context. In
VBA terminology, to disable a menu item, set its Enabled property to False.

✦ Some menu items serve as toggles. When the option is on, the menu item is pre-
ceded by a check mark.

4799-2 ch23.F 6/11/01 9:42 AM Page 691

692 Part VI ✦ Developing Applications

Adding a menu: Take 1
In this example, the objective is to add a new Budgeting menu to the Worksheet
Menu Bar and to position this new menu to the left of the Help menu.

Sub AddNewMenu()
Dim HelpIndex As Integer
Dim NewMenu As CommandBarPopup

‘ Get Index of Help menu
HelpIndex = CommandBars(1).Controls(“Help”).Index

‘ Create the menu
Set NewMenu = CommandBars(1).Controls.Add _
(Type:=msoControlPopup, _
Before:=HelpIndex, _
Temporary:=True)

‘ Add a caption
NewMenu.Caption = “&Budgeting”

End Sub

The preceding code is not a good example of how to add a menu, and it may or may
not insert the menu at the proper position. It suffers from two problems:

✦ It assumes that the Help menu exists. The user may have removed the Help
menu.

✦ It assumes that the Help menu has Help as its caption. Non-English versions of
Excel may have a different caption for their menus.

Adding a menu: Take 2
Listing 23-1 presents a better demonstration. It uses the FindControl method to
attempt to locate the Help menu. If the Help menu is not found, the code adds the
new menu item to the end of the Worksheet Menu Bar.

Listing 23-1: Adding the Budgeting menu
to Excel’s main menu bar

Sub AddNewMenu()
Dim HelpMenu As CommandBarControl
Dim NewMenu As CommandBarPopup

‘ Find the Help Menu
Set HelpMenu = CommandBars(1).FindControl(Id:=30010)

If HelpMenu Is Nothing Then
‘ Add the menu to the end

Set NewMenu = CommandBars(1).Controls _
.Add(Type:=msoControlPopup, Temporary:=True)

4799-2 ch23.F 6/11/01 9:42 AM Page 692

693Chapter 23 ✦ Creating Custom Menus

Else
‘ Add the menu before Help

Set NewMenu = CommandBars(1).Controls _
.Add(Type:=msoControlPopup, Before:=HelpMenu.Index, _
Temporary:=True)

End If

‘ Add a caption
NewMenu.Caption = “&Budgeting”

End Sub

The preceding procedure creates an essentially useless menu — it has no menu
items. See “Adding a menu item to the Tools menu” later in this chapter for an
example of how to add a menu item to a menu.

To use the FindControl method, you must know the ID property of the control
that you’re looking for. Each of Excel’s built-in CommandBar controls has a unique ID
property. For this example, I determined the ID property of the Help menu by exe-
cuting the following statement:

MsgBox CommandBars(1).Controls(“Help”).ID

The message box displayed 30010, which is the value I used as the ID argument for
the FindControl method. Table 23-1 shows the ID property settings for the top-
level controls in Excel’s menu bars.

Table 23-1
ID Property Settings for Excel’s Top-Level Menus

Menu ID Setting

File 30002

Edit 30003

View 30004

Insert 30005

Format 30006

Tools 30007

Data 30011

Chart 30022

Window 30009

Help 30010

Note

4799-2 ch23.F 6/11/01 9:42 AM Page 693

694 Part VI ✦ Developing Applications

Deleting a menu from a menu bar
To delete a menu, use the Delete method. The following example deletes the menu
in the Worksheet Menu Bar whose caption is “Budgeting.” Notice that I use On
Error Resume Next to avoid the error message that appears if the menu does not
exist.

Sub DeleteMenu()
On Error Resume Next
CommandBars(1).Controls(“Budgeting”).Delete

End Sub

Recall that the Budgeting menu was given a caption using this instruction:

NewMenu.Caption = “&Budgeting”

When you delete the menu by using its caption, the ampersand is optional.

Adding menu items to a menu
In the example under “Adding a new menu to a menu bar,” I demonstrated how to
add a menu to a menu bar. Listing 23-2 adds to the original procedure and, in so
doing, demonstrates how to add menu items to the new menu.

Listing 23-2: Adding selections and submenu
items to the Budgeting menu

Sub CreateMenu()
Dim HelpMenu As CommandBarControl
Dim NewMenu As CommandBarPopup
Dim MenuItem As CommandBarControl
Dim Submenuitem As CommandBarButton

‘ Delete the menu if it already exists
Call DeleteMenu

‘ Find the Help Menu
Set HelpMenu = CommandBars(1).FindControl(Id:=30010)

If HelpMenu Is Nothing Then
‘ Add the menu to the end

Set NewMenu = CommandBars(1).Controls _
.Add(Type:=msoControlPopup, temporary:=True)

Else
‘ Add the menu before Help

Set NewMenu = CommandBars(1).Controls _

4799-2 ch23.F 6/11/01 9:42 AM Page 694

695Chapter 23 ✦ Creating Custom Menus

.Add(Type:=msoControlPopup, Before:=HelpMenu.Index, _
temporary:=True)

End If

‘ Add a caption for the menu
NewMenu.Caption = “&Budgeting”

‘ FIRST MENU ITEM
Set MenuItem = NewMenu.Controls.Add _
(Type:=msoControlButton)

With MenuItem
.Caption = “&Data Entry...”
.FaceId = 162
.OnAction = “Macro1”

End With

‘ SECOND MENU ITEM
Set MenuItem = NewMenu.Controls.Add _
(Type:=msoControlButton)

With MenuItem
.Caption = “&Generate Reports...”
.FaceId = 590
.OnAction = “Macro2”

End With

‘ THIRD MENU ITEM
Set MenuItem = NewMenu.Controls.Add _
(Type:=msoControlPopup)

With MenuItem
.Caption = “View &Charts”
.BeginGroup = True

End With

‘ FIRST SUBMENU ITEM
Set SubMenuItem = MenuItem.Controls.Add _
(Type:=msoControlButton)

With SubMenuItem
.Caption = “Monthly &Variance”
.FaceId = 420
.OnAction = “Macro3”

End With

‘ SECOND SUBMENU ITEM
Set SubMenuItem = MenuItem.Controls.Add _
(Type:=msoControlButton)

With SubMenuItem
.Caption = “Year-To-Date &Summary”
.FaceId = 422
.OnAction = “Macro4”

End With
End Sub

4799-2 ch23.F 6/11/01 9:42 AM Page 695

696 Part VI ✦ Developing Applications

Specifically, the CreateMenu procedure builds the menu shown in Figure 23-2. This
menu has three menu items, and the last menu item is a submenu with two sub-
menu items.

Figure 23-2: A VBA procedure created this menu and its associated menu items.

You might be wondering why the code in the preceding example deletes the
menu (if it already exists) and doesn’t simply exit the procedure. Rebuilding the
menu ensures that the latest version is added to the menu bar. This also makes it
much easier on you while you’re developing the code because you don’t have to
delete the menu manually before testing your procedure. As you may have
noticed, creating menus is very fast, so the additional time required to rebuild a
menu is usually negligible.

When you examine the CreateMenu procedure, keep the following points in mind:

✦ The control type for the first two menu items is msoControlButton. The type
of the third menu item, however, is msoControlPopup because the third menu
item has submenu items. Therefore, the MenuItem variable was declared as a
generic CommandBarControl.

✦ The BeginGroup property of the third menu item is True, which causes a
separator bar to appear before the item. The separator bar is purely cosmetic
and serves to “group” similar menu items together.

Note

4799-2 ch23.F 6/11/01 9:42 AM Page 696

697Chapter 23 ✦ Creating Custom Menus

✦ The FaceID property determines which image (if any) appears next to the
menu text. The FaceID number represents a built-in image.

✦ The text for the Caption properties uses an ampersand (&) to indicate the
“hot key,” or accelerator key, for the menu item. The hot key is the underlined
letter that provides keyboard access to the menu item.

Adding a menu item to the Tools menu
The example in Listing 23-2 adds several menu items to a custom menu on the
Worksheet Menu Bar. Often, you’ll simply want to add a menu item to one of
Excel’s built-in menus, such as the Tools menu.

With Excel 5 and Excel 95, assigning a macro to a new menu item on the Tools menu
was easy. For some reason, this feature was removed, beginning with Excel 97. This
section demonstrates how to write VBA code to add a menu item to Excel’s Tools
menu.

Listing 23-3 adds the menu item Clear All But Formulas to the Tools menu. Clicking
this menu item executes a procedure named ClearAllButFormulas.

Listing 23-3: Adding a selection to Excel’s Tools menu

Sub AddMenuItem()
Dim ToolsMenu As CommandBarPopup
Dim NewMenuItem As CommandBarButton

‘ Delete the menu if it already exists
Call DeleteMenuItem

‘ Find the Tools Menu
Set ToolsMenu = CommandBars(1).FindControl(Id:=30007)
If ToolsMenu Is Nothing Then

MsgBox “Cannot add menu item.”
Exit Sub

Else
Set NewMenuItem = ToolsMenu.Controls.Add _
(Type:=msoControlButton)
With NewMenuItem

.Caption = “&Clear All But Formulas”

.FaceId = 348

.OnAction = “ClearAllButFormulas”

.BeginGroup = True
End With

End If
End Sub

4799-2 ch23.F 6/11/01 9:42 AM Page 697

698 Part VI ✦ Developing Applications

Figure 23-3 shows the Tools menu with the new menu item. Note that the code does
not refer to the Tools menu by its caption. Rather, it identifies the menu using its ID
property (which is 30007).

Figure 23-3: A new menu item has been added to the Tools menu.

Deleting a menu item from the Tools menu
To delete a menu item, use the Delete method of the Controls collection. The
following example deletes the Clear All But Formulas menu item on the Tools menu.
Note that it uses the FindControl method to handle the situation when the Tools
menu has a different caption.

Sub DeleteMenuItem()
On Error Resume Next
CommandBars(1).FindControl(Id:=30007). _
Controls(“&Clear All But Formulas”).Delete

End Sub

Displaying a shortcut key with a menu item
Some of Excel’s built-in menu items also display a shortcut key combination that,
when pressed, has the same effect as the menu command. For example, Excel’s Edit
menu lists several shortcut keys.

4799-2 ch23.F 6/11/01 9:42 AM Page 698

699Chapter 23 ✦ Creating Custom Menus

To display a shortcut key combination as part of your menu item, use the
ShortcutText property. It’s important to understand that setting the ShortcutText
property does not actually assign the shortcut key — it simply affects the display in
the menu. You must write additional code to set up the shortcut key.

Listing 23-4 creates a menu item Clear All But Formulas on the Tools menu. It sets
the ShortcutText property to the string Ctrl+Shift+C and also uses the
MacroOptions method to set up the shortcut key.

Listing 23-4: Adding a menu selection that
features a shortcut key

Sub AddMenuItem()
Dim ToolsMenu As CommandBarPopup
Dim NewMenuItem As CommandBarButton

‘ Delete the menu if it already exists
Call DeleteMenuItem

‘ Find the Tools Menu
Set ToolsMenu = CommandBars(1).FindControl(Id:=30007)
If ToolsMenu Is Nothing Then

MsgBox “Cannot add a menu item - use Ctrl+Shift+C.”
Exit Sub

Else
Set NewMenuItem = ToolsMenu.Controls.Add _
(Type:=msoControlButton)
With NewMenuItem

.Caption = “&Clear All But Formulas”

.FaceId = 348

.ShortcutText = “Ctrl+Shift+C”

.OnAction = “ClearAllButFormulas”

.BeginGroup = True
End With

End If

‘ Create the shortcut key
Application.MacroOptions _
Macro:=”ClearAllButFormulas”, _
HasShortcutKey:=True, _
ShortcutKey:=”C”

End Sub

After this procedure is executed, the menu item is displayed as shown in
Figure 23-4.

4799-2 ch23.F 6/11/01 9:42 AM Page 699

700 Part VI ✦ Developing Applications

Figure 23-4: The Clear All But Formulas menu item also displays a
shortcut key combination.

Fixing a menu that has been reset
Consider this scenario: You write VBA code that creates a new menu when your
workbook application is opened. The user opens another workbook containing a
macro that resets Excel’s menu bar. Or consider this: The user plays around with
the Customize dialog box, selects the Workbook Menu Bar from the list on that
dialog, and clicks the Reset button. In both cases, your custom menu is zapped.

Your menu-making code is probably triggered by the Workbook_Open event, so the
only way the user can get your menu back is to close and reopen the workbook. To
provide another way, create a key combination that executes the procedure that
builds your menu.

Apparently, applications that reset Excel’s menu bar are not uncommon. Users of
my Power Utility Pak add-in sometimes tell me that the PUP 2000 menu has disap-
peared for no apparent reason. This is always caused by some other application
that feels it must reset the Worksheet Menu Bar. Therefore, I added a key combina-
tion (Ctrl+Shift+U) that, when pressed, rebuilds the PUP 2000 menu. The following
statement, when executed, associates the CreateMenu procedure with the
Ctrl+Shift+U key combination.

Application.MacroOptions Macro:=”CreateMenu”, _
HasShortcutKey:=True, ShortcutKey:=”U”

4799-2 ch23.F 6/11/01 9:42 AM Page 700

701Chapter 23 ✦ Creating Custom Menus

Working with Events
Suppose you want to create a menu when a workbook opens. You’ll also want to
delete the menu when the workbook closes because menu modifications remain in
effect between Excel sessions. Or suppose you want a menu to be available only
when a particular workbook or worksheet is active. These sorts of things are rela-
tively easy to program, thanks to Excel’s event-handlers.

The examples in this section demonstrate various menu-programming techniques
used in conjunction with events.

I discuss event programming in depth in Chapter 19.

Adding and deleting menus automatically
If you need a menu to be created when a workbook is opened, use the
Workbook_Open event. The following code, stored in the code module for the
ThisWorkbook object, executes the CreateMenu procedure:

Private Sub Workbook_Open()
Call CreateMenu

End Sub

To delete the menu when the workbook is closed, use a procedure such as the
following. This procedure is executed before the workbook closes, and it executes
the DeleteMenu procedure.

Private Sub Workbook_BeforeClose(Cancel As Boolean)
Call DeleteMenu

End Sub

A problem may arise, however, if the workbook is not saved when the
user closes it. Excel’s “save workbook before closing” prompt occurs after
the Workbook_BeforeClose event-handler runs. So if the user clicks Cancel,
the workbook remains open, but your custom menu has already been deleted!

One solution to this problem is to bypass Excel’s prompt and write your own code
in the Workbook_BeforeClose procedure to ask the user to save the workbook.
The following code demonstrates how:

Private Sub Workbook_BeforeClose(Cancel As Boolean)
If Not Me.Saved Then

Msg = “Do you want to save the changes you made to “
Msg = Msg & Me.Name & “?”
Ans = MsgBox(Msg, vbQuestion + vbYesNoCancel)
Select Case Ans

Case vbYes
Me.Save

Cross-
Reference

4799-2 ch23.F 6/11/01 9:42 AM Page 701

702 Part VI ✦ Developing Applications

Case vbNo
Me.Saved = True

Case vbCancel
Cancel = True
Exit Sub

End Select
End If
Call DeleteMenu

End Sub

This procedure determines whether the workbook has been saved. If it has, no
problem; the DeleteMenu procedure is executed, and the workbook is closed. But if
the workbook has not been saved, the procedure displays a message box that dupli-
cates the one Excel normally shows. If the user clicks Yes, the workbook is saved,
the menu is deleted, and the workbook is closed. If the user clicks No, the code sets
the Saved property of the Workbook object to True (without actually saving the
file) and deletes the menu. If the user clicks Cancel, the BeforeClose event is can-
celed, and the procedure ends without deleting the menu.

Disabling or hiding menus
When a menu or menu item is disabled, its text appears in a faint shade of gray, and
clicking it has no effect. Excel disables its menu items when they are out of context.
For example, the Links menu item on the Edit menu is disabled when the active
workbook does not contain any links.

You can write VBA code to enable or disable both built-in and custom menus or
menu items. Similarly, you can write code to hide menus or menu items. The key,
of course, is tapping into the correct event.

The following procedures are stored in the code module for the ThisWorkbook
object:

Private Sub Workbook_Open()
Call AddMenu

End Sub

Private Sub Workbook_BeforeClose(Cancel As Boolean)
Call DeleteMenu

End Sub

Private Sub Workbook_Activate()
Call UnhideMenu

End Sub

Private Sub Workbook_Deactivate()
Call HideMenu

End Sub

4799-2 ch23.F 6/11/01 9:42 AM Page 702

703Chapter 23 ✦ Creating Custom Menus

When the workbook is opened, the AddMenu procedure is called. When the work-
book is closed, the DeleteMenu workbook is called. Two additional event-handler
procedures are executed when the workbook is activated or deactivated. The
UnhideMenu procedure is called when the workbook is activated, and the HideMenu
procedure is called when the workbook is deactivated.

The HideMenu procedure sets the Visible property of the menu item to False,
which effectively removes it from the menu bar. The UnhideMenu procedure does
just the opposite. The net effect is that the menu is visible only when the workbook
is active. These procedures, which assume that the Caption for the menu is
“Budgeting”, are as follows:

Sub UnhideMenu()
CommandBars(1).Controls(“Budgeting”).Visible = True

End Sub

Sub HideMenu()
CommandBars(1).Controls(“Budgeting”).Visible = False

End Sub

To disable the menu rather than hide it, simply access the Enabled property
instead of the Visible property.

This example is available on the companion CD-ROM.

Working with checked menu items
Several of Excel’s menu items appear with or without a check mark. For example,
the View ➪ Formula Bar menu item displays a check mark if the formula bar is visi-
ble and does not display a check mark if the formula bar is hidden. When you select
this menu item, the formula bar’s visibility is toggled, and the check mark is either
displayed or not.

You can add this type of functionality to your custom menu items. Figure 23-5
shows a menu item that displays a check mark only when the active sheet is dis-
playing grid lines. Selecting this item toggles the grid-line display and also adjusts
the check mark. The check mark display is determined by the State property of
the menu item control.

The trick here is keeping the check mark in sync with the active sheet. To do so, it’s
necessary to update the menu item whenever a new sheet, a new workbook, or a
new window is activated. This is done by setting up application-level events.

Adding the menu item
The AddMenuItem procedure shown in Listing 23-5 is executed when the workbook
is opened. It creates a new GridLines menu item on the View menu.

On the
CD-ROM

4799-2 ch23.F 6/11/01 9:42 AM Page 703

704 Part VI ✦ Developing Applications

Figure 23-5: The GridLines menu item displays a check mark if the
active sheet displays grid lines.

Listing 23-5: Augmenting a built-in Excel menu

Dim AppObject As New XLHandler

Sub AddMenuItem()
Dim ViewMenu As CommandBarPopup
Dim NewMenuItem As CommandBarButton

‘ Delete the menu if it already exists
Call DeleteMenuItem

‘ Find the View Menu
Set ViewMenu = CommandBars(1).FindControl(ID:=30004)
If ViewMenu Is Nothing Then

MsgBox “Cannot add menu item.”
Exit Sub

Else
Set NewMenuItem = ViewMenu.Controls.Add _
(Type:=msoControlButton)
With NewMenuItem

.Caption = “&GridLines”

.OnAction = “ToggleGridlines”
End With

End If

4799-2 ch23.F 6/11/01 9:42 AM Page 704

705Chapter 23 ✦ Creating Custom Menus

‘ Set up application event handler
Set AppObject.AppEvents = Application

End Sub

The AddMenuItem procedure adds the new menu item to the Worksheet Menu Bar,
not the Chart Menu Bar. Therefore, the new menu item isn’t displayed when a chart
sheet is active (which is just what we want).

Notice that the final statement in the AddMenuItem procedure sets up the application-
level events that will be monitored. These event procedures, which are stored in a
class module named XLHandler, are as follows:

Public WithEvents AppEvents As Excel.Application

Private Sub AppEvents_SheetActivate(ByVal Sh As Object)
Call CheckGridlines

End Sub

Private Sub AppEvents_WorkbookActivate _
(ByVal Wb As Excel.Workbook)
Call CheckGridlines

End Sub

Private Sub AppEvents_WindowActivate _
(ByVal Wb As Workbook, ByVal Wn As Window)
Call CheckGridlines

End Sub

This procedure has one flaw: Changing the gridline setting using the Options dia-
log box is not detected.

Toggling the gridline display
The net effect is that when the user changes worksheets or workbooks, the follow-
ing CheckGridlines procedure is executed. This procedure ensures that the check
mark displayed on the GridLines menu option is in sync with the sheet.

Sub CheckGridlines()
Dim TG As CommandBarButton
On Error Resume Next
Set TG = CommandBars(1).FindControl(Id:=30004). _
Controls(“&GridLines”)

If ActiveWindow.DisplayGridlines Then
TG.State = msoButtonDown

Else
TG.State = msoButtonUp

End If
End Sub

Note

4799-2 ch23.F 6/11/01 9:42 AM Page 705

706 Part VI ✦ Developing Applications

This procedure checks the active window and sets the State property of the menu
item. If grid lines are displayed, it adds a check mark to the GridLines menu item. If
grid lines are not displayed, it removes the check mark from the menu item.

Keeping the menu in sync with the sheet
When the menu item is selected, the OnAction property of that menu item triggers
the ToggleGridlines procedure, as follows:

Sub ToggleGridlines()
If TypeName(ActiveSheet) = “Worksheet” Then

ActiveWindow.DisplayGridlines = _
Not ActiveWindow.DisplayGridlines

Call CheckGridlines
End If

End Sub

This procedure simply toggles the gridline display of the active window. I use an
If-Then construct to ensure that the active sheet is a worksheet

The Easy Way to Create Custom Menus
When Excel 97 was released, I was a bit frustrated with the amount of code required
to create a custom menu, so I developed a technique that simplifies the process
considerably. My technique uses a worksheet, shown in Figure 23-6, to store infor-
mation about the new menu. A VBA procedure reads the data in the workbook and
creates the menu, menu items, and submenu items.

Figure 23-6: The information in this worksheet is
used to create a custom menu.

4799-2 ch23.F 6/11/01 9:42 AM Page 706

707Chapter 23 ✦ Creating Custom Menus

The worksheet consists of a table with five columns:

✦ Level. This is the location of the particular item relative to the hierarchy of the
menu system. Valid values are 1, 2, and 3. Level 1 is for a menu, 2 is for a menu
item, and 3 is for a submenu item. Normally, you’ll have one level 1 item, with
level 2 items below it. A level 2 item may or may not have level 3 (submenu)
items.

✦ Caption. This is the text that appears in the menu, menu item, or submenu. To
underline a character, place an ampersand (&) before it.

✦ Position/Macro. For level 1 items, this should be an integer that represents the
position in the menu bar. For level 2 or level 3 items, this is the macro that
executes when the item is selected. If a level 2 item has one or more level 3
items, the level 2 item may not have a macro associated with it.

✦ Divider. Enter True if a separator bar should be placed before the menu item
or submenu item.

✦ FaceID. This optional entry is a code number that represents the built-in
graphic images displayed next to an item.

Figure 23-7 shows the menu that was created from the worksheet data.

Figure 23-7: This menu was created from the data stored in a worksheet.

4799-2 ch23.F 6/11/01 9:42 AM Page 707

708 Part VI ✦ Developing Applications

A workbook that demonstrates this technique is available on the companion
CD-ROM. This workbook contains the VBA procedure that reads the worksheet
data and creates the menu. To use this technique in your workbook or add-in,
follow the steps described next.

1. Open the example workbook from the CD-ROM.

2. Copy all the code in Module1 to a module in your project.

3. Add procedures such as the following to the code module for the
ThisWorkbook object:

Private Sub Workbook_Open()
Call CreateMenu

End Sub
Private Sub Workbook_BeforeClose(Cancel As Boolean)

Call DeleteMenu
End Sub

4. Insert a new worksheet, and name it MenuSheet. Better yet, copy the
MenuSheet from the example file.

5. Customize the MenuSheet to correspond to your custom menu.

There is no error handling in the example workbook, so it’s up to you to make sure
that the menu is created properly.

Creating a Substitute Worksheet Menu Bar
In some cases, you may want to hide Excel’s standard Worksheet Menu Bar and
replace it with a completely customized menu bar.

The MakeMenuBar procedure in Listing 23-6 creates a new menu bar named
MyMenuBar. This menu bar consists of two menus. The first menu is the standard
File menu, copied from the Worksheet Menu Bar. The second menu contains two
items: Restore Normal Menu and Help.

Listing 23-6: Replacing Excel’s built-in menu with your own

Sub MakeMenuBar()
Dim NewMenuBar As CommandBar
Dim NewMenu As CommandBarControl
Dim NewItem As CommandBarControl

‘ Delete menu bar if it exists
Call DeleteMenuBar

‘ Add a menu bar
Set NewMenuBar = CommandBars.Add(MenuBar:=True)

Note

On the
CD-ROM

4799-2 ch23.F 6/11/01 9:42 AM Page 708

709Chapter 23 ✦ Creating Custom Menus

With NewMenuBar
.Name = “MyMenuBar”
.Visible = True

End With

‘ Copy the File menu (ID=30002) from Worksheet Menu Bar

CommandBars(“Worksheet Menu
Bar”).FindControl(ID:=30002).Copy _

Bar:=CommandBars(“MyMenuBar”)

‘ Add a new menu
Set NewMenu = NewMenuBar.Controls.Add _
(Type:=msoControlPopup)

NewMenu.Caption = “&Commands”

‘ Add a new menu item
Set NewItem = NewMenu.Controls.Add(Type:=msoControlButton)
With NewItem

.Caption = “&Restore Normal Menu”

.OnAction = “DeleteMenuBar”
End With

‘ Add a new menu item
Set NewItem = NewMenu.Controls.Add(Type:=msoControlButton)
With NewItem

.Caption = “&Help”

.OnAction = “ShowHelp”
End With

End Sub

Figure 23-8 shows the new menu bar.

Notice that nothing in this procedure hides the Worksheet Menu Bar. The instruction
Set NewMenuBar = CommandBars.Add(MenuBar:=True) adds the new command
bar. When the Visible property of this new command bar is set to True, it then
takes over as the worksheet menu bar. Only one menu bar can be active at a time.

A standard toolbar (as discussed in Chapter 22) has a Type property of
msoBarTypeNormal. A menu bar, as created in the preceding code, has a Type
property of msoBarTypeMenuBar.

Deleting the custom menu bar displays the Worksheet Menu Bar and makes it the
active menu bar. The following DeleteMenuBar procedure returns things to normal:

Sub DeleteMenuBar()
On Error Resume Next
CommandBars(“MyMenuBar”).Delete
On Error GoTo 0

End Sub

Note

4799-2 ch23.F 6/11/01 9:42 AM Page 709

710 Part VI ✦ Developing Applications

The preceding code locates the File menu command bar control by using the
FindControl method. This menu is then copied from the Worksheet Menu Bar
to the new menu bar by using the Copy method:

CommandBars(“Worksheet Menu
Bar”).FindControl(ID:=30002).Copy _

Bar:=CommandBars(“MyMenuBar”)When this instruction is executed, the File
menu (along with all of its menu items and submenu items) appears on the new
menu bar. Be aware that the menu and submenu items are not true copies of the
corresponding items on the Worksheet Menu Bar. For example, change the Caption
property for the New menu item on MyMenuBar (change it from New to New
Workbook). That change will also be reflected in the New menu item in the
Worksheet Menu Bar. So when you restore the Worksheet Menu Bar, the modified
caption will be displayed.

Figure 23-8: A custom menu bar replaces the standard Worksheet Menu Bar.

Working with Shortcut Menus
A shortcut menu is a pop-up menu that appears when you right-click virtually any-
thing in Excel. You can’t use Excel’s Customize dialog box to remove or modify
shortcut menus. The only way to customize shortcut menus is through VBA.

Excel 2002 has 59 shortcut menus, seven more than Excel 2000. A shortcut menu is
a command bar, with a Type setting of msoBarTypePopup. To work with a shortcut

4799-2 ch23.F 6/11/01 9:42 AM Page 710

711Chapter 23 ✦ Creating Custom Menus

menu, you need to know its Index or Name property setting. You can use the follow-
ing procedure to generate a list of all shortcut menus. This list displays information
about each shortcut menu in one row of a worksheet: the Index, Name, and a list of
all menu items.

Sub ListShortCutMenus()
Row = 1
For Each cbar In CommandBars

If cbar.Type = msoBarTypePopup Then
Cells(Row, 1) = cbar.Index
Cells(Row, 2) = cbar.Name
For col = 1 To cbar.Controls.Count

Cells(Row, col + 2) = _
cbar.Controls(col).Caption

Next col
Row = Row + 1

End If
Next cbar

End Sub

Figure 23-9 shows a portion of the output. This procedure will also help you identify
the names of various shortcut menus. For example, who would guess that the
shortcut menu that appears when you right-click a sheet tab is named Ply?

Figure 23-9: A listing of all shortcut menus, plus the menu items in each

4799-2 ch23.F 6/11/01 9:42 AM Page 711

712 Part VI ✦ Developing Applications

Although you can refer to a shortcut menu by its Index property, this is not rec-
ommended. For some reason, Index values have not remained consistent
between Excel versions. Rather, you should use the Name property to refer to a
shortcut menu.

Adding menu items to shortcut menus
Adding a menu item to a shortcut menu works just like adding a menu item to a reg-
ular menu. The following example demonstrates how to add a menu item to the Cell
shortcut menu that appears when you right-click a cell or a row or column border.
This menu item is added to the end of the shortcut menu, with a separator bar
above it.

Sub AddItemToShortcut()
Set NewItem = CommandBars(“Cell”).Controls.Add
With NewItem

.Caption = “Toggle Word Wrap”

.OnAction = “ToggleWordWrap”

.BeginGroup = True
End With

End Sub

Selecting the new menu item executes a procedure named ToggleWordWrap. Figure
23-10 shows the new shortcut menu in action.

Figure 23-10: This shortcut menu has a new menu item.

Caution

4799-2 ch23.F 6/11/01 9:42 AM Page 712

713Chapter 23 ✦ Creating Custom Menus

The previous example used the OnAction property to assign a macro to the short-
cut menu item. The following example doesn’t use OnAction. Rather, it adds a built-
in command (Hide) to the shortcut menu that appears when you click the title bar
of a workbook window.

Sub AddItemToShortcut()
Set NewItem = CommandBars(“Document”).Controls.Add(ID:=865)
NewItem.Caption = “Hide Window”

End Sub

Selecting this shortcut menu item is equivalent to choosing the Window ➪ Hide
command. This command has an ID of 865, which I discovered by executing this
instruction:

MsgBox CommandBars(“Worksheet Menu Bar”) _
.Controls(“Window”).Controls(“Hide”).ID

Deleting menu items from shortcut menus
The following procedure uses the Delete method to remove the menu item added
by the procedure in the previous section:

Sub RemoveItemFromShortcut()
On Error Resume Next
CommandBars(“Cell”).Controls(“Toggle Word Wrap”).Delete

End Sub

The On Error Resume Next statement avoids the error message that appears if the
menu item is not on the shortcut menu.

The following procedure removes the Hide menu item from two shortcut menus:
the one that appears when you right-click a row header and the one that appears
for a column header:

Sub RemoveHideMenuItems()
CommandBars(“Column”).Controls(“Hide”).Delete
CommandBars(“Row”).Controls(“Hide”).Delete

End Sub

Disabling shortcut menu items
As an alternative to removing menu items, you may want to disable one or more
items on certain shortcut menus while your application is running. When an item is
disabled, it appears in a light gray color, and clicking it has no effect. The following
procedure disables the Hide menu item from the Row and Column shortcut menus:

4799-2 ch23.F 6/11/01 9:42 AM Page 713

714 Part VI ✦ Developing Applications

Sub DisableHideMenuItems()
CommandBars(“Column”).Controls(“Hide”).Enabled = False
CommandBars(“Row”).Controls(“Hide”).Enabled = False

End Sub

Disabling shortcut menus
You can also disable entire shortcut menus. For example, you may not want the
user to access the commands generally made available by right-clicking a cell. The
following DisableCell procedure disables the Cell shortcut menu. After the proce-
dure is executed, right-clicking a cell has no effect.

Sub DisableCell()
CommandBars(“Cell”).Enabled = False

End Sub

If you want to disable all shortcut menus, use the following procedure:

Sub DisableAllShortcutMenus()
Dim cb As CommandBar
For Each cb In CommandBars

If cb.Type = msoBarTypePopup Then _
cb.Enabled = False

Next cb
End Sub

Disabling the shortcut menus “sticks” between sessions. Therefore, you’ll probably
want to restore the shortcut menus before closing Excel. To restore the shortcut
menus, modify the preceding procedure to set the Enabled property to True.

Resetting shortcut menus
The Reset method restores a shortcut menu to its original, default condition. If
your application adds items to a shortcut menu, it’s better to remove the items indi-
vidually when your application closes. Otherwise, you may delete customizations
made by other applications.

The following procedure resets the Cell shortcut menu to its normal state:

Sub ResetCellMenu()
CommandBars(“Cell”).Reset

End Sub

Creating new shortcut menus
It’s possible to create an entirely new shortcut menu. Listing 23-7 creates a shortcut
menu named MyShortcut and adds six menu items to it. These menu items have

Note

4799-2 ch23.F 6/11/01 9:42 AM Page 714

715Chapter 23 ✦ Creating Custom Menus

their OnAction property set to execute a simple procedure that displays one of the
tabs in the Format Cells dialog box. For example, the ShowNumberFormat proce-
dure is:

Sub ShowFormatNumber()
Application.Dialogs(xlDialogFormatNumber).Show

End Sub

Listing 23-7: Creating an entirely new and
separate shortcut menu

Sub CreateShortcut()
Set myBar = CommandBars.Add _
(Name:=”MyShortcut”, Position:=msoBarPopup, _
Temporary:=True)

‘ Add a menu item
Set myItem = myBar.Controls.Add(Type:=msoControlButton)
With myItem

.Caption = “&Number Format...”

.OnAction = “ShowFormatNumber”

.FaceId = 1554
End With

‘ Add a menu item
Set myItem = myBar.Controls.Add(Type:=msoControlButton)
With myItem

.Caption = “&Alignment...”

.OnAction = “ShowFormatAlignment”

.FaceId = 217
End With

‘ Add a menu item
Set myItem = myBar.Controls.Add(Type:=msoControlButton)
With myItem

.Caption = “&Font...”

.OnAction = “ShowFormatFont”

.FaceId = 291
End With

‘ Add a menu item
Set myItem = myBar.Controls.Add(Type:=msoControlButton)
With myItem

.Caption = “&Borders...”

.OnAction = “ShowFormatBorder”

.FaceId = 149

.BeginGroup = True
End With

‘ Add a menu item
Set myItem = myBar.Controls.Add(Type:=msoControlButton)

4799-2 ch23.F 6/11/01 9:42 AM Page 715

716 Part VI ✦ Developing Applications

With myItem
.Caption = “&Patterns...”
.OnAction = “ShowFormatPatterns”
.FaceId = 1550

End With

‘ Add a menu item
Set myItem = myBar.Controls.Add(Type:=msoControlButton)
With myItem

.Caption = “Pr&otection...”

.OnAction = “ShowFormatProtection”

.FaceId = 2654
End With

End Sub

Figure 23-11 shows how this new shortcut menu looks.

Figure 23-11: This new shortcut menu was created
with VBA.

After the shortcut menu is created, you can display it using the ShowPopup method.
The following procedure, located in the code module for a Worksheet object, is
executed when the user right-clicks a cell:

Private Sub Worksheet_BeforeRightClick _
(ByVal Target As Excel.Range, Cancel As Boolean)
If Union(Target.Range(“A1”), Range(“data”)).Address = _
Range(“data”).Address Then
CommandBars(“MyShortcut”).ShowPopup
Cancel = True

End If
End Sub

4799-2 ch23.F 6/11/01 9:42 AM Page 716

717Chapter 23 ✦ Creating Custom Menus

If the cell the user right-clicks is within a range named data, the MyShortcut menu
appears. Setting the Cancel argument to True ensures that the normal shortcut
menu is not displayed.

The companion CD-ROM contains an example that creates a new shortcut menu
and displays it in place of the normal Cell shortcut menu.

Summary
In this chapter, I covered the topic of custom menus and presented many examples
that demonstrate how to modify and create standard menus and shortcut menus.

The next chapter continues the discussion of application development, covering
the topic of user help.

✦ ✦ ✦

On the
CD-ROM

4799-2 ch23.F 6/11/01 9:42 AM Page 717

4799-2 ch23.F 6/11/01 9:42 AM Page 718

Providing Help
for Your
Applications

Computer users have become rather spoiled over the
years. In the early days of personal computers, software

companies rarely provided online help. And the “help” pro-
vided often proved less than helpful. Now, just about all com-
mercial software provides online help; and more often than
not, online help serves as the primary documentation. Thick
software manuals are an endangered species (good riddance!).

In this chapter, I discuss the concept of providing help for
your Excel applications. As you’ll see, you have lots of
options.

Help for Your Excel Applications?
If you develop a nontrivial application in Excel, you may want
to consider building in some sort of help for end users. Doing
so makes the users feel more comfortable with the application
and may eliminate many of those time-wasting phone calls
from users with basic questions. Another advantage is that
online help is always available (the instructions can’t be mis-
placed or buried under a pile of books).

You can add user help to your applications in a number of
ways, ranging from simple to complex. The method you
choose depends on your application’s scope and complexity
and how much effort you’re willing to put into this phase of
development. Some applications may require only a brief set
of instructions on how to start them. Others may benefit from
a full-blown, searchable help system. Most often, applications
need something in between.

2424C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Why you might want
to provide user help
for your applications

How to provide help
by using only the
components supplied
with Excel

How to create Help
files with the
Windows Help
System or the HTML
Help System

How to associate a
Help file with your
application

How to use the Office
Assistant to display
help

Other ways to
display WinHelp or
HTML Help

✦ ✦ ✦ ✦

4799-2 ch24.F 6/11/01 9:47 AM Page 719

720 Part VI ✦ Developing Applications

About the Examples in This Chapter

In this chapter, I use a simple workbook application to demonstrate various ways of provid-
ing help. The application uses data stored in a worksheet to generate and print form letters.

As you can see in the following figure, cells display the total number of records in the
database (C2, calculated by a formula), the current record number (C3), the first record to
print (C4), and the last record to print (C5). To display a particular record, the user enters a
value into cell C3. To print a series of form letters, the user specifies the first and last record
numbers in cells C4 and C5.

The application is simple, but it does consist of several discrete components that demon-
strate various ways of displaying context-sensitive help.

The form letter workbook consists of the following components:

Form A worksheet that contains the text of the form letter.

Data A worksheet that contains a seven-field database.

HelpSheet This worksheet is present only in the examples that store help text on
a worksheet.

4799-2 ch24.F 6/11/01 9:47 AM Page 720

721Chapter 24 ✦ Providing Help for Your Applications

This chapter classifies online help into two categories:

✦ Unofficial Help System. This method of displaying help uses standard Excel
components (such as a UserForm).

✦ Official Help System. This help system uses either a compiled HLP file pro-
duced by the Windows Help System or a compiled CHM file produced by the
HTML Help System.

Creating a compiled Help file is not a trivial task, but it may be worth the effort if
your application is complex or if it will be used by a large number of people.

All the examples in this chapter are available on the companion CD-ROM.

Help Systems That Use Excel Components
Perhaps the most straightforward method of providing help to your users is to use
the features contained in Excel itself. The primary advantage is that you don’t need
to learn how to create WinHelp or HTML Help files — which can be a major under-
taking and may take longer to develop than your application.

In this section, I provide an overview of some help techniques that use the follow-
ing built-in Excel components:

✦ Cell comments. This is about as simple as it gets.

✦ A text box control. A simple macro is all it takes to toggle the display of a text
box that shows help information.

✦ A worksheet. A simple way to add help is to insert a worksheet, enter your
help information, and name its tab “Help.” When the user clicks the tab, the
worksheet is activated.

✦ A custom UserForm. A number of techniques involve displaying help text in a
UserForm.

On the
CD-ROM

PrintMod A VBA module that contains macros to print the form letters.

HelpMod A VBA module that contains macros that control the help display. The
content of this module varies, depending on the type of help being
demonstrated.

UserForm1 This UserForm is present only if the help technique involves a
UserForm.

4799-2 ch24.F 6/11/01 9:47 AM Page 721

722 Part VI ✦ Developing Applications

Using cell comments for help
Perhaps the simplest way to provide user help is to use cell comments. This tech-
nique is most appropriate for describing the type of input that’s expected in a cell.
When the user moves the mouse pointer over a cell that contains a comment, that
comment appears in a small window. Another advantage is that this technique does
not require any macros.

Automatic display of cell notes is an option. The following VBA instruction ensures
that cell comment indicators are displayed for cells that contain comments:

Application.DisplayCommentIndicator = xlCommentIndicatorOnly

Another option is to use Excel’s Data ➪ Validation command, which displays a
dialog box that lets you specify valid validation criteria for a cell or range. The Input
Message tab of the Data Validation dialog box lets you specify a message that
is displayed when the cell is activated. This text is limited to approximately 250
characters.

Using a Text Box for help
Using a Text Box to display help information is also easy to implement. Simply cre-
ate a Text Box using the Text Box button on the Drawing toolbar, enter the help
text, and format it to your liking. Figure 24-1 shows an example of a Text Box set up
to display help information.

Using the Text Box from the Drawing toolbar is preferable to using an ActiveX Text
Box from the Control Toolbox toolbar because it allows rich text formatting. In
other words, the Text Box from the Drawing toolbar enables you to apply format-
ting to individual characters within the Text Box.

Most of the time, you won’t want the Text Box to be visible. Therefore, you might
want to add a button to your application to execute a macro that toggles the
Visible property of the Text Box. An example of such a macro follows. In this
case, the Text Box is named HelpText.

Sub ToggleHelp()
ActiveSheet.TextBoxes(“HelpText”).Visible = _
Not ActiveSheet.TextBoxes(“HelpText”).Visible

End Sub

Using a worksheet to display help text
Another easy way to add help to your application is to create a macro that activates
a separate worksheet that holds the help information. Just attach the macro to a
button control, toolbar button, or menu item, and voilà! . . . quick-and-dirty help.

Note

Tip

4799-2 ch24.F 6/11/01 9:47 AM Page 722

723Chapter 24 ✦ Providing Help for Your Applications

Figure 24-1: Using a Text Box to display help for the user

Figure 24-2 shows a sample help worksheet. I designed the range that contains the
help text to simulate a page from a yellow notebook pad — a fancy touch that you
may or may not like.

To keep the user from scrolling around the HelpSheet worksheet, the macro sets
the ScrollArea property of the worksheet. Because this property is not stored
with the workbook, it’s necessary to set it when the worksheet is activated. I also
protected the worksheet to prevent the user from changing the text, and I “froze”
the first row so that the Return button is always visible, regardless of how far down
the sheet the user scrolls.

The main disadvantage of using this technique is that the help text isn’t visible
along with the main work area. One possible solution is to write a macro that opens
a new window to display the sheet.

Displaying help in a UserForm
Another way to provide help to the user is to display the text in a UserForm. In this
section, I describe several techniques that involve UserForms.

Using Label controls to display help text
Figure 24-3 shows a UserForm that contains two Label controls: one for the title,
one for the actual text. A SpinButton control enables the user to navigate among
the topics. The text itself is stored in a worksheet, with topics in column A and text
in column B.

4799-2 ch24.F 6/11/01 9:47 AM Page 723

724 Part VI ✦ Developing Applications

Figure 24-2: Putting user help in a separate worksheet
is an easy way to go.

Figure 24-3: Clicking the SpinButton
determines the text displayed in the Labels.

Clicking the SpinButton executes the following procedure. This procedure simply
sets the Caption property of the two Label controls to the text in the appropriate
row of the worksheet (named HelpSheet).

Private Sub SpinButton1_Change()
HelpTopic = SpinButton1.Value
LabelTopic.Caption = Sheets(“HelpSheet”). _
Cells(HelpTopic, 1)

LabelText.Caption = Sheets(“HelpSheet”).Cells(HelpTopic, 2)
Me.Caption = APPNAME & “: Topic “ & HelpTopic & “/” _
& SpinButton1.Max

End Sub

4799-2 ch24.F 6/11/01 9:47 AM Page 724

725Chapter 24 ✦ Providing Help for Your Applications

Here, APPNAME is a global constant that contains the application’s name.

Using a “scrolling” Label to display help text
This technique displays help text in a single Label control. Because a Label control
cannot contain a vertical scrollbar, the Label is placed inside a Frame control,
which can contain a scrollbar. Figure 24-4 shows an example of a UserForm set up in
this manner. The user can scroll through the text by using the Frame’s scrollbar.

Figure 24-4: Inserting a Label control inside a Frame
control adds scrolling to the Label.

The text displayed in the Label is read from a worksheet named HelpSheet when
the UserForm is initialized. Listing 24-1 presents the UserForm_Initialize proce-
dure for this worksheet. Notice that the code adjusts the Frame’s ScrollHeight
property to ensure that the scrolling covers the complete height of the Label.
Again, APPNAME is a global constant that contains the application’s name.

Listing 24-1: Making the Label control display
scrollable text from the worksheet

Private Sub UserForm_Initialize()
Me.Caption = APPNAME & “ Help”
LastRow = Sheets(“HelpSheet”).Range(“A65536”) _
.End(xlUp).Row
txt = “”
For r = 1 To LastRow
txt = txt & Sheets(“HelpSheet”).Cells(r, 1) _
.Text & vbCrLf

Next r
With Label1

.Top = 0

.Caption = txt

.Width = 160

.AutoSize = True
End With

Continued

4799-2 ch24.F 6/11/01 9:47 AM Page 725

726 Part VI ✦ Developing Applications

Listing 24-1 (continued)

With Frame1
.ScrollHeight = Label1.Height
.ScrollTop = 0

End With
End Sub

Because a Label cannot display formatted text, I used underscore characters in the
HelpSheet worksheet to delineate the Help topic titles.

Using a DropDown control to select a Help topic
The example in this section improves upon the previous example. Figure 24-5 shows
a UserForm that contains a DropDown control and a Label control. The user can
select a topic from the DropDown or view the topics sequentially by clicking the
Previous or Next button.

Figure 24-5: Designating the topic
of the Label’s text with a drop-down
list control

This example is a bit more complex than the example in the previous section, but
it’s also a lot more flexible. It uses the Label-within-a-scrolling-Frame technique
(described previously) to support help text of any length.

The help text is stored in a worksheet named HelpSheet in two columns (A and B).
The first column contains the topic headings and the second column contains the
text. The ComboBox items are added in the UserForm_Initialize procedure,
which follows. The CurrentTopic variable is a module-level variable that stores an
integer that represents the Help topic.

4799-2 ch24.F 6/11/01 9:47 AM Page 726

727Chapter 24 ✦ Providing Help for Your Applications

Private Sub UpdateForm()
ComboBoxTopics.ListIndex = CurrentTopic - 1
Me.Caption = HelpFormCaption & _
“ (“ & CurrentTopic & “ of “ & TopicCount & “)”

With LabelText
.Caption = HelpSheet.Cells(CurrentTopic, 2)
.AutoSize = False
.Width = 212
.AutoSize = True

End With
With Frame1

.ScrollHeight = LabelText.Height + 5

.ScrollTop = 1
End With

If CurrentTopic = 1 Then
NextButton.SetFocus

ElseIf CurrentTopic = TopicCount Then
PreviousButton.SetFocus

End If
PreviousButton.Enabled = CurrentTopic <> 1
NextButton.Enabled = CurrentTopic <> TopicCount

End Sub

Using the Office Assistant to display help
You’re probably familiar with the Office Assistant — the cutesy screen character
that’s always ready to help out. In my experience, most people hate this feature.
Apparently, Microsoft got the message. The Office Assistant is turned off, by
default, in Office XP.

The Office Assistant is quite programmable, and (if you’re so inclined) you can even
use it to display help for the user. Figure 24-6 shows the Office Assistant displaying
some help text.

4799-2 ch24.F 6/11/01 9:47 AM Page 727

728 Part VI ✦ Developing Applications

Figure 24-6: Using the Office Assistant to deliver custom help

The main procedure for using the Office Assistant to display help is shown in
Listing 24-2. The help text is stored in two columns on a worksheet named
HelpSheet. Column A contains the topics, and column B contains the help text.

Listing 24-2: Calling up the Office Assistant
to display custom help

Public Const APPNAME As String = “Elephants R Us”
Dim Topic As Integer
Dim HelpSheet As Worksheet

Sub ShowHelp()
Set HelpSheet = ThisWorkbook.Worksheets(“HelpSheet”)
Application.Assistant.On = True
Topic = 1
With Assistant.NewBalloon

.Heading = “Help Topic “ & Topic & “: “ & _
vbCrLf & HelpSheet.Cells(Topic, 1)

.Text = HelpSheet.Cells(Topic, 2)

.Button = msoButtonSetNextClose

.BalloonType = msoBalloonTypeButtons

.Mode = msoModeModeless

.Callback = “ProcessRequest”

.Show
End With

End Sub

4799-2 ch24.F 6/11/01 9:47 AM Page 728

729Chapter 24 ✦ Providing Help for Your Applications

The procedure begins by making sure the Office Assistant is turned on. Then it
creates a new Balloon object (you’ll recall that the Office Assistant’s help text is
displayed in a balloon) and uses the first Help topic in the HelpSheet worksheet
to set the Heading and Text properties. It sets the Button property so it displays
Next and Close buttons like a wizard. The procedure then sets the Mode property
to msoModeModeless so the user can continue working while the help is displayed.
The Callback property contains the procedure name that is executed when a but-
ton is clicked. Finally, the Assistant balloon is displayed using the Show method.

The ProcessRequest procedure, shown in Listing 24-3, is called when any of the
buttons are clicked.

