

Service Oriented Java Business
Integration

Enterprise Service Bus integration solutions for
Java developers

Binildas C. A.

 BIRMINGHAM - MUMBAI

Service Oriented Java Business Integration

Copyright © 2008 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2008

Production Reference: 1040308

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847194-40-4

www.packtpub.com

Cover Image by Vinayak Chittar (vinayak.chittar@gmail.com)

Credits

Author

Binildas C. A.

Reviewers

Rajesh R V

Rajesh Warrier

Acquisition Editor

Bansari Barot

Development Editor

Ved Prakash Jha

Technical Editor

Della Pradeep

Editorial Team Leader

Mithil Kulkarni

Project Manager

Abhijeet Deobhakta

Project Coordinator

Aboli Mendhe

Indexers

Hemangini Bari

Monica Ajmera

Proofreader

Angie Butcher

Production Coordinator

Shantanu Zagade

Aparna Bhagat

Cover work

Shantanu Zagade

About the Author

Binildas C. A. provides Technical Architecture consultancy for IT solutions.
He has over 13 years of IT experience, mostly in Microsoft and Sun technologies.
Distributed Computing and Service Oriented Integration are his mainstream skills,
with extensive hands-on experience in Java and C#.NET programming. Binil
holds a BTech. degree in Mechanical Engineering from College of Engineering,
Trivandrum (www.cet.ac.in) and an MBA in Systems Management from Institute
of Management, Kerala (www.imk.ac.in). A well-known and a highly soughtafter
thought leader, Binil has designed and built many highly scalable middle-tier and
integration solutions for several top-notch clients including Fortune 500 companies.
He has been previously employed by multiple IT consulting firms including IBS
Software Services (www.ibsplc.com) and Tata Consultancy Services (www.tcs.com)
and currently works for Infosys Technologies (www.infosys.com) as a Principal
Architect where he heads the J2EE Architects group servicing Communications
Service Provider clients.

Binil is a Sun Certified Programmer (SCJP), Developer (SCJD), Business Component
Developer (SCBCD) and Enterprise Architect (SCEA), Microsoft Certified
Professional (MCP) and Open Group (TOGAF8) Certified Enterprise Architecture
Practitioner. He is also a Licensed Zapthink Architect (LZA) in SOA. Besides
Technical Architecture Binil also practices Enterprise Architecture.

When not in software, Binil spends time with wife Sowmya & daughter Ann in
'God's Own Country', Kerala (www.en.wikipedia.org/wiki/Kerala). Binil does
long distance running and is a national medalist in Power Lifting. You may contact
Binil at biniljava@yahoo.co.in or binil_christudas@infosys.com.

Acknowledgement

First and Foremost, I would thank God who has always showered his choicest
blessings on me. I thank Him for all that he has done for me.

I would like to thank PACKT and everyone I worked with—Priyanka Baruah,
Bansari Barot, Patricia Weir, Aboli Mendhe, Bhushan Pangaonkar, Ved Prakash Jha,
Della Pradeep and others. They worked very hard with the aggressive schedule I
proposed on this book, and I truly do appreciate their contributions.

Next, I'd like to thank the Technical Reviewers of our book, Rajesh R. V. and Rajesh
R. Warrier. Without them, you wouldn't see the text as it appears here. Thank you
for your thorough review of the scripts and testing of the code. Your reviews were
very objective in pointing out issues and helping me to come up with the even
better chapters.

This book would have never been possible if were it not for the excellent colleagues
at IBS (other than the reviewers) whom I have worked with and learned from. The
most important of them are Prasanth G Nair, Shyam Sankar S, Sherry CK, Jayan P
and Amritha Mathew M. Thanks are due to VK Mathews for providing all of us the
opportunity. I would also like to thank Rajasekhar C. and Ajmal Khan who provided
me the right challenges at the right time.

Special thanks are due to Dr. Srinivas Padmanabhuni, Principal Researcher, Web
Services/SOA Centre of Excellence, Software Engineering and Technology Labs,
Infosys for his guidance and help.

I would like to thank my wife and best friend Sowmya for being a constant source
of inspiration in my life. Also my sweet little daughter Ann, I remember all those
moments when you were so desperate to play with me and to go out for 'dinner'
with pappa and amma, but I could not look beyond my laptop screen. Both of you
are my angels, thanks for everything, especially for being in my life.

A massive thanks must go to my Mom and Dad—Azhakamma and
Christudas—who have supported their wayward son through good and lean
times, and have given everything and asked for nothing. I thank the rest of my
family for their support and friendship— my sister Binitha and family, my wife's
mother, Pamala, and father Hubert for their unconditional encouragement and love
in helping me find the energy to complete this book.

I would also like to thank Ramavarma R for supporting me through his
consultancy, MacJavaB.

There were many others who played their part too. Most important of them are
the creators of the frameworks that have inspired me to write this book. Thank
you for the JBI specification and special thanks to the ServiceMix developer and
user community.

Last, it's necessary to thank you, the reader, for choosing to buy this book.
I understand that you have a specific intention in choosing to read this book and I
hope I take only the minimum required time from your busy schedules to serve
your requirements.

About the Reviewers

Rajesh R V received his Computer Engineering degree from the University of
Cochin, India. He joined the JEE community during the early days of EJB (1.0) and
fully dedicated his time in core technical activities in and around Java, JEE. During
the course as a solution architect, he has worked on many large scale mission critical
projects, including the New Generation Passenger Reservation System (400+ Man
Years) and Next Generation Cargo Reservation System (300+ Man Years), in the
Airline domain. Rajesh is also Sun Certified Java Enterprise Architect and BEA
Certified Weblogic Administrator.

Rajesh is currently working with Emirates Airlines IT Division based in Dubai and
his work is mainly in Consulting, Application Framework development, Technology
Evaluations and SOA related topics.

All my thanks goes to my wife Saritha for supporting me and loving
me even though I booked a lot of personal time to review this book.

Rajesh Warrier, currently working as one of the lead system architects in Emirates
Group IT, has around 10 years experience in the industry working with companies
like Sun Microsystems. He has been responsible for architecting and designing
many mission critical enterprise applications using cutting edge technologies. He is
currently working as an architect and mentor for the new generation cargo system
for the emirates airlines, developed completely using JEE.

Table of Contents
Preface 1
Chapter 1: Why Enterprise Service Bus 7

Boundary-Less Organization 8
Multiple Systems 8
No Canonical Data Format 8
Autonomous, but Federated 9
Intranet versus Internet 10
Trading Partners 10

Integration 11
Enterprise Application Integration 12

Integration Architectures 12
Point-to-Point Solution 13
Hub-and-Spoke Solution 13
Enterprise Message Bus Integration 15
Enterprise Service Bus Integration 16

Enterprise Service Bus versus Message Bus 17
Similarities and Differences 17
Maturity and Industry Adoption 19

Making the Business Case for ESB 20
How many Channels 20
Volatile Interfaces 22
New Systems Introducing Data Redundancy 22
Service Reuse 23
System Management and Monitoring 23

Enterprise Service Bus 23
Service in ESB 23
Abstraction beyond Interface 24
Service Aggregation 25
Service Enablement 26
Service Consolidation 26

Table of Contents

[ii]

Service Sharing 27
Linked Services 28
Virtualization of Services 29
Services Fabric 30

Summary 30
Chapter 2: Java Business Integration 31

SOA—the Motto 31
Why We Need SOA 32
What is SOA? 32
SOA and Web Services 33
Service Oriented Integration (SOI) 36

JBI in J2EE—How they Relate 36
Servlets, Portlets, EJB, JCA, and so on 37
JBI and JCA—Competing or Complementing 37
JBI—a New Standard 38

JBI in Detail 39
JSR 208 39
JBI Nomenclature 40

Provider—Consumer Contract 42
Detached Message Exchange 44
Provider—Consumer Role 45
Message Exchange 47
Service Invocation 47

Message Exchange Patterns (MEP) 47
In-Only MEP 48
Robust In-Only MEP 48
In-Out MEP 50
In-Optional-Out MEP 52

ESB—Will it Solve all Our Pain Points 55
Summary 56

Chapter 3: JBI Container—ServiceMix 57
ServiceMix—Under the Hood 58

Salient Features 58
ServiceMix Architecture 58

Architecture Diagram 58
Normalized Message Router Flows 59

Other ESBs 63
Mule 63
Celtix 63
Iona Artix 64

Table of Contents

[iii]

PEtALS 64
ChainBuilder 64

Installing ServiceMix 65
Hardware Requirements 65
OS Requirements 65
Run-time Environment 65
Installing ServiceMix in Windows 66
Installing ServiceMix in Unix 67
Configuring ServiceMix 67
Starting ServiceMix 67
Stopping ServiceMix 67
Resolving classpath Issues 67

ServiceMix Components—a Synopsis 68
Standard JBI Components 68
Lightweight JBI Components 69

Your First JBI Sample—Binding an External HTTP Service 70
Servlet-based HTTP Service 71
Configure the HTTP Service in ServiceMix 74
Run ServiceMix Basic JBI Container 76
Run a Client against ServiceMix 78
What Just Happened in ServiceMix 78
Spring XML Configuration for ServiceMix 79

Summary 81
Chapter 4: Binding—The Conventional Way 83

Binding—What it Means 83
Binding 84
Endpoints 84

Apache SOAP Binding 84
A Word about Apache SOAP 85
Apache SOAP Format and Transports 85
RPC and Message Oriented 86
Binding Services 86

Sample Bind a Stateless EJB Service to Apache SOAP 88
Sample Scenario 88
Code Listing 89
Running the Sample 91

Deploying the EJB 91
Bind EJB to SOAP 92
Run the Client 93

What Just Happened 94
How the Sample Relates to ServiceMix 96

Table of Contents

[iv]

Summary 97
Chapter 5: Some XFire Binding Tools 99

Binding in XFire 100
XFire Transports 100
JSR181 and XFire 101

Web Service Using XFireConfigurableServlet 101
Sample Scenario 101
Code Listing 102
Running the Sample 104

Web Service using XFire Spring XFireExporter 106
Sample Scenario 106
Code Listing 106
Running the Sample 109

Web Service Using XFire Spring Jsr181 Handler 109
Sample Scenario 109
Code Listing 110
Running the Sample 113

XFire Export and Bind EJB 113
Sample Scenario 114
Code Listing 115
Running the Sample 119

XFire for Lightweight Integration 120
Summary 121

Chapter 6: JBI Packaging and Deployment 123
Packaging in ServiceMix 124

Installation Packaging 124
Service Assembly Packaging 125
Service Unit Packaging 126

Deployment in ServiceMix 126
Standard and JBI compliant 126
Lightweight 127

Packaging and Deployment Sample 127
Phase One—Component Development 128
Phase Two—Component Packaging 129

Running the Packaging and Deployment Sample 132
Summary 134

Chapter 7: Developing JBI Components 135
Need for Custom JBI Components 135
ServiceMix Component Helper Classes 136

MessageExchangeListener 137

Table of Contents

[v]

TransformComponentSupport 137
Create, Deploy, and Run JBI Component 140

Code HttpInterceptor Component 140
Configure HttpInterceptor Component 141
Package HttpInterceptor Component 142
Deploy HttpInterceptor Component 143
Build and Run the Sample 144

Summary 145
Chapter 8: Binding EJB in a JBI Container 147

Component versus Services 147
Coexisting EJB Components with Services 148
Indiscrimination at Consumer Perspective 148

Binding EJB Sample 149
Step One—Define and Deploy the EJB Service 149
Step Two—Bind EJB to ServiceMix 150
Step Three—Deploy and Invoke EJB Binding in ServiceMix 155
Step Four—Access WSDL and Generate Axis-based
Stubs to Access EJB Outside Firewall 156

Reconciling EJB Resources 160
Summary 160

Chapter 9: POJO Binding Using JSR181 161
POJO 161

What are POJOs 161
Comparing POJO with other Components 162

ServiceMix servicemix-jsr181 162
JSR 181 162
servicemix-jsr181 162
servicemix-jsr181 Deployment 163
servicemix-jsr181 Endpoint 164

POJO Binding Sample 164
Sample Use Case 164
POJO Code Listing 166
XBean-based POJO Binding 166
Deployment Configuration 167
Deploying and Running the Sample 169
Access WSDL and Generate Axis-based Stubs to
Access POJO Remotely 169

Accessing JBI Bus Sample 173
Sample Use Case for Accessing JBI Bus 175
Sample Code Listing 177

Table of Contents

[vi]

Build, Deploy, and Run the Sample 179
Summary 179

Chapter 10: Bind Web Services in
ESB—Web Services Gateway 181

Web Services 181
Binding Web Services 182
Why Another Indirection? 182

HTTP 182
ServiceMix's servicemix-http 183

servicemix-http in Detail 183
Consumer and Provider Roles 184
servicemix-http XBean Configuration 185
servicemix-http Lightweight Configuration 188

Web Service Binding Sample 189
Sample Use Case 189
Deploy the Web Service 190
XBean-based servicemix-http Binding 193
Deploying and Running the Sample 193
Access WSDL and Generate Axis Stubs to Access the Web Service
Remotely 194

Summary 198
Chapter 11: Access Web Services Using the JMS Channel 199

JMS 199
Web Service and JMS 200

Specifications for Web Service Reliable Messaging 200
SOAP over HTTP versus SOAP over JMS 201

JMS in ServiceMix 203
Servicemix-jms 203
Consumer and Provider Roles 204
servicemix-jms XBean Configuration 204
servicemix-jms Lightweight Configuration 206

Protocol Bridge 207
Web Service in the JMS Channel Binding Sample 208

ServiceMix Component Architecture for the JMS Web Service 209
Deploy the Web Service 210
XBean-based servicemix-jms Binding 211
XBean-based servicemix-eip Pipeline Bridge 212
XBean-based servicemix-http Provider Destination 212
Deploying the Sample and Starting ServiceMix 213
Test Web Service Using JMS Channel 214

Table of Contents

[vii]

Summary 219
Chapter 12: Java XML Binding using XStream 221

Java XML Binding 222
JAXB 223
XStream 223
ServiceMix and XStream 225

XStream in a Normalized Message Router Sample 226
Sample Use Case 226
Code HTTPClient 228
Unmarshalling to Transfer Objects 228
HttpInterceptor Component 230
XStreamInspector Component 232
Configure Interceptor and Inspector Components 232
Package Interceptor and Inspector Components 234
Deploy Interceptor and Inspector Components 234
Build and Run the Sample 235

Summary 236
Chapter 13: JBI Proxy 237

Proxy—A Primer 238
Proxy Design Pattern 238
JDK Proxy Class 239
Sample JDK Proxy Class 240

ServiceMix JBI Proxy 243
JBI Proxy Sample Implementing Compatible Interface 244

Proxy Code Listing 245
XBean-based JBI Proxy Binding 246
Deployment Configuration 247
Deploying and Running the Sample 247

JBI Proxy Sample implementing In-Compatible interface 248
Proxy Code Listing 248
XBean-based JBI Proxy Binding 250
Deployment Configuration 251
Deploying and Running the Sample 251

Invoke External Web Service from the ServiceMix Sample 252
Web Service Code Listing 252
Axis Generated Client Stubs 253
XBean-based JBI Proxy Binding 256
Deployment Configuration 258
Deploying and Running the Sample 258
Proxy and WSDL Generation 259

Table of Contents

[viii]

Summary 260
Chapter 14: Web Service Versioning 261

Service Versioning—A Means to SOA 261
Services are Autonomous 262
Change is the Only Constant Thing 262
All Purpose Interfaces 262
SOA Versioning—Don't Touch the Anti-Pattern 263
Types can Inherit—Why not My Schemas 265
If Not Versions, Then What 265

Strategy to Version Web Service 265
Which Level to Version 266
Version Control in a Schema 266
targetNamespace for WSDL 267
Version Parameter 267

Web Service Versioning Approaches 268
Covenant 268
Multiple Endpoint Addresses 269

Web Service Versioning Sample using ESB 270
Sample Use Case 270
Configure Components in ESB 274
Deploy and Run the Sample 285

Web Service Versioning Operational Perspective 287
Summary 287

Chapter 15: Enterprise Integration Patterns in ESB 289
Enterprise Integration Patterns 289

What are EAI Patterns? 290
EAI Patterns Book and Site 290

ServiceMix EAI Patterns 291
Why ServiceMix for EAI Patterns? 291
ServiceMix EAI Patterns Configuration 293

EAI Patterns—Code and Run Samples in ESB 294
Content-based Router 294

Notation 294
Explanation 295
Illustrative Design 295
Sample Use Case 296
Sample Code and Configuration 297
Deploy and Run the Sample 301

Content Enricher 303
Notation 303
Explanation 303

Table of Contents

[ix]

Illustrative Design 303
Sample Use Case 304
Sample code and configuration 305
Deploy and Run the Sample 307

XPath Splitter 308
Notation 309
Explanation 309
Illustrative Design 309
Sample Use Case 310
Sample Code and Configuration 311
Deploy and Run the Sample 312

Static Recipient List 313
Notation 314
Explanation 314
Illustrative Design 314
Sample Use Case 315
Sample Code and Configuration 316
Deploy and Run the Sample 318

Wiretap 319
Notation 319
Explanation 320
Illustrative Design 320
Sample Use Case 320
Sample Code and Configuration 321
Deploy and Run the Sample 323

Message Filter 323
Notation 324
Explanation 324
Illustrative Design 324
Sample Use Case 325
Sample Code and Configuration 326
Deploy and Run the Sample 328

Split Aggregator 329
Notation 329
Explanation 329
Illustrative Design 330
Sample Use Case 330
Sample Code and Configuration 331
Deploy and Run the Sample 332

Pipeline 334
Notation 334
Explanation 335
Illustrative Design 335
Sample Use Case 336
Sample Code and Configuration 337
Deploy and Run the Sample 339

Static Routing Slip 339
Notation 340

Table of Contents

[x]

Explanation 340
Illustrative Design 340
Sample Use Case 341
Sample Code and Configuration 342
Deploy and Run the Sample 344

Summary 345
Chapter 16: Sample Service Aggregation 347

Provision Service Order—Business Integration Sample 347
Solution Architecture 348
JBI-based ESB Component Architecture 350
Understanding the Message Exchange 351
Deploying and Running the Sample 365

Summary 366
Chapter 17: Transactions, Security, Clustering, and JMX 367

Cross Cutting Concerns—Support Inside ServiceMix 368
Transactions 368
Security 371
Clustering 373
JMX 377

Sample Demonstrating Transaction 377
Sample Use Case 378
Configure Transaction in ServiceMix 379
Deploy and Run the Sample 382

Sample demonstrating Security 383
Sample Use Case 384
Configure Basic Authorization in servicemix-http 384
Deploy and Run the Sample 387

Sample Demonstrating Clustering 388
Sample Use Case 389
Configure ServiceMix Cluster 391
Deploy and run the sample 395

Sample demonstrating JMX 397
Enable JMX in ServiceMix Application 397
Initialize JMX Console—MC4J 398
Retrieve WSDL through JMX 400

Summary 402
Index 403

Preface
You're all in the business of software development. Some of you are architects and
developers while few others are technology managers and executives. For many of
you, ESB is encroaching and JBI is still an unknown—a risk previously avoided but
now found to be inescapable. Let us tame these buzzwords in the context of SOA
and Integration.

While you do the day to day programming for solving business problems, you will
be generating business code as well as business integration code. The traditional
Java/J2EE APIs provide you with enough tools and frameworks to do the business
coding. The business code will help you to implement a business service such as
creating orders or finding products. On the contrary, business integration code
wires together multiple applications and systems to provide seamless information
flow. It deals with patterns of information exchange across systems and services,
among other things. This is where the new Java API for Integration—Java Business
Integration (JBI) seeks attention.

JBI provides a collaboration framework which has standard interfaces for integration
components and protocols to plug into, thus allowing the assembly of Service
Oriented Integration (SOI) frameworks following the Enterprise Service Bus (ESB)
pattern. JBI is based on JSR 208, which is an extension of Java 2 Enterprise Edition
(J2EE). The book first discusses the various integration approaches available and
introduces ESB, which is a new architectural pattern which can facilitate integrating
services. In doing so, we also introduce ServiceMix, an Apache Open Source
Java ESB. Thus for each of the subsequent chapters, we limit our discussion to a
major concern which we can address using ESB and then also showcase this with
samples which you can run using ServiceMix. If you are a person with a non-Java
background, the book still benefits you since most of the integration wiring happens
in XML configuration files.

Preface

[2]

The aim of this book is to prepare an architect or developer for building integration
solutions using ESB. To that end, this book will take a practical approach,
emphasizing how to get things done in ServiceMix with code. On occasions, we
will delve into the theoretical aspects of ESB, and such discussions will always be
supplemented with enough running samples. The book, thus, attempts to distill
some of the knowledge that has emerged over the last decade in the realm of Java
Integration. Quite different from the other books in the related topics, you don't need
a 4GB RAM or some heavy, vendor specific IDE/Workshops to run the samples.
Instead, get set with the latest JDK and a text editor and few other lightweight
frameworks including Tomcat and you are ready to go. Enough about the hype,
supplement with what you've heard with some substance and code.

Happy Reading!

What This Book Covers
Chapter 1 begins with a quick tour on Enterprise Integration and the associated
issues so that you can better understand the problem which we are trying to
solve, rather than following a solution for an unknown problem. We also introduce
Enterprise Service Bus (ESB) architecture and compare and contrast that with other
integration architectures.

Chapter 2 introduces Java Business Integration (JBI) and inspects the need for another
standard for Business Integration, and also looks into the details on what this
standard is all about.

Chapter 3 introduces ServiceMix, which is an open source ESB platform in the Java
programming language, built from the ground up with JBI APIs and principles. It
runs through a few other ESB products also.

Chapter 4 looks at how we have been binding services locally or remotely even
before the ESB became popular. The chapter will demonstrate how tunneling using
conventional J2EE tools will help to expose even technology-specific API services.
An example of such a service is an EJB service to be exposed through firewalls over
HTTP so that the service becomes technology agonistic.

Chapter 5 introduces XFire, which is a new generation Java SOAP framework to
easily expose web services. Here we demonstrate the integration capabilities of the
XFire. Then we can do integration using XFire within the JBI Architecture also.

Chapter 6 teaches you JBI packaging and deployment. After going through this
chapter the reader will be able to build, package, and deploy integration artifacts as
standard JBI packages into the JBI container.

Preface

[3]

Chapter 7 teachs you how to create your own components and deploy them onto the
JBI container. This chapter visits the core API from the ServiceMix as well as from
the JBI specification which will function as useful helper classes using which you can
develop integration components quickly.

Chapter 8 shows you how to bind Enterprise Java Beans components to the ESB. EJB
is the Distributed Component paradigm in the Java-J2EE world and the industry has
a lot invested in this technology. Coexisting services with those components will help
you to reuse those existing investments so that we can continue building new systems
based on higher levels of SOA maturity.

Chapter 9 shows POJO Binding using JSR181 to the ESB. POJO components can be
easily exposed as WSDL-compliant services to the JBI bus.

Chapter 10 illustrates how to bind the web services to the ServiceMix ESB, thus
creating a web services gateway at the ESB layer.

Chapter 11 looks at how Java Message Service (JMS), which is a platform dependent
messaging technology, can increase the QOS features of web services by making web
services accessible through the JMS channel.

Chapter 12 introduces Java XML binding and XStream, which is a simple open
source library to serialize the Java objects to XML and back again. We will show the
XStream integration with ESB demonstrating streaming of data across the bus.

Chapter 13 visits the JDK Proxy classes and then explains the JBI Proxy in detail with
examples. We show a practical use of the JBI Proxy—Proxying the external web
services in the JBI bus.

Chapter 14 explains versioning in the SOA context and explains various strategies
and approaches to versioning services. It also explains and demonstrates a
versioning sample leveraging the targetNamespace attribute. Versioning services,
especially versioning of web services, is a topic of heated discussion in many forums
and sites.

Chapter 15 explains that the EAI patterns are nuggets of advice made out of
aggregating basic Message Exchange Pattern elements to solve frequently
recurring integration problems. We can look at EAI patterns as design patterns for
solving integration problems. This chapter will demonstrate many of the common
EAI patterns.

Chapter 16 looks into a sample use case. One of the useful applications of ESB is
to provide a "Services Workbench" wherein which we can use various integration
patterns available to aggregate services to carry out the business processes.

Preface

[4]

Chapter 17 visits a few selected QOS features such as Transactions, Security,
Clustering, and Management which can impact the programming and deployment
aspects using ESB.

What You Need for This Book
To install and run most of the samples mentioned in this book all you need is
the following:

Latest Java SDK (JDK) installed in your machine.
Apache Open Source Enterprise Service Bus—ServiceMix.
Apache Ant build tool.
A simple text editor, like Textpad.
Any other software required is mentioned which is downloadable free from
the net.

Who is This Book for
This book is aimed at Java developers and integration architects who want to become
proficient with Java Business Integration (JBI) standard. They are expected to have
some experience with Java and to have developed and deployed applications in
the past, but need no previous knowledge of JBI. The book can also be useful to
anyone who has been struggling to understand ESB and how it differs from other
architectures and to understand its position in SOA.

This book primarily targets IT professionals in the field of SOA and Integration
solutions—in other words, intermediate to advanced users. You are likely to find the
book useful if you fall into any of the following categories:

A programmer, designer or architect in Java who wants to learn and code in
JBI or ESB.
A programmer, designer or architect who doesn't normally code in Java can
still benefit from this book, since we 'assemble integration components' using
XML with little to no Java code.
An IT Manager or an Officer who knows well about SOA or SOI but want
to see something in code (you can adorn your flashy presentations with some
live code too).

•

•

•

•

•

•

•

•

Preface

[5]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

There are three styles for code. Code words in text are shown as follows: "For example,
inside the <component> tag you can configure properties on the component."

A block of code will be set as follows:

<target name="run">
 <java classname="HttpInOutClient" fork="yes" failonerror="true">
 <classpath refid="classpath"/>
 <arg value="http://localhost:8912/EsbServlet/hello/"/>
 <arg value="HttpSoapRequest.xml"/>
 </java>
</target>

Any command-line input and output is written as follows:

cd ch03\Servlet

ant

New terms and important words are introduced in a bold-type font. Words that you
see on the screen, in menus or dialog boxes for example, appear in our text like this:
"The components being initialized, in our case, include trace, timer, httpGetData,
and httpReceiver."

Important notes appear in a box like this.

Tips and tricks appear like this.

Reader Feedback
Feedback from our readers is always welcome. Let us know what you think about
this book, what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

Preface

[6]

To send us general feedback, simply drop an email to feedback@packtpub.com,
making sure to mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or
email suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer Support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the Example Code for the Book
Visit http://www.packtpub.com/files/code/4404_Code.zip, to directly downlad
the example code.

The downloadable files contain instructions on how to use them.

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you would report this to us. By doing this you can
save other readers from frustration, and help to improve subsequent versions of
this book. If you find any errata, report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the Submit Errata link, and entering
the details of your errata. Once your errata are verified, your submission will be
accepted and the errata are added to the list of existing errata. The existing errata can
be viewed by selecting your title from http://www.packtpub.com/support.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
some aspect of the book, and we will do our best to address it.

Why Enterprise Service Bus
Today's enterprise is not confined to the physical boundaries of an organization.
Open systems and an open IT infrastructure strives to provide interoperability not
only between platforms, runtimes, and languages, but also across enterprises. When
our concerns shift from networked systems to networked enterprises, a whole lot
of opportunities open up to interact with enterprise applications. Whether it is for
trading partners to collaborate through their back-end systems, or for multichannel
deployments where consumers can use a whole lot of user agents like web and
mobile handsets, the opportunities are endless. This also introduces the issues and
concerns to be addressed by network, integration, and application architects. Today,
companies that have been built through mergers or rapid expansions have Line of
Businesses (LOB) and systems within a single enterprise that were not intended to
interact together. More often than not these interactions fail and are discredited.

Let's begin with a quick tour of enterprise integration and the associated issues so
that we can better understand the problem which we are trying to solve, rather than
follow a solution for an unknown problem. At the end of this chapter, you should be
in a position to identify what we are trying to aim with this book. We also introduce
Enterprise Service Bus (ESB) architecture, and compare and contrast it with other
integration architectures. Then we can better understand how Java Business
Integration (JBI) helps us to define ESB-based solutions for integration problems.

In this chapter we will cover the following:

Problems faced by today's enterprises
Enterprise Application Integration (EAI)
Different integration architectures
ESB
Compare and contrast service bus and message bus
Need for an ESB-based architecture

•

•

•

•

•

•

Why Enterprise Service Bus

[8]

Boundary-Less Organization
Jack Welch, of General Electric (GE), invented the boundary-less organization.
Meaning that, organizations should not only be boundary-less, but should also
be made permeable. "Integrated information" and "integrated access to integrated
information" are two key features that any enterprise should aim for, in order to
improve their organizational business processes. Boundary-less doesn't mean that
organization has no boundaries; it means that there's a smooth and efficient flow of
information across boundaries. While enterprise portals and web services give a new
face for this emerging paradigm, the skeleton of this "open enterprise" is provided
by an open IT infrastructure. The flesh is provided by emerging trends in Enterprise
Application Integration (EAI) practice.

Let us briefly visit a few selected issues faced by today's enterprises.

Multiple Systems
In a home business or in small scale ventures, we start up with systems and
applications in silos which cater to the entire setup. When the business grows,
we add more verticals, which are functionally separated entities within the same
organization. It goes without saying that, each of these verticals or LOB will have
their own systems. People ask why they have different systems. The answer is
because they are doing functionally different operations in an enterprise and hence
they need systems carrying out different functionality for them. For example, an HR
system will manage and maintain employee related data whereas the marketing
relations will use Customer Relationship Management (CRM) systems. These
systems may not be interconnected and hence impede information flow across LOBs.
Adding to this, each LOB will have their own budgeting and cost constraints which
determine how often systems are upgraded or introduced.

No Canonical Data Format
Multiple LOBs will have their own systems, and hence their own data schemas, and
a way of accessing the data. This leads to duplication of data, which in turn leads to
multiple services providing views for the same entity in different ways.

Let's consider the example shown in the following figure. There is one LOB system,
Product Information System, which will keep track of customers who have registered
their interest for a particular product or service. Another LOB system, Event
Registration System, will provide membership management tools to customers, for
a sales discount program. Sales Information System will have to track all customers
who have registered their interest for any upcoming products or services. Thus, we
can see there is no unified view of the Customer entity at the enterprise-level. Each

Chapter 1

[9]

LOB will have its own systems and their own view of Customer. Some will
have more attributes for the Customer, while others a few. Now the question is
which system owns the Customer entity? Rather, how do we address the data
stewardship issue(This is represented in the figure using the symbols "?" and " ?") ?

Data stewardship roles are common when organizations attempt to
exchange data, precisely and consistently, between computer systems,
and reuse data-related resources where the steward is responsible for
maintaining a data element in a metadata registry.

Autonomous, but Federated
Now the question is how long can these systems remain isolated? Rather, can we
bring all these systems under a central, single point of control? The fact is, systems
cannot remain isolated, and also they cannot be controlled centrally. This is because
every system needs data from every (or most) other systems. Can we then integrate
everything together into a single big system so that we don't have the problem of
integration at all? The question seems tempting, but this is analogous to attempting
to boil sea water.

Different departments or verticals within the same organization need autonomy and
so do their systems. Without the required level of autonomy, there is no freedom
which will hinder innovation. Constant innovation is the key to success, in any walk
of life. So, departments and their systems need to be autonomous. But, since they
require each other's data, they need to integrate. This leads to the necessity for a farm
of autonomous systems, which are all federated to the required level to facilitate
information flow.

Why Enterprise Service Bus

[10]

The following figure represents systems that are autonomous, but federated to
facilitate information flow:

Intranet versus Internet
Integrating different functional departments within an organization is not a big
hurdle, since everything is under the control of the organization. But the picture
changes the moment the organization grows beyond a certain limit. Twenty first
century organizations are growing beyond a single location; many of them are truly
global organizations. They have operations around the globe, in multiple countries,
with multiple legal, technical, and operational environments. The good news is
that we have technologies like Internet, Wide Area Networks, and Virtual Private
Networks for connectivity. This means global organizations will have their systems
federated across the globe. All these systems will evolve due to constant innovation
and business changes. They have to integrate across the firewall, and not every
protocol and format can be easily traversed across the firewall.

Trading Partners
Organizations conduct business with other organizations. An online retailer's
system has to partner with its wholesaler's inventory systems. These systems are not
federated in any manner due to the fact that they belong to multiple organizations.
There exists no federation due to the competitive nature between organizations too.
But they have to collaborate; otherwise there is no business at all. So, information
has to flow across organizational systems in the Internet. This is what we mean by a
permeable organization boundary which allows for constant information exchange

Chapter 1

[11]

on 24 X 7 bases, with adequate Quality of Service (QOS) features. Thus the necessity
is to extend the enterprise over the edge (firewall), and this activity has to happen
based on pre-plans and not as an afterthought.

The following figure explains a trading partners system that is not federated but the
information flow is through the Internet:

VPN
Internet

Firewall

Firewall

Corporate Sales Trading Partners

Back
Office

Front
Office

LAN WAN

LAN

Integration
Knowingly or unknowingly, applications and systems have been built over
decades in silos, and it is the need of the day for these applications and systems
to interchange data. At various levels depending upon the level of control, the
data can be interchanged at multiple layers, protocols, and formats. There seems
to be a general trend of "Technology of the day" solutions and systems in many
organizations. Neither this trend is going to end, nor do we need to turn back at
them. Instead, we need to manage the ever changing heterogeneity between systems.

Application and system portfolio entropy increases with technology
innovation.

Why Enterprise Service Bus

[12]

I don't know if there is a global movement to bring standardization to innovation
in technology. This is because the moment we introduce rules and regulations
to innovation, it is no longer an innovation. This statement is made, even after
acknowledging various world wide standard bodies' aim and effort to reduce
system and application entropy. A few years back, Common Object Request Broker
Protocol's (CORBA) promise was to standardize binary protocol interface so that
any systems could interoperate. If we look at CORBA at this point, we can see that
CORBA has not attained its promise, that doesn't mean that we need to throw away
all those systems introduced during the 90's because we cannot integrate.

Enterprise Application Integration
David S. Linthicum defined EAI as:

The unrestricted sharing of data and business processes among any connected
applications and data sources in the enterprise.

This is a simple, straightforward definition. In my entire career, I have been fortunate
enough to participate in much new generation IT system development for domains
such as Airline, Healthcare, and Communications. Most of the time, I've been writing
either adapters between systems, or negotiating and formalizing data formats
between desperate systems. I know this is not because the former system's architects
haven't put a long term vision to their systems in the angle of interoperability, but
because systems have to evolve and interoperate in many new ways which were
not foreseen earlier. This pushes integration providers to define new software pipes
across applications. When we start this activity it might be elegant and straight
forward, but sooner than later we realize that our integration pipes have no central
control, administration, or management provisions.

Integration Architectures
The first and foremost step in understanding integration architectures is to
understand the different topologies existing in integration arena, and to appreciate
the vital difference between them. If one can understand the true difference, half
the job is already done. Understanding the difference will enable the integration
architect to attach prescriptive architecture for a given integration problem. Let us
now understand the basic integration architectures that are listed as follows:

Point-to-Point solution
Hub-and-Spoke solution
Enterprise Message Bus Integration
Enterprise Service Bus Integration

•

•

•

•

Chapter 1

[13]

Point-to-Point Solution
EAI has traditionally been done using point-to-point integration solutions. In point-
to-point, we define an integration solution for a pair of applications. Thus we have
two end points to be integrated. We can build protocol and/or format adapters,
or transformers at one or either end. This is the easiest way to integrate, as long as
the volume of integration is low. We normally use technology-specific APIs like
FTP, IIOP, remoting or batch interfaces, to realize integration. The advantage is that
between these two points, we have tight coupling, since both ends have knowledge
about their peers.

The following figure is the diagrammatic representation of the point-to-point
integration:

Hub-and-Spoke Solution
Hub-and-spoke architecture is also called the message broker and is similar to
point-to-point architecture in that it provides a centralized hub (broker) to which
all applications are connected. When multiple applications connect in this manner,
we get the typical hub-and-spoke architecture. Another distinguishing feature of
the hub-and-spoke architecture is that each application connects with the central
hub through lightweight connectors. The lightweight connectors facilitates for
application integration with minimum or no changes to the existing applications.

Why Enterprise Service Bus

[14]

Message transformation and routing takes place within the hub. This architecture
is a major improvement to the point-to-point solution since it reduces the number
of connections required for integration. Since applications do not connect to
other applications directly, they can be removed from the integration topology
by removing from the hub. This insulation reduces disruption in the
integration setup.

There is a major drawback with the hub-and-spoke architecture. Due to the
centralized nature of the hub, it is a single point of failure. If the hub fails, the
entire integration topology fails. A solution to this problem is to cluster the hub.
A cluster is a logical grouping of multiple instances running simultaneously and
working together. But clustering is not the right solution to the problem of single
point of failure. This is due to the fact that the very point in having a hub-and-spoke
architecture is to have a single point of control. This drawback may be offset to some
extent by the fact that most of the clustering solutions provide central management
and monitoring facilities, which will provide some form of centralized control.