Listing 24-3: Engaging the customized help
through the Office Assistant

Sub ProcessRequest(bln As Balloon, lbtn As Long, lPriv _
As Long)

NumTopics = _
WorksheetFunction.CountA(HelpSheet.Range(“A:A”))

Assistant.Animation = msoAnimationCharacterSuccessMajor
Select Case lbtn

Case msoBalloonButtonBack
If Topic <> 1 Then Topic = Topic - 1

Case msoBalloonButtonNext
If Topic <> NumTopics Then Topic = Topic + 1

Case msoBalloonButtonClose
bln.Close
Exit Sub

End Select
With bln

.Close
Select Case Topic

Case 1
.Button = msoButtonSetNextClose

Case NumTopics
.Button = msoButtonSetBackClose

Case Else
.Button = msoButtonSetBackNextClose

End Select
.Heading = “Help Topic “ & Topic & “: “ & _

vbCrLf & HelpSheet.Cells(Topic, 1)
.Text = HelpSheet.Cells(Topic, 2)
.Show

End With
End Sub

4799-2 ch24.F 6/11/01 9:47 AM Page 729

730 Part VI ✦ Developing Applications

The ProcessRequest procedure displays one of several animations and then uses
a Select Case construct to take action depending on which button was clicked.
The button clicked is passed to this procedure through the lbtn variable. The
procedure also specifies which buttons to display based on the current topic.

If you have an interest in programming the Assistant, I refer you to the online help
for the details.

This example is available on the companion CD-ROM.

Using the WinHelp and HTML Help Systems
Currently, the most common help system used in Windows applications is the
Windows Help System (WinHelp). This system displays HLP files and supports
hypertext jumps that let the user display another related topic. However, Microsoft
is attempting to phase out WinHelp in favor of HTML Help. Most of the new applica-
tions from Microsoft use HTML Help.

Both of these help systems enable the developer to associate a context ID with a
particular Help topic. This makes it possible to display a particular Help topic in a
context-sensitive manner.

In this section, I briefly describe these two help-authoring systems. Details on creat-
ing such help systems are well beyond the scope of this book.

If you plan to develop a large-scale help system, I strongly recommend that
you purchase a help-authoring software product to make your job easier. Help-
authoring software makes it much easier to develop Help files because the soft-
ware takes care of lots of the tedious details for you. Many products are available,
including freeware, shareware, and commercial offerings. Perhaps the most popu-
lar help-authoring product is RoboHELP, from eHelp Corporation. RoboHELP
creates both WinHelp and HTML help systems. For more information, visit the
company’s Web site at this address: http://www.ehelp.com.

About WinHelp
Figure 24-7 shows a typical Help topic displayed in WinHelp. Some words, called
jump words, are underlined and displayed in a different color. Clicking a jump word
that has a dotted underline makes WinHelp display another window with more
explanation, often a definition. Clicking a jump word that has a solid underline
makes WinHelp either jump to a new topic or display a secondary help window.

Note

On the
CD-ROM

4799-2 ch24.F 6/11/01 9:47 AM Page 730

731Chapter 24 ✦ Providing Help for Your Applications

Figure 24-7: An example of WinHelp

WinHelp’s main disadvantage is that creating the HLP files takes a great deal
of knowledge and effort. An entire Usenet newsgroup is devoted to this topic
(comp.os.ms-windows.programmer.winhelp), and I’m constantly amazed at
the level of discussions in this group. It’s clear that creating a good WinHelp file
requires lots of experience and some good programming skills to boot.

To create an HLP file, you need a word processing program that can read and write
RTF (Rich Text Format) files. Most major word processors can do this, including
Microsoft Word. You also need a copy of the Microsoft Help Workshop, which
includes the Help compiler. You can download the Help Workshop from Microsoft’s
FTP site at this address:

ftp://ftp.microsoft.com/softlib/mslfiles/hcwsetup.exe

The companion CD-ROM contains a simple compiled HLP file, along with the RTF
file and the project file (an HPJ file) that were used to create it.

About HTML Help
As I mentioned, Microsoft has designated HTML Help as the new Windows standard
for online help. This system essentially compiles a series of HTML files into a com-
pact help system. HTML Help can also make use of additional tools such as graph-
ics files, ActiveX controls, scripting, and DHTML (Dynamic HTML). Figure 24-8
shows an example of an HTML Help system.

HTML Help is displayed by the HTML Help Viewer, which uses the layout engine of
Internet Explorer. The information is displayed in a window, and the table of con-
tents, index, and search tools are displayed in a separate pane. In addition, the help
text can contain standard hyperlinks that display another topic or even a document
on the Internet. Importantly, HTML Help can also access files stored on a Web site.
This is ideal for directing users to a source of up-to-date information that may not
have been available when the Help system was created.

On the
CD-ROM

4799-2 ch24.F 6/11/01 9:47 AM Page 731

732 Part VI ✦ Developing Applications

Figure 24-8: An example of HTML Help

Like WinHelp, you need a special compiler to create an HTML Help system. The
HTML Help Workshop, along with lots of additional information, is available free
from Microsoft’s Web site at this address:

http://msdn.microsoft.com/library/tools/
htmlhelp/chm/HH1Start.htm

To get a feel for how HTML files are created, display any topic in Excel’s online
help. Then right-click the document and choose View ➪ Source. You’ll be able to
view the original HTML source document.

The companion CD-ROM contains an example of a simple HTML Help system,
along with the files used to create it.

Associating a Help File with Your Application
If you use one of the “official” Help file systems (that is, WinHelp or HTML Help),
you can associate a particular Help file with your Excel application in one of two
ways: by using the Project Properties dialog box or by writing VBA code.

In the VBE, select Tools ➪ xxx Properties (where xxx corresponds to your project’s
name). In the Project Properties dialog box, click the General tab, and specify a
Help file for the project (either an HLP file or a CHM file).

It’s a good practice to keep your application’s Help file in the same directory as the
application. The following instruction sets up an association to Myfuncs.hlp, which
is assumed to be in the same directory as the workbook:

ThisWorkbook.VBProject.HelpFile = _
ThisWorkbook.Path & “\Myfuncs.hlp”

On the
CD-ROM

Tip

4799-2 ch24.F 6/11/01 9:47 AM Page 732

733Chapter 24 ✦ Providing Help for Your Applications

After a Help file is associated with your application, you can call up a particular
Help topic in the following situations:

✦ When the user presses F1 while a custom worksheet function is selected in
the Paste Function dialog box.

✦ When the user presses F1 while a UserForm is displayed. The Help topic
associated with the control that has the focus is displayed.

Associating a Help topic with a VBA function
If you create custom worksheet functions using VBA, you may want to associate a
Help file and context ID with each function. Once these items are assigned to a
function, the Help topic can be displayed from the Insert Function dialog box by
pressing F1.

To specify a context ID for a custom worksheet function, follow these steps:

1. Create the function as usual.

2. Make sure that your project has an associated Help file (refer to the preceding
section).

3. In the VBE, press F2 to activate the Object Browser.

4. Select your project from the Project/Library drop-down list.

5. In the Classes window, select the module that contains your function.

6. In the Members of window, select the function.

7. Right-click the function, and select Properties from the shortcut menu. This
displays the Member Options dialog box, as shown in Figure 24-9.

Figure 24-9: Specify a context ID for
a custom function in the Member Options
dialog box.

8. Enter the context ID of the Help topic for the function. You can also enter a
description of the function.

4799-2 ch24.F 6/11/01 9:47 AM Page 733

734 Part VI ✦ Developing Applications

The Member Options dialog box does not let you specify the Help file. It always
uses the Help file associated with the project.

You may prefer to write VBA code that sets up the context ID and Help file for your
custom functions. You can do this using the MacroOptions method. The following
procedure uses the MacroOptions method to specify a description, Help file, and
context ID for two custom functions (AddTwo and Squared):

Sub SetOptions()
‘ Set options for the AddTwo function

Application.MacroOptions Macro:=”AddTwo”, _
Description:=”Returns the sum of two numbers”, _
HelpFile:=ThisWorkbook.Path & “\Myfuncs.hlp”, _
HelpContextID:=1000

‘ Set options for the Squared function
Application.MacroOptions Macro:=”Squared”, _

Description:=”Returns the square of an argument”, _
HelpFile:=ThisWorkbook.Path & “\Myfuncs.hlp”, _
HelpContextID:=2000

End Sub

A workbook on the companion CD-ROM demonstrates this technique.

Displaying Help from a custom dialog box
Each control on a UserForm — as well as the UserForm itself — can have a Help
topic associated with it. The Help file for the topic is the file associated with the
project. The type of help provided is determined by the value of the following two
UserForm properties:

✦ WhatsThisButton. If True, the UserForm displays a small question mark
button in its title bar, like the one in Figure 24-10. The user can click this
button and then click a UserForm control to get help regarding the control.

✦ WhatsThisHelp. If True, the help provided for each control is in the form of a
small pop-up window that displays the Help topic’s title only.

The WhatsThisHelp property must be True for the WhatsThisButton property to
be True. In other words, only three combinations of values for WhatsThisHelp and
WhatsThisButton are possible. Table 24-1 summarizes the effects of various
settings.

On the
CD-ROM

Note

4799-2 ch24.F 6/11/01 9:47 AM Page 734

735Chapter 24 ✦ Providing Help for Your Applications

Figure 24-10: A WhatsThisButton setting of True brings up a small question
mark button.

Table 24-1
Settings for WhatsThisHelp and WhatsThisButton Properties

WhatsThisHelp WhatsThisButton Result

True True Question mark button is displayed; F1 gives
pop-up help.

True False No question mark button is displayed; F1
gives pop-up help.

False False No question mark button is displayed; F1
gives full help.

A workbook that demonstrates these settings is available on the companion
CD-ROM.

On the
CD-ROM

4799-2 ch24.F 6/11/01 9:47 AM Page 735

736 Part VI ✦ Developing Applications

Other Ways of Displaying WinHelp
or HTML Help

VBA provides several different ways to display specific Help topics. I describe these
in the following sections.

Using the Help method
Use the Help method of the Application object to display a Help file — either a
WinHelp HLP file or an HTML Help CHM file. This method works even if the Help file
doesn’t have any context IDs defined.

The syntax for the Help method is as follows:

Application.Help(helpFile, helpContextID)

Both arguments are optional. If the name of the Help file is omitted, Excel’s Help file
is displayed. If the context ID argument is omitted, the specified Help file is dis-
played with the default topic.

The following example displays the default topic of Myapp.hlp, which is assumed to
be in the same directory as the workbook that it’s called from. Note that the second
argument is omitted.

Sub ShowHelpContents()
Application.Help ThisWorkbook.Path & “\Myapp.hlp”

End Sub

The following instruction displays the Help topic with a context ID of 1002 from an
HTML Help file named Myapp.chm:

Application.Help ThisWorkbook.Path & “\Myapp.chm”, 1002

Displaying Help from a message box
When you use VBA’s MsgBox function to display a message box, you include a Help
button by adding the vbMsgBoxHelpButton constant to the function’s second argu-
ment. You’ll also need to include the Help filename as its fourth argument. The con-
text ID (optional) is its fifth argument. The following code, for example, generates
the message box shown in Figure 24-11:

4799-2 ch24.F 6/11/01 9:47 AM Page 736

737Chapter 24 ✦ Providing Help for Your Applications

Sub MsgBoxHelp()
Msg = “Do you want to exit now?”
Buttons = vbQuestion + vbYesNo + vbMsgBoxHelpButton
HelpFile = ThisWorkbook.Path & “\AppHelp.hlp”
ContextID = 1002
Ans = MsgBox(Msg, Buttons, , HelpFile, ContextID)
If Ans = vbYes Then Call CloseDown

End Sub

Figure 24-11: A message box with a Help button

Displaying Help from an input box
VBA’s InputBox function can also display a Help button if its sixth argument con-
tains the Help filename. The following example produces the InputBox shown in
Figure 24-12:

Sub ShowInputBox()
Msg = “Enter a value”
DefaultVal = 0
HFile = ThisWorkbook.Path & “\AppHelp.hlp”
ContextID = 1002
x = InputBox(_

Prompt:=Msg, _
Default:=DefaultVal, _
HelpFile:=HFile, _
Context:=ContextID)

End Sub

Figure 24-12: An InputBox with a Help
button

4799-2 ch24.F 6/11/01 9:47 AM Page 737

738 Part VI ✦ Developing Applications

Summary
In this chapter, I presented several alternative methods of providing online help
for end users, including “official” help systems (WinHelp or HTML Help) and
“unofficial” help systems that use Excel-specific techniques to display help.

The next chapter wraps up Part VI by providing an example of a user-oriented
application.

✦ ✦ ✦

4799-2 ch24.F 6/11/01 9:47 AM Page 738

Developing
User-Oriented
Applications

In this chapter, I attempt to pull together some of the infor-
mation presented in the previous chapters. This discussion

centers around a user-oriented application called the Loan
Amortization Wizard. Useful in its own right, this workbook
demonstrates quite a few important application development
techniques.

What Is a User-Oriented
Application?

I reserve the term user-oriented application for an Excel appli-
cation that can be used by someone with minimal training.
These applications produce useful results even for users who
know virtually nothing about Excel.

The Loan Amortization Wizard discussed in this chapter quali-
fies as a user-oriented application because it’s designed in
such a way that the end user doesn’t need to know the inti-
mate details of Excel to use it. Replying to a few simple
prompts produces a useful and flexible worksheet complete
with formulas.

The Loan Amortization Wizard
The Loan Amortization Wizard generates a worksheet that con-
tains an amortization schedule for a fixed-rate loan. An amorti-
zation schedule projects month-by-month details for a loan.
The details include the monthly payment amount, the amount
of the payment that goes toward interest, the amount that
goes toward reducing the principal, and the new loan balance.

2525C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

A description of a
user-oriented
application

A close look at the
Loan Amortization
Wizard, which
generates a
worksheet with an
amortization
schedule for a fixed-
rate loan

A demonstration of
application
development
concepts and
techniques by the
Loan Amortization
Wizard

An application
development checklist

✦ ✦ ✦ ✦

4799-2 ch25.F 6/11/01 9:47 AM Page 739

740 Part VI ✦ Developing Applications

An alternative, of course, is to create a template file (*.XLT). As you’ll see, this “wiz-
ard” approach offers several advantages.

Figure 25-1 shows an amortization schedule generated by the Loan Amortization
Wizard.

The Loan Amortization Wizard is available on the CD-ROM that accompanies this
book. It’s an unprotected add-in.

Using the application
The Loan Amortization Wizard consists of a five-step dialog box sequence that
collects information from the user. Typical of a wizard, this enables the user to go
forward and backward through the steps. Clicking the Finish button creates the
new worksheet.

This application uses a single UserForm with a MultiPage control to display the five
steps, shown in Figures 25-2 through 25-6.

Figure 25-1: This amortization schedule shows details for a 30-year
mortgage loan.

On the
CD-ROM

4799-2 ch25.F 6/11/01 9:47 AM Page 740

741Chapter 25 ✦ Developing User-Oriented Applications

Figure 25-2: Step 1 of the Loan Amortization
Wizard

Figure 25-3: Step 2 of the Loan Amortization
Wizard

Figure 25-4: Step 3 of the Loan Amortization
Wizard

4799-2 ch25.F 6/11/01 9:47 AM Page 741

742 Part VI ✦ Developing Applications

Figure 25-5: Step 4 of the Loan Amortization
Wizard

Figure 25-6: Step 5 of the Loan Amortization
Wizard

The workbook structure
The Loan Amortization Wizard consists of the following components:

FormMain A UserForm that serves as the primary user interface.

FormHelp A UserForm that displays online help.

HelpSheet A worksheet that contains the text used in the online help.

ModMain A VBA module that contains a procedure that displays the
main UserForm.

ThisWorkbook The code module for this object contains the event-handler
procedures Workbook_Open and Workbook_BeforeClose,
which create and delete a menu item, respectively.

4799-2 ch25.F 6/11/01 9:47 AM Page 742

743Chapter 25 ✦ Developing User-Oriented Applications

How it works
The Loan Amortization Wizard is an add-in, so it should be installed using the
Tools ➪ Add-Ins command. It works equally well, however, if it’s opened with the
File ➪ Open command.

Adding the menu item
When the workbook is opened, the Workbook_Open procedure adds a new Loan
Amortization Wizard menu item to the Tools menu. Clicking this menu item
executes the StartAmortizationWizard procedure, which simply displays the
FormMain UserForm.

Refer to Chapter 23 for information about creating new menu items.

Initializing FormMain
The UserForm_Initialize procedure for FormMain does quite a bit of work:

✦ It sets the MultiPage control’s Value property to 0. This ensures that it displays
the first page, regardless of its value when the workbook was last saved.

✦ It adds items to three ComboBox controls used on the form.

✦ It calls the GetDefaults procedure, which retrieves the most recently used
setting from the Windows Registry (see “Saving and retrieving default set-
tings” later in this section).

✦ It checks to see whether a workbook is active. If not, the code disables the
OptionButton that enables the user to create the new worksheet in the active
workbook.

Cross-
Reference

Creating the Loan Amortization Wizard

The Loan Amortization Wizard application started out as a simple concept and evolved into
a relatively complex project. My primary goal was to demonstrate as many development
concepts as possible and still have a useful end product. I would like to say that I clearly
envisioned the end result before I began developing the application, but I’d be lying.

My basic idea was much less ambitious. I simply wanted to create an application that gath-
ered user input and created a worksheet. But after I got started, I began thinking of ways to
enhance my simple program. I eventually stumbled down several blind alleys. Some folk
may consider my wanderings time-wasting, but those false starts became a vital part of the
development process.

I completed the entire project in one (long) day, and I spent a few more hours fine-tuning
and testing it.

4799-2 ch25.F 6/11/01 9:47 AM Page 743

744 Part VI ✦ Developing Applications

✦ If a workbook is active, an additional check determines whether the work-
book’s structure is protected. If so, the procedure disables the OptionButton
that enables the user to create the worksheet in the active workbook.

Processing events while the UserForm is displayed
The code module for the FormMain UserForm contains several event-handler proce-
dures that respond to the Click and Change events for the controls on the
UserForm.

Clicking the Back and Next buttons determines which page of the MultiPage con-
trol is displayed. The MultiPage1_Change procedure adjusts the UserForm’s
caption and enables and disables the Back and Next buttons as appropriate. See
Chapter 15 for more information about programming a wizard.

Displaying help
You have several options when it comes to displaying online help. I chose a simple
technique that employs the UserForm shown in Figure 25-7 to display text stored in
a worksheet. You’ll notice that this help is context sensitive. When the user clicks
the Help button, the help topic displayed is relevant to the current page of the
MultiPage control.

Figure 25-7: User help is presented
in a UserForm that copies text stored
in a worksheet.

For more information about the technique of transferring worksheet text to a
UserForm, consult Chapter 24.

Creating the new worksheet
Clicking the Finish button kicks off all the excitement. The Click event-handler
procedure for this button performs the following actions:

Cross-
Reference

Cross-
Reference

4799-2 ch25.F 6/11/01 9:47 AM Page 744

745Chapter 25 ✦ Developing User-Oriented Applications

✦ It calls a function named DataIsValid, which checks the user’s input to
ensure that it’s valid. If all the entries are valid, the function returns True, and
the procedure continues. If an invalid entry is encountered, DataIsValid sets
the focus to the control that needs to be corrected and returns a descriptive
error message (see Figure 25-8).

Figure 25-8: If an invalid entry is made, the focus is set
back to the control that contains the error.

✦ If the user’s responses are valid, the procedure creates a new worksheet
either in the active workbook or in a new workbook, per the user’s request.

✦ The loan parameters (purchase price, down payment information, loan
amount, term, and interest rate) are written to the worksheet. This requires
the use of some If statements because the down payment can be expressed
as a percentage of the purchase price or as a fixed amount.

✦ The column headers are written to the worksheet.

✦ The first row of formulas is written below the column headers. The first row is
different from the remaining rows because its formulas refer to data in the
loan parameters section. The other formulas all refer to the previous row.
Notice that I use named ranges in the formulas. These are sheet-level names,
so the user can store more than one amortization schedule in the same
workbook.

✦ For unnamed references, I use R1C1 notation, which is much easier than try-
ing to determine actual cell addresses!

✦ The second row of formulas is written to the worksheet and then copied down
one row for each month.

✦ If the user requested annual totals as opposed to simply monthly data, the
procedure uses the Subtotal method to create subtotals. This, by the way, is
an example of how using a native feature in Excel can save lots of coding!

✦ Because subtotaling the Balance column isn’t appropriate, the procedure
replaces formulas in the balance column with a formula that returns the year-
end balance.

✦ When Excel adds subtotals, it also creates an outline. If the user didn’t request
an outline, the procedure uses the ClearOutline method to remove it. If an
outline was requested, the procedure hides the outline symbols.

✦ Next, the procedure applies formatting to the cells: number formatting, plus
an AutoFormat if the user requested color output.

4799-2 ch25.F 6/11/01 9:47 AM Page 745

746 Part VI ✦ Developing Applications

✦ The procedure then adjusts the column widths, freezes the titles just below
the header row, and protects the formulas and a few other key cells that can’t
be changed. The sheet is protected, but not with a password.

✦ Finally, the SaveDefaults procedure writes the current values of the
UserForm’s controls to the Windows Registry. These values will be the
new default settings the next time the user creates an amortization
schedule (see “Saving and retrieving default settings,” next).

Saving and retrieving default settings
If you run this application, you’ll notice that the FormMain UserForm always dis-
plays the setting that you most recently used. In other words, it “remembers” your
last choices and uses them as the new default values. This step makes it very easy
to generate multiple “what-if” amortization schedules that vary in only a single
parameter. This is accomplished by storing the values in the Windows Registry and
then retrieving them when the UserForm is initialized. When the application is used
for the first time, the Registry doesn’t have any values, so it uses the default values
stored in the UserForm controls.

The following GetDefaults procedure loops through each control on the UserForm.
If the control is a TextBox, ComboBox, OptionButton, CheckBox, or SpinButton, it
calls VBA’s GetSetting function and reads the value to the Registry. Note that the
third argument for GetSetting is the value to use if the setting is not found. In this
case, it uses the value of the control specified at design time. APPNAME is a global
constant that contains the name of the application.

Sub GetDefaults()
‘ Reads default settings from the registry

Dim ctl As Control
Dim CtrlType As String

For Each ctl In Me.Controls
CtrlType = TypeName(ctl)
If CtrlType = “TextBox” Or _

CtrlType = “ComboBox” Or _
CtrlType = “OptionButton” Or _
CtrlType = “CheckBox” Or _
CtrlType = “SpinButton” Then
ctl.Value = GetSetting _
(APPNAME, “Defaults”, ctl.Name, ctl.Value)

End If
Next ctl

End Sub

Figure 25-9 shows how these values appear in the Registry, from the perspective of
the Windows Registry Editor program.

4799-2 ch25.F 6/11/01 9:47 AM Page 746

747Chapter 25 ✦ Developing User-Oriented Applications

Figure 25-9: The Windows Registry stores the default values for the wizard.

The following SaveDefaults procedure is similar. It uses VBA’s SaveSetting
statement to write the current values to the Registry.

Sub SaveDefaults()
‘ Writes current settings to the registry

Dim ctl As Control
Dim CtrlType As String

For Each ctl In Me.Controls
CtrlType = TypeName(ctl)
If CtrlType = “TextBox” Or _

CtrlType = “ComboBox” Or _
CtrlType = “OptionButton” Or _
CtrlType = “CheckBox” Or _
CtrlType = “SpinButton” Then
SaveSetting APPNAME, _

“Defaults”, ctl.Name, ctl.Value
End If

Next ctl
End Sub

The SaveSetting statement and the GetSetting function always use the following
Registry key:

HKEY_CURRENT_USER\Software\VB and VBA Program Settings\

4799-2 ch25.F 6/11/01 9:47 AM Page 747

748 Part VI ✦ Developing Applications

Potential enhancements
It’s been said that you never finish writing an application — you just stop working
on it. Without even thinking too much about it, I can come up with several enhance-
ments for the Loan Amortization Wizard:

✦ Add an option to display cumulative totals for interest and principal.

✦ Add an option to work with adjustable rate loans and make projections based
on certain interest rate scenarios.

✦ Add more formatting options (for example, no decimal places, no dollar signs,
and so on).

✦ Add options to enable the user to specify page headers or footers.

Application Development Concepts
It’s often difficult to follow the logic in an application developed by someone other
than yourself. To help you understand my work, I included lots of comments in the
code and described the general program flow in the preceding sections. But if you
really want to understand this application, I suggest that you use the Debugger to
step through the code.

At the very least, the Loan Amortization Wizard demonstrates some useful
techniques and concepts that are important for Excel developers:

✦ Creating a custom menu item that’s displayed only when a particular
workbook (or add-in) is open

✦ Using a wizardlike UserForm to gather information

✦ Setting the Enabled property of a control dynamically

✦ Linking a TextBox and a SpinButton control

✦ Displaying online help to a user

✦ Naming cells with VBA

✦ Writing and copying formulas with VBA

✦ Reading from and writing to the Windows Registry

Some Final Words
Developing user-oriented applications in Excel is not easy. You must be keenly
aware of how people will use (and abuse) the application in real life. Although I
tried to make this application completely bulletproof, I did not do extensive real-
world testing, so I wouldn’t be surprised if it fails under some conditions.

4799-2 ch25.F 6/11/01 9:47 AM Page 748

749Chapter 25 ✦ Developing User-Oriented Applications

Summary
In this chapter, I described a relatively complex user-oriented application that
creates a worksheet based on user-specified options.

This chapter concludes Part VI. Chapters in the next part cover a variety of topics
that you may find helpful, including compatibility issues, manipulating text files
with VBA, modifying VBA components, and class modules.

✦ ✦ ✦

Application Development Checklist

When developing user-oriented applications, you need to keep in mind many things. Let
the following checklist serve as a reminder:

✦ Did you clean up after yourself? Make sure that you restore toolbars and menus to
their original state when the application ends.

✦ Do the dialog boxes all work from the keyboard? Don’t forget to add hot keys and
check the tab order carefully.

✦ Did you make any assumptions about directories? If your application reads or writes
files, you can’t assume that a particular directory exists or that it’s the current
directory.

✦ Did you make provisions for canceling all dialog boxes? You can’t assume that the
user will end a dialog box by clicking the OK button.

✦ Did you assume that no other worksheets are open? If your application is the only
workbook open during testing, you may overlook something that happens when
other workbooks are open.

✦ Did you assume that a workbook was visible? It’s possible, of course, to use Excel
with no workbooks visible.

✦ Did you attempt to optimize the speed of your application? For example, you often
can speed up your application by declaring variable types and defining object
variables.

✦ Are your procedures adequately documented? Will you understand your code if you
revisit it in six months?

✦ Did you include appropriate end-user documentation? Doing so often eliminates (or
at least reduces) the number of follow-up questions.

✦ Did you allow time to revise your application? Chances are, the application won’t be
perfect the first time out. Build in some time to fix it.

4799-2 ch25.F 6/11/01 9:47 AM Page 749

4799-2 ch25.F 6/11/01 9:47 AM Page 750

Other Topics

The five chapters in this part cover additional topics that
you may find helpful. Chapter 26 presents information

regarding compatibility. In Chapter 27, I discuss various ways
to use VBA to work with files. In Chapter 28, I explain how to
use VBA to manipulate Visual Basic components such as
UserForms and modules. Chapter 29 covers the topic of class
modules. I finish the part with a useful chapter that answers
many common questions about Excel programming.

✦ ✦ ✦ ✦

In This Part

Chapter 26
Compatibility Issues

Chapter 27
Manipulating Files
with VBA

Chapter 28
Manipulating Visual
Basic Components

Chapter 29
Understanding Class
Modules

Chapter 30
Frequently Asked
Questions about
Excel Programming

✦ ✦ ✦ ✦

P A R T

VIIVII

4799-2 PO7.F 6/11/01 9:47 AM Page 751

4799-2 PO7.F 6/11/01 9:47 AM Page 752

Compatibility
Issues

If the applications that you’ve developed using Excel 2002
will be used only by others who also use the same version

of Excel, you can skip this chapter. But if your application also
needs to run on earlier versions of Excel, Excel for Macintosh,
or international versions of Excel, you must know about some
potential issues. These issues are the topic of this chapter.

What Is Compatibility?
Compatibility is an often-used term among computer people.
In general, it refers to how well software performs under vari-
ous conditions. These conditions may be defined in terms of
hardware, software, or a combination of the two. For example,
software that is written specifically for a 32-bit operating sys-
tem such as Windows XP will not run under the older 16-bit
versions of Windows 3.x. In other words, 32-bit applications
are not compatible with Windows 3.x. And, as I’m sure you
realize, software written for Windows will not run on other
operating systems, such as Macintosh or Linux.

In this chapter, I discuss a more specific compatibility issue,
involving how your Excel 2002 applications will work with
earlier versions of Excel for Windows and Excel for Macintosh.
The fact that two versions of Excel may use the same file
format isn’t always enough to ensure complete compatibility
between the contents of their files. For example, Excel 97,
Excel 2000, Excel 2002, and Excel 98 for Macintosh all use the
same file format — but compatibility issues are rampant. Just
because a particular version of Excel can open a worksheet
file or an add-in doesn’t guarantee that that version of Excel
can carry out the VBA macro instructions contained in it.

2626C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

How to make sure
your Excel 2002
applications will also
work with previous
versions of Excel

Issues to be aware of
if you’re developing
Excel applications for
international use

✦ ✦ ✦ ✦

4799-2 ch26.F 6/11/01 9:47 AM Page 753

754 Part VII ✦ Other Topics

The compatibility problem is more serious than you may think. You can run into
compatibility problems even within the same major version of Excel. For example,
Excel 2000 exists in at least three different sub-versions: the original release, the
“service release” known as SR-1, plus another service release, SR-1a. The service
releases fixed some bugs and also introduced a few subtle changes. Therefore, you
can’t be guaranteed that an application developed using the original release of
Excel 2000 will perform flawlessly with Excel 2000 SR-1.

The point here is that Excel is a moving target and there is really no way that you
can guarantee complete compatibility. Unfortunately, cross-version compatibility
doesn’t happen automatically. In most cases, you need to do quite a bit of addi-
tional work to achieve compatibility.

Types of Compatibility Problems
You need to be aware of five categories of potential compatibility problems. These
are listed here and discussed further in this chapter:

✦ File format issues. Workbooks can be saved in several different Excel file for-
mats. Excel may not be able to open workbooks that were saved in a later
version file format.

✦ New feature issues. It should be obvious that a feature introduced in a particu-
lar version of Excel cannot be used in previous versions of Excel.

✦ 32-bit vs. 16-bit issues. If you use Windows API calls, you need to pay attention
to this issue if your application must work with 16-bit versions of Excel (such
as Excel 5).

✦ Windows vs. Macintosh issues. If your application must work on both platforms,
plan to spend lots of time ironing out various compatibility problems.

✦ International issues. If your application will be used by those who speak
another language, you must address a number of additional issues.

After reading this chapter, it should be clear that there is only one way to ensure
compatibility: You must test your application on every target platform and with
every target version of Excel. Often, this is simply not feasible. However, there are
measures that you, as a developer, can take to help ensure that your application
works with different versions of Excel.

If you’re reading this chapter in search of a complete list of specific compatibility
issues among the various versions of Excel, you will be disappointed. As far as I
know, no such list exists and it would be virtually impossible to compile one.
These types of issues are far too numerous and complex.

Note

4799-2 ch26.F 6/11/01 9:47 AM Page 754

755Chapter 26 ✦ Compatibility Issues

A good source for information about potential compatibility problems is
Microsoft’s online Knowledge Base. The URL is:

http://search.support.microsoft.com

This will often help you identify bugs that appear in a particular version of Excel.

Excel File Formats Supported
As you probably know, Excel allows you to save a workbook in a format for earlier
versions. In addition, you can save a workbook in a “dual-version” format that com-
bines two file formats in a single file. These dual-version formats result in a larger
file.

If your application must work with earlier versions of Excel, you will need to make
sure your file is saved in the appropriate file format. The various Excel file formats
that can be saved by Excel 2002 are:

✦ Microsoft Excel Workbook (*.xls). The standard Excel 2002 file format. Can be
opened by Excel 97, Excel 2000, and Excel 2002.

✦ Microsoft Excel 5.0/95 Workbook. A format that can be opened by Excel 5.0 and
later versions.

✦ Microsoft Excel 97-2000 & 5.0/95 Workbook. A dual format that can be opened
by Excel 5 and later versions.

✦ Microsoft Excel 4.0 Worksheet (*.xls). Can be opened by Excel 4 and later
versions. This format saves a single sheet only.

✦ Microsoft Excel 3.0 Worksheet (*.xls). Can be opened by Excel 3 and later
versions. This format saves a single sheet only.

✦ Microsoft Excel 2.1 Worksheet (*.xls). Can be opened by Excel 2.1 and later
versions. This format saves a single sheet only.

✦ Microsoft Excel 4.0 Workbook (*.xlw). Can be opened by Excel 4.0 and later
versions. This format saves multisheet files, but they are not the same format
as Excel 5 workbooks.

You can use VBA to access the FileFormat property of the Workbook object to
determine the file format for a particular workbook. The instruction that follows,
for example, displays a value that represents the file format for the active
workbook:

MsgBox ActiveWorkbook.FileFormat

Tip

4799-2 ch26.F 6/11/01 9:47 AM Page 755

756 Part VII ✦ Other Topics

Predefined constants are available for the FileFormat property. For example, the
statement that follows displays True if the active workbook is an Excel 5 file:

MsgBox ActiveWorkbook.FileFormat = xlExcel5

Table 26-1 lists the constants and values for various Excel file formats.

Table 26-1
Constants and Values for Various Excel File Formats

Excel version Constant Value

Excel 2.1 xlExcel2 16

Excel 3.0 xlExcel3 29

Excel 4.0 xlExcel4Workbook 35

Excel 5 xlExcel5 39

Excel 95/97 xlExcel9795 43

Excel in HTML format xlHtml 44

Excel add-in xlAddIn 18

Excel 97/2000/2002 xlWorkbookNormal -4143

Avoid Using New Features
If your application must work with Excel 2002 and earlier versions, you will need
to avoid any features that were added after the earliest Excel version that you will
support. Another alternative is to incorporate the new features selectively. In other
words, your code can determine which version of Excel is being used, and either
take advantage of the new features or not.

VBA programmers must be careful not to use any objects, properties, or methods
that aren’t available in earlier versions. In general, the safest approach is to develop
your application with the “lowest common denominator.” For compatibility with
Excel 95, Excel 97, and Excel 2000, you should use Excel 95 for development, and
then test thoroughly using the other versions.

If your application must support Excel 95, you can’t use any UserForms — which
were introduced in Excel 97. Rather, you will need to use dialog sheets.

4799-2 ch26.F 6/11/01 9:47 AM Page 756

757Chapter 26 ✦ Compatibility Issues

Applications That Use Windows API Calls
Excel 95 and later versions are all 32-bit programs. Excel 5, however, is a 16-bit pro-
gram. This “bitness” determines which operating system Excel can run under. Excel
5 can run on 16-bit Windows 3.x, as well as 32-bit versions of Windows. The 32-bit
versions of Excel run only on 32-bit versions of Windows.

This becomes important when your VBA code uses API function calls, since 32-bit
Windows API functions are declared differently than 16-bit Windows API functions.
Therefore, an Excel 5 application that uses 16-bit Windows API functions will not
work with Excel 95 or later. Similarly, an Excel 95 (or later) application that uses
32-bit Windows API functions will not work with Excel 5.

For compatibility with Excel 5 through Excel 2002, you need to declare both the 16-
bit and 32-bit version of the API functions in your module. Then your code will need
to determine which version of Excel is running and call the appropriate function.

Following is an example of a procedure that utilizes API function calls, and that
works with both Excel 5 and later versions. The Declare statements for this
example appear in the following:

‘ 32-bit API declaration
Declare Function GetSystemMetrics32 Lib “user32” _
Alias “GetSystemMetrics” (ByVal nIndex As Long) As Long

‘ 16-bit API declaration
Declare Function GetSystemMetrics16 Lib “user” _
Alias “GetSystemMetrics” (ByVal nIndex As Integer) _
As Integer

I declared the 32-bit version and the 16-bit version of the API function. Note the
use of the keyword Alias. This precedes the actual name of the function in the
Windows API, which are identical here. I declared these functions with different
names to distinguish them from one another.

Determining Excel’s Version Number

The Version property of the Application object returns the version of Excel. The returned
value is a string, so you may need to convert it to a value. VBA’s Val function is perfect for
this. The following function, for example, returns True if the user is running Excel 2002 or
later (Excel 2002 is version 10):

Function XL10OrLater()
XL10OrLater = Val(Application.Version) >= 10

End Function

4799-2 ch26.F 6/11/01 9:47 AM Page 757

758 Part VII ✦ Other Topics

The DisplayVideoInfo procedure, which follows, displays the video resolution of
the user’s system:

Sub DisplayVideoInfo()
Const SM_CXSCREEN = 0
Const SM_CYSCREEN = 1

If Val(Application.Version) > 5 Then
‘ 32-bit Excel

vidWidth = GetSystemMetrics32(SM_CXSCREEN)
vidHeight = GetSystemMetrics32(SM_CYSCREEN)

Else
‘ 16-bit Excel

vidWidth = GetSystemMetrics16(SM_CXSCREEN)
vidHeight = GetSystemMetrics16(SM_CYSCREEN)

End If

Msg = “The current video mode is: “
Msg = Msg & vidWidth & “ X “ & vidHeight
MsgBox Msg

End Sub

Here, I used the expression Val(Application.Version) > 5 to determine
whether Excel is 16-bit or 32-bit. If the expression returns True, the code calls the
32-bit function; otherwise, it calls the 16-bit function.

But Will It Work on a Mac?
One of the most prevalent problems I hear about concerns Macintosh compatibility.
Excel for Macintosh represents a very small proportion of the total Excel market,
and many developers choose to simply ignore it. The good news is that Excel files
are compatible across both platforms. The bad news is that the features supported
are not identical, and VBA macro compatibility is far from perfect.

You can write VBA code to determine which platform your application is running
on. The following function accesses the OperatingSystem property of the
Application object and returns True if the operating system is any version of
Windows (that is, if the returned string contains the text “Win”):

Function WindowsOS() As Boolean
If Application.OperatingSystem like “*Win*” Then

WindowsOS = True
Else

WindowsOS = False
End If

End Function

4799-2 ch26.F 6/11/01 9:47 AM Page 758

759Chapter 26 ✦ Compatibility Issues

Many subtle (and not so subtle) differences exist between the Windows versions
and the Mac versions of Excel. Many of those differences are cosmetic (for example,
different default fonts), but others are much more serious. For example, Excel for
Macintosh doesn’t include ActiveX controls, and it uses “1904” as the default date
system, so workbooks that use dates may be off by four years. Excel for Windows,
by default, uses the 1900 date system. On the Macintosh, a date serial number of 1
refers to January 1, 1904; in Excel for Windows, that same serial number represents
January 1, 1900.

Another limitation concerns Windows API calls: They won’t work with Excel for
Macintosh. If your application depends on such functions, you need to develop a
workaround.

If your code deals with paths and filenames, you need to construct your path
with the appropriate path separator (a colon for the Macintosh, a backslash for
Windows). A better approach is to avoid hard-coding the path separator character
and use VBA to determine it. The following statement assigns the path separator
character to a variable named PathSep:

PathSep = Application.PathSeparator

After this statement is executed, your code can use the PathSep variable in place of
a hard-coded colon or backslash.

Rather than try to make a single file compatible with both platforms, most develop-
ers choose to develop on one platform (typically Excel for Windows) and then mod-
ify the application so that it works on the Mac platform. In other words, you’ll
probably need to maintain two separate versions of your application.

There is only one way to make sure that your application is compatible with the
Macintosh version of Excel: You must test it thoroughly on a Macintosh. And be
prepared to develop some workarounds for routines that don’t work correctly.

Creating an International Application
The final compatibility issue deals with language issues and international settings.
Excel is available in many different language versions. The following statement
displays the country code for the version of Excel:

MsgBox Application.International(xlCountryCode)

The United States/English version of Excel has a country code of 1. Other country
codes are listed in Table 26-2.

4799-2 ch26.F 6/11/01 9:47 AM Page 759

760 Part VII ✦ Other Topics

Table 26-2
Excel Country Codes

Language Country code

English 1

Russian 7

Greek 30

Dutch 31

French 33

Spanish 34

Hungarian 36

Italian 39

Czech 42

Danish 45

Swedish 46

Norwegian 47

Polish 48

German 49

Portuguese (Brazil) 55

Thai 66

Japanese 81

Korean 82

Vietnamese 84

Simplified Chinese 86

Turkish 90

Indian 91

Urdu 92

Portuguese 351

Finnish 358

Traditional Chinese 886

Arabic 966

Hebrew 972

Farsi 982

4799-2 ch26.F 6/11/01 9:47 AM Page 760

761Chapter 26 ✦ Compatibility Issues

If your application will be used by those who speak another language, you need to
ensure that the proper language is used in your dialog boxes. Also, you need to
identify the user’s decimal and thousands separator characters. In the United
States, these are almost always a period and a comma. But users in other countries
may have their systems set up to use other characters. Yet another issue is date
and time formats. The United States is one of the few countries that use the
month/date/year format.

If you’re developing an application that will be used only by people with your com-
pany, you probably won’t need to be concerned with international compatibility.
But if your company has offices throughout the world, or if you plan to distribute
your application outside your country, you need to address a number of issues to
ensure that your application will work properly. I discuss these issues in this
section.

Multilanguage applications
An obvious consideration involves the language that is used in your application.
For example, if you use one or more dialog boxes, you may want the text to appear
in the language of the user. Fortunately, this is not too difficult (assuming, of course,
that you can translate your text or know someone who can).

The companion CD-ROM contains a dialog box wizard that is set up to use any of
three languages: English, Spanish, or German. This example is based on a dialog
box example presented in Chapter 14.

The first step of the wizard contains three OptionButtons that enable the user to
select a language. The text for the three languages is stored in a worksheet.

Figures 26-1 through 26-3 show the UserForm displaying text in all three languages.

Figure 26-1: The Wizard Demo, in English

On the
CD-ROM

4799-2 ch26.F 6/11/01 9:47 AM Page 761

762 Part VII ✦ Other Topics

Figure 26-2: The Wizard Demo, in Spanish

Figure 26-3: The Wizard Demo, in German

VBA language considerations
In general, you need not be concerned with the language that you write your VBA
code in. Excel uses two object libraries: the Excel object library and the VBA object
library. When you install Excel, it registers the English language version of these
object libraries as the default libraries (this is true regardless of the language
version of Excel).

Using “local” properties
If your code will display worksheet information such as a range address, you proba-
bly want to use the local language. For example, the following statement displays
the address of the selected range:

MsgBox Selection.Address

For international applications, a better approach is to use the AddressLocal
property rather than the Address property:

MsgBox Selection.AddressLocal

4799-2 ch26.F 6/11/01 9:47 AM Page 762

763Chapter 26 ✦ Compatibility Issues

An even better approach is to ensure that the reference style (A1 or R1C1) matches
the style that the user has selected. This can be accomplished with the following
statement:

MsgBox Selection.AddressLocal _
(ReferenceStyle:=Application.ReferenceStyle)

Several other properties also have “local” versions. These are shown in Table 26-3
(refer to the online help for details).

Table 26-3
Properties That Have “Local” Versions

Property “Local” version Return contents

Address AddressLocal An address

Category CategoryLocal A function category

Formula FormulaLocal A formula

Name NameLocal A name

NumberFormat NumberFormatLocal A number format

RefersTo RefersToLocal A reference

Identifying system settings
Generally, you cannot assume that the end user’s system is set up like the system
on which you develop your application. For international applications, you may
need to be aware of the following settings:

Decimal separator The character used to separate the decimal portion of
a value.

Thousands separator The character used to delineate every three digits in a
value.

List separator The character used to separate items in a list.

You can determine the current separator settings by accessing the International
property of the Application object. For example, the following statement displays
the decimal separator, which won’t always be a period:

MsgBox Application.International(xlDecimalSeparator)

There are 45 international settings that you can access with the International
property. These are listed in Table 26-4.

4799-2 ch26.F 6/11/01 9:47 AM Page 763

764 Part VII ✦ Other Topics

Table 26-4
Constants for the International Property

Constant What it returns

xlCountryCode Country version of Microsoft Excel.

xlCountrySetting Current country setting in the Windows Control Panel.

xlDecimalSeparator Decimal separator.

xlThousandsSeparator Zero or thousands separator.

xlListSeparator List separator.

xlUpperCaseRowLetter Uppercase row letter (for R1C1-style references).

xlUpperCaseColumnLetter Uppercase column letter.

xlLowerCaseRowLetter Lowercase row letter.

xlLowerCaseColumnLetter Lowercase column letter.

xlLeftBracket Character used instead of the left bracket ([) in R1C1-
style relative references.

xlRightBracket Character used instead of the right bracket (]) in R1C1-
style references.

xlLeftBrace Character used instead of the left brace ({) in array
literals.

xlRightBrace Character used instead of the right brace (}) in array
literals.

xlColumnSeparator Character used to separate columns in array literals.

xlRowSeparator Character used to separate rows in array literals.

xlAlternateArraySeparator Alternate array item separator to be used if the current
array separator is the same as the decimal separator.

xlDateSeparator Date separator (/).

xlTimeSeparator Time separator (:).

xlYearCode Year symbol in number formats (y).

xlMonthCode Month symbol (m).

xlDayCode Day symbol (d).

xlHourCode Hour symbol (h).

xlMinuteCode Minute symbol (m).

xlSecondCode Second symbol (s).

xlCurrencyCode Currency symbol.

4799-2 ch26.F 6/11/01 9:47 AM Page 764

765Chapter 26 ✦ Compatibility Issues

Constant What it returns

xlGeneralFormatName Name of the General number format.

xlCurrencyDigits Number of decimal digits to be used in currency
formats.

xlCurrencyNegative A value that represents the currency format for negative
currency values.

xlNoncurrencyDigits Number of decimal digits to be used in noncurrency
formats.

xlMonthNameChars Always returns three characters for backward
compatibility. Abbreviated month names are read from
Microsoft Windows and can be any length.

xlWeekdayNameChars Always returns three characters for backward
compatibility. Abbreviated weekday names are read
from Microsoft Windows and can be any length.

xlDateOrder An integer that represents the order of date elements.

xl24HourClock True if the system is using 24-hour time; False if the
system is using 12-hour time.

xlNonEnglishFunctions True if the system is not displaying functions in English.

xlMetric True if the system is using the metric system; False if
the system is using the English measurement system.

xlCurrencySpaceBefore True if a space is added before the currency symbol.

xlCurrencyBefore True if the currency symbol precedes the currency
values; False if it follows them.

xlCurrencyMinusSign True if the system is using a minus sign for negative
numbers; False if the system is using parentheses.

xlCurrencyTrailingZeros True if trailing zeros are displayed for zero currency
values.

xlCurrencyLeadingZeros True if leading zeros are displayed for zero currency
values.

xlMonthLeadingZero True if a leading zero is displayed in months (when
months are displayed as numbers).

xlDayLeadingZero True if a leading zero is displayed in days.

xl4DigitYears True if the system is using four-digit years; False if the
system is using two-digit years.

xlMDY True if the date order is month-day-year for dates
displayed in the long form; False if the date order is
day-month-year.

xlTimeLeadingZero True if a leading zero is displayed in times.

4799-2 ch26.F 6/11/01 9:47 AM Page 765

766 Part VII ✦ Other Topics

Date and time settings
If your application writes formatted dates and will be used in other countries, you
might want to make sure that the date is in a format familiar to the user. The best
approach is to specify a date using VBA’ss DateSerial function, and let Excel take
care of the formatting details (it will use the user’s short date format).

The following procedure uses the DateSerial function to assign a date to the
StartDate variable. This date is then written to cell A1 using the local short date
format.

Sub WriteDate()
Dim StartDate As Date
StartDate = DateSerial(2001, 2, 15)
Range(“A1”) = StartDate

End Sub

If you need to do any other formatting for the date, you can write code to do so
after the date has been entered into the cell. Excel provides several named date and
time formats, plus quite a few named number formats. These are all described in
the online help (search for named date/time formats or named numeric formats).

Summary
In this chapter, I discussed some general issues that you must consider if your Excel
application must work with earlier versions of Excel, Excel for Macintosh, and foreign
language versions of Excel.

The next chapter describes some techniques that let you read and write text files
using VBA.

✦ ✦ ✦

4799-2 ch26.F 6/11/01 9:47 AM Page 766

Manipulating
Files with VBA

Many applications that you develop for Excel require
working with multiple files. For example, you may

need to get a listing of files in a directory, delete files, rename
files, and so on. Excel, of course, can import and export several
types of text files. In many cases, however, Excel’s built-in text
file handling isn’t sufficient. For example, you may need to
import a text file that contains more than 256 columns of data.
Or, the file may use a nonstandard delimiter such as a back-
slash. In this chapter, I describe how to use VBA to perform
common file operations and work directly with text files.

Performing Common
File Operations

Excel provides you with a number of ways to perform
common file operations:

✦ Use “traditional” VBA statements and functions. This
method works for all versions of Excel.

✦ Use the FileSearch object, which is easier to use, and
offers some distinct advantages. This method works for
Excel 97 and later.

✦ Use the FileSystemObject, which makes use of the
Microsoft Scripting Library. This method works for Excel
2000 and later.

In the sections that follow, I discuss these three methods and
present examples.

2727C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

A basic overview of
VBA’s text file
manipulation features

Performing common
file operations using
both traditional
techniques and the
FileSearch object

Various ways to open
a text file

Examples of reading
and writing a text file
using VBA

Code to import more
than 256 columns of
data into a workbook

Sample code for
exporting a range to
HTML format

✦ ✦ ✦ ✦

4799-2 ch27.F 6/11/01 9:48 AM Page 767

768 Part VII ✦ Other Topics

VBA file-related commands
The VBA commands that you can use to work with files are summarized in
Table 27-1.

Table 27-1
VBA File-Related Commands

Command What it does

ChDir Changes the current directory

ChDrive Changes the current drive

Dir Returns a filename or directory that matches a specified pattern or
file attribute

FileCopy Copies a file

FileDateTime Returns the date and time a file was last modified

FileLen Returns the size of a file, in bytes

GetAttr Returns a value that represents an attribute of a file

Kill Deletes a file

MkDir Creates a new directory

Name Renames a file or directory

RmDir Removes an empty directory

SetAttr Changes an attribute for a file

The remainder of this section consists of examples that demonstrate some of the
file manipulation commands.

Determining whether a file exists
The following function returns True if a particular file exists, and False if it does not
exist. If the Dir function returns an empty string, the file could not be found, so the
function returns False.

Function FileExists(fname) As Boolean
If Dir(fname) <> “” Then _
FileExists = True _
Else FileExists = False

End Function

4799-2 ch27.F 6/11/01 9:48 AM Page 768

769Chapter 27 ✦ Manipulating Files with VBA

The argument for the FileExists function consists of a full path and filename. The
function can be used in a worksheet, or called from a VBA procedure.

Determining whether a path exists
The following function returns True if a specified path exists, and False otherwise:

Function PathExists(pname) As Boolean
‘ Returns TRUE if the path exists

On Error Resume Next
PathExists = GetAttr(pname) And vbDirectory = vbDirectory

End Function

Displaying a list of files in a directory
The following procedure displays (in the active worksheet) a list of files contained
in a particular directory, along with the file size and date:

Sub ListFiles()
Directory = “c:\windows\desktop\”
r = 1

‘ Insert headers
Cells(r, 1) = “FileName”
Cells(r, 2) = “Size”
Cells(r, 3) = “Date/Time”
Range(“A1:C1”).Font.Bold = True

‘ Get first file
f = Dir(Directory, 7)
Do While f <> “”

r = r + 1
Cells(r, 1) = f
Cells(r, 2) = FileLen(Directory & f)
Cells(r, 3) = FileDateTime(Directory & f)

‘ Get next file
f = Dir

Loop
End Sub

Figure 27-1 shows an example of the output of the ListFiles subroutine.

4799-2 ch27.F 6/11/01 9:48 AM Page 769

770 Part VII ✦ Other Topics

Figure 27-1: Output from the ListFiles procedure

Notice that the procedure uses the Dir function twice. The first time, it retrieves
the first filename found. Subsequent calls retrieve additional filenames. When no
more files are found, the function returns an empty string.

The companion CD-ROM contains a more sophisticated version of this procedure
that allows you to select a directory from a dialog box.

The Dir function also accepts wildcard file specifications in its first argument. To
get a list of Excel files, for example, you could use a statement such as:

f = Dir(Directory & “*.xl?”, 7)

This statement retrieves the name of the first *.xl? file in the specified directory.
The second argument for the Dir function lets you specify the attributes of the
files. An argument of 7 retrieves filenames that have no attributes, read-only files,
hidden files, and system files. Consult the online help for specifics.

If you need to display a list of files to allow a user to select one, this is not the most
efficient approach. Rather, you’ll want to use the GetOpenFilename method,
which is discussed in Chapter 12.

Note

On the
CD-ROM

4799-2 ch27.F 6/11/01 9:48 AM Page 770

771Chapter 27 ✦ Manipulating Files with VBA

Using the FileSearch object
The FileSearch object is a member of the Microsoft Office object library. This
object essentially gives your VBA code all the functionality of the Windows Find
File dialog box. For example, you can use this object to locate files that match a file
specification (such as *.xls), and even search for files that contain specific text. You
can use this object with Excel 97 and later versions.

Table 27-2 summarizes some of the key methods and properties of the FileSearch
object. For a complete list and details, consult the online help.

Table 27-2
Properties and Methods of the FileSearch Object

Property or method What it does

FileName The name of the file to be located (wildcard characters are
acceptable)

FoundFiles Returns an object that contains the names of the files found

LookIn The directory to be searched

SearchSubfolders True if subdirectories are to be searched

Execute Performs the search

NewSearch Resets the FileSearch object

The remainder of this section consists of examples that demonstrate use of the
FileSearch object.

Displaying a list of files in a directory
The following procedure displays, in the active worksheet, a list of files contained in
a particular directory, along with the file size and date:

Sub ListFiles2()
Directory = “c:\windows\desktop\”

‘ Insert headers
r = 1
Cells(r, 1) = “FileName”
Cells(r, 2) = “Size”
Cells(r, 3) = “Date/Time”
Range(“A1:C1”).Font.Bold = True
r = r + 1

4799-2 ch27.F 6/11/01 9:48 AM Page 771

772 Part VII ✦ Other Topics

With Application.FileSearch
.NewSearch
.LookIn = Directory
.Filename = “*.*”
.SearchSubFolders = False
.Execute
For i = 1 To .FoundFiles.Count

Cells(r, 1) = .FoundFiles(i)
Cells(r, 2) = FileLen(.FoundFiles(i))
Cells(r, 3) = FileDateTime(.FoundFiles(i))
r = r + 1

Next i
End With

End Sub

The FileSearch object essentially ignores all Windows shortcut files (files with a
*.LNK extension).

The companion CD-ROM contains a more sophisticated version of this procedure
that allows you to select a directory.

Determining whether a file exists
The following function takes two arguments (the path and the filename), and returns
True if the file exists in the specified directory. After the Execute method is run,
the Count property of the FoundFiles object will be 1 if the file was found.

Function FileExists2(path, fname) As Boolean
With Application.FileSearch

.NewSearch

.Filename = fname

.LookIn = path

.Execute
If .FoundFiles.Count = 1 Then

FileExists2 = True
Else

FileExists2 = False
End If

End With
End Function

As far as I can tell, it’s not possible to use the FileSearch object to determine if
a path exists.

Note

On the
CD-ROM

Caution

4799-2 ch27.F 6/11/01 9:48 AM Page 772

773Chapter 27 ✦ Manipulating Files with VBA

Locating files that contain specific text
The following procedure searches the My Documents directory (and its subdirecto-
ries) for all *.xls files that contain the text budget. The found filenames are then
added to a ListBox on a UserForm.

Sub FindFiles()
With Application.FileSearch

.NewSearch

.LookIn = “C:\My Documents”

.SearchSubFolders = True

.TextOrProperty = “budget”

.MatchTextExactly = False

.Filename = “*.xls”

.Execute
For i = 1 To .FoundFiles.Count

UserForm1.ListBox1.AddItem .FoundFiles(i)
Next i

End With
UserForm1.Show

End Sub

Using the FileSystemObject object
The FileSystemObject object is a member of the Windows Scripting Host, and
provides access to a computer’s file system. This object is often used in script-
oriented Web pages (for example, VB Script and JavaScript), and can be used with
Excel 2000 and later versions.

The Windows Scripting Host is often used as a way to spread computer viruses.
Consequently, the Windows Scripting Host is disabled on many systems.
Therefore, use caution if you are designing an application that will be used on
many different systems.

Documentation for the FileSystemObject object is available online, at:

http://msdn.microsoft.com/scripting

Determining whether a file exists
The Function procedure that follows accepts one argument (the path and filename),
and returns True if the file exists:

Function FileExists3(fname) As Boolean
Set FileSys = CreateObject(“Scripting.FileSystemObject”)
FileExists3 = FileSys.FileExists(fname)

End Function

The function creates a new FileSystemObject object named FileSys and then
accesses the FileExists property for that object.

Caution

4799-2 ch27.F 6/11/01 9:48 AM Page 773

774 Part VII ✦ Other Topics

The companion CD-ROM contains an example that demonstrates all three meth-
ods (VBA commands, FileSearch, and FileSystemObject) of determining
whether a file exists.

Determining whether a path exists
The Function procedure that follows accepts one argument (the path), and returns
True if the file exists:

Function PathExists3(path) As Boolean
Set FileSys = CreateObject(“Scripting.FileSystemObject”)
On Error Resume Next
Set FolderObj = FileSys.getfolder(path)
If Err = 0 Then

PathExists3 = True
Else

PathExists3 = False
End If

End Function

The function attempts to create a new Folder object named FolderObj. If this
operation is successful, it means that the directory exists. If an error occurs, the
directory does not exist.

Listing information about all available disk drives
The following procedure uses the FileSystemObject to retrieve and display vari-
ous information about all disk drives. The procedure loops through the Drives
collection, and writes various property values to a worksheet. Figure 27-2 shows
the results run on a system with a floppy disk drive, a hard drive, and two CD-ROM
drives. The data shown is the drive letter, whether the drive is “ready,” the drive
type, the volume name, the total size, and available space.

On some versions of Windows, the TotalSize and AvailableSpace properties
may return incorrect results for drives that exceed two gigabytes in size. Figure
27-2 shows an example of this error. This problem doesn’t occur with Windows NT,
or with Windows 2000 or later.

This workbook is available on the companion CD-ROM.

Figure 27-2: Output from the ShowDriveInfo procedure

On the
CD-ROM

Caution

On the
CD-ROM

4799-2 ch27.F 6/11/01 9:48 AM Page 774

775Chapter 27 ✦ Manipulating Files with VBA

Sub ShowDriveInfo()
Dim FileSys, Drv
Dim Row As Integer

Set FileSys = CreateObject(“Scripting.FileSystemObject”)
Cells.Clear
Row = 0
On Error Resume Next
For Each Drv In FileSys.Drives

Row = Row + 1
Cells(Row, 1) = Drv.DriveLetter
Cells(Row, 2) = Drv.IsReady
Select Case Drv.DriveType

Case 0: Cells(Row, 3) = “Unknown”
Case 1: Cells(Row, 3) = “Removable”
Case 2: Cells(Row, 3) = “Fixed”
Case 3: Cells(Row, 3) = “Network”
Case 4: Cells(Row, 3) = “CD-ROM”
Case 5: Cells(Row, 3) = “RAM Disk”

End Select
Cells(Row, 4) = Drv.VolumeName
Cells(Row, 5) = Drv.TotalSize
Cells(Row, 6) = Drv.AvailableSpace

Next Drv
End Sub

Working with Text Files
VBA contains a number of statements that allow “low-level” manipulation of files.
These Input/Output (I/O) statements give you much more control over files than
Excel’s normal text file import and export options.

A file can be accessed in any of three ways:

✦ Sequential access. By far the most common method. This allows reading and
writing individual characters or entire lines of data.

✦ Random access. Used only if you’re programming a database application
(which you shouldn’t be doing in VBA because better techniques do exist).

✦ Binary access. Used to read or write to any byte position in a file, such as
storing or displaying a bitmap image. Rarely (if ever) used in VBA.

Because random and binary access files are rarely used with VBA, this chapter
focuses on sequential access files. A sequential access file is accessed in a sequen-
tial manner. In other words, your code starts reading from the beginning of the file,
and reads each line sequentially. For output, your code writes data to the end of the
file.

4799-2 ch27.F 6/11/01 9:48 AM Page 775

776 Part VII ✦ Other Topics

The method of reading and writing text files discussed in this book is the tradi-
tional “data channel” approach. Another option is to use the “object” approach.
The FileSystemObject object contains a TextStream object that can be used
to read and write text files. The FileSystemObject object is part of the
Windows Scripting Host. As I mentioned earlier, this scripting service is disabled on
many systems due to the strong possibility of transferring a virus.

Opening a text file
VBA’s Open statement (not to be confused with the Open method of the
Application object) is used to open a file for reading or writing. Before
you can read from or write to a file, you must open it.

The Open statement is quite versatile, and has a rather complex syntax:

Open pathname For mode [Access access] [lock] _
As [#]filenumber [Len=reclength]

pathname (Required) The pathname part of the Open statement is quite
straightforward. It simply contains the name and path
(optional) of the file to be opened.

mode (Required) The file mode must be one of the following:

Append A sequential access mode that allows the file to
be read, or data to be appended to the end of the
file.

Input A sequential access mode that allows the file to
be read, but not written to.

Output A sequential access mode that allows the file to
be read or written to. In this mode, a new file is
always created (an existing file with the same
name is deleted).

Binary A random access mode that allows data to be
read or written to on a byte-by-byte basis.

Random A random access mode that allows data to be
read or written in units determined by the
reclength argument of the Open statement.

access (Optional) The Access argument determines
what can be done with the file. It can be either
Read, Write, or Read Write.

lock (Optional) The Lock argument is useful for mul-
tiuser situations. The options are Shared, Lock
Read, Lock Write, and Lock Read Write.

Note

4799-2 ch27.F 6/11/01 9:48 AM Page 776

777Chapter 27 ✦ Manipulating Files with VBA

filenumber (Required) A file number ranging from 1 to 511.
You can use the FreeFile function to get the
next available file number.

reclength (Optional) The record length (for random
access files) or the buffer size (for sequential
access files).

Reading a text file
The basic procedure for reading a text file using VBA consists of the following
steps:

1. Open the file using the Open statement.

2. Specify the position in the file using the Seek function (optional).

3. Read data from the file (using the Input, Input #, or Line Input #
statements).

4. Close the file using the Close statement.

Writing a text file
The basic procedure for writing a text file is:

1. Open or create the file using the Open statement.

2. Specify the position in the file using the Seek function (optional).

3. Write data to the file using the Write # or Print # statements.

4. Close the file using the Close statement.

Getting a file number
Most VBA programmers simply designate a file number in their Open statement. For
example:

Open “myfile.txt” For Input As #1

Then you can refer to the file in subsequent statements as #1.

If a second file is opened while the first is still open, you would designate the
second file as #2:

Open “another.txt” For Input As #2

4799-2 ch27.F 6/11/01 9:48 AM Page 777

778 Part VII ✦ Other Topics

Another approach is to use VBA’s FreeFile function to get a file handle. Then you
can refer to the file using a variable. Here’s an example:

FileHandle = FreeFile
Open “myfile.txt” For Input As FileHandle

Determining or setting the file position
For sequential file access, it’s rarely necessary to know the current location in the
file. If for some reason you need to know this, you can use the Seek function.

Statements for reading and writing
VBA provides several statements to read and write data to a file.

Three statements are used for reading data from a sequential access file:

✦ Input Reads a specified number of characters from a file.

✦ Input # Reads data as a series of variables, with variables separated
by a comma.

✦ Line Input # Reads a complete line of data (delineated by a carriage
return and/or line feed character).

Excel’s Text File Import and Export Features

Excel supports three types of text files:

✦ CSV (Comma-Separated Value) files. Columns of data are separated by a comma,
and each row of data ends in a carriage return. For some non-English versions of
Excel, a semi-colon rather than a comma is used.

✦ PRN. Columns of data are aligned by character position, and each row of data ends
in a carriage return.

✦ TXT (Tab-delimited) files. Columns of data are separated by tab characters, and each
row of data ends in a carriage return.

When you attempt to open a text file with the File ➪ Open command, the Text Import Wizard
may appear to help you delineate the columns. If the text file is tab delimited or comma
delimited, Excel usually opens the file without displaying the Text Import Wizard. The Text to
Columns Wizard (accessed by Data ➪ Text to Columns) is identical to the Text Import Wizard,
but works with data stored in a single column.

4799-2 ch27.F 6/11/01 9:48 AM Page 778

779Chapter 27 ✦ Manipulating Files with VBA

Two statements are used for writing data to a sequential access file:

✦ Write # Writes a series of values, with each value separated by a comma
and enclosed in quotes. If you end the statement with a semicolon,
a carriage return/linefeed sequence is not inserted after each
value. Data written with Write # is usually read from a file with an
Input # statement.

✦ Print # Writes a series of values, with each value separated by a tab
character. If you end the statement with a semicolon, a carriage
return/linefeed sequence is not inserted after each value. Data
written with Print # is usually read from a file with a Line
Input # or an Input statement.

Text File Manipulation Examples
This section contains a number of examples that demonstrate various techniques
that manipulate text files.

Importing data in a text file
The following example reads a text file, and places each line of data in a single cell
(beginning with the active cell):

Sub ImportData()
Set ImpRng = ActiveCell
Open “c:\windows\desktop\textfile.txt” For Input As #1
r = 0
Do Until EOF(1)

Line Input #1, data
ActiveCell.Offset(r, 0) = data
r = r + 1

Loop
Close #1

End Sub

In most cases, this procedure won’t be very useful, since each line of data is simply
dumped into a single cell. You can, however, use the Data ➪ Text to Columns
command to parse the data to columns.

Exporting a range to a text file
The following example is a simple example that writes the data in a selected work-
sheet range to a CSV text file.

4799-2 ch27.F 6/11/01 9:48 AM Page 779

780 Part VII ✦ Other Topics

Notice that the procedure uses two Write # statements. The first statement ends
with a semicolon, so a carriage return/linefeed sequence is not written. For the last
cell in a row, however, the second Write # statement does not use a semicolon,
which causes the next output to appear on a new line.

I use a variable named Data to store the contents of each cell. If the cell is numeric,
the variable is convert to a value. This step ensures that numeric data will not
be stored with quotation marks. If a cell is empty, its Value property returns 0.
Therefore, the code also checks for a blank cell (using the IsEmpty function) and
substitutes an empty string instead of a zero.

Sub ExportRange()
Dim Filename As String
Dim NumRows As Long, NumCols As Integer
Dim r As Long, c As Integer
Dim Data
Dim ExpRng As Range
Set ExpRng = Selection
NumCols = ExpRng.Columns.Count
NumRows = ExpRng.Rows.Count
Filename = “c:\windows\desktop\textfile.txt”
Open Filename For Output As #1

For r = 1 To NumRows
For c = 1 To NumCols

Data = ExpRng.Cells(r, c).Value
If IsNumeric(Data) Then Data = Val(Data)
If IsEmpty(ExpRng.Cells(r, c)) Then Data = “”
If c <> NumCols Then

Write #1, Data;
Else

Write #1, Data
End If

Next c
Next r

Close #1
End Sub

This example is available on the companion CD-ROM.

Figure 27-3 shows the contents of the resulting file.

On the
CD-ROM

4799-2 ch27.F 6/11/01 9:48 AM Page 780

781Chapter 27 ✦ Manipulating Files with VBA

Figure 27-3: This text file was generated by VBA.

Importing a text file to a range
The following subroutine reads the text file created in the previous example, and
stores the values beginning at the active cell. The code reads each character and
essentially parses the line of data, ignoring quote characters and looking for
commas to delineate the columns.

Sub ImportRange()
Dim ImpRng As Range
Dim Filename As String
Dim r As Long, c As Integer
Dim txt As String, Char As String * 1
Dim Data
Dim i As Integer

Set ImpRng = ActiveCell
On Error Resume Next
Filename = “c:\windows\desktop\textfile.txt”
Open Filename For Input As #1
If Err <> 0 Then

MsgBox “Not found: “ & Filename, vbCritical, “ERROR”
Exit Sub

End If
r = 0
c = 0
txt = “”
Application.ScreenUpdating = False
Do Until EOF(1)

Line Input #1, Data
For i = 1 To Len(Data)

Char = Mid(Data, i, 1)
If Char = “,” Then ‘comma

ActiveCell.Offset(r, c) = txt
c = c + 1

4799-2 ch27.F 6/11/01 9:48 AM Page 781

782 Part VII ✦ Other Topics

txt = “”
ElseIf i = Len(Data) Then ‘end of line

If Char <> Chr(34) Then txt = txt & Char
ActiveCell.Offset(r, c) = txt
txt = “”

ElseIf Char <> Chr(34) Then
txt = txt & Char

End If
Next i
c = 0
r = r + 1

Loop
Close #1
Application.ScreenUpdating = True

End Sub

The procedure above has a flaw: It doesn’t handle data that contains a comma or
a quote character. In addition, an imported date will be surrounded by number
signs. For example: #2001-05-12#.

This example is available on the companion CD-ROM.

Logging Excel usage
The example in this section writes data to a text file every time Excel is opened and
closed. In order for this to work reliably, the procedure must be located in a work-
book that is opened every time you start Excel. The Personal Macro Workbook is an
excellent choice.

The following procedure, stored in the code module for the ThisWorkbook object,
is executed when the file is opened:

Private Sub Workbook_Open()
Open Application.Path & “\excelusage.txt” _
For Append As #1

Print #1, “Started “ & Now
Close #1

End Sub

The procedure appends a new line to a file named excelusage.txt. The new line
contains the current date and time, and might look something like this:

Started 03/09/00 9:27:43 PM

On the
CD-ROM

Note

4799-2 ch27.F 6/11/01 9:48 AM Page 782

783Chapter 27 ✦ Manipulating Files with VBA

The following subroutine is executed when the workbook is closed. It appends a
new line that contains the word “Stopped,” along with the current date and time.

Private Sub Workbook_BeforeClose(Cancel As Boolean)
Open Application.Path & “\excelusage.txt” _
For Append As #1

Print #1, “Stopped “ & Now
Close #1

End Sub

Filtering a text file
The example in this section demonstrates how to work with two text files at once.
The FilterFile procedure that follows reads a text file (infile.txt) and copies only
the rows that contain a specific text string to a second text file (output.txt).

Sub FilterFile()
Open “infile.txt” For Input As #1
Open “output.txt” For Output As #2
TextToFind = “January”
Do Until EOF(1)

Line Input #1, data
If InStr(1, data, TextToFind) Then

Print #2, data
End If

Loop
Close

End Sub

This example is available on the companion CD-ROM.

Importing more than 256 columns of data
It’s not uncommon to need to import a text file that exceeds Excel’s 256-column
capacity. If you attempt to open such a file with the File ➪ Open command, Excel
simply ignores any data past column 256 (and doesn’t even warn you about it!).

The following procedure is a variation of the ImportRange procedure presented
earlier in this chapter. It reads a text file, and imports the data into a new work-
book. If the data contains more than 256 column of data, additional sheets are
added to the workbook.

Sub ImportLongLines()
‘ Imports a text file with >256 columns of data

Dim ImpRange As Range
Dim r As Long, c As Integer
Dim CurrLine As Long

On the
CD-ROM

4799-2 ch27.F 6/11/01 9:48 AM Page 783

784 Part VII ✦ Other Topics

Dim Data As String, Char As String, Txt As String
Dim i As Integer
Dim CurrSheet As Worksheet

‘ Create a new workbook with one sheet
Workbooks.Add xlWorksheet

Open ThisWorkbook.Path & “\longfile.txt” For Input As #1
r = 0
c = 0
Set ImpRange = ActiveWorkbook.Sheets(1).Range(“A1”)
Application.ScreenUpdating = False

‘ Read the first line, and insert new sheets if necessary
CurrLine = CurrLine + 1
Line Input #1, Data
For i = 1 To Len(Data)

Char = Mid(Data, i, 1)
‘ Are we out of columns?

If c <> 0 And c Mod 256 = 0 Then
With ActiveWorkbook.Sheets

Set CurrSheet = .Add(after:=.Sheets(.Count))
End With
Set ImpRange = CurrSheet.Range(“A1”)
c = 0

End If
‘ End of the field?

If Char = “,” Then
ImpRange.Offset(r, c) = Txt
c = c + 1
Txt = “”

Else
‘ Skip quote characters

If Char <> Chr(34) Then _
Txt = Txt & Mid(Data, i, 1)

‘ End of the line?
If i = Len(Data) Then

ImpRange.Offset(r, c) = Txt
c = c + 1
Txt = “”

End If
End If

Next i

‘’’’
‘ Read the remaining data

c = 0
CurrLine = 1
Set ImpRange = ActiveWorkbook.Sheets(1).Range(“A1”)
r = r + 1

4799-2 ch27.F 6/11/01 9:48 AM Page 784

785Chapter 27 ✦ Manipulating Files with VBA

Do Until EOF(1)
Set ImpRange = ActiveWorkbook.Sheets(1).Range(“A1”)
CurrLine = CurrLine + 1
Line Input #1, Data
Application.StatusBar = “Processing line “ & CurrLine
For i = 1 To Len(Data)

Char = Mid(Data, i, 1)
‘ Are we out of columns?

If c <> 0 And c Mod 256 = 0 Then
c = 0
Set ImpRange = ImpRange.Parent.Next.Range(“A1”)

End If

‘ End of the field
If Char = “,” Then

ImpRange.Offset(r, c) = Txt
c = c + 1
Txt = “”

Else
‘ Skip quote characters

If Char <> Chr(34) Then _
Txt = Txt & Mid(Data, i, 1)

‘ End of the line?
If i = Len(Data) Then

ImpRange.Offset(r, c) = Txt
c = c + 1
Txt = “”

End If
End If

Next i
c = 0
Set ImpRange = ActiveWorkbook.Sheets(1).Range(“A1”)
r = r + 1

Loop

‘ Tidy up
Close #1
Application.ScreenUpdating = True
Application.StatusBar = False

End Sub

This procedure consists of two parts. The first part reads the first row of data and
adds new sheets, if necessary. The second part reads the remaining data in the text
file. The code assumes that the first row is typical of the remaining data and that it
has the maximum number of columns.

4799-2 ch27.F 6/11/01 9:48 AM Page 785

786 Part VII ✦ Other Topics

This example is available on the companion CD-ROM, along with a text file that
contains 100 rows, each with 600 columns of data.

Exporting a range to HTML format
The final example in this chapter demonstrates how to export a range of cells to an
HTML file. An HTML file, as you may know, is simply a text file that contains special
formatting tags that describe how the information will be presented in a browser.

The ExportToHTML procedure follows:

Sub ExportToHTML()
‘ Dim ws As Worksheet

Dim Filename As Variant
Dim TDOpenTag As String, TDCloseTag As String
Dim CellContents As String
Dim Rng As Range
Dim r As Long, c As Integer

‘ Use the selected range of cells
Set Rng = Application.Intersect(ActiveSheet.UsedRange,

Selection)

‘ Get a file name
Filename = Application.GetSaveAsFilename(_

InitialFileName:=”myrange.htm”, _
fileFilter:=”HTML Files(*.htm), *.htm”)

If Filename = False Then Exit Sub

‘ Open the text file
Open Filename For Output As #1

‘ Write the <TABLE> tag
Print #1, “<TABLE BORDER=1 CELLPADDING=3>”

‘ Loop through the cells
For r = 1 To Rng.Rows.Count

Print #1, “<TR>”
For c = 1 To Rng.Columns.Count

TDOpenTag = “<TD ALIGN=RIGHT>”
TDCloseTag = “</TD>”
If Rng.Cells(r, c).Font.Bold Then

TDOpenTag = TDOpenTag & “”
TDCloseTag = “” & TDCloseTag

End If
If Rng.Cells(r, c).Font.Italic Then

TDOpenTag = TDOpenTag & “<I>”
TDCloseTag = “</I>” & TDCloseTag

On the
CD-ROM

4799-2 ch27.F 6/11/01 9:48 AM Page 786

787Chapter 27 ✦ Manipulating Files with VBA

End If
CellContents = Rng.Cells(r, c).Text
Print #1, TDOpenTag & CellContents & TDCloseTag

Next c
Print #1, “</TR>”

Next r
‘ Close the table

Print #1, “</TABLE>”

‘ Close the file
Close #1

‘ Tell the user
MsgBox Rng.Count & “ cells exported to “ & Filename

End Sub

This example is available on the companion CD-ROM.

The procedure starts by determining the range to export. This is based on the inter-
section of the selected range and the used area of the worksheet. This ensures that
entire rows or columns are not processed. Next, the user is prompted for a filename
and the text file is opened. The bulk of the work is done within two For-Next loops.
The code generates the appropriate HTML tags and writes the information to the
text file. Finally, the file is closed and the user sees a summary message.

Figure 27-4 shows a range in a worksheet, and Figure 27-5 shows how it looks in a
browser after being converted to HTML.

Figure 27-4: A worksheet range, ready to be converted to HTML

On the
CD-ROM

4799-2 ch27.F 6/11/01 9:48 AM Page 787

788 Part VII ✦ Other Topics

Figure 27-5: The worksheet data, after being converted to HTML

Why not use Excel’s File ➪ Save as Web Page command? The procedure listed here
has a distinct advantage: It does not produce bloated HTML code. For example, I
used the ExportToHTML procedure to export a range of 70 cells. The file size was
2.6K. Then I used Excel’s File ➪ Save as Web Page command to export the sheet.
The result was 15.8K — more than six times larger. But, on the other hand, the
ExportToHTML procedure does not maintain all of the cell formatting. In fact, the
only formatting information it produces is bold and italic. You’ll find that this
procedure has another serious limitation: It cannot handle merged cells.

You may want to use the ExportToHTML procedure as the basis for additional
customizations.

Summary
This chapter discussed three ways to work with files on disk: VBA’s standard
commands, the FileSearch object, and the FileSystemObject object. It also
presented several examples of reading and writing text files using VBA.

The next chapter demonstrates how you can make a VBA application generate
another VBA application on the fly.

✦ ✦ ✦

4799-2 ch27.F 6/11/01 9:48 AM Page 788

Manipulating
Visual Basic
Components

This chapter discusses a topic that some readers may
find extremely useful: writing VBA code that manipu-

lates components in a VBA project. The VBA Integrated
Development Environment (IDE) contains an object model
that exposes key elements of your VBA projects, including the
Editor itself. You can write VBA code that adds or removes
modules, generates other VBA code, or even creates a
UserForm on the fly.

Introducing the IDE
The IDE is essentially an OLE Automation interface for the
Visual Basic Editor. Once you establish a reference to the
Visual Basic Extensibility Library (using the VBE’s Tools ➪
References command), you have access to all the VBE’s
objects, properties, and methods, and you can declare
objects from the IDE’s member classes.

In the References dialog box, you may add a reference to
Microsoft Visual Basic for Applications Extensibility. This
gives you access to an object called VBIDE. Creating a refer-
ence to VBIDE enables you to declare object variables con-
tained in the VBIDE, and gives you access to a number of
predefined constants that relate to the IDE. Actually, you can
access the objects in the IDE without creating a reference, but
you won’t be able to use the constants in your code nor will
you be able to declare specific objects that refer to IDE
components.

2828C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

An overview of the
VBA Integrated
Development
Environment and its
object model

Important information
for Excel 2002 users

How to use VBA to
add and remove
modules from a
project

How to write VBA
code that creates
more VBA code

How to use VBA to
help create
UserForms

A useful function that
creates a UserForm
on the fly

✦ ✦ ✦ ✦

4799-2 ch28.F 6/11/01 9:48 AM Page 789

790 Part VII ✦ Other Topics

Refer to Chapter 20 for background information about OLE Automation.

After you understand how the IDE object model works, you can write code to
perform a variety of operations, including:

✦ Adding and removing VBA modules

✦ Inserting VBA code

Cross-
Reference

Important Note for Excel 2002 Users

If you’re using Excel 2002 to develop applications for others to use, be aware that things
have changed in Excel 2002. To reduce the possibility of macro viruses, Microsoft made it
much more difficult for a VBA macro to modify components in a VBA project. If you attempt
to execute any of the procedures in this chapter, you will probably see an error message like
the one that follows:

Whether you see this error message depends on a setting in Excel’s Security dialog box
(accessed using Tools ➪ Macro ➪ Security). This setting, called Trust access to Visual Basic
Project, is turned off by default. Even if the user chooses to trust the macros contained in the
workbook, the macros cannot modify the VBA project if this setting is turned off. Note that this
setting applies to all workbooks, and cannot be changed only for a particular workbook.

You can’t access the value of this particular setting directly. The only way to detect this
setting is to attempt to access the VBProject object, and then check for an error. The
following code demonstrates:

On Error Resume Next
Set x = ActiveWorkbook.VBProject
If Err <> 0 Then
MsgBox “Your security settings do not allow this macro to run.”
Exit Sub

End If

Not all the examples in this chapter are intended to be used by end users. Many of them are
designed to assist developers create projects. For these projects, you’ll want to turn off the
Trust access to Visual Basic Project setting.

4799-2 ch28.F 6/11/01 9:48 AM Page 790

791Chapter 28 ✦ Manipulating Visual Basic Components

✦ Creating UserForms

✦ Adding controls to a UserForm

The IDE Object Model
Programming the IDE requires an understanding of its object model. The top object
in the object hierarchy is the VBE (Visual Basic Environment). As with Excel’s
object model, the VBE contains other objects. A simplified version of the IDE object
hierarchy is as follows:

VBE

VBProject

VBComponent

CodeModule

Designer

Property

Reference

Window

CommandBar

This chapter ignores the Extensibility Library’s Windows collection and
CommandBars collection, which aren’t all that useful for Excel developers.
Rather, the chapter focuses on the VBProject object, which can be very useful
for developers — as long as you don’t develop for Excel 2002 (see the sidebar, “
Important Note for Excel 2002 Users “).

The VBProjects collection
Every open workbook or add-in is represented by a VBProject object. To access
the VBProject object for a workbook, use the VBProject property of the Workbook
object. The following instructions, for example, create an object variable that repre-
sents the VBProject object for the active workbook:

Dim VBP As VBProject
Set VBP = ActiveWorkbook.VBProject

If you get an error message when VBA encounters the Dim statement, make sure
that you’ve added a reference to Microsoft Visual Basic for Applications
Extensibility.

Note

4799-2 ch28.F 6/11/01 9:48 AM Page 791

792 Part VII ✦ Other Topics

Each VBProject object contains a collection of the VBA component objects in the
project (UserForms, modules, class modules, or document modules). Not surpris-
ingly, this collection is called VBComponents. A VBProject object also contains a
References collection for the project, representing the libraries being referenced
currently by the project.

It’s not possible to add a new member to the VBProjects collection directly.
Rather, you do so indirectly by opening or creating a new workbook in Excel.
Doing so automatically adds a new member to the VBProjects collection.
Similarly, you can’t remove a VBProject object directly; closing a workbook
removes the VBProject object from the collection.

The VBComponents collection
To access a member of the VBComponents collection, use the VBComponents
property with an index number or name. The following instructions demonstrate
the two ways to access a VBA component and create an object variable:

Set VBC = ThisWorkbook.VBProject.VBComponents(1)
Set VBC = ThisWorkbook.VBProject.VBComponents(“Module1”)

The References collection
Every VBA project in Excel contains a number of references. You can view, add, or
delete the references for a project using the Tools ➪ References command (see
Figure 28-1). Every project contains some references (such as VBA itself, Excel,
OLE Automation, and the Office Object Library), and you can add additional refer-
ences to a project as needed.

Figure 28-1: The References dialog box shows
the references for each project.

Note

4799-2 ch28.F 6/11/01 9:48 AM Page 792

793Chapter 28 ✦ Manipulating Visual Basic Components

You can also manipulate the references for a project using VBA. The References
collection contains Reference objects, and the Reference class for these objects
has properties and methods. The following procedure, for example, displays a
message box that lists the Name, Description, and FullPath property for each
Reference object in the active workbook’s project:

Sub ListReferences()
Dim Ref As Reference
Msg = “”
For Each Ref In ActiveWorkbook.VBProject.References

Msg = Msg & Ref.Name & vbCrLf
Msg = Msg & Ref.Description & vbCrLf
Msg = Msg & Ref.FullPath & vbCrLf & vbCrLf

Next Ref
MsgBox Msg

End Sub

Figure 28-2 shows the result of running this procedure when a workbook that
contains five references is active.

Figure 28-2: This message box displays information
about the references for a project.

Because it declares an object variable of type Reference, the ListReferences
procedure requires a reference to the VBA Extensibility Library. If you declare Ref
as a generic Object, the VBA Extensibility Library reference is not needed.

You can also add a reference programmatically using either of two methods of the
Reference class. AddFromFile adds a reference if you know its filename and stor-
age path. AddFromGuid adds a reference if you know the reference’s globally unique
identifier, or GUID. Refer to the online help for complete details.

Note

4799-2 ch28.F 6/11/01 9:48 AM Page 793

794 Part VII ✦ Other Topics

An Introductory Example
The ShowComponents procedure shown in Listing 28-1 loops through each VBA
component in the active workbook and writes the following information to a work-
sheet:

✦ The component’s name

✦ The component’s type

✦ The number of lines of code in the code module for the component

Listing 28-1: Displaying each active VBA component
in a worksheet

Sub ShowComponents()
Dim VBP As VBProject
Set VBP = ActiveWorkbook.VBProject
NumComponents = VBP.VBComponents.Count
Cells.ClearContents
For i = 1 To NumComponents

‘ Name
Cells(i, 1) = VBP.VBComponents(i).Name

‘ Type
Select Case VBP.VBComponents(i).Type

Case 1
Cells(i, 2) = “Module”

Case 2
Cells(i, 2) = “Class Module”

Case 3
Cells(i, 2) = “UserForm”

Case 100
Cells(i, 2) = “Document Module”

End Select
‘ Lines of code

Cells(i, 3) = _
VBP.VBComponents(i).CodeModule.CountOfLines

Next i
End Sub

Figure 28-3 shows the result of running the ShowComponents procedure. In this
case, the VBA project contained five components, and only one of them had a
nonempty code module.

4799-2 ch28.F 6/11/01 9:48 AM Page 794

795Chapter 28 ✦ Manipulating Visual Basic Components

Figure 28-3: The result of executing the ShowComponents
procedure

This workbook is available on the companion CD-ROM. Notice that it contains a
reference to the VBA Extensibility Library.

Replacing a Module with an Updated Version
The example in this section demonstrates how to replace a VBA module with a dif-
ferent VBA module. Besides demonstrating three VBComponent methods (Export,
Remove, and Import), the procedure also has a practical use. For example, you may
distribute a workbook to a group of users, and later discover that a macro contains
an error or needs to be updated. Because the users may have added data to the
workbook, it would not be practical to replace the entire workbook. The solution,
then, is to distribute another workbook that contains a macro that replaces the
VBA module with an updated version stored in a file.

This example consists of two workbooks:

UserBook.xls Contains a module (Module1) that needs to be replaced

UpdateUserBook.xls Contains VBA procedures to replace Module1 in
UserBook.xls with a later version of Module1 stored in UpdateUserBook.xls

The BeginUpdate procedure shown in Listing 28-2 is contained in the
UpdateUserBook workbook, which would be distributed to users of UserBook.
xls. This procedure ensures that UserBook.xls is open. It then informs the user of
what is about to happen with the message shown in Figure 28-4.

Figure 28-4: This message box informs the user
that a module will be replaced.

On the
CD-ROM

4799-2 ch28.F 6/11/01 9:48 AM Page 795

796 Part VII ✦ Other Topics

Listing 28-2: Preparing the user for some
changes that are afoot

Sub BeginUpdate()
Filename = “UserBook.xls”

‘ Activate workbook
On Error Resume Next
Workbooks(Filename).Activate
If Err <> 0 Then

MsgBox Filename & “ must be open!”, vbCritical
Exit Sub

End If

Msg = “This macro will replace Module1 in UserBook.XLS “
Msg = Msg & “with an updated Module.” & vbCrLf & vbCrLf
Msg = Msg & “Click OK to continue.”
If MsgBox(Msg, vbInformation + vbOKCancel) = vbOK Then

Call ReplaceModule
Else

MsgBox “Module not replaced!”, vbCritical
End If

End Sub

When the user clicks OK, the ReplaceModule procedure is called. This procedure,
shown in Listing 28-3, replaces the existing Module1 in UserBook.xls with an
updated version stored in the UpdateUserBook workbook.

Listing 28-3: Updating the existing code module
with a revised one

Sub ReplaceModule()
‘ Export Module1 from this workbook

Filename = ThisWorkbook.Path & “\tempmodxxx.bas”
ThisWorkbook.VBProject.VBComponents(“Module1”) _
.Export Filename

‘ Replace Module1 in UserBook
Set VBP = ActiveWorkbook.VBProject
On Error GoTo ErrHandle
With VBP.VBComponents

.Remove VBP.VBComponents(“Module1”)

.Import Filename
End With

4799-2 ch28.F 6/11/01 9:48 AM Page 796

797Chapter 28 ✦ Manipulating Visual Basic Components

‘ Delete the temporary module file
Kill Filename
MsgBox “The module has been replaced.”, vbInformation
Exit Sub

ErrHandle:
‘ Did an error occur?

MsgBox “ERROR. The module may not have been replaced.”, _
vbCritical

End Sub

The procedure in Listing 28-3 performs the following steps:

1. It exports Module1 (the updated module) to a file. The file has an unusual
name to reduce the likelihood of overwriting an existing file.

2. It removes Module1 (the old module) from UserBook.xls, using the Remove
method of the VBComponents collection.

3. It imports the module (saved in Step 1) to UserBook.xls.

4. It deletes the file saved in Step 1.

5. It reports the action to the user. General error handling is used to inform the
user that an error occurred.

This example (which uses two files) is available on the companion CD-ROM.
Because the macro writes to the active directory, make sure you copy the files to
your hard drive before running the example.

Using VBA to Write VBA Code
The example in this section demonstrates how you can write VBA code that writes
more VBA code. The AddSheetAndButton procedure does the following:

1. It inserts a new worksheet.

2. It adds a CommandButton to the worksheet.

3. It adjusts the position, size, and caption of the CommandButton.

4. It inserts an event-handler procedure for the CommandButton named
CommandButton1_Click in the sheet’s code module. This procedure
simply activates Sheet1.

Listing 28-4 provides the AddSheetAndButton procedure.

On the
CD-ROM

4799-2 ch28.F 6/11/01 9:48 AM Page 797

798 Part VII ✦ Other Topics

Listing 28-4: Generating a new worksheet, built-in
button, and event-handler

Sub AddSheetAndButton()
Dim NewSheet As Worksheet
Dim NewButton As OLEObject

‘ Add the sheet
Set NewSheet = Sheets.Add

‘ Add a CommandButton
Set NewButton = NewSheet.OLEObjects.Add _
(“Forms.CommandButton.1”)

With NewButton
.Left = 4
.Top = 4
.Width = 100
.Height = 24
.Object.Caption = “Return to Sheet1”

End With

‘ Add the event handler code
Code = “Sub CommandButton1_Click()” & vbCrLf
Code = Code & “ On Error Resume Next” & vbCrLf
Code = Code & “ Sheets(“”Sheet1””).Activate” & vbCrLf
Code = Code & “ If Err <> 0 Then” & vbCrLf
Code = Code & “ MsgBox “”Cannot activate Sheet1.””” _
& vbCrLf
Code = Code & “ End If” & vbCrLf
Code = Code & “End Sub”

With ActiveWorkbook.VBProject. _
VBComponents(NewSheet.Name).CodeModule
NextLine = .CountOfLines + 1
.InsertLines NextLine, Code

End With
End Sub

Figure 28-5 shows a worksheet and CommandButton that were added by the
AddSheetAndButton procedure.

4799-2 ch28.F 6/11/01 9:48 AM Page 798

799Chapter 28 ✦ Manipulating Visual Basic Components

Figure 28-5: This sheet, the CommandButton,
and its event-handler were added using VBA.

The tricky part of this procedure is inserting the VBA code into the code module for
the new worksheet. The code is stored in a variable named Code, with each instruc-
tion separated by a carriage return and line feed sequence. The InsertLines
method adds the code to the code module for the inserted worksheet.

The NextLine variable stores the number of existing lines in the module incre-
mented by one. This ensures that the procedure is added to the end of the module.
If you simply insert the code beginning at line 1, it causes an error if the user’s sys-
tem is set up to add an Option Explicit statement to each module automatically.

Figure 28-6 shows the procedure that is created by the AddSheetAndButton
procedure in its new home in the code window.

Figure 28-6: VBA generated this event-handler procedure.

4799-2 ch28.F 6/11/01 9:48 AM Page 799

800 Part VII ✦ Other Topics

Adding Controls to a UserForm
at Design Time

If you’ve spent any time developing UserForms, you probably know that it can be
quite tedious to add and adjust the controls so they are aligned and sized consis-
tently. Even if you take full advantage of the VBE’s formatting commands, it can
still take a considerable amount of time to get the controls to look just right.

The UserForm shown in Figure 28-7 contains 100 CommandButtons, all of which
are identical in size and positioned precisely on the form. Furthermore, each
CommandButton has its own event-handler procedure. Adding these buttons
manually and creating their event-handlers would take some time — lots of time.
Adding them automatically at design time using a VBA procedure takes about
three seconds.

Figure 28-7: A VBA procedure added the
CommandButtons on this UserForm.

Design-time versus runtime UserForm manipulations
It’s important to understand the distinction between manipulating UserForms or
controls at design time and manipulating these objects at runtime. Runtime manip-
ulations are apparent when the UserForm is shown, but the changes made are not
permanent. For example, you might write code that changes the Caption property
of the UserForm before the form is displayed. The new caption appears when the
UserForm is shown, but when you return to the VBE, the UserForm displays its orig-
inal caption. Part IV of this book contains many examples of code that perform run-
time manipulation of UserForms and controls.

4799-2 ch28.F 6/11/01 9:48 AM Page 800

801Chapter 28 ✦ Manipulating Visual Basic Components

Design-time manipulations, on the other hand, are permanent — just as if you made
the changes manually using the tools in the VBE. Normally, you perform design-time
manipulations as a way to automate some of the tedious chores in designing a
UserForm. To make design-time manipulations, you access the Designer object for
the UserForm.

To demonstrate the difference between design-time and runtime manipulations, I
developed two simple procedures that add a CommandButton to a UserForm. One
procedure adds the button at runtime; the other adds it at design time.

The following RunTimeButton procedure is very straightforward. Attached to a
general (nonform) module, it simply adds a CommandButton, changes a few of its
properties, and then displays the UserForm. The CommandButton appears on the
form when the form is shown, but when you view the form in the VBE, the
CommandButton is not there.

Sub RunTimeButton()
‘ Adds a button at runtime

Dim Butn As CommandButton
Set Butn = UserForm1.Controls.Add(“Forms.CommandButton.1”)
With Butn

.Caption = “Added at runtime”

.Width = 100

.Top = 10
End With
UserForm1.Show

End Sub

Following is the DesignTimeButton procedure. What’s different here is that this
procedure uses the Designer object, which is contained in the VBComponent
object. Specifically, it uses the Add method to add the CommandButton. Because
the Designer object was addressed, the CommandButton is added to the
UserForm just as if you did it manually in the VBE.

Sub DesignTimeButton()
‘ Adds a button at design time

Dim Butn As CommandButton
Set Butn = ThisWorkbook.VBProject. _
VBComponents(“UserForm1”) _
.Designer.Controls.Add(“Forms.CommandButton.1”)

With Butn
.Caption = “Added at design time”
.Width = 120
.Top = 40

End With
End Sub

4799-2 ch28.F 6/11/01 9:48 AM Page 801

802 Part VII ✦ Other Topics

Adding 100 CommandButtons at design time
The example in this section demonstrates how to take advantage of the
Designer object to help you design a UserForm. In this case, the code adds
100 CommandButtons (perfectly spaced and aligned), sets the Caption prop-
erty for each CommandButton, and also creates 100 event-handler procedures
(one for each CommandButton).

Listing 28-5 shows the complete code for the Add100Buttons procedure.

Listing 28-5: Generating an instant 100-button UserForm

Sub Add100Buttons()
Dim UFvbc As Object ‘VBComponent
Dim CMod As Object ‘CodeModule
Dim ctl As Control
Dim cb As CommandButton
Dim n As Integer, c As Integer, r As Integer
Dim code As String

Set UFvbc = ThisWorkbook.VBProject.VBComponents(“UserForm1”)

‘ Delete all controls, if any
For Each ctl In UFvbc.Designer.Controls
UFvbc.Designer.Controls.Remove ctl.Name

Next ctl

‘ Delete all VBA code
UFvbc.CodeModule.DeleteLines 1, UFvbc.CodeModule.CountOfLines

‘ Add 100 CommandButtons
n = 1
For r = 1 To 10
For c = 1 To 10
Set cb = _
UFvbc.Designer.Controls.Add(“Forms.CommandButton.1”)
With cb
.Width = 22
.Height = 22
.Left = (c * 26) - 16
.Top = (r * 26) - 16
.Caption = n

End With

‘ Add the event handler code
With UFvbc.CodeModule
code = “”
code = code & “Private Sub CommandButton” & n & _

4799-2 ch28.F 6/11/01 9:48 AM Page 802

803Chapter 28 ✦ Manipulating Visual Basic Components

“_Click” & vbCr
code = code & “Msgbox “”This is CommandButton” & n & _
“””” & vbCr

code = code & “End Sub”
.InsertLines .CountOfLines + 1, code

End With
n = n + 1

Next c
Next r

End Sub

The Add100Buttons procedure requires a UserForm named UserForm1. The proce-
dure starts by deleting all controls on the form using the Remove method of the
Controls collection, and then deleting all of the code in the code module using the
DeleteLines method of the CodeModule object. Next, the CommandButtons are
added and the event-handler procedures are created within two For-Next loops.
These event-handlers are very simple. Here’s an example of such a procedure for
CommandButton1:

Private Sub CommandButton1_Click()
MsgBox “This is CommandButton1”

End Sub

If you remember to clear the form and its attached code each time before you have
the Add100Buttons procedure generate the controls, it’ll be easier for you to test
various parameters such as button width and spacing. Just change a few values,
rerun the procedure, and see how it looks. There’s no need to delete the old con-
trols manually before rerunning the procedure.

If you would like to show the form after adding the controls at design time, you
need to add the following instruction right before the End Sub statement:

VBA.UserForms.Add(“UserForm1”).Show

It took me quite a while to figure out how to actually display the UserForm. When
the VBA interpreter generates the 100-button UserForm, it indeed exists in VBA’s
memory, but it isn’t officially part of the project yet. So you need the Add method
to formally enroll UserForm1 into the collection of UserForms. The return value of
this method (yes, it has one) is a reference to the form itself, which is why the Show
method can be appended to the end of the Add method. So as a rule, the UserForm
must be added to the UserForms collection before it can be used.

4799-2 ch28.F 6/11/01 9:48 AM Page 803

804 Part VII ✦ Other Topics

Creating UserForms Programmatically
The final topic in this chapter demonstrates how to use VBA code to create
UserForms at runtime. I present two examples: One is relatively simple and the
other is quite a bit more complex.

A simple example
The example in this section isn’t all that useful — in fact, it’s completely useless. But
it does demonstrate some useful concepts. The MakeForm procedure performs
several tasks:

1. It creates a temporary UserForm in the active workbook using the Add
method of the VBComponents collection.

2. It adds a CommandButton control to the UserForm using the Designer
object.

3. It adds an event-handler procedure to the UserForm’s code module
(CommandButton1_Click). This procedure, when executed, simply
displays a message box and then unloads the form.

4. It displays the UserForm.

5. It deletes the UserForm.

The net result is a UserForm that’s created on the fly, put to use, and then deleted.
This example and the one in the next section both blur the distinction between
modifying forms at design time and modifying forms at runtime. The form is created
using design-time techniques, but it all happens at runtime.

The online documentation for topics dealing with creating UserForms is quite
poor. Consequently, I relied heavily on trial and error when I developed this
procedure.