The following figure is the diagrammatic representation of the hub-and-spoke
integration:

LC

LC

LC

LC

LC

LC Lightweight ConnectorSystem

System

System System

System

LC System

HUB

Chapter 1

[15]

Enterprise Message Bus Integration
While the hub-and-spoke architecture makes use of lightweight connectors for
applications to integrate together through a central hub, many a times the integrating
applications need to interact in a decoupled fashion, so that they can be easily
added or removed without affecting the others. An enterprise message bus provides
a common communication infrastructure, which acts as a platform-neutral and
language-neutral adapter between applications.

This communication infrastructure may include a message router and/or Publish-
Subscribe channels. So applications interact with each other through the message bus
with the help of request-response queues. If a consumer application wants to invoke
a particular service on a different provider application, it places an appropriately
formatted request message on the request queue for that service. It then listens for
the response message on the service's reply queue. The provider application listens
for requests on the service's request queue, performs the service, and then sends (if)
any response to the service's reply queue.

We normally use vendor products like IBM's Websphere MQ (WMQ) and
Microsoft MQ (MSMQ), which are the best class message queue solution to integrate
applications in the message bus topology. As shown in the following figure,
sometimes the applications have to use adapter which handle scenarios such as
invoking CICS transactions. Such an adapter may provide connectivity between
the applications and the message bus using proprietary bus APIs, and application
APIs. The Message bus also requires a common command structure representing
the different possible operations on the bus. These command sets invoke bus-level
primitives which includes listening to an address, reading bytes from an address,
and writing bytes to an address.

Why Enterprise Service Bus

[16]

Enterprise Service Bus Integration
The service bus approach to integration makes use of technology stacks to provide a
bus for application integration. Different applications will not communicate directly
with each other for integration; instead they communicate through this middleware
Service Oriented Architecture (SOA) backbone. The most distinguishing feature of
the ESB architecture is the distributed nature of the integration topology. Most ESB
solutions are based on Web Services Description Language (WSDL) technologies,
and they use Extensible Markup Language (XML) formats for message translation
and transformation.

ESB is a collection of middleware services which provides integration capabilities.
These middleware services sit in the heart of the ESB architecture upon which
applications place messages to be routed and transformed. Similar to the
hub-and-spoke architecture, in ESB architecture too, applications connect to the ESB
through abstract, intelligent connectors. Connectors are abstract in the sense that
they only define the transport binding protocols and service interface, not the real
implementation details. They are intelligent because they have logic built-in along with
the ESB to selectively bind to services at run time. This capability enhances agility for
applications by allowing late binding of services and deferred service choice.

The following figure is the diagrammatic representation of ESB integration:

Chapter 1

[17]

The above qualities of ESB provides for a true open enterprise approach. As we have
discussed above, ESB is neither a product nor a separate technology; instead, ESB is
a platform-level concept, a set of tools, and a design philosophy. What this means
is, if we just buy a vendor product and install it in our IT infrastructure, we cannot
say that we have ESB-based integration architecture. Instead ESB-based integration
solutions are to be designed and built in the "ESB way". Tools and products help us
to do this.

A list of major features and functionalities supported by an ESB will help us to
understand the architecture better, which are listed as follows:

Addressing and routing
Synchronous and asynchronous style
Multiple transport and protocol bindings
Content transformation and translation
Business process orchestration
Event processing
Adapters to multiple platforms
Integration of design, implementation, and deployment tools
QOS features like transactions, security, and persistence
Auditing, logging, and metering
Management and monitoring

Enterprise Service Bus versus Message
Bus
Let's leave alone the point-to-point and the hub-and-spoke architectures, since it
is rather easy to understand them and you have been doing them in one way or
another. But when we discuss about ESB and message bus, we need to understand
the similarities and differences between these two topologies.

Similarities and Differences
Let us first see how the message bus and the service bus are alike. In fact, both of
them are aimed to solve the problem of integration and provide a common
communication infrastructure, which acts as a platform-neutral and language-neutral
adapter between applications. So mediation is the prime functionality provided by

•

•

•

•

•

•

•

•

•

•

•

Why Enterprise Service Bus

[18]

both the architectures. Applications can integrate each other in a loosely coupled
manner through this mediator, so that they will not be dependent on each other's
interfaces. Last but not the least, using either the message bus or the service bus
architecture, you can implement SOA-based integration solutions!

The last statement might be hard to digest—at least some of you might have thought
that one is purely SOA-based while the other is not. But the fact is that both the
message bus and the service bus helps enterprises to attain an SOA ecosystem, if
architected properly, but neither of them by itself will automatically transfer existing
non-SOA architecture into SOA-based architecture.

Now, what is the difference between a message bus and a service bus?

Before we dig into the differences let me give you a word of caution. Even though
the main differences between a message bus and a service bus will be listed as
follows, they may not be very obvious in the first read. Hence, I recommend the
reader to go through the subsequent chapters and samples too, and get a feel of how
we do things in the "ESB way", and then revisit the given differences.

The main difference between enterprise message bus and enterprise
service bus architecture is in the manner in which the consumer or the
client application interact with the messaging middleware.

More easily said, than understood! OK, let us worry less (I didn't say "let us worry
not"!), understand more.

Service description and service discovery are two key elements to attain higher levels
of SOA maturity. Only if something is described, can it be discovered. This is where
a service registry is going to add value, there you can register a service description so
that some other interested party can discover it.

Let us now come back to our message bus. We earlier saw that message bus
applications interact with each other with the help of request-response queues. If
you have ever worked in any messaging solution (like JMS) before, then you will
appreciate the fact that queues are addressed by themselves, which will not give you
any further information about the underlying service. Information on the operations
available, or the messaging patterns to expect, or the schema for the types exchanged
is never available at the queue-level. In other words, services are not described in a
message bus.

What is available is just the messaging counterparts for the put and get primitives so
that messages can be sent to and received from the message bus. So consumer or client
applications should have pre-awareness of the format of the messages exchanged.
This implies everything has to be known before hand—rather, static binding or
compile-time binding becomes the norm.

Chapter 1

[19]

Let us now consider the service bus. We said earlier that many ESB solutions are
based on WSDL technologies, and they use XML formats for message translation
and transformation. This by itself gives us lot of opportunities for service description
and discovery. All the (minimum) details about the service will be available from
the WSDL. Hence, message exchange patterns and message formats are readily
available. Moreover, the consumer or client applications can discover a matching
service from the ESB, given a set of messaging capabilities (WSDL capabilities) they
are looking for. I used the term matching service because in an ideal ESB architecture
the consumer is looking for capabilities which match their abstract service
expectations (interface). It is the role of the ESB to route the requests to any concrete
service implementation behind the bus which matches the requested interface.

The next big difference is the type of approach used in each architecture. In service bus
architecture we used a standard-based approach. When services are WSDL-based, it
brings a time tested and well adopted industry standard to integration. This has a big
pay off when compared to traditional Message Oriented Middleware (MOM), because
in the message bus architecture the adapters provide connectivity using proprietary
bus APIs and application APIs. So, whereas in the pre-ESB world, we have been using
CORBA IDL (Interface Definition Language), or Tuxedo FML (Field Manipulation
Language), or COM/DCOM Microsoft IDL, and CICS common Area (COMMAREA)
as the service definition language, we now use WSDL as the interface in
standard-based ESB architectures.

Maturity and Industry Adoption
Having looked at a few of the similarities and differences between service bus and
message bus, it is time now to look at realities which exist in the industry today. We
agreed that an ESB can do lot many things, and for that matter a message bus can
too. We then talked about the differences a service bus has to offer.

How mature is the technology today to address these differences? Have we started
practical implementations of service bus in a big way yet? The answer to this
question is neither yes nor no. The reason is that necessity runs before standards.
Rather, when you agree that you need description and discovery along with other
features for a service bus-based architectures, the question is, will the existing
standards like Universal Description Discovery and Integration (UDDI) alone will
help to achieve this? Maybe we need a simple and standard way to specify a pair of
request-reply queues along with a HTTP URL (mechanism to specify HTTP URL is
already available) in the WSDL itself. This way a consumer or client application can
interact in the 'MOM way' through the ESB. Maybe we also need a simple and, again,
a standard way to find and invoke a concrete service at the ESB, matching an abstract
service interface.

Why Enterprise Service Bus

[20]

These standards are evolving and are at different stages of adoption. Similar is the
case of support for these capabilities across multiple vendors' solutions. Hence,
the tail piece is that it is time now to gather all our experience in message bus
based architectures, and leverage it to define and demonstrate service bus-based
architecture. So, how do we decide that we need an ESB-based Architecture? Read
on the next section and you will come to know.

Making the Business Case for ESB
Just like any one of you, I am not satisfied yet with enough reasons for why to use
ESB. Hence, this section is going to explain more about the value proposition ESB is
going to bring to your IT infrastructure.

There are a few concerns we need to address when we do point-to-point or a similar
style of integration:

How many channels do we need to define for complete interoperability?
How easy it is to change a system interface, while still maintaining
interoperability?
How do we accommodate a new system to the IT portfolio?
How much we can reuse system services in this topology?
Where do we plug-in system management or monitoring functionality?

Let us address these issues one by one.

How many Channels
Let us go back to the point-to-point integration scenario and assume that we have
four separate in-house systems, one for each of the four separate departments
(HR, Accounts, R&D, and Sales). The operational problem the business faces is
to interoperate these systems. In the point-to-point integration, we need to have
independent channels of connection between each pair of systems. These channels
are static, strongly typed, and without much intelligence for dynamic routing or
transformation. The advantage is that it is rather easy to build the solution.

As shown in the next figure, if there are six systems (nodes) to be interconnected, we
need at least thirty separate channels for both forward and reverse transport. If we
add one more node to the IT portfolio, the number of channels to be defined goes up
from thirty to forty two. This means, as time passes and as more and more systems
and applications are added to the organization, the number of interconnections or
channels to be defined between these systems rises exponentially, in the order of two.

•

•

•

•

•

Chapter 1

[21]

We can generalize the number of channels (Nc) required for complete interconnection
for n separate systems as:

Nc = n2 – n

This number is still manageable for small organizations with a small number of
systems, but experience has shown that this is going to be a nightmare for
mid-sized and large-sized organizations. It is customary for such organizations to
have more than fifty or hundred systems. For complete interoperability in a hundred
system scenario, we need to define around ten thousand separate channels! Leave
alone the definition, how do we maintain such a huge network of interconnection?

Perhaps, every system in an organization needn't interoperate with every other
system. Again, experience has shown that only half of them need to interoperate
fully, thus bringing down the figure to five thousand. What this means is, we have
to build five thousand adapters to define channels to interoperate for these systems.
Still this number is not manageable.

Why Enterprise Service Bus

[22]

Volatile Interfaces
In a perfect world, we can somehow build five thousand separate adapters to
interconnect a hundred systems by fifty percent, and then hope to relax. But the real
scenario is far from perfect. The imperfection arises out of constant innovation and
evolution, and this forces change even to system interfaces. An int data type in C++
is of two bytes whereas the same int in Java is of four bytes. We have already taken
care of this data impedance by building adapters. But, what if on one fine morning,
the C++ application starts spitting float instead of int? The existing adapter is
going to fail, and we need to rework on the adapter in this channel.

The good news is, within an organization this can be controlled and managed
since we have access to both the ends of the adapter. The scenario worsens when
the interface changes in a B2B scenario where systems between two separate
organizations interact. As we know already, this is going to happen. So, we have to
build agile interfaces.

New Systems Introducing Data Redundancy
Adding new systems is an after effect of business expansion, but there are multiple
risks associated with it. First, we need to integrate new systems with the existing
systems. Secondly, many a time, new systems introduce data redundancy. This
is because the same data might get entered into the network through multiple
interfaces. Similar is the problem of the same data duplicated at different parts of
the organization. This contradicts the requirements of Straight-Through Processing
(STP). STP aims to enter transactional data only once into the system. This data can
flow within or outside the organization. To achieve STP, there should be mechanism
for seamless data flow, also in a flexible manner.

Data redundancy can be managed if and only if there is a mechanism to consolidate
data in the form of Common Information Model (CIM). For example, the NGOSS's
Shared Information/Data (SID) model from Telecom Management Forum is the
industry's only true standard for development and deployment of easy to integrate,
flexible, easy to manage OSS/BSS components. The SID provides an information
or data reference model and a common information or data vocabulary from a
business and systems perspective. Not every domain or organization has access to a
readymade information model similar to this.

In such a scenario, ESB can play a vital role by providing the edge of the system view
by wrapping and exposing available network resources. Thus, ESB provides hooks
for a "leave-and-layer" architecture which means that instead of altering existing
systems to provide a standards-based services interface they are wrapped with a
layer that provides the services interface.

Chapter 1

[23]

Service Reuse
Code and component reuse is a familiar concept amongst designers and developers.
We have Gang of Four patterns to prescribe design solutions for recurring problems.
But with the invention of SOA, we have what is called the Service Oriented
Integration (SOI) which makes use of Enterprise Integration Patterns (EIP). SOI
speaks about the best ways of integrating services so that services are not only
interoperable but also reusable in the form of aggregating in multiple ways and
scenarios. This means, services can be mixed and matched to adapt to multiple
protocols and consumer requirements.

In code and component reuse, we try to reduce copy and paste reuse and encourage
inheritance, composition, and instance pooling. A similar analogy exists in SOI
where services are hosted and pooled for multiple clients through multiple transport
channels. ESB does exactly this job in the best way integration world has ever seen.
For example, if a financial organization provides a credit history check service, an
ESB can facilitate reuse of this service by multiple business processes like a Personal
Loan approval process or a Home Mortgage approval process.

System Management and Monitoring
Cross cutting concerns like transactions or security or even Service Level Agreement
(SLA) management and monitoring are just a few of a set of features apart from
business functionality that any enterprise class service ecosystem has to provide.
The ESB architectures provides enough hooks to attach similar services onto the bus
separate from normal business functionality. This ensures that these cross cutting
functionality can be applied to all services and also enable us to manage, monitor,
and control them centrally.

Enterprise Service Bus
Having understood the various integration problems, which can be addressed in
multiple ways, of which ESB is of the prime concern and is central to our discussion
in this book, we will try to understand the ESB better here.

Service in ESB
It is time now to understand "Service" in ESB. Why don't we call it Enterprise
Component Bus?

Why Enterprise Service Bus

[24]

Services are exposed functionalities which are clearly defined, self contained, and
which will not depend on the state and context of peer services. As shown in the
following figure, the service has a service description (similar to WSDL) and it is
this description which is exposed. It is never necessary to expose the implementation
details, and in fact, we shouldn't expose them. It is this hidden nature of the
implementation which helps us to replace services with similar services. Thus,
service providers expose the service description and service consumers find them.

Once the service description is found service consumers can bind to it. Moreover, it is
during the time of actual binding, we need more information like transport protocols.
As we know, we can handle with transport details with the help of protocol adapters.
Intelligent adapters are required if we need to route messages based on content or
context. These adapters are of a different kind like splitters and content based routers.
ESB is all about a run-time platform for these kinds of adapters and routers, which are
specifically designed for hosting and exposing services.

Publish Consume

Request Request

Response Response
Messaging
Middleware5 6

2

34

1

Service
Description

Service
Consumer

Service
Provider

Abstraction beyond Interface
Almost all OOP languages support interface-driven development and hence this is
not a new concept. Separating interface from implementation abstracts the Service
Consumer from the implementation details from a Service Provider perspective. But,
what about abstracting out this interface itself? If the Service Consumer interacts
directly with the Service Provider, both these parties are tightly coupled and it may be
difficult to change the interface. Instead, a service bus can effectively attach itself to a
service registry. This means, a consumer can even be unaware of the service interface.

Now, just in time, the consumer can selectively choose an appropriate interface
from a registry, then bind to a suitable implementation through an ESB, and invoke
the service at run time. Such kinds of flexibility come at the cost of design time or
compile time type checking, which can be error prone during service invocation
using conventional tools. An ESB with its set of tools and design primitives helps
developers to effectively address this.

Chapter 1

[25]

Service Aggregation
The key value of aggregation, here, is not so much in being able to provide core
services, which developers have to build anyway. It is to facilitate an arbitrary
composition of these services in a declarative fashion, so as to define and publish
more and more composite services. Business Process Management (BPM) tools can
be integrated over ESB to leverage service aggregation and service collaboration.
This facilitate reuse of basic or core (or fine grained) services at the business
process-level. So, granularity of services is important which will also decide the
level of reusability.

Coarse Grained or Composite Services consume Fine Grained Services. Applications
which consume Coarse Grained Services are not exposed to the Fine Grained
Services that they use. Composite Services can be assembled from Coarse Grained as
well as Fine Grained Services.

To make the concept clear, let us take the example of provisioning a new VOIP
Service for a new customer. This is a Composite Service which in turn calls
multiple Coarse Grained Services such as validateOrder, createOrVerifyCustomer, and
checkProductAvailability. Now, createOrVerifyCustomer, the Coarse Grained Service
in turn call multiple Fine Grained Services like validateCustomer, createCustomer,
createBillingAddress, and createMailingAddress.

As is shown in the above figure, a Composite Services is an aggregate of other
Composite Services and/or Coarse Grained Services. Similarly, Coarse Grained
Services are again aggregates of other Fine Grained Services. Whereas, Fine
Grained Services implement minimum functionality and are not aggregates of other
services. ESB here acts as a shared messaging layer for connecting applications and
other services throughout the enterprise, thus providing a workbench for service
aggregation and composition.

Why Enterprise Service Bus

[26]

Service Enablement
Services can be designed but if left alone they will sit idle. The idea behind true
SOA is not just service definition or implementation, but also service enablement.
By service enablement, we mean enabling, configuring, tuning, and attaching QOS
attributes to services, so that they are accessible, as per SLA irrespective of formats or
transport protocols.

Using today's techniques like Aspect Oriented Programming (AOP), Annotations
and byte code instrumentation, service enablement can be done without any
dependency on the services framework. An ESB does exactly this. It is to be noted
that a JBI-based ESB will do this API-less. It is not completely API-less, in the sense
that there is always a dependency on an XML configuration or annotation. The
differentiating factor is that this dependency is externalized so that they are not
cemented to the service implementation.

Service Consolidation
Service consolidation is an important step to eliminate redundant information
and data. As a part of service consolidation, we may have to first consolidate IT
infrastructure and data assets in the network. There should be clear ownership
for these two entities, so that we know who or which applications are changing
which sectors of the data assets. Once this is done, the next step is to do application
portfolio analysis and do direct mapping between services and data operations
(business-level CRUD).

A point to be noted here is that I am not talking about exposing simple Create,
Read, Update, and Delete operations to be exposed as services, since they are not
(coarse grained) services at all. They are just functions to alter the constants of data
model and if we expose them as services, we are trying to expose our internal data
modeling, which is going to impact internal agility. Instead, what we have to expose
is our coarse grained business operations (processes) which carry out useful business
functions on behalf of client applications. When we do that, we can map which
services need to be invoked to finish an online retailing experience, and which other
services are responsible for realizing the retail booking in the back office systems.

Thus services are named, labeled, and all the more indexed. And you look at the
index for a particular service similar to the way you look at a book index, to find a
particular subject. Thus, we effectively pool services and consolidate unused capacity
formerly spread over many connected systems and servers.

Chapter 1

[27]

Service Sharing
Message bus facilitates service sharing as compared to service reuse. In fact service
sharing is one of the key aspects of SOA.

In service reuse, the same service is hosted in different deployment environments
due to various reasons. Even though the component or the code behind the service is
reused here, there is significant overhead in terms of deployment, management, and
maintenance. The Service reuse scenario is as shown in the following figure:

Service Reuse

Service (Instance 1)

Service (Instance 2)

Service (Instance 3)

HTTP Binding HTTP Channel Consumer

Consumer

ConsumerJMS Binding JMS Channel

E Mail Binding SMTP Channel

Why Enterprise Service Bus

[28]

Service sharing is, in contrast, the true sharing of a service itself. This means the
service hosting environment is configured for different scenarios and consumers
access the same service instance through multiple channels or formats. SOA web
services can be leveraged to achieve this, and this is further enabled using a message
bus as shown in the following figure:

Service Sharing

Service (Instance)

HTTP
Binding

JMS
Binding

E Mail Binding

HTTP
Channel Consumer

Consumer

ConsumerJMS
Channel

SMTP Channel

Message Bus

Linked Services
Microsoft SQL Server has the ability to query remote database objects as if they
were local to the server. Linked servers are useful in deployments, where the data
can be split by functional area into databases with very little coupling as a means
of scale out strategy. This means that a scaled out database can look like a single
large database to an application. Similar to this, ESB can be seen as a means to
link services. Binding to remote end points is synonymous to linking to remote
databases—an application code can interact with the linked services as if they were
local to the invoking code.

Chapter 1

[29]

Virtualization of Services
By service virtualization, I mean dividing the organization's information assets into
"Virtual Services" without regard to the transport or binding protocol of the actual
implementation components. Corporate network assets (information) can reside
in multiple places like in a centralized mainframe or distributed across multiple
systems implemented using DCOM, RMI, IIOP, remoting, or SOAP protocols.

Service wrapping and service aggregation are two methods by which we can
virtualize them to be exposed in a consistent way to external or internal clients.
Thus, virtualization is closely related to "black box" reuse of services by providing a
different interface at the same abstraction-level. The ESB abstracts behind the scene
addressing, translations, and aggregation.

Well-defined interfaces facilitate development of interacting software systems
not only in different LOBs, but also at different times, thus providing a suitable
abstraction for any consumers of the service. But abstraction has a negative side
too—software systems, components, or services designed for one interface will not
work with those designed for another interface. This, in fact, is an interoperability
issue which can be a concern, especially in a world of networked computers where
the trend is to move data and information freely.

Service virtualization is a way to circumvent this issue by mapping the visible
interface of a service onto the interface and resource of an underlying, possibly
different, real service.

Virtualized
Services

Normalized Message Router

Aggregator Content Based
Router Content Filter Message

Composer
Message

Dispatcher
Message
Translator

Real
Services

ESB

This figure depicts the concept of Service Virtualization, where we make use of core
ESB features like Aggregation, Routing, and Translation to republish the existing
service assets. These are explained in detail in subsequent chapters.

Why Enterprise Service Bus

[30]

Services Fabric
We, integration people, need to learn lessons from the way network architects
organize their network channels. When using fiber, network architects have three
network topologies. For the fibre channel option, we have three network topologies
via any from the following list:

Point-to-point
Arbitrated loop
Fabric

In the fabric topology, there are one or more hardware switches in addition to ports
on each device to network. Comparatively, in ESB we have intelligent adapters.
Multiple clients can hit the ESB fabric, and intelligent adapters at the ESB edge are
responsible for dynamic binding of client requests to appropriate concrete service
implementations. Thus, ESB services fabric functions as the virtualization layer. In
other words, the ESB provides infrastructure capabilities and application plug-in
points for an SOA fabric for the whole enterprise.

Summary
Information integration is as old as Information Technology (IT) itself. We have
been doing it in multiple ways and using multiple technology stacks. But, what
is more important is that, at the end of the day, the integrated solution should be
solving more existing problems and introducing less new problems. This is where
selecting and choosing appropriate integration architecture is most important in the
IT landscape.

We have seen what ESB architecture is and how it is different from other peer
integration architectures. So far so good, and today, you can read any number of
documents on ESB from the Internet. We, as architects and developers now, also
need to implement them in our code, not just in sketches in white papers and
presentations. How can we do that using Java?

In the next chapter (Java Business Integration), we will see exactly what Java has to
offer in defining ESB architectures.

•
•
•

Java Business Integration
Integration has been an area for specialists for years, since no standards exist across
vendor products. This increases the Total Cost of Ownership (TCO) to implement
and maintain any integration solution. Even though integration is a necessary evil,
CIOs and IT managers postpone decisions and actions, and sometimes go for ad-hoc
or temporary solutions. Any such activity will complicate the already confused stove
pipes and it is the need of the hour to have standardization. Here we are going to
inspect the need of another standard for business integration, and also look into the
details of what this standard is all about.

So we will cover the following in this chapter:

Service oriented architecture in the context of integration
Relationship between web services and SOA
Service oriented integration
J2EE, JCA, and JBI—how they relate
Introduction to JBI
JBI Nomenclature—main components in JBI
Provider-consumer roles in JBI
JBI Message Exchange Patterns (MEP)

SOA—The Motto
In Chapter 1, we went through integration and also visited the major integration
architectures. We have been doing integration for many decades in proprietary or
ad-hoc manner. Today, the buzz word is SOA and in the integration space, we are
talking about Service Oriented Integration (SOI). Let us look into the essentials
of SOA and see whether the existing standards and APIs are sufficient in the
integration space.

•

•

•

•

•

•

•

•

Java Business Integration

[32]

Why We Need SOA
We have been using multiple technologies for developing application components,
and a few of them are listed as follows:

Remote Procedure Call (RPC)
Common Object Request Broker Architecture (CORBA)
Distributed Component Object Model (DCOM)
.NET remoting
Enterprise Java Beans (EJBs)
Java Remote Method Invocation (RMI)

One drawback, which can be seen in almost all these technologies, is their inability
to interoperate. In other words, if a .NET remoting component has to send bytes to a
Java RMI component, there are workarounds that may not work all the times.

Next, all the above listed technologies follow the best Object Oriented Principles
(OOP), especially hiding the implementation details behind interfaces. This will
provide loose coupling between the provider and the consumer, which is very
important especially in distributed computing environments. Now the question
is, are these interfaces abstract enough? To rephrase the question, can a Java RMI
runtime make sense out of a .NET interface?

Along these lines, we can point out a full list of doubts or deficiencies which exist in
today's computing environment. This is where SOA brings new promises.

What is SOA
SOA is all about a set of architectural patterns, principles, and best practices
to implement software components in such a way that we overcome much of
the deficiencies identified in traditional programming paradigms. SOA speaks
about services implemented based on abstract interfaces where only the abstract
interface is exposed to the outside world. Hence the consumers are unaware of any
implementation details. Moreover, the abstract model is neutral of any platform or
technology. This means, components or services implemented in any platform or
technology can interoperate. We will list out few more features of SOA here:

Standards-based (WS-* Specifications)
Services are autonomous and coarse grained
Providers and consumers are loosely coupled

•

•

•

•

•

•

•

•

•

Chapter 2

[33]

The list is not exhaustive, but we have many number of literature available speaking
on SOA, so let us not repeat it here. Instead we will see the importance of SOA in the
integration context.

SOA and Web Services
SOA doesn't mandate any specific platform, technology, or even a specific method
of software engineering, but time has proven that web service is a viable technology
to implement SOA. However, we need to be cautious in that using web services
doesn't lead to SOA by itself, or implement it. Rather, since web services are based
on industry accepted standards like WSDL, SOAP, and XML; it is one of the best
available means to attain SOA.

Providers and consumers agree to a common interface called Web Services
Description Language (WSDL) in SOA using web services. Data is exchanged
normally through HTTP protocol, in Simple Object Access Protocol (SOAP) format.

WSDL
WSDL is the language of web services, used to specify the service contract to be
agreed upon by the provider and consumer. It is a XML formatted information,
mainly intended to be machine processable (but human readable too, since it is
XML). When we host a web service, it is normal to retrieve the WSDL from the web
service endpoint. Also, there are mainly two approaches in working with WSDL,
which are listed as follows:

Start from WSDL, create and host the web service and open the service for
clients; tools like wsdl2java help us to do this.
Start from the types already available, generate the WSDL and then continue;
tools like java2wsdl help us here.

Let us now quickly run through the main sections within a WSDL. A WSDL
structure is as shown here:

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions targetNamespace=
 "http://versionXYZ.ws.servicemix.esb.binildas.com" …>
 <wsdl:types>
 <schema elementFormDefault="qualified"
 targetNamespace="http://version20061231.ws.
 servicemix.esb.binildas.com"
 xmlns="http://www.w3.org/2001/XMLSchema">
 </schema>
 </wsdl:types>
 <wsdl:message name="helloResponse">
 <!-- other code goes here -->

•

•

Java Business Integration

[34]

 </wsdl:message>
 <wsdl:portType name="IHelloWeb">
 <!-- other code goes here -->
 </wsdl:portType>
 <wsdl:binding name="HelloWebService20061231SoapBinding"
 type="impl:IHelloWeb">
 <!-- other code goes here -->
 </wsdl:binding>
 <wsdl:service name="IHelloWebService">
 <wsdl:port binding="impl:HelloWebService20061231SoapBinding"
 name="HelloWebService20061231">
 <wsdlsoap:address
 location="http://localhost:8080/AxisEndToEnd20061231/
 services/HelloWebService20061231"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

We will now run through the main sections of a typical WSDL:

types: The data types exchanged are expressed here as an XML schema.
message: This section details about the message formats (or the documents)
exchanged.
portType: The PortType can be looked at as the abstract interface definition
for the exposed service.
binding: The PortType has to be mapped to specific data formats and
protocols, which will be detailed out in the binding section.
port: The port gives the URL representation of the service endpoint.
service: Service can contain a collection of port elements.

Since JBI is based on WSDL, we will deal with many WSDL instances in the
subsequent chapters.

SOAP
In web services, data is transmitted over the wire in SOAP. SOAP is an XML-based
messaging protocol. SOAP defines a set of rules for structuring messages that can
be used for simple one-way messaging and is useful for performing RPC-style
interactions. Even though SOAP is not tied to any particular transport protocol,
HTTP is the popular one.

A SOAP-encoded RPC dialogue contains both a request message and a response
message. Let us consider a simple service method that takes a String parameter and
returns a String type:

public String hello(String param);

•

•

•

•

•

•

Chapter 2

[35]

The respective SOAP request is shown as follows:

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Body>
 <ns1:hello soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/
 encoding/"
 xmlns:ns1="http://AxisEndToEnd.axis.apache.
 binildas.com">
 <in0 xsi:type="soapenc:string"
 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/">
 Binil
 </in0>
 </ns1:hello>
 </soapenv:Body>
</soapenv:Envelope>

Similar to the request, the SOAP response is shown below:

<?xml version="1.0" encoding="utf-8"?>
<soapenv:Envelope
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Body>
 <ns1:helloResponse soapenv:encodingStyle="http://schemas.xmlsoap.
 org/soap/encoding/"
 xmlns:ns1="http://AxisEndToEnd.axis.apache.
 binildas.com">
 <helloReturn xsi:type="soapenc:string"
 xmlns:soapenc="http://schemas.xmlsoap.org/soap/
 encoding/">
 Return From Server
 </helloReturn>
 </ns1:helloResponse>
 </soapenv:Body>
</soapenv:Envelope>

As is the case with WSDL, we will be dealing with many instances of SOAP requests
and responses in our discussions in the coming chapters. Hence, let us not delve into
the intricacies of WSDL and SOAP, as there are many text books doing the same. Let
us continue with our discussion on integration.

Java Business Integration

[36]

Service Oriented Integration (SOI)
In Chapter 1, we identified ESB as an architectural pattern different from traditional
integration architectures, which support standards-based services for integration.
Gartner originally identified ESB as the core component in an SOA landscape.
Gartner says:

SOA will be used in more than 80% of new mission-critical applications and
business processes by 2010

Another market strategy study, conducted by Gartner in SOA reveals that:

The ESB category grew by 160% from year 2004 to year 2005

As is true with SOA, ESB-based integration has been increasingly using web services
standards and technologies for service description, hosting, and accessing. The
advantage is that we not only reap all the benefits of ESB architecture (explained in
Chapter 1), but also make sure that the services exposed at the bus are complying
with industry standards. This means consumers and providers makes use of
existing toolsets and frameworks to interact with the ESB. Most of the current SOA
toolsets support web services and related technologies. This opens up a whole lot of
opportunities in the integration space too, which leads to SOI. When we virtualize
services in the ESB, it is very critical to provide a uniform ecosystem for all kind of
services, whether it is written in Java, or .NET, or C++.

If the services are as per the web service standards, ESB can provide the mediation
services which will help to interconnect these services. Externalizing mediation logic
out of services to an ESB will remove in-code coupling between services. To sum
up, our current SOA infrastructure still exists which hosts services and takes care
of service management and governance. Also an ESB provides SOI in the
form of mediation, which provides communication (along with other features)
between services.

JBI in J2EE—How they Relate
The Java 2 Enterprise Edition (J2EE) platform provides containers for client
applications, web components based on servlets and Java Server Pages (JSP), and
Enterprise JavaBeans (EJB) components. These J2EE containers provide deployment
and run-time support for application components. They also provide a federated
view of the platform-level services, provided by the underlying application
server for the application components. In this section, we will look at where JBI is
positioned in the J2EE stack.

Chapter 2

[37]

Servlets, Portlets, EJB, JCA, and so on
The world of Java is fabulous. Java speaks about portable code (.class files),
portable data (JAXP and XML), portable components (EJB), and now portable
services (JAX-WS). However, untill now, there was no standard way by which we
could do business-level integration across application servers from multiple vendors.

Business integration can be done with business components or with business
services. We know that EJB components can interoperate across multiple vendor's
application servers, and similar is the case with web services. We have been doing
integration within our traditional J2EE programming paradigm in the pre-ESB era.
The challenge of accessing, integrating, and transforming data has largely been done
by developers using manual coding of J2EE components like POJO, EJB, JMS, and
JCA. These J2EE APIs are optimized for business purpose programming, and not for
integration. The after effect is that the J2EE programmers have to use low-level APIs
to implement integration concerns.

Programmers create integration code having hard coded dependencies between
specific applications and data sources, which are neither efficient nor flexible. Hence,
a way to do integration in a loosely coupled manner and to port the integration
solution as a whole is missing. Components and services are only a part of the
integration solution. It also includes the strategy to integrate, the patterns adapted
to route and transform messages and similar artifacts. All these differ for different
vendor's products and JBI is trying to bring standardization across this space.

JBI and JCA—Competing or Complementing
The J2EE Connector Architecture (JCA) defines standards for connecting the J2EE
platform to heterogeneous EIS systems. Examples of EIS systems include CICS, IMS,
TPF systems, ERP, database systems, and legacy applications not written in the Java
programming language. The JCA enables the integration of EISs with application
servers and enterprise applications by defining a developer-level API and a
vendor-level SPI. The SPIs enables an EIS vendor to provide a standard resource
adapter for its EIS. The resource adapter plugs into an application server, thus
providing connectivity between the EIS, the application server, and the
enterprise application.

If an application server vendor has extended its system to support the JCA, it is
assured of seamless connectivity to multiple EISs. So following JCA, an EIS vendor
needs to provide just one standard resource adapter, which has the capability to
plug-in to any application server that supports the JCA. He can now be assured that
his EIS will plug into the J2EE continuum.

Java Business Integration

[38]

JCA-based adapters are usually used to integrate compliant ESBs with EIS. This
means, by using JCA, an EIS vendor can be assured that his EIS can integrate with
compliant ESBs. JCA provides the most efficient way of resource pooling, thread
pooling, and transaction handling on JMS and other resource adapters. We have
already seen the similarities between a message bus and a service bus. Along those
lines, we can understand how important is the MOM technology such as JMS. Hence,
the importance JCA has got in integration.

We also need to understand one subtle difference between JBI and JCA here.
JCA is designed to support the traditional request-response model, but fails to
support complex long running transactions and integration scenarios. Much
back-end integration does not always fit well with the synchronous request-response
model and JBI has got something else to offer here. JBI is based on a mediated
message exchange pattern. That is, when a component sends a message to another
component, the message exchange is mediated by the JBI infrastructure. As we will
see shortly, JBI supports multiple message exchange patterns. Moreover, JBI-based
ESBs will give more functionalities such as service composition, BPM, etc., which
makes sense in handling back-end integration and long running transactions.

JBI—a New Standard
Every organization would like to leverage existing IT staff to run their integration
effort similar to their daily IT development and operations. However, integration is a
different art than normal software development and that is why we have integration
architects. That doesn't mean integration experts have to be experts in vendor X's
product, and are back to novice-level in vendor Y's product. If this has to happen, we
need to do similar activities across multiple vendor's products.

As we already discussed, integration is not that simple as it involves integration
architectures, integration patterns, and MOM expertise. We need to build the extra
intelligent adapters around services and endpoints. These adapters are to work in
tandem with the platform provider to give low-level features like communication,
session, state, transport, and routing. Thus, business integration is not limited by
just application programming, but involves components and engineering processes
at the application and platform interface-level. Hence, to make integration artifacts
portable, even the integration vendors (who deal with platform services) have a big
part to play. This is where we need standardization as components and adapters
should be portable across several vendor products.

Let me try to explain this point a bit further, as this is the prime concern in today's
integration initiatives. Since the inception of J2EE, we have been using multiple
J2EE containers from different vendors. Most of these J2EE containers also have an
integration stack, which can be either plugged into their existing J2EE containers or

Chapter 2

[39]

can be run as standalone. Websphere Business Integration (WBI) message broker and
BEA Aqualogic Service Bus (ALSB) are just a few of them in the list. It is true, that
most of these integration stacks too support standard-based integration, following
SOA principles and patterns. What about the integration artifacts as such?