Following is the complete listing for the MakeForm procedure:

Listing 28-6: Generating a UserForm on the fly

Sub MakeForm()
Dim TempForm As Object
Dim NewButton As Msforms.CommandButton
Dim Line As Integer

Application.VBE.MainWindow.Visible = False

Note

4799-2 ch28.F 6/11/01 9:48 AM Page 804

805Chapter 28 ✦ Manipulating Visual Basic Components

‘ Create the UserForm
Set TempForm = ThisWorkbook.VBProject. _
VBComponents.Add(3) ‘vbext_ct_MSForm

With TempForm
.Properties(“Caption”) = “Temporary Form”
.Properties(“Width”) = 200
.Properties(“Height”) = 100

End With

‘ Add a CommandButton
Set NewButton = TempForm.Designer.Controls _
.Add(“forms.CommandButton.1”)

With NewButton
.Caption = “Click Me”
.Left = 60
.Top = 40

End With

‘ Add an event-hander sub for the CommandButton
With TempForm.CodeModule

Line = .CountOfLines
.InsertLines Line + 1, “Sub CommandButton1_Click()”
.InsertLines Line + 2, “ MsgBox “”Hello!”””
.InsertLines Line + 3, “ Unload Me”
.InsertLines Line + 4, “End Sub”

End With

‘ Show the form
VBA.UserForms.Add(TempForm.Name).Show

‘
‘ Delete the form

ThisWorkbook.VBProject.VBComponents.Remove TempForm
End Sub

This procedure creates and shows the simple UserForm shown in Figure 28-8.

Figure 28-8: This UserForm and its underlying code
were generated on the fly.

The workbook that contains the MakeForm procedure does not need a reference
to the VBA Extensibility Library because it declares TempForm as a generic Object
(not specifically as a VBComponent object). Moreover, it doesn’t use any built-in
constants.

Note

4799-2 ch28.F 6/11/01 9:48 AM Page 805

806 Part VII ✦ Other Topics

Notice that one of the first instructions hides the VBE window by setting its
Visible property to False. This eliminates the flashing that may occur while the
form and code are being generated.

A useful (but not so simple) example
The example in this section is both instructive and useful. It consists of a function
named GetOption that displays a UserForm. Within this UserForm are a number of
OptionButtons, whose captions are specified as arguments to the function. The
function returns a value that corresponds to the OptionButton selected by the user.
Listing 28-7 shows the complete function.

Listing 28-7: A dynamically generated option button form

Function GetOption(OpArray, Default, Title)
Dim TempForm As Object
Dim NewOptionButton As Msforms.OptionButton
Dim NewCommandButton1 As Msforms.CommandButton
Dim NewCommandButton2 As Msforms.CommandButton
Dim i As Integer, TopPos As Integer
Dim MaxWidth As Long
Dim Code As String

‘ Hide VBE window to prevent screen flashing
Application.VBE.MainWindow.Visible = False

‘ Create the UserForm
Set TempForm = _
ThisWorkbook.VBProject.VBComponents.Add(3)

TempForm.Properties(“Width”) = 800

‘ Add the OptionButtons
TopPos = 4
MaxWidth = 0 ‘Stores width of widest OptionButton
For i = LBound(OpArray) To UBound(OpArray)

Set NewOptionButton = TempForm.Designer.Controls. _
Add(“forms.OptionButton.1”)

With NewOptionButton
.Width = 800
.Caption = OpArray(i)
.Height = 15
.Left = 8
.Top = TopPos
.Tag = i
.AutoSize = True
If Default = i Then .Value = True
If .Width > MaxWidth Then MaxWidth = .Width

4799-2 ch28.F 6/11/01 9:48 AM Page 806

807Chapter 28 ✦ Manipulating Visual Basic Components

End With
TopPos = TopPos + 15

Next i

‘ Add the Cancel button
Set NewCommandButton1 = TempForm.Designer.Controls. _
Add(“forms.CommandButton.1”)

With NewCommandButton1
.Caption = “Cancel”
.Height = 18
.Width = 44
.Left = MaxWidth + 12
.Top = 6

End With

‘ Add the OK button
Set NewCommandButton2 = TempForm.Designer.Controls. _
Add(“forms.CommandButton.1”)

With NewCommandButton2
.Caption = “OK”
.Height = 18
.Width = 44
.Left = MaxWidth + 12
.Top = 28

End With

‘ Add event-hander subs for the CommandButtons
Code = “”
Code = Code & “Sub CommandButton1_Click()” & vbCrLf
Code = Code & “ GETOPTION_RET_VAL=False” & vbCrLf
Code = Code & “ Unload Me” & vbCrLf
Code = Code & “End Sub” & vbCrLf
Code = Code & “Sub CommandButton2_Click()” & vbCrLf
Code = Code & “ Dim ctl” & vbCrLf
Code = Code & “ GETOPTION_RET_VAL = False” & vbCrLf
Code = Code & “ For Each ctl In Me.Controls” & vbCrLf
Code = Code & “ If TypeName(ctl) = “”OptionButton”” _

Then” & vbCrLf
Code = Code & “ If ctl Then GETOPTION_RET_VAL = _

ctl.Tag” & vbCrLf
Code = Code & “ End If” & vbCrLf
Code = Code & “ Next ctl” & vbCrLf
Code = Code & “ Unload Me” & vbCrLf
Code = Code & “End Sub”

With TempForm.CodeModule
.InsertLines .CountOfLines + 1, Code

End With

‘ Adjust the form
With TempForm

.Properties(“Caption”) = Title

.Properties(“Width”) = NewCommandButton1.Left + _

Continued

4799-2 ch28.F 6/11/01 9:48 AM Page 807

808 Part VII ✦ Other Topics

Listing 28-7 (continued)

NewCommandButton1.Width + 10
If .Properties(“Width”) < 160 Then

.Properties(“Width”) = 160
NewCommandButton1.Left = 106
NewCommandButton2.Left = 106

End If
.Properties(“Height”) = TopPos + 24

End With

‘ Show the form
VBA.UserForms.Add(TempForm.Name).Show

‘ Delete the form
ThisWorkbook.VBProject.VBComponents.Remove

VBComponent:=TempForm

‘ Pass the selected option back to the calling procedure
GetOption = GETOPTION_RET_VAL

End Function

The GetOption function is remarkably fast, considering all that’s going on behind
the scenes. On my system, the form appears almost instantaneously. The UserForm
is deleted after it has served its purpose.

Using the GetOption function
The GetOption function takes three arguments:

OpArray A string array that holds the items to be displayed in the form as
OptionButtons.

Default An integer that specifies the default OptionButton that is selected
when the UserForm is displayed. If 0, none of the OptionButtons
are selected.

Title The text to display in the title bar of the UserForm.

How GetOption works
The GetOption function performs the following operations:

1. It hides the VBE window to prevent any flashing that may occur when the
UserForm is created or the code is added.

2. It creates a UserForm and assigns it to an object variable named TempForm.

3. It adds the OptionButton controls, using the array passed to the function via
the OpArray argument. It uses the Tag property of the control to store the

4799-2 ch28.F 6/11/01 9:48 AM Page 808

809Chapter 28 ✦ Manipulating Visual Basic Components

index number. The Tag setting of the chosen option is the value that’s eventu-
ally returned by the function.

4. It adds two CommandButtons: the OK button and the Cancel button.

5. It creates an event-handler procedure for each of the CommandButtons.

6. It does some final cleanup work. It adjusts the position of the
CommandButtons, as well as the overall size of the UserForm.

7. It displays the UserForm. When the user clicks OK, the
CommandButton1_Click procedure is executed. This procedure determines
which OptionButton is selected, and assigns a number to the
GETOPTION_RET_VAL variable (a Public variable).

8. It deletes the UserForm after it’s dismissed.

9. It returns the value of GETOPTION_RET_VAL as the function’s result.

A significant advantage of creating the UserForm on the fly is that the function is
self-contained in a single module, and doesn’t even require a reference to the VBA
Extensibility Library. Therefore, you can simply export this module (which is
named modOptionsForm) and then import it into any of your workbooks, giving
you access to the GetOption function.

The following procedure demonstrates how to use the GetOption function. In this
case, the UserForm presents five options (contained in the Ops array).

Sub TestGetOption()
Dim Ops(1 To 5)
Dim UserOption
Ops(1) = “North”
Ops(2) = “South”
Ops(3) = “West”
Ops(4) = “East”
Ops(5) = “All Regions”
UserOption = GetOption(Ops, 5, “Select a region”)
Debug.Print UserOption
MsgBox Ops(UserOption)

End Sub

The UserOption variable contains the index number of the option selected by the
user. If the user clicks Cancel, the UserOption variable is set to False.

Figure 28-9 shows the UserForm this function generated.

Figure 28-9: The GetOption function generated this
UserForm.

Note

4799-2 ch28.F 6/11/01 9:48 AM Page 809

810 Part VII ✦ Other Topics

The UserForm adjusts its size to accommodate the number of elements in the
array passed to it. Theoretically, the UserOption function can accept an array of
any size. Practically speaking, however, you’ll want to limit the number of options
to keep the UserForm at a reasonable size.

What GetOption makes
Following are the event-handler procedures for the two CommandButtons. This is
the code generated within the GetOption function and placed in the code module
for the temporary UserForm.

Sub CommandButton1_Click()
GETOPTION_RET_VAL = False
Unload Me

End Sub

Sub CommandButton2_Click()
Dim ctl
GETOPTION_RET_VAL = False
For Each ctl In Me.Controls
If TypeName(ctl) = “OptionButton” Then
If ctl Then GETOPTION_RET_VAL = ctl.Tag

End If
Next ctl
Unload Me

End Sub

Because the UserForm is deleted after it’s used, you can’t see what it looks like in
the VBE. So if you’d like to view the UserForm, convert the following instruction to
a comment by typing an apostrophe (‘) in front of it:

ThisWorkbook.VBProject.VBComponents.Remove _
VBComponent:=TempForm

Summary
In this chapter, I provided an introduction to the VBA Integrated Development
Environment. I presented examples that demonstrate how to use VBA to add and
remove modules, insert VBA code, and create UserForms.

The next chapter introduces another advanced topic: class modules.

✦ ✦ ✦

Note

Note

4799-2 ch28.F 6/11/01 9:48 AM Page 810

Understanding
Class Modules

For many VBA programmers, the concept of a class mod-
ule is a mystery. This feature has been available in Visual

Basic for several years, and was added to Excel beginning
with Excel 97. This chapter presents an introduction to class
modules and includes several examples that may help you
better understand this feature and give you ideas for using
class modules in your own projects.

What Is a Class Module?
A class module is a special type of VBA module that you can
insert into a VBA project. Basically, a class module enables
the programmer (you) to create a new object class. As you
should know by now, programming Excel really boils down to
manipulating objects. A class module allows you to create
new objects, along with corresponding properties, methods,
and events.

Examples in previous chapters in this book have used class
modules. See Chapters 15, 18, 19, and 23.

At this point, you may be asking, “Do I really need to create
new objects?” The answer is no. You don’t need to, but you
may want to once you understand some of the benefits of
doing so. In many cases, a class module simply serves as a
substitute for functions or procedures, but it may be a more
convenient and manageable alternative. In other cases, how-
ever, you’ll find that a class module is the only way to accom-
plish a particular task.

Cross-
Reference

2929C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

An introduction to
class modules

A list of some typical
uses for class
modules

Examples that
demonstrate some
key concepts related
to class modules

✦ ✦ ✦ ✦

4799-2 ch29.F 6/11/01 9:48 AM Page 811

812 Part VII ✦ Other Topics

Following is a list of some typical uses for class modules:

✦ To handle events associated with embedded charts. (See Chapter 18 for an
example.)

✦ To monitor application-level events, such as activating any worksheet. (See
Chapters 19 and 23 for examples.)

✦ To encapsulate a Windows API function to make it easier to use in your code.
For example, you can create a class that makes it easy to detect or set the
state of the Num Lock or Caps Lock key. Or you can create a class that simpli-
fies access to the Windows Registry.

✦ To enable multiple objects in a UserForm to execute a single procedure.
Normally, each object has its own event-handler. The example in Chapter 15
demonstrates how to use a class module so that multiple CommandButtons
have a single Click event-handler procedure.

✦ To create reusable components that can be imported into other projects. Once
you create a general-purpose class module, you can import it into other pro-
jects to reduce your development time.

Example: Creating a NumLock Class
In this section, I provide step-by-step instructions for creating a useful, albeit sim-
ple, class module. This class module creates a NumLock class that has one prop-
erty: Value. Detecting or changing the state of the Num Lock key requires several
Windows API functions. The purpose of this class module is to simplify things. All
the API declarations and code are contained in a class module (not in your normal
VBA modules). The benefits? Your code will be much easier to work with, and you
can use this class module in your other projects.

After the class is created, your VBA code can determine the current state of the
Num Lock key by using an instruction such as the following, which displays the
Value property:

MsgBox NumLock.Value

Or, your code can change the state of the Num Lock key. The following instruction,
for example, turns the Num Lock key on:

NumLock.Value = True

It’s important to understand that a class module contains the code that defines the
object, including its properties and methods. You can then create an instance of
this object in your VBA general code modules and manipulate its properties and
methods.

4799-2 ch29.F 6/11/01 9:48 AM Page 812

813Chapter 29 ✦ Understanding Class Modules

To better understand the process of creating a class module, you may want to fol-
low the instructions in the sections that follow. Start with an empty workbook.

Inserting a class module
Activate the VBE, and select Insert ➪ Class Module. This adds an empty class mod-
ule named Class1. If the Properties window isn’t displayed, press F4 to display it.
Then change the name of the class module to NumLockClass (see Figure 29-1).

Figure 29-1: An empty class module named NumLockClass

Adding the VBA code
In this step, you create the code for the Value property. To detect or change the
state of the Num Lock key, the class module needs the required Windows API decla-
rations that are used to detect and set the Num Lock key. That code follows:

Private Type KeyboardBytes
kbByte(0 To 255) As Byte

End Type

Dim kbArray As KeyboardBytes

4799-2 ch29.F 6/11/01 9:48 AM Page 813

814 Part VII ✦ Other Topics

Private Declare Function GetKeyState _
Lib “user32” (ByVal nVirtKey As Long) As Long

Private Declare Function GetKeyboardState _
Lib “user32” (kbArray As KeyboardBytes) As Long

Private Declare Function SetKeyboardState _
Lib “user32” (kbArray As KeyboardBytes) As Long

Const VK_NUMLOCK = &H90

Next, you need a procedure that retrieves the current state of the Num Lock key. I’ll
call this the Value property of the object. You can use any name for the property;
Value seems like a good choice. To retrieve the state, insert the following Property
Get procedure:

Property Get Value() As Boolean
Value = GetKeyState(VK_NUMLOCK) And 1 = 1

End Property

The details of Property procedures are described later in this chapter. See
“Programming properties.”

This procedure, which uses the GetKeyState Windows API function to determine
the current state of the Num Lock key, is called whenever VBA code reads the
Value property of the object. For example, a VBA statement such as this executes
the Property Get procedure:

MsgBox NumLock.Value

You now need a procedure that sets the Num Lock key to a particular state: either
on or off. You can do this with the following Property Let procedure:

Property Let Value(boolVal As Boolean)
GetKeyboardState kbArray
kbArray.kbByte(VK_NUMLOCK) = Abs(boolVal)
SetKeyboardState kbArray

End Property

The Property Let procedure takes one argument, which is either True or False. A
VBA statement such as the following sets the Value property of the NumLock object
to True by executing the Property Let procedure:

NumLock.Value = True

Using the NumLock class
Before you can use the NumLockClass class module, you must create an instance of
the object. The following statement, which resides in a regular VBA module (not the
class module), does just that:

Dim NumLock As New NumLockClass

Cross-
Reference

4799-2 ch29.F 6/11/01 9:48 AM Page 814

815Chapter 29 ✦ Understanding Class Modules

Notice that the object type is NumLockClass (that is, the name of the class mod-
ule). The object variable itself can have any name, but NumLock certainly seems
like a logical name for this.

The following procedure sets the Value property of the NumLock object to True,
which results in the Num Lock key’s being turned on:

Sub NumLockOn()
Dim NumLock As New NumLockClass
NumLock.Value = True

End Sub

The next procedure displays a message box that indicates the current state of the
Num Lock key (True is on; False is off):

Sub GetNumLockState()
Dim NumLock As New NumLockClass
MsgBox NumLock.Value

End Sub

Finally, the following procedure toggles the Num Lock key:

Sub ToggleNumLock()
Dim NumLock As New NumLockClass
NumLock.Value = Not NumLock.Value

End Sub

The completed class module for this example is available on the companion
CD-ROM. The workbook also contains a class module to detect and set the state
of the Caps Lock key.

More about Class Modules
The example in the preceding section demonstrates how to create a new object
class with a single property named Value. An object class can contain any number
of properties; it can also contain methods and events.

Naming the object class
The name you use for the class module in which you define the object class is also
the name of the object class. By default, class modules are named Class1, Class2,
and so on. Usually, you’ll want to provide a more meaningful name for your object
class.

On the
CD-ROM

4799-2 ch29.F 6/11/01 9:48 AM Page 815

816 Part VII ✦ Other Topics

Programming properties
Most objects have at least one property, and you can give them as many as you
need. After a property is defined, you can use it in your code, using the standard
“dot” syntax:

object.property

The VBE’s Auto List Members option works with objects defined in a class module.
This makes it easier to select properties or methods when writing code.

Properties for the object that you define can be read-only, write-only, or read/write.
You define a read-only property with a single procedure, using the Property Get
keyword. Here’s an example of a Property Get procedure:

Property Get FileNameOnly() As String
FileNameOnly = “”
For i = Len(FullName) To 1 Step -1

Char = Mid(FullName, i, 1)
If Char = “\” Then

Exit Function
Else

FileNameOnly = Char & FileNameOnly
End If

Next i
End Property

You may have noticed that a Property Get procedure works like a Function proce-
dure. The code performs calculations and then returns a property value that corre-
sponds to the procedure’s name. In this example, the procedure’s name is
FileNameOnly. The property value returned is the filename part of a path string
(contained in a Public variable named FullName). For example, if FullName is
c:\windows\myfile.txt, the procedure returns a property value of myfile.txt.
The FileNameOnly procedure is called when VBA code references the object and
property.

For read/write properties, you create two procedures: a Property Get procedure,
which reads a property value, and a Property Let procedure, which writes a prop-
erty value. The value being assigned to the property is treated as the final argument
(or the only argument) of a Property Get procedure.

Two example procedures follow:

Property Get SaveAsExcelFile() As Boolean
SaveAsExcelFile = XLFile

End Property

Property Let SaveAsExcelFile(boolVal As Boolean)
XLFile = boolVal

End Property

4799-2 ch29.F 6/11/01 9:48 AM Page 816

817Chapter 29 ✦ Understanding Class Modules

Use Property Set in place of Property Let when the property is an object
data type.

A Public variable in a Class Module can also be used as a property of the object. In
the preceding example, the Property Get and Property Let procedures could be
eliminated and replaced with this module level declaration:

Public SaveAsExcelFile As Boolean

In the unlikely event that you need to create a write-only property, you create a sin-
gle Property Let procedure with no corresponding Property Get procedure.

The preceding examples assume a Boolean module-level variable named XLFile.
The Property Get procedure simply returns the value of this variable as the prop-
erty value. If the object were named FileSys, for example, the following statement
would display the current value of the SaveAsExcelFile property:

MsgBox FileSys.SaveAsExcelFile

The Property Let statement, on the other hand, accepts an argument and uses the
argument to change the value of a property. For example, you could write a state-
ment such as the following to set the SaveAsExcelFile property to True:

FileSys.SaveAsExcelFile = True

In this case, the value True is passed to the Property Let statement, changing the
property’s value.

The preceding examples use a module-level variable named XLFile that actually
stores the property value. You’ll need to create a variable that represents the value
for each property that you define within your class module.

Normal procedure-naming rules apply to property procedures, and you’ll find that
VBA won’t let you use some names if they are reserved words. So if you get a syn-
tax error when creating a property procedure, try changing the name of the
procedure.

Programming methods
A method for an object class is programmed using a standard Sub or Function pro-
cedure placed in the class module. An object may or may not use methods. Your
code executes a method using standard notation:

object.method

Note

Note

4799-2 ch29.F 6/11/01 9:48 AM Page 817

818 Part VII ✦ Other Topics

Like any other VBA method, a method that you write for an object class will per-
form some type of action. The following procedure is an example of a method that
saves a workbook in one of two file formats, depending on the value of the XLFile
variable. As you can see, there is nothing special about this procedure.

Sub SaveFile()
If XLFile Then

ActiveWorkbook.SaveAs FileName:=FName, _
FileFormat:=xlWorkbookNormal

Else
ActiveWorkbook.SaveAs FileName:=FName, _
FileFormat:=xlCSV

End If
End Sub

The example in the next section should clarify the concepts of properties and meth-
ods for object classes defined in a class module.

Class module events
Every class module has two events: Initialize and Terminate. The Initialize
event is triggered when a new instance of the object is created; the Terminate
event is triggered when the object is destroyed. You might want to use the
Initialize event to set default property values.

The frameworks for these event-handler procedures are as follows:

Private Sub Class_Initialize()
‘ Initialization code goes here
End Sub

Private Sub Class_Terminate()
‘ Termination code goes here
End Sub

An object is destroyed (and its memory is freed) when the procedure or module in
which it is declared finishes executing. You can destroy an object at any time by
setting it to Nothing. The following statement, for example, destroys the object
named MyObject:

Set MyObject = Nothing

Example: A CSV File Class
The example presented in this section defines an object class called
CSVFileClass. This class has two properties and two methods:

4799-2 ch29.F 6/11/01 9:48 AM Page 818

819Chapter 29 ✦ Understanding Class Modules

Properties
ExportRange (Read/write) A worksheet range to be exported as a CSV file

ImportRange (Read/write) The range into which a CSV file will be imported

Methods
Import Imports the CSV file represented by the CSVFileName argument into
the range represented by the ImportRange property

Export Exports the range represented by the ExportRange property to a CSV
file represented by the CSVFileName argument

Class module-level variables
A class module must maintain its own private variables that mirror the property
settings for the class. The CSVFileClass class module uses two variables to keep
track of the two property settings. These variables are declared at the top of the
class module:

Private RangeToExport As Range
Private ImportToCell As Range

RangeToExport is a Range object that represents the range to be exported.
ImportToCell is a Range object that represents the upper-left cell of the range into
which the file will be imported. These variables are assigned values by the
Property Get and Property Let procedures listed in the next section.

Property procedures
The property procedures for the CSVFileClass class module are shown in
Listing 29-1. The Property Get procedures return the value of a variable, and
the Property Let procedures set the value of a variable.

Listing 29-1: Property procedures for the
CSVFileClass module

Property Get ExportRange() As Range
Set ExportRange = RangeToExport

End Property

Property Let ExportRange(rng As Range)
Set RangeToExport = rng

End Property

Continued

4799-2 ch29.F 6/11/01 9:48 AM Page 819

820 Part VII ✦ Other Topics

Listing 29-1 (continued)

Property Get ImportRange() As Range
Set ImportRange = ImportToCell

End Property

Property Let ImportRange(rng As Range)
Set ImportToCell = rng

End Property

Method procedures
The CSVFileClass class module contains two procedures that represent the two
methods. These are listed and discussed in the sections that follow.

The Export procedure
The Export procedure in Listing 29-2 is called when the Export method is exe-
cuted. It takes one argument: the full name of the file receiving the exported range.
The procedure provides some basic error handling. For example, it ensures that the
ExportRange property has been set by checking the RangeToExport variable. The
procedure sets up an error handler to trap other errors.

Listing 29-2: Exporting a worksheet range with a
class module method

Sub Export(CSVFileName)
‘ Exports a range to CSV file

If RangeToExport Is Nothing Then
MsgBox “ExportRange not specified”
Exit Sub

End If

On Error GoTo ErrHandle
Application.ScreenUpdating = False
Set ExpBook = Workbooks.Add(xlWorksheet)
RangeToExport.Copy
Application.DisplayAlerts = False

With ExpBook
.Sheets(1).Paste
.SaveAs FileName:=CSVFileName, FileFormat:=xlCSV

4799-2 ch29.F 6/11/01 9:48 AM Page 820

821Chapter 29 ✦ Understanding Class Modules

.Close SaveChanges:=False
End With
Application.CutCopyMode = False
Application.ScreenUpdating = True
Application.DisplayAlerts = True
Exit Sub

ErrHandle:
ExpBook.Close SaveChanges:=False
Application.CutCopyMode = False
Application.ScreenUpdating = True
Application.DisplayAlerts = True
MsgBox “Error “ & Err & vbCrLf & vbCrLf & Error(Err), _
vbCritical, “Export Method Error”

End Sub

The Export procedure works by copying the range specified by the
RangeToExport variable to a new temporary workbook, saving the workbook as a
CSV text file, and closing the file. Because screen updating is turned off, the user
does not see this happening. If an error occurs — for example, an invalid filename is
specified — the procedure jumps to the ErrHandle section and displays a message
box that contains the error number and description.

The Import procedure
The Import procedure in Listing 29-3 imports a CSV file specified by the
CSVFileName argument and copies its contents to a range specified by the
ImportToCell variable, which maintains the ImportRange property. The file is
then closed. Again, screen updating is turned off, so the user does not see the file
being opened. Like the Export procedure, the Import procedure incorporates
some basic error handling.

Listing 29-3: Importing text file contents into a
range with a class module method

Sub Import(CSVFileName)
‘ Imports a CSV file to a range

If ImportToCell Is Nothing Then
MsgBox “ImportRange not specified”
Exit Sub

End If

If CSVFileName = “” Then
MsgBox “Import FileName not specified”
Exit Sub

End If

Continued

4799-2 ch29.F 6/11/01 9:48 AM Page 821

822 Part VII ✦ Other Topics

Listing 29-3 (continued)

On Error GoTo ErrHandle
Application.ScreenUpdating = False
Application.DisplayAlerts = False
Workbooks.Open CSVFileName
Set CSVFile = ActiveWorkbook
ActiveSheet.UsedRange.Copy Destination:=ImportToCell
CSVFile.Close SaveChanges:=False
Application.ScreenUpdating = True
Application.DisplayAlerts = True
Exit Sub

ErrHandle:
CSVFile.Close SaveChanges:=False
Application.ScreenUpdating = True
Application.DisplayAlerts = True
MsgBox “Error “ & Err & vbCrLf & vbCrLf & Error(Err), _
vbCritical, “Import Method Error”

End Sub

Using the CSVFileClass object
To create an instance of a CSVFileClass object in your code, start by declaring a
variable as type CSVFileClass. Here’s an example:

Dim CSVFile As New CSVFileClass

You may prefer to declare the object variable first and then create the object when
needed. This requires a Dim statement and a Set statement:

Dim CSVFile As CSVFileClass
‘ other code may go here
Set CSVFile = New CSVFile

The advantage of using both a Dim and a Set statement is that the object isn’t actu-
ally created until the Set statement is executed. You may want to use this tech-
nique to save memory by not creating an object if it’s not needed. For example,
your code might contain logic that determines whether the object is actually cre-
ated. In addition, using the Set command enables you to create multiple instances
of an object.

After creating an instance of the object, you can write other instructions to access
the properties and methods defined in the class module.

4799-2 ch29.F 6/11/01 9:48 AM Page 822

823Chapter 29 ✦ Understanding Class Modules

As you can see in Figure 29-2, the VBE’s Auto List Members feature works just like
any other object. After you type the variable name, followed by a dot, you’ll see a
list of properties and methods for the object.

Figure 29-2: The Auto List Members feature displays the available properties
and methods.

The following procedure demonstrates how to save the current range selection to
a CSV file named temp.csv, which is stored in the same directory as the current
workbook:

Sub ExportARange()
Dim CSVFile As New CSVFileClass
With CSVFile

.ExportRange = ActiveWindow.RangeSelection

.Export CSVFileName:=ThisWorkbook.Path & “\temp.csv”
End With

End Sub

Using the With-End With structure isn’t mandatory. For example, the procedure
could be written as follows:

Sub ExportARange()
Dim CSVFile As New CSVFileClass
CSVFile.ExportRange = ActiveWindow.RangeSelection
CSVFile.Export CSVFileName:=ThisWorkbook.Path & “\temp.csv”

End Sub

4799-2 ch29.F 6/11/01 9:48 AM Page 823

824 Part VII ✦ Other Topics

The following procedure demonstrates how to import a CSV file, beginning at the
active cell:

Sub ImportAFile()
Dim CSVFile As New CSVFileClass
With CSVFile
On Error Resume Next

.ImportRange = ActiveCell

.Import CSVFileName:=ThisWorkbook.Path & “\temp.csv”
End With
If Err <> 0 Then _
MsgBox “Cannot import “ & ThisWorkbook.Path & “\temp.csv”

End Sub

Your code can work with more than one instance of an object. The following code,
for example, creates an array of three CSVFileClass objects:

Sub Export3Files()
Dim CSVFile(1 To 3) As New CSVFileClass
CSVFile(1).ExportRange = Range(“A1:A20”)
CSVFile(2).ExportRange = Range(“B1:B20”)
CSVFile(3).ExportRange = Range(“C1:C20”)

For i = 1 To 3
CSVFile(i).Export CSVFileName:=”File” & i & “.csv”

Next i
End Sub

Summary
In this chapter, I presented an introduction to class modules and included examples
that demonstrate how to create new object classes containing properties and meth-
ods. Previous chapters in this book contain other examples of class modules.

The next chapter wraps up Part VII with a handy list of frequently asked questions.

✦ ✦ ✦

4799-2 ch29.F 6/11/01 9:48 AM Page 824

Frequently
Asked Questions
about Excel
Programming

If you like to cruise the Internet, you’re undoubtedly famil-
iar with FAQs — lists of frequently asked questions (and

their answers) about a particular topic. FAQs are prevalent in
the Usenet discussion groups and are posted in an attempt to
reduce the number of messages that ask the same questions
over and over again. But they rarely serve their intended pur-
pose because the same questions keep appearing despite
the FAQs.

I’ve found that people tend to ask the same questions about
Excel programming, so I put together a list of FAQs that cover
programming topics for Excel 97 and later versions. Although
this FAQ list certainly won’t answer all of your questions, it
covers many common questions and may set you straight
about a thing or two. The questions (and many of the
answers) came from the following sources:

✦ microsoft.public.excel.* newsgroups

✦ The comp.apps.spreadsheets newsgroup

✦ Microsoft’s Knowledge Base

✦ E-mail sent to me in an attempt to get some free
consulting

3030C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Lists of frequently
asked questions
about Excel
programming

Where to go if your
question isn’t
answered here

✦ ✦ ✦ ✦

4799-2 ch30.F 6/11/01 9:49 AM Page 825

826 Part VII ✦ Other Topics

I organized this list of questions by assigning each question to one of eight
categories:

✦ General Excel

✦ The Visual Basic Editor

✦ Sub procedures and Function procedures

✦ Objects, properties, methods, and events

✦ VBA instructions

✦ UserForms

✦ Add-ins

✦ CommandBars

In some cases, my classifications are rather arbitrary; a question could justifiably
be assigned to other categories. Moreover, questions within each category are
listed in no particular order.

By the way, most of the information in this chapter is discussed in greater detail in
other chapters in this book.

General Excel Questions
Why does Excel have two macro languages?
Early versions of Excel used a macro language called XLM. The VBA language was
introduced in Excel 5 and is vastly superior in every way. XLM has been phased out,
so you should use VBA for new macro development.

I need to distribute a workbook to someone who still uses Excel 4.
Is there a way to record my actions to an XLM macro?
No. Beginning with Excel 97, the macro recorder can generate only VBA macro
code. Generally speaking, it’s not a good idea to develop a workbook using a ver-
sion of Excel that’s newer than the Excel version it will be used with.

What If My Question Isn’t Answered Here?

If this chapter doesn’t provide an answer to your question, start by checking the index of
this book. This book includes lots of information that doesn’t qualify as a frequently asked
question. If you come up empty-handed, check out the resources listed in Appendix A.

4799-2 ch30.F 6/11/01 9:49 AM Page 826

827Chapter 30 ✦ Frequently Asked Questions about Excel Programming

Do XLM macros written for previous versions of Excel
work in Excel 97 and later versions?
In most cases, they will work perfectly.

I’m looking for a third-party utility that will convert my
Excel 4 macros to VBA. Am I out of luck?
Yes, you are. No such utility exists, and it is extremely unlikely that one will be writ-
ten. Such conversions must be done manually. Because all versions of Excel can
execute XLM macros, however, there is really no reason to convert these macros
unless you’d like to update them to incorporate new features found in later ver-
sions of Excel.

Is it possible to call a VBA procedure from an Excel 4.0 XLM macro?
Yes, you can do so by using XLM’s RUN function. For example, the following macro
runs the Test procedure contained in Module1 in workbook Book1.xls:

=RUN(Book1.xls!Module1.Test)

Is there a way to automatically convert 1-2-3
or Quattro Pro macros to VBA macros?
No. You must rewrite the macros for Excel.

Where can I find examples of VBA code?
The Internet has thousands of VBA examples. A good starting point is my Web site:

http://www.j-walk.com/ss/

Is there a utility that will convert my Excel
application into a standalone EXE file?
No.

How can I add a drop-down list to a cell so
the user can choose a value from the list?
Type the list of valid entries in a single column. You can hide this column from the
user if you wish. Select the cell or cells that will display the list of entries, choose
Data ➪ Validation, and select the Settings tab. From the Allow drop-down list, select
List. In the Source box, enter a range address or a reference to the items in your
sheet. Make sure the In-cell dropdown check box is selected. If the list is short, you
can simply type the items, each separated by a comma. This technique does not
require any macros.

4799-2 ch30.F 6/11/01 9:49 AM Page 827

828 Part VII ✦ Other Topics

Can I use this drop-down list method if my list is stored
on a different worksheet in the workbook?
Yes. You need to create a name for the list (for example, ListEntries). Then, in
the Data Validation dialog box, enter =ListEntries in the Source box. Make sure that
you include the initial equal sign, otherwise it won’t work.

I use Application.Calculation to set the calculation
mode to manual. However, this seems to affect
all workbooks, not just the active workbook.
The Calculation property is a member of the Application object. Therefore, the
calculation mode affects all workbooks. It is not possible to set the calculation
mode for only one workbook. Excel 2000 provides a new Worksheet object prop-
erty: EnableCalculation. When this property is False, the worksheet will not be
calculated, even if the user requests a calculation. Setting the property to True will
cause the sheet to be calculated.

How can I increase the number of columns in a worksheet?
You can’t. This number is fixed and cannot be changed. Microsoft continues to
ignore what must amount to thousands of requests for more worksheet columns.

How can I increase the number of rows in a worksheet?
See the answer to the previous question.

Is it possible to change the color of the sheet tabs?
If you use Excel 2002, right-click the sheet tab and select Tab Color. Previous ver-
sions of Excel do not allow you to change the tab color.

Is it possible to change the font of the sheet tabs?
Yes, but you must go outside of Excel to do so. In the Windows Control Panel, select
Display. In the Display Properties dialog box, click the Appearance tab. In the Item
list, select Scrollbar. Use the spinner to increase or decrease the size. This setting
will affect other programs.

Is it possible to change the default font and color of cell comments?
Yes. In the Windows Control Panel, select Display. In the Display Properties dialog
box, click the Appearance tab. In the Item list, select ToolTip. Use the controls to
change the settings. This setting will affect other programs.

4799-2 ch30.F 6/11/01 9:49 AM Page 828

829Chapter 30 ✦ Frequently Asked Questions about Excel Programming

What happened to the mapping feature in Excel 2002?
Microsoft’s license for that software expired, and it was not renewed. Consequently,
all traces of this feature have been expunged (including any references in the online
help). Therefore, users and developers who relied on that feature will have to seek
another solution if they upgraded to Excel 2002.

Is it possible to play sounds in Excel?
Yes, you can play WAV and MIDI files, but it requires Windows API functions (see
Chapter 11). If you’re using Excel 2002, you can take advantage of the new Speech
object. The following statement, when executed, greets the user by name (assuming
the user has a sound card):

Application.Speech.Speak (“Hello” & Application.UserName)

When I open a workbook, Excel asks if I want to update
the links. I’ve searched all of my formulas, and I cannot
find any links in this workbook. Is this a bug?
Probably not. Links can occur in places other than formulas. If you have a chart in
your workbook, click each data series in the chart and examine the SERIES formula
in the formula bar. If the formula refers to another workbook, you’ve identified the
link. To eliminate it, move the chart’s data into the current workbook and re-create
your chart.

If your workbook contains any Excel 5/95 dialog sheets, select each object in each
dialog box and examine the formula bar. If any object contains a reference to
another workbook, edit or delete that reference.

Select Insert ➪ Name ➪ Define. Scroll down the list in the Define Name dialog box
and examine the Refers to box. Delete names that refer to another workbook or that
contain an erroneous reference (such as #REF!). This is the most common cause of
“phantom links.”

How can I print the workbook’s full path
and filename in a page header?
If you use Excel 2002, you can take advantage of a new feature in the Page Setup dia-
log box. When this dialog is displayed, click the Header/Footer tab and click
Custom Header. You’ll find a new icon that inserts the code to print the full path
and filename of the workbook. Note, however, that if the workbook has not been
saved, the path name may be incorrect (it uses the default workbook path).

4799-2 ch30.F 6/11/01 9:49 AM Page 829

830 Part VII ✦ Other Topics

For older versions of Excel, you need to use a VBA macro and take advantage of the
WorkbookBeforePrint event. For example, place the following procedure in the
code module for the ThisWorkbook object to print the workbook’s full path and
filename in the left header of each sheet:

Private Sub Workbook_BeforePrint(Cancel As Boolean)
For Each sht In ThisWorkbook.Sheets

sht.PageSetup.LeftHeader = ThisWorkbook.FullName
Next sht

End Sub

I’ve heard that some programs have “secret” commands that display a
list of the program’s developers. Is there such a command in Excel?
These hidden messages are sometimes known as Easter Eggs. Each version of Excel
has its own Easter Egg. To view Excel 2000’s Easter Egg, follow these steps:

1. Open a new Excel workbook.

2. Press F5.

3. Type X2000:L2000 and press Enter.

4. You should now be on row 2000.

5. Press Tab once, to move to column M.

6. Hold Control and Shift, then right-click the Chart Wizard icon on the Standard
toolbar. Some people have reported that it works only if you left-click the
Chart Wizard icon.

Watch the list of developers for Excel scroll by.

What about the Easter Egg for Excel 2002?
As this book was going to press, the Excel 2002 Easter Egg (if any) had not yet been
discovered. Check my Web site (http://www.j-walk.com/ss/excel/eastereg.
htm) for the latest Excel Easter Egg news. Microsoft has received many complaints
about Easter Eggs, so it’s possible that this practice has been discontinued.

The Visual Basic Editor
In Excel 95, my VBA modules were located in my workbook.
I can’t see them when I open the file using Excel 97 or later.
The modules are still there, but you view and edit them in the Visual Basic Editor.
Press Alt+F11 to toggle between the VBE and Excel.

4799-2 ch30.F 6/11/01 9:49 AM Page 830

831Chapter 30 ✦ Frequently Asked Questions about Excel Programming

Can I use the VBA macro recorder to record all of my macros?
No. Recording is useful for very simple macros only. Macros that use variables,
looping, or any other type of program flow changes cannot be recorded. You can,
however, often take advantage of the macro recorder to write some parts of your
code or to discover the relevant properties or methods.

Excel 95 had a “record at mark” feature that enabled
you to record a macro beginning at a particular location
within an existing macro. Is that feature still available?
No, it was removed beginning with Excel 97. To add new recorded code to an exist-
ing macro, you need to record it and then cut and paste the code to your existing
macro.

I have some macros that are general in nature. I would like to have
these available all the time. What’s the best way to do this?
Consider storing those general-purpose macros in your Personal Macro Workbook.
This is a (normally) hidden workbook that is loaded automatically by Excel. When
you record a macro, you have the option of recording it to your Personal Macro
Workbook. The file, Personal.xls, is stored in your \XLStart directory.

I can’t find my Personal Macro Workbook. Where is it?
The Personal.xls file doesn’t exist until you record a macro to it.

Every time my Excel 97 macro copies a worksheet, the new sheet
name appears in the Project window of VBE as something like
Sheet11111111111(Sheet 1(9)). What’s the deal with this?
These strange names are the “code names” for Worksheet objects, and they can get
very unwieldy if you do a lot of sheet copying. In fact, when the sheet name reaches
32 characters, it will cause Excel to crash. You can change the code name by using
the Properties window in the VBE. This problem was fixed in Excel 2000.

I locked my VBA project with a password, and I forget
what it was. Is there any way to unlock it?
Several third-party password-cracking products exist. Use a Web search engine, and
search for Excel password. The existence of these products should tell you that
Excel passwords are not very secure.

How can I write a macro to change the password of my project?
You can’t. The protection elements of a VBA project are not exposed in the object
model. Most likely, this was done to make it more difficult for password-cracking
software.

4799-2 ch30.F 6/11/01 9:49 AM Page 831

832 Part VII ✦ Other Topics

When I insert a new module, it always starts with
an Option Explicit line. What does this mean?
If Option Explicit is included at the top of a module, it means that you must
declare every variable before you use it (which is a good idea). If you don’t want
this line to appear in new modules, activate the VBE and select the Tools ➪ Options
command, click the Editor tab, and uncheck the Require Variable Declaration check
box. Then you can either declare your variables or let VBA handle the data typing
automatically.

Why does my VBA code appear in different colors?
Can I change these colors?
VBA uses color to differentiate various types of text: comments, keywords, identi-
fiers, statements with a syntax error, and so on. You can adjust these colors and the
font used by selecting the Tools ➪ Options command (Editor Format tab) in the VBE.

I want to delete a VBA module by using VBA code. Can I do this?
Yes. The following code deletes Module1 from the active workbook:

With ActiveWorkbook.VBProject
.VBComponents.Remove .VBComponents(“Module1”)

End With

This may not work with Excel 2002. See the next question.

I wrote a macro in Excel 2000 that adds VBA code to the VB project.
When I run it in Excel 2002, I get an error message. What’s wrong?
Excel 2002 has a new setting: Trust access to Visual Basic Project. By default, this
setting is turned off. To change it, select Tools ➪ Macro ➪ Security and click the
Trusted Sources tab in the Security dialog box.

How can I change the user’s macro security setting?
I want to avoid the “this workbook contains
macros” message when my application is opened.
The ability to change the security level using VBA would pretty much render the
entire macro security system worthless. Think about it.

When I open a workbook, I get the standard macro warning message.
However, I deleted all the macros in this workbook! Is there a virus?
Probably not. In addition to deleting your macros, make sure that you also delete
the VBA module in which they were stored.

4799-2 ch30.F 6/11/01 9:49 AM Page 832

833Chapter 30 ✦ Frequently Asked Questions about Excel Programming

I don’t understand how the UserInterfaceOnly option works when
protecting a worksheet.
When protecting a worksheet, you can use a statement such as:

ActiveSheet.Protect UserInterfaceOnly:=True

This causes the sheet to be protected, but your macros can still make changes to
the sheet. It’s important to understand that this setting is not saved with the work-
book. When the workbook is re-opened, you’ll need to re-execute the statement in
order to reapply the UserInterfaceOnly protection.

How can I tell if a workbook has a macro virus?
In the VBE, activate the project that corresponds to the workbook. Examine all of
the code modules and look for VBA code that is not familiar to you. Usually, virus
code will not be formatted well, and will contain lots of unusual variable names.
Another option is to use a commercial virus scanning program.

I’m having trouble with the concatenation operator (&) in VBA.
When I try to concatenate two strings, I get an error message.
VBA is probably interpreting the ampersand as a type-declaration character. Make
sure that you insert a space before and after the concatenation operator.

I can’t seem to get the VBA line continuation
character (underscore) to work.
The line continuation sequence is actually two characters: a space followed by an
underscore.

In Excel 95, I set my VBA module to be “very hidden” to
prevent users from seeing it. When the workbook is opened in
Excel 97, the module can be viewed in the VBE. Is this right?
I don’t know if it’s right, but that’s the way it is. Excel 97 and later does not support
the xlVeryHidden property setting for modules.

After deleting a major amount of VBA code, I’ve noticed that the XLS
file size is not reduced accordingly. Why is this?
Excel doesn’t always do a good job of cleaning up after itself. This sometimes
causes some subtle problems with variables that you no longer use. One way to fix
it is to export your module to a file, delete the module, and then import it again.

4799-2 ch30.F 6/11/01 9:49 AM Page 833

834 Part VII ✦ Other Topics

I distributed an XLS application to many users. On some machines, my
VBA error-handling procedures don’t work. Why not?
The error-handling procedures won’t work if the user has the Break on All Errors
option set. This option is available in the Options dialog box (General tab) in the
VBE. Unfortunately, you can’t change this setting with VBA. To avoid this problem,
you can distribute your application as an XLA add-in.

Procedures
What’s the difference between a VBA procedure and a macro?
Nothing, really. The term macro is a carry-over from the old days of spreadsheets.
These terms are now used interchangeably.

What’s a procedure?
A procedure is a grouping of VBA instructions that can be called by name. If these
instructions are to give an explicit result, such as a value, back to the instruction
that called them, they most likely belong to a Function procedure. Otherwise, they
probably belong to a Sub procedure.

What is a variant data type?
Variables that aren’t specifically declared are assigned the variant type by default,
and VBA automatically converts the data to the proper type when it’s used. This is
particularly useful for retrieving values from a worksheet cell when you don’t know
in advance what the cell contains. Generally, it’s a good idea to specifically declare
your variables with the Dim, Public, or Private statement because using variants
is a bit slower and is not the most efficient use of memory.

What’s the difference between a variant array and an array of variants?
A variant is a unit of memory with a special data type that can contain any kind of
data: a single value or an array of values (that is, a variant array). The following
code creates a variant that contains an array:

Dim X As Variant
X = Array(30, 40, 50)

A normal array can contain items of a specified data type, including nontyped vari-
ants. The following statement creates an array that consists of 12 variants:

Dim X (0 To 2) As Variant

4799-2 ch30.F 6/11/01 9:49 AM Page 834

835Chapter 30 ✦ Frequently Asked Questions about Excel Programming

Although a variant containing an array is conceptually different from an array
whose elements are of type variant, the array elements are accessed in the
same way.

What’s a type-definition character?
VBA lets you append a character to a variable’s name to indicate the data type. For
example, you can declare the MyVar variable as an integer by tacking % onto the
name, as follows:

Dim MyVar%

Here’s a list of the type-declaration characters supported by VBA:

Integer %

Long &

Single !

Double #

Currency @

String $

I wrote a VBA function that works perfectly when
I call it from another procedure. But it doesn’t work
when I use it in a worksheet formula. What’s wrong?
VBA functions called from a worksheet formula have some limitations. In general,
they must be strictly “passive” — they can’t change the active cell, apply format-
ting, open workbooks, or change the active sheet. If the function attempts to do any
of these things, the formula will return an error.

Functions can only perform calculations and return a value. An exception to this
rule is the VBA MsgBox function. A custom function can display a message box
whenever it is recalculated. This is very handy for debugging a custom function.

I would like to create a procedure that
automatically changes the formatting of a cell based on
the data I enter. For example, if I enter a value greater than 0,
the cell’s background color should be red. Is this possible?
It’s certainly possible, and you don’t need any programming. Use Excel’s
Conditional Formatting feature, accessed with the Format ➪ Conditional Formatting
command.

4799-2 ch30.F 6/11/01 9:49 AM Page 835

836 Part VII ✦ Other Topics

The Conditional Formatting feature is useful, but I’d like to perform
other types of operations when data is entered into a cell.
In that case, you can take advantage of the Change event for a worksheet object.
Whenever a cell is changed, the Change event is triggered. If the code module for
the Sheet object contains a procedure named Worksheet_Change, this procedure
will be executed automatically.

What other types of events can be monitored?
Lots! Search the online help for events to get a complete listing.

I tried entering an event procedure (Sub Workbook_Open), but the
procedure isn’t executed when the workbook is opened. What’s wrong?
You probably put the procedure in the wrong place. Workbook event procedures
must be in the code module for the ThisWorkbook object. Worksheet event proce-
dures must be in the code module for the appropriate Sheet object, as shown in
the VBE’s Project window.

I can write an event procedure for a particular workbook.
Is it possible to write an event procedure that will work for
any workbook that’s open?
Yes, but you need to use a class module. Details are in Chapter 19.

I’m very familiar with creating formulas in Excel. Does VBA use the
same mathematical and logical operators?
Yes. And it includes some additional operators that aren’t valid in worksheet formu-
las. These additional VBA operators are listed in the following table:

Operator Function

\ Division with an integer result

Eqv Returns True if both expressions are True or both are False

Imp Logical implication on two expressions

Is Compares two object variables

Like Compares two strings, using wildcard characters

Xor Returns True if only one expression is True

4799-2 ch30.F 6/11/01 9:49 AM Page 836

837Chapter 30 ✦ Frequently Asked Questions about Excel Programming

How can I execute a procedure that’s in a different workbook?
Use the Run method of the Application object. The following instruction executes
a procedure named Macro1 located in the Personal.xls workbook:

Run “Personal.xls!Macro1”

I’ve used VBA to create several custom functions. I like to use these
functions in my worksheet formulas, but I find it inconvenient to
precede the function name with the workbook name. Is there any way
around this?
Yes. Convert the workbook that holds the function definitions to an XLA add-in.
When the add-in is open, you can use the functions in any other worksheet without
referencing the function’s filename.

In addition, if you set up a reference to the workbook that contains the custom
functions, you can use the function without preceding it with the workbook name.
To create a reference, use the Tools ➪ References command in the VBE.

I would like a particular workbook to be loaded every time I start Excel.
I would also like a macro in this workbook to execute automatically.
Am I asking too much?
Not at all. To open the workbook automatically, just store it in your \XLStart direc-
tory. To have the macro execute automatically, create a Workbook_Open macro in
the code module for the workbook’s ThisWorkbook object.

I have a workbook that uses a Workbook_Open procedure. Is there a
way to prevent this from executing when I open the workbook?
Yes. Hold down Shift when you issue the File ➪ Open command. To prevent a
Workbook_BeforeClose procedure from executing, press Shift when you close the
workbook. Using the Shift key will not prevent these procedures from executing
when you’re opening an add-in.

Can a VBA procedure access a cell’s value
in a workbook that is not open?
VBA can’t do it, but Excel’s old XLM language can. Fortunately, you can execute
XLM from VBA. Here’s a simple example that retrieves the value from cell A1 on
Sheet1 in a workbook named myfile.xls in the c:\files directory:

MsgBox ExecuteExcel4Macro(“‘c:\files\[myfile.xls]Sheet1’!R1C1”)

Note that the cell address must be in RC notation.

4799-2 ch30.F 6/11/01 9:49 AM Page 837

838 Part VII ✦ Other Topics

How can I prevent the “save file” prompt from being
displayed when I close a workbook from VBA?
You can use this statement:

ActiveWorkbook.Close SaveChanges:=False

Or, you can set the workbook’s Saved property to True by using a statement like
this:

ActiveWorkbook.Saved = True

This statement, when executed, does not actually save the file, so any unsaved
changes will be lost when the workbook is closed.

A more general solution to avoid Excel prompts is to insert the following
instruction:

Application.DisplayAlerts = False

How can I set things up so my macro runs once every hour?
You need to use the OnTime method of the Application object. This enables you
to specify a procedure to execute at a particular time of day. When the procedure
ends, use the OnTime method again to schedule another event in one hour.

How do I prevent a macro from showing in the macro list?
Declare the procedure using the Private keyword:

Private Sub MyMacro()

Or you can add a dummy optional argument, declared as a specific data type:

Sub MyMacro (Optional FakeArg as Integer)

Is it possible to save a chart as a GIF file?
Yes. The following code saves the first embedded chart on Sheet1 as a GIF file
named Mychart.gif:

Set CurrentChart = Sheets(“Sheet1”).ChartObjects(1).Chart
Fname = ThisWorkbook.Path & “\Mychart.gif”
CurrentChart.Export Filename:=Fname, FilterName:=”GIF”

4799-2 ch30.F 6/11/01 9:49 AM Page 838

839Chapter 30 ✦ Frequently Asked Questions about Excel Programming

Are variables in a VBA procedure available to other
VBA procedures? What if the procedure is in a different
module? Or in a different workbook?
You’re talking about a variable’s scope. There are three levels of scope: local, mod-
ule, and public. Local variables have the narrowest scope and are declared within a
procedure. A local variable is visible only to the procedure in which it was declared.
Module-level variables are declared at the top of a module, prior to the first proce-
dure. Module-level variables are visible to all procedures in the module. Public vari-
ables have the broadest scope, and they are declared using the Public keyword.

Functions
I created a custom worksheet function. When I access this function
with the Insert Function dialog, it says, “No help available.” How can I
get the Insert Function dialog box to display a description of my
function?
To add a description for your custom function, activate the workbook that contains
the Function procedure. Then select Tools ➪ Macro ➪ Macros to display the Macro
dialog box. Your function won’t be listed, so you must type it into the Macro name
box. After typing the function’s name, click Options to display the Macro Options
dialog box. Enter the descriptive text in the Description box.

Can I also display help for the arguments for my custom function in the
Paste Function dialog box?
Unfortunately, no.

My custom worksheet function appears in the User Defined category in
the Insert Function dialog box. How can I make my function appear in
a different function category?
You need to use VBA to do this. The following instruction assigns the function
named MyFunc to Category 1 (Financial):

Application.MacroOptions Macro:=”MyFunc”, Category:=1

The following table lists the valid function category numbers.

4799-2 ch30.F 6/11/01 9:49 AM Page 839

840 Part VII ✦ Other Topics

Number Category

0 No category (appears only in All)

1 Financial

2 Date & Time

3 Math & Trig

4 Statistical

5 Lookup & Reference

6 Database

7 Text

8 Logical

9 Information

10 Commands (this category is normally hidden)

11 Customizing (this category is normally hidden)

12 Macro Control (this category is normally hidden)

13 DDE/External (this category is normally hidden)

14 User Defined (default)

15 Engineering (this category is valid only if the Analysis ToolPak add-in is
installed)

How can I create a new function category?
You can create a new function category by using an XLM macro. However, this
method is not reliable, and is not recommended.

I have a custom function that will be used in a worksheet formula. If
the user enters arguments that are not appropriate, how can I make
the function return a true error value (#VALUE)?
If your function is named MyFunction, you can use the following instruction to
return an error value to the cell that contains the function:

MyFunction = CVErr(xlErrValue)

In this example, xlErrValue is a predefined constant. Constants for the other error
values are listed in the online help.

4799-2 ch30.F 6/11/01 9:49 AM Page 840

841Chapter 30 ✦ Frequently Asked Questions about Excel Programming

How can I force a recalculation of formulas
that use my custom worksheet function?
Press Ctrl+Alt+F9.

Can I use Excel’s built-in worksheet functions in my VBA code?
In most cases, yes. Excel’s worksheet functions are accessed via the
WorksheetFunction method of the Application object. For example, you could
access the POWER worksheet functions with a statement such as the following:

Ans = Application.WorksheetFunction.Power(5, 3)

This example raises 5 to the third power, and returns 125.

Generally, if VBA includes an equivalent function, you cannot use Excel’s worksheet
version. For example, because VBA has a function to compute square roots (Sqr)
you cannot use the SQRT worksheet function in your VBA code.

Excel 95 doesn’t support the WorksheetFunction method. Does
that mean I can’t make my Excel 2002 application compatible
with Excel 95?
No. Actually, using the WorksheetFunction method is superfluous. The following
statements have exactly the same result:

Ans = Application.WorksheetFunction.Power(5, 3)
Ans = Application.Power(5, 3)

Can I use Analysis ToolPak functions in my VBA code?
Yes, but it takes a few extra steps. In Excel, choose Tools ➪ Add-Ins, and place a
check mark next to the add-in named Analysis ToolPak - VBA. Then activate your
VB project and choose Tools ➪ References. Place a check mark next to atpvbaen.xls
to create a reference. Then you can use any of the Analysis ToolPak functions
in your code. For example, the following statement uses the Analysis ToolPak’s
CONVERT function, and converts 5,000 meters to miles:

MsgBox CONVERT(5000, “m”, “mi”)

Is there any way to force a line break in the text of a message box?
Use a carriage return or a line feed character to force a new line. The following
statement displays the message box text on two lines. vbCr is a built-in constant
that represents a carriage return.

MsgBox “Hello” & vbCr & Application.UserName

4799-2 ch30.F 6/11/01 9:49 AM Page 841

842 Part VII ✦ Other Topics

Objects, Properties, Methods, and Events
I don’t understand the concept of objects. Is there a listing of the Excel
objects I can use?
Yes. The online help includes the information in a graphical format.

I’m overwhelmed with all the properties and methods available.
How can I find out which methods and properties are available
for a particular object?
There are several ways. You can use the Object Browser available in the VBE. Press
F2 to access the Object Browser and then choose Excel from the
Libraries/Workbooks drop-down list. The Classes list (on the left) shows all the
Excel objects. When you select an object, its corresponding properties and meth-
ods appear in the Member of list on the right.

You can also get a list of properties and methods as you type. For example, enter
the following:

Range(“A1”).

When you type the dot, you’ll see a list of all properties and methods for a Range
object. If this doesn’t work, choose Tools ➪ Options, click the Editor tab, and place
a check mark next to Auto List Members.

And, of course, the online help system for VBA is very extensive; it lists the proper-
ties and methods available for most objects of importance. The easiest way to
access these lists is to type the object name into the Immediate window at the bot-
tom of the VBE and move the cursor anywhere within the object name. Press F1,
and you’ll get the help topic appropriate for the object.

What’s the story with collections? Is a collection an object?
What are collections?
A collection is an object that contains a group of related objects. A collection is des-
ignated by a plural noun. For example, the Worksheets collection is an object that
contains all the Worksheet objects in a workbook. You can think of this as an array:
Worksheets(1) refers to the first Worksheet object in the Workbook. Rather than
use index numbers, you can also use the actual worksheet name, such as
Worksheets(“Sheet1”). The concept of a collection makes it easy to work with all
related objects at once and to loop through all objects in a collection by using the
For Each-Next construct.

4799-2 ch30.F 6/11/01 9:49 AM Page 842

843Chapter 30 ✦ Frequently Asked Questions about Excel Programming

When I refer to a worksheet in my VBA code, I get a “subscript out of
range” error. I’m not using any subscripts. What gives?
This error occurs when you attempt to access an element in a collection that
doesn’t exist. For example, the following instruction generates the error if the
active workbook does not contain a worksheet named MySheet:

Set X = ActiveWorkbook.Worksheets(“MySheet”)

How can I prevent the user from scrolling around the worksheet?
You can either hide the unused rows and columns or use a VBA instruction to set
the scroll area for the worksheet. The following instruction, for example, sets the
scroll area on Sheet1 so the user cannot activate any cells outside of B2:D50:

Worksheets(“Sheet1”).ScrollArea = “B2:D50”

To set scrolling back to normal, use a statement like this:

Worksheets(“Sheet1”).ScrollArea = “”

Be aware that the ScrollArea setting is not saved with the workbook. Therefore,
you’ll need to execute the ScrollArea assignment instruction whenever the work-
book is opened. This instruction can go in the Workbook_Open event-handler
procedure.

What’s the difference between using Select and Application.Goto?
The Select method of the Range object selects a range on the active worksheet
only. Use Application.Goto to select a range on any worksheet in a workbook.
Application.Goto may or may not make another sheet the active sheet. The Goto
method also lets you scroll the sheet so that the range is in the upper-left corner.

What’s the difference between activating a range
and selecting a range?
In some cases, the Activate method and the Select method have exactly the
same effect. But in other cases, they produce quite different results. Assume that
range A1:C3 is selected. The following statement activates cell C3. The original
range remains selected, but C3 becomes the active cell — that is, the cell that con-
tains the cell pointer.

Range(“C3”).Activate

Again, assuming that range A1:C3 is selected, the following statement selects a sin-
gle cell, which also becomes the active cell.

Range(“C3”).Select

4799-2 ch30.F 6/11/01 9:49 AM Page 843

844 Part VII ✦ Other Topics

Is there a quick way to delete all values from a worksheet, but keep
the formulas intact?
Yes. The following code works on the active sheet, and deletes all nonformula cells
(the cell formatting is not affected):

On Error Resume Next
Cells.SpecialCells(xlCellTypeConstants, 23).ClearContents

Using On Error Resume Next prevents the error message that occurs if no cells
qualify.

I know how to write a VBA instruction to select a range by
using a cell address, but how can I write one to select a
range if I know only its row and column number?
Use the Cells method. The following instruction, for example, selects the cell in
the 5th row and the 12th column (that is, cell L5):

Cells(5, 12).Select

Is there a VBA command to quit Excel? When I try to record the File ➪
Exit command, Excel closes down before I can see what code it
generates!
Use the following instruction to end Excel:

Application.Quit

How can I turn off the screen updating while a macro is running?
The following instruction turns off screen updating and speeds up macros that
modify the display:

Application.ScreenUpdating = False

What’s the easiest way to create a range name using VBA?
If you turn on the macro recorder while you name a range, you’ll get code some-
thing like this:

Range(“D14:G20”).Select
ActiveWorkbook.Names.Add Name:=”InputArea”, _

RefersToR1C1:=”=Sheet1!R14C4:R20C7”

A much simpler method is to use a statement like this:

Sheets(“Sheet1”).Range(“D14:G20”).Name = “InputArea”

4799-2 ch30.F 6/11/01 9:49 AM Page 844

845Chapter 30 ✦ Frequently Asked Questions about Excel Programming

How can I determine if a particular cell or range has a name?
You need to check the Name property of the Name object contained in the Range
object. The following function accepts a range as an argument, and returns the
name of the range (if it has one). If the range has no name, the function returns
False.

Function RangeName(rng) As Variant
On Error Resume Next
RangeName = rng.Name.Name
If Err <> 0 Then RangeName = False

End Function

Is there a way to disable the Setup and Margins buttons that are
displayed in Excel’s Print Preview window?
Yes, use a statement like this:

ActiveSheet.PrintPreview EnableChanges:=False

The EnableChanges argument for the PrintPreview method is not documented in
the online help, but this argument does appear in the Object Browser.

Is it possible to display messages in the status bar while a macro is
running? I have a lengthy macro, and it would be nice to display its
progress in the status bar.
Yes. Assign the text to the StatusBar property of the Application object. Here’s
an example:

Application.StatusBar = “Now processing File “ & FileNum

When your routine finishes, return the status bar back to normal with the following
instruction:

Application.StatusBar = False

I recorded a VBA macro that copies a range and pastes it to another
area. The macro uses the Select method. Is there a more efficient way
to copy and paste?
Yes. Although the macro recorder generally selects cells before doing anything with
them, selecting is not necessary and may actually slow down your macro.
Recording a very simple copy-and-paste operation generates four lines of VBA
code, two of which use the Select method. Here’s an example:

4799-2 ch30.F 6/11/01 9:49 AM Page 845

846 Part VII ✦ Other Topics

Range(“A1”).Select
Selection.Copy
Range(“B1”).Select
ActiveSheet.Paste

These four lines can be replaced with a single instruction, such as the following:

Range(“A1”).Copy Range(“B1”)

Notice that this instruction does not use the Select method.

I have not been able to find a method to sort a VBA array. Does this
mean that I have to copy the values to a worksheet and then use the
Range.Sort method?
There is no built-in way to sort an array in VBA. Copying the array to a worksheet is
one method, but you’ll probably be better off if you write your own sorting proce-
dure. Many sorting algorithms are available, and some are quite easy to code in
VBA. This book contains VBA code for several sorting techniques.

My macro works with the selected cells, but it fails if something else
(like a chart) is selected. How can I make sure that a range is selected?
You can use VBA’s TypeName function to check the Selection object. Here’s an
example:

If TypeName(Selection) <> “Range” Then
MsgBox “Select a range!”
Exit Sub

End If

Another approach is to use the RangeSelection property, which returns a Range
object that represents the selected cells on the worksheet in the specified window,
even if a graphic object is active or selected. This property applies to a Window
object, not a Workbook object. The following instruction, for example, displays the
address of the selected range:

MsgBox ActiveWindow.RangeSelection.Address

My VBA macro needs to count the number of rows selected by the user.
Using Selection.Rows.Count doesn’t work when nonadjacent rows are
selected. Is this a bug?
Actually, this is the way it’s supposed to work. The Count method returns the num-
ber of elements in only the first area of the selection (a noncontiguous selection has
multiple areas). To get an accurate row count, your VBA code must first determine

4799-2 ch30.F 6/11/01 9:49 AM Page 846

847Chapter 30 ✦ Frequently Asked Questions about Excel Programming

the number of areas in the selection and then count the number of rows in each
area. Use Selection.Areas.Count to count the number of areas. Here’s an exam-
ple that stores the total number of selected rows in the NumRows variable:

NumRows = 0
For Each areaCounter In Selection.Areas

NumRows = NumRows + areaCounter.Rows.Count
Next areaCounter

By the way, this process is also relevant to counting columns and cells.

I use Excel to create invoices. Is there a way to generate a unique
invoice number?
One way to do this is to use the Windows Registry. The following code demon-
strates:

Counter = GetSetting(“XYZ Corp”, “InvoiceNum”, “Count”, 0)
Counter = Counter + 1
SaveSetting “XYZ Corp”, “InvoiceNum”, “Count”, Counter

When these statements are executed, the current value is retrieved from the
Registry, incremented by one, and assigned to the Counter variable. Then this
updated value is stored back to the Registry. You can use the value of Counter as
your unique invoice number.

Is there a workbook property that forces an Excel workbook always to
remain visible so it won’t be hidden by another application’s window?
No.

Is there a way to stop Excel from displaying messages while my macro
is running? For example, I’d like to eliminate the message that appears
when my macro deletes a worksheet.
The following statement turns off most of Excel’s warning messages:

Application.DisplayAlerts = False

Is there a VBA instruction to select the last entry in a column or row?
Normally, I can use Ctrl+Shift+down arrow or Ctrl+Shift+right arrow to
do this, but how can I do it with a macro?
The VBA equivalent for Ctrl+Shift+down arrow is the following:

Selection.End(xlDown).Select

The constants used for the other directions are xlToLeft, xlToRight, and xlUp.

4799-2 ch30.F 6/11/01 9:49 AM Page 847

848 Part VII ✦ Other Topics

How can I determine the last nonempty cell in a particular column?
The following instruction displays the address of the last nonempty cell in
column A:

MsgBox ActiveSheet.Range(“A65536”).End(xlUp).Address

The following instruction will work if Excel worksheets ever have more than 65,536
rows:

MsgBox ActiveSheet.Cells(Rows.Count, 1).End(xlUp).Address

But that instruction won’t work if cell A65536 is not empty!
To handle that unlikely occurrence, use this code:

With ActiveSheet.Cells(Rows.Count, 1)
If IsEmpty(.Value) Then

MsgBox .End(xlUp).Address
Else

MsgBox .Address
End If

End With

VBA references can become very lengthy, especially when you need to
fully qualify an object by referencing its sheet and workbook. Is there a
way to reduce the length of these references?
Yes. Use the Set statement to create an object variable. Here’s an example:

Dim MyRange as Range
Set MyRange = ThisWorkbook.Worksheets(“Sheet1”).Range(“A1”)

After the Set statement is executed, you can refer to this single-cell Range object
simply as MyRange. For example, you can assign a value to the cell with the
following:

MyRange.Value = 10

Besides making it easier to refer to objects, using object variables can also help
your code execute more quickly.

Is there a way to declare an array if you don’t know how many
elements it will have?
Yes. You may declare a dynamic array with the Dim statement, using empty paren-
theses, and then allocate storage for that array later with the ReDim statement
when you know how many elements the array should have. Use ReDim Preserve if
you don’t want to lose the current array contents when reallocating it.

4799-2 ch30.F 6/11/01 9:49 AM Page 848

849Chapter 30 ✦ Frequently Asked Questions about Excel Programming

How can I write a macro to select some, but not all,
of the sheets in a workbook?
Use False as the argument for the Select method. For example, the following pro-
cedure selects all chart sheets in the active workbook:

Sub SelectChartSheets()
Dim cht As Chart
If Charts.Count = 0 Then Exit Sub
Charts(1).Select
For Each cht In Charts

cht.Select False
Next cht

End Sub

Can I let the user undo my macro?
Yes, but it’s not something that can be done automatically. To enable the user to
undo the effects of your macro, your VBA code module must keep track of what
was changed by the macro and then be capable of restoring the original state if the
user selects Edit ➪ Undo.

To enable the Edit ➪ Undo command, use the OnUndo method as the last action in
your macro. This method enables you to specify text that will appear on the Undo
menu item and also to specify a procedure to run if the user selects Edit ➪ Undo.
Here’s an example:

Application.OnUndo “The Last Macro”, “MyUndoMacro”

I have a 1-2-3 macro that pauses so the user can enter data into a
certain cell. How can I get the same effect in a VBA macro?
Excel can’t duplicate that type of behavior, but you can use Excel’s InputBox state-
ment to get a value from a user and place it in a particular cell. The first instruction
that follows, for example, displays an input box. When the user enters a value, that
value is placed in cell A1.

UserVal = Application.InputBox(prompt:=”Value?”, Type:=1)
If UserVal <> False Then Range(“A1”) = UserVal

VBA has an InputBox function, but there’s also an InputBox method for
the Application object. Are these the same?
No. Excel’s InputBox method is more versatile because it allows validation of the
user’s entry. The preceding example uses 1 (which represents a numeric value) for
the Type argument of the InputBox method. This ensures that the user enters a
value into the input box.

4799-2 ch30.F 6/11/01 9:49 AM Page 849

850 Part VII ✦ Other Topics

When I use the RGB function to assign a color, the color sometimes
isn’t correct. What am I doing wrong?
Probably nothing. An Excel workbook can use only 56 different colors (the color
palette). If a specified RGB color isn’t in the palette, Excel uses the closest match it
can find.

I’m trying to write a VBA instruction that creates a formula.
To do so, I need to insert a quote character (“)
within quoted text. How can I do that?
Assume you want to enter the following formula into cell B1 with VBA:

=IF(A1=”Yes”,TRUE,FALSE)

The following instruction generates a syntax error:

Range(“B1”).Formula = “=IF(A1=”Yes”,TRUE,FALSE)” ‘erroneous

The solution is to use two double quotes side by side. The following instruction
produces the desired result:

Range(“B1”).Formula = “=IF(A1=””Yes””,TRUE,FALSE)”

Another approach is to use VBA’s Chr function with an argument of 34, which
returns a quotation mark. The following example demonstrates:

Range(“B1”).Formula = _
“=IF(A1=” & Chr(34) & “Yes” & Chr(34) & “,TRUE,FALSE)”

I created an array, but the first element in that array is being treated as
the second element. What’s wrong?
Unless you tell it otherwise, VBA uses 0 as the first index number for an array. If you
want all your arrays to always start with 1, insert the following statement at the top
of your VBA module:

Option Base 1

Or you can specify the upper and lower bounds of an array when you declare it.
Here’s an example:

Dim Months(1 To 12) As String

4799-2 ch30.F 6/11/01 9:49 AM Page 850

851Chapter 30 ✦ Frequently Asked Questions about Excel Programming

I would like my VBA code to run as quickly as possible.
Any suggestions?
Here are a few general tips: Make sure that you declare all your variables. Use
Option Explicit at the top of your modules to force yourself to do this. If you ref-
erence an Excel object more than once, create an object variable for it. Use the
With-End With construct whenever possible. If your macro writes information to a
worksheet, turn off screen updating by using Application.ScreenUpdating =
False. If your application enters data into cells that are referenced by one or more
formulas, set the calculation mode to manual to avoid unnecessary calculations.

I’m working with Windows API functions. Is there a way to get the
Windows “handle” of the Excel window?
Yes, but you’ll need Excel 2002. Access the Hwnd property of the Application
object.

UserForms
I need to get just a few pieces of information, and a UserForm seems
like overkill. Are there any alternatives?
Yes, check out VBA’s MsgBox function and its InputBox function. Alternatively, you
might want to use Excel’s InputBox method.

I have 12 CommandButtons on a UserForm. How can I assign a single
macro to be executed when any of the buttons is clicked?
There is no easy way to do this because each CommandButton has its own Click
event procedure. One solution is to call another procedure from each of the
CommandButton_Click procedures. Another solution is to use a class module to
create a new class. This procedure is described in Chapter 15.

Is there any way to display a chart in a UserForm?
There is no direct way to do this. One solution is to write a macro that saves the
chart to a GIF file and then loads the GIF file into an Image control.

How can I remove the “X” from the title bar of my UserForm? I don’t
want the user to click that button to close the form.
Removing the Close button on a UserForm’s title bar requires some complex API
functions. A simpler approach is to intercept all attempts to close the UserForm by

4799-2 ch30.F 6/11/01 9:49 AM Page 851

852 Part VII ✦ Other Topics

using a UserForm_QueryClose event procedure in the code module for the
UserForm. The following example does not allow the user to close the form by click-
ing the Close button:

Private Sub UserForm_QueryClose _
(Cancel As Integer, CloseMode As Integer)
If CloseMode = vbFormControlMenu Then

MsgBox “You can’t close the form like that.”
Cancel = True

End If
End Sub

I’ve created a UserForm whose controls are linked to cells
on the worksheet with the ControlSource property.
Is this the best way to do this?
In general, you should avoid using links to worksheet cells unless you absolutely
must. Doing so can slow your application down because the worksheet is recalcu-
lated every time a control changes the cell.

Is there any way to create a control array for a UserForm? It’s possible
with Visual Basic 6.0, but I can’t figure out how to do it with Excel VBA.
You can’t create a control array, but you can create an array of Control objects.
The following code creates an array consisting of all CommandButton controls:

Private Sub UserForm_Initialize()
Dim Buttons() As CommandButton
Cnt = 0
For Each Ctl In UserForm1.Controls

If TypeName(Ctl) = “CommandButton” Then
Cnt = Cnt + 1
ReDim Preserve Buttons(1 To Cnt)
Set Buttons(Cnt) = Ctl

End If
Next Ctl

End Sub

Is there any difference between hiding a UserForm
and unloading a UserForm?
Yes, the Hide method keeps the UserForm in memory but makes it invisible. The
Unload statement unloads the UserForm, beginning the “termination” process
(invoking the Terminate event for the UserForm) and removing the UserForm from
memory.

4799-2 ch30.F 6/11/01 9:49 AM Page 852

853Chapter 30 ✦ Frequently Asked Questions about Excel Programming

How can I make my UserForm stay open while I do other things?
By default, each UserForm is modal, which means that it must be dismissed before
you can do anything else. Beginning with Excel 2000, however, you can make a
UserForm modeless by writing vbModeless as the argument for the Show method.
Here’s an example:

UserForm1.Show vbModeless

Excel 97 gives me a compile error when I write UserForm1.Show
vbModeless. How can I make the form modeless in Excel 2002,
while allowing it to remain modal in Excel 97?
Test for the version of Excel that the user is running and then execute a separate
procedure if the version is Excel 2000 or later. The following code demonstrates
how:

Sub ShowUserForm()
If Val(Application.Version) >= 9 Then
ShowModelessForm

Else
UserForm1.Show

End If
End Sub

Sub ShowModelessForm()
Dim frm As Object
Set frm = UserForm1
frm.Show 0 ‘ vbModeless

End Sub

Because the ShowModelessForm procedure is not executed in Excel 97, it will not
cause a compile error.

I need to display a progress indicator like those you see when you’re
installing software while a lengthy process is being executed.
How can I do this?
You can do this with a UserForm. Chapter 15 describes several different techniques,
including one where I gradually stretch a shape inside a frame while the lengthy
process is running.

4799-2 ch30.F 6/11/01 9:49 AM Page 853

854 Part VII ✦ Other Topics

How can I use Excel’s drawing tools to create
simple drawings on my UserForm?
You can’t use the drawing tools directly with a UserForm, but you can do so indi-
rectly. Start by creating the drawing on a worksheet. Then select the drawing and
choose Edit ➪ Copy. Activate your UserForm and insert an Image object. Press F4 to
display the Properties window. Select the Picture property and press Ctrl+V to
paste the clipboard contents to the Image control. You may also need to set the
AutoSize property to True.

How can I generate a list of files and directories into my UserForm so
the user can select a file from the list?
There’s no need to do that. Use VBA’s GetOpenFilename method. This displays a
“file open” dialog box in which the user can select a drive, directory, and file.

I have several 1-2-3 for Windows files and Quattro Pro for Windows
files that contain custom dialog boxes. Is there a utility to convert
these to Excel dialog boxes?
No.

I need to concatenate strings and display them in a ListBox control.
But when I do so, they aren’t aligned properly. How can I get them
to display equal spacing between strings?
You can use a monospaced font such as Courier New for the ListBox. A better
approach, however, is to set up your ListBox to use two columns (see Chapter 14
for details).

Is it possible to display a built-in Excel dialog box from VBA?
Most, but not all, of Excel’s dialog boxes can be displayed by using the
Application.Dialogs method. For example, the following instruction displays the
dialog box that enables you to format numbers in cells:

Application.Dialogs(xlDialogFormatNumber).Show

Use the Object Browser to display a list of the constants for the built-in dialog
boxes. Press F2 from the VBE, select the Excel library, and search for xlDialog.
You’ll probably need to use some trial and error to locate the constant that corre-
sponds to the dialog you want to display.

4799-2 ch30.F 6/11/01 9:49 AM Page 854

855Chapter 30 ✦ Frequently Asked Questions about Excel Programming

I tried the technique described in the preceding question and received
an error message. Why is that?
The Dialogs method will fail if the context isn’t appropriate. For example, if you
attempt to display the Chart Type dialog box (xlDialogChartType) when a chart
is not activated, you’ll get an error message.

Every time I create a UserForm, I go through the steps of adding an OK
button and a Cancel button. Is there a way to get these controls to
appear automatically?
Yes. Set up a UserForm with the controls you use most often. Then select File ➪
Export File to save the UserForm. When you want to add a new form to another pro-
ject, select File ➪ Import File.

Is it possible to create a UserForm without a title bar?
No. The closest you can get is to make the dialog box’s caption blank by setting the
Caption property to an empty string.

I recorded a VBA macro that prints to a file. However, there seems to
be no way to supply the filename in my code. No matter what I try, I
keep getting the prompt to supply a filename.
This common problem was corrected in Excel 2000. In Excel 2000 and later, you can
provide a PrToFileName argument for the PrintOut method. Here’s an example:

ActiveSheet.PrintOut PrintToFile:=True, _
PrToFileName:=”test.prn”

When I click a button on my UserForm, nothing happens.
What am I doing wrong?
Controls added to a UserForm do nothing unless you write event-handler proce-
dures for them. These procedures must be located in the code module for the
UserForm and they must have the correct name.

Can I create a custom dialog box whose size is always the same,
regardless of the video display resolution?
You can, but it’s probably not worth the effort. You can write code to determine the
video resolution and then make use of the Zoom property of a UserForm to change
its size. The normal way to deal with this matter is simply to design your UserForm
for a 640 × 480 display.

4799-2 ch30.F 6/11/01 9:49 AM Page 855

856 Part VII ✦ Other Topics

Is it possible to create a UserForm box that lets the user
select a range in a worksheet by pointing?
Yes. Use the RefEdit control for this. See Chapter 14 for an example.

Is there a way to change the start-up position of a UserForm?
Yes, you can set the UserForm’s Left and Top properties. But for these to be effec-
tive, you need to set the UserForm’s StartUpPosition property to 0.

Can I add an Excel 5/95 dialog sheet to my workbook?
Yes. Right-click any sheet tab in a workbook, and select Insert from the shortcut
menu. In the Insert dialog box, select MS Excel 5.0 Dialog. Be aware that none of the
information in this book applies to Excel 5/95 dialog sheets.

Add-Ins
Where can I get Excel add-ins?
You can get Excel add-ins from a number of places:

✦ Excel includes several add-ins you can use whenever you need them.

✦ You can download more add-ins from Microsoft’s Office Update Web site.

✦ Third-party developers distribute and sell add-ins for special purposes.

✦ Many developers create free add-ins and distribute them via their Internet
sites.

✦ You can create your own add-ins.

How do I install an add-in?
You can load an add-in by selecting either the Tools ➪ Add-Ins command or the
File ➪ Open command. Using Tools ➪ Add-Ins is the preferred method. An add-in
opened with File ➪ Open cannot be closed without using VBA.

When I install my add-in using Excel’s Add-Ins dialog box, it shows up
without a name or description. How can I give my add-in a description?
Before creating the add-in, use the File ➪ Properties command to bring up the
Properties dialog box. Click the Summary tab. In the Title box, enter the text that
you want to appear in the Add-Ins dialog box. In the Comments field, enter the
description for the add-in. Then create the add-in as usual.

4799-2 ch30.F 6/11/01 9:49 AM Page 856

857Chapter 30 ✦ Frequently Asked Questions about Excel Programming

I have several add-ins that I no longer use, yet I can’t figure out how to
remove them from the Add-Ins Available list in the Add-Ins dialog box.
What’s the story?
Oddly, there is no way to remove unwanted add-ins from the list directly from Excel.
You must edit the Windows Registry and remove the references to the add-in files
you don’t want listed. Another way to do this is to move or delete the add-in files.
Then when you attempt to open the add-in from the Add-Ins dialog box, Excel will
ask if you want to remove the add-in from the list.

How do I create an add-in?
Activate any worksheet, and select File ➪ Save As. Then select Microsoft Excel Add-
in (*.xla) from the Save as type drop-down list.

I try to create an add-in, but the Save as type drop-down box doesn’t
provide Add-in as an option.
The most likely reason is that the active sheet is not a worksheet.

Should I convert all my essential workbooks to add-ins?
No! Although you can create an add-in from any workbook, not all workbooks are
suitable. When a workbook is converted to an add-in, it is essentially invisible. For
most workbooks, being invisible isn’t a good thing.

Is it necessary to keep two copies of my workbook,
the XLS version and the XLA version?
With versions prior to Excel 97, maintaining an XLS and an XLA version was neces-
sary. Beginning with Excel 97, however, this is no longer necessary. An add-in can
be converted back to a normal workbook.

How do I modify an add-in after it’s been created?
Activate the VBE (Alt+F11), and set the IsAddIn property of the ThisWorkbook
object to False. Make your changes, set the IsAddIn property to True, and resave
the file.

What’s the difference between an XLS file and an XLA file created from
an XLS file? Is the XLA version compiled? Does it run faster?
There isn’t a great deal of difference between the files, and you generally won’t
notice any speed differences. VBA code is always “compiled” before it is executed.
This is true whether it’s in an XLS file or an XLA file. However, XLA files contain the
actual VBA code, not compiled code.

4799-2 ch30.F 6/11/01 9:49 AM Page 857

858 Part VII ✦ Other Topics

How do I protect the code in my add-in from being viewed by others?
Activate the VBE and select Tools ➪ xxxx Properties (where xxxx is the name of
your project). Click the Protection tab, select Lock project for viewing, and enter a
password.

Are my XLA add-ins safe? In other words, if I distribute an XLA file, can
I be assured that no one else will be able to view my code?
Protect your add-in by locking it with a password. This prevents most users from
being able to access your code. Recent versions of Excel have improved the secu-
rity features, but the password still may be broken by using any of a number of utili-
ties. Bottom line? Don’t think of an XLA as being a secure file.

CommandBars
I have a macro attached to a toolbar button. Is it possible to have the
macro perform a different action if the user presses Shift while the
button is clicked?
Yes, but you have to use a Windows API call to do it. Refer to Chapter 11 for details.

Excel 95 had a handy menu editor, but it’s missing in Excel 97
and later versions. What gives?
Beginning with Excel 97, the toolbars and menus in Excel are entirely different. Both
are called CommandBars. The menu editor is gone, but users can edit
CommandBars by using the Customize dialog box (select Tools ➪ Customize).

Can I edit menus created by Excel 95’s menu editor?
Yes, but you’ll need to do so in Excel 95.

When I change a menu with the Customize dialog box, the menu is
changed permanently. How can I make the menu change apply to only
one workbook?
You’ll need to perform your menu changes with VBA code when the workbook is
opened, and restore the menu to normal when the workbook is closed.

I know you can use the FaceId property to add an image to a toolbar
control. But how do I figure out which FaceId value goes with a
particular image?
Microsoft didn’t provide any way to do this, but several utilities exist that make it
easy to identify the FaceId values. See Chapter 22 for an add-in that you might find
helpful.

4799-2 ch30.F 6/11/01 9:49 AM Page 858

859Chapter 30 ✦ Frequently Asked Questions about Excel Programming

I attached a new version of my toolbar to a workbook, but Excel
continues to use the older version. How do I get it to use the new
version of my toolbar?
When Excel opens a workbook that has an attached toolbar, it displays the toolbar
only if one with the same name does not already exist on the user’s system. The
best solution is to write VBA code to create the toolbar on the fly when the work-
book is opened and to delete it when the workbook is closed. Alternatively, you can
attach the toolbar to the workbook and then write code to delete the toolbar when
the workbook is closed.

I’ve made lots of changes to Excel’s toolbars. How can I restore all of
these toolbars to their original state?
You can use the Customize dialog box and reset each one manually. Or run the fol-
lowing procedure:

Sub ResetAllToolbars()
For Each tb In CommandBars

If tb.Type = msoBarTypeNormal Then
If tb.BuiltIn Then tb.Reset

End If
Next tb

End Sub

Be aware that this procedure will also remove any toolbar customizations per-
formed by add-ins.

How can I set things up so my custom menu is displayed only when a
particular workbook is active?
You need to make use of the WorkbookActivate and WorkbookDeactivate events.
In other words, write procedures in the code module for the ThisWorkbook object
that hide the custom menu when the workbook is deactivated and unhide the cus-
tom menu when the workbook is activated.

How can I add a “spacer” between two buttons on a toolbar?
Set the BeginGroup property of the control after the spacer to True.

How do you display a check mark next to a menu item?
A check mark on a menu item is controlled by the menu item’s State property. The
following instruction, for example, displays a check mark next to the menu item
called My Item:

CommandBars(1).Commands(“MyMenu”). _
Commands(“My Item”).State = msoButtonDown

To uncheck the menu item, set the State property to msoButtonUp.

4799-2 ch30.F 6/11/01 9:49 AM Page 859

860 Part VII ✦ Other Topics

I accidentally deleted some items from the Worksheet menu and can’t
get them back. Restarting Excel doesn’t fix it.
Select Tools ➪ Customize, and select the Toolbars tab in the Customize dialog box.
Select the Worksheet Menu Bar item, and click the Reset button.

How can I disable all the right-click shortcut menus?
The following procedure will do the job:

Sub DisableAllShortcutMenus()
Dim cb As CommandBar
For Each cb In CommandBars

If cb.Type = msoBarTypePopup Then _
cb.Enabled = False

Next cb
End Sub

Is there a way to disable the shortcut menus that appear when the
user clicks the right mouse button?
Yes, the following instruction will do the job:

CommandBars(“Toolbar List”).Enabled = False

I just entered CommandBars(“Toolbar List”).Enabled = False,
and it doesn’t work on my system!
The original version of Excel 97 had a problem with this instruction. It was cor-
rected in the SR-1 service release for Excel 97.

✦ ✦ ✦

4799-2 ch30.F 6/11/01 9:49 AM Page 860

Excel Resources
Online

If I’ve done my job, the information provided in this book
will be useful to you. It is, however, by no means compre-

hensive. In addition, new issues tend to crop up, so you’ll
want to make sure that you’re up to date. Therefore, I’ve com-
piled a list of additional resources that may help you become
more proficient in Excel application development. I’ve classi-
fied these resources into three categories:

✦ Microsoft technical support

✦ Internet newsgroups

✦ Internet Web sites

Microsoft Technical Support
Technical support is the common term for assistance pro-
vided by a software vendor. In this case, I’m talking about
assistance that comes directly from Microsoft. Microsoft’s
technical support is available in several different forms.

Support options
To find out your support options, choose the Help ➪ About
Microsoft Excel command. Then click the Tech Support but-
ton. This opens a help file that lists all the support options
offered by Microsoft, including both free and fee-based
support.

My experience is that you should use vendor standard tele-
phone support only as a last resort. Chances are, you’ll run up
a big phone bill (assuming that you can even get through) and
spend lots of time on hold, but you may or may not find an
answer to your question.

AAA P P E N D I X

✦ ✦ ✦ ✦

4799-2 AppA.F 6/11/01 9:49 AM Page 861

862 Appendixes

The truth is, the people who answer the phone are equipped to answer only the
most basic questions. And the answers to these basic questions are usually readily
available elsewhere.

Microsoft Knowledge Base
Your best bet for solving a problem may be the Microsoft Knowledge Base. This is
the primary Microsoft product information source — an extensive, searchable
database that consists of tens of thousands of detailed articles containing technical
information, bug lists, fix lists, and more.

You have free and unlimited access to the Knowledge Base via the Internet. The
URL is:

http://support.microsoft.com

Microsoft Excel home page
The official home page of Excel is at:

http://www.microsoft.com/office/excel/

Microsoft Office update
For product updates, add-ins, downloads, and other information about Office 2000
(including Excel), try this site:

http://officeupdate.microsoft.com

Internet Newsgroups
Usenet is an Internet service that provides access to several thousand special inter-
est groups that enable you to communicate with people who share common inter-
ests. There are thousands of newsgroups covering virtually every topic you can
think of (and many that you haven’t). Typically, questions posed on a newsgroup

About the URLs Listed Here

As you know, the Internet is a dynamic entity that tends to change rapidly. Web sites are
often reorganized (especially those at the microsoft.com domain). Therefore, a particular
URL listed in this appendix may not be available when you try to access it. Each URL was
accurate at the time of this writing, but it’s possible that a URL may have changed by the
time you read this.

4799-2 AppA.F 6/11/01 9:49 AM Page 862

863Appendix A ✦ Excel Resources Online

are answered within 24 hours — assuming, of course, that the questions are asked
in a manner that makes others want to reply.

Besides an Internet connection, you need special newsreader software to access
newsgroups. Microsoft Outlook Express (free) is a good choice. This product is
available on your Office 2002 CD-ROM. If you don’t have access to newsreader
software (or if your Internet connection doesn’t allow access to the newsgroups),
you can also access the microsoft.public.* newsgroups from this URL:

http://communities.microsoft.com/newsgroups

Spreadsheet newsgroups
The primary Usenet newsgroup for general spreadsheet users is:

comp.apps.spreadsheets

This newsgroup is intended for users of any spreadsheet brand, but about 90 per-
cent of the postings deal with Excel. My advice? Skip this one and head directly for
the Microsoft newsgroups.

Microsoft newsgroups
Microsoft has an extensive list of newsgroups, including quite a few devoted to
Excel. If your Internet service provider doesn’t carry the Microsoft newsgroups,
you can access them directly from Microsoft’s news server. You’ll need to configure
your newsreader software or Web browser to access Microsoft’s news server, which
is at this address:

msnews.microsoft.com

Table A-1 lists the key newsgroups you’ll find on Microsoft’s news server.

Table A-1
Microsoft.com’s Excel-Related Newsgroups

Newsgroup Topic

microsoft.public. Programming Excel with VBA or XLM macros
excel.programming

microsoft.public. Converting 1-2-3 or Quattro Pro sheets into Excel sheets
excel.123quattro

microsoft.public. Worksheet functions
excel.worksheet.functions

Continued

Note

4799-2 AppA.F 6/11/01 9:49 AM Page 863

864 Appendixes

Table A-1 (continued)

Newsgroup Topic

microsoft.public. Building charts with Excel
excel.charting

microsoft.public. Printing with Excel
excel.printing

microsoft.public. Using Microsoft Query and Data Access Objects (DAO)
excel.queryDAO in Excel

microsoft.public. Using the Data Map feature in Excel
excel.datamap

microsoft.public. Help with General Protection Faults or system failures
excel.crashesGPFs

microsoft.public. General topics that do not fit one of the other categories
excel.misc

microsoft.public. Using links in Excel
excel.links

microsoft.public. Excel issues on the Macintosh operating system
excel.macintosh

microsoft.public. OLE, DDE, and other cross-application issues
excel.interopoledde

microsoft.public. Setting up and installing Excel
excel.setup

microsoft.public. Spreadsheet Solutions templates and other XLT files
excel.templates

microsoft.public. Issues regarding the Excel Software Development Kit
excel.sdk

Searching newsgroups
Many people don’t realize that you can perform a keyword search on past news-
group postings. Often, this is an excellent alternative to posting a question to the
newsgroup because you can get the answer immediately. You can search the news-
groups at the following Web address:

http://groups.google.com/

Formerly, newsgroup searches were performed at the Deja.com Web site. That site
has closed down, and the newsgroup archives were purchased by Google.

Note

4799-2 AppA.F 6/11/01 9:49 AM Page 864

865Appendix A ✦ Excel Resources Online

How does searching work? Assume you’re having a problem with the ListBox con-
trol on a UserForm. You can perform a search using the following keywords: Excel,
ListBox, and UserForm. The Google search engine will probably find dozens of
newsgroup postings that deal with these topics. It may take a while to sift through
the messages, but there’s an excellent chance that you’ll find an answer to your
question.

Internet Web Sites
The Web has hundreds of sites that deal with Excel. I list a few of my favorites here.

Tips for Posting to a Newsgroup

1. Make sure that your question has not already been answered. Check the FAQ (if one
exists) and also perform a Google search (see “Searching newsgroups” in this
appendix).

2. Make the subject line descriptive. Postings with a subject line such as “Help me!”
and “Excel Question” are less likely to be answered than postings with a subject
such as “VBA Code to Resize a Chart in Excel 2002.”

3. Specify the spreadsheet product and version that you are using. In many cases, the
answer to your question depends on your version of Excel.

4. Make your question as specific as possible.

5. Keep your question brief and to the point, but provide enough information so it can
be adequately answered.

6. Indicate what you’ve done to try to answer your own question.

7. Post in the appropriate newsgroup, and don’t cross-post to other groups unless the
question applies to multiple groups.

8. Don’t type in all uppercase or all lowercase, and check your grammar and spelling.

9. Don’t include a file attachment.

10. Do not post in HTML format.

11. If you would like an e-mail reply, don’t use an “anti-spam” e-mail address that
requires the responder to modify your address. Why cause extra work for someone
who’s doing you a favor?

4799-2 AppA.F 6/11/01 9:49 AM Page 865

866 Appendixes

The Spreadsheet Page
This is my own Web site. All humility aside, this is one of best sites on the Web for
developer information. It contains files to download, developer tips, instructions
for accessing Excel Easter Eggs, an extensive list of links to other spreadsheet sites,
information about my books, and even spreadsheet jokes. The URL is:

http://j-walk.com/ss

This site also contains a list of errors that I’ve found in each of my books, including
the book you’re reading now. (Yes, a few errors have been known to creep into
these pages.)

Chip Pearson’s Excel pages
Chip is principal of Pearson Software Consulting, and his Web site contains dozens
of useful examples of VBA and clever formula techniques. The URL is:

http://www.cpearson.com

Stephen Bullen’s Excel page
Stephen is an Excel developer based in the United Kingdom, and head of Business
Modeling Solutions Ltd. His Web site contains some fascinating examples of Excel
code, including a section titled “They Said It Couldn’t Be Done.” The URL is:

http://www.bmsltd.co.uk/excel

Spreadsheet FAQ
Many newsgroups have a FAQ — a list of frequently asked questions. The purpose
of FAQs is to prevent the same questions from being asked over and over. The FAQ
for the comp.apps.spreadsheets newsgroup is available at:

http://www.faqs.org./faqs/spreadsheets/faq

CompuServe Forums
CompuServe offers several Excel forums, including a useful forum named Excel
Macros and VBA. You must be a CompuServe member to post to these forums, but
anyone can read them. The URL is as follows:

http://go.compuserve.com/MSOfficeForum

✦ ✦ ✦

Note

4799-2 AppA.F 6/11/01 9:49 AM Page 866

VBA Statements
and Functions
Reference

This appendix contains a complete listing of all VBA state-
ments and built-in functions. For details, consult Excel’s

online help.

There are no new VBA statements in Excel 2002.

Table B-1
Summary of VBA Statements

Statement Action

AppActivate Activates an application window

Beep Sounds a tone using the computer’s speaker

Call Transfers control to another procedure

ChDir Changes the current directory

ChDrive Changes the current drive

Close Closes a text file

Const Declares a constant value

Date Sets the current system date

Declare Declares a reference to an external procedure
in a DLL

DefBool Sets the default data type to Boolean for
variables that begin with specified letters

DefByte Sets the default data type to byte for variables
that begin with a specified letter

Continued

Note

BBA P P E N D I X

✦ ✦ ✦ ✦

4799-2 AppB.F 6/11/01 9:49 AM Page 867

868 Appendixes

Table B-1 (continued)

Statement Action

DefDate Sets the default data type to date for variables that begin with a
specified letter

DefDec Sets the default data type to decimal for variables that begin with a
specified letter

DefDouble Sets the default data type to double for variables that begin with a
specified letter

DefInt Sets the default data type to integer for variables that begin with a
specified letter

DefLng Sets the default data type to long for variables that begin with a
specified letter

DefObj Sets the default data type to object for variables that begin with a
specified letter

DefSng Sets the default data type to single for variables that begin with a
specified letter

DefStr Sets the default data type to string for variables that begin with a
specified letter

DefVar Sets the default data type to variant for variables that begin with a
specified letter

DeleteSetting Deletes a section or key setting from an application’s entry in the
Windows Registry

Dim Declares an array

Do-Loop Loops

End Used by itself, exits the program; End is also used to end a block of
statements that begin with If, With, Sub, Function, Property,
Type, and Select

Enum* Declares a type for enumeration

Erase Reinitializes an array

Error Simulates a specific error condition

Event* Declares a user-defined event

Exit Do Exits a block of Do-Loop code

Exit For Exits a block of Do-For code

Exit Function Exits a Function procedure

Exit Property Exits a property procedure

Exit Sub Exits a subroutine procedure

FileCopy Copies a file

4799-2 AppB.F 6/11/01 9:49 AM Page 868

869Appendix B ✦ VBA Statements and Functions Reference

Statement Action

For Each-Next Loops

For-Next Loops

Function Declares the name and arguments for a Function procedure

Get Reads data from a text file

GoSub...Return Branches

GoTo Branches

If-Then-Else Processes statements conditionally

Implements* Specifies an interface or class that will be implemented in a class
module

Input # Reads data from a sequential text file

Kill Deletes a file from a disk

Let Assigns the value of an expression to a variable or property

Line Input # Reads a line of data from a sequential text file

Load Loads an object but doesn’t show it

Lock...Unlock Controls access to a text file

Lset Left-aligns a string within a string variable

Mid Replaces characters in a string with other characters

MkDir Creates a new directory

Name Renames a file or directory

On Error Branches on an error

On...GoSub Branches on a condition

On...GoTo Branches on a condition

Open Opens a text file

Option Base Changes default lower limit

Option Compare Declares the default comparison mode when comparing strings

Option Explicit Forces declaration of all variables in a module

Option Private Indicates that an entire module is Private

Print # Writes data to a sequential file

Private Declares a local array or variable

Property Get Declares the name and arguments of a Property Get procedure

Property Let Declares the name and arguments of a Property Let procedure

Continued

4799-2 AppB.F 6/11/01 9:49 AM Page 869

870 Appendixes

Table B-1 (continued)

Statement Action

Property Set Declares the name and arguments of a Property Set procedure

Public Declares a public array or variable

Put Writes a variable to a text file

RaiseEvent Fires a user-defined event

Randomize Initializes the random number generator

ReDim Changes the dimensions of an array

Rem Specifies a line of comments (same as an apostrophe [‘])

Reset Closes all open text files

Resume Resumes execution when an error-handling routine finishes

RmDir Removes an empty directory

RSet Right-aligns a string within a string variable

SaveSetting Saves or creates an application entry in the Windows Registry

Seek Sets the position for the next access in a text file

Select Case Processes statements conditionally

SendKeys Sends keystrokes to the active window

Set Assigns an object reference to a variable or property

SetAttr Changes attribute information for a file

Static Changes the dimensions of an array, keeping the data intact

Stop Pauses the program

Sub Declares the name and arguments of a Sub procedure

Time Sets the system time

Type Defines a custom data type

Unload Removes an object from memory

While...Wend Loops

Width # Sets the output line width of a text file

With Sets a series of properties for an object

Write # Writes data to a sequential text file

* Not available in Excel 97 and earlier editions

4799-2 AppB.F 6/11/01 9:49 AM Page 870

871Appendix B ✦ VBA Statements and Functions Reference

Invoking Excel Functions in VBA Instructions
If a VBA function that’s equivalent to one you use in Excel is not available, you can
use Excel’s worksheet functions directly in your VBA code. Just precede the func-
tion with a reference to the WorksheetFunction object. For example, VBA does not
have a function to convert radians to degrees. Because Excel has a worksheet func-
tion for this procedure, you can use a VBA instruction such as the following:

Deg = Application.WorksheetFunction.Degrees(3.14)

The WorksheetFunction object was introduced in Excel 97. For compatibility with
earlier versions of Excel, you can omit the reference to the WorksheetFunction
object and write an instruction such as the following:

Deg = Application.Degrees(3.14)

There are no new VBA functions in Excel 2002.