When I say integration artifacts, I refer to any integration libraries available, or any
custom configuration the developers do to the above libraries, the packaging and
deployment artifacts they generate. In other words, if we create a .jar or .ear file
containing some integration solution in ALSB; can we port it to WBI later? I leave
this question open for the user community of these frameworks to answer. So, what
has happened here? As always, the evolution of standards lags behind the evolution
of technology. Hence, even before JBI, we had multiple programming paradigms
to solve integration issues, but then they were tied to the vendor's environment.
The promise of JBI is to bring portability across different JBI containers for the
integration artifacts.

JBI in Detail
In Chapter 1, we discussed ESB architecture which can facilitate the collaboration
between services. JBI provides a collaboration framework which provides standard
interfaces for integration components and protocols to plug into, thus allowing the
assembly of SOI frameworks.

JSR 208
JSR 208 is an extension of J2EE, but it is specific for JBI Service Provider Interfaces
(SPI). SOA and SOI are the targets of JBI and hence it is built around WSDL.
Integration components can be plugged into the JBI environment using a service
model based on WSDL. Service composition is a major target in ESB architecture and
the JBI environment aggregates multiple service definitions in the WSDL form into
the message infrastructure.

In the context of a larger service composition, we have multiple partners (service
providers or service consumers) and the metadata for interaction of these individual
partners are termed as the business protocol. The metadata of choreography played
by a business process in a business protocol is termed as the abstract business
process. Partner processes interact with each other by looking at abstract business
process; it is the ESB's job to realize this abstract business process. JSR aims to make
this abstract business process definition portable. This means the wiring details
between components in a service composition scenario can be extracted into a
separate layer and it is this layer which we are speaking about JSR 208. Thus, JSR 208
or JBI is a foundation for realizing SOI.

Java Business Integration

[40]

JSR 208 mandates the following for JBI components:

Portable: Components are portable across JBI implementations.
Manageable: Components can be managed in a centralized manner.
Interoperable: Components should be able to provide service to and
consume services from other components, despite the fact that they come
from different sources and transport protocols.

JBI Nomenclature
This section helps us to understand the major components in JBI architecture and
their roles with reference to the following figure:

The major components are explained here:

JBI environment: A JBI environment is a single Java Virtual Machine (JVM)
where we can deploy integration artifacts. This JBI can be a standalone ESB
or an ESB embedded in the JVM of an application server. In the latter case,
even an EJB component deployed in an application server can function as a
provider or consumer to the ESB, thus further narrowing down the bridge
between traditional J2EE application servers and the relatively new ESB.

•

•

•

•

Chapter 2

[41]

Service Engine (SE): SEs are service providers or service consumers
deployed locally within a JBI environment. They provide the actual business
logic like transformation. Transformation service can be done with the help
of an XSLT engine by using a stylesheet. Another engine may use JCA to give
a data access service, or Business Process Execution Language (BPEL), or
even custom logic to integrate legacy code like that in CICS or mainframe.
Binding Components (BC): BC provide communications protocol support
and they are normally bound to components deployed remotely from the JBI
run time. In fact, nothing prevents a user from defining a binding for a local
service in the case where it closely resembles SE. Thus BC provides remote
access to services for remote service providers and consumers.

The distinction between SE and BC is important for various pragmatic
reasons. Mainly, it separates service logic from binding protocol. This
facilitates reusability.

JBI Container: Similar to the container in an application server, a JBI
environment by itself is a JBI container. This container hosts SE and BC. The
interesting part is a SE is again a container for engine specific entities like
XSLT engine, stylesheets, rules engines, and scripts. Thus, a JBI environment
is a container of containers whereas a service engine is a container for hosting
WSDL defined providers and consumers local to the JBI.
Normalized message: A normalized message consists of two parts—the
actual message in XML format, and message metadata which is also referred
to as the message context data. The message context data helps to associate
extra information with a particular message, as it is processed by both
plug-in components and system components in the bus.
Normalized message router (NMR): The nerve of the JBI architecture is the
NMR. This is a bus through which messages flow in either direction from
a source to a destination. The specialty of this router is that messages are
always in a normalized format, irrespective of the source or destination.
NMR thus acts as a lightweight messaging infrastructure which facilitates
actual message exchange in a loosely coupled fashion. NMR provides
varying QOS functionalities and the three levels of message delivery
guarantee provided by NMR are listed as follows:

Best effort: Message may be delivered only once or more than
once, or even the message can be dropped.

•

•

•

•

•

°

Java Business Integration

[42]

At Least Once: Message has to be delivered once or more, but
cannot be dropped. Hence, duplicates can exist.
Once and only once: It is guaranteed that messages will be
delivered once and only once.

Pluggable components: The loosely coupled feature of ESB is due to
the pluggable architecture for service components. There are two broad
categories of pluggable components called SE and BC. Pluggable components
can play the role of service provider, service consumer, or both. Pluggable
components are connected to the NMR through a Delivery Channel.
Service providers and service consumers: There are mainly two roles played
by pluggable components within an ESB, the service provider and service
consumer. Components can act as both a provider and a consumer at the
same time. Service definition is available in the form of WSDL and this
is the only shared artifact between providers and consumers. Since
endpoint information is not shared between providers and consumers in the
ESB, loosely coupled integration is facilitated.
It is to be noted that a single service definition may be implemented by mul-
tiple providers. Similarly, a consumer's service definition of interest might
be provided by multiple providers too, in ESB architecture. Moreover, the
role of both provider and consumer can be played by the component either
directly or through a proxy for a remote service.
Delivery Channel (DC): DC connects a message source and a destination.
The messaging infrastructure or the NMR is the bus for message exchange
for multiple service providers and consumers. Hence when a service
provider has got information to communicate, it doesn't just fling the
message into the NMR, but adds the message to a particular DC. Similarly,
a message consumer doesn't just pick it up at random from the messaging
system. Instead, the consumer receives the message from a particular DC.
Thus DCs are logical addresses in the ESB.

Provider—Consumer Contract
In the JBI environment, the provider and consumer always interact based on a
services model. A service interface is the common aspect between them. WSDL 1.1
and 2.0 are used to define the contract through the services interface.

°

°

•

•

•

Chapter 2

[43]

The following figure represents the two parts of the WSDL representation of
a service:

In the Abstract Model, WSDL describes the propagation of a message through a type
system. A message has sequence and cardinality specified by its Message Exchange
Pattern (MEP). A Message can be a Fault Message also. An MEP is associated
with one or more messages using an Operation. An Interface can contain a single
Operation or a group of Operations represented in an abstract fashion—independent
of wire formats and transport protocols.

An Interface in the Abstract Model is bound to a specific wire format and transport
protocol via Binding. A Binding is associated with a network address in an
Endpoint and a single Service in the concrete model aggregates multiple Endpoints
implementing common interfaces.

Java Business Integration

[44]

Detached Message Exchange
JBI-based message exchange occurs between a Provider and Consumer in a detached
fashion. This means, the Provider and Consumer never interact directly. In technical
terms, they never share the same thread context of execution. Instead, the Provider
and Consumer use JBI NMR as an intermediary. Thus, the Consumer sends a
request message to the NMR. The NMR, using intelligent routers decides the best
matched service provider and dispatches the message on behalf of the Consumer.
The Provider component can be a different component or the same component as
the Consumer itself. The Provider can be an SE or a BC and based on the type it
will execute the business process by itself or delegate the actual processing to the
remotely bound component. The response message is sent back to the NMR by the
Provider, and the NMR in turn passes it back to the Consumer. This completes
the message exchange.

The following figure represents the JBI-based message exchange:

There are multiple patterns by which messages are exchanged, which we will
review shortly.

Chapter 2

[45]

Provider—Consumer Role
Though a JBI component can function as a Consumer, a Provider, or as both a
Consumer and Provider, there is clear cut distinction between the Provider and
Consumer roles. These roles may be performed by bindings or engines, in any
combination of the two. When a binding acts as a service Provider, an external
service is implied. Similarly, when the binding acts as a service Consumer, an
external Consumer is implied. In the same way, the use of a Service Engines in
either role implies a local actor for that role.

This is shown in the following figure:

The Provider and Consumer interact with each other through the NMR. When they
interact, they perform the distinct responsibilities (not necessarily in the same order).

Java Business Integration

[46]

The following is the list of responsibilities, performed by the Provider and Consumer
while interacting with NMR:

1. Provider: Once deployed, the JBI activates the service provider endpoint.
2. Provider: Provider then publishes the service description in WSDL format.
3. Consumer: Consumer then discovers the required service. This can happen at

design time (static binding) or run time (dynamic binding).
4. Consumer: Invokes the queried service.
5. Provider and Consumer: Send and respond to message exchanges according to

the MEP, and state of the message exchange instance.
6. Provider: Provides the service by responding to the function invocations.
7. Provider and Consumer: Responds with status (fault or done) to complete the

message exchange.
During run-time activation, a service provider activates the actual services it
provides, making them known to the NMR. It can now route service invocations to
that service.

javax.jbi.component.ComponentContext context ;
// Initialized via. AOP
javax.jbi.messaging.DeliveryChannel channel = context.
 getDeliveryChannel();
javax.jbi.servicedesc.ServiceEndpoint serviceEndpoint = null;
 if (service != null && endpoint != null)
 {
 serviceEndpoint = context.activateEndpoint
 (service, endpoint);
 }

The Provider creates a WSDL described service available through an endpoint.
As described in the Provider-Consumer contract, the service implements a
WSDL-based interface, which is a collection of operations. The consumer creates a
message exchange to send a message to invoke a particular service. Since consumers
and providers only share the abstract service definition, they are decoupled from
each other. Moreover, several services can implement the same WSDL interface.
Hence, if a consumer sends a message for a particular interface, the JBI might find
more than one endpoint conforming to the interface and can thus route to the
best-fit endpoint.

Chapter 2

[47]

Message Exchange
A message exchange is the "Message Packet" transferred between a consumer and a
provider in a service invocation. It represents a container for normalized messages
which are described by an exchange pattern. Thus message exchange encapsulates
the following:

Normalized message
Message exchange metadata
Message exchange state

Thus, message exchange is the JBI local portion of a service invocation.

Service Invocation
An end-to-end interaction between a service consumer and a service provider is
a service invocation. Service consumers employ one or more service invocation
patterns. Service invocation through a JBI infrastructure is based on a 'pull' model,
where a component accepts message exchange instances when it is ready. Thus,
once a message exchange instance is created, it is sent back and forth between the
two participating components, and this continues till the status of the message
exchange instance is either set to 'done' or 'error', and sent one last time between
the two components.

Message Exchange Patterns (MEP)
Service consumers interact with service providers for message exchange employing
one or more service invocation patterns. The MEP defines the names, sequence, and
cardinality of messages in an exchange. There are many service invocation patterns,
and, from a JBI perspective, any JBI-compliant ESB implementation must support the
following four service invocations:

One-Way: Service consumer issues a request to the service provider. No
error (fault) path is provided.
Reliable One-Way: Service consumer issues a request to the service provider.
Provider may respond with a fault if it fails to process the request.
Request-Response: Service Consumer issues a request to the service provider,
with expectation of response. Provider may respond with a fault if it fails to
process request.
Request Optional-Response: Service consumer issues a request to the service
provider, which may result in a response. Both consumer and provider have
the option of generating a fault in response to a message received during
the interaction.

•

•

•

•

•

•

•

Java Business Integration

[48]

The above service invocations can be mapped to four different MEPs that are listed
as follows.

In-Only MEP
In-Only MEP is used for one-way exchanges. The following figure diagrammatically
explains the In-Only MEP:

In the In-Only MEP normal scenario, the sequence of operations is as follows:

Service Consumer initiates with a message.
Service Provider responds with the status to complete the message exchange.

In the In-Only MEP normal scenario, since the Consumer issues a request to the
Provider with no error (fault) path, any errors at the Provider-level will not be
propagated to the Consumer.

Robust In-Only MEP
Robust In-Only MEP is used for reliable, one-way message exchanges. It has got
two usage scenarios—the normal scenario and the fault scenario.

Normal scenario: In the Robust In-Only MEP in the normal (without anyRobust In-Only MEP in the normal (without any
fault) scenario, the sequence of message exchanges is similar to that of
In-Only MEP. The difference comes to play only in the case where there is
an error at the Provider-level, which will be described as the next item.

•

•

•

Chapter 2

[49]

The following figure explains the Robust In-Only MEP—Normal scenario:

In the Robust In-Only MEP—Normal scenario, the sequence of operations is
as follows:

Service Consumer initiates with a message.
Service Provider responds with the status to complete the
message exchange.

Fault scenario: In the Robust In-Only MEP in the fault scenario, theIn the Robust In-Only MEP in the fault scenario, theRobust In-Only MEP in the fault scenario, the
Consumer issues a request to the Provider and the Provider will respond
with a fault instead of the normal response.

The following figure explains the Robust In-Only MEP—Fault scenario:

°
°

•

Java Business Integration

[50]

In the Robust In-Only MEP—Fault scenario, the sequence of operations is
as follows:

Service Consumer initiates with a message.
Service Provider responds with a fault.
Service Consumer responds with the status to complete the
message exchange.

So, what you need to note is that, in the Robust In-Only MEP—Normal scenario,
the exchange is terminated when the Provider responds with status to complete
the message exchange, whereas in the Robust In-Only MEP—Fault scenario, the
exchange is terminated when the Consumer responds with the status to complete the
message exchange. The status to complete the message exchange even in the case of
fault scenario, brings robustness to it.

In-Out MEP
In-Out MEP is used for a request-response pair of service invocations. Here the
Consumer issues a request to the Provider, with expectation of a response. It has got
two usage scenarios—the normal scenario and the fault scenario.

Normal scenario: In the In-Out MEP in the normal (without any fault)
scenario, the Consumer issues a request to the Provider, with expectation of a
response. The Provider responds with the normal response.
The following figure explains the In-Out MEP—Normal scenario:

°

°

°

•

Chapter 2

[51]

In the In-Out MEP—Normal scenario, the sequence of operations is
as follows:

Service Consumer initiates with a message.
Service Provider responds with a message.
Service Consumer responds with the status to complete the
message exchange.

Fault scenario: In the In-Out MEP in the fault scenario, the Consumer issuesIn the In-Out MEP in the fault scenario, the Consumer issuesIn-Out MEP in the fault scenario, the Consumer issues in the fault scenario, the Consumer issues fault scenario, the Consumer issues
a request to the Provider with expectation of a response and the Provider will
respond with a fault instead of the normal response.

The following figure explains the In-Out MEP—Fault scenario:

In the In-Out MEP—Fault scenario, the sequence of operations is as follows:
Service Consumer initiates with a message.
Service Provider responds with a fault.
Service Consumer responds with the status to complete the
message exchange.

°

°

°

•

°

°

°

Java Business Integration

[52]

In-Optional-Out MEP
In the In-Optional-Out MEP, the service Consumer issues a request to the service
Provider, which may or may not result in a response. Both the Consumer and the
Provider have the option of generating a fault in response to a message received
during the interaction.

One-Way: In the In-Optional-Out MEP—One-Way scenario, the service
Consumer issues a request to the service Provider. The Provider neither
returns any response, nor generates any fault.
The following figure explains the In-Optional-Out MEP—One-Way scenario:

In the In-Optional-Out MEP—One-Way scenario, the sequence of operations
is as follows:

Service Consumer initiates with a message.
Service Provider responds with the status to complete the
message exchange.

Two-Way: In the In-Optional-Out MEP—Two-Way scenario, the service
Consumer issues a request to the service Provider. The Provider then returns
a response.
The following figure explains the In-Optional-Out MEP—Two-Way scenario:

•

°

°

•

Chapter 2

[53]

In the In-Optional-Out MEP—Two-Way scenario, the sequence of
operations is as follows:

Service Consumer initiates with a message.
Service Provider responds with a message.
Service Consumer responds with the status to complete the
message exchange.

Provider-Fault: In the In-Optional-Out MEP—Provider-Fault scenario, the
service Consumer issues a request to the service Provider. The Provider
generates a fault instead of the normal response.

The following figure explains the In-Optional-Out MEP—Provider-Fault
scenario:

°

°

°

•

Java Business Integration

[54]

In the In-Optional-Out MEP—Provider-Fault scenario, the sequence of
operations is as follows:

Service Consumer initiates with a message.
Service Provider responds with a fault.
Service Consumer responds with the status to complete the
message exchange.

Consumer-Fault: In the In-Optional-Out MEP—Consumer-Fault scenario,
the service Consumer issues a request to the service Provider. The Provider
then returns a response. The Consumer generates a fault while accepting
the response.

The following figure explains the In-Optional-Out MEP—Consumer-Fault
scenario:

In the In-Optional-Out MEP—Consumer-Fault scenario, the sequence of
operations is as follows:

Service Consumer initiates with a message.
Service Provider responds with a message.
Service Consumer responds with a fault.
Service Provider responds with the status to complete the
message exchange.

°

°

°

•

°

°

°

°

Chapter 2

[55]

Where considering a MEP, we always consider the service provider's point of view.
Thus, a message targeted towards the provider in an In-Only MEP is the 'In' part of
the MEP. On the contrary, if a message is targeted towards the consumer, it is in fact
targeted out from the provider, and hence is the 'Out' part of the MEP.

Thus, depending upon the role of the component in the message exchange, the
appropriate part or message is created, initialized, and sent to the delivery channel.
For an In-Out scenario, the typical steps are as follows:

javax.jbi.messaging.InOut inout = createInOutExchange
 (new QName(addressNamespaceURI, addressLocalPart), null, null);
inout.setProperty("correlationId", id);
// set other properties
javax.jbi.messaging.NormalizedMessage nMsg = inout.createMessage();
// nMsg.setProperty(Constants.PROPERTY_SSN_NUMBER, ssnNumber);
// set other properties
inout.setInMessage(nMsg);
send(inout);

ESB—Will it Solve all Our Pain Points
In Chapter 1, we introduced ESB and also looked into what JBI has got to offer here.
If you are familiar with SOA principles, one subtle fact, which is evident now is
that ESB or JBI are not an end by themselves, but a means towards an end (which is
SOA). An ESB is not required to build an SOA, nor is JBI required for ESB or SOA.
However, all of them have something in common using JBI—we can build standard
components to be deployed into ESB architectures. Thus, JBI by itself is one of the
ways by which we can attain SOA. There is also a caveat to this—just following JBI
or ESB will not guarantee that you attain SOA. Increasingly, you will hear requests
from your project stakeholders to implement an ESB without considering SOA
as a whole, such that they want immediate solutions. It is technically feasible to
build ESB, which act as pipes interconnecting systems, but the success of such ESB
architectures without considering the SOA landscape, which it is supposed to be a
part of, will be difficult to measure.

Java Business Integration

[56]

Summary
JBI is the new integration API introduced in the J2EE world. It is a great enabler
for SOA because it defines ESB architecture, which can facilitate the collaboration
between services. It provides for loosely coupled integration by separating out the
providers and consumers to mediate through the bus.

The NMR provides a common integration channel through which the messages
flow. Services are published in the bus using the WSDL standard. Providers and
consumers are the different roles taken by the integration components with respect
to the bus, when plugged into the JBI bus. Message exchange takes place through
different MEPs, each providing different levels of reliability.

The next chapter will introduce a JBI container. Be ready to wet your hands with
some code too—to build and deploy your first JBI sample.

JBI Container—ServiceMix
The first two chapters introduced ESB and JBI respectively, with much theory and
less of code. Just like me, you too might have come across a lot of white papers
and point of views on the above two technologies. However, when we want to
actually implement them into our technical architectures, we need working code
demonstrating both.

Just like any other Java APIs, servlet or EJB, for a JBI API too, we need concrete
implementation. There are many implementations supporting ESB architectures
available in the market today. A couple of them can interoperate with the JBI API
whereas a few others tackle JBI on the side of quite a different programming model.
ServiceMix is an open-source ESB platform in Java programming language, built
from the ground up with JBI APIs and principles.

Due to the reason quoted in the first paragraph, we will use ServiceMix to better
understand JBI and ESB. Hence, most of the subsequent chapters in this book will
introduce new scenarios or patterns in business integration and then try to solve
them in the JBI way with code samples in ServiceMix. What you need to keep in
mind is that each of these integration techniques can be used as standalone, or in
integration with other scenarios and patterns to bring out an integration solution
using ESB architectural blueprints.

We will cover the following in this chapter:

Introduction to ServiceMix—the JBI container
Few other ESB products available in the market
Where to download and how to install ServiceMix
First JBI sample

•

•

•

•

JBI Container—ServiceMix

[58]

ServiceMix—Under the Hood
ServiceMix is based on SOA and Event Driven Architecture (EDA), and hence
provides a platform for SOI. Let us look more into this JBI container.

Salient Features
ServiceMix is built based on the JBI (JSR 208) specification and hence components
are portable across ESB containers. ServiceMix is lightweight and can be run
standalone or embedded in other containers. Since it is JBI-compliant, ServiceMix
can itself be plugged into another JBI-compliant ESB. ServiceMix has integrated
Spring support, and hence we can integrate and wire services and components in
Spring-like configuration files. The JBI standard speaks about standard deployment
unit formats in the form of service unit and service assembly. This means we can
hot deploy any JBI-compliant BPEL engine (or set of BPEL files into a BPEL engine),
rule engine, transformation engine, routing engine (even though ServiceMix does its
own routing), scripting engine, or other integration component (such as specific JBI
binding components) directly into ServiceMix.

ServiceMix Architecture
JBI is a specification and vendors are free to implement the JBI container in their own
ways, just like there are multiple EJB containers brought out by multiple vendors.
Each vendor's container has to respect the JBI APIs if it is to be J2EE-compliant.
ServiceMix is a JBI container and hence is compliant with the JBI APIs, but has got
its own features and way of routing messages. Let us look more into the internal
architecture of ServiceMix.

Architecture Diagram
JBI compliancy is the main feature of the ServiceMix architecture. This means, as
shown in the following architecture diagram, ServiceMix is an open architecture. So,
any JBI-compliant component can fit into the architecture. Moreover, the architecture
is also scalable from a deployment perspective. Most hub-and-spoke architecture
suffers from the single point of failure. However, ServiceMix, due to the open nature,
can also collaborate with any other ESB, effectively plugging its routing capabilities
into other ESB cores, thus generating a federation of service containers.

Chapter 3

[59]

BPEL

SOAP

JBI JBI

JBI Bindings

File JCA Legacy

. . .

Transformation,
Routing, Correlation

JBI Bindings

ServiceMix ESB

. . .

NMR

XSLT Rules Scripts

Normalized Message Router Flows
Components plugged into ServiceMix, whether they are local or remote to it,
interact with each other through the NMR. Moreover, ServiceMix is based on MOM
principles. Hence, messages are exchanged between components through the NMR
using a suitable MEP. To exchange messages, different message dispatch policies can
be adopted which will decide the QOS of the message exchanges. Each of these
policies is abstracted out as different NMR flows in ServiceMix. Depending upon
the specific use case you want to implement using ServiceMix, the actual NMR
flow can be specified. It is also to be noted that different NMR flows will exhibit
different capabilities in terms of cross cutting concerns such as message brokering
and message buffering.

ServiceMix, at present, provides four NMR flow types:

Straight through (ST) flow: STP is analogous to the B2B trading process for
capital markets and payment transactions done electronically. this is done
without needing to rekey or manually intervene the STP flow. A message
exchange is routed ST from the source to the destination. There is no staging
or buffering of messages en route. This kind of flow is preferred for cases
where the ServiceMix container is deployed with simple flows (no state) or
is embedded. Since there is no staging or buffering, latency will be as low
as possible.

•

JBI Container—ServiceMix

[60]

The following figure represents a ST flow:

ServiceMix ESB

Delivery
Channel

Delivery
Channel

Binding

Service

NMR

Message
Flow

Staged Event Driven Architecture (SEDA) flow: SEDA decomposes a service
into multiple stages, where each stage is an event-driven service component
that performs some aspect of processing the request. Each stage contains a
small, dynamically sized thread pool to drive its execution. SEDA provides
nonblocking I/O primitives to eliminate the most common sources of long
blocking operations.
In the ServiceMix SEDA flow, we have a simple event staging between the
internal processes in the NMR broker. SEDA is the default flow in ServiceMix
and is suited for general deployment, as the additional staging can buffer
exchanges between heavily routed to components (where state maybe used),
for example.

•

Chapter 3

[61]

The following figure represents a SEDA flow:

ServiceMix ESB

Staged
Delivery
Channel

Staged
Delivery
Channel

Binding

Service

Buffer

Buffer

NMR

Message
Flow

Java Message Service (JMS) flow: In the ServiceMix JMS flow, we can
leverage the tested and proven methodology of MOM to address scalability
or failover. Using JMS flow, multiple ServiceMix containers can collaborate in
a cluster or otherwise, to provide component and service replication. When
we deploy a component either as a POJO or as an archive component into a
JMS flow configured ServiceMix container, all the containers in the cluster
are notified of the deployment. The JMS NMR flow can handle automatic
routing (and failover) of message exchange(s) between multiple
container instances.

•

JBI Container—ServiceMix

[62]

The following figure represents a JMS flow:

Binding

Buffer

Buffer

. . .

Service

Node nNode 2: 10.154.102.109Node 1: 10.154.102.107

Buffer

ServiceMix ESB ServiceMix ESB

Distributed
Message Routing

Message
Flow

Message
Flow

Staged
Delivery
Channel

Staged
Delivery
Channel

NMR NMR

JCA Flow: The ServiceMix JCA NMR flow is very much similar to the JMS
flow. In fact, ServiceMix uses JMS sessions as the underlying mechanism so
that multiple ServiceMix containers can collaborate in a cluster. In addition,
JCA provides support for XA transactions when sending and receiving
JBI exchanges.
The following figure represents a JCA flow:

Binding

Buffer

Buffer

. . .

Service

Node nNode 2: 10.154.102.109Node 1: 10.154.102.107

Buffer

ServiceMix ESB ServiceMix ESB

Distributed
Message Routing

XA Transaction
Context

Message
Flow

Message
Flow

Staged
Delivery
Channel

Staged
Delivery
Channel

NMR NMR

•

Chapter 3

[63]

Other ESBs
There are quite a few ESB frameworks available in the industry today and we will
list a few of them here for completeness of our discussion.

Mule
Mule is defined as a lightweight messaging framework functioning as an ESB. This
ESB features a distributed object broker, which can handle interactions between
different systems, applications, components, and services, irrespective of the
transport protocols and binding technologies. Mule provides a Universal Message
Object (UMO) API (inside org.mule.umo package), a way for components to interact
without needing to know about the protocol or delivery mechanisms of information
passed between them.

Mule can host standard POJOs, which can be managed from containers such as
Spring, Pico, and Plexus or from the classpath, or any other source. Mule has a JBI
interface which will compliment and not compete with ServiceMix. Mule and JBI
functions differently in the way they exchange message formats.

JBI is XML and WSDL centric whereas Mule makes no assumptions about the message
type, so that you can easily use Strings, binaries, MIME, XML, objects, streams, or
a mixture without any extra development. To stream all Mule supported formats
through a JBI-compliant container, suitable tunneling may need to be done or binary
like messages need to be transformed into XML format. Thus, JBI brings WSDL centric
standardization, whereas Mule provides more options in terms of flexibility.

Celtix
Celtix is an ESB which is JBI-compliant. Leveraging Celtix, developers can build
service engines and binding components. Since Celtix is JBI-compliant, the service
engines and binding components too are JBI-compliant, hence can be deployed into
another third-party JBI container. Similarly, Celtix is also a full fledged JBI-compliant
container. This means any third-party JBI-compliant service engines and binding
components can be deployed into a Celtix ESB container.

Even though Celtix is JBI-compliant, JBI objectives are slightly different from that of
Celtix. The main differences are listed as follows:

A JBI-compliant service engine or binding component is essentially a black
box and there is little or no control over the message flow within them.

•

JBI Container—ServiceMix

[64]

The normalized message format specified by JBI is XML and hence exchange
of non XML-based message formats, like that of CORBA, will be difficult
and at the very least will require the binary formatted messages to be
transformed into an XML format.
For binding components and service engines in the role of provider, WSDL
is the contract in JBI. WSDL may not be appropriate in all scenarios. For
example, in the case of legacy integration involving proprietary API calls.
Object references and callbacks are not specified in JBI.

Celtix, being JBI-compliant, is also trying to bridge the above mentioned gaps, which
are yet to be proven as gaps by industry based on real integration scenarios.

Iona Artix
Artix ESB service enables integration existing servers directly at the endpoints
without the need for a separate integration server, thus facilitating macro-level
integration. Artix is a platform independent infrastructure product for building Java,
C/C++, and mainframe web services. All features can be configured dynamically
providing maximum flexibility for implementing a scalable, fully distributed
SOA. Artix ESB provided tools include Artix Designer, Code generators, and
Management Console to make creating, testing, and deploying services easy.
The Artix ESB container is a server that allows you to run service plug-ins, either
those that come with Artix ESB or custom components, and provides threading,
resource management, and network management services. However, Artix technical
specification doesn't speak about JBI, nor do they claim that Artix components
interoperate with other JBI containers.

PEtALS
PEtALS is an open-source JBI platform. PEtALS is based on JSR-208 and provides
lightweight and packaged integration solutions, by providing a solid backbone for
your enterprise information system. PEtALS is based on ESB for data exchange.
PEtALS has a strong focus on distribution and clustering by basing its message
exchange middleware on JORAM (an open-source JMS implementation).

ChainBuilder
ChainBuilder is JBI-compliant with the advantage that it hides the complexities
of JBI behind a GUI. These GUI capabilities and configuration editors enables the
point-and-click mapping of non-XML formatted messages such as variable, fixed,
and X12 EDI formats. The GUI has an Eclipse-based plug-in, which will enable drag-
and-drop functionality for ESB components through wizards.

•

•

•

Chapter 3

[65]

Installing ServiceMix
I agree that we need to start doing, rather than reading. This section is intended to
help the reader get started with ServiceMix. We will try out few examples without
looking much into the rationale behind doing so, since the same has been covered
through other chapters. Moreover, a single "Getting Started" section alone is not
sufficient to help a reader new to ESB to appreciate all aspects of it; hence, we will
not attempt that in this chapter alone.

There are multiple ways to get started but obviously developers like us have to code
something, build, deploy, and get that running without too much hassle. That is
exactly what we will do in this section. Let's do that now.

Hardware Requirements
As of ServiceMix 3.0.x, we need the following minimum hardware:

31 MB of free disk space for the ServiceMix 3.0.x binary distribution

OS Requirements
The following flavors of ServiceMix installs are available:

Windows: Windows XP SP2, Windows 2000
Unix: Ubuntu Linux, Powerdog Linux, MacOS, AIX, HP-UX, Solaris, or any
Unix platform that supports Java

Run-time Environment
ServiceMix require the following run-time environment settings:

Java Developer Kit (JDK) 1.6.x (http://java.sun.com/javase/downloads/
index.jsp).
The JAVA_HOME environment variable must be set to the parent directory
where the JDK is installed.
For example, C:\Yourfilepath\jdk.1.6.0_04.
Apache Ant and/or Maven.

•

•

•

•

•

•

JBI Container—ServiceMix

[66]

Installing ServiceMix in Windows
The steps for installing ServiceMix in Windows are listed as follows:

Click the ServiceMix 3.1.1 Release link under the Latest Releases section
of the download page available at http://incubator.apache.org/
servicemix/download.html.
Download the binary distribution of your choice. For example,
apache-servicemix-3.1.x.zip; apache-servicemix-3.1.1-incubating
is the preferred release.
Extract this ZIP file into a directory of your choice. It is advised not to have
illegal characters or blank spaces in the installation path directories.

•

•

•

Chapter 3

[67]

As of this writing, apache-servicemix-3.1.1-incubating is the stable release.
You can download this version of the ServiceMix binary from: http://
incubator.apache.org/servicemix/servicemix-311.html

Installing ServiceMix in Unix
To install ServiceMix in Unix, follow similar procedures as for Windows,
except download the binary distribution with file name similar to
apache-servicemix-x.x.x.tar.gz.

Configuring ServiceMix
In the ServiceMix installation home directory, there is a sub-directory named conf.
This hosts all major configuration files for ServiceMix. servicemix.properties here
contains the port specifications, especially the rmi.port. You can change something
here, if the default ports are engaged or for some other reason.

Starting ServiceMix
To start ServiceMix, go to SERVICEMIX_HOME\bin (where SERVICEMIX_HOME is
the parent directory where you have extracted the binary ZIP) and then execute
servicemix.bat. Now, ServiceMix is running with a basic configuration, but
no components.

While starting ServiceMix, working directories get created relative to the current
directory from where you are starting ServiceMix.

Stopping ServiceMix
For both Windows and Unix installations, you can terminate ServiceMix by typing
CTRL-C in the command shell or console in which ServiceMix is started.

Resolving classpath Issues
When we expand the binary ZIP folder of ServiceMix installation, all the required
libraries are not extracted and included in the correct folder. In ServiceMix, the
required Java libraries should be placed in SERVICEMIX_HOME\lib or SERVICEMIX_
HOME\lib\optional folder. So any missing libraries can be added to these two
folders. Some libraries are already available in SERVICEMIX_HOME\components or
SERVICEMIX_HOME\components\lib folder, and we can extract the libraries from
these places to SERVICEMIX_HOME\lib or SERVICEMIX_HOME\lib\optional folders
as and when required.

JBI Container—ServiceMix

[68]

The following are the two most common errors that happen when starting
ServiceMix and the required libraries are not found in the correct place:

Caused by: java.lang.ClassNotFoundException:…

Caused by: org.springframework.beans.factory.
BeanDefinitionStoreException: Unrecognized xbean
namespace mapping:…

It is very important that when either of the above errors or some similar "libraries
not found" error happens, you either follow what we have already explained or
download any dependent library (.jar files) from third-party websites, and place
them in the SERVICEMIX_HOME\lib or SERVICEMIX_HOME\lib\optional folder.

ServiceMix Components—a Synopsis
As is shown in the ServiceMix architecture diagram, ServiceMix ships standard JBI
components and lightweight JBI components.

Standard JBI Components
ServiceMix standard JBI components are fully JBI-compliant, and support the JBI
packaging and deployment model. They are placed in the folder %SERVICEMIX_
HOME%\components, and the major components are listed as follows:

servicemix-bean: For mapping POJO beans to JBI exchanges.
servicemix-bpe: BPEL engine based on a Sybase donation to the Apache
ODE project.
servicemix-camel: Camel provides a full set of Enterprise Integration
Patterns both from Java code and Spring XML.
servicemix-drools: Provides integration with Drools rules engine.
servicemix-eip: Provides Enterprise Integration Patterns.
servicemix-file: This binding component provides integration with the
File system.
servicemix-ftp: An FTP binding component.
servicemix-http: A HTTP binding component.
servicemix-jms: Provides integration with messaging middleware
through JMS.
servicemix-jsr181: Service Engine to expose annotated POJOs as services.
servicemix-lwcontainer: This component is a container to which we can
deploy lightweight components.

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 3

[69]

servicemix-quartz: Service Engine used to schedule and trigger jobs using
the Quartz scheduler.
servicemix-saxon: Service Engine for integrating XSLT / XQuery engines.
servicemix-script: Helps to integrate scripting engines with JBI.
servicemix-wsn2005: Service Engine implementing Oasis WS-Notification
specification.
servicemix-xmpp: Helps to communicate with XMPP (Jabber) servers
through the JBI bus.

Lightweight JBI Components
ServiceMix lightweight components are not packaged and deployed as per JBI
specification. This is because the components used here are lightweight components
that activate a single JBI endpoint and they do not support JBI deployments. Instead,
they can be configured using the Spring configuration.

Listed as follows are the major lightweight components:

Cache: Cache component can cache service invocations to avoid
unnecessary load.
Component helper classes: These components make it easy to write new
JBI components.
Drools: Drools can be used to do rules-based routing.
Email: Provides support for MIME email sending.
File: It can write messages to files in a directory, or poll files, or directories to
send messages to JBI.
FTP: Provides integration to FTP via the Jakarta Commons Net library.
Groovy: Helps to use Groovy scripts as endpoints, transformers, or services.
HTTP: Helps to invoke requests on remote HTTP servers and to expose JBI
components over HTTP.
Jabber: Can integrate with Jabber network via the XMPP protocol.
JAX WS: Uses the Java API for XML-based web services to invoke a
web service or to host a Java-based web service and expose it over
multiple protocols.
JCA: Provides a very efficient way of thread pooling, transaction handling,
and consumption on JMS and other resource adapters.
JMS: Helps to send and receive JMS messages.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

JBI Container—ServiceMix

[70]

Quartz: Used to schedule and trigger jobs using the Quartz scheduler.
Reflection: For In-Only and In-Out JBI components, we can create dynamic
proxies, which when invoked dispatch the messages into the JBI container.
RSS: Supports RSS and Atom via the Rome library.
SAAJ: Provides integration with SOAP with attachments for Java (SAAJ) and
Apache Axis.
Scripting: Helps to script In-Only or In-Out message exchanges using a JSR
223 compliant scripting engine such as JavaScript, Jython, or Groovy.
Validation: Used to validate document schema using JAXP 1.3 and
XMLSchema or RelaxNG.
VFS: Provides integration with file systems, jars/zips/bzip2, temporary files,
Samba (CIFS), WebDAV, HTTP, HTTPS, FTP, and SFTP.
WSIF: Provides a way to call web services, hiding the details of how the
service is provided.
XFire: Provides integration with XFire SOAP stack.
XSLT: Can do XSLT transformation for one normalized message to another.
XSQL: Use Oracle tool for turning SQL queries into XML and for taking XML
and inserting or updating into a database.