Table B-2
Summary of VBA Functions

Function Action

Abs Returns the absolute value of a number

Array Returns a variant containing an array

Asc Converts the first character of string to its ASCII value

Atn Returns the arctangent of a number

CallByName* Executes a method, or sets or returns a property of an object

Cbool Converts an expression to a Boolean data type

Cbyte Converts an expression to a byte data type

Ccur Converts an expression to a currency data type

Cdate Converts an expression to a date data type

CDbl Converts an expression to a double data type

Cdec Converts an expression to a decimal data type

Choose Selects and returns a value from a list of arguments

Chr Converts a character code to a string

Cint Converts an expression to an integer data type

CLng Converts an expression to a long data type

Continued

Note

4799-2 AppB.F 6/11/01 9:49 AM Page 871

872 Appendixes

Table B-2 (continued)

Function Action

Cos Returns the cosine of a number

CreateObject Creates an OLE Automation object

CSng Converts an expression to a single data type

CStr Converts an expression to a string data type

CurDir Returns the current path

Cvar Converts an expression to a variant data type

CVDate Converts an expression to a date data type (for compatibility, not
recommended)

CVErr Returns a user-defined error value that corresponds to an error
number

Date Returns the current system date

DateAdd Adds a time interval to a date

DateDiff Returns the time interval between two dates

DatePart Returns a specified part of a date

DateSerial Converts a date to a serial number

DateValue Converts a string to a date

Day Returns the day of the month of a date

DDB Returns the depreciation of an asset

Dir Returns the name of a file or directory that matches a pattern

DoEvents Yields execution so the operating system can process other events

Environ Returns an operating environment string

EOF Returns True if the end of a text file has been reached

Err Returns the error message that corresponds to an error number

Error Returns the error message that corresponds to an error number

Exp Returns the base of the natural logarithms (e) raised to a power

FileAttr Returns the file mode for a text file

FileDateTime Returns the date and time when a file was last modified

FileLen Returns the number of bytes in a file

Filter Returns a subset of a string array, filtered

Fix Returns the integer portion of a number

Format Displays an expression in a particular format

4799-2 AppB.F 6/11/01 9:49 AM Page 872

873Appendix B ✦ VBA Statements and Functions Reference

Function Action

FormatCurrency* Returns an expression formatted with the system currency symbol

FormatDateTime* Returns an expression formatted as a date or time

FormatNumber* Returns an expression formatted as a number

FormatPercent* Returns an expression formatted as a percentage

FreeFile Returns the next available file number when working with text files

FV Returns the future value of an annuity

GetAllSettings Returns a list of settings and values from the Windows Registry

GetAttr Returns a code representing a file attribute

GetObject Retrieves an OLE Automation object from a file

GetSetting Returns a specific setting from the application’s entry in the Windows
Registry

Hex Converts from decimal to hexadecimal

Hour Returns the hour of a time

IIF Evaluates an expression and returns one of two parts

Input Returns characters from a sequential text file

InputBox Displays a box to prompt a user for input

InStr Returns the position of a string within another string

InStrRev* Returns the position of a string within another string, from the end of
the string

Int Returns the integer portion of a number

Ipmt Returns the interest payment for a given period of an annuity

IRR Returns the internal rate of return for a series of cash flows

IsArray Returns True if a variable is an array

IsDate Returns True if a variable is a date

IsEmpty Returns True if a variable has not been initialized

IsError Returns True if an expression is an error value

IsMissing Returns True if an optional argument was not passed to a procedure

IsNull Returns True if an expression contains a Null value

IsNumeric Returns True if an expression can be evaluated as a number

IsObject Returns True if an expression references an OLE Automation object

Join* Combines strings contained in an array

LBound Returns the smallest subscript for a dimension of an array

Continued

4799-2 AppB.F 6/11/01 9:49 AM Page 873

874 Appendixes

Table B-2 (continued)

Function Action

LCase Returns a string converted to lowercase

Left Returns a specified number of characters from the left of a string

Len Returns the number of characters in a string

Loc Returns the current read or write position of a text file

LOF Returns the number of bytes in an open text file

Log Returns the natural logarithm of a number

LTrim Returns a copy of a string with no leading spaces

Mid Returns a specified number of characters from a string

Minute Returns the minute of a time

MIRR Returns the modified internal rate of return for a series of periodic
cash flows

Month Returns the month of a date

MonthName Returns the month, as a string

MsgBox Displays a modal message box

Now Returns the current system date and time

NPer Returns the number of periods for an annuity

NPV Returns the net present value of an investment

Oct Converts from decimal to octal

Partition Returns a string representing a range in which a value falls

Pmt Returns a payment amount for an annuity

Ppmt Returns the principal payment amount for an annuity

PV Returns the present value of an annuity

QBColor Returns an RGB color code

Rate Returns the interest rate per period for an annuity

Replace* Returns a string in which a substring is replaced with another string

RGB Returns a number representing an RGB color value

Right Returns a specified number of characters from the right of a string

Rnd Returns a random number between 0 and 1

Round Returns a rounded number

RTrim Returns a copy of a string with no trailing spaces

4799-2 AppB.F 6/11/01 9:49 AM Page 874

875Appendix B ✦ VBA Statements and Functions Reference

Function Action

Second Returns the seconds portion of a specified time

Seek Returns the current position in a text file

Sgn Returns an integer that indicates the sign of a number

Shell Runs an executable program

Sin Returns the sine of a number

SLN Returns the straight-line depreciation for an asset for a period

Space Returns a string with a specified number of spaces

Spc Positions output when printing to a file

Split* Returns a one-dimensional array containing a number of substrings

Sqr Returns the square root of a number

Str Returns a string representation of a number

StrComp Returns a value indicating the result of a string comparison

StrConv Returns a converted string

String Returns a repeating character or string

StrReverse* Returns a string, reversed

Switch Evaluates a list of Boolean expressions and returns a value associated
with the first True expression

SYD Returns the sum-of-years’ digits depreciation of an asset for a period

Tab Positions output when printing to a file

Tan Returns the tangent of a number

Time Returns the current system time

Timer Returns the number of seconds since midnight

TimeSerial Returns the time for a specified hour, minute, and second

TimeValue Converts a string to a time serial number

Trim Returns a string without leading spaces and/or trailing spaces

TypeName Returns a string that describes the data type of a variable

UBound Returns the largest available subscript for a dimension of an array

UCase Converts a string to uppercase

Val Returns the number formed from any initial numeric characters of a
string

VarType Returns a value indicating the subtype of a variable

Continued

4799-2 AppB.F 6/11/01 9:49 AM Page 875

876 Appendixes

Table B-2 (continued)

Function Action

Weekday Returns a number indicating a day of the week

WeekdayName* Returns a string indicating a day of the week

Weekday Returns a number representing a day of the week

Year Returns the year of a date

* Not available in Excel 97 and earlier editions

✦ ✦ ✦

4799-2 AppB.F 6/11/01 9:49 AM Page 876

VBA Error Codes

This appendix contains a complete listing of the error
codes for all trappable errors. This information is useful

for error trapping. For complete details, consult Excel’s online
help.

Error code Message

3 Return without GoSub.

5 Invalid procedure call or argument.

6 Overflow (for example, value too large for an integer).

7 Out of memory. This error rarely refers to the amount
of physical memory installed on your system. Rather,
it usually refers to a fixed-size area of memory used
by Excel or Windows (for example, the area used for
graphics or custom formats).

9 Subscript out of range. You will also get this error
message if a named item is not found in a collection
of objects; for example, if your code refers to
Sheets(“Sheet2”) and Sheet2 does not exist.

10 This array is fixed or temporarily locked.

11 Division by zero.

13 Type mismatch.

14 Out of string space.

16 Expression too complex.

17 Can’t perform requested operation.

18 User interrupt occurred. This error occurs if the user
interrupts a macro by pressing the Cancel key.

20 Resume without error. This error probably indicates
that you forgot the Exit Sub statement before your
error handler code.

28 Out of stack space.

35 Sub or Function not defined.

Continued

CCA P P E N D I X

✦ ✦ ✦ ✦

4799-2 AppC.F 6/11/01 9:49 AM Page 877

878 Appendixes

Error code Message

47 Too many DLL application clients.

48 Error in loading DLL.

49 Bad DLL calling convention.

51 Internal error.

52 Bad filename or number.

53 File not found.

54 Bad file mode.

55 File already open.

57 Device I/O error.

58 File already exists.

59 Bad record length.

61 Disk full.

62 Input past end of file.

63 Bad record number.

67 Too many files.

68 Device unavailable.

70 Permission denied.

71 Disk not ready.

74 Can’t rename with different drive.

75 Path/File access error.

76 Path not found.

91 Object variable or With block variable not set. This error occurs if you don’t use
Set at the beginning of a statement that creates an object variable. Or, it
occurs if you refer to a worksheet object (such as ActiveCell) when a chart
sheet is active.

92 For loop not initialized.

93 Invalid pattern string.

94 Invalid use of Null.

96 Unable to sink events of object because the object is already firing events to
the maximum number of event receivers that it supports.

97 Cannot call friend function on object which is not an instance of defining
class.

4799-2 AppC.F 6/11/01 9:49 AM Page 878

879Appendix C ✦ VBA Error Codes

Error code Message

98 A property or method call cannot include a reference to a private object,
either as an argument or as a return value.

321 Invalid file format.

322 Can’t create necessary temporary file.

325 Invalid format in resource file.

380 Invalid property value.

381 Invalid property array index.

382 Set not supported at runtime.

383 Set not supported (read-only property).

385 Need property array index.

387 Set not permitted.

393 Get not supported at runtime.

394 Get not supported (write-only property).

422 Property not found.

423 Property or method not found.

424 Object required. This error occurs if text following a dot is not recognized as
an object.

429 ActiveX component can’t create object (may be a registration problem with a
library you have referenced).

430 Class does not support Automation or does not support expected interface.

432 Filename or class name not found during Automation operation.

438 Object doesn’t support this property or method.

440 Automation error.

442 Connection to type library or object library for remote process has been lost.
Press OK for dialog to remove reference.

443 Automation object does not have a default value.

445 Object doesn’t support this action.

446 Object doesn’t support named arguments.

447 Object doesn’t support current locale setting.

448 Named argument not found.

449 Argument not optional.

Continued

4799-2 AppC.F 6/11/01 9:49 AM Page 879

880 Appendixes

Error code Message

450 Wrong number of arguments or invalid property assignment.

451 Property Let procedure not defined and Property Get procedure did
not return an object.

452 Invalid ordinal.

453 Specified DLL function not found.

454 Code resource not found.

455 Code resource lock error.

457 This key is already associated with an element of this collection.

458 Variable uses an Automation type not supported in Visual Basic.

459 Object or class does not support the set of events.

460 Invalid clipboard format.

461 Method or data member not found.

462 The remote server machine does not exist or is unavailable.

463 Class not registered on local machine.

481 Invalid picture.

482 Printer error.

735 Can’t save file to TEMP.

744 Search text not found.

746 Replacements too long.

1004 Application-defined or object-defined error. This is a very common “catch-all”
error message. This error occurs when an error does not correspond to an
error defined by VBA. In other words, the error is defined by Excel (or some
other object) and is propagated back to VBA. This error also occurs if you
generate an error (using the Raise method of the Err object) and the error
is not defined by VBA.

✦ ✦ ✦

4799-2 AppC.F 6/11/01 9:49 AM Page 880

ANSI Code
Reference

This appendix contains the ANSI codes, the character (if
any) they produce, their hex value, binary value, and the

keystroke (if any) that generates the code.

The actual character displayed may depend on the font
in use.

Note

DDA P P E N D I X

✦ ✦ ✦ ✦

4799-2 AppD.F 6/11/01 9:49 AM Page 881

882 Appendixes

ANSI code Character Hex code Binary code Keystroke*

1 <None> &H01 0000 0001 <None>

2 <None> &H02 0000 0010 <None>

3 <None> &H03 0000 0011 <None>

4 <None> &H04 0000 0100 <None>

5 <None> &H05 0000 0101 <None>

6 <None> &H06 0000 0110 <None>

7 <None> &H07 0000 0111 <None>

8 <Backspace> &H08 0000 1000 Backspace

9 <Tab> &H09 0000 1001 Tab

10 <Line feed> &H0A 0000 1010 <None>

11 <None> &H0B 0000 1011 <None>

12 <None> &H0C 0000 1100 <None>

13 <Carriage return> &H0D 0000 1101 Return

14 <None> &H0E 0000 1110 <None>

15 <None> &H0F 0000 1111 <None>

16 <None> &H10 0001 0000 <None>

17 <None> &H11 0001 0001 <None>

18 <None> &H12 0001 0010 <None>

19 <None> &H13 0001 0011 <None>

20 <None> &H14 0001 0100 <None>

21 <None> &H15 0001 0101 <None>

22 <None> &H16 0001 0110 <None>

23 <None> &H17 0001 0111 <None>

24 <None> &H18 0001 1000 <None>

25 <None> &H19 0001 1001 <None>

26 <None> &H1A 0001 1010 <None>

27 <None> &H1B 0001 1011 <None>

28 <None> &H1C 0001 1100 <None>

29 <None> &H1D 0001 1101 <None>

30 <None> &H1E 0001 1110 <None>

4799-2 AppD.F 6/11/01 9:49 AM Page 882

883Appendix D ✦ ANSI Code Reference

ANSI code Character Hex code Binary code Keystroke*

31 <None> &H1F 0001 1111 <None>

32 <Space> &H20 0010 0000 Space

33 ! &H21 0010 0001 !

34 “ &H22 0010 0010 “

35 # &H23 0010 0011 #

36 $ &H24 0010 0100 $

37 % &H25 0010 0101 %

38 & &H26 0010 0110 &

39 ‘ &H27 0010 0111 ‘

40 (&H28 0010 1000 (

41) &H29 0010 1001)

42 * &H2A 0010 1010 *

43 + &H2B 0010 1011 +

44 , &H2C 0010 1100 ,

45 - &H2D 0010 1101 -

46 . &H2E 0010 1110 .

47 / &H2F 0010 1111 /

48 0 &H30 0011 0000 0

49 1 &H31 0011 0001 1

50 2 &H32 0011 0010 2

51 3 &H33 0011 0011 3

52 4 &H34 0011 0100 4

53 5 &H35 0011 0101 5

54 6 &H36 0011 0110 6

55 7 &H37 0011 0111 7

56 8 &H38 0011 1000 8

57 9 &H39 0011 1001 9

58 : &H3A 0011 1010 :

59 ; &H3B 0011 1011 ;

60 < &H3C 0011 1100 <

61 = &H3D 0011 1101 =

Continued

4799-2 AppD.F 6/11/01 9:49 AM Page 883

884 Appendixes

ANSI code Character Hex code Binary code Keystroke*

62 > &H3E 0011 1110 >

63 ? &H3F 0011 1111 ?

64 @ &H40 0100 0000 @

65 A &H41 0100 0001 A

66 B &H42 0100 0010 B

67 C &H43 0100 0011 C

68 D &H44 0100 0100 D

69 E &H45 0100 0101 E

70 F &H46 0100 0110 F

71 G &H47 0100 0111 G

72 H &H48 0100 1000 H

73 I &H49 0100 1001 I

74 J &H4A 0100 1010 J

75 K &H4B 0100 1011 K

76 L &H4C 0100 1100 L

77 M &H4D 0100 1101 M

78 N &H4E 0100 1110 N

79 O &H4F 0100 1111 O

80 P &H50 0101 0000 P

81 Q &H51 0101 0001 Q

82 R &H52 0101 0010 R

83 S &H53 0101 0011 S

84 T &H54 0101 0100 T

85 U &H55 0101 0101 U

86 V &H56 0101 0110 V

87 W &H57 0101 0111 W

88 X &H58 0101 1000 X

89 Y &H59 0101 1001 Y

90 Z &H5A 0101 1010 Z

91 [&H5B 0101 1011 [

4799-2 AppD.F 6/11/01 9:49 AM Page 884

885Appendix D ✦ ANSI Code Reference

ANSI code Character Hex code Binary code Keystroke*

92 \ &H5C 0101 1100 \

93] &H5D 0101 1101]

94 ^ &H5E 0101 1110 ^

95 _ &H5F 0101 1111 _

96 ` &H60 0110 0000 `

97 a &H61 0110 0001 a

98 b &H62 0110 0010 b

99 c &H63 0110 0011 c

100 d &H64 0110 0100 d

101 e &H65 0110 0101 e

102 f &H66 0110 0110 f

103 g &H67 0110 0111 g

104 h &H68 0110 1000 h

105 i &H69 0110 1001 i

106 j &H6A 0110 1010 j

107 k &H6B 0110 1011 k

108 l &H6C 0110 1100 l

109 m &H6D 0110 1101 m

110 n &H6E 0110 1110 n

111 o &H6F 0110 1111 o

112 p &H70 0111 0000 p

113 q &H71 0111 0001 q

114 r &H72 0111 0010 r

115 s &H73 0111 0011 s

116 t &H74 0111 0100 t

117 u &H75 0111 0101 u

118 v &H76 0111 0110 v

119 w &H77 0111 0111 w

120 x &H78 0111 1000 x

121 y &H79 0111 1001 y

122 z &H7A 0111 1010 z

Continued

4799-2 AppD.F 6/11/01 9:49 AM Page 885

886 Appendixes

ANSI code Character Hex code Binary code Keystroke*

123 { &H7B 0111 1011 {

124 | &H7C 0111 1100 |

125 } &H7D 0111 1101 }

126 ~ &H7E 0111 1110 ~

127 _ &H7F 0111 1111 Del

128 &H80 1000 0000 Alt+0128

129 _ &H81 1000 0001 Alt+0129

130 ‚ &H82 1000 0010 Alt+0130

131 ƒ &H83 1000 0011 Alt+0131

132 „ &H84 1000 0100 Alt+0132

133 ... &H85 1000 0101 Alt+0133

134 † &H86 1000 0110 Alt+0134

135 ‡ &H87 1000 0111 Alt+0135

136 ˆ &H88 1000 1000 Alt+0136

137 ‰ &H89 1000 1001 Alt+0137

138 _ &H8A 1000 1010 Alt+0138

139 ‹ &H8B 1000 1011 Alt+0139

140 Œ &H8C 1000 1100 Alt+0140

141 _ &H8D 1000 1101 Alt+0141

142 _ &H8E 1000 1110 Alt+0142

143 _ &H8F 1000 1111 Alt+0143

144 _ &H90 1001 0000 Alt+0144

145 ‘ &H91 1001 0001 Alt+0145

146 ‘ &H92 1001 0010 Alt+0146

147 “ &H93 1001 0011 Alt+0147

148 “ &H94 1001 0100 Alt+0148

149 • &H95 1001 0101 Alt+0149

150 – &H96 1001 0110 Alt+0150

151 — &H97 1001 0111 Alt+0151

152 ˜ &H98 1001 1000 Alt+0152

4799-2 AppD.F 6/11/01 9:49 AM Page 886

887Appendix D ✦ ANSI Code Reference

ANSI code Character Hex code Binary code Keystroke*

153 (tm) &H99 1001 1001 Alt+0153

154 _ &H9A 1001 1010 Alt+0154

155 › &H9B 1001 1011 Alt+0155

156 œ &H9C 1001 1100 Alt+0156

157 _ &H9D 1001 1101 Alt+0157

158 _ &H9E 1001 1110 Alt+0158

159 Ÿ &H9F 1001 1111 Alt+0159

160 <None> &HA0 1010 0000 Alt+0160

161 ¡ &HA1 1010 0001 Alt+0161

162 ¢ &HA2 1010 0010 Alt+0162

163 £ &HA3 1010 0011 Alt+0163

164 &HA4 1010 0100 Alt+0164

165 ¥ &HA5 1010 0101 Alt+0165

166 _ &HA6 1010 0110 Alt+0166

167 § &HA7 1010 0111 Alt+0167

168 ¨ &HA8 1010 1000 Alt+0168

169 (c) &HA9 1010 1001 Alt+0169

170 ª &HAA 1010 1010 Alt+0170

171 « &HAB 1010 1011 Alt+0171

172 ¬ &HAC 1010 1100 Alt+0172

173 _ &HAD 1010 1101 Alt+0173

174 (r) &HAE 1010 1110 Alt+0174

175 ¯ &HAF 1010 1111 Alt+0175

176 ° &HB0 1011 0000 Alt+0176

177 ± &HB1 1011 0001 Alt+0177

178 _ &HB2 1011 0010 Alt+0178

179 _ &HB3 1011 0011 Alt+0179

180 ´ &HB4 1011 0100 Alt+0180

181 > &HB5 1011 0101 Alt+0181

182 ¶ &HB6 1011 0110 Alt+0182

183 · &HB7 1011 0111 Alt+0183

Continued

4799-2 AppD.F 6/11/01 9:49 AM Page 887

888 Appendixes

ANSI code Character Hex code Binary code Keystroke*

184 ¸ &HB8 1011 1000 Alt+0184

185 _ &HB9 1011 1001 Alt+0185

186 º &HBA 1011 1010 Alt+0186

187 » &HBB 1011 1011 Alt+0187

188 1/4 &HBC 1011 1100 Alt+0188

189 1/2 &HBD 1011 1101 Alt+0189

190 3/4 &HBE 1011 1110 Alt+0190

191 ¿ &HBF 1011 1111 Alt+0191

192 À &HC0 1100 0000 Alt+0192

193 Á &HC1 1100 0001 Alt+0193

194 Â &HC2 1100 0010 Alt+0194

195 Ã &HC3 1100 0011 Alt+0195

196 Ä &HC4 1100 0100 Alt+0196

197 Å &HC5 1100 0101 Alt+0197

198 Æ &HC6 1100 0110 Alt+0198

199 Ç &HC7 1100 0111 Alt+0199

200 È &HC8 1100 1000 Alt+0200

201 É &HC9 1100 1001 Alt+0201

202 Ê &HCA 1100 1010 Alt+0202

203 Ë &HCB 1100 1011 Alt+0203

204 Ì &HCC 1100 1100 Alt+0204

205 Í &HCD 1100 1101 Alt+0205

206 Î &HCE 1100 1110 Alt+0206

207 Ï &HCF 1100 1111 Alt+0207

208 _ &HD0 1101 0000 Alt+0208

209 Ñ &HD1 1101 0001 Alt+0209

210 Ò &HD2 1101 0010 Alt+0210

211 Ó &HD3 1101 0011 Alt+0211

212 Ô &HD4 1101 0100 Alt+0212

213 Õ &HD5 1101 0101 Alt+0213

4799-2 AppD.F 6/11/01 9:49 AM Page 888

889Appendix D ✦ ANSI Code Reference

ANSI code Character Hex code Binary code Keystroke*

214 Ö &HD6 1101 0110 Alt+0214

215 _ &HD7 1101 0111 Alt+0215

216 Ø &HD8 1101 1000 Alt+0216

217 Ù &HD9 1101 1001 Alt+0217

218 Ú &HDA 1101 1010 Alt+0218

219 Û &HDB 1101 1011 Alt+0219

220 Ü &HDC 1101 1100 Alt+0220

221 _ &HDD 1101 1101 Alt+0221

222 _ &HDE 1101 1110 Alt+0222

223 ß &HDF 1101 1111 Alt+0223

224 à &HE0 1110 0000 Alt+0224

225 á &HE1 1110 0001 Alt+0225

226 â &HE2 1110 0010 Alt+0226

227 ã &HE3 1110 0011 Alt+0227

228 ä &HE4 1110 0100 Alt+0228

229 å &HE5 1110 0101 Alt+0229

230 æ &HE6 1110 0110 Alt+0230

231 ç &HE7 1110 0111 Alt+0231

232 è &HE8 1110 1000 Alt+0232

233 é &HE9 1110 1001 Alt+0233

234 ê &HEA 1110 1010 Alt+0234

235 ë &HEB 1110 1011 Alt+0235

236 ì &HEC 1110 1100 Alt+0236

237 í &HED 1110 1101 Alt+0237

238 î &HEE 1110 1110 Alt+0238

239 ï &HEF 1110 1111 Alt+0239

240 _ &HF0 1111 0000 Alt+0240

241 ñ &HF1 1111 0001 Alt+0241

242 ò &HF2 1111 0010 Alt+0242

243 ó &HF3 1111 0011 Alt+0243

244 ô &HF4 1111 0100 Alt+0244

Continued

4799-2 AppD.F 6/11/01 9:49 AM Page 889

890 Appendixes

ANSI code Character Hex code Binary code Keystroke*

245 õ &HF5 1111 0101 Alt+0245

246 ö &HF6 1111 0110 Alt+0246

247 ÷ &HF7 1111 0111 Alt+0247

248 ø &HF8 1111 1000 Alt+0248

249 ù &HF9 1111 1001 Alt+0249

250 ú &HFA 1111 1010 Alt+0250

251 û &HFB 1111 1011 Alt+0251

252 ü &HFC 1111 1100 Alt+0252

253 _ &HFD 1111 1101 Alt+0253

254 _ &HFE 1111 1110 Alt+0254

255 ÿ &HFF 1111 1111 Alt+0255

*For keystrokes that use the Alt key, use the numeric keypad with Num Lock on.

✦ ✦ ✦

4799-2 AppD.F 6/11/01 9:49 AM Page 890

What’s on the
CD-ROM

This appendix describes the contents of the companion
CD-ROM.

CD-ROM Overview
The CD-ROM consists of five components:

✦ Chapter Examples. Excel workbooks that I discuss in
this book.

✦ Power Utility Pak. The trial version of my popular Excel
add-in. Use the coupon in this book to order the full ver-
sion free. The complete VBA source code is also avail-
able for a small fee.

✦ Sound-Proof 2000. The demo version of my audio proof-
reader add-in.

✦ Complete, searchable version of the book in PDF format
(use Acrobat Reader to access these files).

✦ The latest version of Acrobat Reader from Adobe.

Chapter Examples
Each chapter of this book that contains example workbooks
has its own subdirectory on the CD-ROM. For example, the
example files for Chapter 3 are found in the following
directory:

chapters\chap03\

Following is a list of the chapter examples, with a brief
description of each.

EEA P P E N D I X

✦ ✦ ✦ ✦

4799-2 AppE.F 6/11/01 9:49 AM Page 891

892 Appendixes

Chapter 3
array examples.xls Examples of array formulas.

megaformula-1.xls The “remove middle name” formula example that
uses intermediate formulas.

megaformula-2.xls The “remove middle name” formula example that
uses a megaformula.

megaformula-3.xls The “remove middle name” formula example that
uses a custom VBA function.

named formula.xls Examples that use named formulas.

Chapter 7
comment objects.xls Examples of VBA code that manipulates Comment

objects.

Chapter 9
sheet sorter.xls The sheet-sorting application.

sheet sorter-2.xls The sheet-sorting application, improved so that it
better handles sheet names that end in numbers.

Chapter 10
commission.xls Contains various versions of the Commission func-

tion used to calculate a sales commission.

draw.xls Contains the Draw function, which randomly chooses
one cell from a range.

key press.xls Demonstrates how to use an API function to deter-
mine whether the Shift, Ctrl, or Alt key is pressed.

month names.xls Demonstrates the MonthNames function, which
returns an array.

mysum.xls Demonstrates the MySum function, which emulates
Excel’s SUM function.

reverse.xls Demonstrates the Reverse function, which returns
an error value if its argument is not a string.

uppercase.xls Contains the UpCase function that emulates Excel’s
UPPER function.

4799-2 AppE.F 6/11/01 9:49 AM Page 892

893Appendix E ✦ What’s on the CD-ROM

winapi.txt Contains Windows API declarations and constants.

windows directory.xls Demonstrates the ShowWindowsDir function, which
uses an API function to display the Windows direc-
tory name.

Chapter 11
about selection.xls Contains a procedure that describes the current

range selection.

auto average.xls Demonstrates how to insert an AVERAGE function in a
manner similar to Excel’s AutoSum feature. When this
workbook is open, you have access to a new menu
command: Tools ➪ Enter Average Formula.

batch processing xls Demonstrates how to process a series of files. The
example uses three additional files: text01.txt,
text02.txt, and text03.txt.

data type.xls Uses the CellType function to determine the type of
data in a cell.

date and time.xls Contains a procedure that displays the current date
and time.

delete empty rows.xls Contains a procedure that deletes all empty rows in a
worksheet.

disk info.xls Demonstrates various API functions that return infor-
mation about disk drives.

extract element.xls Demonstrates the ExtractElement function.

file association.xls Demonstrates an API function that returns the full path
to the application associated with a particular file.

fill range.xls Contains two procedures that demonstrate how to fill
a range with data from an array.

in range.xls Contains a function that returns True if a range is
contained inside another range.

input.xls Contains examples of using VBA’s InputBox function
to prompt for a value.

last saved and Contains the LastSaved and LastPrinted functions,
printed.xls which access a workbook’s built-in document

properties.

list fonts.xls Creates a list of all installed fonts.

max all sheets.xls Contains the function, which returns the maximum
value across all worksheets MaxAllSheets in a
workbook.

4799-2 AppE.F 6/11/01 9:49 AM Page 893

894 Appendixes

next empty row.xls Demonstrates how to insert data into the next empty
row of a worksheet.

page count.xls Contains a procedure that counts the number of
pages to be printed.

play sound.xls Contains the Alarm function, which plays a sound
when a cell meets a certain condition. Uses the
sound.wav file.

printer info.xls Demonstrates an API function that returns informa-
tion about the default printer.

random functions.xls Contains the RandomIntegers function (which
returns an array of nonduplicated random integers)
and the RangeRandomize function (which random-
izes a range).

range selections.xls Demonstrates several common types of range selec-
tions relative to the active cell. After opening this file,
use the Selection Demo menu.

registry.xls Demonstrates API functions that enable you to read
from and write to the Windows Registry.

select max.xls Contains a procedure that selects the cell that con-
tains the maximum value.

selective color.xls Contains a procedure that colors cells based on their
contents.

sheet offset.xls Demonstrates two versions of the SheetOffset
function.

sorting demo.xls Demonstrates three VBA array-sorting procedures.

sound.xls Demonstrates API functions that play sound files.

stat functions.xls Demonstrates the StatFunction function.

toggles.xls Contains procedures that toggle various settings.

utility functions.xls Contains the following functions: FileExists,
FileNameOnly, PathExists, RangeNameExists,
SheetExists, and WorkbookIsOpen.

variant transfer.xls Demonstrates how to transfer a range of cells to a
variant array and transfer a variant array to a range
of cells.

video mode.xls Demonstrates an API function that returns the cur-
rent video resolution.

4799-2 AppE.F 6/11/01 9:49 AM Page 894

895Appendix E ✦ What’s on the CD-ROM

worksheet Contains the following worksheet functions:
functions.xls SheetName, WorkbookName, AppName,

CountBetween, LastInColumn, LastInRow, and
IsLike.

write and read Contains procedures that write data to a range and
range.xls read data from a range.

Chapter 12
get a filename.xls Demonstrates how to use the GetOpenFilename

method.

get directory.xls Demonstrates API functions that display a dialog box
that enables the user to select a directory.

Chapter 13
controls on sheet.xls An example of using controls (from the Control

Toolbox toolbar) on a worksheet.

controls on sheet2.xls Another example that demonstrates using controls
on worksheets.

get name and sex.xls The end result of the hands-on example described in
Chapter 13.

newcontrols.pag Contains customized controls for your Toolbox. To
import this file as a new page, right-click a Toolbox
tab and select Import Page.

spinbutton events.xls Demonstrates the sequence of events pertaining to
SpinButton controls.

spinbutton textbox.xls Demonstrates how to pair a SpinButton control with
a TextBox control.

userform events.xls Demonstrates the sequence of events pertaining to
UserForms.

Chapter 14
activate sheet.xls Demonstrates how to display a list of sheet names in

a ListBox control.

change size.xls Demonstrates a UserForm that changes sizes.

fill listbox.xls Demonstrates two ways to add items to a ListBox
control.

4799-2 AppE.F 6/11/01 9:49 AM Page 895

896 Appendixes

item transfer.xls Demonstrates how to let the user transfer items
between two ListBox controls.

move items.xls Demonstrates how to enable the user to move items
up and down within a ListBox control.

multicolumn Demonstrates how to create a multicolumn ListBox
listbox.xls control using data stored in a worksheet.

multicolumn Demonstrates how to create a multicolumn ListBox
listbox2.xls control using data stored in an array.

multiple lists.xls Demonstrates how to display multiple lists in a single
ListBox control.

queryclose.xls Demonstrates a technique that ensures that the user
can’t close a UserForm by clicking its Close button.

refedit.xls Demonstrates the RefEdit control.

select rows.xls Demonstrates how to use a multicolumn ListBox con-
trol to enable the user to select rows in a worksheet.

selected items.xls Demonstrates how to identify selected items in a
ListBox control.

splash.xls Demonstrates a splash screen that is displayed when
the workbook is opened.

unique.xls Demonstrates how to fill a ListBox control with
unique items.

userform menus.xls Demonstrates two simple menu systems using
CommandButton controls and a ListBox control.

zoom and scroll Demonstrates how to use dialog box controls to
sheets.xls zoom and scroll a worksheet.

zoom.xls Demonstrates the use of the Zoom property to zoom
a dialog box.

Chapter 15
chart in userform.xls Demonstrates how to display a chart on a UserForm.

color picker.xls Demonstrates a function that enables the user to
select a color from a dialog box.

dataform.xla An add-in that serves as a replacement for Excel’s
Data Form. This add-in is protected.

modeless userform.xls Demonstrates a modeless UserForm that displays
information about the active cell.

modeless user Demonstrates a more sophisticated modeless
form2.xls UserForm that displays information about the active

cell.

4799-2 AppE.F 6/11/01 9:49 AM Page 896

897Appendix E ✦ What’s on the CD-ROM

multiple buttons.xls Demonstrates how to use a single event-handler pro-
cedure for multiple controls.

my msgbox.xls Contains the MyMsgBox function, which emulates
VBA’s MsgBox function.

owc chart - simple.xls Creates a chart in a Userform, using the Office Web
Components.

owc chart 2000.xls Creates a chart in a Userform, using the Office Web
Components. This version is for Excel 2000.

owc chart 2002.xls Creates a chart in a Userform, using the Office Web
Components. This version is for Excel 2002.

owc spreadsheet.xls Demonstrates the Office Web Components
Spreadsheet control.

progress-1.xls Demonstrates how to display a progress indicator
while a macro is running. (The progress indicator is
not initiated by a UserForm.)

progress-2.xls Demonstrates another way to display a progress indi-
cator while a macro is running. (The progress indica-
tor is initiated by a UserForm.)

wizard.xls Demonstrates how to create a multistep “wizard.”

Chapter 16
text tools.xls The text manipulation utility described in Chapter 15

(workbook version).

undo.xls Demonstrates one way to undo the effects of a VBA
procedure.

Chapter 17
budget.xls Demonstrates how to create a pivot table from a

worksheet database with VBA.

external db.xls Demonstrates how to create a pivot table from an
external database table with VBA. This workbook
uses the budget.mdb database file.

modify pivot.xls Demonstrates how to write VBA code to modify a
pivot table.

simple db.xls A very simple worksheet database, used to demon-
strate how to create a pivot table. Contains a recorded
macro, plus a “cleaned up” version of the macro.

survey data.xls Demonstrates how to create multiple pivot tables to
analyze survey data.

4799-2 AppE.F 6/11/01 9:49 AM Page 897

898 Appendixes

Chapter 18
animated chart.xls Animated chart example.

autofilter chart.xls Demonstrates the use of AutoFiltering with a chart.

chart active cell.xls Demonstrates how to change a chart’s data series
based on the active cell.

chart image map.xls Demonstrates how to create a chart that serves as a
type of image map.

chart in userform.xls Demonstrates how to create a chart on the fly and
display it in a UserForm.

chartseriesclass-1.xls An example of using the ChartSeriesClass class
module.

chartseriesclass-2.xls More examples of using the ChartSeriesClass class
module.

clock chart.xls An example of a chart formatted to look like an ana-
log clock.

combobox chart.xls Demonstrates how to use a ComboBox control to
change a chart’s data series.

create chart.xls Contains a recorded macro to create a chart, plus a
“cleaned up” version of the macro.

data labels.xls Demonstrates how to use a range for data labels in a
chart.

events - chart sheet.xls Demonstrates chart events, with a chart sheet.

events - embedded.xls Demonstrates chart events, with an embedded chart.

get chart range.xls Contains a custom function that returns a Range
object that represents the data used in a chart.

hypocycloid.xls Contains a chart that plots hypocycloid curves.

linked pictures.xls Demonstrates how to use a linked picture of a range
in a chart.

multiple charts.xls Demonstrates how to display multiple charts on a
single chart sheet.

printed embedded Demonstrates how to print embedded charts on a full
charts.xls sheet of paper.

xy sketch.xls A chart that doubles as a primitive sketching tool.

4799-2 AppE.F 6/11/01 9:49 AM Page 898

899Appendix E ✦ What’s on the CD-ROM

Chapter 19
application Demonstrates how to monitor Application-level
events 2k.xls events. Uses a modeless UserForm, so it requires

Excel 2000 or later version.

application Demonstrates how to monitor Application-level
events 97.xls events. Works in Excel 97 or later version.

log workbook open.xls Demonstrates how to keep track of every workbook
that is opened by storing information in a text file.

onkey demo.xls Demonstrates the use of the OnKey method to remap
keyboard keys.

selection change.xls Demonstrates monitoring the worksheet selection
change event to highlight the active row and column.

track changes in Demonstrates a procedure that uses comments to
comment.xls track changes made to cells.

validate entry1.xls Demonstrates how to validate data entered into a
cell; uses the EnableEvents property.

validate entry2.xls Demonstrates how to validate data entered into a
cell; does not use the EnableEvents property.

Chapter 20
automate Excel.doc A Microsoft Word file that contains a procedure to

automates Excel. It uses the projectsion.xls work-
book file.

make memos.xls Demonstrates Automation of Microsoft Word to gen-
erate memos using data stored in a worksheet.

phone dialer.xls Demonstrates how to use SendKeys to control the
Windows Phone Dialer application.

simple ado example.xls Demonstrates how to retrieve data from a Microsoft
Access file (uses budget.mdb).

start calculator.xls Demonstrates how to execute (or activate) the
Windows Calculator program.

start charmap.xls Demonstrates two ways to execute the Windows
Character Map program.

system dialogs.xls Demonstrates how to display any of 50 system dialog
boxes.

4799-2 AppE.F 6/11/01 9:49 AM Page 899

900 Appendixes

Chapter 21
is addin installed.xls Contains code that determines whether an add-in is

properly installed.

text tools.xla The text manipulation utility described in Chapter 16.

Chapter 22
autosense.xls Contains a procedure that creates an “autosense”

toolbar that is displayed only when the active cell is
in a particular range.

commandbarbuttons.xls Shows the various ways that a CommandBarButton
can be displayed.

dynamic caption.xls Creates a toolbar button that displays the number
format string for the active cell.

faceids.xla Is an add-in that makes it very easy to determine the
FaceId property setting for a particular image. This
add-in uses additional files and is contained in a sep-
arate \faceids subdirectory.

hide and restore.xls Contains procedures that hide and then later restore
toolbars.

list all controls.xls Contains a procedure that displays the Caption
property for each control on every toolbar.

list commandbars.xls Contains a procedure that lists each CommandBar’s
name, index number, and type.

month list.xls Demonstrates the use of a drop-down list control on
a CommandBar.

toggle toolbars.xls Contains a procedure that toggles the Visible prop-
erty of each CommandBar.

Chapter 23
add new menu.xls Contains a procedure that adds a new menu with

menu items.

add to Tools menu.xls Contains a procedure that adds a new menu item to
the Tools menu on the Worksheet Menu Bar.

hide menu.xls Demonstrates how to display a menu only when a
particular workbook is active.

list menu info.xls Contains a procedure that displays the caption for
each item (menu, menu item, and submenu item) on
the Worksheet Menu Bar.

4799-2 AppE.F 6/11/01 9:49 AM Page 900

901Appendix E ✦ What’s on the CD-ROM

list shortcut menus.xls Contains a procedure that lists all shortcut menus.

menu maker1.xls Demonstrates an easy way to create a menu with
information contained in a worksheet.

menu maker2.xls Demonstrates an easy way to create a menu with
information contained in a worksheet (another
example).

new menubar.xls Demonstrates how to replace Excel’s menu bar with
one of your own.

new shortcut menu.xls Contains a procedure that creates a new shortcut menu.

shortcut key.xls Contains a procedure that adds new menu items with
a shortcut key.

toggle gridlines.xls Demonstrates how to display a “toggle” menu with a
check mark.

Chapter 24
\assistant\ Demonstrates how to display help by using the Office
formletter.xls Assistant.

\comments\ Demonstrates how to display help by using cell
formletter.xls comments.

\function\myfuncs.xls Demonstrates how to display help for custom
functions.

\htmlhelp\ Demonstrates a simple HTML Help system (includes
formletter.xls the source files).

\other\myapp.xls Demonstrates other ways to display help: with the Help
method, from a message box, and from an input box.

\textbox\formletter.xls Demonstrates how to display help by using a
TextBox control on a worksheet.

\userform1\ Demonstrates how to display help by using Label
formletter.xls controls in a UserForm.

\userform2\ Demonstrates how to display help by using a
formletter.xls “scrolling” Label control in a UserForm.

\userform3\ Demonstrates how to display help by using a
formletter.xls DropDown control and a Label control in a UserForm.

\winhelp\ Demonstrates a simple WinHelp Help system
formletter.xls (includes the source files).

\worksheet\ Demonstrates how to display help by activating a
formletter.xls worksheet.

4799-2 AppE.F 6/11/01 9:49 AM Page 901

902 Appendixes

Some of the examples in Chapter 24 use multiple files, and many use the same file-
name. Therefore, each example is contained in a separate subdirectory.

Chapter 25
loan amortization wizard.xla An add-in “wizard” that creates an amortization

schedule for a fixed-rate loan. This add-in is not
protected. When the add-in is installed, access
the wizard from the Tools menu.

Chapter 26
multilingual wizard.xls A simple wizard that lets the user choose from

three languages.

video mode.xls Demonstrates how to use an API function that
works with both 16-bit and 32-bit versions of
Excel.

Chapter 27
does file exist.xls Contains code to check for the existence of a

file, using three different techniques.

export import.xls Contains procedures to export a range to a CSV
file and to import a CSV file at the active cell
position.

export to HTML.xls Contains to code to export a range of cells to
an HTML file.

filter text file.xls Contains a procedure that reads a text file
(infile.txt) and copies only the rows that con-
tain a specific text string to a second text file
(output.txt).

import more than 256.xls Contains a procedure that reads a text file and
stores the data in Sheet1. If the line contains
more than 256 columns of data, the additional
data is stored in additional sheets. Uses long-
file.txt, which has 600 columns of data.

list files1.xls Contains a procedure that displays a list of files
contained in a particular directory, along with
the file size and date.

4799-2 AppE.F 6/11/01 9:49 AM Page 902

903Appendix E ✦ What’s on the CD-ROM

list files2.xls Contains a procedure that displays a list of files
contained in a particular directory, along with
the file size and date; uses the FileSearch
object.

show drive info.xls Contains a procedure that uses the
FileSystemObject to retrieve and display var-
ious information about all disk drives.

Chapter 28
add 100 buttons.xls Contains a procedure that adds 100

CommandButtons and that creates an event-
handler procedure for each.

add button and code.xls Contains a procedure that adds a
CommandButton and a VBA procedure.

add controls.xls Demonstrates how to add controls to a
UserForm at design time and at runtime.

add userform.xls Contains a procedure that creates a UserForm
on the fly.

options form.xls Contains a function that creates a UserForm
(with OptionButtons) on the fly and that
returns an integer corresponding to the user’s
choice.

replace module.xls Contains a procedure that replaces a module
with another module. This example uses the
UserBook.xls file.

show components.xls Contains a procedure that displays informa-
tion about each VB component in the active
workbook.

Chapter 29
csvclass.xls Contains a class module that makes it easy to

import and export a CSV file.

keyboard.xls Contains a class module that defines a
NumLock and a CapsLock class.

4799-2 AppE.F 6/11/01 9:49 AM Page 903

904 Appendixes

Power Utility Pak
Power Utility Pak is a collection of Excel add-ins that I developed. The companion
CD-ROM contains a copy of the trial version of this product. The trial version can
be used for 30 days.

Registering Power Utility Pak
The normal registration fee for Power Utility Pak is $39.95. You can use the coupon
in this book, however, to get a free copy of the latest version of Power Utility Pak
(you pay shipping and handling only). In addition, you can purchase the complete
VBA source code for only $20.00.

Installing the trial version
To install the trial version of Power Utility Pak, follow these steps:

1. Make sure that Excel is not running.

2. Locate the PUP2000T.EXE file on the CD-ROM. This file is located in the PUP\
directory.

3. Double-click PUP2000T.EXE. This expands the files to a directory that you
specify on your hard drive.

4. Start Excel.

5. Select Tools ➪ Add-Ins and click the Browse button. Locate the PUP2000.XLA
file in the directory you specified in Step 3.

6. Make sure that Power Utility Pak 2000 is checked in the add-ins list.

7. Click OK to close the Add-Ins dialog box.

After you install Power Utility Pak, it will be available whenever you start Excel, and
Excel will have a new menu: PUP 2000. Access the Power Utility Pak features from
the PUP 2000 menu or select the Create a PUP toolbar command to generate a
toolbar.

Power Utility Pak includes extensive online help. Select PUP 2000 ➪ Help to view the
Help file.

Uninstalling Power Utility Pak
If you decide that you don’t want Power Utility Pak, follow these instructions to
remove it from Excel’s list of add-ins:

1. In Excel, select Tools ➪ Add-Ins.

4799-2 AppE.F 6/11/01 9:49 AM Page 904

905Appendix E ✦ What’s on the CD-ROM

2. In the Add-Ins dialog box, remove the check mark from Power Utility Pak 2000.

3. Click OK to close the Add-Ins dialog box.

To remove Power Utility Pak from your system after you’ve followed the preceding
steps to uninstall it from Excel, delete the directory into which you originally
installed it.

Sound-Proof 2000
Sound-Proof 2000 is an Excel add-in that I developed. It uses Microsoft Agent to
read the contents of selected cells. It’s the perfect proofreading tool for anyone who
does data entry in Excel.

Excel 2002 includes a new text-to-speech feature. However, you’ll find that Sound-
Proof 2000 is more customizable and has many additional options.

Cells are read back using natural language format. For example, 154.78 is read as
“one hundred fifty-four point seven eight.” Date values are read as actual dates (for
example, “June fourteen, nineteen ninety-eight”) and time values are read as actual
times (for example, “six forty-five a.m.”).

The companion CD-ROM contains a demo version of Sound-Proof 2000. The demo
version’s only limitation is that it reads no more than 12 cells at a time. The full ver-
sion is available for $24.95. Ordering instructions are provided in the online Help
file.

Installing the demo version
To install the demo version of Sound-Proof, follow these steps:

1. Make sure that Excel is not running.

2. Locate the SP2000D.EXE file on the CD-ROM. This file is located in the SP\
directory.

3. Double-click SP2000D.EXE. This expands the files to a directory you specify on
your hard drive.

4. Start Excel.

5. Select Tools ➪ Add-Ins and click the Browse button. Locate the SP2000.XLA file
in the directory you specified in Step 3.

6. Make sure that Sound-Proof 2000 is checked in the add-ins list.

7. Click OK to close the Add-Ins dialog box.

New
Feature

4799-2 AppE.F 6/11/01 9:49 AM Page 905

906 Appendixes

After you install Sound-Proof 2000, it will be available whenever you start Excel, and
Excel will have a new menu command: Tools ➪ Sound-Proof 2000.

Uninstalling Sound-Proof
If you decide that you don’t want Sound-Proof 2000, follow these instructions to
remove it from Excel’s list of add-ins:

1. In Excel, select Tools ➪ Add-Ins.

2. In the Add-Ins dialog box, remove the check mark from Sound-Proof 2000.

3. Click OK to close the Add-Ins dialog box.

After performing these steps, you can reinstall Sound-Proof at any time by placing a
check mark next to the Sound-Proof 2000 item in the Add-Ins dialog box.

To remove Sound-Proof from your system after you have performed the preceding
steps to uninstall the add-in from Excel, delete the directory into which you origi-
nally installed it.

Electronic Version of Excel 2002
Power Programming with VBA

The complete (and searchable) text of this book is on the CD-ROM in Adobe’s
Portable Document Format (PDF), readable with the Adobe Acrobat Reader (also
included). For more information on Adobe Acrobat Reader, go to www.adobe.com.

Adobe Acrobat Reader
The Adobe Acrobat Reader is a helpful program that enables you to view the
searchable version of this book, which is in .pdf format on the CD-ROM. To install
and run Adobe Acrobat Reader, follow these steps:

1. Start Windows Explorer or Windows NT Explorer and then open the Acrobat
folder on the CD-ROM.

2. In the Reader folder, double-click the .exe file and follow the instructions pre-
sented on-screen for installing Adobe Acrobat Reader.

✦ ✦ ✦

4799-2 AppE.F 6/11/01 9:49 AM Page 906

SYMBOLS AND NUMERICS
!, 188

$, 188

%, 188

&, 188, 833

(), 156

@, 188

:, 179

. separator, 123, 125, 153

\ operator, 194

& (concatenation operator), 833

+ operator, 194

= operator, 193, 194

^ operator, 194

3D workbooks, 338–339

A
A1 notation, 40–41

Accelerator property, 388–389

Access, 619–621

Activate event, 296, 400, 552, 580

activating

applications, 607–608

charts, 527–529

ranges, 843

ActiveX controls

location, 232

prohibited, 537, 759

user interface, 101–103

UserForm, 407

ActiveX Data Objects (ADO), 619–621

Add-Ins

attaching, 35–36

code speed, 644–645

collection, 639–641

Component Object Model (COM), 627

creating, 628–629, 631, 634

custom functions, 286–287

defined, 625

distributing, 633

downloading, 36, 856

early development, 5

Enhanced Data Form, 473

FAQ, 856–858

file size, optimizing, 645–646

files, 63, 69

installing, 632–633, 646–648

Integrated Development Environment (IDE),

791–793

manager (dialog box), 627–628, 632

modifying, 633

object events, 644

object hierarchy, 152

opening Excel without, 62

Power Utility Pak, 904–905

properties, 641–644

reasons to use, 626–627

referencing other files, 648–649

Registry configuration, 76

Sound-Proof 2000, 905–906

storing custom functions, 286–287

Sub procedures, executing, 223

supporting, 69

toolbars, distributing with, 660–661

version, specifying, 649

viewing protecting code, 638

workbook versus, 625–626

worksheet functions, 92

XLA file, comparing to XLS source file, 635–639

adding

checked menu items, 703–705

CommandBars controls, 673–674

CommandButtons, 802–803

Excel 5/95 dialog sheet, 20

ListBox items, 412–413

macro button, 659

menu elements, 688

menus, automatically, 701–702

menus items, 694–698

menus to menu bar, 690–693

shortcut menu items, 712–713

UserForm controls, 800–803

VB Projects collection reference, 792–793

Visual Basic for Applications code, 813–814

worksheets, 581

addition (+) operator, 194

Alarm function, 348–349

aligning

chart objects, 532–533

controls, 384

ampersand (&), 188, 833

Analysis ToolPak, 34, 41

Index

4799-2 Index.F 6/11/01 9:49 AM Page 907

908 Index ✦ A–B

analysis tools

auditing, 35

automatic subtotals, 33–34

custom function, 260–261

Excel, 33–35

outlines, 33

pivot tables, 34–35

scenario management, 34

solver, 35

statistical (Analysis ToolPak), 34

And operator, 194, 195

animation, chart, 565

ANSI codes, 881–890

apostrophe (‘), 178

Apple II, 3

Application object

CommandBars collection (See CommandBars)

contents, 152

Dialogs collection, 371–372

GetOpenFilename method, 364–367

Help method, 736

hierarchy, 331

properties, 163–165, 164–165

Volatile method, 268

applications

activating another, 607–608

ActiveX Data Objects (ADO), 619–621

automating other, 609–618

development checklist, 749

events, 592

keystrokes, sending to (SendKeys method),

621–623

Loan Amortization Wizard, 739–749

starting another, 603–607

user-oriented, defined, 739

Windows Control Panel Dialog boxes, running,

608–609

wizards, running, 608–609

Apply button, clicking, 486–488

arguments

available, 140

built-in dialog boxes, using with, 373–374

event-handler procedures with, 577–578

Function procedures, 266

Function procedures with array, 272

Function procedures with one, 268–271

Function procedures with optional, 273

Function procedures with two, 271

Function procedures without, 266–267

indefinite number, Function procedures, 278–279

methods, specifying, 156

properties, specifying, 156

array

declaring, 195–196, 848, 850

InputBox, 358

nonduplicated random integers, 340–342

one-dimensional, transferring, 310

reading and writing to range, 307–311

returning single (See Function procedures)

sorting, 247–250, 321–323, 846

UserForm, 852

variants, 834–835

Visual Basic for Applications, 195–196

array argument, 272

array formulas

calendar example, 51–52

defined, 49–50

pros and cons, 52

worksheet example, 50–51

Array function, 274–276

assignment statement, 193–195

at sign (@), 188

audience. See user

auditing tool, 35

author’s Web site, 866

Auto Data Tips, 140

Auto Indent, 141

Auto List Members, 139–140, 611, 816

Auto Quick Info, 140

Auto Syntax Check, 138

AutoFilter, 560–562

automating

data tips, 140

filters, 560–562

indents, 141

information, 140

lists, 139–140, 611, 816

macro running, 838

menus, adding and deleting, 701–702

other applications, 609–618

subtotals, 33–34

syntax check, 138

automation server (Microsoft Word)

described, 609

early versus late binding, 610–612

foreign objects, working with, 609

late binding example, 613

memos, generating, 613–616

autosense, 668–669

B
backslash (\) operator, 194, 836

BASIC programming, 119

4799-2 Index.F 6/11/01 9:49 AM Page 908

909Index ✦ B–C

BeforeClose event, 583–584

BeforeDoubleClick event, 552

BeforePrint event, 582–583

BeforeRightClick event, 552, 591

BeforeSave event, 581

benchmarking data types, 185, 307–308

beta testing, 109

binding

early, 610–612

late, 610–612, 613–616

Boolean properties

CheckBox control, 380

naming convention, 191

toggling, 317–318

Borders toolbar, 23

Borland International, 7–8

Break on All Errors, 237, 834

breakpoint, 282

Bricklin, Dan, 3

bubble sort, 247–250, 251, 321–323

budgets, 33, 34, 88, 92–93

bugs

Excel, 108, 192

Function procedures, 246, 281–282

testing, 107–109, 127

buttons

adding, 447

appearance, 22, 859

drawing, 233

images, 654, 676–677, 680, 858

macro, 659, 680

MsgBox function, 360

multiple with one event-handler, 458–461, 858

non-functioning, 855

procedures, 230–231

programming, 447–449

C
C programming, 287

Calculate event, 552

calculations

charts, 552

complex (See assignment statement; functions)

formulas, 38–39, 841

mode, 828

running in Excel from Microsoft Word, 616–618

time, 55

calendar, 51–52

Call keyword, 227

calling. See execution

cancel key, 252

captions

CommandBars, displaying properties, 671–672

CommandBars collection, changing, 678–680

menus, listing, 689–690

carriage returns, 25

CD-ROM, back of the book

chapter examples, 891–903

Power Utility Pak, 904–905

cell

collection of (See array)

controls, linked, 852

data type, determining, 306–307

drag and drop, 23–24

drop-down lists, 827–828

naming, 27, 42–43

cell comments. See comments

cell contents

entering a value in the next empty, 298–299

formula returning a number, 239

information, 498–500

limiting data entry, 25

locking, 109

monitoring values, 23

prompting for value, 296–298

proofreading, 23

values, characteristics, 19, 837

worksheet total, 19

cell formatting

borders, drawing, 23

changing, 835

getting information about, 329–330

selecting by, 312–314

text, changing case, 489

cell references

formulas, 39–42

InputBox, 358

relative or absolute (Visual Basic for Appli-

cations macro recorder), 145–149

cell values

changes, tracking, 587–588

changing, 585–586

chart, updating automatically, 536

counting between, 332

counting selected, 300–301

counting visible in a range, 332–333

displaying selected, 498–500

Cells property, 167–169

Change event, 585–586

changes

cell, tracking, 587–588

cells, 585–586

menus elements, 688–689

monitoring range, 586–590

4799-2 Index.F 6/11/01 9:49 AM Page 909

910 Index ✦ C

characters, type-declaration, 188, 835

chart

activating, 527–529

animating, 565

data, specifying, 535–538

deactivating, 529

dead, 560

deleting objects or sheets, 530

described, 30–31

determining whether activated, 529–530

embedded, printing on full page, 559

events, 551–559, 592

file, 63

hiding rows that don’t meet criteria, 560–562

linked pictures, 563–564

looping through, 531–532

macros, recording, 524–527

names in a SERIES formula, 534–535

naming, 48

object hierarchy, 152

object model, 522–524

PivotTable, attaching, 505, 533

saving as GIF files, 463–464, 838

selecting, 26

source data, determining, 538–546

sources, 538–546

specifying, 535–538

storing multiple on one sheet, 562–563

UserForm, displaying, 463–467, 549–551, 851

workbook location, 521–522

workbooks, 20

chart formatting

clock, 567–568

described, 530–531

drawing with, 569

hypocycloid, 566–567

labeling data, 546–548

sizing and aligning objects, 532–533

Chart menu, ID setting, 693

ChartSpace control, 464–467

CheckBox button, 380

checked menu items

adding, 703–705, 859

gridline display, toggling, 705–706

synchronizing with sheet, 706

Chip Pearson’s Excel pages, 866

class modules

CSVFileClass object, 822–824

defined, 811

events, 818

inserting, 813

method procedures, 820–822

methods, 817–818, 819

NumLock class, 814–815

object class, naming, 815

procedures, 819–820

properties, 816–817, 819

reasons to use, 812

variables, 819

Visual Basic for Applications code, adding,

813–814

clean boot, 62

Click event. See buttons

clipboard, 23

clock formatting, 567–568

Close button, disabling, 416–417

closing

UserForms, 389–391

workbooks, 315

workbooks before event, 583–584

code

ANSI, 881–890

colors, 133, 142, 832

copying between projects, 129

event-handler, 576

events, 576

indenting, 141, 211

protecting, 858

simplifying, 197

viewing protected, 638

Visual Basic for Applications, entering, 179

Visual Basic for Applications error, 877–880

windows, Visual Basic Editor, 127

code windows

entering Visual Basic for Applications code,

132–138

minimizing and maximizing, 130–131

objects, 130

storing Visual Basic for Applications code,

131–132

collections

add-in XLA files versus XLS source files, 635

Add-Ins, 639–641

comments, 159–160

defined, 123, 153, 171, 842

Dialogs, 371–373

For Each-Next construct, 202–204

errors, 842

manipulating, 201–204

object hierarchy, 152

testing for membership, 327

Visual Basic for Applications, 152–154

4799-2 Index.F 6/11/01 9:49 AM Page 910

911Index ✦ C

With-End With construct, 202

colon (:), 179

color

cells, 27, 303–304, 835

code, 133, 142, 832

comments, 161, 828

confusion, 162, 850

hyperlinks, 157

sheet tabs, 18, 828

spreadsheet design, 110–111

UserForms, 461–462

column

finding last entry, 333–334, 847

hiding, 20

ListBox controls, 430–432

naming, 45

width and height, 20

worksheet total, 19, 828

COM. See Component Object Model (COM)

ComboBox

charts, updating, 537–538

controls, custom dialog box, 380

comma-separated files, 66

comma-separated value (CSV) files, 778

command-line switches, 62

CommandBars
appearance (Style property), 675–676

autosense, 668–669

button image (toolbar), 676–677

buttons, executing, 680

counting, 667

creating, 664

deleting, 665–666

described, 653, 661–662

FAQ, 858–860

hidden or displayed (Visible property), 677

hiding and restoring, 669–671

macros, assigning to built-in button, 680

modification lock, 667

objects, listing all, 662–664

properties, 666–671, 675–683

referencing, 665, 689

Type property, 680–683

types, 662

CommandBars caption

changing (SelectionChange event), 678–680

properties, displaying, 671–672

CommandBars controls

adding, 673–674

deleting, 674–675

listing, 672–673

CommandButtons
adding at design time, 802–803

controls, custom dialog box, 102, 380

design mode, 395

event handlers, setting up, 459, 851

UserForm, 411–413

comments

Addin object, 642

adding, 163

Application properties, 163–165

cell changes, tracking, 587–588

cells, 722

colors, 162, 828

comment object case study, 159–160

comment property, 160

comments collection, 159–160

default, 150

determining whether cells contain, 163

help, 722

Macro Recorder, 150

methods, 158–159

objects within, 161–162

online help, 157–158

properties, 158, 160

Visual Basic for Applications, 157–165

Visual Basic for Applications language

elements, 178–181

workbooks, 630–631

commissions, calculating, 268–271

comparative operators, 194

comparing ranges, 305–306

compatibility

defined, 753–755

Excel versions, 12, 36, 755–756

features, avoiding new, 756

international, 759–766

Macintosh, 758–759

spreadsheets, adopting, 13

version number, determining, 757

Windows API calls, 290, 344, 757–758

compile error, 853

Component Object Model (COM), 627

CompuServe forums, 866

concatenation operator (&), 833

constants

declaring, 190

Excel file formats, 756

MsgBox function, 360

naming, 46

predefined, 190–191

Visual Basic for Applications, 135, 190–191

containers, object, 153

4799-2 Index.F 6/11/01 9:49 AM Page 911

912 Index ✦ C–D

contents, file searches, 773

controls

CommandBars, 672–675

linked, 852

UserForms, 379–384, 404–405

controls, custom dialog box

CheckBox, 380

ComboBox, 380

CommandButton, 380

enclosing other (Frame), 380

graphic images, displaying, 381

Label, 381

ListBox, 381

MultiPage, 381

OptionButton, 381

ScrollBar, 381

SpinButton, 382

TabStrip, 382

TextBox, 382

ToggleButton, 382

worksheet, selecting ranges (RefEdit), 381

controls toolbar

inserting, 658–659

inserting new, 658–659

moving or copying, 658

copy protection, 6

copying

cells, 25

entering Visual Basic for Applications code, 138

files, 768

formulas, 39, 41

keyboard shortcut, 24

objects between projects, 129

ranges, 292–293, 845

ranges, variably sized, 293–294

toolbar controls, 658

worksheet links, 42

corrupt files, 42

COUNTIF function, 52–53

counting

array formulas, 53–54

cells between two values, 332

cells visible in a range, 332–333

CommandBars, 667

comments, 160

COUNTIF function, 52–53

DCOUNT function, 54–55

formulas, 52–55

loops, 213–215

printed pages, 318

rows, 846–847

selected cells, 300–301, 846

Counting Sort, 321–323

country code, displaying, 759–760

CreateObject, 612

creating

Add-Ins, 628–629, 631, 634

CommandBars, 664

menus, custom, 706–708

pivot tables, 506–507

shortcut menus, 714–717

toolbars, custom, 657

UserForms, 804–810

CSV. See comma-separated value (CSV) files

CSVFileClass
module, 820–821, 821–822

object, 822–824

Ctrl+shortcut key combination, 224–225

currency

format, 25

naming convention, 191

variables, data-typing, 188, 835

Current region property, 294

D
data

charting (See charts)

importing more than 256 columns of data,

783–785

labeling, 546–548

recovering corrupt file, 42

summarizing (See pivot tables)

text files, importing, 779

types, indicating, 188, 835

UserForms, validating, 398

data entry

Excel, 24–25, 88

pausing for, 849

validating, 588–590, 836

values into next empty cell, 298–299

Data Form, 471–473

Data menu, 693

data storage and access spreadsheets, 93

data type

defining, 182–184

determining, 184–186, 306–307

variant, benchmarking, 185

Visual Basic for Applications, 181, 198

database

ActiveX Data Objects (ADO), 619–621

external, 31, 32–33

external, pivot tables, 513–515

file formats, supported, 66

4799-2 Index.F 6/11/01 9:49 AM Page 912

913Index ✦ D

spreadsheet front ends, 94

tools, 31–33

worksheet, 31, 32

date and time

cells, entering, 25

displaying, 318–320

entering, 55–56

Excel bug, 192

files saved or printed, displaying, 330–331

formulas, 55–56

international applications, 766

naming convention, 191

pre-1900, 56

Visual Basic for Applications, 192–193

dBASE, 66

DBF files, 66

DCOUNT function, 54–55

Deactivate event, 400, 552, 581–582

deactivating

charts, 529

worksheets, 581–582

dead chart, 560

debugging. See bugs

declarations

arrays, 195–196

constants, 190

Function procedures, 262–263

modMain module, 483

storing, 131

Sub keyword, 220–221

default settings

Editor tab (VBE environment), 141

Loan Amortization Wizard, saving and

retrieving, 746–747

workbook format, 62

deleting

accidental, 82, 860

CommandBars, 665–666

CommandBars controls, 674–675

directories, 768

empty rows, 305

files, 768, 833

menus, automatically, 701–702

menus from menu bar, 694

modules, 832

objects or chart sheets, 530

shortcut menu items, 713

spaces, 495–496

text, 493–495

toolbars, custom, 658

values, 844

VB Projects collection reference, 792–793

worksheets, 847

description

Add-In, 856

Insert Function dialog box, 284–286

Macro Recorder, 150

descriptive information, adding. See comments

design aesthetics, 110–111

design time

ListBox, adding items, 422

UserForm manipulations, 800–801

developers

applications checklist, 749

documenting, 111–112

Excel 2002 features, 14–15

Loan Amortization Wizard, lessons for, 748

spreadsheet applications, 83–84, 95–96

development

activities, 95–96

design issues, 110–111

directory structure, 115

distribution, 112

documenting, 111–112

language issues, 114

learning during, 99

planning to meet user needs, 97–99

protecting worksheets, 109–110

system speed, 114

testing, 107–109

updating, 113

user interface, 100–107

user needs, determining, 96–97

user’s installed version of Excel, 114

video modes, 115

Diagram toolbar, 23

diagrams, 29–30

dialog box

Add-Ins, 627–628

custom (See UserForms)

displaying help, 734–735

Insert Function, 28, 282–286

language use, 761

Loan Amortization Wizard example, 740–742

Macro, describing functions, 285–286

other spreadsheet applications, 854

previous Excel versions, 20

size, changing, 417–418

stay-open, 455–458

user interface, 21–22, 100–101

UserForms (See UserForms)

users’ display, 855

Windows Control Panel, Windows, running,

608–609

4799-2 Index.F 6/11/01 9:49 AM Page 913

914 Index ✦ D–E

dialog box, built-in

directories, prompting, 368–371

displaying, 371–375, 854

filenames, asking users, 364–367

filenames, displaying choices, 367–368

Input Box, 355–359

Visual Basic for Applications MsgBox function,

359–364

dialog sheets, 18

Dialogs collection, 371–373

DIF file formats (VisiCalc), 66

Dim statement, 195–196, 198, 246

directory

commands, 768

determining, 288–289

list, displaying, 769–770

prompting, 368–371

selecting, 368–371

structure, 115

disabling

custom menus, 702–703

events, 574–575

shortcut menus, 713–714

disk drives, listing information, 774–775

displaying

charts, 851

CommandBars collection, 677

date and time, 318–320

date files saved or printed, 330–331

dialog boxes, built-in, 371–375

functions in dialog box, 839

graphic images, 381

help, 839

information, 722

toolbars, custom, 657

UserForms, 378–379, 389

worksheets, 722–723

distribution

Add-Ins, 633

Excel, 113

spreadsheet applications, 112–113

toolbars, custom, 660–661

toolbars with add-in, 660–661

division (/) operator, 194

DLL. See Dynamic Link Library (DLL)

Do Until loop, 216–217

Docking tab, 143

documenting development, 111–112

dollar sign ($), 188

dot (.) separator, 123, 125, 153

downloading Add-ins, 36

drag-and-drop

chart ranges, 552

code between projects, 129

text editing (VBE environment), 141

user interface, 23–24

DragOver event, 552

DragPlot event, 552

drawing

charts, 569

shapes, 28–30

Text Box, 722

toolbar, 23

UserForm, 854

worksheet, 19

Drawing Canvas toolbar, 23

drives

changing, 768

listing information, 774–775

drop-down lists, 380, 827–828

Dynamic Link Library (DLL), 63. See also

Windows API

E
early binding, 610–612

Easter Eggs, 830

Edit menu

ID setting (Excel), 693

shortcut keys, displaying, 698

editor, menu, 21, 103, 858

editor, Registry, 74–75

editor, Visual Basic, 789

activating, 125–126

Auto Data Tips, 140

Auto Indent, 141

Auto List Members, 139–140

Auto Quick Info, 140

Auto Syntax Check, 138

Default to Full Module View, 141

Drag-and-Drop Text Editing, 141

FAQ, 825–826

Procedure Separator, 141

Require Variable Declaration, 139

UserForms, 377–378

windows, 126–127

Editor Format tab

Code Colors, 142

displayed, 141

Font, 142

Margin Indicator Bar, 142

Size, 142

embedded chart, printing on full page, 559

empty rows, 305

4799-2 Index.F 6/11/01 9:49 AM Page 914

915Index ✦ E

End method, 295

end user. See user

Enhanced Data Form add-in, 473

entering Visual Basic for Applications code

copying, 138

macro recorder, 135–138

manually, 132–135

environment, customizing VBE

Docking tab, 143

Editor Format tab, 141–142

Editor tab, 138–141

General tab, 142–143

Eqv operator, 194, 836

error-handling

examples, 239–241

procedures, 237–238

trapping (On Error statement), 82, 142,

238–239, 834

errors

auditing tools, 34

chart, 522, 531

code syntax, 138, 182, 832

collections, 843

comments not in cells, 163

compile, 853

concatenation operator, 833

custom function constants, 277

data recovery from corrupt files, 42

display, 855

formulas, 38, 48–49

function procedures, 276–278, 840

handling, 237–241

InputBox, 358

menus, 713

messages, 791

names, misspelling, 186

notations, easier spotting, 41

reserved words, 182

security, 790

string arithmetic, 272

syntax, 180, 850

testing, 107–110

time calculations, 55

utilities, trapping, 479

values, entering, 165

Visual Basic for Applications codes, 877–880

workbooks, unsaved, 316

evaluating

data, then hiding what’s outside, 560–562

hidden sheets, 252

projects, 501–502

event

Add-Ins, 644

application, 592–598

arguments, event-handler procedures with,

577–578

chart, 551–559, 592

class modules, 818

closing workbooks before, 583–584

disabling, 574–575

event-handler procedures, locating, 573–574

key combination, 600–601

locating with Object Browser, 593

monitoring, 572, 836

older versions of Excel, programming, 575

procedures, executing, 233

sequences, 572–573

time of day, 599–600

types, 571

UserForm, 398–404, 598–599

workbook-level, 578–584

worksheet, 585–591

worksheets, printing before, 582–583

event-handler

all and none items, 433

arguments, procedures with, 577–578

buttons, 447–449

checked menu items, 703–706

disabling or hiding menus, 702–703

locating, 573–574

menus, adding and deleting automatically,

701–702

multiple buttons, 458–461

standalone progress indicator, 441–442

storing, 132

Sub procedures, executing, 233

UserForms, 391, 396–398

Excel

add-ins, 35–36, 69

analysis tools, 33–35

charting (See charts)

command bar customization mode, 656

compatibility, 36, 753–766

data entry, 24–25

database file formats, 66

database tools, 31–33

date bug, 192

distribution, 113

drawing shapes, 28–30

earlier versions, 12

early development, 6

events (See events)

FAQ, 826–830

Continued

4799-2 Index.F 6/11/01 9:49 AM Page 915

916 Index ✦ E

Excel (continued)

formatting, 26–27

formulas (See formula)

functions, 28, 871–876

help, 720–730

home page, 862

HTML, 70–73

InputBox method, 355, 357–359

Internet features, 33

licensing, 113

naming cells and ranges, 27

on-screen display, customizing, 24

pivot tables (See pivot tables)

Registry settings, 74–77

security, 629

standard menus, 686

starting, 61–63, 414–416

usage, logging, 782–783

user interface, 21–24

utilities (See TextTools)

workbooks, 18–20

workspace files, 68

XLS workbook files, 67

Excel, older versions

Add-Ins, specifying proper, 649

application end user, 96, 114

determining number, 757

index values, 665, 712

menus, customized, 688

modeless dialog boxes, 455

Windows API calls, 290, 344

Excel 8. See Excel 97

Excel 2000, 790

Excel 2002

current products versus, 13–14

developers, key features for, 14–15

Integrated Development Environment (IDE), 790

role in Microsoft strategy, 15–16

spreadsheets, history of, 3–12

Excel 5/95

Add-Ins, converting to, 629

charts, 463, 521

dialog sheets, supporting, 20, 100

Forms toolbar controls, 232

Formula Palette dialog box, 286

geographic mapping feature, 20, 829

macro recording, 831

menu editor, 21, 103, 688, 858

menus, customized, 688

modules, 830

WorksheetFunction method, 841

Excel dialog box

Add-Ins, 627–628

custom (See UserForms)

Dialogs collection, 371–373

displaying help, 734–735

emulating, 408

Insert Function, 28, 282–286

language use, 761

Loan Amortization Wizard example, 740–742

Macro, describing functions, 285–286

other spreadsheet applications, 854

previous Excel versions, 20

size, changing, 417–418

stay-open, 455–458

user interface, 21–22, 100–101

UserForms (See UserForms)

users’ display, 855

Windows Control Panel, Windows, running,

608–609

Excel file viewer, 113

Excel files

database formats, 66

DIF file formats (VisiCalc), 66

file extensions, 63–64

filenames, asking user for valid, 364–367

filenames, displaying for user to choose,

367–368

formats supported, 755–756

Lotus 1-2-3, supporting, 64–65

Quattro Pro, supporting, 65

SYLK (MultiPlan), 66

template, 68–69

text formats, 66

toolbar, 69

Excel macro

described, 609–618

languages, 31

Excel objects

hierarchy, 17–18, 128

selecting, 26

exclamation point (!), 188

execution

Do Until loop, 216–217

Do While loop, 215–216

For-Next loop, 212–215

Function procedures, 263–265

GoTo statement, 205

If-Then construct, 205–208

IIf function, 209

looping blocks of instructions, 212–217

matching function calls to code, 610–613

procedures, 222–234, 837

4799-2 Index.F 6/11/01 9:49 AM Page 916

917Index ✦ E–F

reasons, 204–205

Select Case construct, 208–211

Visual Basic for Applications, controlling,

204–217

executive information system (EIS), 94

exponentiation (^) operator, 194

Export procedure, 820–821

exporting

to HTML format, 786–788

to text files, 779–781

expression, 151, 193

external databases, 31

F
file

add-in, 69

associating, 344–345

commands, 768

compatibility, 64–66, 754–756

converters, 76

dates saved or printed, displaying, 330–331

determining whether exists, 768–769, 772,

773–774

determining whether path exists, 769, 774

directory list, displaying, 769–770, 771–772, 854

disk drives, listing information, 774–775

finding (FileSearch object), 771–772

formats, supported, 755–756

generating similar (See template)

handling, 23

installed, 63–64

number, getting, 777–778

opening in read-only mode, 62

processing series, 323–325

referencing other, 648–649

Registry configuration setting, 76

saved or printed, displaying, 330–331

saving charts as, 463–464

script-oriented Web pages, 773–775

template, 68–69

text, 775–788

text, containing specific, 773

toolbar, 69

viewer, Excel, 113

workspace, 68

XLS workbook, 67

File menu, 693

file size

add-in XLA files versus XLS source files, 635

Add-Ins, optimizing, 645–646

file structure, 635

FileDialog object, 370–371

FileExists function, 325

filename

asking users, 364–367

displaying choices, 367–368

printing in header, 829–830

FileNameOnly function, 325–326

FileSearch object, 771–772

filtering

chart data, 560–562

database records, 32

text files, 783

FindFormat method, 312–314

finding

cell or range names, 845

events, 593

files, 768–769, 771–772

files by contents, 773

last entry in a column or row, 333–334, 847–848

paths, 769

text files position, 778

font

charts, 532

choosing, 854

list, 320–321

modules, 142

worksheets, 828

For Each-Next construct, 160, 201, 202–204

For-Loop, 308–310

For-Next loop

arrays, transferring to range, 307–308

bubble sort method, 247–250, 251

execution, controlling, 212–215

foreign objects, 609

Format menu, 693

formatting

cells, 25, 835

charts, 530–531

clock from chart, 567–568

Excel, 26–27

information, 329–330

numeric, 26

selecting cells by, 312–314

spreadsheet design, 110–111

stylistic, 27

Text Box, 722

workbooks, changing default, 62

FormMain, 481–483, 743–744

forms, generating. See UserForm

formula

array, 49–52

calculating, 38–39, 841

cell and range references, 39–42

counting and summing techniques, 52–55

Continued

4799-2 Index.F 6/11/01 9:49 AM Page 917

918 Index ✦ F–H

formula (continued)

data entry, 25

dates and times, 55–56

defined, 37

error-checking, Registry configuration

setting, 76

error values, 49

errors, 48–49

Excel, 27

hiding, 109

InputBox, 358

keeping but deleting values, 844

megaformulas, 56–59

names, 42–48

new features, 38

notation, compared, 40–41

ranges with intersecting names, 44

Series object, 539

subtotal, automatic, 33–34

what-if models, 93

worksheet, calling custom functions from,

264–265, 835

writing, 850

fractions, 25

frame controls, 380

Frankston, Bob, 3

FullName object, 641

Function procedures

array argument, 272

Array function, 274–276

debugging, 281–282

declaring, 262–263

defined, 122

error value (Reverse function), 276–278

example, 258–261

executing, 263–265

indefinite number of arguments, 278–279

Insert Function dialog box, 282–286

MySum function, 279–281

with no argument, 266–267

with one argument, 268–271

optional arguments, 273

reasons to create, 258

recalculation, controlling, 268

scope, 263

storing, 131, 286–287

Sub procedures versus, 257

SUM function, 279–281

with two arguments, 271

Windows API (Application Programming

Interface), 287–290

functions

arguments available, 140

associating official help file, 733–734

Excel, 28

FAQ, 825–826

naming, 837

sound, playing, 348–349

speed, 58–59

Visual Basic for Applications, built-in, 135,

198–201

Visual Basic for Applications, usable, 871–876

Windows API declaration, 288

G
games, 89

General tab (VBE Options), 142–143

geographic mapping feature, 20

GetObject, 612

GetOpenFilename method, 364–367

GetOption function, 808–810

GetSaveAsFilename method, 367–368

GetValue function, 328

GIF file, saving chart as, 464, 549–551, 838

GoTo statement, 205

graphic images

chart, linked, 563–564

controls, custom dialog box, 381

GIF file, saving chart as, 464, 549–551, 838

linked pictures, 29

Progress Indicator (See Progress Indicator)

toolbar buttons, 676–677

UserForm controls, 386

greater thanoperator, 194

gridlines

checked menu items, toggling, 705–706

UserForm buttons, 382

worksheet, toggling, 318

H
hardware, 96

header, 829

help, getting

displaying, 839

file types, 63, 64

input box, 737

Internet newsgroups, 862–865

Internet Web sites, 865–866

learning more about properties and objects,

172, 387

menu, 693

4799-2 Index.F 6/11/01 9:49 AM Page 918

919Index ✦ H–I

Microsoft Technical Support, 861–862

MsgBox function, 736–737

online, 157–158

Text Tools, 500

help, supplying

cell comments, 722

custom dialog box, displaying, 734–735

Excel, 720–730

HTML Help, 731–732, 736–737

information, displaying (Text Box), 722

Loan Amortization Wizard, 744

message box, 736–737

Office Assistant, 727–730

UserForm displays, 723–727

Visual Basic for Applications function, asso-

ciating official help file, 733–734

WinHelp, 730–731, 732–733, 736–737

worksheets displaying, 722–723

hidden sheets, evaluating, 252

hiding

chart rows that don’t meet criteria, 560–562

CommandBars collection, 669–671, 677

formulas, 109

help boxes, 722

macros, 702–703, 838

menus, custom, 702–703

modules, 833

references, naming, 44

rows and columns, 20

toolbars, custom, 657

UserForm, 852

workbook window, 18

hierarchy, object

charts, 523

Integrated Development Environment

model, 791

listed, 152–153

hot keys, 388

hyperlinks, 157

HyperText Markup Language (HTML)

Excel, 70–73

exporting range, 786–788

help, linking, 64, 731–732

interactivity, 72–73

saving worksheets for Web use, 33

Script Editor, 73, 126

understanding, 70–72

hypocycloid chart, 566–567

I
I/O statements. See input/output (I/O) statements

IBM, 6

icons, 406

ID settings, 693

If-Then construct

alternative (IIf function), 209

described, 205–208

If-Then-Else construct, 135

IIf function, 209

images

chart, 464, 563–564

controls, custom dialog box, 381

GIF file, saving chart as, 464, 549–551, 838

linked pictures, 29

menus, 687, 707

Progress Indicator (See Progress Indicator)

toolbar buttons, 654, 676–677, 858

UserForm controls, 386

Immediate window

displaying debug information, 246

learning more about properties and objects, 175

Sub procedures, executing, 233–234

Visual Basic Editor, 127

Imp operator, 194, 836

Import procedure, 821–822

importing

more than 256 columns of data, 783–785

text file dat, 779

text files to a range, 781–782

indenting code, 141

index numbering

command bars, 665

shortcut menus, 712

information

displaying (Text Box), 722

help text, displaying, 723–725

introductory (Splash Screen), 414–416

Initialize event, 400

initializing, 743–744

Input Box

cell value, prompting, 296–297

dialog boxes, built-in, 355–359

help, 737

input/output (I/O) statements, 775–779

InRange function, 305–206

Insert Function dialog box

described, 282–283, 839, 849

description, adding, 284–286

function category, specifying, 283–284

Function procedures, 282–286

Insert menu, 693

instructions, looping blocks, 212–217

integers

division operator, 194

naming convention, 191, 835

returning array of nonduplicated random,

340–342

4799-2 Index.F 6/11/01 9:49 AM Page 919

920 Index ✦ I–L

Integrated Development Environment (IDE)

active Visual Basic for Applications

components, displaying in worksheet,

794–795

Excel 2002 note, 790

object model, 791

objects, creating and accessing, 789–791

open workbooks and add-ins (VBProjects
collection), 791–793

UserForm controls, adding, 800–803

UserForms, creating, 804–810

Visual Basic for Applications code that writes

more Visual Basic for Applications code,

797–799

Visual Basic for Applications module, replacing

with updated verison, 795–797

interactivity, 72–73

Intermediate window, 160

international applications

compability problems, 754

country code, displaying, 759–760

date and time settings, 766

language, 761–762

properties, 762–763

system settings, identifying, 763–765

Internet. See also newsgroups

Excel features, 33

Web sites, 865–866

intersecting references

finding, 167

naming, 44

invoices, numbering, 847

Is operator, 836

IsInCollection function, 327

J
JavaScript, 72, 73

K
Kapor, Mitch, 4

keyboard users

applications, sending to, 621–623

Edit menu shortcut keys, 698

events, 600–601

hot keys, 388

interface, 24

sending to applications, 621–623

shortcut keys, 698–700

SpinButton events, 401

tab order, changing, 387–388

L
label

chart data, 546–548

controls, 381, 723–725

scrolling, 725–726

language differences

international applications, 761–762

spreadsheet applications, 114

languages, macro, 31, 826

LASTINCOLUMN function, 333–334

LASTINROW function, 334

less than operator, 194

libraries

Dynamic Link Library (DLL), 63

object, 610–611, 613

scripting, 767

licensing, 113

Like operator, 836

line breaks, 362, 841

lines

checked menu items, toggling, 705–706

UserForm buttons, 382

worksheet, toggling, 318

links, 563–564, 829

ListBox

adding items at design time, 422

adding items at runtime, 422–423

adding only unique items, 423–425

controls, described, 381, 420–421

display list of sheets within active workbook,

434–436

item transfer, 427–428

moving items, 428–430

multicolumn, 430–432

multiple lists, 426–427

multiple selections, determining, 426

selected item, determining, 425

using as menu, 412–413

worksheet rows, selecting, 432–434

listing

active worksheets, 434–436

CommandBars controls, 672–673

CommandBars objects, 662–664

directories, 769–770

disk drive information, 774–775

fonts, 320–321

member items for objects, 139–140

menu captions, 689–690

object libraries, 230

shortcut menus, 711

Visual Basic for Applications functions, 199

4799-2 Index.F 6/11/01 9:49 AM Page 920

921Index ✦ L–M

Loan Amortization Wizard

creating, 743

default settings, saving and retrieving, 746–747

described, 739–740

developers, lessons for, 748

enhancements, suggested, 748

five-step dialog box sequence, 740–742

help, displaying, 744

initializing FormMain, 743–744

menu item, adding, 743

workbook structure, 742–743

worksheet, creating, 744–746

local variables, 187–188

locking

CommandBars, 667

objects to avoid errors, 109–110

logical operators, 194

looping

charts, 531–532

comments, 160

counting, 213–215

Do Until, 216–217

Do While, 215–216

For-Loop, 308–310

For-Next (See For-Next loop)

infinite, 252, 417

ranges, efficient, 302–305

toolbar controls, 672–673

Lotus, 8

Lotus 1-2-3

files, supporting, 64–65, 827, 854

history, 4–7

macros, 121

Registry configuration setting, 76

Version Manager, 34

LotusScript, 7, 12, 122

M
Macintosh

compatibility, 754, 758–759

early Microsoft spreadsheet, 9

macro

button, 659, 680

calling custom functions from, 264

cells prior to starting position, referencing, 169

charts, recording, 524–527

class module properties, 819–820

defined, 122, 124, 132, 834

early development, 4

Excel 2000, 790

executing (See button; menu; shortcut

key; toolbar)

exiting, 417

function (See Function procedures)

languages, 31, 826

local variable declared within, 187

Lotus 1-2-3, 121

naming, 149, 221

passing arguments to, 234–237

pausing for user-selected range, 299–300

pausing for user-selection range, 299–300

previous versions, built-in, 20

procedures versus, 834

progress indicator, 845

Registry configuration setting, 76

security, 790, 832

sheets, 20

spreadsheets, adopting, 13

static variables, 189

storing, 131

timing, 838

user control, 849

viewing, 141

macro, executing

from another procedure, 227–230

Ctrl+shortcut key combination, 224–225

custom menus, 225–226

from immediate window, 233–234

Macro dialog box, 223

objects, clicking, 231–233

Run ➪ Run Sub/UserForm menu command, 223

toolbar button, 230–231

when event occurs, 233

Macro dialog box, 223, 285–286

Macro Recorder (VBA)

cleaning up, 150–152

entering Visual Basic for Applications code,

135–138

learning more about properties and objects, 172

name, 149

options, 149–150

pivot table, creating, 507

reasons to use, 143–144, 292, 831

relative or absolute cell references, 145–149

shortcut keys, assigning, 224

Visual Basic for Applications, 143–152

what is recorded, 144–145

With-End With constructs, 202

maps, 20, 829

Margin Indicator Bar, 142

mathematics. See assignment statements;

formulas; operators

4799-2 Index.F 6/11/01 9:49 AM Page 921

922 Index ✦ M

maximum value

calculating, 214

selecting, 311–312

worksheets, across all, 339–340

megaformulas, 56–59

memory

cell usage, 19

data type, 182

string usage, 192

memos, generating, 613–616

menu

adding and deleting automatically, 701–702

adding and deleting items, 500–501

adding elements, 688

adding to menu bar, 690–693

applying to one workbook, 858

captions, listing, 689–690

changing elements, 688–689

creating, 706–708

customizing, 103–105

deleting from menu bar, 694

described, 685

disabling or hiding, 702–703

fixing reset, 700

Listbox, using as, 412–413

Loan Amortization Wizard, 743

procedures, executing, 225–226

Registry configuration setting, 76

removing elements, 687

shortcut keys, displaying, 698–700

shortcut menus, 710–717

substitute Worksheet Menu Bar, 708–710

terminology, 686–687

user interface, 21

UserForm, creating, 411–413

menu bar, 126–127, 653

menu editor, 21, 103, 858

menu items

adding, 694–698

adding and deleting, 500–501

checked, 703–706

executing, 374–375

message box

comments, displaying, 160

contents of selected cells, 498–500

date display, 193

help, supplying, 736–737

line break, 362, 841

method

arguments, specifying, 156

arguments available, 140, 842

class module procedures, 820–822

class module programming, 817–818

class modules, 819

comment object, 158–159

defined, 124, 125, 155

Visual Basic for Applications, 154–156

Microsoft

Internet newsgroups, 863–864

strategy, Excel 2002 role, 15–16

Microsoft Authenticode, 112

Microsoft Excel, 8–12. See also Excel

Microsoft Excel home page, 862

Microsoft Excel Objects, 128

Microsoft Knowledge Base, 862

Microsoft Office, 12, 15–16, 99, 112, 173, 467,

727–730, 862

Microsoft Office XP, 6

Microsoft Query, 32–33

Microsoft Technical Support

Microsoft Excel home page, 862

Microsoft Knowledge Base, 862

Microsoft Office update, 862

options, 861–862

Microsoft Word

Excel macro, 609–618

running calculations in Excel, then returning,

616–618

starting, 607

Microsoft Works, 64

MIDI files, playing, 348

Mod operator, 194

modeless dialog boxes, 455–458, 853

modeling, 93

modifying

Add-Ins, 633, 857

pivot tables, 518–520

modMain module, 483–486

module sheets, Visual Basic for Applications, 18

Module window. See code window

modules

appearance, 142

calling procedure from different, 221, 228–229

defined, 122

deleting, 832

variables, 189

modulo artithmetic, 194

monitoring

events, 572, 836

range changes, 586–590

values, 23

monitors. See screen

mouse events

chart, 552

shortcut menu, 591, 860

SpinButton, 401

4799-2 Index.F 6/11/01 9:49 AM Page 922

923Index ✦ M–O

MouseDown event, 552

MouseUp event, 552

moving

ListBox items, 428–430

ranges, 293, 552

toolbar controls, 658

MSForms, 173

MsgBox function, 200–201

debugging, 281

dialog boxes, built-in, 359–364

displaying help, 736–737

emulating, 452–455

usefulness, 154

UserForms, emulating, 452–455

multidimensional arrays, declaring, 196

multifunctional function, 337–338

MultiPage control

controls, custom dialog box, 381

Progress Indicator, 442–444

using, 436–437

wizards, setting up, 446–447

MultiPlan, 8–9, 66

multiplication (*) operator, 194

N
name

active worksheet or workbook, displaying, 165

Add-Ins, 630–631, 856

chart labels, 546–548

command bars, 666

comment creator, 158

directory, 368–371

finding, 845

formula error, 49

Function procedures, 262, 837

functions, 28

importance in Visual Basic for Applications

references, 43

menu, 707

misspelling, 186

object hierarchy, 152

Range property, 166, 844

UserForm, 378, 379

variables, rules, 181

naming

Addin object, 641

cell addresses, 40–41

cells, 27, 42–43

charts SERIES formula, 534–535

columns and rows, 45

constants, 46

FileNameOnly function, 325–326

formulas, 42–48, 46–47

hidden, 44

intersecting, 44

macros, 149

natural language references, 45

object class, 815

objects, 48

procedures, 221

ranges, 42–43

scoping, 45–46

toolbars, custom, 658

understanding, 48

variables, 19

workbook references, 41

natural language references, 45

newsgroups

described, 822–823

Microsoft users, 863–864

posting, 865

searching, 864–865

spreadsheet users, 863

NewSheet event, 581

nonduplicated random integers, returning array of,

340–342

Not operator, 194, 195, 318

Novell, 8

nth element, extracting from string, 336–337

number. See value

numeric formatting, 26

NumLock class

adding Visual Basic for Applications code,

813–814

inserting class module, 813

using, 814–815

O
object

Code windows, 130

CommandBars, listing all, 662–664

comment, adding new, 163

comment object case study, 161–162

concepts, 170–171

deleting from charts, 530

drag and drop, 23–24

For Each-Next construct, 202–204

events, 644

Excel, 17–18

exporting and importing, 129

FileDialog, 370–371

GetObject vs. CreateObject, 612

Continued

4799-2 Index.F 6/11/01 9:49 AM Page 923

924 Index ✦ O–P

object (continued)

hierarchy, 152–153, 523

Integrated Development Environment (IDE),

789–791

learning more, 171–175, 842

manipulating, 201–204

methods, 155

naming, 48, 191

parents, 331–332

procedures, executing, 231–233

qualifying, connecting with period, 153–154

selecting, 26

variables, 196–197

Visual Basic for Applications, 152–154, 170–175

With-End With construct, 202

Object Browser

binding, 611

built-in dialog boxes, 373

constants, listed, 191

locating events, 593

properties and objects, 172–174

viewing protecting code, 638

object class

creating (See class modules)

hierarchy, 123

naming, 815

object model

charts, 522–524

Integrated Development Environment (IDE), 791

Visual Basic for Applications, 120

Office Assistant, 727–730

Offset property, 169–170

On Error statement, 238–239

online help

comment object case study, 157–158

learning more about properties and objects,

172, 173

Microsoft Technical Support, 862

newsgroups, 863–864

using, 158

Open event, 579–580

opening

Add-In files, 627

text files, 776–777

workbooks, 579–580, 837

operations, complex. See functions

operators, mathematical, 194, 836

Option Explicit line, 832

OptionButton, 381

options, choosing among. See Select Case
Or operator, 194, 195, 210

Organization Chart toolbar, 23

outline tool, 33, 34

OWC (Office Web Components)

ChartSpace control, 464–467

described, 467

P
pages

adding new, 406

printed, determining number, 318

Paperback Software, 5

ParamArray keyword, 278

parentheses (), 156

parents, object, 331–332

passing arguments, 234–237

passwords, 110, 156, 831

Paste Function dialog box, 283, 839

path

Addin object, 641

command-line switch, 62

file associations, 344–345

file function, 326

files, finding, 314–315, 769

printing in header, 829

PathExists function, 326

pattern-matching, 335–336

percent sign (%), 188

period (.) dot separator, 123, 125, 153

pictures. See images

pivot tables

analysis tools, 34–35

charts, 30, 533

creating, 506–507, 509–512

external database, 513–515

modifying, 518–520

multiple, 515–518

object hierarchy, 152

reasons to use, 505

recorded code, cleaning up, 508–509

pound sign (#), 188

Power Utility Pak, 479, 502–503, 904–905

presentations, 88

printer set-up, 345–346

printing

code debugging, 282

dates, displaying, 330–331

embedded chart full page, 559

to a file, 855

number of pages, 318

Registry configuration setting, 76

worksheets before event, 582–583

private procedures, 221–222, 262, 283

PRN files, 778

4799-2 Index.F 6/11/01 9:49 AM Page 924

925Index ✦ P–R

Procedure Separator, 141

procedures. See Function procedure; macro;

Sub procedure

programming

ActiveX Data Objects (ADO), 619–621

class modules, 816–817

dependencies, 449–450

programming, structured. See structured

programming

progress indicator

reasons to use, 439, 853

showing with MultiPage control, 442–444

showing without MultiPage control, 445

standalone, creating, 440–442

Status Bar, 440, 845

UserForms, 439–445

Project Explorer

described, 128–129

objects, exporting and importing, 129

references list, 230

Visual Basic for Applications, 128–129

windows, Visual Basic Editor, 127

projects, evaluating, 501–502

properties

Add-Ins, 641–644

Application (comment object case study),

163–165

arguments, specifying, 156

arguments available, 140

Boolean, toggling, 317–318

class modules, 816–817, 819

CommandBars, 666–671, 675–683

comment object case study, 158

defined, 123, 124

international applications, 762–763

learning more, 171–175

object, 154–155

objects, returning, 160–161, 171

Series object, 539

Visual Basic for Applications, 154–156

workbooks, accessing, 315–316

properties, custom dialog boxes

common, 386

keyboard users, accommodating, 387–388

learning more, 386

window, 385–386

property procedures

class modules, 819–820

storing, 131

protected code, viewing, 638

Protection toolbar, 23

public procedures, 221

Public statement, 195–196, 262

public variables, 189

Q
Quattro Pro

files, supporting, 65, 827, 854

history, 7–8

QueryClose event, 400

Quick Sort, 321–323

R
random integers

non-changing, 267

returning array of nonduplicated, 340–342

randomizing worksheet range, 342–344

range

copying, 292–293

drag and drop, 23–24

empty rows, deleting, 305

erasing, 358

exporting to text files, 779–781

looping, efficient, 302–305

moving, 293, 552

name, finding, 845

naming, 27, 42–43, 844

object hierarchy, 152, 331

pointing to, 856

randomizing, 342–344

RangeNameExists function, 326

reading and writing, 307–308

references in formulas, 39–42

selecting or identifying various types, 294–296,

843, 846

selecting (RefEdit), 381, 413–414

UserForm, selecting, 413–414

variably sized, copying, 293–294

writing to (For-Loop), 308–310

range contents

cell data type, determining, 306–307

counting selected cells, 300–301

determining type, 301–302

determining whether contained in another,

305–306

entering a value in the next empty cell, 298–299

filling, 25, 165

importing text files, 781–782

limiting data entry, 25

maximum value, selecting, 311–312

monitoring for changes, 586–590

one-dimensional arrays, transferring, 310

pausing macros to get a user-selected range,

299–300

prompting for cell value, 296–298

variant array, transferring to, 310–311

4799-2 Index.F 6/11/01 9:49 AM Page 925

926 Index ✦ R–S

range formatting

resizing, 535

selecting cells by, 312–314

Range objects

Cells property, 167–169

Offset property, 169–170

Range property, 166–167

usefulness, 165–166

Visual Basic for Applications, 165–170

RangeNameExists function, 326

R1C1 notation, 40–41

read/write statements, 778–779

reading

ranges, 307–308

Registry, 349–350

text files, 777

recalculation, 268

recorder, macro

cleaning up, 150–152

entering Visual Basic for Applications code,

135–138

learning more about properties and objects, 172

name, 149

options, 149–150

pivot table, creating, 507

reasons to use, 143–144, 292, 831

relative or absolute cell references, 145–149

shortcut keys, assigning, 224

Visual Basic for Applications, 143–152

what is recorded, 144–145

With-End With constructs, 202

Redo

RefEdit, 381, 413–414

references

Add-Ins, 648–649

arguments, passing to procedure, 235

CommandBars, 665

CommandBars collection, 689

naming, existing, 43

node, 129

refreshing, screen, 526, 844

Registry

defined, 74

easier access, 351

editor program, 74–75

Excel settings, 62, 74–77, 75–77

invoices, creating, 847

reading from, 349–350

reading from and writing to, 349–351

top-level keys, 75

Word’s automation object, 612

writing to, 350–351

relative or absolute cell references

described, 39

Macro Recorder (VBA), 145–149

Rem keyword, 178

repeating. See looping

reports, generating similar. See template

Require Variable Declaration, 139

resetting

menus, fixing, 700

shortcut menus, 714

toolbars, built-in, 658

Resize event, 552

Reverse function, 259–260, 276–278

RGB function, 162

right-click

disabling, 860

displaying shortcut menu, 591

routines. See procedures

rows. See cell; range

counting selected, 846–847

deleting empty, 305

finding last entry, 333–334, 847

hiding, 20, 32, 560–562

LASTINROW function, 334

ListBox controls, 432–434

naming, 45

worksheet total, 19, 828

Run ➪ Run Sub/UserForm menu command, 223

Run method, 227–228

runtime

errors, 237–238

ListBox, adding items, 422–423

UserForm manipulations, 800–801

S
Sachs, Jonathan, 4

Save As dialog box, displaying. See

GetSaveAsFilename method

saved files, displaying by date, 330–331

saving

charts as files, 463–464

default settings, 746–747

files for other applications, 64

files for Web use, 33

objects to separate files (See exporting)