The above lists are not exhaustive, and the number of components added to the list
is increasing day by day. Readers are advised to refer to the ServiceMix website
for updated information. We will look at a few amongst the above standard and
lightweight JBI components in samples or otherwise, as we walk through different
chapters in this text.

Your First JBI Sample—Binding an
External HTTP Service
I hope all readers, whether novice or professional, can understand and appreciate
what we mean by saying a HTTP service, otherwise most probably they will not be
reading a text book like this. Hence, I will choose a HTTP service for demonstration
purposes here.

•

•

•

•

•

•

•

•

•

•

•

Chapter 3

[71]

Servlet-based HTTP Service
A HTTP service is a network service accessible through the HTTP protocol. Servlets
are the simplest components available in Java with which we can build HTTP
service, and hence we will use that here. Assuming that the reader is familiar with
servlets and how to deploy a HTTP service in their favorite web container such
as Tomcat, only the major steps are listed here. For further details the reader is
encouraged to refer to any available servlet technology books.

As the first step, we will build and deploy a very simple servlet. The servlet code is
given as follows:

public class WelcomeServlet extends HttpServlet
{
 public static final String XML_CONTENT =
 "<?xml version=\"1.0\"?><Name>Binil's Servlet wishes you</Name>";
 public void init(ServletConfig config) throws ServletException
 {
 super.init (config);
 }
 public void doGet (HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException
 {
 doPost (request, response);
 }
 public void doPost (HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException
 {
 System.out.println("WelcomeServlet.doPost...");
 response.setContentType("text/xml");
 response.setContentLength(XML_CONTENT.length());
 PrintWriter out = response.getWriter();
 out.println (XML_CONTENT);
 out.flush();
 }
}

As shown in the code, the servlet simply spits out some XML content to the response
stream, without even looking at the contents of the request. Equally simple is the
web.xml file and it is also shown here:

<?xml version="1.0" encoding="ISO-8859-1"?>
<web-app>
 <display-name>WAP Examples</display-name>
 <description>WAP Examples.</description>

JBI Container—ServiceMix

[72]

 <servlet>
 <servlet-name>WelcomeServlet</servlet-name>
 <servlet-class>
 com.binildas.esb.servicemix.servlet.WelcomeServlet
 </servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>WelcomeServlet</servlet-name>
 <url-pattern>/hello/*</url-pattern>
 </servlet-mapping>
</web-app>

As a first step, if you haven't done it before, edit examples.PROPERTIES (provided
along with the code download for this chapter), and change the paths there to match
your development environment.

Now to build the web component, change the directory to ch03\Servlet and
execute ant script.

cd ch03\Servlet

ant

Here, we assume that you have installed the latest version of Apache Ant build tool
and the bin folder of that is in your path environment variable. This will generate the
web archive (EsbServlet.war) and place it in the dist folder inside ch03\Servlet
which can be deployed in the webapps folder of Tomcat (or any other relevant web
server) and restart the server.

The HTTP service would have been exposed by now and the same can be accessed
using your favorite browser with the following URL:

http://localhost:8080/EsbServlet/hello/

We can now write Client code similar to what is shown in the following code to test
the HTTP service:

public class HttpInOutClient
{
 private static String url = "http://localhost:8080/
 EsbServlet/hello/";
 private static String fileUrl = "HttpSoapRequest.xml";
 protected void executeClient()throws Exception
 {
 InputStream inputStream =
 ClassLoader.getSystemResourceAsStream(fileUrl);
 byte[] bytes = new byte[inputStream.available()];
 inputStream.read(bytes);

Chapter 3

[73]

 inputStream.close();
 URLConnection connection = new URL(url).openConnection();
 connection.setDoOutput(true);
 OutputStream os = connection.getOutputStream();
 os.write(new String(bytes).getBytes());
 os.close();
 BufferedReader in =
 new BufferedReader(new InputStreamReader(connection.
 getInputStream()));
 String inputLine;
 while ((inputLine = in.readLine()) != null)
 {
 System.out.println(inputLine);
 }
 in.close();
 }
 public static void main(String[] args)throws Exception
 {
 if(args.length == 2)
 {
 url = args[0];
 fileUrl = args[1];
 }
 HttpInOutClient httpInOutClient = new HttpInOutClient();
 httpInOutClient.executeClient();
 }
}

Note that we are testing the HTTP service by sending arbitrary XML content as a
request, even though, any character stream will be acceptable as request. This is
because, later we will bind this service to the ServiceMix ESB and during that time
messages have to be routed through the NMR. For this, XML is the valid
normalized message.

To run the above client, make sure (edit, if required) the run target in the
ch03\Servlet\build.xml file matches the following code:

 <target name="run">
 <java classname="HttpInOutClient" fork="yes" failonerror="true">
 <classpath refid="classpath"/>
 <arg value=" http://localhost:8080/EsbServlet/hello/"/>
 <arg value="HttpSoapRequest.xml"/>
 </java>
 </target>

JBI Container—ServiceMix

[74]

Now, executing ant run will send a message to the HTTP service:

cd ch03\Servlet

ant run

Configure the HTTP Service in ServiceMix
Before I start describing the binding of services to ServiceMix, I would like to put out
one word of caution—the binding components used in this chapter are ServiceMix
lightweight components. They are deprecated as of now, and hence for any production
configurations we have to use standard JBI components, which will be covered in
detail in subsequent chapters. Still I am using these components because they are
simple, straightforward, intuitive enough, and easy to configure for a novice user.

All the ServiceMix specific bindings are done in ch03\HttpBinding\servicemix.
xml and let us look straight into that in the following:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://xbean.org/schemas/spring/1.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:sm="http://servicemix.apache.org/config/1.0"
 xmlns:lb="http://servicemix.apache.org/demos/gettingstarted">
 <bean id="propertyConfigurer"
 class="org.springframework.beans.factory.
 config.PropertyPlaceholderConfigurer">
 <property name="location"
 value="classpath:servicemix.properties" />
 </bean>
 <import resource="classpath:activemq.xml" />
 <import resource="classpath:jmx.xml" />
 <import resource="classpath:jndi.xml" />
 <import resource="classpath:security.xml" />
 <import resource="classpath:tx.xml" />
 <sm:container name="jbi"
 monitorInstallationDirectory="false"
 createMBeanServer="true"
 useMBeanServer="true">
 <sm:activationSpecs>
 <sm:activationSpec componentName="trace" service="lb:trace">
 <sm:component>
 <bean xmlns="http://xbean.org/schemas/spring/1.0"
 class="org.apache.servicemix.components.util.
 TraceComponent" />
 </sm:component>

Chapter 3

[75]

 </sm:activationSpec >
 <sm:activationSpec componentName="timer"
 service="lb:timer"
 destinationService="lb:httpGetData">
 <sm:component>
 <bean class="org.apache.servicemix.components.quartz.
 QuartzComponent">
 <property name="triggers">
 <map>
 <entry>
 <key>
 <bean class="org.quartz.SimpleTrigger">
 <property name="repeatInterval"
 value="5000" />
 <property name="repeatCount"
 value="0" />
 </bean>
 </key>
 <bean class="org.quartz.JobDetail">
 <property name="name"
 value="My Example Job" />
 <property name="group"
 value="ServiceMix" />
 </bean>
 </entry>
 </map>
 </property>
 </bean>
 </sm:component>
 </sm:activationSpec>
 <sm:activationSpec componentName="httpGetData"
 service="lb:httpGetData"
 destinationService="lb:trace">
 <sm:component>
 <bean xmlns="http://xbean.org/schemas/spring/1.0"
 class="org.apache.servicemix.
 components.http.HttpInvoker">
 <property name="url"
 value="http://localhost:8080/EsbServlet/
 hello/"/>
 </bean>
 </sm:component>
 </sm:activationSpec>
 <sm:activationSpec componentName="httpReceiver"

JBI Container—ServiceMix

[76]

 service="lb:httpReceiver"
 endpoint="httpReceiver"
 destinationService="lb:httpGetData">
 <sm:component>
 <bean class="org.apache.servicemix.
 components.http.HttpConnector">
 <property name="host" value="127.0.0.1"/>
 <property name="port" value="8912"/>
 </bean>
 </sm:component>
 </sm:activationSpec>
 </sm:activationSpecs>
 </sm:container>
</beans>

Let us not look at the complexities of the above configuration untill we actually run
the service. So we will defer discussion on the above code untill we see the code
in action.

Run ServiceMix Basic JBI Container
Before we bring up ServiceMix, your web server should be up and running with the
web application generated in the previous section deployed successfully.

We now need to prepare ServiceMix with a few extra libraries. For that, do
the following:

Copy %SERVICEMIX_HOME%\components\lib\servicemix-components-
3.1.1-incubating.jar to %SERVICEMIX_HOME%\lib\optional.
Open %SERVICEMIX_HOME%\components\servicemix-http-3.1.1-
incubating-installer.zip and copy the following .jars to
%SERVICEMIX_HOME%\lib\optional:

jetty*.jar

commons-codec*.jar

commons-httpclient*.jar

Copy quartz.jar from the Quartz distribution
(http://www.opensymphony.com/quartz/) to
%SERVICEMIX_HOME%\lib\optional.

Now, to get ServiceMix up with components configured in the XML
configuration shown above, change directory to ch03\HttpBinding\ and
execute %SERVICEMIX_HOME%\bin\servicemix servicemix.xml.

•

•

°

°

°

•

Chapter 3

[77]

What you see in the following screenshot is the contents of my ServiceMix console:

The first part of the console output is showing ServiceMix initializing the components,
which we have configured previously in servicemix.xml. The components being
initialized, in our case, include trace, timer, httpGetData, and httpReceiver. Towards
the latter part of the output, we can see some XML messages. In fact, what we have
done here by bringing ServiceMix up is, we have triggered a message flow through
various components configured to the external HTTP service (in Tomcat or so),
retrieved the XML message and sent to the console output.

You have successfully invoked an external HTTP service through ServiceMix ESB!

JBI Container—ServiceMix

[78]

Run a Client against ServiceMix
You can repeat sending messages through ServiceMix ESB by running the client
code packaged in the web application code base. To do this, change the directory to
ch03\Servlet.

To run the client code against ServiceMix, make sure (edit, if required) the run target
in the ch03\Servlet\build.xml is as shown in the following code:

<target name="run">
 <java classname="HttpInOutClient" fork="yes" failonerror="true">
 <classpath refid="classpath"/>
 <arg value="http://localhost:8912/EsbServlet/hello/"/>
 <arg value="HttpSoapRequest.xml"/>
 </java>
</target>

Now, executing the following command will send another message through
ServiceMix ESB to the HTTP service.
ant run

What Just Happened in ServiceMix
The following figure shows how we configured various components to the
ServiceMix ESB in servicemix.xml:

Chapter 3

[79]

As we know, all message exchange happens through the NMR. The description of
various components follows:

httpReceiver: Here, we configure org.apache.servicemix.components.
http.HttpConnector class to listen to a particular port (8912 in our case),
connected to the NMR using a HTTP channel. This means an external client
(such as HttpInOutClient in our case) can send HTTP requests to the NMR
through this component.
httpGetData: org.apache.servicemix.components.http.HttpInvoker
performs HTTP client invocations on a remote HTTP site. As described
earlier, we have EsbServlet.war deployment containing WelcomeServlet
providing HTTP service in the remote site. Thus, in effect the HttpInvoker
functions as a binding component for the remote service.
timer: org.apache.servicemix.components.quartz.QuartzComponent
is a Quartz component for triggering components when timer events fire. In
our case, we have configured repeatCount property with a value of zero,
which means the trigger will happen only once.
trace: org.apache.servicemix.components.util.TraceComponent is a
simple tracing component, which can be placed inside a pipeline to trace the
message exchange though the component.

Obviously, there are multiple paths which we can define using various combinations
of these components. We have configured a typical one in servicemix.xml so as to
enable the client to send messages through this pipeline to the remote HTTP service.
When the client sends a message to the ServiceMix ESB, it reaches the NMR through
the httpReceiver component. The destinationService for httpReceiver is httpGetData,
hence the message is routed to httpGetData. However, httpGetData is an invoker to
the remote HTTP Service. This ends up in invoking the remote HTTP service passing
the message parameters. The service gets invoked and any response is routed back
through a similar pipeline back to the client.

Spring XML Configuration for ServiceMix
ServiceMix uses XML configuration files. From 2.0 onwards, ServiceMix use the
XBean library to do the XML configuration. Thus, the simplest way to start using
ServiceMix to wire together JBI components is via Spring and the XML configuration
file mechanism from Spring.

•

•

•

•

JBI Container—ServiceMix

[80]

We will now look at the details of how we have configured components together.
First, we introduce a few new XML tags for JBI configuration such as container
and activationSpecs, but apart from that, you can use all the regular Spring
configuration tags—beans, bean, property, and value. For example, inside the
<component> tag you can configure properties on the component. A component
can have <bean> tag with nested <bean> tag and so on. This allows you to mix
and match regular Spring configuration of POJOs with the ServiceMix JBI Spring
configuration mechanism.

The table shown in the following lists out a few key attribute details for the JBI
container element. The ServiceMix website will give details on the elements and
attributes which are not described here. Also the bean wiring details in Spring style
and all, are not described here, since we assume that the reader is familiar with that.
If not, any other text book on Spring will help you here.

Sr . No. Key Attribute Name Attribute Type Description
1 name String Denotes name of the JBI

container. This has to be unique
if it is running in a cluster
configuration. The default name
is defaultJBI

2 useMBeanServer Boolean If set to true, ServiceMix will try
to find an MBeanServer from the
MBeanServerFactory if one is
not supplied

3 createMBeanServer Boolean If set to true, ServiceMix will
create it's own MBeanServer
if one is not supplied to the
container or found from an
MBeanServerFactory

4 rmiPort Int This is the port used for the
rmi registry (and thus, the JMX
connector) and the default is
to 1099.

The ServiceMix component maybe given following names:

ComponentName
Service
Endpoint
DestinationService

•

•

•

•

Chapter 3

[81]

We may also use the following in a component to specify its routing:

destinationService
destinationInterface
destinationOperation

The PropertyPlaceholderConfigurer reads SERVICEMIX_HOME\conf\servicemix.
properties file, which contains values for commonly used environment entries such
as rmi.port or jmx.url.

As we look into more samples in subsequent chapters, you will better understand the
mechanism of wiring services in the JBI bus and how we can route messages through
these services.

Summary
Just like an EJB component lives in an EJB container, a JBI component lives in a JBI
container. A JBI container provides hosting facilities for a JBI component and control
the life cycle of the component. Multiple vendors provide their own implementations
of the JBI container.

ServiceMix is the one we have seen here in detail, which we will be continuing in this
book for the purpose of showing JBI using examples. Just like the scenario you have
already seen in this chapter of binding an external HTTP service to the JBI container,
we can also bind many other protocols and formatted components to the JBI
container, thus providing a Service Workbench at the JBI container-level. However,
the interesting part to be noted is that even before JBI, we have been doing binding
and integration of different kinds of services in multiple ways.

The next chapter is devoted to re-look at how we have been doing things, without a
full fledged JBI container. This will help you to get a broader picture of the as is state
of JBI; from there we will dig more into JBI and related services.

•

•

•

Binding—
The Conventional Way

Binding services locally or remotely is not an innovation brought by ESB or JBI, but
we have been doing it in multiple ways all through the years. In this chapter, we
will explore the meaning of "Binding" and then look at how we can bind a remotely
available service (in the form of an EJB component) to a middle-tier and expose it
through a firewall friendly channel like HTTP. By the end of the chapter, you will
appreciate how an extra indirection with a suitable tunneling will help to expose even
technology specific API services, so that the service becomes technology agonistic.

We will cover the following in this chapter:

Meaning of binding
Apache SOAP binding
Binding a stateless EJB service to Apache SOAP
Running the sample

Binding—What it Means
We will consider the very basic requirement of two applications or two services
interacting—to exchange messages. Applications share data in the form of messages.
One of the applications sends messages while the other receives it. Messages are
exchanged between a sender application and a receiver application over a messaging
channel. Let us look at binding in this context.

•

•

•

•

Binding—The Conventional Way

[84]

Binding
Applications connect to the messaging channel through a message Endpoint. The
process of connecting an application or service to a suitable Endpoint is called
'binding'. In more technical terms, a binding will define how PortType (abstract
interface of the service) is bound to a particular transport protocol and an encoding
schema. A binding interaction involves a service requester and provider. When an
application uses the service description to create a message to be sent to the service
provider, we are binding to the service.

Sender

Endpoint Channel

Receiver

Endpoint

Endpoints
Since multiple applications or services interact with each other through a messaging
channel, they have to deal with multiple transport mechanisms and message formats.
Endpoints do the functionality of converting messages from one format to another.
Thus the rest of the application knows little about message formats, messaging
channels, or any other details of communicating with other applications when they
exchange messages. Since endpoints do this message normalization functionality, a
message endpoint code is custom to both the application and the messaging system's
client API.

When we write a program to a messaging API such as JMS, we're developing
endpoint code. This involves either developing low-level plumbing code by hand
or using appropriate client APIs and run-time tools to automatically generate
code. Later, we will see that a whole lot of endpoints are available, as off the shelf
components along with message bus products like ServiceMix. In this chapter, we
will look at raw forms of binding service. This example help us to understand what
we actually mean by binding.

Apache SOAP Binding
As said earlier, without using a JBI or an ESB framework, let us see binding in action
using the Apache open-source SOAP stack.

Chapter 4

[85]

A Word about Apache SOAP
Apache SOAP is an implementation based on the SOAP submission to W3C (World
Wide Web Consortium). This submission has been produced by the XML Protocol
Working Group, which is part of the Web Services Activity. IBM Alphaworks first
brought a Java reference implementation of the SOAP 1.1 specification, which is
contributed to form the Apache SOAP project.

SOAP is a lightweight protocol for the exchange of information in a decentralized,
distributed environment. SOAP is based on XML and consists of three parts—an
envelope (containing and optional Header and a mandatory Body) that defines
a framework for describing what is in a message and how to process it, a set of
encoding rules for expressing instances of application-defined data types, and a
convention for representing remote procedure calls and responses.

Apache SOAP Format and Transports
Apache SOAP supports three encoding styles:

1. XMI encoding: This (available when using Java 1.2.2) provides support for
automatic marshalling and unmarshalling of arbitrary objects.

2. SOAP encoding: Built-in support is provided for encoding/decoding
primitive types like Strings and Integer, arbitrary JavaBeans (using reflection)
and one-dimensional arrays of these types. For other types, the user can hand
write encoders/decoders and register with the XML-SOAP run time.

3. Literal XML encoding: Allows us to send XML elements (DOM org.
w3c.dom.Element objects) as parameters by embedding the literal XML
serialization of the DOM tree.

Apache SOAP supports messaging and RPC over two transports—HTTP and SMTP.
As per the SOAP specification, all SOAP implementations should support SOAP
XML payload over HTTP Transport. As optional features, implementations are free
to support other transport bindings like JMS, FTP, and SMTP. Vendors can even
support proprietary transport bindings for whatsoever reason they have, so there
should be nothing which prevents one from not exposing XML SOAP even over
radio waves as a transport mechanism!

Binding—The Conventional Way

[86]

RPC and Message Oriented
An Apache SOAP service or binding can be RPC or message oriented.

If it is RPC oriented, the run time expects a strict, SOAP formatted request (and
response too). The run time will process the SOAP envelope, dispatch the RPC
method call request to the appropriate service implementation class and to the
appropriate method. Forward the response back to the SOAP client.

If it is a message oriented, request and response, they are transported in a document
style—we have freedom to embed arbitrary formats of message inside the SOAP
envelope. That means the run time will pass through the SOAP body to the service
implementation, and it is the duty of the service implementation to process the
contents of the SOAP Envelope.

Binding Services
Apache SOAP utilizes deployment descriptors in the form of XML files to provide
information to the SOAP run time about the services that should be made available
to clients. They can provide a wide array of information such as the Uniform
Resource Names (URN) for the service (which is used to route the request when it
comes in), method and class details, if the service is being provided by a Java class or
the method. Moreover, the EJB JNDI name, if the service is being provided by an EJB.
The exact contents of the deployment descriptor depend upon the type of artifact
which is being exposed via SOAP.

URNs are intended to serve as persistent, location-independent
resource identifiers

Apache SOAP supports the following artifacts as services to be bound to the
run time:

Standard Java classes
EJBs
Bean Scripting Framework (BSF) supported script

The service element is the root element of the deployment descriptor and is shown in
the following code:

<isd:service xmlns:isd="http://xml.apache.org/xml-soap/deployment"
 id="urn:ejbhello">
 <!--other code goes here -->
</isd:service>

•

•

•

Chapter 4

[87]

The service element contains an id attribute which is used to specify the name
of the service. SOAP clients use the value of the id attribute to route requests to
the service. We will use the URN syntax to specify the name of the service as
urn:ejbhello. The service element can also contain an optional type and an
optional checkMustUnderstands attribute.

The optional checkMustUnderstands will mandate whether the server should
understand a particular SOAP header in the message. If the receiver cannot
recognize the element, it must fail when processing the header. The server will
throw a SOAP fault, if there are SOAP headers in a SOAP request message that have
the mustUnderstand attribute set to true.

The provider element is the most important element which contains attributes
and sub-elements that specify the details of the artifact that is implementing the
service. The provider element, attributes, and sub-elements are shown in the
following code:

<isd:provider type="org.apache.soap.providers. StatelessEJBProvider "
 scope="Application" methods="hello">
 <isd:option key="JNDIName"
 value="sample-statelessSession-TraderHome"/>
 <isd:option key="FullHomeInterfaceName"
 value="samples.HelloServiceHome" />
 <isd:option key="ContextProviderURL" value="t3://localhost:7001" />
 <isd:option key="FullContextFactoryName"
 value="weblogic.jndi.WLInitialContextFactory" />
</isd:provider>

The type attribute of the provider element tells the run time which provider
implementation has to be used at run time. The available providers are:

java

script

org.apache.soap.providers.StatelessEJBProvider

org.apache.soap.providers.StatefulEJBProvider

org.apache.soap.providers.EntityEJBProvider

The nested elements within the provider elements are specific to the type of artifact
used to define the service and are self explanatory.

•

•

•

•

•

Binding—The Conventional Way

[88]

Sample Bind a Stateless EJB Service to
Apache SOAP
In this section, we will walk through a sample binding scenario which will help us to
understand binding of services.

Sample Scenario
The sample will make use of the following run-time setups:

Apache SOAP in Tomcat
EJB container in BEA Weblogic

A stateless session EJB (HelloServiceBean) is deployed in BEA Weblogic Server
which exposes a single method, shown as follows:

public String hello(String phrase)

HelloServiceBean exposes an Endpoint. This Endpoint connects to a Weblogic
specific t3 channel. t3 channel can pass through t3 protocol, for object service access.
Let us assume that we have a requirement of accessing the above EJB service through
a HTTP channel (for some reason like a firewall restriction between the server and
the client). We can solve this problem by making use of a web server infrastructure.

Even though we can use different web server setups (even Weblogic's web container
can be used for this) to achieve this, we will use Apache Tomcat for our demo.
Tomcat will host Apache SOAP as an internal web application. We will create a
service binding inside the Apache SOAP run time in Tomcat to bind the EJB service.
This means, we can chain a HTTP channel using a suitable binding to the t3 channel.
Doing so will allow clients to speak the HTTP language to service binding in Tomcat
through HTTP channel, and Tomcat will in turn translate the HTTP protocol to t3
protocol and pass through the message to the t3 channel. So that the message will
ultimately reach the EJB component hosted in Weblogic application server.

The entire scenario is represented in the following figure:

sample_statelessSession.ear
(EJB in BEA Weblogic)

HelloServiceBean Endpoint t3 Channel HTTP Channel

Endpoint

Provider Domain Consumer Domain

StatelessEJBProvider
(SOAP Provider
Component)

Client

soap.war
(Apache SOAP in Tomcat)

•
•

Chapter 4

[89]

The deployment for the sample requirement will translate to that shown in the
following figure:

UserE-Commerce
Server

FirewallWeb ServerApplication
Server

Provider Domain Consumer Domain

Code Listing
In this section, we will walk through the main code used for the demo. All the code
discussed here is in the folder ch04\AxisSoapBindEjb:

Session EJB: TheThe HelloServiceBean.java class is shown here:
 public class HelloServiceBean implements SessionBean
 {
 public String hello(String phrase)
 {
 System.out.println("HelloServiceBean.hello
 {" + (++times) + "}...");
 return "From HelloServiceBean : HELLO!! You just said :"
 + phrase;
 }
 }

The HelloServiceBean.java is a simple stateless session EJB and hence
is straightforward.

 <weblogic-ejb-jar>
 <weblogic-enterprise-bean>
 <ejb-name>statelessSession</ejb-name>
 <enable-call-by-reference>True</enable-call-by-reference>
 <jndi-name>sample-statelessSession-TraderHome</jndi-name>
 </weblogic-enterprise-bean>
 </weblogic-ejb-jar>

•

Binding—The Conventional Way

[90]

We will deploy the EJB in Weblogic server (even though the same EJB can be
deployed in any compatible EJB server like Websphere or JBoss) and hence
we require the weblogic-ejb-jar.xml as shown above. The most important
thing to note here is the jndi-name whose value we have configured as
sample-statelessSession-TraderHome.
Apache SOAP Binding: The DeploymentDescriptor.xml contains entries as
shown in the following code:

 <?xml version="1.0"?>
 <isd:service xmlns:isd="http://xml.apache.org/xml-soap/deployment"
 id="urn:ejbhello">
 <isd:provider type="org.apache.soap.providers.
 StatelessEJBProvider"
 scope="Application"
 methods="hello">
 <isd:option key="JNDIName"
 value="sample-statelessSession-TraderHome"/>
 <isd:option key="FullHomeInterfaceName"
 value="samples.HelloServiceHome" />
 <isd:option key="ContextProviderURL"
 value="t3://localhost:7001" />
 <isd:option key="FullContextFactoryName"
 value="weblogic.jndi.WLInitialContextFactory" />
 </isd:provider>
 <isd:faultListener>
 org.apache.soap.server.DOMFaultListener
 </isd:faultListener>
 </isd:service>

Here, we can note that we have given the value sample-statelessSession-
TraderHome for the key JNDIName. So, here we are referring to the EJB service
we deployed previously. We have configured weblogic.jndi.WLInitial-
ContextFactory, which can create initial contexts for accessing the Web-
Logic naming service.
We have configured org.apache.soap.providers.StatelessEJBProvider
for binding the EJB service to speak SOAP protocol. StatelessEJBProvider
implements the two methods defined in org.apache.soap.util.Provider,
that is shown in the following code:

 public interface Provider
 {
 public void locate(DeploymentDescriptor dd, Envelope env,
 Call call, String methodName, String targetObjectURI,
 SOAPContext reqContext) throws SOAPException ;

•

Chapter 4

[91]

 public void invoke(SOAPContext req, SOAPContext res)
 throws SOAPException ;
 }

A provider's function is split into two pieces—locating the service (which
also includes any verification that the service can be execute at all and by the
client), and actually running it. It's up to the invoke method to call the actual
service up to grab and format the response into a SOAP response object.
During initialization, StatelessEJBProvider will do the following to get a
remote reference to the EJB component:

 EJBHome home = (EJBHome) PortableRemoteObject.narrow(contxt.
 lookup(jndiName), Class.forName(homeInterfaceName));
 Method createMethod = home.getClass().
 getMethod("create", new Class[0]);
 remoteObjRef = (EJBObject) createMethod.invoke((Object) home,
 new Object[0]);

During actual method invocation StatelessEJBProvider will execute the
following code:

 Method m = MethodUtils.getMethod (remoteObjRef,
 methodName, argTypes);
 Bean result = new Bean (m.getReturnType (),
 m.invoke (remoteObjRef, args));

Running the Sample
As a first step and if you haven't done it before, edit examples.PROPERTIES
provided along with the code download for this chapter and change the paths there
to match your development environment. The code download for this chapter also
includes a README.txt file, which gives detailed steps to build and run the samples.

Running the sample involves multiple steps, as shown as follows:

Deploying the EJB
For deploying the EJB, we have to follow general EJB deployment steps as specified
in the Weblogic documentation.

Since you are building your first EJB sample in this book, we will spend a little
more time to help you to deploy your EJB sample. First, change directory to the EJB
samples directory.

cd ch04\AxisSoapBindEjb\ejb

Binding—The Conventional Way

[92]

Now, set the environment variables for the build console as per the Weblogic
documentation and then use the ant script provided along with the Weblogic server
bundle. For that, do the following:
%wl.home%\samples\domains\examples\setExamplesEnv.bat

%wl.home%\server\bin\ant

Assuming that you are using the Weblogic 8.x version, the above steps should have
built the EJB by now. If you use a different version of the EJB server, or if you use a
different vendor's EJB server, refer to the documentations there to make changes to
the build exercise.

We can even test whether our EJB deployment went fine by executing a test client, like:
cd ch04\AxisSoapBindEjb\ejb

%wl.home%\server\bin\ant run

Bind EJB to SOAP
We will use the Apache SOAP implementation for this demonstration. From the
Apache SOAP distribution, copy the soap.war file and deploy that to the webapps
folder of your favorite web server (Apache Tomcat). You also need to copy the
following files and make them available in the lib folder of your web server:

%wl.home%\server\lib\weblogic.jar

%wl.home%\samples\server\examples\build\clientclasses\
sample_statelessSession_client.jar

Now restart your web server.

Apache SOAP provides ServiceManagerClient using which we can register the
remote EJB binding to the SOAP environment. The following ant task does exactly this:

<target name="deploy" depends="compile">
 <java classname="org.apache.soap.server.ServiceManagerClient"
 fork="true" >
 <arg value="http://localhost:8080/soap/servlet/rpcrouter"/>
 <arg value="deploy"/>
 <arg value="DeploymentDescriptor.xml"/>
 <classpath>
 <path refid="classpath"/>
 </classpath>
 </java>
</target>

This ant target can be invoked by typing:
cd ch04\AxisSoapBindEjb\SoapBind

ant deploy

•
•

Chapter 4

[93]

The ServiceManagerClient in the above deploy target takes three
parameters—the URL to the SOAP server, the command deploy, and the file
containing your deployment descriptor. The first parameter specifies the
URL of the Apache SOAP RPC router, which will help in routing client requests
to the requested service. The second parameter specifies the operation that the
ServiceManagerClient should do. The deploy operation registers the service using
the deployment information located in a file specified by the third parameter. In our
case, the file is called DeploymentDescriptor.xml and it contains the deployment
descriptor for the hello Service.

Once you have executed the deploy command, you can execute the list command.
You should now see output listing urn:ejbhello, which is the unique ID of
your service. You can also view this service from the web admin tool by going to
http://localhost:8080/soap/admin/index.html and selecting the List button.
The list ant target to execute the list command is as follows:

<target name="list">
 <java classname="org.apache.soap.server.ServiceManagerClient"
 fork="true" >
 <arg value="http://localhost:8080/soap/servlet/rpcrouter"/>
 <arg value="list"/>
 <classpath>
 <path refid="classpath"/>
 </classpath>
 </java>
</target>

We can verify whether the deployment was successful by typing the following:

ant list

Run the Client
The client creates a Call, sets parameters, and invokes the service binding as shown
in the following code:

URL url = new URL (args[0]);
Call call = new Call ();
call.setEncodingStyleURI(Constants.NS_URI_SOAP_ENC);
call.setTargetObjectURI ("urn:ejbhello");
call.setMethodName ("hello");
Vector params = new Vector ();
params.addElement (new Parameter("phrase", String.class,
 "what's your name?", null));
call.setParams (params);
Response resp = call.invoke (url, "");
Parameter result = resp.getReturnValue();

Binding—The Conventional Way

[94]

The run ant target will execute the client code.

<target name="run">
 <java classname="samples.ejb.SoapTest" fork="true" >
 <arg value="http://localhost:8080/soap/servlet/rpcrouter"/>
 <classpath>
 <path refid="classpath"/>
 </classpath>
 </java>
</target>

To run the client, type:

ant run

What Just Happened
If everything went fine, you would see something similar to the result as shown in
the following screenshot:

Chapter 4

[95]

The SoapTest has actually created a SOAP request and routed it to the service
binding within SOAP run time. The format of this SOAP request is as follows:

POST /soap/servlet/rpcrouter HTTP/1.0
Host: localhost:8080
Content-Type: text/xml; charset=utf-8
Content-Length: 458
SOAPAction: ""
<?xml version='1.0' encoding='UTF-8'?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV=
 "http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema
 -instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <SOAP-ENV:Body>
 <ns1:hello xmlns:ns1="urn:ejbhello"
 SOAP-ENV:encodingStyle=
 "http://schemas.xmlsoap.org/soap/encoding/">
 <phrase xsi:type="xsd:string">
 what's your name?
 </phrase>
 </ns1:hello>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

A HTTP-based SOAP endpoint is identified by a URL. This URL, in our case,
in the above request is http://localhost:8080/soap/servlet/rpcrouter.
SOAPMethodName is an optional header, which uniquely identifies the method
name. For HTTP transport, SOAP messages are sent over POST method. The SOAP
message body will contain the XML formatted content required for the SOAP run
time to invoke the requested method.

In the SOAP content, the root element is an element whose namespace-qualified
tag name (ns1:hello in our case) matches the optional SOAPMethodName
HTTP header. This redundancy is provided to allow any HTTP infrastructure
intermediaries like proxies, firewalls, web server software, to process the call without
parsing XML, at the same time also allowing the XML payload to stand independent
of the enclosing HTTP message.

Upon receiving this request, the StatelessEJBProvider comes into action. the
StatelessEJBProvider unmarshalls the SOAP Body content and retrieves the method
parameters. It then invokes the EJB service, which is remotely bound to the SOAP
run time. The results are then packaged back to a SOAP response body and sent back
to the client.

Binding—The Conventional Way

[96]

The SOAP response is shown in the following code:

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
Set-Cookie: JSESSIONID=929DAB0C201F82C9B3F575C8276692A1; Path=/soap
Content-Type: text/xml;charset=utf-8
Content-Length: 523
Date: Thu, 26 Oct 2006 08:20:23 GMT
Connection: close

<?xml version='1.0' encoding='UTF-8'?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV=
 http://schemas.xmlsoap.org/soap/envelope/
 xmlns:xsi="http://www.w3.org/2001/
 XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <SOAP-ENV:Body>
 <ns1:helloResponse xmlns:ns1="urn:ejbhello"
 SOAP-ENV:encodingStyle=
 "http://schemas.xmlsoap.org/soap/encoding/">
 <return xsi:type="xsd:string">
 From HelloServiceBean :
 HELLO!! You just said :what's your name?
 </return>
 </ns1:helloResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

As you can see above, the SOAP response doesn't have any SOAP specific HTTP
headers. The payload will contain an XML document that contains the results of the
operation invoked. The results will be inside an element with the name matching the
method name suffixed by Response.

How the Sample Relates to ServiceMix
In this sample, we saw how to use conventional tools like an EJB container, Apache
SOAP toolkit, and Apache Tomcat web container to bind an external EJB service
remotely into SOAP run time and expose the service over a HTTP transport channel.
Later, we will see that the same functionality can be done without all these hassles
and deployment steps, but with just few component configurations in ServiceMix.
The idea behind this example is to make the reader familiar with the technical case
behind the need for service binding and also to reckon that service binding is not a
new concept, but something we have been doing for a long time.

Chapter 4

[97]

Summary
In this chapter, we discussed a simple binding scenario by which we can make an
EJB service accessible across the firewall to the outside world. If you have an Apache
SOAP implementation with you, you can also try out the samples and see the results.
Similar to what we did in this sample, at times we need to tunnel or redirect services
through intermediaries either due to protocol or format mismatches or due to some
other reasons.

All these activities are concerns apart from your business logic coding and need
to be addressed at your application framework-level. In this chapter too, we have
performed it in the same manner, but we have done a lot of steps to configure
the web server with Apache SOAP. Later, when you go through the JBI and ESB
samples you will realize that the same functionality can be achieved by selecting and
configuring suitable JBI components.

ESB implementations like ServiceMix make use of new generation SOAP frameworks
which bind binary services such as EJB and POJO to the JBI bus to make it
SOA-compliant.

In the next chapter, we will delve more into such a SOAP framework namely XFire
and look at some very useful mediation features of it. In the later chapters, we will
leverage similar features from the JBI bus straightaway.

Some XFire Binding Tools
JBI advocates that XML data based on a WSDL model should be flowing through
the NMR. Hence, a reference to an appropriate SOAP framework capable of
understanding WSDL and generating WSDL-compliant formatted data is important
in any JBI discussion.

ServiceMix has the best integration with XFire, which is the new generation Java
SOAP framework. Since the API is easy to use and supports standards, XFire makes
SOA development much easier and straightforward. It is also highly performance
oriented, since it is built on a low memory StAX (Streaming API for XML) model.
Currently, XFire is available in version 2.0 under the name CXF. In this chapter, we
will not discuss any JBI specific binding methods; instead we will concentrate on
XFire and look at how we can use the same for integration solutions.