Registry configuration setting, 76

workbooks, 314–315

worksheets, 581

scenario management tool, 34

scope

constants, 190

Function procedures, 263

4799-2 Index.F 6/11/01 9:49 AM Page 926

927Index ✦ S

naming, 45–46

procedures, 221–223

variables, 186–189

screen

refreshing, 526, 844

sizing information to fit, 346–347, 855

ScreenUpdating, 300

Script Editor, 73, 126

script-oriented Web pages, 773–775

scripting languages. See LotusScript; Visual Basic

for Applications (VBA)

scrolling

custom dialog box, 381

label, 725–726

lock, 843

worksheets, 418–420

searching

function name, 28

Internet newsgroups, 864–865

toolbar, 23

security

Excel, 110, 629

Registry configuration setting, 76

Visual Basic for Applications macros, 790, 832

Select Case construct, 208–211

Select event, 552

selecting

maximum value, 311–312

ranges, 294–296, 843

worksheets, 590–591

SelectionChange event, 590–591, 678–680

SendKeys method, 621–623

sequences, event, 572–573

SERIES function, 30–31, 534–535

Series object, 539

SeriesChange event, 552

server, automation (Microsoft Word)

described, 609

early versus late binding, 610–612

foreign objects, working with, 609

late binding example, 613

memos, generating, 613–616

shapes

animating, 565

color, 162

comments, 158

drawing, 28–30

naming, 48

SheetActivate event, 580–581

SheetExists function, 326–327

sheets. See worksheets

Shell function, 603–607

Shell object, 363

Shift key, detecting, 289

shortcut keys

calculation, manual, 38

creating, 106–107

disabling, 860

displaying, 698–700

Edit menu, 698

Macro Recorder option, 149

menu, 687

menus, 21

procedures, executing, 224–225

shortcut menu

adding items, 712–713

creating, 714–717

deleting items, 713

described, 127, 653, 710

disabling, 713–714

displaying, 127, 591

listing, 711

resetting, 714

ShowStats procedure, 498–500

size

buttons, 22

chart objects, 532–533, 535, 552

Dialog Box, 417–418

files, 768

formatting, 142

HTML files, 71

worksheets, 19

skipping values (Step value), 214

solver analysis tool, 35

Sorcim, 4

sorting

arrays, 247–250, 321–323, 846

worksheets, 321–323

sound

MIDI files, 348

WAV files, 347

worksheet function, 348–349, 829

Sound-Proof 2000, 905–906

source data, 538–546

space-delimited files, 66

spaces, 495–496

spaghetti application, 91

speech recognition, 23

speed

Add-Ins, 644–645

custom versus built-in functions, 258, 281

formulas, 38, 52

megaformulas, 58–59

Progress Indicator, 440

sorting, 323

variables, declaring, 186, 851

4799-2 Index.F 6/11/01 9:49 AM Page 927

928 Index ✦ S

SpinButton

controls, custom dialog box, 382

keyboard users, 401

TextBox, pairing with, 402–403

splash screen, 414–416

spreadsheet applications

audience, 85

defined, 81–82

design aesthetics, 110–111

developers, 83–84, 95–96, 111–112

directory structure, 115

distributing, 112–113

Excel versions, 114

language issues, 114

planning, 97–99

problems, solving, 88–89

protecting worksheets, 109–110

reasons to use, 86–88

system speed, 114

testing, 107–109

types, 89–94

updating, 113

user interface, planning, 100–107

user needs, determining, 96–97

users, classifying, 84–85

users newsgroup, 863

video mode, 115

Spreadsheet FAQ, 866

Spreadsheet Page, 866

spreadsheets, history of

copy protection, 6

Lotus 1-2-3, 4–7

Microsoft Excel, 8–12

Quattro Pro, 7–8

VisiCalc, 3–4

Sqr function, 199

Start command, 606

starting

applications, 106, 603–607

Excel, 76, 149

progress indicator, 442

StartTextTools procedure, 483–486

statements, Visual Basic for Applications

executing, 127

listed, 867–870

static variables, 189, 262

statistical analysis tool, 34

Status Bar, 440, 845

stay-open dialog boxes, 455–458

Stdole, 173

Step value, 214

Stephen Bullen’s Excel page, 866

storing

custom Function procedures, 286–287

macro recorder option, 149

multiple charts on one sheet, 562–563

template files, 68–69

toolbars, custom, 654–655

UserForm, 379

Visual Basic for Applications code, 131–132

string

arithmetic errors, testing, 272

characters, returning, 273

comparing, 836

concatenating, 135, 194, 833, 854

extracting nth element, 336–337

naming convention, 191

pattern-matching, 335–336

UserForm, storing, 379

variables, 188

Visual Basic for Applications, 191–192

string concatenation (&) operator, 194

structured programming, defined, 213

Style property, 675–676

stylistic formatting, 27

Sub keyword, declaring, 220–221

Sub procedures

arguments, 234–237

Ctrl + shortcut key, 224–225

declaring, 220–221

defined, 219–220

events, 233

example, 241–255

executing, 222–234

Function procedures versus, 257

Immediate window, 233–234

Macro dialog box, 223

menu, 225–226

object clicking, 231–233

private, 221–222

public, 221

scoping, 221–222

storing, 131

testing, 223, 282

toolbar button, 230–231

variables, declaring, 187

writing, 134

subscripts, 843

subtotals, automatic, 33–34

subtraction (-) operator, 194

summing techniques

array formulas, 53–54

SUM function, 278–281

SUMIF function, 52

4799-2 Index.F 6/11/01 9:49 AM Page 928

929Index ✦ S–T

SuperCalc, 4

switches, command-line, 62

SYLK files (MultiPlan), 66

synchronizing

checked menu items, 706

worksheets, 316–317

syntax errors, 180, 850

system

hardware, 96

settings, 763–765

speed, 114

T
tab-delimited files, 66, 778

tab order, 387–388

tables, lookup, 269

tables, pivot

analysis tools, 34–35

charts, 30, 533

creating, 506–507, 509–512

external database, 513–515

modifying, 518–520

multiple, 515–518

object hierarchy, 152

reasons to use, 505

recorded code, cleaning up, 508–509

tabs, 25, 364, 372

TabStrip controls, 382

Tag property, 404

tags. See HTML

Task Pane toolbar, 23

template

files, 64, 68–69

UserForms, creating, 408

Terminate event, 400

testing

beta, 109

collection for membership, 327

macros, 134

spreadsheet applications, 107–110

statements, 127

Sub procedures, 223

UserForms, 389

workbooks, 630

text

adding, 491–493

case, 488–491

color, 162

comments, 159

constants, 46

design, 111

drawing, 29

Excel processing, 89

files, 775–788

line break, 362, 841

removing, 493–495

searching, 773

TextBox, displaying, 722

Toolbox, changing, 406

workbooks, adding, 630–631

worksheet display, 20

text files

accessing, 775

data, importing, 779

Excel usage, logging, 782–783

exporting a range to HTML format, 786–788

exporting range to, 779–781

file number, getting, 777–778

filtering, 783

importing more than 256 columns of data,

783–785

importing to a range, 781–782

opening, 776–777

position, determining or setting, 778

read/write statements, 778–779

reading, 777

supporting, 66

writing, 777

Text to Speech toolbar, 23

Text Tools

adding text, 491–493

Apply button, clicking, 486–488

case, 488–491

cells, information about contents, 498–500

deleting spaces, 495–496

deleting text, 493–495

described, 479–480

evaluating project, 501–502

example, 480–481

help, 500, 501

menu, adding and deleting items, 500–501

modMain module, 483–486

project goals, 480

undo, 497–498

user interface, 481–483

workbook, 481

TextBox

controls, custom dialog box, 382

SpinButton, pairing with, 402–403

time

cells, entering, 25

displaying, 318–320

events, 599–600

executing schedule, 206–207

international settings, 766

naming convention, 191

4799-2 Index.F 6/11/01 9:49 AM Page 929

930 Index ✦ T–U

tip text, 406

titles. See names; naming

toggling

Boolean properties, 317–318

checked menu items, 705–706

controls, custom dialog box, 382

toolbar

add-in, distributing with, 660–661

button image, 676–677

buttons, executing procedures, 230–231

CommandBars collection, 661–683

creating new, 657

customizing, 105–106, 656

deleting, 658

described, 653

distributing, 660–661

Excel menus, 21

files, 63, 69

hiding or displaying, 657

macro button, 659

manipulating, 654, 658

problems, 655

renaming, 658

resetting built-in, 658

storing, 654–655

Sub procedures, executing, 231–233

user interface, 22–23

Visual Basic Editor, 127, 143

workbooks, attaching to, 660

worksheet controls, 383–384

Toolbox, UserForm controls

ActiveX, 407

customizing or combining, 406–407

icons or tip text, 406

pages, adding, 406

tools. See TextTools

Tools menu

ID setting (Excel), 693

menu item, adding, 697–698, 698

top-level keys, 75

tracking cell changes, 587–588

transferring

ListBox item, 427–428

one-dimensional arrays, 310

variant array, 310–311

trapping. See errors

trigonometric functions, 566–567

True/False. See Boolean properties

turnkey applications, 94

TXT (tab-delimited) files, 778

type

determining, 301–302

Function procedures, 262

indicating, 188, 835

Type property, 680–683

TypeName function, 184

typing code, 132–135

U
underscores, 179

Undo, 133

undo technique, 497–498

Union function, 306

updating

cells, 536

links, 829

spreadsheet applications, 113

UPPER function, 265

Usenet. See Internet newsgroups

user

beta testing, 109

data types, defining, 198, 236

Excel usage, logging, 782–783

Excel version, 114

execution, changing, 208

filenames, asking for, 364–367

filenames, displaying choices, 367–368

getting information (See Input Box)

help, 500

macro control, 849

pausing macro, 299–300

pivot tables, 518–520

Registry setting, 76

scroll lock, 843

spreadsheet applications, 82, 84–85

user-defined data types

passing, 236

Visual Basic for Applications, 198

user interface

ActiveX controls, 101–103

dialog boxes, 21–22

dialog boxes, customizing, 100–101

drag-and-drop feature, 23–24

Excel, 21–24

keyboard shortcuts, 24

menus, 21

menus, customizing, 103–105

needs, determining, 96–97

planning, 82, 100–107

ranges, selecting, 856

4799-2 Index.F 6/11/01 9:49 AM Page 930

931Index ✦ U–V

shortcut keys, creating, 106–107

Text Tools, 481–483

toolbars, 22–23, 105–106

UserForm

alternatives (See InputBox; MsgBox)

charts, 549–551

charts, displaying, 463–467

Close button, disabling, 416–417

closing, 389–391

code to display dialog box, 394–395

color picker example, 461–462

copying between projects, 129

creating, 377, 391–394, 804–810

data, validating, 398

design-time versus runtime manipulations,

800–801

Dialog Box size, changing, 417–418

displaying, 378–379, 389

enhanced Data Form, 471–473

event-handler procedures, 391, 396–398

events, 398–404, 598–599

example, 391–398

Excel dialog boxes, emulating, 408

FAQ, 851–856

FormMain, 481–483

help (supplying), 723–727

inserting new, 378

menu, 411–413

MsgBox function, emulating, 452–455

multiple buttons, one event-handler, 458–461

problems, avoiding, 408–409

progress indicators, 439–445

ranges, selecting, 413–414

references, 404–405

scrolling label, 725–726

splash screen, creating, 414–416

spreadsheets, 467–471

stay-open (modeless) while working, 455–458

templates, creating, 408

testing, 389

Toolbox, customizing, 406–407

wizards, creating, 445–451

worksheets, zooming and scrolling through,

418–420

UserForm controls

DropDown, 726–727

help text, displaying, 723–725

ListBox (See ListBox controls)

listed, 379, 380–389, 800–803

MultiPage, 436–437

utilities. See TextTools

utility applications, 91–92

V
validating

data, 359, 398

data entry, 25, 588–590

message, displaying, 25, 588–590, 722

values. See data entry

appearance (See numeric formatting)

arguments, passing to procedure, 235–236

cell, 19

chart, 552

deleting, 844

displaying, 140

Excel file formats, 756

filling range, 165, 166

InputBox, 358

monitoring, 23

MsgBox function, 361

outside worksheet (See constants)

prompting, 296–297

property, 158

returning single (See Function procedures)

Series object, 539–541

variables, assigning, 125

variables

class modules, 819

declarations, 131, 184–186

defined, 125

local, 187–188

modulewide, 189

naming conventions, 19

public, 189, 839

scoping, 186–189

static, 189

value, displaying, 140

Visual Basic for Applications, 181–182, 186–189

variant array, 310–311, 834

variant data type, 834

VB Projects collection

defined, 791

error message, 791

member, accessing, 792

references, 792–793

version number, determining, 757

VGA mode, 115

video mode

determining, 346–347

spreadsheet applications, 115

View menu

ID setting (Excel), 693

menus, customizing, 21, 22

viruses, 112, 832, 833

visibility. See hiding

4799-2 Index.F 6/11/01 9:49 AM Page 931

932 Index ✦ V–W

Visible property, 677

VisiCalc, 3–4, 66

Visual Basic Editor

activating, 125–126

FAQs, 830–834

Integrated Development Environment, 789

UserForms, 377–378

windows, 126–127

Visual Basic for Applications (VBA)

arrays, 195–196

assignment statements, 193–195

BASIC programming, 119

class modules (See class modules)

Comment object case study, 157–165

components, displaying active in worksheet,

794–795

constants, 190–191

custom menus, 706–708

data types, 182–186

dates, 192–193

editor, 125–127

environment, customizing, 138–143

execution, controlling, 204–217

files, manipulating (See files)

functions, built-in, 198–201

help, associating, 733–734

InputBox function, 355–357

Integrated Development Environment

(IDE) (See Integrated Development

Environment [IDE])

Lotus macros versus, 121

LotusScript versus, 122

macro recorder, 143–152

menus, customizing, 689–700

module sheets, 18

modules, 129

MsgBox function, 359–364

MsgBox function, emulating, 452–455

procedures (See macros)

Project Explorer, 128–129

properties and methods, 154–156

statements, listed, 867–870

strings, 191–192

user-defined data types, 198

using, 122–125

utilities, writing, 478

variables, 186–189

Visual Basic for Applications module, replacing,

795–797

XLM versus, 120–121

Visual Basic for Applications (VBA) code

adding, 813–814

error, 877–880

functions, describing, 286

NumLock class, adding, 813–814

SpinButton events, 402

windows, 130–138

to write more Visual Basic for Applications

code, 797–799

Visual Basic for Applications (VBA) instructions

Excel functions usable, 871–876

Visual Basic for Applications (VBA) language

elements

code, entering, 179

comments, 178–181

data types, 181

described, 177–178

variables, 181–182

Visual Basic for Applications (VBA) object

collections, 152–154

hierarchy, 170–175

manipulating, 201–204

models, 120

range, 165–170

variables, 196–197

Visual Basic for Windows, 119

Volatile method, 268

W
Watch Window toolbar, 23

WAV files, playing, 347

Web. See World Wide Web

what-if models, 34, 93

wildcard characters, 836

window

add-in XLA files versus XLS source files, 635–636

docking, 143

handle, 851

object hierarchy, 152

Properties, custom dialog boxes, 385–386

size, testing for, 211

Visual Basic Editor, 126–127

workbooks, 580, 636

Window menu, 693

windows, Visual Basic Editor

code, 127

immediate, 127

menu bar, 126–127

Project Explorer, 127

toolbars, 127

4799-2 Index.F 6/11/01 9:49 AM Page 932

933Index ✦ W

Windows API (Applications Programming

Interface)

compatibility, 754, 757–759

default printer information, 345–346

described, 287

directory, determining, 288–289

directory, selecting, 368–371

examples, 287–288

Excel window handle, 851

file associations, 344–345

Function procedures, 287–290

learning more, 290

Registry, reading from and writing to, 349–351

Shift key, detecting, 289

sound, adding, 347–349

video mode, current, 346–347

Windows Control Panel Dialog boxes, running,

608–609

Windows (Microsoft)

earlier versions, 6, 606

Quattro Pro, 8

Registry (See Registry)

utility application, launching, 604

Windows NT (Microsoft), 606

Windows Scripting Host, 363

WinHelp, 730–731

With-End With construct, 150, 201–202

wizards

buttons, adding, 447

buttons, programming, 447–449

chart, 30

distribution, 112

MultiPage control, setting up, 446–447

programming dependencies, 449–450

reasons to use, 445–446

running, 608–609

task, performing, 450–451

text import, 66

UserForms, creating, 445–451

words, reserved, 182

workbook

accessing add-in as, 643–644

Add-Ins versus, 625–626, 857

alphabetizing sheets example, 241–255

calling procedure from different, 229–234

chart sheets, 20

charts location, 521–522

checking for open, 327

closed, getting value from, 328–329

closing, event before, 583–584

contents, 19–20

deactivating, 581–582

descriptive information, adding, 630–631

events, 578–584

Excel 5/95 dialog sheets, 20

Integrated Development Environment (IDE),

791–793

Loan Amortization Wizard example, 742–743

locking, 109

object hierarchy, 152, 331

open, displaying (See Project Explorer)

opening, 579–580

personal macro, 149

printing, event before, 582–583

properties, accessing, 315–316

referencing other, 41–42

saving, 314–315

saving and closing, 315

saving sheets, 581

scroll lock, 843

setting up, 629–630

starting Excel, 61

testing, 630

Text Tools, 481

toolbars, attaching to, 660

Visual Basic for Applications module sheets, 18

window, maximizing, 580

worksheets, synchronizing, 316–317

XLA file, comparing to, 635–639

XLM macro sheets, 20

WorkbookIsOpen function, 327

worksheet

activating, 580–581

add-in XLA files versus XLS source files, 636–637

Add-ins, 92

adding, 581

alphabetizing, 241–255

custom function example, 259–260

databases, 31

date files saved or printed, displaying, 330–331

deactivating, 581–582

deleting from charts, 530

displaying, 467–471, 722–723

events, 585–591

listed, 18

listing active, 434–436

Loan Amortization Wizard example, 744–746

maximum value across all, 339–340

object hierarchy, 152, 331

object parents, 331–332

printing before event, 582–583

protecting, 109–110

referencing other, 41–42

saving, 581

Continued

4799-2 Index.F 6/11/01 9:49 AM Page 933

934 Index ✦ W–Z

worksheet (continued)

saving for Web use, 33

selections, changing, 590–591, 849

shortcut menu, displaying at right-click, 591

sound, playing on functions, 348–349

starting Excel, 61

storing multiple charts on one, 562–563

synchronizing, 316–317, 706

Visual Basic for Applications components,

displaying active, 794–795

workbooks, 19–20

zooming and scrolling through, 418–420

worksheet contents

active Visual Basic for Applications

components, displaying, 794–795

array formulas example, 50–51

cell formatting, getting information about,

329–330

cells, changing, 585–586

cells between two values, counting, 332

Cells property, 167–169

formula, calling custom functions from, 264–265

last nonempty cell in a column or row,

determining, 333–334

multifunctional function, 337–338

nonduplicated random integers, returning array

of, 340–342

nth element, extracting from string, 336–337

randomizing a range, 342–344

range, monitoring for changes, 586–590

Range property, 166–167

selecting ranges (RefEdit), 381

strings, pattern-matching, 335–336

visible cells in a range, counting, 332–333

worksheet formatting

columns and rows, increasing, 828

3D, 338–339

Worksheet Menu Bar, 708–710

Worksheet Sort, 321–323

workspace files, 68

World Wide Web. See also HTML

Microsoft Office components, 467

pages, script-oriented, 773–775

writing

ranges, 307–308

to ranges (For-Loop), 308–310

Registry, 350–351

text files, 777, 778–779

Visual Basic for Applications code, 797–799

X
X values, 539–541

XLA file, 635–639, 857

XLL add-in files, 69

XLM

files, supporting, 18, 20, 31, 63, 826–827

Visual Basic for Applications versus, 120–121

XLS files. See workbooks

XLT files. See templates

XLW files. See workspace files

XoR operator, 194

Xor operator, 836

Z
zooming, 418–420

!, 188

:, 179

& (concatenation operator), 833

4799-2 Index.F 6/11/01 9:49 AM Page 934

4799-2 Index.F 6/11/01 9:49 AM Page 935

4799-2 Index.F 6/11/01 9:49 AM Page 936

4799-2 Index.F 6/11/01 9:49 AM Page 937

4799-2 Index.F 6/11/01 9:49 AM Page 938

4799-2 Index.F 6/11/01 9:49 AM Page 939

4799-2 Index.F 6/11/01 9:49 AM Page 940

Yours Free!

Power Utility Pak 2000
“The Excel tools Microsoft forgot.”

Pro-Quality Tools
PUP 2000* is a dynamite collection of
50 general purpose Excel utilities, plus
40 new worksheet functions. The com-
panion CD-ROM has a trial version of
PUP 2000. Try it. If you like it, use this
coupon to receive a free copy of the
licensed version.

VBA Source Code is Available
You can also get the complete VBA
source files for only $20.00. Learn how
the utilities and functions were written,
and pick up useful tips and programming
techniques in the process. This is a must
for all VBA programmers!

YES! Please send Power Utility Pak 2000 to...

Name: __

Company: __

Address:__

City: ______________________________ State: ____________ Zip: ____________________

Daytime Phone: ____________________Email: __

Check one:
❑ PUP 2000 Licensed Version (Free, $6.00 s/h) . .$ 6.00

❑ Developer’s Pak: Licensed Version (free, $6.00 s/h) + VBA Source ($20.00)$26.00

Delivery method (check one):
❑ Send me the PUP 2000 CD-ROM

❑ Send download instructions to my email address (shipping/handling fee still applies)

Credit Card No: __________________________________Expires:________________________

Make check or money order (U.S. funds only) payable to:

JWalk & Associates Inc.
P.O. Box 12861

La Jolla, CA 92039-2861
For more information about PUP 2000, visit:

http://j-walk.com/ss/

*PUP 2000 is compatible with Excel 97, Excel 2000, and Excel 2002.

4799-2 Bob.F 6/11/01 9:49 AM Page 941

http://j-walk.com/ss/

4799-2 Bob.F 6/11/01 9:49 AM Page 942

Hungry Minds, Inc.
End-User License Agreement

READ THIS. You should carefully read these terms and conditions before opening
the software packet(s) included with this book (“Book”). This is a license agree-
ment (“Agreement”) between you and Hungry Minds, Inc. (“HMI”). By opening the
accompanying software packet(s), you acknowledge that you have read and accept
the following terms and conditions. If you do not agree and do not want to be
bound by such terms and conditions, promptly return the Book and the unopened
software packet(s) to the place you obtained them for a full refund.

1. License Grant. HMI grants to you (either an individual or entity) a nonexclu-
sive license to use one copy of the enclosed software program(s) (collectively,
the “Software”) solely for your own personal or business purposes on a single
computer (whether a standard computer or a workstation component of a
multi-user network). The Software is in use on a computer when it is loaded
into temporary memory (RAM) or installed into permanent memory (hard
disk, CD-ROM, or other storage device). HMI reserves all rights not expressly
granted herein.

2. Ownership. HMI is the owner of all right, title, and interest, including copy-
right, in and to the compilation of the Software recorded on the disk(s) or
CD-ROM (“Software Media”). Copyright to the individual programs recorded
on the Software Media is owned by the author or other authorized copyright
owner of each program. Ownership of the Software and all proprietary rights
relating thereto remain with HMI and its licensers.

3. Restrictions On Use and Transfer.

(a) You may only (i) make one copy of the Software for backup or archival
purposes, or (ii) transfer the Software to a single hard disk, provided
that you keep the original for backup or archival purposes. You may
not (i) rent or lease the Software, (ii) copy or reproduce the Software
through a LAN or other network system or through any computer sub-
scriber system or bulletin-board system, or (iii) modify, adapt, or create
derivative works based on the Software.

(b) You may not reverse engineer, decompile, or disassemble the Software.
You may transfer the Software and user documentation on a permanent
basis, provided that the transferee agrees to accept the terms and condi-
tions of this Agreement and you retain no copies. If the Software is an
update or has been updated, any transfer must include the most recent
update and all prior versions.

4799-2 EULA.F 6/11/01 9:49 AM Page 943

4. Restrictions on Use of Individual Programs. You must follow the individ-
ual requirements and restrictions detailed for each individual program in
Appendix E of this Book. These limitations are also contained in the individual
license agreements recorded on the Software Media. These limitations may
include a requirement that after using the program for a specified period of
time, the user must pay a registration fee or discontinue use. By opening the
Software packet(s), you will be agreeing to abide by the licenses and restric-
tions for these individual programs that are detailed in Appendix E and on the
Software Media. None of the material on this Software Media or listed in this
Book may ever be redistributed, in original or modified form, for commercial
purposes.

5. Limited Warranty.

(a) HMI warrants that the Software and Software Media are free from defects
in materials and workmanship under normal use for a period of sixty
(60) days from the date of purchase of this Book. If HMI receives notifica-
tion within the warranty period of defects in materials or workmanship,
HMI will replace the defective Software Media.

(b) HMI AND THE AUTHOR OF THE BOOK DISCLAIM ALL OTHER WAR-
RANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE, WITH RESPECT TO THE SOFTWARE, THE
PROGRAMS, THE SOURCE CODE CONTAINED THEREIN, AND/OR THE
TECHNIQUES DESCRIBED IN THIS BOOK. HMI DOES NOT WARRANT
THAT THE FUNCTIONS CONTAINED IN THE SOFTWARE WILL MEET
YOUR REQUIREMENTS OR THAT THE OPERATION OF THE SOFT-
WARE WILL BE ERROR FREE.

(c) This limited warranty gives you specific legal rights, and you may have
other rights that vary from jurisdiction to jurisdiction.

6. Remedies.

(a) HMI’s entire liability and your exclusive remedy for defects in materials
and workmanship shall be limited to replacement of the Software Media,
which may be returned to HMI with a copy of your receipt at the follow-
ing address: Software Media Fulfillment Department, Attn.: Excel 2002
Power Programming with VBA, Hungry Minds, Inc., 10475 Crosspoint
Blvd., Indianapolis, IN 46256, or call 1-800-762-2974. Please allow four to
six weeks for delivery. This Limited Warranty is void if failure of the
Software Media has resulted from accident, abuse, or misapplication.
Any replacement Software Media will be warranted for the remainder of
the original warranty period or thirty (30) days, whichever is longer.

(b) In no event shall HMI or the author be liable for any damages whatsoever
(including without limitation damages for loss of business profits, busi-
ness interruption, loss of business information, or any other pecuniary
loss) arising from the use of or inability to use the Book or the Software,
even if HMI has been advised of the possibility of such damages.

4799-2 EULA.F 6/11/01 9:49 AM Page 944

(c) Because some jurisdictions do not allow the exclusion or limitation of
liability for consequential or incidental damages, the above limitation or
exclusion may not apply to you.

7. U.S. Government Restricted Rights. Use, duplication, or disclosure of the
Software for or on behalf of the United States of America, its agencies and/or
instrumentalities (the “U.S. Government”) is subject to restrictions as stated
in paragraph (c)(1)(ii) of the Rights in Technical Data and Computer Soft-
ware clause of DFARS 252.227-7013, or subparagraphs (c) (1) and (2) of the
Commercial Computer Software - Restricted Rights clause at FAR 52.227-19,
and in similar clauses in the NASA FAR supplement, as applicable.

8. General. This Agreement constitutes the entire understanding of the parties
and revokes and supersedes all prior agreements, oral or written, between
them and may not be modified or amended except in a writing signed by both
parties hereto that specifically refers to this Agreement. This Agreement shall
take precedence over any other documents that may be in conflict herewith. If
any one or more provisions contained in this Agreement are held by any court
or tribunal to be invalid, illegal, or otherwise unenforceable, each and every
other provision shall remain in full force and effect.

4799-2 EULA.F 6/11/01 9:49 AM Page 945

CD-ROM Installation
Instructions

The CD-ROM that you find in the back of this book contains software for both
Macintosh and Windows 95/98/NT/ME/2000/XP users. You will need a copy of
Excel 2002 to use the examples and software on the CD-ROM. Read the What’s
on the CD-ROM appendix for complete information about the stuff on the
CD-ROM.

Note: You do not need to install all the items on the CD-ROM. Just install the
programs that appeal to you.

To start the CD-ROM using Windows, follow these steps:

1. Insert the CD-ROM into your computer’s CD-ROM drive.

2. Launch Windows Explorer.

3. Click Browse to browse the CD. This enables you to access the author-
created files. (Note that you must save files to your hard drive if you
make changes.)

For detailed information about installing the demonstration programs from
the CD, please see the What’s on the CD-ROM appendix.

4799-2 Install.F 6/11/01 9:49 AM Page 946

	@Team LiB
	Excel 2002 Power Programming with VBA
	About the Author
	Credits
	Preface
	Why I Wrote This Book
	What You Need to Know
	What You Need to Have
	Conventions in This Book
	Keyboard conventions
	Mouse conventions

	What the Icons Mean
	How This Book Is Organized
	Part I: Some Essential Background
	Part II: Excel Application Development
	Part III: Understanding Visual Basic for Applications
	Part IV: Working with UserForms
	Part V: Advanced Programming Techniques
	Part VI: Developing Applications
	Part VII: Other Topics
	Appendixes

	About the Companion CD-ROM
	About the Power Utility Pak Offer
	How to Use This Book
	Reach Out

	Acknowledgments
	Contents at a Glance
	Contents

	Some Essential Background
	Excel 2002: Where It Came From
	A Brief History of Spreadsheets
	It all started with VisiCalc
	Lotus 1-2-3
	Quattro Pro
	Microsoft Excel

	Spreadsheets Today
	Why Excel Is Great for Developers
	Excel's Role in Microsoft's Strategy
	Summary

	Excel in a Nutshell
	Thinking in Terms of Objects
	Workbooks
	Worksheets
	Chart sheets
	XLM macro sheets
	Excel 5/95 dialog sheets

	Excel's User Interface
	Menus
	Dialog boxes
	Toolbars
	Drag-and-drop
	Keyboard shortcuts

	Customizing the Display
	Data Entry
	Selecting Objects
	Formatting
	Numeric formatting
	Stylistic formatting

	Formulas
	Names
	Functions
	Shapes
	Charts
	Macros
	Database Access
	Worksheet databases
	External databases

	Internet Features
	Analysis Tools
	Outlines
	Automatic subtotals
	Scenario management
	Analysis ToolPak
	Pivot tables
	Auditing
	Solver

	Add-Ins
	Compatibility
	Summary

	Formula Tricks and Techniques
	About Formulas
	Calculating Formulas
	Cell and Range References
	Why use references that aren't relative?
	About R1C1 notation
	Referencing other sheets or workbooks

	Using Names
	Naming cells and ranges
	Applying names to existing references
	Intersecting names
	Naming columns and rows
	Scoping names
	Naming constants
	Naming formulas
	Naming objects

	Formula Errors
	Array Formulas
	An array formula example
	An array formula calendar
	Array formula pros and cons

	Counting and Summing Techniques
	Using the COUNTIF or SUMIF function
	Using array formulas to count and sum
	Other counting tools

	Working with Dates and Times
	Entering dates and times
	Using pre-1900 dates

	Creating Megaformulas
	Summary

	Understanding Excel's Files
	Starting Excel
	Excel's File Extensions
	Spreadsheet File Formats Supported
	Lotus 1-2-3 spreadsheet files
	Quattro Pro spreadsheet files
	Database file formats
	Text file formats
	Other file formats

	Files Written by Excel
	XLS files
	Workspace files
	Template files
	Toolbar files
	Add-in files

	Excel and HTML
	So how does it work?
	Adding some complexity
	What about interactivity?

	Excel Settings in the Registry
	About the Registry
	Excel's settings

	Summary

	Excel Application Development
	What Is a Spreadsheet Application?
	Spreadsheet Applications
	The Developer and the End User
	Who are developers? What do they do?
	Classifying spreadsheet users
	The audience for spreadsheet applications
	Why people use spreadsheets

	Solving Problems with a Spreadsheet
	Basic Spreadsheet Types
	Quick-and-dirty spreadsheets
	For-your-eyes-only spreadsheets
	Single-user applications
	Spaghetti applications
	Utility applications
	Add-ins that contain worksheet functions
	Single-block budgets
	What-if models
	Data storage and access spreadsheets
	Database front ends
	Turnkey applications

	Summary

	Essentials of Spreadsheet Application Development
	Determining User Needs
	Planning an Application That Meets User Needs
	Determining the Most Appropriate User Interface
	Creating custom dialog boxes
	Using ActiveX controls on a worksheet
	Customizing menus
	Customizing toolbars
	Creating shortcut keys
	Executing the development effort

	Concerning Yourself with the End User
	Testing the application
	Making the application bulletproof
	Making the application aesthetically appealing and intuitive
	Documenting the development effort
	Distributing the application to the user
	Updating the application when necessary

	Other Development Issues
	The user's installed version of Excel
	Language issues
	System speed
	Video modes
	Directory structure

	Summary

	Understanding Visual Basic for Applications
	Introducing Visual Basic for Applications
	Some BASIC Background
	About VBA
	Object models
	VBA versus XLM
	VBA versus Lotus macros
	VBA versus LotusScript

	The Basics of VBA
	Introducing the Visual Basic Editor
	Activating the VBE
	The VBE windows

	Working with the Project Explorer
	Adding a new VBA module
	Removing a VBA module
	Exporting and importing objects

	Working with Code Windows
	Minimizing and maximizing windows
	Storing VBA code
	Entering VBA code

	Customizing the VBE Environment
	Using the Editor tab
	Using the Editor Format tab
	Using the General tab
	Using the Docking tab

	The Macro Recorder
	What is recorded
	Relative or absolute?
	Recording options
	Cleaning up recorded macros

	About Objects and Collections
	The object hierarchy
	About collections
	Object referral

	Properties and Methods
	Object properties
	Object methods

	The Comment Object: A Case Study
	Online help for the Comment object
	Properties of a Comment object
	Methods of a Comment object
	The Comments collection
	About the Comment property
	Objects within a Comment object
	Determining whether a cell has a comment
	Adding a new Comment object
	Some useful Application properties

	Working with Range Objects
	The Range property
	The Cells property
	The Offset property

	Things to Know about Objects
	Esoteric but essential concepts to remember
	Learn more about objects and properties

	Summary

	VBA Programming Fundamentals
	VBA Language Elements: An Overview
	Comments
	Variables, Data Types, and Constants
	Defining data types
	Declaring variables
	Scoping variables
	Working with constants
	Working with strings
	Working with dates

	Assignment Statements
	Arrays
	Declaring arrays
	Declaring multidimensional arrays

	Object Variables
	User-Defined Data Types
	Built-in Functions
	Manipulating Objects and Collections
	With-End With constructs
	For Each-Next constructs

	Controlling Execution
	GoTo statements
	If- Then constructs
	Select Case constructs
	Looping blocks of instructions

	Summary

	Working with VBA Sub Procedures
	About Procedures
	Declaring a Sub procedure
	Scoping a procedure

	Executing Procedures
	Executing a procedure with the Run
	Run Sub/
	UserForm command
	Executing a procedure from the Macro dialog box
	Executing a procedure using a Ctrl+ shortcut key combination
	Executing a procedure from a custom menu
	Executing a procedure from another procedure
	Executing a procedure from a toolbar button
	Executing a procedure by clicking an object
	Executing a procedure when an event occurs
	Executing a procedure from the Immediate window

	Passing Arguments to Procedures
	Error-Handling Techniques
	Trapping errors
	Error-handling examples

	A Realistic Example
	The goal
	Project requirements
	What you know
	The approach
	What you need to know
	Some preliminary recording
	Initial setup
	Code writing
	Sort procedure writing
	More testing
	Fixing the problems
	Utility availability
	Evaluating the project

	Summary

	Creating Function Procedures
	Sub Procedures versus Function Procedures
	Why Create Custom Functions?
	An Introductory Example
	A custom function
	Using the function in a worksheet
	Using the function in a VBA procedure
	Analyzing the custom function

	Function Procedures
	Declaring a function
	A function's scope
	Executing Function procedures

	Function Arguments
	Function Examples
	A function with no argument
	Another function with no argument
	A function with one argument
	A function with two arguments
	A function with an array argument
	A function with optional arguments
	A function that returns a VBA array
	A function that returns an error value
	A function with an indefinite number of arguments

	Emulating Excel's SUM Function
	Debugging Functions
	Dealing with the Insert Function Dialog Box
	Specifying a function category
	Adding a function description

	Using Add-ins to Store Custom Functions
	Using the Windows API
	Windows API examples
	Determining the Windows directory
	Detecting the Shift key
	Learning more about API functions

	Summary

	VBA Programming Examples and Techniques
	Working with Ranges
	Copying a range
	Moving a range
	Copying a variably sized range
	Selecting or otherwise identifying various types of ranges
	Prompting for a cell value
	Entering a value in the next empty cell
	Pausing a macro to get a user-selected range
	Counting selected cells
	Determining the type of selected range
	Looping through a selected range efficiently
	Deleting all empty rows
	Determining whether a range is contained in another range
	Determining a cell's data type
	Reading and writing ranges
	A better way to write to a range
	Transferring one-dimensional arrays
	Transferring a range to a variant array
	Selecting the maximum value in a range
	Selecting all cells with a particular format

	Working with Workbooks and Sheets
	Saving all workbooks
	Saving and closing all workbooks
	Accessing workbook properties
	Synchronizing worksheets

	VBA Techniques
	Toggling a Boolean property
	Determining the number of printed pages
	Displaying the date and time
	Getting a list of fonts
	Sorting an array
	Processing a series of files

	Some Useful Functions for Use in Your Code
	The FileExists function
	The FileNameOnly function
	The PathExists function
	The RangeNameExists function
	The SheetExists function
	The WorkbookIsOpen function
	Retrieving a value from a closed workbook

	Some Useful Worksheet Functions
	Returning cell formatting information
	Displaying the date a file was saved or printed
	Understanding object parents
	Counting cells between two values
	Counting visible cells in a range
	Determining the last nonempty cell in a column or row
	Does a string match a pattern?
	Extracting the nth element from a string
	A multifunctional function
	The SHEETOFFSET function: Version 1
	The SHEETOFFSET function: Version 2
	Returning the maximum value across all worksheets
	Returning an array of nonduplicated random integers
	Randomizing a range

	Windows API Calls
	Determining file associations
	Determining default printer information
	Determining the current video mode
	Adding sound to your applications
	Reading from and writing to the Registry

	Summary

	Working with UserForms
	Custom Dialog Box Alternatives
	Using an Input Box
	VBA's InputBox function
	Excel's InputBox method

	VBA's MsgBox Function
	Excel's GetOpenFilename Method
	Excel's GetSaveAsFilename Method
	Prompting for a Directory
	Using a Windows API function to select a directory
	Using the FileDialog object to select a directory

	Displaying Excel's Built-In Dialog Boxes
	Using the Dialogs collection
	Learning more about built-in dialog boxes
	Using arguments with built-in dialog boxes
	Executing a menu item directly

	Summary

	Introducing UserForms
	How Excel Handles Custom Dialog Boxes
	Inserting a New UserForm
	Displaying a UserForm
	Adding Controls to a UserForm
	Controls Available to You
	CheckBox
	ComboBox
	CommandButton
	Frame
	Image control
	Label
	ListBox
	MultiPage
	OptionButton
	RefEdit
	ScrollBar
	SpinButton control
	TabStrip
	TextBox
	ToggleButton

	Adjusting UserForm Controls
	Adjusting a Control's Properties
	Using the Properties window
	Common properties
	Learning more about properties
	Accommodating keyboard users

	Displaying and Closing UserForms
	Displaying a UserForm
	Closing a UserForm
	About event-handler procedures

	Creating a UserForm: An Example
	Creating the UserForm
	Writing code to display the dialog box
	Trying it out
	Adding event-handler procedures
	Validating the data
	Now it works

	UserForm Events
	Learning about events
	UserForm events
	Example: SpinButton events
	Pairing a SpinButton with a TextBox

	Referencing UserForm Controls
	Customizing the Toolbox
	Changing icons or tip text
	Adding new pages
	Customizing or combining controls
	Adding new ActiveX controls

	Creating UserForm "Templates"
	A UserForm Checklist
	Summary

	UserForm Examples
	Creating a UserForm "Menu"
	Using CommandButtons
	Using a ListBox

	Selecting Ranges
	Creating a "Splash Screen"
	Disabling a UserForm's Close Button
	Changing a Dialog Box's Size
	Zooming and Scrolling a Sheet from a UserForm
	ListBox Techniques
	About the ListBox control
	Adding items to a ListBox control
	Determining the selected item
	Determining multiple selections
	Multiple lists in a single ListBox
	ListBox item transfer
	Moving items in a ListBox
	Working with multicolumn ListBox controls
	Using a ListBox to select worksheet rows
	Using a ListBox to activate to a sheet

	Using the MultiPage Control
	Summary

	Advanced UserForm Techniques
	Displaying a Progress Indicator
	Creating a standalone progress indicator
	Showing progress using a MultiPage control
	Showing progress without using a MultiPage control

	Creating Wizards
	Setting up the MultiPage control
	Adding the buttons
	Programming the buttons
	Programming dependencies
	Performing the task
	Final steps

	Emulating the MsgBox Function
	MyMsgBox code
	How it works
	Using the MyMsgBox function

	A Modeless Dialog Box
	Multiple Buttons, One Event-Handler
	Procedure
	Adapting this technique

	A Color Picker Dialog
	Displaying a Chart in a UserForm
	Method 1: Save the chart as a file
	Method 2: Use the OWC ChartSpace control

	Displaying a Spreadsheet in a UserForm
	An Enhanced Data Form
	Description
	Installing the add-in
	Using the Enhanced Data Form

	Summary

	Advanced Programming Techniques
	Developing Excel Utilities with VBA
	About Excel Utilities
	Using VBA to Develop Utilities
	What Makes a Good Utility?
	Text Tools: The Anatomy of a Utility
	Background
	Project goals for Text Tools
	How it works
	The Text Tools workbook
	The FormMain UserForm
	The modMain module
	The ApplyButton_Click procedure
	The "task" procedures
	The undo technique
	The ShowStats procedure
	User help technique
	Create menu and delete menu procedures
	Evaluation of the project
	Understand the Text Tools utility

	More About Excel Utilities
	Summary

	Working with Pivot Tables
	An Introductory Example
	Creating a pivot table
	Examining the recorded code
	Cleaning up the recorded code

	Creating a More Complex Pivot Table
	The data
	The pivot table
	The code that created the pivot table
	How it works

	Creating a Pivot Table from an External Database
	Creating Multiple Pivot Tables
	Modifying Pivot Tables
	Summary

	Working with Charts
	About Charts
	Chart locations
	The Chart object model

	Recording Chart Macros
	Macro recorder output
	The "cleaned up" macro

	Common VBA Charting Techniques
	Activating a chart
	Deactivating a chart
	Determining whether a chart is activated
	Deleting from ChartObjects or charts
	Applying chart formatting
	Looping through all charts
	Sizing and aligning ChartObjects

	More Charting Examples
	Using names in a SERIES formula
	Specifying the data used by a chart
	Determining a chart's source data: Method 1
	Determining a chart's source data: Method 2
	Displaying arbitrary data labels on a chart
	Displaying a chart in a UserForm

	Understanding Chart Events
	An example of using Chart events
	Enabling events for an embedded chart
	Example: Using Chart events with an embedded chart

	Charting Tricks
	Printing embedded charts on a full page
	Creating a "dead chart"
	Controlling a data series by hiding data
	Storing multiple charts on a chart sheet
	Using linked pictures in a chart
	Animated charts
	Creating a hypocycloid chart
	Creating a "clock" chart
	Drawing with an XY chart

	Summary

	Understanding Excel's Events
	Event Types That Excel Can Monitor
	What You Should Know about Events
	Understanding event sequences
	Where to put event-handler procedures
	Disabling events
	Entering event-handler code
	Event-handler procedures that use arguments

	Workbook-Level Events
	The Open event
	The Activate event
	The SheetActivate event
	The NewSheet event
	The BeforeSave event
	The Deactivate event
	The BeforePrint event
	The BeforeClose event

	Worksheet Events
	The Change event
	Monitoring a specific range for changes
	The SelectionChange event
	The BeforeRightClick event

	Chart Events
	Application Events
	Enabling Application-level events
	Determining when a workbook is opened
	Monitoring Application-level events

	UserForm Events
	Events Not Associated with an Object
	The OnTime event
	The OnKey event

	Summary

	Interacting with Other Applications
	Starting Another Application
	Activating Another Application
	Running Control Panel Dialog Boxes and Wizards
	Automation
	Working with foreign objects
	Early versus late binding
	A simple example
	Controlling Word from Excel
	Controlling Excel from another application

	Working with ADO
	Using SendKeys
	Summary

	Creating and Using Add- Ins
	What Is an Add-In?
	Comparing an add-in to a standard workbook
	Why create add-ins?

	Understanding Excel's Add-In Manager
	Creating an Add-In
	An Add-In Example
	Setting up the workbook
	Testing the workbook
	Adding descriptive information
	Creating the add-in
	Installing the add-in
	Distributing the add-in
	Modifying the add-in

	Comparing XLA and XLS Files
	File size and structure
	Collection membership
	Windows
	Sheets
	Accessing VBA procedures in an add-in

	Manipulating Add-Ins with VBA
	The AddIns collection
	AddIn object properties
	AddIn object events

	Optimizing the Performance of Add-Ins
	Code speed
	File size

	Special Problems with Add-Ins
	Ensuring that an add-in is installed
	Referencing other files
	Specifying the proper Excel version

	Summary

	Developing Applications
	Creating Custom Toolbars
	About Command Bars
	Toolbar Manipulations
	How Excel Handles Toolbars
	Storing toolbars
	When toolbars don't work correctly

	Manipulating Toolbars and Buttons Manually
	About command bar customization mode
	Distributing toolbars

	Manipulating the CommandBars Collection
	Command bar types
	Listing all CommandBar objects
	Creating a command bar
	Referring to command bars
	Deleting a command bar
	Properties of command bars
	Referring to controls in a command bar
	Listing the controls on a command bar
	Listing all controls on all toolbars
	Adding a control to a command bar
	Deleting a control from a command bar
	Properties of command bar controls

	Summary

	Creating Custom Menus
	A Few Words about Excel's Menu Bar
	What You Can Do with Excel's Menus
	Menu terminology
	Removing menu elements
	Adding menu elements
	Changing menu elements

	VBA Examples
	Listing menu information
	Adding a new menu to a menu bar
	Deleting a menu from a menu bar
	Adding menu items to a menu
	Displaying a shortcut key with a menu item
	Fixing a menu that has been reset

	Working with Events
	Adding and deleting menus automatically
	Disabling or hiding menus
	Working with checked menu items

	The Easy Way to Create Custom Menus
	Creating a Substitute Worksheet Menu Bar
	Working with Shortcut Menus
	Adding menu items to shortcut menus
	Deleting menu items from shortcut menus
	Disabling shortcut menu items
	Disabling shortcut menus
	Resetting shortcut menus
	Creating new shortcut menus

	Summary

	Providing Help for Your Applications
	Help for Your Excel Applications?
	Help Systems That Use Excel Components
	Using cell comments for help
	Using a Text Box for help
	Using a worksheet to display help text
	Displaying help in a UserForm
	Using the Office Assistant to display help

	Using the WinHelp and HTML Help Systems
	About WinHelp
	About HTML Help

	Associating a Help File with Your Application
	Other Ways of Displaying WinHelp or HTML Help
	Using the Help method
	Displaying Help from a message box
	Displaying Help from an input box

	Summary

	Developing User- Oriented Applications
	What Is a User-Oriented Application?
	The Loan Amortization Wizard
	Using the application
	The workbook structure
	How it works
	Potential enhancements

	Application Development Concepts
	Some Final Words
	Summary

	Other Topics
	Compatibility Issues
	What Is Compatibility?
	Types of Compatibility Problems
	Excel File Formats Supported
	Avoid Using New Features
	Applications That Use Windows API Calls
	But Will It Work on a Mac?
	Creating an International Application
	Multilanguage applications
	VBA language considerations
	Using "local" properties
	Identifying system settings
	Date and time settings

	Summary

	Manipulating Files with VBA
	Performing Common File Operations
	VBA file-related commands
	Using the FileSearch object
	Locating files that contain specific text
	Using the FileSystemObject object

	Working with Text Files
	Opening a text file
	Reading a text file
	Writing a text file
	Getting a file number
	Determining or setting the file position
	Statements for reading and writing

	Text File Manipulation Examples
	Importing data in a text file
	Exporting a range to a text file
	Importing a text file to a range
	Logging Excel usage
	Filtering a text file
	Importing more than 256 columns of data
	Exporting a range to HTML format

	Summary

	Manipulating Visual Basic Components
	Introducing the IDE
	The IDE Object Model
	The VBProjects collection

	An Introductory Example
	Replacing a Module with an Updated Version
	Using VBA to Write VBA Code
	Adding Controls to a UserForm at Design Time
	Design-time versus runtime UserForm manipulations
	Adding 100 CommandButtons at design time

	Creating UserForms Programmatically
	A simple example
	A useful (but not so simple) example

	Summary

	Understanding Class Modules
	What Is a Class Module?
	Example: Creating a NumLock Class
	Inserting a class module
	Adding the VBA code
	Using the NumLock class

	More about Class Modules
	Naming the object class
	Programming properties
	Programming methods
	Class module events

	Example: A CSV File Class
	Class module-level variables
	Property procedures
	Method procedures
	Using the CSVFileClass object

	Summary

	Frequently Asked Questions about Excel Programming
	General Excel Questions
	The Visual Basic Editor
	Procedures
	Functions
	Objects, Properties, Methods, and Events
	UserForms
	Add-Ins
	CommandBars

	Excel Resources Online
	Microsoft Technical Support
	Support options
	Microsoft Knowledge Base
	Microsoft Excel home page
	Microsoft Office update

	Internet Newsgroups
	Spreadsheet newsgroups
	Microsoft newsgroups
	Searching newsgroups

	Internet Web Sites
	The Spreadsheet Page
	Chip Pearson's Excel pages
	Stephen Bullen's Excel page
	Spreadsheet FAQ
	CompuServe Forums

	VBA Statements and Functions Reference
	Invoking Excel Functions in VBA Instructions

	VBA Error Codes
	ANSI Code Reference
	What's on the CD- ROM
	CD-ROM Overview
	Chapter Examples
	Chapter 3
	Chapter 7
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16
	Chapter 17
	Chapter 18
	Chapter 19
	Chapter 20
	Chapter 21
	Chapter 22
	Chapter 23
	Chapter 24
	Chapter 25
	Chapter 26
	Chapter 27
	Chapter 28
	Chapter 29

	Power Utility Pak
	Registering Power Utility Pak
	Installing the trial version
	Uninstalling Power Utility Pak

	Sound-Proof 2000
	Installing the demo version
	Uninstalling Sound-Proof

	Electronic Version of
	Adobe Acrobat Reader
	Hungry Minds, Inc. End- User License Agreement

	CD-ROM Installation Instructions