Once we appreciate this, we will better understand what part of the integration
functionality can be done using XFire within the JBI architecture.

We will cover the following in this chapter:

Binding in XFire
Web service using XFireConfigurableServlet
Web service using XFire Spring XFireExporter
Web service using XFire Spring Jsr181 handler
XFire Export and bind EJB
XFire for lightweight integration

•

•

•

•

•

•

Some XFire Binding Tools

[100]

Binding in XFire
In XFire terms, bindings are ways to map XML to Java objects. Currently, XFire
supports the following bindings:

Aegis: Aegis is the default XFire binding which maps XML to POJOs. It
supports code first development where you write your service in POJOs
and Aegis will generate the XML schema or WSDL for you. It has a flexible
mapping system so that you can control how your POJOs are bound.
JAXB: JAXB is the reference implementation of the JAXB specification. XFire
integrates with JAXB 1.0 and 2.0.
XMLBeans: XMLBeans is an Apache project which takes the richness,
features, and schema of XML and maps these features as naturally as
possible to the equivalent Java language and typing constructs.
Message: The MessageBinding has special semantics to allow you to work
with XML streams and fragments very easily. The MessageBinding takes the
XMLStreamReader from the request and provides it directly to your classes.
Castor: Castor provides marshalling and unmarshalling of XML and Java
objects which doesn't require recompilation of the Java code if the mapping
definition changes. Hence systems where the service layer is being developed
independently from the business layer can benefit much using Castor.

A detailed description of the above frameworks is beyond the scope of this book, but
we need to look at what XFire has to offer and how this is going to help us in binding
services and components to the ServiceMix ESB.

XFire Transports
XFire provides multiple transport channels for communications and is built on an
XML messaging layer. The main transport mechanisms are listed as follows:

HTTP: Standard XML in SOAP format over HTTP
JMS: Asynchronous and reliable way of sending messages
XMPP or Jabber: An asynchronous messaging mechanism for SOAP

A Service Registry is the central part of the XFire messaging infrastructure. Users
can send messages through any of the available transport channels. The transport
looks at the service being invoked and passes a MessageContext and service name
off to the XFire class. The XFire class looks up the service from the Service Registry
and then invokes the appropriate handler. Thus XFire transport is responsible for
managing incoming and outgoing communications using a particular wire protocol,
which is shown as abstract in the method signature in the following code:

•

•

•

•

•

•
•
•

Chapter 5

[101]

public interface Transport extends ChannelFactory, HandlerSupport
{
 Binding findBinding(MessageContext context, Service service);
}

JSR181 and XFire
Java Web Services Metadata (WSM, based on JSR 181) is built over Java Language
Metadata technology (JSR 175). The intention behind JSR181 is to provide an easy to
use syntax for describing web services at the source-code-level for the J2EE platform.
Thus, WSM leverages the metadata facility in Java to web services. In other words,
a Java web service is just a Plain Old Java Object (POJO) with a few annotations.
The annotations can describe the web service name, details about the methods that
should be exposed in the web service interface, parameters, their types, the bindings,
and other similar information. XFire is continuously adding support for JSR181 and
this chapter also gives an introduction to this, with working examples.

We will walk through four different but related working samples. All of them
demonstrate capabilities of XFire. The part to notice is the simplicity with which we
can get things done with XFire.

Web Service Using
XFireConfigurableServlet
Web services are to a great extent in the spirit of SOA. Most web services frameworks
internally uses a SOAP stack for transport and format handling. Since XFire is a
SOAP stack capable of easily building web services, let us look into one sample
doing that here.

Sample Scenario
Our aim here is to expose a POJO as web service using XFire—org.codehaus.
xfire.transport.http.XFireConfigurableServlet.

Some XFire Binding Tools

[102]

Code Listing
XFireConfigurableServlet expects a service definition in the form of an xml file called
services.xml. XFire by itself is a web-based application; hence we are going to
package the sample application as a standard web archive.

HelloXFire.war

META-INF

MANIFEST.MF
WEB-INF

classes

META-INF

xfire

services.xml
IHello.class

web.xml

lib
HelloServiceImpl.class

xfire-all-1.1-RC1.jar

We will now look at the contents of the individual artifacts that make up the
web archive:

1. IHello.class: IHello is a simple Java interface, declaring a single method
sayHello.
This is shown in the following code:

 public interface IHelloface IHelloace IHello
 {
 String sayHello(String name);
 }

2. HelloServiceImpl.class: HelloServiceImpl implements the IHello
interface and has some verbose code printing out details into the
server console.
The following code demonstrates it:

 public class HelloServiceImpl implements IHelloiceImpl implements IHelloceImpl implements IHello
 {
 private static long times = 0L;
 public HelloServiceImpl()
 {
 System.out.println("HelloServiceImpl.HelloServiceImpl()...");

Chapter 5

[103]

 }
 public String sayHello(String name)
 {
 System.out.println("HelloServiceImpl.sayHello(" +
 (++times) + ")");
 return "HelloServiceImpl.sayHello : HELLO! You just said: "
 + name;
 }
 }

3. services .xml: Here we specify the details of our web services, using the
serviceClass and implementationClass elements. serviceClass
specifies the Java interface, which hosts the method signature whereas
implementationClass specifies the class which implements the method.
All the methods in serviceClass will be exposed as web services. If the
implementationClass doesn't implement any interface, the serviceClass
element can have the implementationClass itself as its value. services.
xml is placed within the WEB-INF\classes\META-INF\xfire directory, so
that the XFire run time can set up the service environment. The name and
namespace elements can have any valid XML names as the values.
It is shown in the following code:

 <beans xmlns="http://xfire.codehaus.org/config/1.0">
 <service>
 <name>Hello</name>
 <namespace>myHello</namespace>
 <serviceClass>IHello</serviceClass>
 <implementationClass>HelloServiceImpl</implementationClass>
 </service>
 </beans>

4. web.xml: The main part in web.xml is configuring the
XFireConfigurableServlet as shown here:

 <?xml version="1.0" encoding="ISO-8859-1"?>ersion="1.0" encoding="ISO-8859-1"?>rsion="1.0" encoding="ISO-8859-1"?>
 <web-app>
 <servlet>
 <servlet-name>XFireServlet</servlet-name>
 <display-name>XFire Servlet</display-name>
 <servlet-class>
 org.codehaus.xfire.transport.http.XFireConfigurableServlet
 </servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>XFireServlet</servlet-name>
 <url-pattern>/servlet/XFireServlet/*</url-pattern>
 </servlet-mapping>
 <servlet-mapping>

Some XFire Binding Tools

[104]

 <servlet-name>XFireServlet</servlet-name>
 <url-pattern>/services/*</url-pattern>
 </servlet-mapping>
 </web-app>

Any request of a URL with the pattern /services/*, will be routed to the
XFireServlet, which will in turn do the magic of SOAP handshaking.

Running the Sample
As a first step and if you haven't done it before, edit examples.PROPERTIES
provided along with the code download for this chapter, and change the paths there
to match your development environment. If your web server doesn't include Xalan
(Xalan is an XSLT processor for transforming XML documents) libraries, download
Xalan for Java, and transfer xalan*.jar from the download to the libraries folder of
your web server (${tomcat.home}/lib). The code download for this chapter also
includes a README.txt file, which gives detailed steps to build and run the samples.

To build the sample, change directory to ch05\01_XFireServletWebService and
execute ant, as shown here:

cd ch05\01_XFireServletWebService

ant

This will generate the war file, which in turn contains all required libraries extracted
out from the XFire installation folder. Folder dist will contain HelloXFire.war,
which should be deployed in the webapps folder of Tomcat (or any other relevant
web server). Now, restart the server.

The web service would have been exposed by now and the service definition can be
accessed using the following URL:

http://localhost:8080/HelloXFire/services/Hello?WSDL

We can now write a Client code to test the previous web service as shown in the
following code:

public class Client
{
 private static String serviceUrl = "http://localhost:8080/
 HelloXFire/services/Hello";
 public static void main(String[] args)throws Exception
 {
 if(args.length > 0)
 {
 serviceUrl = args[0];
 }

Chapter 5

[105]

 Client client = new Client();
 client.callWebService("Sowmya"));
 }
 public String callWebService(String name)throws Exception
 {
 Service serviceModel = new ObjectServiceFactory().create(
 IHello.class);
 XFire xfire = XFireFactory.newInstance().getXFire();
 XFireProxyFactory factory = new XFireProxyFactory(xfire);
 IHello client = null;
 try
 {
 client = (IHello) factory.create(serviceModel, serviceUrl);
 }
 catch (MalformedURLException e)
 {
 log("WsClient.callWebService(): EXCEPTION: " +
 e.toString());
 }
 String serviceResponse = "";
 try
 {
 serviceResponse = client.sayHello(name);
 }
 catch (Exception e)
 {
 log("Client.callWebService(): EXCEPTION: " + e.toString());
 serviceResponse = e.toString();
 }
 return serviceResponse;
 }
}

At the client side, we perform the following steps:

Create a service model which contains the service specification from the
interface IHello.
Get XFire instance using XFireFactory.
Retrieve a proxy factory instance for XFire.
Using the proxy factory, we can now get a local proxy for the remote web
service using the service model and the service endpoint URL.
Now invoke the remote web service using the proxy.

To run the client, assuming that you have already compiled the client while building
the sample, execute ant as follows:

ant run

•

•
•
•

•

Some XFire Binding Tools

[106]

Web Service using XFire Spring
XFireExporter
Having seen how to expose a POJO as web service using the XFire class,
org.codehaus.xfire.transport.http.XFireConfigurableServlet, our
next aim is to do the same using a different approach.

Sample Scenario
Here again, our aim is to expose a POJO as web service using XFire Spring support
class org.codehaus.xfire.spring.remoting.XFireExporter. Here, the XFire
class XFireExporter is internally leveraging Spring's remoting framework and as
such depends on the Spring libraries.

Code Listing
The artifacts in the code listing is shown in the following figure:

HelloXFireExport.war

META-INF

MANIFEST.MF
WEB-INF

classes

META-INF

xfire

IHello.class

HelloServiceImpl.class

applicationContext.xml

log4J.properties
web.xml

xfire-servlet.xml

lib

xfire-all-1.1-RC1.jar

Chapter 5

[107]

We have few more artifacts to be packaged in this scenario and the packaging too is
slightly different as shown in the above figure. Since we are using the same classes
(IHello and HelloServiceImpl) as used in the previous example here too, they are
not repeated here. We will look at the other artifacts in detail here:

1. IHello.class: This is same as in the previous example.
2. HelloServiceImpl.class: This is same as in the previous example.
3. applicationContext.xml: The HelloServiceImpl class is configured in

Spring's applicationContext as shown here:

 <?xml version="1.0" encoding="UTF-8"?>
 <beans>
 <bean id="helloBean" class="HelloServiceImpl"/>
 </beans>

4. xfire-servlet.xml: In xfire-servlet.xml, the main part is the configuration
of the web controller that exports the specified service bean as an XFire
SOAP service endpoint. Typically, we will do this in the servlet context
configuration file. As given in next section, since the dispatcher servlet is
named xfire, this file should be called xfire-servlet.xml.
This is shown in the following code:

 <?xml version="1.0" encoding="UTF-8"?>0" encoding="UTF-8"?>" encoding="UTF-8"?>
 <beans>
 <bean class="org.springframework.web.servlet.
 handler.SimpleUrlHandlerMapping">
 <property name="urlMap">
 <map>
 <entry key="/HelloService">
 <ref bean="hello"/>
 </entry>
 </map>
 </property>
 </bean>
 <bean id="hello"
 class="org.codehaus.xfire.spring.remoting.XFireExporter">
 <property name="serviceFactory">
 <ref bean="xfire.serviceFactory"/>
 </property>
 <property name="xfire">
 <ref bean="xfire"/>
 </property>
 <property name="serviceBean">

Some XFire Binding Tools

[108]

 <ref bean="helloBean"/>
 </property>
 <property name="serviceClass">
 <value>IHello</value>
 </property>
 </bean>
 </beans>

We have configured helloBean as the serviceBean here. In fact, helloBean
is coming from the applicationContext.xml configuration.

5. web.xml: The feature to be noted in web.xml, is the DispatcherServlet
configuration which provides the locations of where your Spring
beans are. The contextConfigLocation tells Spring where to find the
applicationContext.xml files.

 <?xml version="1.0" encoding="ISO-8859-1"?>
 <web-app>
 <context-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>
 /WEB-INF/applicationContext.xml
 classpath:org/codehaus/xfire/spring/xfire.xml
 </param-value>
 </context-param>
 <listener>
 <listener-class>
 org.springframework.web.util.Log4jConfigListener
 </listener-class>
 </listener>
 <listener>
 <listener-class>
 org.springframework.web.context.ContextLoaderListener
 </listener-class>
 </listener>
 <servlet>
 <servlet-name>xfire</servlet-name>
 <servlet-class>
 org.springframework.web.servlet.DispatcherServlet
 </servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>xfire</servlet-name>
 <url-pattern>/services/*</url-pattern>
 </servlet-mapping>
 </web-app>

Chapter 5

[109]

Running the Sample
To build the sample, change directory to ch05\02_XFireExportWebService and
execute ant as follows:

cd ch05\02_XFireExportWebService

ant

This will generate the war file, which in turn contains all required libraries extracted
out from the XFire installation folder. Folder dist will contain HelloXFireExport.
war which should be deployed in the webapps folder of Tomcat (or any other
relevant web server). Now, restart the server.

The web service would have been exposed by now and the service definition can be
accessed using the following URL:

http://localhost:8080/HelloXFireExport/services/HelloService?WSDL

We can now write a Client similar to what we have seen in the previous example to
test the web service.

To run the client, assuming that you have already compiled the Client, while
building the sample, execute ant as follows:

ant run

Web Service Using XFire Spring Jsr181
Handler
JSR 181 defines an annotated Java syntax for programming web services and is built
on the Java Language Metadata technology (JSR 175). It provides an easy to use
syntax to describe web services at the source-code-level for the J2EE platform. It aims
to make it easy for a Java developer to develop server applications that conform both
to basic SOAP and WSDL standards. In this sample, we will increase the complexity
of the web service by including a Transfer Object (TO) as a parameter. We will also
see JSR 181 annotations work behind the scenes to generate the plumbing required to
expose web services.

Sample Scenario
Here again, our aim is to expose a POJO as web service and use JSR 181 annotation
support for this. Both the service interface and the service implementation will
be annotated.

Some XFire Binding Tools

[110]

Code Listing
The artifacts in the code listing is shown in the following figure:

We will list out the different artifacts which make up this example in the following:

1. IOrder.class: This is the service interface and is web service annotated. Since
all methods in the interface get exported by default, you don't need to define
the @WebMethod annotation in the interface. Annotations like @WebResult
too, are totally optional and let you control how the WSDL looks like.
The service interface, IOrder.class, is shown in the following code:

 import javax.jws.WebService;
 import javax.jws.WebResult;
 @WebService
 public interface IOrder
 {
 @WebResult(name="PurchaseOrderType")
 public PurchaseOrderType getPurchaseOrderType(String orderId);
 }

Chapter 5

[111]

2. OrderManagerImpl.class: As you can see here, OrderManagerImpl is the
service implementation class and is web service annotated. We use the
@WebService annotation with some parameters like web service name as that
is used on the client-side to decorate the class and tell the jsr181 processor
that there is an interface to export the web service methods.

 import javax.jws.WebService;rvice;vice;
 @WebService(serviceName = "OrderService",
 endpointInterface = "IOrder")
 public class OrderManagerImpl implements IOrder
 {
 public PurchaseOrderType getPurchaseOrderType(String orderId)
 {
 PurchaseOrderType po = new PurchaseOrderType();
 po.setOrderDate(getDate());
 USAddress shipTo = createUSAddress("Binil Das",
 "23 Hidden Range",
 "Dallas",
 "TX",
 "17601");
 USAddress billTo = createUSAddress("Binil Das",
 "29K Colonial Creast",
 "Mountville",
 "PA",
 "17601");
 po.setShipTo(shipTo);
 po.setBillTo(billTo);
 return po;
 }
 }

It is again worth noting the parameter or return type here, since it is no
longer simple Java type, but a custom class (complex type).

3. web.xml: If you compare this example with the first one in this chapter, you
will notice the difference here. Instead of XFireConfigurableServlet we
are going to use org.codehaus.xfire.spring.XFireSpringServlet as the
controller servlet. Then you specify the url-pattern so that such pattern
URLs can be routed to XFireSpringServlet.

 <?xml version="1.0" encoding="ISO-8859-1"?>ersion="1.0" encoding="ISO-8859-1"?>rsion="1.0" encoding="ISO-8859-1"?>
 <web-app>
 <listener>
 <listener-class>
 org.springframework.web.context.ContextLoaderListener
 </listener-class>
 </listener>
 <context-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>

Some XFire Binding Tools

[112]

 classpath:org/codehaus/xfire/spring/xfire.xml,
 /WEB-INF/classes/META-INF/xfire/xfire-servlet.xml/WEB-INF/classes/META-INF/xfire/xfire-servlet.xml
 </param-value> </param-value>
 </context-param> </context-param>
 <servlet> <servlet><servlet>
 <servlet-name>XFireServlet</servlet-name>
 <servlet-class>
 org.codehaus.xfire.spring.XFireSpringServlet
 </servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>XFireServlet</servlet-name>
 <url-pattern>/servlet/XFireServlet/*</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>XFireServlet</servlet-name>
 <url-pattern>/services/*</url-pattern>
 </servlet-mapping>
 </web-app>

4. xfire-servlet.xml: Next, we have to define the Spring applicationContext for
XFire called xfire-servlet.xml. The mechanism here is to define Spring's
SimpleUrlHandlerMapping which in turn makes use of the XFire Spring
Jsr181HandlerMapping. Once that is done, you only need to define your
web service POJOs like the one seen with the id as annotatedOrder.

 <?xml version="1.0" encoding="UTF-8"?>0" encoding="UTF-8"?>" encoding="UTF-8"?>
 <beans>
 <bean id="webAnnotations"
 class="org.codehaus.xfire.annotations.
 jsr181.Jsr181WebAnnotations"/>
 <bean id="handlerMapping"
 class="org.codehaus.xfire.spring.
 remoting.Jsr181HandlerMapping">
 <property name="typeMappingRegistry">
 <ref bean="xfire.typeMappingRegistry"/>
 </property>
 <property name="xfire">
 <ref bean="xfire"/>
 </property>
 <property name="webAnnotations">
 <ref bean="webAnnotations"/>
 </property>
 </bean>
 <bean id="annotatedOrder" class="OrderManagerImpl"/>
 <bean class="org.springframework.web.servlet.handler.
 SimpleUrlHandlerMapping">
 <property name="urlMap">
 <map>
 <entry key="/">

Chapter 5

[113]

 <ref bean="handlerMapping"/>
 </entry>
 </map>
 </property>
 </bean>
 <import resource="
 classpath:org/codehaus/xfire/spring/xfire.xml"/>
 </beans>

Running the Sample
To build the sample, change directory to ch05\03_XFireJsr181BindWebService
and execute ant as follows:

cd ch05\03_XFireJsr181BindWebService

ant

This will generate the war file, which in turn contains all required libraries extracted
out from the XFire installation folder. Folder dist will contain XFireJsr181.war,
which should be deployed in the webapps folder of Tomcat (or any other relevant
web server). Now, restart the server.

The web service would have been exposed by now and the service definition of the
same can be accessed using the following URL:

http://localhost:8080/XFireJsr181/services/OrderService?WSDL

We can now write a Client similar to what we have seen in the previous few
examples to test the web service.

To run the client, assuming that you have already compiled the Client while
building the sample, execute ant as follows:

ant run

XFire Export and Bind EJB
In Chapter 4, you have already seen the sample of how to expose a stateless EJB
service deployed in an application server. Hence, the consumer can use the SOAP
protocol to invoke the EJB service through a HTTP channel. Let us again do a similar
demonstration here, but with XFire now. Once you complete this example you
will better appreciate the similarity between XFire mechanisms and the process
of binding.

Some XFire Binding Tools

[114]

Sample Scenario
The scenario is to expose an EJB component service to external clients through
a HTTP channel. The difference between the EJB and SOAP sample in Chapter 4
(Binding—The Conventional Way) is that here we will use XFire classes for service
binding. Also, the three previous samples in this chapter have demonstrated the
power of XFire in exposing web services. But this sample is more towards binding
an external service, which, as you will see very shortly, is more similar to the binding
activity we do using a JBI stack.

BEA Weblogic

HelloWorldEJB Endpoint t3 Channel HTTP Channel

Endpoint XFireExporter

Provider Domain

SimpleRemoteStateless
SessionProxyFactoryBean

Client

Spring in Tomcat

Consumer Domain

UserE-Commerce
Server

FirewallWeb ServerApplication
Server

Provider Domain Consumer Domain

Chapter 5

[115]

Code Listing
XFireBindEjb.war

META-INF

MANIFEST.MF
WEB-INF

classes

META-INF

xfire

web.xml

xfire-servlet.xml

lib

esb_slsb_basic_statelessSession_client.jar

xfire-all-1.1-RC1.jar

The code for this sample is organized into two, in two separate folders, one for the
EJB part and another for the XFire binding. We will walk through the main classes
only, in the following:

1. HelloWorldBI.class: HelloWorldBI is the Business Interface (BI) class for the
stateless enterprise Java session bean, hence very simple and straightforward.
This is demonstrated as follows:

 public interface HelloWorldBI
 {
 String sayHello(int num, String s) throws IOException;
 }

Some XFire Binding Tools

[116]

2. HelloWorldEJB.class: HelloWorldEJB is the EJB implementation class. We
will again use Weblogic libraries to make coding our EJB simpler; hence
we use Weblogic's GenericSessionBean as the base class, which will have
default implementations for the EJB interface. You may want to deploy the
EJB into a different application server in which case tweaking the code and
configuration files should be a trivial exercise.
This is shown in the following code:

 public class HelloWorldEJB extends GenericSessionBean
 implements HelloWorldBI
 {
 public String sayHello(int num, String s)
 {
 System.out.println("sayHello in the HelloWorldEJB has "+
 "been invoked with arguments " + s + " and " + num);
 String returnValue = "This message brought to you by the "+
 "letter "+s+" and the number "+num;
 return returnValue;
 }
 }

3. xfire-servlet.xml: For readers who are familiar with Spring, xfire-servlet.
xml is self explanatory but for the interest of others, we will explain the main
aspects, using the following code:.

 <?xml version="1.0" encoding="UTF-8"?>0" encoding="UTF-8"?>" encoding="UTF-8"?>
 <beans>
 <import resource="classpath:org/codehaus/xfire/spring/
 xfire.xml"/>
 <bean id="jndiTemplate"
 class="org.springframework.jndi.JndiTemplate">
 <property name="environment">
 <props>
 <prop key="java.naming.factory.initial">
 weblogic.jndi.WLInitialContextFactory
 </prop>
 <prop key="java.naming.provider.url">
 t3://localhost:7001
 </prop>
 </props>
 </property>
 </bean>
 <bean id="sessionEjbProxy"
 class="org.springframework.ejb.access.
 SimpleRemoteStatelessSessionProxyFactoryBean">
 <property name="jndiName">

Chapter 5

[117]

 <value>esb-statelessSession-TraderHome</value>
 </property>
 <property name="jndiTemplate">
 <ref bean="jndiTemplate"/>
 </property>
 <property name="resourceRef">
 <value>false</value>
 </property>
 <property name="lookupHomeOnStartup">
 <value>false</value>
 </property>
 <property name="businessInterface">
 <value>
 examples.webservices.basic.statelessSession.HelloWorldBI
 </value>
 </property>
 </bean>
 <bean id="webService"
 class="org.codehaus.xfire.spring.remoting.XFireExporter">
 <property name="style">
 <value>rpc</value>
 </property>
 <property name="use">
 <value>encoded</value>
 </property>
 <property name="serviceFactory">
 <ref bean="xfire.serviceFactory"/>
 </property>
 <property name="xfire">
 <ref bean="xfire"/>
 </property>
 <property name="serviceBean">
 <ref bean="sessionEjbProxy"/>
 </property>
 <property name="serviceInterface">
 <value>
 examples.webservices.basic.
 statelessSession.HelloWorldBI
 </value>
 </property>
 </bean>
 <bean class="org.springframework.web.servlet.handler.
 SimpleUrlHandlerMapping">

Some XFire Binding Tools

[118]

 <property name="urlMap">
 <map>
 <entry key="/InvokeService">
 <ref bean="webService"/>
 </entry>
 </map>
 </property>
 </bean>
 </beans>

xfire-servlet.xml defines the Spring applicationContext for XFire.
The first part is defining a jndiTemplate pointing the application server
context. jndiTemplate provides methods to lookup and bind objects. We
are using weblogic.jndi.WLInitialContextFactory here, but this
needs to be changed to suit your application server environment. Since our
EJB is a remote stateless session bean, we can use the Spring provided
SimpleRemoteStatelessSessionProxyFactoryBean class for producing
proxies to look up and access services.
The jndiTemplate property supplies details to look up whereas the
businessInterface property specifies the business interface implemented
by the service. This much is enough to get a handle on the remote service
and the next part is to export the service from within the XFire context,
which we can do using the XFire Spring XFireExporter. Next the
SimpleUrlHandlerMapping will route any requests of URL pattern,
/InvokeService, to the above exported service.

4. web.xml: web.xml is as shown in the following code, which is again similar
to that in the previous example.

 <?xml version="1.0" encoding="ISO-8859-1"?>
 <web-app>
 <context-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>/WEB-INF/xfire-servlet.xml
 classpath:org/codehaus/xfire/spring/xfire.xml
 </param-value>
 </context-param>
 <listener>
 <listener-class>
 org.springframework.web.util.Log4jConfigListener
 </listener-class>
 </listener>
 <listener>
 <listener-class>
 org.springframework.web.context.ContextLoaderListener
 </listener-class>

Chapter 5

[119]

 </listener>
 <servlet>
 <servlet-name>xfire</servlet-name>
 <servlet-class>
 org.springframework.web.servlet.DispatcherServlet
 </servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>xfire</servlet-name>
 <url-pattern>/services/*</url-pattern>
 </servlet-mapping>
 </web-app>

5. build.xml: The build.xml requires special attention in this case because we
explicitly refer to the EJB client jar. We generate this as a part of the EJB build
process and later, during XFire export, we include this client jar too along
with the war file as the XFire run time requires the business interface,
home, and remote stubs of EJB, and other similar helper classes during
service invocation.

The build.xml is shown as follows:
 <target name="copyjars">
 <copy todir="${tomcat.home}/lib">
 <fileset dir="${bea.home}/weblogic812/server/lib">
 <include name="weblogic.jar"/>
 </fileset>
 </copy>
 <copy todir="${build.dir}/WEB-INF/lib">
 <fileset dir="${bea.home}/weblogic812/samples/server/
 examples/build/clientclasses">
 <include name="${ejb.client.jar}"/>
 </fileset>
 </copy>
 </target>

Running the Sample
Running the sample involves multiple steps that are listed as follows:

Deploying the EJB: To deploy the EJB, we have to follow general EJB
deployment steps as specified in Weblogic documentation.
First, change directory to the EJB samples directory as shown here:

 cd ch05\04_XFireExportAndBindEjb\ejb

•

Some XFire Binding Tools

[120]

Now set the environment variables for the build console as per the Weblogic
documentation and then use the ant script provided along with the Weblogic
server bundle. For that, do the following:

 %wl.home%\samples\domains\examples\setExamplesEnv.bat

 %wl.home%\server\bin\ant

We can even test whether our EJB deployment went fine by executing a test
client, as shown here:

 %wl.home%\server\bin\ant run

XFire export and Bind EJB: In this step, we create the web application in
.war format and deploy it in the web server. Change directory to ch05\
04_XFireExportAndBindEjb\XFireBind and execute ant to build the web
application, as shown here:

 cd ch05\04_XFireExportAndBindEjb\XFireBind

 ant

This will generate the war file, which in turn contains all required libraries extracted
out from the XFire installation folder. Folder dist will contain XFireBindEjb.war,
which should be deployed in the webapps folder of Tomcat (or any other relevant
web server). Now, restart the server.

The web service would have been exposed by now and the service definition can be
accessed using the following URL:

http://localhost:8080/XFireBindEjb/services/InvokeService?WSDL

We can now write a Client similar to what we have seen in the previous few
examples to test the web service.

To run the client, assuming that you have already compiled the client, while building
the sample, execute ant as follows:

ant run

XFire for Lightweight Integration
Almost all literature that we have been reading about XFire, is for deploying and
accessing web service in a lightweight manner. Since this text is speaking on SOI, we
are interested in the SOI aspects of XFire. We have demonstrated this through the
examples in this chapter. Later, when we look at the ServiceMix examples, we will
see the real power of XFire, especially the XFire Proxy classes.

•

Chapter 5

[121]

Summary
Web services provide us with a means to attain SOA-based architectures. With the
growing number of technology frameworks available today, it is easy to deploy
web services.

XFire is a SOAP stack with which we can quickly and easily expose web services. As
seen in this chapter, a combination of technology stacks like XFire and Spring can
help to bind external services, including external EJB services. Once bound, these
services can be re-published as web services so that they become firewall friendly.
This is similar to JBI binding of services providing a mediation layer for service
integration, more of which we will see in later chapters.

We now have had enough of traditional bindings and bindings using XFire. With
this background it is time now to delve deep into JBI and related services. We will
continue with more JBI discussions in the next chapter by understanding the JBI
packaging and deployment model.

JBI Packaging and
Deployment

Small things matter; whether packaging and deployment are smaller concerns
compared to design and development, is still under dispute. However, one thing is
clear, that a standard way of packaging and deployment promotes cross-platform
and cross-vendor portability of components, whether it is our familiar .jar, .war,
and .rar files or the new JBI archive defined by the JBI specification.

ServiceMix is a container for JBI components. At the same time the ServiceMix
JBI container by itself is a JBI component. This characteristic enables ServiceMix
to be deployed as a standard JBI component into another vendor's ESB container,
provided the host ESB container supports JBI components. This is similar to a
java.awt.Frame which is a component that you can include in a container. At the
same time, the Frame by itself is a container which can contain other components.
ServiceMix is analogous to our Frame example.

When we say a ServiceMix container is a JBI component, it means that a host
container (like OpenESB from Sun) can make use of almost every ServiceMix
component, whether the component is a standard JBI component or a lightweight
component (the difference between these two is explained later). The promise of this
model is that the developer-created ServiceMix components can be reused in any
other JBI container.

This chapter deals with the details of how we package and deploy JBI components
into ServiceMix. We will look into the following:

Installation, service assembly, and service unit packaging
Standard versus lightweight JBI components in ServiceMix
A packaging and deployment sample

•

•

•

JBI Packaging and Deployment

[124]

Packaging in ServiceMix
ServiceMix, being JBI-compliant, follows the JBI packaging schema. JBI specification
defines standard packaging for both installation of components and deployment of
artifacts to those components that function as containers for other components.

Installation Packaging
JBI talks about two types of JBI components for installation—a JBI component and a
shared-library for use by such components. The JBI installation package is a ZIP
archive file. This ZIP archive has contents that are opaque to JBI except for the so
called installation descriptor that must be named and located as follows:

/META-INF/jbi.xml

The jbi.xml must conform to either the component installation descriptor schema or
the shared-library installation descriptor schema. A sample installation descriptor
is shown in the following code:

<?xml version="1.0" encoding="utf-8"?>
<jbi version="1.0" xmlns="http://java.sun.com/xml/ns/jbi"
 xmlns:sam="http://www.binildas.com/esb/sample">
 <component type="service-engine">
 <identification>
 <name>sample-engine-1</name>
 <description>An example service engine</description>
 <sam:TypeInfo part-number="012AB490-578F-114FAA">
 BPEL:2.0:XQuery:1.0:XPath:2.0:XPath:1.0
 </sam:TypeInfo>
 </identification>
 <component-class-name description="sam">
 com.binildas.esb.Sample1
 </component-class-name>
 <component-class path>
 <path-element>Sample1.jar</path-element>
 </component-class path>
 <bootstrap-class-name>
 com.binildas.esb.Sample1Bootstrap
 </bootstrap-class-name>
 <bootstrap-class path>
 <path-element>Sample1.jar</path-element>
 </bootstrap-class path>
 <shared-library>slib1</shared-library>
 <sam:Configuration version="1.0">
 <sam:ThreadPool size="10"/>

Chapter 6

[125]

 <sam:Queue1 size="50"/>
 </sam:Configuration>
 </component>
</jbi>

The jbi.xml can include extension elements. If you observe the sample descriptor
above there are two extension elements nested between the Configuration
elements. These extension elements provide component specific information,
using an XML namespace that is outside that of document elements
(http://www.binildas.com/esb/sample in our case). They are ThreadPool
and Queue1. JBI implementations and component implementations may use these
extension elements to provide extra, component specific information for the use of
the component, component tooling, or both. For example, you can think of an IDE
which will help in JBI development and deployment, using which you can configure
the characteristics of the extension elements (like the number of threads in the pool,
in our sample).

Service Assembly Packaging
A Service Assembly (SA) deployment package contains opaque (to JBI) deployment
artifacts, and a deployment descriptor. This deployment descriptor is named jbi.
xml and provides information for the JBI deployment service to process the contents
of the deployment pack appropriately. The SA then contains one or more Service
Unit (SU) archives, all contained within a ZIP archive file. A sample deployment
descriptor referring to two SUs is shown in the following code:

<?xml version="1.0" encoding="UTF-8"?>
<jbi xmlns="http://java.sun.com/xml/ns/jbi" version="1.0">
 <service-assembly>
 <identification>
 <name>soap-demo</name>
 <description>Soap demo</description>
 </identification>
 <service-unit>
 <identification>
 <name>engine-su</name>
 <description>Contains the service</description>
 </identification>
 <target>
 <artifacts-zip>engine-su.zip</artifacts-zip>
 <component-name>servicemix-jsr181</component-name>
 </target>
 </service-unit>
 <service-unit>
 <identification>
 <name>binding-su</name>
 <description>Contains the binding</description>

JBI Packaging and Deployment

[126]

 </identification>
 <target>
 <artifacts-zip>binding-su.zip</artifacts-zip>
 <component-name>servicemix-http</component-name>
 </target>
 </service-unit>
 </service-assembly>
</jbi>

This deployment descriptor refers to two different SUs namely engine-su and
binding-su. These two SU archives, plus the descriptor itself, are combined into
a single ZIP archive to form the SA. The deployment descriptor is placed inside
the ZIP archive in a directory structure as given in the following, which will be
explained with figures later in this chapter:

/META-INF/jbi.xml

Service Unit Packaging
The SA contains opaque (to JBI) deployment artifacts called SUs, which are again ZIP
archive files. These archives contain a single JBI-defined descriptor file:

/META-INF/jbi.xml

The jbi.xml descriptor provides information about the services, which are statically
provided and consumed as a result of deploying the SU to its target component.

The ServiceMix JBI container also supports XBean-based deployment—we can
deploy SUs containing a file named xbean.xml. Since, at SA-level, the SUs are
opaque to JBI deployment, even the SA containing XBean-based SUs can be ported
across JBI containers.

Deployment in ServiceMix
JBI components, by themselves, can act as JBI containers. Adding more artifacts
to installed components is called deployment. ServiceMix supports two modes of
deployment—standard and JBI complaint, and lightweight.

Standard and JBI compliant
Using this mode, we can install components at run time and deploy SAs onto them.
These components are JBI specification compliant and hence they are JBI containers
for other components too. They can accept SA deployments and are implemented
using the servicemix-common module. Since they are JBI compliant, they are
packaged as ZIP archive files with a jbi.xml descriptor.

Chapter 6

[127]

Examples of a few ServiceMix standard JBI components are shown in the
following list:

servicemix-jsr181

servicemix-drools

servicemix-http

servicemix-jms

We can also configure the above mentioned standard components, to be used in a
static deployment mode using the servicemix.xml configuration file.

We can deploy lightweight components in this mode. To do that, lightweight
components must be deployed to the servicemix-lwcontainer.

Lightweight
Lightweight components are POJO components implementing the required JBI
interfaces. They don't follow standard JBI packaging; hence, do not support SU
deployments. Due to this reason, they cannot normally be deployed at run time. In
case we need to deploy them at run time, we can deploy them on the servicemix-
lwcontainer (lightweight container). Lightweight components normally inherit the
ComponentSupport class directly or indirectly, and are mainly in the servicemix-
components module. We normally use the servicemix.xml static configuration file
when we want to run a single application for testing purposes, or when we embed
ServiceMix in a web application, for example.

A Few examples are shown in the following list:

JDBC component
Quartz component
XSLT component

Packaging and Deployment Sample
We will now create SUs and SAs, and deploy them into the ServiceMix JBI container.
The whole process can be divided into two phases, with multiple steps in each phase.

The two phases in the process are the following:

Component development
Component packaging

•

•

•

•

•

•

•

•

•

JBI Packaging and Deployment

[128]

Phase One—Component Development
This phase includes coding and building the code base. We have the code base split
up into multiple folders each representing separate artifacts, which go into the final
SAs as shown in the following figure.

SoapBinding

src

binding-su

xbean.xml

components

engine-su

sa

xbean.xml

META-INF

jbi.xml

samples

HelloServiceBI.java

HelloServicePojo.java

build.xml

servicemix.xml

Client.html

The components folder is supposed to contain lightweight (or POJO) components,
but in our case, we have a simple service class (HelloServicePojo) implementing
a BI (HelloServiceBI), this is shown in the following code:

public interface HelloServiceBI
{
 String hello(String phrase);
}
public class HelloServicePojo implements HelloServiceBI
{
 private static long times = 0;

Chapter 6

[129]

 public String hello(String phrase)
 {
 System.out.println("HelloServiceBean.hello{
 " + (++times) + "}...");
 return "From HelloServiceBean :HELLO!! You just said :" + phrase;
 }
}

Phase Two—Component Packaging
We will now have two Service Units—one a SE and the other a BC. Both these
Service Units will be packaged into a single Service Assembly so that we can deploy
them into the ESB. The servicemix-shared Service Assembly provides common
services and hence we will also deploy that too into the ESB. The full setup is as
shown in the following figure:

binding-su
[Service Unit)

http:endpoint jsr181:endpoint HelloServicePolo

NMR

soap-demo
[Service Assembly)

engine-su
[Service Unit)

ServiceMix ESB

HTTP Channel

Client

servicemix-shared
[Service Assembly]

We will now look into the packaging of individual SUs and SAs.

JBI Packaging and Deployment

[130]

The engine-su (Service Engine Service Unit) is based on xbean.xml, which leverages
jsr181: endpoint to expose our service class as a web service. This is shown in the
following code:

<?xml version="1.0"?>
<beans xmlns:jsr181="http://servicemix.apache.org/jsr181/1.0"
 xmlns:demo="http://binildas.com/esb/sample">
 <classpath>
 <location>.</location>
 </classpath>
 <jsr181:endpoint pojoClass="samples.HelloServicePojo"
 annotations="none"
 service="demo:hello-service"
 endpoint="hello-service"
 serviceInterface="samples.HelloServiceBI" />
</beans>

The binding-su (Binding Component Service Unit) is also based on xbean.xml,
which leverages http:endpoint in the consumer (consumer to NMR) role. This is
shown in the following code:

<?xml version="1.0"?>
<beans xmlns:http="http://servicemix.apache.org/http/1.0"
 xmlns:demo="http://binildas.com/esb/sample">
 <http:endpoint service="demo:hello-service"
 endpoint="hello-service"
 role="consumer"
 locationURI="http://localhost:8192/Service/"
 defaultMep="http://www.w3.org/2004/08/wsdl/in-out"
 soap="true" />
</beans>

The two Service Units can be now packaged into a single Service Assembly. So, these
two SUs are configured in the .xml file shown as follows:

/META-INF/jbi.xml

The contents of jbi.xml file are as follows:

<?xml version="1.0" encoding="UTF-8"?>
<jbi xmlns="http://java.sun.com/xml/ns/jbi" version="1.0">
 <service-assembly>
 <identification>
 <name>soap-demo</name>
 <description>Soap demo</description>
 </identification>
 <service-unit>

Chapter 6

[131]

 <identification>
 <name>engine-su</name>
 <description>Contains the service</description>
 </identification>
 <target>
 <artifacts-zip>engine-su.zip</artifacts-zip>
 <component-name>servicemix-jsr181</component-name>
 </target>
 </service-unit>
 <service-unit>
 <identification>
 <name>binding-su</name>
 <description>Contains the binding</description>
 </identification>
 <target>
 <artifacts-zip>binding-su.zip</artifacts-zip>
 <component-name>servicemix-http</component-name>
 </target>
 </service-unit>
 </service-assembly>
</jbi>

As is evident, the Service Assembly encapsulates two Service Units—engine-su
and binding-su.

Thus, the Service Unit is a ZIP archive that will contain your application's Java class
files and the servicemix.xml configuration file. The Service Unit can also contain
a jbi.xml file which provides information about services statically provided and
consumed. The name of the ZIP archive that we create here is later referred to from
the jbi.xml file of the enclosing Service Assembly.

Building and packaging can be automated using the ant build tool with the help of
build.xml, shown in the following code:

<project name="jms-binding" default="setup" basedir=".">
 <target name="build-components" depends="init">
 <javac srcdir="${comp.src.dir}" destdir="${comp.build.dir}">
 <classpath refid="javac.classpath"/>
 </javac>
 </target>
 <target name="build-engine-su" depends="build-components">
 <zip destfile="${build.dir}/engine-su.zip">
 <fileset dir="${comp.build.dir}"/>
 <fileset dir="${su.engine.src.dir}"/>
 </zip>

JBI Packaging and Deployment

[132]

 </target>
 <target name="build-binding-su">
 <zip destfile="${build.dir}/binding-su.zip">
 <fileset dir="${su.binding.src.dir}"/>
 </zip>
 </target>
 <target name="build-sa"
 depends="build-engine-su,build-binding-su">
 <zip destfile="${build.dir}/soap-demo-sa.zip">
 <fileset dir="${build.dir}" includes="engine-su.zip"/>
 <fileset dir="${build.dir}" includes="binding-su.zip"/>
 <fileset dir="${sa.src.dir}"/>
 </zip>
 </target>
 <target name="setup" depends="build-sa">
 <mkdir dir="${install.dir}"/>
 <mkdir dir="${deploy.dir}"/>
 <copy todir="${install.dir}">
 <fileset dir="${servicemix.home}/components"
 includes="*jsr181*"/>
 <fileset dir="${servicemix.home}/components"
 includes="*http*"/>
 <fileset dir="${servicemix.home}/components"
 includes="*servicemix-shared*"/>
 </copy>
 <copy file="${build.dir}/soap-demo-sa.zip"
 todir="${deploy.dir}"/>
 </target>
</project>

In the setup target we can see that we copy the jsr181 component, http component,
and servicemix-shared from the ServiceMix installation path to our target install
directory. These are standard JBI components onto which we are deploying the SU
artifacts. When we do that, if ServiceMix is already running, it will detect the file
present there and start it.

Running the Packaging and Deployment
Sample
As a first step and if you haven't done it before, edit examples.PROPERTIES
provided along with the code download for this chapter and change the paths there
to match your development environment. The code download for this chapter also
includes a README.txt file, which gives detailed steps to build and run the samples.

Chapter 6

[133]

Now we need to build the samples. For this, change directory to ch06\SoapBinding
and then execute ant, as shown here:

cd ch06\SoapBinding

ant

This will build the entire sample.

Now we are going to run this example as standalone. That is, ServiceMix will be
started and then the SOAP demo is deployed and run. This is done by executing the
servicemix.xml file found in the topmost folder (ch06\SoapBinding).

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns:sm="http://servicemix.apache.org/config/1.0">
 <bean id="propertyConfigurer"
 class="org.springframework.beans.factory.
 config.PropertyPlaceholderConfigurer">
 <property name="location"
 value="classpath:servicemix.properties" />
 </bean>
 <import resource="classpath:jmx.xml" />
 <import resource="classpath:jndi.xml" />
 <import resource="classpath:security.xml" />
 <import resource="classpath:tx.xml" />
 <sm:container id="jbi"
 rootDir="./wdir"
 installationDirPath="./install"
 deploymentDirPath="./deploy"
 flowName="seda">
 <sm:activationSpecs>
 </sm:activationSpecs>
 </sm:container>
</beans>

We can bring up ServiceMix by running the following commands:

cd ch06\SoapBinding

%SERVICEMIX_HOME%/bin/servicemix servicemix.xml

When we start ServiceMix, the JBI container is configured using the above
servicemix.xml file.

To run the demo, there is a Client.html file provided again in the top folder. The
Client will send the following request:

<SOAP-ENV:Envelope xmlns:SOAP-ENV=
 "http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi=
 "http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

JBI Packaging and Deployment

[134]

 <SOAP-ENV:Body>
 <ns1:hello xmlns:ns1="http://binildas.com/esb/sample"
 SOAP-ENV:encodingStyle=
 "http://schemas.xmlsoap.org/soap/encoding/">
 <phrase xsi:type="xsd:string">what's your name?
 </phrase>
 </ns1:hello>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The client sends the above SOAP request to http://localhost:8192/Service/.
As, we already configured ServiceMix http:endpoint listening in port 8192,
the SOAP request will be intercepted and sent to the JBI NMR. http:endpoint has
the consumer role when it sends a SOAP request to the NMR and it will be routed
to http:endpoint listening in port 8192. This service is the JSR181 binding
component for our service implementation class, which when invoked will carry out
the business functionality and any response is returned through a similar channel
back to the client.

Summary
We use multiple archive formats for various J2EE components—.jar, .war, .ear,
and .rar are few amongst them. Now, JBI specification recognizes .zip as a valid
archive format for JBI components. SUs and SAs are packaged as valid .zip files and
are deployed into JBI compliant containers. In this chapter, we have seen how to write
code from scratch, package it into standard JBI formats, and deploy it to the ESB
run time. We will follow similar packaging for most of our samples in the
subsequent chapters.

The next chapter will teach how to custom code JBI components on our own, so that
they can take part in the message exchanges happening through the JBI bus.

Developing JBI Components
Untill now, you have been assembling JBI components which are pre-built and
available along with the ServiceMix installation in your own way. The aim of this
chapter is to get started in developing your own components and deploying them
into the ServiceMix JBI container. In this chapter, we will visit the core API from
ServiceMix as well as from the JBI specification, which will function as useful helper
classes using lightweight components. We will also create our own JBI component
and deploy it into the JBI bus.

Developing JBI components in ServiceMix requires the developer to write a bit of
plumbing code, which may or may not be so appealing. To make the developer's
life easy, ServiceMix supports Spring-based POJO classes and their configuration.
ServiceMix also provides many component helper classes. It is up to the developer
whether to make use of these helper classes, or develop their own components or
code against the core APIs of ServiceMix and JBI, though there is no reason why
anyone shouldn't be using the helper classes.

So, we will cover the following in this chapter:

Need for custom JBI components
ServiceMix component helper classes
Create, deploy, and run JBI components
Build and run a sample

Need for Custom JBI Components
We have already seen many ServiceMix components, both JBI compliant and
lightweight. Many of them are available inside the components folder in the
ServiceMix installation. A natural query in this context is "Why does one need
to develop custom components in ServiceMix?". Often I see myself as a lazy
programmer, trying to reuse codes, components, or services rather than hand code
them every time.

•
•
•
•

Developing JBI Components

[136]

Going by that trend, I am also compelled to look at ServiceMix with an aim to reuse
anything and everything, and not to hand code anything. The proposition looks fine,
but the truth is that the world is not ideal all the time. In an ideal world, we will have
all the ServiceMix components, tools, and hooks available, so that we can assemble
or reconfigure the components to suit our needs. This makes sense in a pure
integration initiative where we only integrate, and do not develop anything—after
all, JBI and ServiceMix is all about integration. However, since the world is far from
ideal and all of us will have our own integration problems and scenarios. Often, we
will have to custom code integration wrappers, message orchestration logic, or error
handling logic. This logic can be coded into components created out of ServiceMix
helper classes and easily deployed into a ServiceMix container.

ServiceMix Component Helper Classes
ServiceMix provides a lot of plumbing code in the form of reusable component
helper classes. Most of these classes are abstract base classes from which the
developer can derive their own classes to put custom logic. The main classes of
interest and their relationship are shown in the following figure:

MBeanInfoProvider
(front managem...

BaseLifeCycle
(from manageme...

TransformComponentSupport
(from util)

ComponentLifeCycle
(from component)

getExtensionMBeanName()
init()

shutDown()
start()
stop()

LifeCycleMBean
(front managem...

Component
(from component)

MessageExchangeListener
(from servicemix)

onMessageExchange()

getLifeCycle()
getServiceDescription()

getServiceUnitManager()
isExchangeWithConsumerOkay()
isExchangeWithProviderOkay()
resolveEndpointReference()

PojoSupport
(from util)

getDescription()
init()
shutDown()
getBody()
setBody()
getExtensionMBeanName()
setExtensionMBeanName()
getContext()
getService()
setService()
getEndpoint()
setEndpoint()
getExchangeFactory()
getDeliveryChannel()
init()
done()
send()
sendSync()
answer()
fail()
isInAndOut()

ComponentSupport
(from util)

getServiceUnitManager()
resolveEndpointReference()
getServiceDescription()
isExchangeWithConsumerOkay()
isExchangeWithProviderOkay()
initializeServiceUnitManager()
createServiceUnitManager()
createComponentLifeCycle()
getInMessage()
getMessageTransformer()
setMessageTransformer()
invoke()
createInOnlyExchange()
createInOutExchange()
forwardToExchange()

onMessageExchange()
transform()

Chapter 7

[137]

MessageExchangeListener
MessageExchangeListener is a ServiceMix package interface, very similar to the
JMS MessageListener. This interface is shown in the following code:

package org.apache.servicemix;
import javax.jbi.messaging.MessageExchange;
import javax.jbi.messaging.MessagingException;
public interface MessageExchangeListener
{
 /**
 * MessageExchange passed directly to the listener
 * instead of being queued
 *
 * @param exchange
 * @throws MessagingException
 */
 public void onMessageExchange(MessageExchange exchange)
 throws MessagingException;
}

When our custom components implement this interface, we will be able to
receive new message exchanges easily, rather than writing a new thread. The
default JBI asynchronous dispatch model is where a thread is used per JBI
component by the container. However, when the component implement the
MessageExchangeListener interface, the ServiceMix container will detect the use of
this interface and be able to perform immediate dispatch.

TransformComponentSupport
TransformComponentSupport contains a default implementation for the
onMessageExchange method. The code is more explanatory than a textual
description of the sequences. Hence, let's reproduce that in the following code:

public void onMessageExchange(MessageExchange exchange)
{
 if (exchange.getStatus() == ExchangeStatus.DONE)
 {
 return;
 }
 else if (exchange.getStatus() == ExchangeStatus.ERROR)
 {
 return;
 }
 try
 {

Developing JBI Components

[138]

 InOnly outExchange = null;
 NormalizedMessage in = getInMessage(exchange);
 NormalizedMessage out;
 if (isInAndOut(exchange))
 {
 out = exchange.createMessage();
 }
 else
 {
 outExchange = getExchangeFactory().createInOnlyExchange();
 out = outExchange.createMessage();
 }
 boolean txSync = exchange.isTransacted() && Boolean.TRUE.
 equals(exchange.getProperty(JbiConstants.SEND_SYNC));
 copyPropertiesAndAttachments(exchange, in, out);
 if (transform(exchange, in, out))
 {
 if (isInAndOut(exchange))
 {
 exchange.setMessage(out, "out");
 if (txSync)
 {
 getDeliveryChannel().sendSync(exchange);
 }
 else
 {
 getDeliveryChannel().send(exchange);
 }
 }
 else
 {
 outExchange.setMessage(out, "in");
 if (txSync)
 {
 getDeliveryChannel().sendSync(outExchange);
 }
 else
 {
 getDeliveryChannel().send(outExchange);
 }

Chapter 7

[139]

 exchange.setStatus(ExchangeStatus.DONE);
 getDeliveryChannel().send(exchange);
 }
 }
 else
 {
 exchange.setStatus(ExchangeStatus.DONE);
 getDeliveryChannel().send(exchange);
 }
 }
 catch (Exception e)
 {
 try
 {
 fail(exchange, e);
 }
 catch (Exception e2)
 {
 logger.warn("Unable to handle error: " + e2, e2);
 if (logger.isDebugEnabled())
 {
 logger.debug("Original error: " + e, e);
 }
 }
 }
}

The above code calls transform(exchange, in, out). By doing so, it is invoking
the abstract method in TransformComponentSupport. The abstract method is
reproduced as follows:

protected abstract boolean transform(MessageExchange exchange,
 NormalizedMessage in, NormalizedMessage out)
 throws Exception;

Hence, it is easy to just implement the transform method in the custom code and let
the helper class works behind the scenes for all message exchanges.

ComponentSupport and PojoSupport are the other two helper classes in the hierarchy.

Developing JBI Components

[140]

Create, Deploy, and Run JBI Component
This section covers from end to end, the creation, deployment, and running of a
sample JBI component in ServiceMix. Following the basics demonstrated in this
chapter, readers can code JBI components to suit their own requirements. We will
also see many such components in the examples in coming chapters. The code for
this sample is kept in ch07\CustomComponent folder.

CustomComponent

sa

META-INF

Jbi.xml
src

com

binildas

esb

customcomponent

HttpInterceptor.java

XMLUtil.java

servicemix.xml

su

build.xml

servicemix.xml

Client.html

Code HttpInterceptor Component
HttpInterceptor, as the name implies, will intercept messages coming in the HTTP
channel. It then prints out the message to the console, and sends some message back
through the response channel. To quickly code our component, we will extend the
ServiceMix component helper class namely TransformComponentSupport.

This is demonstrated in the following code:

public class HttpInterceptor extends TransformComponentSupport
{
 public HttpInterceptor(){}
 protected boolean transform(MessageExchange exchange,
 NormalizedMessage in,NormalizedMessage out) throws
 MessagingException

Chapter 7

[141]

 {
 NormalizedMessage copyMessage = exchange.createMessage();
 getMessageTransformer().transform(exchange, in, copyMessage);
 Source content = copyMessage.getContent();
 System.out.println("HttpInterceptor.transform02.
 content = " + content);
 String contentString = null;
 if (content instanceof DOMSource)
 {
 contentString = XMLUtil.node2XML(((DOMSource)
 content).getNode());
 System.out.println("HttpInterceptor.transform03.
 contentString = " + contentString);
 }
 out.setContent(new StringSource("<?xml version=\"1.0\"
 encoding=\"UTF-8\"?>
 <Response>Response From Server</Response>"));
 return true;
 }
}

As we described earlier, we will implement the abstract transform method in
TransformComponentSupport. The Transform method will have a reference to the
Message Exchange and also to the in and out Normalized Messages. We first copy
the contents from the in message and print that out to the console. Then, we create
a new StringSource with some message from the server, sending that to the out
Normalized Messages. The code is as simple as that, since most of the plumbing has
already been done for you by the base class methods.

Configure HttpInterceptor Component
As, we can configure the HttpInterceptor component as SU, we will do the
configuration of this component as a SU in the servicemix.xml file kept at
ch07\CustomComponent\su\servicemix.xml.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns:sm="http://servicemix.apache.org/config/1.0"
 xmlns:demo="http://www.binildas.com/esb/customcomponent">
 <classpath>
 <location>.</location>
 </classpath>
 <sm:serviceunit id="jbi">
 <sm:activationSpecs>
 <sm:activationSpec componentName="interceptor"
 endpoint="interceptor"
 service="demo:interceptor">

Developing JBI Components

[142]

 <sm:component>
 <bean class=
 "com.binildas.esb.customcomponent.HttpInterceptor"/>
 </sm:component>
 </sm:activationSpec>
 </sm:activationSpecs>
 </sm:serviceunit>
</beans>

This is different from the XBean-based packaging example, that we saw in the
previous example. As, we are using servicemix.xml to specify the SU. Thus, we can
see that there are multiple ways by which we can configure and package our SUs.

Package HttpInterceptor Component
In Chapter 6, we saw how to package and deploy components in ServiceMix. We
will follow the same packaging methodology here. We will create an SU and then
package it into an SA.

We have already seen the SU configuration, let us now look into the SA configuration
as follows:

\sa\META-INF\jbi.xml

The content of the Jbi.xml file is shown in the following code:

<?xml version="1.0" encoding="UTF-8"?>
<jbi xmlns="http://java.sun.com/xml/ns/jbi" version="1.0">
 <service-assembly>
 <identification>
 <name>InterceptorAssembly</name>
 <description>Interceptor Service Assembly</description>
 </identification>
 <service-unit>
 <identification>
 <name>Interceptor</name>
 <description>Interceptor Service Unit</description>
 </identification>
 <target>
 <artifacts-zip>Interceptor-su.zip</artifacts-zip>
 <component-name>servicemix-lwcontainer</component-name>
 </target>
 </service-unit>
 </service-assembly>
</jbi>

Chapter 7

[143]

Here, we package the Interceptor Service Unit into the SA. The main point to
be noted in the SA jbi.xml is the target element of the service-unit. Here, we
specify that the SU artifact (that is, Interceptor-su.zip) is to be deployed into the
servicemix-lwcontainer target container.

Deploy HttpInterceptor Component
To deploy the HttpInterceptor component, we have a servicemix.xml file in the
topmost folder to start the ServiceMix container.

The content of the servicemix.xml file is shown in the following code:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns:sm="http://servicemix.apache.org/config/1.0"
 xmlns:demo="http://www.binildas.com/esb/customcomponent">
 <bean id="propertyConfigurer"
 class="org.springframework.beans.factory.config.
 PropertyPlaceholderConfigurer">
 <property name="location"
 value="classpath:servicemix.properties" />
 </bean>
 <import resource="classpath:jmx.xml" />
 <import resource="classpath:jndi.xml" />
 <import resource="classpath:security.xml" />
 <import resource="classpath:tx.xml" />
 <sm:container id="jbi"
 rootDir="./wdir"
 installationDirPath="./install"
 deploymentDirPath="./deploy"
 flowName="seda"
 monitorInstallationDirectory="true"
 createMBeanServer="true"
 useMBeanServer="true">
 <sm:activationSpecs>
 <sm:activationSpec componentName="httpReceiver"
 service="bt:httpBinding"
 endpoint="httpReceiver"
 destinationService="demo:interceptor">
 <sm:component>
 <bean class="org.apache.servicemix.components.
 http.HttpConnector">
 <property name="host" value="127.0.0.1"/>
 <property name="port" value="8912"/>
 </bean>
 </sm:component>
 </sm:activationSpec>
 </sm:activationSpecs>
 </sm:container>
</beans>

Developing JBI Components

[144]

The first thing to note here is that we have installationDirPath="./install"
for the JBI container. This is where we place our JBI components, which are to be
installed by ServiceMix. Hence, they can act as containers for components like our
HttpInterceptor.

It is also worth noting that we have an HttpConnector configured with our sample,
and HttpInterceptor, as the destinationService so that we have a way to test
our sample too.

Build and Run the Sample
As a first step and if you haven't done it before, edit examples.PROPERTIES
provided along with the code download for this chapter and change the paths there
to match your development environment. The code download for this chapter also
includes a README.txt file, which gives detailed steps to build and run the samples.

The build.xml is as usual but we will list the major differences here.

As, we want HttpInterceptor SU to be deployed into servicemix-lwcontainer
while building the code base, we will also copy the servicemix-lwcontainer from
ServiceMix installation to installationDirPath.

<copy todir="${install.dir}" overwrite="true">
 <fileset dir="${servicemix.home}/components"
 includes="*lwcontainer*"/>
 <fileset dir="${servicemix.home}/components" includes="*shared*"/>
</copy>

Execute ant to build the sample as shown as follows:

cd ch07\CustomComponent

ant

We can bring up ServiceMix by running the following commands:

cd ch07\CustomComponent

%SERVICEMIX_HOME%/bin/servicemix servicemix.xml

When we start ServiceMix, the JBI container is configured using the above
servicemix.xml file. To run the demo, there is a Client.html file provided again
in the top folder.

Chapter 7

[145]

Summary
In this chapter, we looked at the core API from ServiceMix as well as from the
JBI specification, which will function as useful helper classes using which we can
develop lightweight components quickly.

We have also custom coded a JBI component and deployed it into the JBI bus. You
may not want to always custom code components. Many times, JBI components will
be available as off-the-shelf-libraries. Such components can take part in the message
exchanges through the ESB and can provide integration with external services like
CICS and CORBA, for example. If by any chance you want to create your own
JBI components, then you can follow the guidelines presented in this chapter as a
starting point.

As we have covered the standard JBI packaging and deployment model in Chapter
6, we now have enough toolsets to delve deep into JBI and ESB. We will continue
our journey by looking at using Spring beans to Spring-wrap an EJB service onto the
JBI bus in the next chapter. By doing so, we will expose EJB as a WSDL compliant
service across firewalls—yes really, we are going to do that! Hence, don't scrap your
existing investments in EJB till you cover the next chapter.

Binding EJB in a JBI Container
EJB is the distributed component paradigm in the Java-J2EE world. EJB proved not
to be a push button solution for programming problems. Still, a few of the promises
(of course, reality too)—distributed transaction propagation, component-based
deployment model, and interface-based design, proved to be really useful. Today,
we have been talking about lightweight containers and aspect-based programming,
and whether EJB still holds the crown is something which has to be answered on
a case by case basis. Being neither a proponent nor an opponent of EJB, one thing I
have to admit is that the industry has a lot invested in this technology. Scraping all
these investments and implementing alternate solutions is surely not a topic for our
discussion, at least in this text book. For our SOI-based discussion, perhaps, it is more
interesting to look at how to reuse those existing investments. Hence, we can continue
building newer system based on higher levels of SOA, maturity coexisting with old
functionality. In clearer terms, coexisting services and components.

We will cover the following in this chapter:

Component versus services.
Indiscrimination at consumer perspective.
Stepwise binding EJB sample.
Reconciling EJB resources.

Component versus Services
In a chapter like this, it makes sense to discuss the difference between components
and services.

Components are first-class deployable units packaged into standard artifacts.
Components live in some container; there is component-container interaction for
component lifecycle management and event notification. Thus, components are
physical units. Components will also assume explicitly about the protocol and format
of data sent over the wire, since most of the time they are technology-dependent.

•
•
•
•

Binding EJB in a JBI Container

[148]

Services on the other hand have URL addressable functionality, accessible over the
network. At least from the consumer perspective, there are no lifecycle activities
associated with the service, since services are stateless and idempotent. Between any
two service invocations, there is no state maintained at the provider-level (of course,
there are stateful services too). Thus services are virtual distributed components,
which are neutral about the protocol and format of sending messages. By neutral, we
mean it doesn't matter what the underlying technology or platform is as long as the
provider and consumer agrees to a common protocol and format.

Coexisting EJB Components with Services
We need to devise a mechanism by which we can allow coexistence of components
and services. By coexistence, we mean a consumer should be able to consume a
web service and an EJB service without any difference. Traditional component
developers, who also know how to develop a web service, will first wonder how this
can be possible. Both have completely different consumption mechanisms—a web
service is character-oriented whereas an EJB service is binary-oriented, just one of the
many mismatches.

ESB Binding Components (BC) comes to the rescue. By judicious combination of
BCs, even an EJB component can be hooked to the NMR so that any consumer,
whether they are in a different technology like .NET or Mainframe, can interoperate.
Of course, this is not something new, since we have been doing this for years using
CORBA or COBOL Copy Books, but never in a standard way. Now JBI promises the
same so that interoperability of our components across multiple JBI containers is no
longer a dream.

The advantage of this kind of interoperability is multifold. First, even an
organization with less SOA maturity implementations can quick start their enterprise
efforts, and when they do so they can reuse existing IT assets. This is different from
the Bing-Bang approach, which will reduce the overall risk considerably. Secondly,
developers will be ready to accept the change since change is not abrupt—change
will still harmonize their past intellectual spending in terms of time and effort for
developing all those past (EJB) components.

Indiscrimination at Consumer Perspective
When we want to coexist components and services together, technical indiscrimination
is very important. As a consumer can now use the same set of tools and methodologies
to access functionality, whether it is a (web) service or an EJB component. If you have
programmed an EJB or web service before, you will agree that the contract models are
different. In the case of an EJB, the consumer-provider contract is the EJB home
and EJB remote interface (better is the case with the CORBA world, where the

Chapter 8

[149]

interface is the IDL). Moreover, these interfaces don't make any sense to any consumer
who doesn't speak Java. However, in a web service the contract is the WSDL, which
is supposed to be interpreted by any consumer. To indiscriminate, we will need to
provide the same interface as the web service and see how easy it is to do with the
help of an ESB.

Binding EJB Sample
We will not spend too much time describing how to write and deploy an EJB
component, since there are a lot of books and resources available which will do just
that. However, we will spend some time looking at how we can use Spring beans to
Spring-wrap an EJB service. More time will be spent on actual binding of EJB and
related discussion. As usual, we will do this sample in a step by step manner.

Step One—Define and Deploy the EJB Service
The EJB service we implement is very simple; the classes and interfaces involved are
shown in the following figure:

EJBObject SessionBean EJBHome

HelloServiceHome

HelloServiceBI

HelloService

realizes creates

+hello()

HelloServiceBean

Developer Classes

EJB API

Binding EJB in a JBI Container

[150]

We need to abstract out the interface from all EJB specific details; hence, we have
followed the BI pattern to define the interface. HelloServiceBI is the BI, which is void
of any EJB specific API.

package samples;
public interface HelloServiceBI
{
 String hello(String phrase) throws java.io.IOException;
}

As a first step and if you haven't done it before, edit examples.PROPERTIES provided
along with the code download for this chapter and change the paths there to match
your development environment. The code download for this chapter also includes a
README.txt file, which gives detailed steps to build and run the samples.

For the sample deployment, we will use BEA Weblogic server's example domain.
Hence, all necessary deployment descriptors for the Weblogic EJB container are
provided in the respective folders. In case you need to deploy the EJB into a different
vendor's EJB container, change the deployment descriptors accordingly.

Execute the following scripts in the command prompt to bring up the server first:

cd %BEA_HOME%/weblogic812/samples/domains/examples

%BEA_HOME%/weblogic812/samples/domains/examples/startExamplesServer

To build and deploy the EJB, in a different command prompt change directory to:

ch08\BindEjb\01_Ejb

%BEA_HOME%/weblogic812/samples/domains/examples/setExamplesEnv

%BEA_HOME%/weblogic812/server/bin/ant

This will build, package, and deploy the EJB module into the Weblogic server. It will
also create a client jar containing all the client-side stubs, which is required later for
accessing the service. In case you need to test whether your deployment went fine,
there is a client provided which you can execute by typing the following code:

ch08\BindEjb\01_Ejb

ant run

Step Two—Bind EJB to ServiceMix
Once the EJB service is up and running, we now want to expose the service across
firewalls in a technology neutral format and protocol. By doing so, we can make
the EJB service consumable by other B2B partners. The deployment diagram for an
ESB-based solution for the sample scenario is shown in the following figure:

Chapter 8

[151]

UserE-Commerce
Server

FirewallESB Server
Cluster

Application
Server

Provider Domain Consumer Domain

Here, the Application Server will host our EJB component services. The ESB server
(cluster) in front of the Application Server will host the required BCs to proxy the
EJB service behind the scenes as firewall-friendly services, consumable by other
B2B clients.

In Chapter 6, you have already seen how we can leverage the servicemix-jsr181
standard JBI component as a container for custom POJO classes, so that the methods
defined in a POJO are exposed as services. We need to follow a similar approach to
bind an EJB service too to the JBI bus, but the configuration is slightly different. The
sample binding scenario inside the bus is represented in the following figure:

BEA Weblogic

HelloServiceBean Endpoint t3 Channel HTTP ChannelEJBProxy
FactoryBean

Provider Domain Consumer Domain

HTTP
Endpoint

Jsr181
Endpoint

Client

JBI ESB Container
(ServiceMix)

Let us now bind the EJB service to the JBI bus using the servicemix-jsr181
component. servicemix-jsr181 can be configured in the lightweight mode too. Let
us look into the servicemix.xml file for that, as shown in the following code:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns:sm="http://servicemix.apache.org/config/1.0"
 xmlns:eip="http://servicemix.apache.org/eip/1.0"
 xmlns:http="http://servicemix.apache.org/http/1.0"
 xmlns:jsr181="http://servicemix.apache.org/jsr181/1.0"
 xmlns:my="http://binildas.com/esb/bindejb">
 <bean id="propertyConfigurer"
 class="org.springframework.beans.factory.config.
 PropertyPlaceholderConfigurer">

Binding EJB in a JBI Container

[152]

 <property name="location"
 value="classpath:servicemix.properties" />
 </bean>
 <import resource="classpath:jmx.xml" />
 <import resource="classpath:jndi.xml" />
 <import resource="classpath:security.xml" />
 <import resource="classpath:tx.xml" />
 <sm:container id="jbi"
 useMBeanServer="true"
 createMBeanServer="true">
 <sm:activationSpecs>
 <sm:activationSpec>
 <sm:component>
 <http:component>
 <http:endpoints>
 <http:endpoint
 service="my:HelloServiceBIService"
 endpoint="HelloServiceBI"
 role="consumer"
 defaultOperation="hello"
 targetService="my:jsrEjbEP"
 targetEndpoint="jsrEjbEP"
 locationURI="http://localhost:8192/Services/
 HelloWebService"
 soap="true"
 defaultMep="http://www.w3.org/2004/08/wsdl/
 in-out" />
 </http:endpoints>
 </http:component>
 </sm:component>
 </sm:activationSpec>
 <sm:activationSpec componentName="jsrEjbBC"
 service="my:jsrEjbBC"
 endpoint="jsrEjbBC">
 <sm:component>
 <jsr181:component>
 <jsr181:endpoints>
 <jsr181:endpoint annotations="none"
 service="my:jsrEjbEP"
 endpoint="jsrEjbEP"
 serviceInterface="samples.
 HelloServiceBI">
 <jsr181:pojo>
 <bean class="org.springframework.ejb.
 access.SimpleRemoteStatelessSession
 ProxyFactoryBean">
 <property name="jndiName"
 value=
 "sample-statelessSession-
 TraderHome"/>

Chapter 8

[153]

 <property name="businessInterface"
 value="samples.
 HelloServiceBI"/>
 <property name="jndiTemplate">
 <ref bean="jndiTemplate"/>
 </property>
 </bean>
 </jsr181:pojo>
 </jsr181:endpoint>
 </jsr181:endpoints>
 </jsr181:component>
 </sm:component>
 </sm:activationSpec>
 </sm:activationSpecs>
 </sm:container>
 <bean id="jndiTemplate"
 class="org.springframework.jndi.JndiTemplate">
 <property name="environment">
 <props>
 <prop key="java.naming.factory.initial">
 weblogic.jndi.WLInitialContextFactory
 </prop>
 <prop key="java.naming.provider.url">
 t3://localhost:7001
 </prop>
 </props>
 </property>
 </bean>
</beans>

We will now discuss this code section by section.

JNDI context is the starting point in getting a reference to an EJB resource. In
the previous step, we have deployed our EJB service to the Weblogic server. To
access WebLogic's JNDI tree, you need to establish a standard JNDI InitialContext
representing the context root of the server's directory service. For this, the PROVIDER_
URL property specifies the URL of the server, whose JNDI tree we want to access and
the INITIAL_CONTEXT_FACTORY property contains the fully qualified class name of
WebLogic's context factory.

If you need to access WebLogic's JNDI tree, it is advised to establish the context using
the class name weblogic.jndi.WLInitialContextFactory, so that we can use the
Weblogic specific t3 protocol which is optimized for accessing services. We define
these details by configuring the org.springframework.jndi.JndiTemplate bean.

Binding EJB in a JBI Container

[154]

The next step is to define our POJO class. The POJO class here is not a service class,
but a client-side proxy to the remote EJB service. There's a lot of back end plumbing
happening here when we use SimpleRemoteStatelessSessionProxyFactoryBean,
courtesy of the Spring AOP framework. The POJO bean definition creates a proxy for
the remote stateless EJB, which implements the business method interface. The EJB
remote home is cached on startup, so there's only a single JNDI lookup. Each time
the EJB is invoked, the proxy invokes the corresponding business method on the
EJB. All the context details necessary for contacting the server are retrieved from the
previous jndiTemplate bean.

Once our POJO bean is ready, it is just a matter of wrapping that up in the
servicemix-jsr181 as shown in the configuration above. When you configure the
jsr181:endpoint, you can also specify the serviceInterface. This will hold the
class name of the interface to expose as a service and this abstraction will help the
binding to be exposed in standard ways (using WSDL), which we will explore shortly.

We will appreciate the fact that EJB components are remotable, but they normally
expose binary interfaces. Binary protocols are not platform agonistic, nor are they
firewall-friendly. Hence, EJB components are normally preferred on a LAN where
we have perfect control of the network, so that nothing hinders marshalling bytes
across domains. If we have to make them firewall-friendly, we can tunnel them
through a different protocol, which by itself is firewall-friendly. Weblogic and other
similar servers provide easy tunneling options but still the mechanism is not a
standard approach. The second method is to wrap EJB with web services. This is also
made easy nowadays by application servers, it is just a matter of enabling options
during deployment time.

When we have an ESB, an option available to us is to leverage the protocol or
format conversion capability of the ESB to make EJB invocations firewall-friendly.
ServiceMix servicemix-http is exactly what we need here. By connecting a
servicemix-http channel in serial and in front of the servicemix-jsr181, we
can make the EJB component service available outside the firewall as a normal web
service! What more, we can even run our entire normal web services client toolkit
to retrieve WSDL, and then to generate client-side proxy classes so that it is easy to
invoke functionality. The targetService and the targetEndpoint attributes of
servicemix-http point back to the respective names of the servicemix-jsr181, so
that we connect the components together.

Chapter 8

[155]

Step Three—Deploy and Invoke EJB Binding
in ServiceMix
For this sample we will follow the lightweight deployment model.

ch08\BindEjb\02_BindInEsb contains all the necessary files for binding, building,
and deploying the artifacts into a ServiceMix container. To build the ESB binding
codebase and deploy the sample, change directory to ch08\BindEjb\02_BindInEsb,
which contains a top-level build.xml file. The notable section in the build.xml is
shown in the following code:

<target name="copy-components"
 depends="init"
 description="Build components">
 <copy todir="${servicemix.home}/lib/optional" overwrite="true">
 <fileset dir="${client.classes.dir}"
 includes="sample_statelessSession_client.jar" />
 </copy>
 <copy todir="${servicemix.home}/lib/optional" overwrite="true">
 <fileset dir="${wl.home}/server/lib" includes="weblogic.jar" />
 </copy>
</target>

Here, we first copy the EJB client jar from the Weblogic directory to ServiceMix's
optional library folder. Other than this, we don't have any explicit referral to EJB
classes in the ServiceMix binding above. What you're seeing is Spring's success in
abstracting away the client side of the clunky EJB contract. However, the home and
remote interfaces are still required—Spring is using them under the hood, just as
you would if you had to write the JNDI lookup, EJB home, and create calls yourself.
What Spring is doing behind the scenes is making a JNDI lookup for the home, then
calling the create() method on the home and enabling you to work with that. That
is why we require the EJB client jar in the classpath.

We have seen previously, how we configured jndiTemplate by explicitly referring
the weblogic.jndi.WLInitialContextFactory. This is included in weblogic.jar
and hence we include that jar in the ServiceMix's optional library folder too. In case
you are using a different EJB server and you use a different java.naming.factory.
initial class, then include the respective jars in ServiceMix's optional library
folder too. To build, execute ant as shown in the following code:

cd ch08\BindEjb\02_BindInEsb

ant

Binding EJB in a JBI Container

[156]

Now, bring up the ServiceMix container by executing the servicemix.xml file
contained in the same folder.
%SERVICEMIX_HOME%/bin/servicemix servicemix.xml

The Client.html file provided again in the same folder can be used to send
messages to test the deployed service.

Step Four—Access WSDL and Generate
Axis-based Stubs to Access EJB Outside
Firewall
As discussed above, we can now access the WSDL auto-generated by ServiceMix out
of the earlier EJB binding. The WSDL can be accessed by pointing your browser to
the following URL:
http://localhost:8192/Services/HelloWebService/?wsdl

or
http://localhost:8192/Services/HelloWebService/main.wsdl

The WSDL is reproduced in the following code:

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:ns1="http://io.java"
 xmlns:soap11="http://schemas.xmlsoap.org/soap/
 envelope/"
 xmlns:soap12="http://www.w3.org/2003/05/
 soap-envelope"
 xmlns:soapenc11="http://schemas.xmlsoap.org/soap/
 encoding/"
 xmlns:soapenc12="http://www.w3.org/2003/05/
 soap-encoding"
 xmlns:tns="http://binildas.com/esb/bindejb"
 xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/
 soap/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://binildas.com/esb/bindejb">
<wsdl:types>
 <xsd:schema attributeFormDefault="qualified"
 elementFormDefault="qualified"
 targetNamespace="http://io.java"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:complexType name="IOException"/>
 </xsd:schema>
 <xsd:schema attributeFormDefault="qualified"
 elementFormDefault="qualified"

Chapter 8

[157]

 targetNamespace="http://binildas.com/esb/bindejb"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:element name="hello">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element maxOccurs="1" minOccurs="1" name="in0"
 nillable="true" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="helloResponse">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element maxOccurs="1" minOccurs="1" name="out"
 nillable="true" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="IOException" type="ns1:IOException"/>
 </xsd:schema>
</wsdl:types>
<wsdl:message name="helloResponse">
 <wsdl:part element="tns:helloResponse" name="parameters">
 </wsdl:part>
</wsdl:message>
<wsdl:message name="IOException">
 <wsdl:part element="tns:IOException" name="IOException">
 </wsdl:part>
</wsdl:message>
<wsdl:message name="helloRequest">
 <wsdl:part element="tns:hello" name="parameters">
 </wsdl:part>
</wsdl:message>
<wsdl:portType name="jsrEjbEPPortType">
 <wsdl:operation name="hello">
 <wsdl:input message="tns:helloRequest" name="helloRequest">
 </wsdl:input>
 <wsdl:output message="tns:helloResponse" name="helloResponse">
 </wsdl:output>
 <wsdl:fault message="tns:IOException" name="IOException">
 </wsdl:fault>
 </wsdl:operation>
</wsdl:portType>
<wsdl:binding name="HelloServiceBIBinding"
 type="tns:jsrEjbEPPortType">
 <wsdlsoap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/
 http"/>
 <wsdl:operation name="hello">
 <wsdlsoap:operation soapAction=""/>

Binding EJB in a JBI Container

[158]

 <wsdl:input name="helloRequest">
 <wsdlsoap:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="helloResponse">
 <wsdlsoap:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="IOException">
 <wsdlsoap:fault name="IOException" use="literal"/>
 </wsdl:fault>
 </wsdl:operation>
</wsdl:binding>
<wsdl:service name="HelloServiceBIService">
 <wsdl:port binding="tns:HelloServiceBIBinding"
 name="HelloServiceBI">
 <wsdlsoap:address location="http://localhost:8192/Services/
 HelloWebService/"/>
 </wsdl:port>
</wsdl:service>
</wsdl:definitions>

We will now use Apache Axis tools to auto-generate client-side stubs and binding
classes using which we can write a simple Java client class, to access the service
through the HTTP channel. When we do this, the interesting point is that we are
accessing an EJB service behind the scenes, but using the SOAP format for request
and response, that too through a firewall-friendly HTTP channel. The Axis client
classes are placed in the directory ch08\BindEjb\03_AxisClient.

To do that, we have to use the wsdl2java ant task. Let us first declare the task definition
and execute that task to generate stub classes, as shown in the following code:

<taskdef name="wsdl2java"
 classname="org.apache.axis.tools.ant.wsdl.Wsdl2javaAntTask"
 loaderref="axis" >
 <classpath refid="classpath"/>
</taskdef>
<target name="wsdl2java">
 <java classname="org.apache.axis.wsdl.WSDL2Java"
 fork="true"
 failonerror="true">
 <arg value="-o"/>
 <arg value="${src}"/>
 <arg value="-x"/>
 <arg value="http://io.java"/>
 <arg value="HelloWebService.wsdl"/>
 <classpath>
 <path refid="classpath"/>
 <pathelement location="${build}"/>
 </classpath>
 </java>
</target>

Chapter 8

[159]

The task will extract the details from the WSDL and generate the following
client-side artifacts in the ch08\BindEjb\03_AxisClient\src folder:

com\binildas\esb\bindejb\HelloServiceBIBindingStub.java
com\binildas\esb\bindejb\HelloServiceBIService.java
com\binildas\esb\bindejb\HelloServiceBIServiceLocator.java
com\binildas\esb\bindejb\JsrEjbEPPortType.java

Remember that the above WSDL from where the Axis tool generated the client-side
artifacts is, in fact, the WSDL retrieved from the ServiceMix ESB. The Client java
class can be written against these generated files as follows:

public class Client
{
 private static String wsdlUrl = "http://localhost:8192/
 Services/HelloWebService/main.wsdl";
 private static String namespaceURI = "http://binildas.com/
 esb/bindejb";
 private static String localPart = "HelloServiceBIService";
 protected void executeClient(String[] args)throws Exception
 {
 HelloServiceBIService helloServiceBIService = null;
 JsrEjbEPPortType jsrEjbEPPortType = null;
 if(args.length == 3)
 {
 helloServiceBIService = new HelloServiceBIServiceLocator(
 args[0], new QName(args[1], args[2]));
 }
 else
 {
 helloServiceBIService = new HelloServiceBIServiceLocator(
 wsdlUrl, new QName(namespaceURI, localPart));
 }
 jsrEjbEPPortType = helloServiceBIService.getHelloServiceBI();
 log("Response From Server : " + jsrEjbEPPortType.hello(
 "Binil"));
 }
 public static void main(String[] args)throws Exception
 {
 Client client = new Client();
 client.executeClient(args);
 }
}

Binding EJB in a JBI Container

[160]

To build the entire Axis client codebase, assuming that both the EJB server and
the ServiceMix container is up and running, change directory to ch08\BindEjb\
03_AxisClient, which contains a top-level build.xml file. Execute ant as shown in
the following commands:
cd ch08\BindEjb\03_AxisClient

ant

This will generate the required Axis client-side stubs and compile the client classes.
Now to run the client, execute the following command:
ant run

Reconciling EJB Resources
This chapter demonstrated how to engineer with ServiceMix, hence we can consider
EJB component services equivalent to normal web services so the same rules can
be applied from a consumer perspective. This will have greater impact in today's
solution infrastructure. This is because in the last one decade or so, we saw the rise
of EJB component-based programming. Setting aside (if) any drawbacks, EJB gave
us a lot of support for cross cutting concerns like transaction management and
instance pooling. For the same reason, lots of solution artifacts are still available and
remaining hosted in the form of EJB services. Using an ESB, we are no longer forced
to throw away all those investments, instead leverage them in a services ecosystem
environment. I am sure I will have an easy time convincing my CTO that I don't need
to scrap all my EJB investments, instead I can reuse them in the best possible manner.
I hope you will also enjoy the same.

Summary
ESB as a service fabric supports integrating multiple services and component types.
Hence, from the consumer perspective, they see a pure services interface with all
SOA qualities. This chapter demonstrated how the same principles helped us to
expose an EJB service as a firewall-friendly web service. The notable thing here
is the ease with which an ESB framework does this—and that is where the right
tools will help to solve even non trivial problems easily. So, instead of holding the
ESB hammer and looking at every IT problem as a nail, use ESB and JBI to solve
appropriate integration problems following SOI guidelines alone. Most component
frameworks available today allow even POJO components to be exposed as services
so that they can be consumed remotely. This is a lightweight approach compared to
the traditional EJB programming paradigm.

In the next chapter, we will look into this concept to understand how we can expose
an annotated POJO as services in the ESB.

POJO Binding Using JSR181
First things first and simple things foremost! I should have introduced the POJO
binding as the first example due to the simplicity in the name "POJO". However,
there is another component associated with the POJO binding, which is the
servicemix-jsr181 component that we need to learn together. This is why we
delayed the POJO binding until now. We can now move on.

We will cover the following in this chapter:

Overview on POJO
JSR 181 and servicemix-jsr181 component
A POJO binding sample demonstrating POJO as services
A second sample to demonstrate accessing the JBI bus directly at
programming API-level

POJO
Christopher Richardson in his cover story "What Is POJO Programming" says:

Fortunately, there's now a much better way to build Enterprise Java applications:
Plain Old Java Objects (POJOs), which are classes that don't implement
infrastructure framework-specific interfaces, and non-invasive frameworks such as
Spring, Hibernate, JDO, and EJB 3, which provide services for POJO.

What are POJOs
POJOs depend on basic or core Java and don't implement any other API's. They
neither contain any framework specific callback methods, nor depend on any
external methods, which they need to call. Instead, any third-party framework can
make use of a POJO class and expose it or utilize it in their own way. For example,

•

•

•

•

POJO Binding Using JSR181

[162]

an O-R mapping framework can use a POJO model class and persist in a relational
database. Similarly, a service generation framework can expose all the public
methods in a POJO service class as services. A TO assembler can get and set values
from a POJO TO to create a coarser grained, POJO TO graph.

Comparing POJO with other Components
POJOs, being significantly lightweight, will have their own advantages and
disadvantages when compared to other counterpart components such as EJBs
and servlets.

The main advantage is that the POJOs can be deployed and run in the simplest of
the Java run times available, and nothing prevents you from deploying them into
a full-fledged container infrastructure. This will help you to leverage the best of
both the worlds—the lightweight deployment model and the full-fledged container
infrastructure functionalities.

At the same time, the downside of POJOs is that they are not remotable. Remoting is
the mechanism by which functionality can be accessed from a remote node, through
a network. EJB, servlet, and JSP. These components are inherently remotable. How
interested would a reader be if we could make a POJO remotable—without much
hassle? Hold on, we will do that in this chapter.

ServiceMix servicemix-jsr181
ServiceMix's servicemix-jsr181 component is built based on the
JSR 181 specification.

JSR 181
JSR 181 defines an annotated Java syntax for programming web services and is
built on the Java Language Metadata technology (JSR 175), to provide an easy way to
use syntax to describe web services at the source-code-level for the J2EE platform.
It aims to make it easy for a Java developer to develop the server applications that
conform both to basic SOAP and WSDL standards. The WSM for the Java platform
is built upon the JSR 175 and hence requires a JDK installation supporting
Java metadata.

servicemix-jsr181
servicemix-jsr181 component is a JBI standard SE. It can expose annotated POJO
as services. servicemix-jsr181 internally uses XFire to expose POJOs as services.
servicemix-jsr181 links the JBI channel to XFire transport using the following steps:

Chapter 9

[163]

servicemix-jsr181 first creates a DefaultXFire and registers the
JbiTransport to the transport manager of XFire.
Then it uses XFire's ObjectServiceFactory to create an XFire service.
servicemix-jsr181 then configures the service and registers it in the XFire
service registry.

The above steps link the JBI channel to XFire transport. However, all these are
the background plumbing abstracted out by the servicemix-jsr181, so that the
developer won't see all these complexities. We have already discussed the power of
XFire and worked out a few samples. Again we will leverage XFire, but now in the
form of a standard JBI component itself, for binding.

As per the ServiceMix documentation, servicemix-jsr181 supports the
following features:

no annotations
jsr181 annotations
commons-attributes annotations
aegis binding
jaxb2 binding
xmlbeans binding
wsdl auto generation
MTOM or attachments support

servicemix-jsr181 Deployment
XBean-based deployment can be used to deploy servicemix-jsr181, both in the
provider and consumer roles.

The first step is to declare the necessary jsr181 namespace elements, shown as follows:

<beans xmlns:jsr181="http://servicemix.apache.org/jsr181/1.0"
 xmlns:test="http://binildas.com/esb/jsrpojo">
</beans>

Whether it is a simple POJO binding or an EJB binding, we need to include all the
required interface and implementation classes to the respective classpaths. We can
do this by including the required class files or jar archives in the SU and reference
them using the following tags in the xbean.xml configuration file:

<classpath>
 <location>.</location>
</classpath>

•

•

•

•

•

•

•

•

•

•

•

POJO Binding Using JSR181

[164]

The path value specified for the location tag is relative to the unzipped SU. For
example, if JsrBind is the SU name and we have a class called test.EchoService,
then we need to package the class within the folder test, relative to the top-level of
JsrBind archive. Similarly, you can also add Java archives (.jar) containing class
files by explicitly specifying them as follows:

<classpath>
 <location>lib/test.jar</location>
</classpath>

servicemix-jsr181 Endpoint
servicemix-jsr181 endpoints can be configured in multiple formats using Spring
bean configurations. The multiple formats are listed in the following list:

1. <jsr181:endpoint annotations="none" service="test:helloService">
 <jsr181:pojo>
 <bean class="samples.HelloServicePojo">
 </bean>
 </jsr181:pojo>
 </jsr181:endpoint>

2. <bean id="helloPojo" class="samples.HelloServicePojo" />
 <jsr181:endpoint pojo="#helloPojo" />

3. <jsr181:endpoint pojoClass="samples.HelloServicePojo"
 annotations="none" />

POJO Binding Sample
From the entire discussion we have had in this chapter, let us build a POJO binding
sample. The codebase for the sample is located in the folder ch09\Jsr181BindPojo.

Sample Use Case
In this POJO binding sample use case, we will integrate POJO components with
ServiceMix JBI components so that they will take part in message exchanges with the
NMR. The POJO class used in the sample can be replaced with your code performing
transformation, depending upon your business scenario. In our sample here, we will
use a set of components integrated in the ESB as shown in the following figure:

Chapter 9

[165]

Client

NMR

Provider Consumer

ESBHelloServicePojo
(POJO)

6

2

5

1

helloService
(JSR181)

PojoBindService
(HTTP)

3
4

servicemix
Components

A simple POJO class alone is enough to demonstrate the binding sample. However,
we will also expose POJO as a normal web service, access WSDL (yes, really),
and run an Axis client against the WSDL to generate client stubs to access the
POJO service remotely. To facilitate all this, we will first integrate our POJO class
(HelloServicePojo) with a servicemix-jsr181 component. Now as we know,
HTTP is an easy and simple channel to access services. Hence, let us also integrate a
servicemix-http in the consumer role to the NMR so that our test clients can have
an easy channel to send messages. The components are integrated as shown in the
above figure. When the client sends a message, the message-flow across the NMR
through various JBI components are marked by numbers in sequence.

POJO Binding Using JSR181

[166]

POJO Code Listing
Let us first define a BI. Note that the BI is not mandatory for POJO binding, but here
we are using best (interface-based programming) practices. Thus, HelloServiceBI is
the BI.

The interface HelloServiceBI is shown in the following code:

public interface HelloServiceBI
{
 String hello(String phrase) throws java.io.IOException;
}

In Java RMI or EJB programming, the business methods are usually marked to
throw a java.rmi.RemoteException. We can generalize this exception scenario by
replacing the RemoteException with the java.io.IOException. We will follow this
convention by marking our business methods as throwing IOException. There is
absolutely nothing wrong if we don't mention the exception in the throws clause too,
for our samples here. Now, HelloServicePojo will implement the above interface.
Moreover as you can see, this class qualifies to be a hundred percent POJO class.

The HelloServicePojo class is shown as follows:

public class HelloServicePojo implements HelloServiceBI
{
 private static long times = 0;
 public String hello(String phrase)
 {
 System.out.println("HelloServiceBean.hello
 {" + (++times) + "} ");
 return "From HelloServiceBean : HELLO!! You just said :
 " + phrase;
 }
}

XBean-based POJO Binding
Using XBean, we will now configure the POJO to be deployed onto the standard
servicemix-jsr181 JBI component.

The xbean.xml is as shown in the following code:

<beans xmlns:jsr181="http://servicemix.apache.org/jsr181/1.0"
 xmlns:test="http://binildas.com/esb/jsrpojo">
 <classpath>
 <location>.</location>

Chapter 9

[167]

 </classpath>
 <jsr181:endpoint annotations="none"
 service="test:helloService"
 serviceInterface="samples.HelloServiceBI">
 <jsr181:pojo>
 <bean class="samples.HelloServicePojo">
 </bean>
 </jsr181:pojo>
 </jsr181:endpoint>
</beans>

The above configuration will expose HelloServicePojo as a service on the JBI
bus, so that from now on any JBI component can exchange messages with
this component.

To easily demonstrate accessing the service, we will also bind the HTTP channel
to the JBI bus. Then a simple HTML client can interact with the bus sending the
messages. The HTTP binding is shown in the following code:

<beans xmlns:http="http://servicemix.apache.org/http/1.0"
 xmlns:test="http://binildas.com/esb/jsrpojo">
 <classpath>
 <location>.</location>
 </classpath>
 <http:endpoint service="test:PojoBindService"
 endpoint="PojoBindService"
 role="consumer"
 targetService="test:helloService"
 locationURI="http://localhost:8081/services/
 PojoBindService"
 soap="true"
 defaultMep="http://www.w3.org/2004/08/wsdl/
 in-out"/>
</beans>

Deployment Configuration
For deployment, we will package the relevant artifacts for the JSR POJO binding
into a ZIP archive named jsrbind-su.zip. We need to deploy this archive onto the
servicemix-jsr181 component and that is done through the jbi.xml as shown in
the following code:

<?xml version="1.0" encoding="UTF-8"?>
<jbi xmlns="http://java.sun.com/xml/ns/jbi" version="1.0">
 <service-assembly>
 <identification>

POJO Binding Using JSR181

[168]

 <name>JsrBindAssembly</name>
 <description>JsrBind Service Assembly</description>
 </identification>
 <service-unit>
 <identification>
 <name>JsrBind</name>
 <description>JsrBind Service Unit</description>
 </identification>
 <target>
 <artifacts-zip>jsrbind-su.zip</artifacts-zip>
 <component-name>servicemix-jsr181</component-name>
 </target>
 </service-unit>
 </service-assembly>
</jbi>

As said earlier, we also have a HTTP binding to easily access the POJO service.
Hence, we have another jbi.xml, which will specify how to deploy the HTTP
artifacts onto the servicemix-http standard JBI component. This is shown in the
following code:

<?xml version="1.0" encoding="UTF-8"?>
<jbi xmlns="http://java.sun.com/xml/ns/jbi" version="1.0">
 <service-assembly>
 <identification>
 <name>HttpBindAssembly</name>
 <description>HttpBind Service Assembly</description>
 </identification>
 <service-unit>
 <identification>
 <name>JsrProxy</name>
 <description>HttpBind Service Unit</description>
 </identification>
 <target>
 <artifacts-zip>httpbind-su.zip</artifacts-zip>
 <component-name>servicemix-http</component-name>
 </target>
 </service-unit>
 </service-assembly>
</jbi>

Chapter 9

[169]

Deploying and Running the Sample
As the first step and if you haven't done it before, edit examples.PROPERTIES
provided along with the code download for this chapter and change the paths there
to match your development environment. The code download for this chapter also
includes a README.txt file, which gives detailed steps to build and run the samples.

To build the entire codebase and deploy the sample, change directory to ch09\
Jsr181BindPojo, which contains a top-level build.xml file. Execute ant as shown
in the following command:

cd ch09\Jsr181BindPojo

ant

Now, bring up the ServiceMix container by executing the servicemix.xml file
contained in the same folder.

%SERVICEMIX_HOME%/bin/servicemix servicemix.xml

The Client.html provided again in the same folder can be used to send messages to
test the deployed service.

Access WSDL and Generate Axis-based
Stubs to Access POJO Remotely
You can now access the WSDL auto-generated by ServiceMix out of the earlier POJO
binding. The WSDL can be accessed by pointing your browser to the following URL:

http://localhost:8081/services/PojoBindService/?wsdl

or

http://localhost:8081/services/PojoBindService/main.wsdl

Even though the WSDL here has nothing fancy about it, the important aspect is that
this WSDL is auto-generated by the JBI bus, out of the serviceInterface (the BI,
discussed earlier) configured in the jsr181:endpoint. Let us make sure that the
WSDL is very similar to any WSDL we generate out from a normal web service. Let
us list the WSDL here:

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:ns1="http://io.java"
 xmlns:soap11="http://schemas.xmlsoap.org/soap/
 envelope/"

POJO Binding Using JSR181

[170]

 xmlns:soap12="http://www.w3.org/2003/05/
 soap-envelope"
 xmlns:soapenc11="http://schemas.xmlsoap.org/soap/
 encoding/"
 xmlns:soapenc12="http://www.w3.org/2003/05/
 soap-encoding"
 xmlns:tns="http://binildas.com/esb/jsrpojo"
 xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/
 soap/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://binildas.com/esb/jsrpojo">
 <wsdl:types>
 <xsd:schema attributeFormDefault="qualified"
 elementFormDefault="qualified"
 targetNamespace="http://binildas.com/esb/jsrpojo"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:element name="hello">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element maxOccurs="1" minOccurs="1" name="in0"
 nillable="true" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="helloResponse">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element maxOccurs="1" minOccurs="1" name="out"
 nillable="true" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="IOException" type="ns1:IOException"/>
 </xsd:schema>
 <xsd:schema attributeFormDefault="qualified"
 elementFormDefault="qualified"
 targetNamespace="http://io.java"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:complexType name="IOException"/>
 </xsd:schema>
 </wsdl:types>
 <wsdl:message name="helloRequest">
 <wsdl:part element="tns:hello" name="parameters">
 </wsdl:part>
 </wsdl:message>
 <wsdl:message name="helloResponse">

Chapter 9

[171]

 <wsdl:part element="tns:helloResponse" name="parameters">
 </wsdl:part>
 </wsdl:message>
 <wsdl:message name="IOException">
 <wsdl:part element="tns:IOException" name="IOException">
 </wsdl:part>
 </wsdl:message>
 <wsdl:portType name="helloServicePortType">
 <wsdl:operation name="hello">
 <wsdl:input message="tns:helloRequest" name="helloRequest">
 </wsdl:input>
 <wsdl:output message="tns:helloResponse"
 name="helloResponse">
 </wsdl:output>
 <wsdl:fault message="tns:IOException" name="IOException">
 </wsdl:fault>
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:binding name="PojoBindServiceBinding"
 type="tns:helloServicePortType">
 <wsdlsoap:binding style="document"
 transport="http://schemas.xmlsoap.org/
 soap/http"/>
 <wsdl:operation name="hello">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input name="helloRequest">
 <wsdlsoap:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="helloResponse">
 <wsdlsoap:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="IOException">
 <wsdlsoap:fault name="IOException" use="literal"/>
 </wsdl:fault>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:service name="PojoBindService">
 <wsdl:port binding="tns:PojoBindServiceBinding"
 name="PojoBindService">
 <wsdlsoap:address location="http://localhost:8081/
 services/PojoBindService/"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

POJO Binding Using JSR181

[172]

We will now use the Apache Axis tools to auto-generate the client-side stubs and
the binding classes using which we can write a simple Java client class to access the
service through a HTTP channel. The Axis client classes are placed in the directory
ch09\Jsr181BindPojo\03_AxisClient.

To do that, we have to use the wsdl2java ant task. Let us declare the task definition
and execute that task to generate the stub classes.

<taskdef name="wsdl2java""
 classname="org.apache.axis.tools.ant.wsdl.Wsdl2javaAntTask"
 loaderref="axis" >
 <classpath refid="classpath"/>
</taskdef>
<target name="wsdl2java">
 <java classname="org.apache.axis.wsdl.WSDL2Java"
 fork="true" failonerror="true">
 <arg value="-o"/>
 <arg value="${src}"/>
 <arg value="-x"/>
 <arg value="http://io.java"/>
 <arg value="http://localhost:8081/services/PojoBindService/
 main.wsdl"/>
 <classpath>
 <path refid="classpath"/>
 <pathelement location="${build}"/>
 </classpath>
 </java>
</target>

The task will extract WSDL from the specified location and generate the following
client-side artifacts:

com\binildas\esb\jsrpojo\HelloServicePortType.java
com\binildas\esb\jsrpojo\PojoBindService.java
com\binildas\esb\jsrpojo\PojoBindServiceBindingStub.java
com\binildas\esb\jsrpojo\PojoBindServiceLocator.java

The Client Java class can be written against these generated files as follows:

public class Client
{
 private static String wsdlUrl = "http://localhost:8081/services/
 PojoBindService/main.wsdl";
 private static String namespaceURI = "http://binildas.com/esb/
 jsrpojo";
 private static String localPart = "PojoBindService";

Chapter 9

[173]

 protected void executeClient(String[] args)throws Exception
 {
 PojoBindService pojoBindService = null;
 HelloServicePortType helloServicePortType = null;
 if(args.length == 3)
 {
 pojoBindService = new PojoBindServiceLocator(args[0],
 new QName(args[1], args[2]));
 }
 else
 {
 pojoBindService = new PojoBindServiceLocator(wsdlUrl,
 new QName(namespaceURI, localPart));
 }
 helloServicePortType = pojoBindService.getPojoBindService();
 log("Response From Server : " + helloServicePortType.
 hello("Binil"));
 }
 public static void main(String[] args)throws Exception
 {
 Client client = new Client();
 client.executeClient(args);
 }
}

To build the entire Axis client codebase, assuming that ServiceMix is up and
running, change directory to ch09\Jsr181PojoAccessBus\04_AxisClient, which
contains a top-level build.xml file. Execute ant as follows:

cd ch09\ Jsr181PojoAccessBus

ant

This will generate the required Axis client-side stubs and compile the client classes.
Now to run the client, execute the following command:

ant run

Accessing JBI Bus Sample
In the previous sample, we have seen how to bind a POJO to JBI and access the
service again using the standard web service access mechanisms. Occasionally, your
components may also want to access the JBI bus directly at programming API-level,
and we can do that using the numerous APIs provided by ServiceMix and JBI.

POJO Binding Using JSR181

[174]

The preferred mechanism to access JBI from your component is to first get the
ComponentContext implementation and from there traverse the other JBI APIs.

<jsr181:endpoint annotations="none" service="some:Service"
 serviceInterface="some.Interface">
 <jsr181:pojo>
 <bean class="some.Pojo">
 <property name="context" ref="context" />
 </bean>
 </jsr181:pojo>
</jsr181:endpoint>

Correspondingly, we will now have our Pojo (Oh, yes; our POJOs are getting
bulkier here!) class into which the JBI container can inject a reference of the
ComponentContext. The pojo class is reproduced in the following code:

public class Pojo
{
private javax.jbi.component.ComponentContext context;
 public void setContext(javax.jbi.component.ComponentContext
 context)
 {
 this.context = context;
 }
}

ComponentContext is the JBI API using which we can access the underlying
DeliveryChannel. This is shown in the following code:

public interface ComponentContext
{
 public DeliveryChannel getDeliveryChannel()throws
 MessagingException;
}

DeliveryChannel can be used to send messages to the JBI bus. It is to be noted that
only sendSync() is allowed for active JBI exchanges (but you have to use send() for
DONE or ERROR status exchanges). This is shown in the following code:

public interface DeliveryChannel
{
 public MessageExchange accept()throws MessagingException;
 public void send(MessageExchange exchange)throws
 MessagingException;
 public boolean sendSync(MessageExchange exchange)
 throws MessagingException;
 public boolean sendSync(MessageExchange exchange, long timeout)
 throws MessagingException;
}

Chapter 9

[175]

Sample Use Case for Accessing JBI Bus
We will have another full sample for POJO binding to demonstrate how to access
the JBI bus from within a POJO. As described above, we can use ComponentContext
to access the DeliveryChannel to send messages to the JBI bus. Another way to
interact with the JBI bus is to use the client API. Let us define a sample use case to
access the JBI bus.

We will have the following components to implement the sample use case:

Client
HTTP binding
JSR POJO Bridge
JSR POJO Destination

These components are integrated as shown in the following figure. When the
client sends a message, the message flow through the NMR through various JBI
components is marked by numbers in sequence.

Client

NMR

Provider Consumer

ESB
BridgeHello
ServicePojo

(POJO)

10

2

9

1

bridgeService
(JSR181)

PojoBindService
(HTTP)

3

4

servicemix
Components

87

Provider

destination
HelloService
(JSR181)

5

destinationHello
ServicePojo

(POJO)

6

•

•

•

•

POJO Binding Using JSR181

[176]

The above components will exchange messages in the following sequence:

1. Client sends message to HTTP binding.
2. HTTP binding routes messages to destination through JBI bus.
3. JSR POJO Bridge being the destination for the above message, will accept the

message.
4. The JSR POJO Bridge will perform the following steps to send the next

message to the JBI bus.
a. It first creates a reference of ServiceMixClient.

 ServiceMixClient client = new ServiceMixClientFacade(
 this.context);

b. It then creates a QName to refer the destination service.
 QName service = new QName("http://binildas.com/esb/
 jsrpojo", "destinationHelloService");

c. Using the above ServiceMixClient and the service reference, it then
creates an EndpointResolver.

 EndpointResolver resolver =
 client.createResolverForService(service);

d. Now, we can send the message to the JBI bus using the
ServiceMixClient.

 client.send(resolver, null, null, messageToDespatch);

5. Now, destinationHelloService is the service pointing to JSR POJO
Destination. So, the message from the JBI bus will be accepted by
JSR POJO Destination.

Chapter 9

[177]

The following figure shows the above sequences of events:

:Http :Bridge :Qname :ServiceMixClientFacade :Destination

1. POST()

1.1. send()

3.1. Qname()

3.3. send()

4. accept()

3.2. createResolverForService()

3.2.1. send()

2. accept()

3. sendToJbi()

:Client :JBI

Sample Code Listing
There is not much difference in the code than what we have seen in the previous
sample, but the BridgeHelloServicePojo class will be listed as follows, to discuss a
few points:

public class BridgeHelloServicePojo implements BridgeHelloServiceBI
{
 private ComponentContext context;
 public void setContext(ComponentContext context)
 {
 this.context = context;
 }
 public String broker(String phrase)
 {
 try
 {
 send(phrase);
 }
 catch(JBIException jbiException)
 {

POJO Binding Using JSR181

[178]

 jbiException.printStackTrace();
 return jbiException.getMessage();
 }
 return "Success";
 }
 private void send(String message)throws javax.jbi.JBIException
 {
 System.out.println("BridgeHelloServicePojo.1. message : " +
 message);
 ServiceMixClient client = new ServiceMixClientFacade(
 this.context);
 QName service = new QName(namespaceURI, localPart);
 EndpointResolver resolver = client.createResolverForService(
 service);
 String messageToDespatch = getMessage(message);
 client.send(resolver, null, null, messageToDespatch);
 }
 private String getMessage(String message)
 {
 StringBuffer stringBuffer = new StringBuffer();
 stringBuffer.append("<hello>").append("<helloRequest>")
 .append("<message xmlns=\"http://soap\">" + message
 + "</message>")
 .append("</helloRequest>").append("</hello>");
 return stringBuffer.toString();
 }
}

Perhaps, you might get stuck at the message building section of the code above. This
will lead to the following XML code:

<hello>
 <helloRequest>
 <message xmlns=\"http://soap\">" + message + "</message>
 </helloRequest>
</hello>

This is slightly different from the usual SOAP enveloped messages, which we
sent to the JBI bus. The difference is that we don't have a SOAP envelope, but just
the message. This is because simple binding the POJO using servicemix-jsr181
requires the consumer to send just a normalized (XML) message, and not a
SOAP message.

Chapter 9

[179]

Build, Deploy, and Run the Sample
The codebase for this sample is located at ch09\Jsr181PojoAccessBus.
To build the entire codebase and deploy the sample, change directory to
ch09\Jsr181PojoAccessBus, which contains a top-level build.xml file. Execute ant
as follows:

cd ch09\ Jsr181PojoAccessBus

ant

Now, bring up the ServiceMix container by executing the servicemix.xml file
contained in the same folder, as shown in the following commands:

cd ch09\ Jsr181PojoAccessBus

%SERVICEMIX_HOME%/bin/servicemix servicemix.xml

The Client.html file provided again in the same folder can be used to send
messages to test the deployed service.

For completeness of the sample, we also have code to access the service using the
Axis client in the folder ch09\Jsr181PojoAccessBus\04_AxisClient.

To build the entire Axis client codebase, assuming that ServiceMix is up and
running, change directory to ch09\Jsr181PojoAccessBus\04_AxisClient, which
contains a top-level build.xml file. Execute ant as follows:

cd ch09\ Jsr181PojoAccessBus

ant

This will generate the required Axis client-side stubs and compile the client classes.
Now to run the client, execute the following command:

ant run

Summary
This chapter discussed POJO classes, and how we can hook them onto the JBI bus.
Hence, the services provided by these classes can even be accessed remotely, just like
you access a normal web service. JBI is all about SOI and thus provides a framework
for integrating components as services to the bus. This is what we have seen in this
chapter, when we bound a POJO to the NMR and accessed it through
normal web service channels.

In the next chapter, we will look into yet another common scenario found in
production and deployment of web services namely Web Services Gateways.

Bind Web Services in ESB—
Web Services Gateway

Since SOI is all about integrating multiple SOA-based systems, web services play a
critical role in the integration space. This chapter is all about the importance of web
services in integration. We will use the samples to illustrate how to bind web services
with the ServiceMix ESB to facilitate integration.

We will cover the following in this chapter:

Web services and binding
Introduction to HTTP
ServiceMix's servicemix-http component
The consumer and provider roles for the ServiceMix JBI components
servicemix-http in the consumer and provider roles
Web service binding (Gateway) sample

Web Services
Web services separate out the service contract from the service interface. This feature
is one of the many characteristic required for an SOA-based architecture. Thus, even
though it is not mandatory that we use the web service to implement an SOA-based
architecture, yet it is clearly a great enabler for SOA.

Web services are hardware, platform, and technology neutral The producers and/or
consumers can be swapped without notifying the other party, yet the information
can flow seamlessly. An ESB can play a vital role to provide this separation.

•

•

•

•

•

•

Bind Web Services in ESB—Web Services Gateway

[182]

Binding Web Services
A web service's contract is specified by its WSDL and it gives the endpoint details to
access the service. When we bind the web service again to an ESB, the result will be
a different endpoint, which we can advertise to the consumer. When we do so, it is
very critical that we don't lose any information from the original web service contract.

Why Another Indirection?
There can be multiple reasons for why we require another level of indirection
between the consumer and the provider of a web service, by binding at an ESB.

Systems exist today to support business operations as defined by the business
processes. If a system doesn't support a business process of an enterprise, that system
is of little use. Business processes are never static. If they remain static then there is
no growth or innovation, and it is doomed to fail. Hence, systems or services should
facilitate agile business processes. The good architecture and design practices will
help to build "services to last" but that doesn't mean our business processes should be
stable. Instead, business processes will evolve by leveraging the existing services. Thus,
we need a process workbench to assemble and orchestrate services with which we
can "Mix and Match" the services. ESB is one of the architectural topologies where we
can do the mix and match of services. To do this, we first bind the existing (and long
lasting) services to the ESB. Then leverage the ESB services, such as aggregation and
translation, to mix and match them and advertise new processes for businesses to use.

Moreover, there are cross service concerns such as versioning, management, and
monitoring, which we need to take care to implement the SOA at higher levels of
maturity. The ESB is again one way to do these aspects of service orientation.

HTTP
HTTP is the World Wide Web (www) protocol for information exchange. HTTP is
based on character-oriented streams and is firewall-friendly. Hence, we can also
exchange XML streams (which are XML encoded character streams) over HTTP. In a
web service we exchange XML in the SOAP (Simple Object Access Protocol) format
over HTTP. Hence, the HTTP headers exchanged will be slightly different than a
normal web page interaction. A sample web service request header is shown
as follows:

GET /AxisEndToEnd/services/HelloWebService?WSDL HTTP/1.1
User-Agent: Java/1.6.0-rc
Host: localhost:8080
Accept: text/html, image/gif, image/jpeg, *; q=.2, */*; q=.2
Connection: keep-alive

Chapter 10

[183]

POST /AxisEndToEnd/services/HelloWebService HTTP/1.0
Content-Type: text/xml; charset=utf-8
Accept: application/soap+xml, application/dime, multipart/related,
text/*
User-Agent: Axis/1.4
Host: localhost:8080
Cache-Control: no-cache
Pragma: no-cache
SOAPAction: ""
Content-Length: 507

The first line contains a method, a URI and an HTTP version, each separated by one
or more blank spaces. The succeeding lines contain more information regarding the
web service exchanged.

ESB-based integration heavily leverages the HTTP protocol due to its open nature,
maturity, and acceptability. We will now look at the support provided by the
ServiceMix in using HTTP.

ServiceMix's servicemix-http
Binding external web services at the ESB layer can be done in multiple ways but the
best way is to leverage JBI components such as the servicemix-http component
within ServiceMix. We will look in detail at how to bind the web services onto the
JBI bus.

servicemix-http in Detail
servicemix-http is used for HTTP or SOAP binding of services and components
into the ServiceMix NMR. For this ServiceMix uses an embedded HTTP server based
on the Jetty.

In Chapter 3, you have already seen the following two ServiceMix components:

org.apache.servicemix.components.http.HttpInvoker

org.apache.servicemix.components.http.HttpConnector

As of today, these components are deprecated and the functionality is replaced
by the servicemix-http standard JBI component. A few of the features of the
servicemix-http are as follows:

Supports SOAP 1.1 and 1.2
Supports MIME with attachments
Supports SSL

•

•

•

•

•

Bind Web Services in ESB—Web Services Gateway

[184]

Supports WS-Addressing and WS-Security
Supports WSDL-based and XBean-based deployments
Support for all MEPs as consumers or providers

Since servicemix-http can function both as a consumer and a provider, it can
effectively replace the previous HttpInvoker and HttpConnector component.

Consumer and Provider Roles
When we speak of the Consumer and Provider roles for the ServiceMix components,
the difference is very subtle at first sight, but very important from a programmer
perspective. The following figure shows the Consumer and Provider roles in the
ServiceMix ESB:

The above figure shows two instances of servicemix-http deployed in the
ServiceMix ESB, one in a provider role and the other in the consumer role. As it is
evident, these roles are with respect to the NMR of the ESB. In other words, a

•

•

•

Chapter 10

[185]

consumer role implies that the component is a consumer to the NMR whereas a
provider role implies the NMR is the consumer to the component. Based on these
roles, the NMR will take responsibility of any format or protocol conversions for the
interacting components.

Let us also introduce two more parties here to make the role of a consumer and a
provider clear—a client and a service. In a traditional programming paradigm, the
client interacts directly with the server (or service) to avail the functionality. In the
ESB model, both the client and the service interact with each other only through the
ESB. Hence, the client and the service need peers with their respective roles assigned,
which in turn will interact with each other. Thus, the ESB consumer and provider
roles can be regarded as the peer roles for the client and the service respectively.

Any client request will be delegated to the consumer peer who in turn interacts with
the NMR. This is because the client is unaware of the ESB and the NMR protocol or
format. However, the servicemix-http consumer knows how to interact with the
NMR. Hence any request from the client will be translated by the servicemix-http
consumer and delivered to the NMR. On the service side also, the NMR needs to
invoke the service. But the server service is neutral of any specific vendor's NMR and
doesn't understand the NMR language as such. A peer provider role will help here.
The provider receives the request from the NMR, translates it into the actual format
or protocol of the server service and invokes the service. Any response will also
follow the reverse sequence.

servicemix-http XBean Configuration
The servicemix-http components supports the XBean-based deployment. Since the
servicemix-http component can be configured in both the consumer and provider
roles, we have two sets of configuration parameters for the component. Let us look
into the main configuration parameters:

servicemix-http as consumer: A sample servicemix-http consumer
component configuration is shown as follows:

 <http:endpoint service="test:MyConsumerService"
 endpoint="HelloWebService"
 role="consumer"
 targetService="test:IHelloWebService"
 locationURI="http://localhost:8081/services/
 HelloWebService"
 soap="true"
 defaultMep="http://www.w3.org/2004/08/wsdl/in-out"
 wsdlResource="http://localhost:8080/AxisEndToEnd/
 services/HelloWebService?WSDL" />

•

Bind Web Services in ESB—Web Services Gateway

[186]

The following table gives the explanation for the main configuration
parameters:

Attribute Name Type Description Mandatory or Not
service QName Service name of the proxy

endpoint
Mandatory

endpoint String Endpoint name of the proxy
endpoint

Mandatory

interfaceName QName Interface name of the proxy
endpoint

Not Mandatory

targetService QName Service name of the target
endpoint

Not Mandatory. Default
is the value of the service
attribute

targetEndpoint String Endpoint name of the target
endpoint

Not Mandatory. Default is
the value of the endpoint
attribute

role String Whether a consumer or a
provider

Mandatory. Value should
be consumer

locationURI URI Http URL where this proxy
endpoint will be exposed
so that the ESB clients can
access the proxy service.

Mandatory

defaultMEP URI The MEP URI by which
clients interact with the
consumer component

Not Mandatory

soap boolean If it is true, the component
will parse the SOAP
envelope and pass the
contents to the NMR

Not Mandatory. Default
value is false.

wsdlResource Spring
Resource

If it is set, the WSDL will
be retrieved from this
configured Spring resource.

Not Mandatory

Thus, the locationURI attribute in the servicemix-http consumer refers to
the Http URL where this proxy endpoint is exposed, so that the ESB clients
can access the proxy service. Later we will look at how to generate static cli-
ent stubs out of this proxy URI.
servicemix-http as provider: While configuring the provider, there are a few
aspects to be taken care of with respect to the WSDL. If we have the sample
WSDL as shown as follows:

 <?xml version="1.0" encoding="UTF-8"?>
 <wsdl:definitions targetNamespace="http://AxisEndToEnd.axis.
 apache.binildas.com"

•

Chapter 10

[187]

 xmlns:impl="http://AxisEndToEnd.axis.apache.
 binildas.com">
 <!-- other descriptions -->
 <wsdl:service name="IHelloWebService">
 <wsdl:port binding="impl:HelloWebServiceSoapBinding"
 name="HelloWebService">
 <wsdlsoap:address location="http://localhost:8080/
 AxisEndToEnd/services/HelloWebService"/>
 </wsdl:port>
 </wsdl:service>
 </wsdl:definitions>

Now, while configuring the provider component you need to ensure that the
service (IHelloWebService) and the endpoint (HelloWebService) match
the service name and port elements of the WSDL that you use to correctly
return the WSDL for the endpoint. Moreover, the service name will use the
targetNamespace for the WSDL (http://AxisEndToEnd.axis.apache.
binildas.com).
A sample servicemix-http provider component configuration is shown
as follows:

 <http:endpoint service="test:IHelloWebService"
 endpoint="HelloWebService"
 role="provider"
 locationURI="http://localhost:8080/AxisEndToEnd/
 services/HelloWebService"
 soap="true"
 soapAction=""
 wsdlResource="http://localhost:8080/AxisEndToEnd/
 services/HelloWebService?WSDL" />

The following table the gives the explanation for the main
configuration parameters:

Attribute Name Type Description Mandatory or Not
service QName Service name of the exposed

endpoint
Mandatory

endpoint String Endpoint name of the exposed
endpoint

Mandatory

interfaceName QName Interface name of the exposed
endpoint

Not Mandatory

role String Whether a consumer or a provider Mandatory. Value
should be provider

locationURI URI Http URL of the target service. Mandatory

Bind Web Services in ESB—Web Services Gateway

[188]

Attribute Name Type Description Mandatory or Not
soap boolean If it is true, the component will

parse the SOAP envelope and pass
the contents to the NMR

Not Mandatory.
Default value is
false.

soapAction String The SOAPAction header to be send
over HTTP when invoking the
web service

Not Mandatory.
Default value is "".

wsdlResource Spring
Resource

If it is set, the WSDL will be
retrieved from this configured
Spring resource.

Not Mandatory

servicemix-http Lightweight Configuration
In addition to the XBean-based configuration, servicemix-http can also be
deployed based on the lightweight mode to use in an embedded ServiceMix. The
configuration would be as follows:

<sm:activationSpec>
 <sm:component>
 <http:component>
 <http:endpoints>
 <http:endpoint service="test:IHelloWebService"
 endpoint="HelloWebService"
 role="provider"
 locationURI="http://localhost:8080/
 AxisEndToEnd/services/HelloWebService"
 soap="true"
 soapAction=""
 wsdlResource="http://localhost:8080/
 AxisEndToEnd/services/
 HelloWebService?WSDL" />
 <http:endpoint service="test:MyConsumerService"
 endpoint="HelloWebService"
 role="consumer"
 targetService="test:IHelloWebService"
 locationURI="http://localhost:8081/
 services/HelloWebService"
 soap="true"
 defaultMep="http://www.w3.org/2004/08/
 wsdl/in-out"
 wsdlResource="http://localhost:8080/
 AxisEndToEnd/services/
 HelloWebService?WSDL" />
 </http:endpoints>
 </http:component>
 </sm:component>
</sm:activationSpec>

Chapter 10

[189]

Web Service Binding Sample
We will now look at a complete sample of how to bind a web service to the
ServiceMix. While doing so, we will also see how to use the Apache Axis client-side
tools to generate stubs based on the binding at ServiceMix. Normally we point to
the actual WSDL URL to generate client stubs, but in this example we will point the
tools to the ServiceMix binding. Then the ServiceMix binding will act completely as
the web service gateway visible to the external clients, thus shielding the actual web
service in the background.

Sample Use Case
By using a web services gateway, you can use the intermediation to build and deploy
the web services routing application. But keep in mind that the routing is just one of
the various technical functionalities that you can implement at the gateway. For our
sample use case, we have an external web service, deployed and hosted in a node
remote to the ESB. In the ESB, we will set up a Web Services Gateway, which can
proxy the remote web service. The entire setup is shown in the following figure:

Along with the previous discussion, we need the servicemix-http in the consumer
and provider roles. MyConsumerService is a servicemix-http component in the
consumer role and IHelloWebService is a servicemix-http component in the
provider role. Both of them are shown in the following figure:

Bind Web Services in ESB—Web Services Gateway

[190]

Let us now take a closer look at the gateway configured in the ESB. Here, we
configure servicemix-http in both the consumer and provider roles and hook it
to the NMR. Any client requests are intercepted by the consumer and the consumer
then sends the request on behalf of the client to the NMR. From there the request will
be routed to the destination web service through the provider. The message flow is
marked in sequence in the following figure:

Deploy the Web Service
As a first step, if you haven't done it before, edit examples.PROPERTIES (provided
along with the code download for this chapter), and change the paths there to match
your development environment. The code download for this chapter also includes a
README.txt file, which gives detailed steps to build and run the samples.

We have a simple web service in the codebase present in the folder
ch10\ServiceMixHttpBinding\01_ws. To deploy the web service, first change
directory to the ch10\ServiceMixHttpBinding folder and execute the ant
command as follows:

cd ch10\ServiceMixHttpBinding

ant

Chapter 10

[191]

In fact, the build.xml file will call the build in the subprojects to build the web
service as well as the ServiceMix subproject.

The web service is built completely and the war file can be found in the folder
ch10\ServiceMixHttpBinding\01_ws\dist\AxisEndToEnd.war. To deploy the
web service, drop this war file into your favorite web server's webapps folder and
restart the web server, if necessary.

Now to make sure that your web service deployment works fine, we have provided
a web service test client. To invoke the test client, execute the following commands:

cd ch10\ServiceMixHttpBinding\01_ws

ant run

We can also check the web service deployment by accessing the WSDL from the URL:

http://localhost:8080/AxisEndToEnd/services/HelloWebService?WSDL

Let us list out the WSDL here, since we want to compare it with the WSDL accessed
from the ServiceMix binding later to cross check the similarities. This is provided in
ch10\ServiceMixHttpBinding\HelloWebService-axis.wsdl

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions targetNamespace="http://AxisEndToEnd.axis.
 apache.binildas.com"
 xmlns:apachesoap="http://xml.apache.org/xml-soap"
 xmlns:impl="http://AxisEndToEnd.axis.apache.
 binildas.com"
 xmlns:intf="http://AxisEndToEnd.axis.apache.
 binildas.com"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/
 soap/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <wsdl:types>
 <schema elementFormDefault="qualified"
 targetNamespace="http://AxisEndToEnd.axis.apache.
 binildas.com"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <element name="hello">
 <complexType>
 <sequence>
 <element name="in0" type="xsd:string"/>
 </sequence>
 </complexType>
 </element>
 <element name="helloResponse">

Bind Web Services in ESB—Web Services Gateway

[192]

 <complexType>
 <sequence>
 <element name="helloReturn" type="xsd:string"/>
 </sequence>
 </complexType>
 </element>
 </schema>
 </wsdl:types>
 <wsdl:message name="helloRequest">
 <wsdl:part element="impl:hello" name="parameters"/>
 </wsdl:message>
 <wsdl:message name="helloResponse">
 <wsdl:part element="impl:helloResponse" name="parameters"/>
 </wsdl:message>
 <wsdl:portType name="IHelloWeb">
 <wsdl:operation name="hello">
 <wsdl:input message="impl:helloRequest"
 name="helloRequest"/>
 <wsdl:output message="impl:helloResponse"
 name="helloResponse"/>
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:binding name="HelloWebServiceSoapBinding"
 type="impl:IHelloWeb">
 <wsdlsoap:binding style="document" transport="http://schemas.
 xmlsoap.org/soap/http"/>
 <wsdl:operation name="hello">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input name="helloRequest">
 <wsdlsoap:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="helloResponse">
 <wsdlsoap:body use="literal"/>
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:service name="IHelloWebService">
 <wsdl:port binding="impl:HelloWebServiceSoapBinding"
 name="HelloWebService">
 <wsdlsoap:address location="http://localhost:8080/
 AxisEndToEnd/services/HelloWebService"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

Chapter 10

[193]

XBean-based servicemix-http Binding
For XBean-based deployment of servicemix-http, our xbean.xml matches
the following:

<beans xmlns:http="http://servicemix.apache.org/http/1.0"
 xmlns:test="http://AxisEndToEnd.axis.apache.binildas.com">
 <classpath>
 <location>.</location>
 </classpath>
 <http:endpoint service="test:IHelloWebService"
 endpoint="HelloWebService"
 role="provider"
 locationURI="http://localhost:8080/AxisEndToEnd/
 services/HelloWebService"
 soap="true"
 soapAction=""
 wsdlResource="http://localhost:8080/AxisEndToEnd/
 services/HelloWebService?WSDL" />
 <http:endpoint service="test:MyConsumerService"
 endpoint="HelloWebService"
 role="consumer"
 targetService="test:IHelloWebService"
 locationURI="http://localhost:8081/services/
 HelloWebService"
 soap="true"
 defaultMep="http://www.w3.org/2004/08/wsdl/in-out"
 wsdlResource="http://localhost:8080/AxisEndToEnd/
 services/HelloWebService?WSDL" />
</beans>

The previous execution of ant has already built and packaged the service assembly
for the sample.

Deploying and Running the Sample
To deploy the ServiceMix sample, we have the following servicemix.xml:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns:sm="http://servicemix.apache.org/config/1.0"
 xmlns:binil="http://www.binildas.com/voipservice">
 <bean id="propertyConfigurer"
 class="org.springframework.beans.factory.config.
 PropertyPlaceholderConfigurer">
 <property name="location"
 value="classpath:servicemix.properties" />
 </bean>
 <import resource="classpath:jmx.xml" />
 <import resource="classpath:jndi.xml" />

Bind Web Services in ESB—Web Services Gateway

[194]

 <import resource="classpath:security.xml" />
 <import resource="classpath:tx.xml" />
 <sm:container id="jbi"
 MBeanServer="#jmxServer"
 useMBeanServer="true"
 createMBeanServer="true"
 rootDir="./wdir"
 installationDirPath="./install"
 deploymentDirPath="./deploy"
 flowName="seda">
 <sm:activationSpecs>
 </sm:activationSpecs>
 </sm:container>
</beans>

To bring up the ServiceMix, change directory to ch10\ServiceMixHttpBinding and
execute the ServiceMix script as follows.
cd ch10\ServiceMixHttpBinding

%SERVICEMIX_HOME%\bin\servicemix servicemix.xml

We can now test our ServiceMix deployment by using the following test client:
ch10\ServiceMixHttpBinding\Client.html

Access WSDL and Generate Axis Stubs to
Access the Web Service Remotely
Now for the really cool stuff. As we discussed earlier, we have set up the ServiceMix
as a separate web service gateway in front of the actual web service deployment.
Now we have to check whether we can access the WSDL from the ServiceMix. For
this, we can point our browser using the standard WSDL query string, like:
http://localhost:8081/services/HelloWebService/?wsdl

or
http://localhost:8081/services/HelloWebService/main.wsdl

Note that, the above URL points to the locationURI attribute configured for
the consumer component, which is http://localhost:8081/services/
HelloWebService. The WSDL placed in location ch10\ServiceMixHttpBinding\
HelloWebService-esb.wsdl, matches the following code:

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:apachesoap="http://xml.apache.org/xml-soap"
 xmlns:impl="http://AxisEndToEnd.axis.apache.binildas.com"
 xmlns:intf="http://AxisEndToEnd.axis.apache.binildas.com"

Chapter 10

[195]

 xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://AxisEndToEnd.axis.apache.binildas.com">
 <wsdl:types>
 <schema xmlns="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"
 targetNamespace="http://AxisEndToEnd.axis.
 apache.binildas.com">
 <element name="hello">
 <complexType>
 <sequence>
 <element name="in0" type="xsd:string"/>
 </sequence>
 </complexType>
 </element>
 <element name="helloResponse">
 <complexType>
 <sequence>
 <element name="helloReturn" type="xsd:string"/>
 </sequence>
 </complexType>
 </element>
 </schema>
 </wsdl:types>
 <wsdl:message name="helloRequest">
 <wsdl:part element="impl:hello" name="parameters">
 </wsdl:part>
 </wsdl:message>
 <wsdl:message name="helloResponse">
 <wsdl:part element="impl:helloResponse" name="parameters">
 </wsdl:part>
 </wsdl:message>
 <wsdl:portType name="IHelloWeb">
 <wsdl:operation name="hello">
 <wsdl:input message="impl:helloRequest" name="helloRequest">
 </wsdl:input>
 <wsdl:output message="impl:helloResponse"
 name="helloResponse">
 </wsdl:output>
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:binding name="HelloWebServiceBinding" type="impl:IHelloWeb">
 <wsdlsoap:binding style="document"
 transport="http://schemas.xmlsoap.org/
 soap/http"/>
 <wsdl:operation name="hello">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input name="helloRequest">
 <wsdlsoap:body use="literal"/>
 </wsdl:input>

Bind Web Services in ESB—Web Services Gateway

[196]

 <wsdl:output name="helloResponse">
 <wsdlsoap:body use="literal"/>
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:service name="MyConsumerService">
 <wsdl:port binding="impl:HelloWebServiceBinding"
 name="HelloWebService">
 <wsdlsoap:address location="http://localhost:8081/
 services/HelloWebService/"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

If we compare the two WSDL, the major difference is in the service description
section. Here, ServiceMix forms the service and port name taking values from
service and endpoint attributes of the consumer service—MyConsumerService and
HelloWebService respectively.

If we are able to retrieve the WSDL, the next step is to use the Apache Axis tools to
auto-generate the client-side stubs and binding classes, using which we can write
simple Java client code to access the service through HTTP channel. The Axis client
classes are placed in the directory ch10\ServiceMixHttpBinding\03_AxisClient.

To do that, we have to use the wsdl2java ant task. Let us first declare the task
definition and execute that task to generate the stub classes.

<taskdef name="wsdl2java"
 classname="org.apache.axis.tools.ant.wsdl.Wsdl2javaAntTask"
 loaderref="axis" >
 <classpath refid="classpath"/>
</taskdef>
<target name="wsdl2java">
 <java classname="org.apache.axis.wsdl.WSDL2Java"
 fork="true"
 failonerror="true">
 <arg value="-o"/>
 <arg value="${src}"/>
 <arg value="-x"/>
 <arg value="http://io.java"/>
 <arg value="http://localhost:8081/services/HelloWebService/
 main.wsdl"/>
 <classpath>
 <path refid="classpath"/>
 <pathelement location="${build}"/>
 </classpath>
 </java>
</target>

Chapter 10

[197]

The task will extract the WSDL from the specified location and generate the
following client-side artifacts:

com\binildas\apache\axis\AxisEndToEnd\HelloWebServiceBindingStub.
java
com\binildas\apache\axis\AxisEndToEnd\IHelloWeb.java
com\binildas\apache\axis\AxisEndToEnd\MyConsumerService.java
com\binildas\apache\axis\AxisEndToEnd\MyConsumerServiceLocator.
java

The Client Java class can be written against these generated files as follows:

public class Client
{
 private static String wsdlUrl = "http://localhost:8081/services/
 HelloWebService/main.wsdl";
 private static String namespaceURI = "http://AxisEndToEnd.
 axis.apache.binildas.com";
 private static String localPart = "MyConsumerService";
 protected void executeClient(String[] args)throws Exception
 {
 MyConsumerService myConsumerService = null;
 IHelloWeb iHelloWeb = null;
 if(args.length == 3)
 {
 myConsumerService = new MyConsumerServiceLocator(args[0],
 new QName(args[1], args[2]));
 }
 else
 {
 myConsumerService = new MyConsumerServiceLocator(wsdlUrl,
 new QName(namespaceURI, localPart));
 }
 iHelloWeb = myConsumerService.getHelloWebService();
 }
 public static void main(String[] args)throws Exception
 {
 Client client = new Client();
 client.executeClient(args);
 }
}

Bind Web Services in ESB—Web Services Gateway

[198]

To build the entire Axis client codebase, assuming that the ServiceMix is up and
running, change directory to ch10\ServiceMixHttpBinding\03_AxisClient,
which contains a build.xml file. Execute ant as shown as follows:

cd ch10\ServiceMixHttpBinding\03_AxisClient

ant

This will generate the required Axis client-side stubs and compile the client classes.
Now to run the client, execute the following command:

ant run

Summary
We started this chapter by introducing the servicemix-http JBI component. Then
we looked at the samples of binding web services to ESB using the servicemix-http
binding component. By doing so, we have, in fact, implemented a complete functional
web services gateway at the ESB.

A lot of times, we utilize this pattern to expose useful web services hosted deep
inside your corporate networks protected by multiple levels of firewall. When we
do so, the web services gateway is the access point for any external client. It should
mock the actual web service not only in providing the functionality but also in
exposing the web services contract (WSDL). Now, do you want to improve the QOS
attributes of your web service?

The next chapter will take you through a similar exercise by demonstrating how to
access your HTTP-based web services through an MOM channel like JMS.

Access Web Services Using
the JMS Channel

Web services are great enablers for the SOA architectures which are neutral of the
underlying platform and technology. It can also penetrate through the corporate
firewalls, thus acting as a remote control switch. However, at times, we may want to
guarantee a few QOS aspects of this service invocation. The reliability of the HTTP
transport channel may not be sufficient for scenarios such as this. In this chapter, we
will look at how Java JMS, which is a platform-dependent messaging technology, can
increase the QOS features of the web services.

So we will look at the following in this chapter:

What is JMS?
Reliability and web services.
SOAP versus JMS.
JMS supporting components in ServiceMix.
A protocol bridge to convert HTTP to JMS.
A sample demonstrating the binding of web services to a JMS channel.

JMS
JMS defines the standard for a reliable enterprise messaging, also referred to as
MOM. Enterprise messaging provides a reliable and flexible mechanism for the
loosely coupled (asynchronous) exchange of critical business data and events
throughout an enterprise. The JMS API adds to this a common API and a provider
framework that enables the development of portable, message-based applications in
the Java programming language.

•

•

•

•

•

•

Access Web Services Using the JMS Channel

[200]

The JMS API enhances J2EE in the following ways:

Message-driven beans based on the JMS enable the asynchronous
consumption of the JMS messages.
JMS message exchange can participate in the Java Transaction
API (JTA) transactions.
The JCA interfaces allow JMS implementations from different vendors to be
externally plugged into a J2EE environment.

Since MOM defines the backbone for many ESB implementations, JMS plays a critical
role in Java-based ESB.

Web Service and JMS
Reliability is of the prime concern in critical applications, especially in interactions
involving financial transactions. Consider the scenario of fund transfer where we
debit one account and credit another account with the same amount of money.
We cannot allow either of these transactions to fail or to debit twice in an account
as a result of message duplications. Unreliable transport channels like HTTP and
non-reliability in message delivery will impede the correctness of the mission
critical transactions. This is where the alternatives to SOAP over HTTP, which is
being explored.

Specifications for Web Service Reliable
Messaging
The web services world defines two specifications to introduce reliability, namely:

WS-Reliability.
WS-Reliable Messaging.

Both these specifications use SOAP headers to exchange message grouping and
correlation information between a consumer and a provider so that the reliability
layer can guarantee the following quality concerns:

Guaranteed delivery.
Once and only once delivery.
Message ordering.

Web Services Reliability (WS-Reliability) is a SOAP-based protocol with the purpose
of exchanging SOAP messages with guaranteed delivery, no duplicates, and
guaranteed message ordering. WS-Reliability is defined as SOAP header extensions

•

•

•

•
•

•

•

•

Chapter 11

[201]

and is, in fact, independent of the underlying protocol used. At the same time, this
specification contains a binding to HTTP. The reliable message protocol is abstracted
from the communication between a sending Reliable Messaging Processor (RMP)
and a receiving RMP. Hence the SOAP intermediaries do not play any active role in
the reliability mechanisms. WS-Reliability was published in January 2003 by Hitachi,
Oracle, Sonic, and Sun Microsystems, and then submitted to the OASIS Web Services
Reliable Messaging Technical Committee.

The Web Services Reliable Messaging (WSRM) protocol is based on the WS-Reliable
messaging specification and was published in March 2003 by software majors
including BEA, IBM, Microsoft, and Tibco. WSRM also works similar to web services
reliability. Instead of a group, the WSRM has the notion of a sequence to ensure
message reliability concerns.

Depending upon the criticality of the business applications, varying orders of
reliability might be required and WSRM-based products will support this. However,
both the WSRM specifications are silent on many of the aspects. A few of these are
listed as follows:

Undeliverable messages—No definition of dead letter queue.
Message priority.
Message persistence.

The above aspects are out of the scope of the WSRM specifications, even though
the implementations of reliable messaging needs to address all or any of them
depending upon the order of reliability required. Traditional JMS-based MOM
provides ways to address the above concerns, which we can leverage even in normal
web services. It is in this context that we need to look into combining the MOM
infrastructure with SOAP (Web Services), to get the best of both the worlds.

SOAP over HTTP versus SOAP over JMS
SOAP is transport independent and can be bound to any transport. The usual
transport binding for SOAP is HTTP and SOAP over HTTP is what we usually look
at as interoperable. HTTP belongs to the application layer of both the Open System
Interface (OSI) model (layer 7) and the Internet Protocol (IP) suite (layer 4 or 5).

The following WSDL snippet shows what for a HTTP bound SOAP message
looks like:

<wsdl:definitions>
 <wsdl:binding name="HelloWebServiceSoapBinding"
 type="impl:IHelloWeb">

•

•

•

Access Web Services Using the JMS Channel

[202]

 <wsdlsoap:binding style="document"
 transport="http://schemas.xmlsoap.org
 /soap/http"/>
 </wsdl:binding>
 <wsdl:service name="IHelloWebService">
 <wsdl:port binding="impl:HelloWebServiceSoapBinding"
 name="HelloWebService">
 <wsdlsoap:address location="http://localhost:8080/
 AxisEndToEnd/services/HelloWebService"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

Due to the many QOS features of JMS, SOAP over JMS offers more reliable and
scalable messaging support than SOAP over HTTP. By building on top of the JMS,
SOAP over JMS supports two messaging styles— one-way request style and two-
way request and response style. One-way request messaging allows a web service
client to unblock itself when the request message reaches a JMS queue or topic. Two-
way request and response messaging blocks a web service client until the request
reaches the server and a response message is received back at the client-side. A
sample WSDL snippet is shown is shown as follows:

<wsdl:definitions>
 <wsdl:binding name="HelloWebServiceSoapBinding"
 type="impl:IHelloWeb">
 <wsdlsoap:binding style="document"
 transport="http://schemas.xmlsoap.org/
 soap/jms"/>
 </wsdl:binding>
 <wsdl:service name="IHelloWebService">
 <wsdl:port binding="impl:HelloWebServiceSoapBinding"
 name="HelloWebService">
 <wsdlsoap:address location="jms:/queue?
 destination==jms/queue&
 connectionFactory=weblogic.jndi.
 WLInitialContextFactory"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

But the downside is that SOAP over JMS is not yet standardized and hence may not be
interoperable across platforms. This is because JMS is not an "over-the-wire" protocol.
Instead, JMS is a Java API which requires a client to use a JMS provider library (a jar
file) provided by the vendor of the JMS service provider. This is analogous to requiring
a JDBC driver similar to classes12.jar from Oracle for connecting to an Oracle
server from a java application. The actual "over-the-wire" protocol to be used under

Chapter 11

[203]

the covers within the JMS provider library is not defined and is left open for vendors to
have their own implementations. The interoperability is not easy even if we consider
the java world alone. That is, if we have an IBM Websphere JMS provider and a client
program from within the BEA Weblogic application server need to access the JMS
server. Even though both the platforms are java-based, the integration might not be
straightforward due to the JMS implementation clashes. Moreover, JMS being an API
doesn't ask vendors to implement any additional services and doesn't standardize
the data structure exchanged. However, JMS still is a viable mechanism to MOM that
enables web services.

JMS in ServiceMix
ServiceMix provides us with the servicemix-jms component which makes it easy
to bind the endpoints to the JMS channel, both in the consumer and provider roles.
Hence, before we look into the details on how to bind the web services to the JMS
transport, we will look at configuring the servicemix-jms component.

Servicemix-jms
The servicemix-jms components allow you to send and receive JMS messages. The
servicemix-jms components assume that the normalized message they are given
is ready for marshalling into or out of JMS. Hence, they don't, by default, try to
implement a SOAP stack or perform any complex message transformation other than
to map normalized messages to JMS or vice versa. However, it is possible to specify
the SOAP enveloped payload as messages so that servicemix-jms can perform
wrapping and unwrapping of payload from within the SOAP envelope.

A few of the features of servicemix-jms are as follows:

Standard JBI-compliant binding component.
Supports lightweight and XBean-based deployments.
Supports SOAP 1.1 and 1.2 support.
Supports MIME with attachments.
Supports WS-Addressing.
Support for all MEPs in the consumer or the provider role.

•

•

•

•

•

•

Access Web Services Using the JMS Channel

[204]

Consumer and Provider Roles
servicemix-jms can be configured both as a consumer and a provider of services.
Similar to servicemix-http, these roles are with respect to the NMR of the ESB.
In other words, a consumer role implies that the component is a consumer to
the NMR whereas a provider role implies that the NMR is the consumer to the
component. Based on these roles, the NMR will take responsibility of any format or
protocol conversions for the interacting components. You can refer to the Consumer
and Provider Roles section in Chapter 10 to understand more on the contract and
responsibility of these roles.

servicemix-jms XBean Configuration
The servicemix-jms component supports the XBean-based deployment. Since the
servicemix-jms component can be configured in both the consumer and provider
roles, we have two sets of configuration parameters for the component. Let us look
into the main configuration parameters listed as follows:

servicemix-jms as consumer: A sample servicemix-jms consumer
component configuration is shown as follows:

 <jms:endpoint service="test:MyConsumerService"
 endpoint="myConsumer"
 role="consumer"
 soap="true"
 targetService="test:pipeline"
 defaultMep="http://www.w3.org/2004/08/wsdl/in-only"
 destinationStyle="queue"
 jmsProviderDestinationName="queue/A"
 connectionFactory="#connectionFactory" />

The following table lists out the main attributes used to configure
servicemix-jms component in the consumer role:

Attribute Name Type Description Mandatory or Not
service QName Service name of proxy

endpoint.
Mandatory.

endpoint String Endpoint name of proxy
endpoint.

Mandatory.

role String Whether a consumer or a
provider.

Mandatory. Value
should be consumer.

soap boolean If it is true, the component will
parse the SOAP envelope and
pass the contents to the NMR.

Not Mandatory.
Default value is false.

•

Chapter 11

[205]

Attribute Name Type Description Mandatory or Not
targetService QName Service name of the target

endpoint.
Not Mandatory.
Default is the value of
the service attribute.

defaultMEP URI The MEP URI by which clients
interact with the consumer
component.

Not Mandatory.

destinationStyle String Indicates the destination
type used with the
jmsProviderDestinationName.

Not Mandatory (unless
jmsProviderDestination
 Name is
used).

jmsProvider

DestinationName

String The target JMS destination
(Queue or Topic) will be
created by the JMS provider.

Not Mandatory
(either of destination,
jndiDestinationName
or
jmsProviderDestination
 Name is mandatory).

connectionFactory javax.jms.
Connection
 Factory

The connectionFactory
is to be used. Instead
a JNDI configuration
can be provided using
jndiConnectionFactoryName.

Not Mandatory.

useMsgIdInResponse boolean True value indicates that the
JMS correlation id will be set
to the id of the JMS request
message— if it is false, an
artificial correlation id will be
used instead.

Not Mandatory (in
which case the default
behaviour is to use the
message exchange id as
the correlation id).

In the sample configuration listed earlier, if a client has to send a message to
the NMR it has to place the message in the queue queue/A. Since the MEP is
in-only, the client will not receive any response. Hence, if a client has to send
a normal request-response to the NMR, then we need to use additional MEP
conversion bridges (Note: the targetService in the sample configuration
which is an MEP conversion pipeline, which will be demonstrated in an
example in this chapter). Even that is not sufficient since we need a mechanism
to co-relate request and response messages. This can be done by setting the
JMS correlation id (even though we don't demonstrate this in our sample).
servicemix-jms as provider: A sample servicemix-jms provider component
configuration is shown as follows:

 <jms:endpoint service="test:MyProviderService"
 endpoint="myProvider"
 role="provider"
 soap="true"

•

Access Web Services Using the JMS Channel

[206]

 destinationStyle="queue"destinationStyle="queue"
 jmsProviderDestinationName="queue/B"
 connectionFactory="#connectionFactory" />connectionFactory="#connectionFactory" />

The following table lists out the main attributes used to configure the
servicemix-jms component in the provider role:

Attribute Name Type Description Mandatory or Not
service QName Service name of the exposed

endpoint.
Mandatory.

endpoint String Endpoint name of the exposed
endpoint.

Mandatory.

role String Whether a consumer or a
provider.

Mandatory. Value
should be provider.

soap boolean If it is true, the component will
parse the SOAP envelope and
pass the contents to the NMR.

Not Mandatory.
Default value is false.

destinationStyle String Indicates the destination type
used with the jmsProvider
 DestinationName.

Not Mandatory
(unless jmsProvider
 DestinationName
 is used).

jmsProvider
DestinationName

String The target JMS destination
(Queue or Topic) will be
created by the JMS provider.

Not Mandatory
(either of destination,
jndiDestinationName,
or jmsProvider
DestinationName is
mandatory).

connectionFactory javax.jms.
Connection
 Factory

The connectionFactory
is to be used. Instead
a JNDI configuration
can be provided using
jndiConnectionFactoryName.

Not Mandatory.

servicemix-jms Lightweight Configuration
In addition to the XBean-based configuration listed earlier, servicemix-jms can also
be deployed based on the lightweight mode for use in an embedded ServiceMix. The
configuration would be as follows:

<sm:activationSpec>
 <sm:component>
 <jms:component>
 <jms:endpoints>
 <jms:endpoint service="test:MyConsumerService"

Chapter 11

[207]

 endpoint="myConsumer"
 role="consumer"
 soap="true"
 targetService="test:pipeline"
 defaultMep="http://www.w3.org/2004/08/
 wsdl/in-only"
 destinationStyle="queue"
 jmsProviderDestinationName="queue/A"
 connectionFactory ="#connectionFactory" />
 <jms:endpoint service="test:MyProviderService"
 endpoint="myProvider"
 role="provider"
 soap="true"
 destinationStyle="queue"
 jmsProviderDestinationName="queue/B"
 connectionFactory="#connectionFactory" />
 </jms:endpoints>
 </jms:component>
 </sm:component>
</sm:activationSpec>

Protocol Bridge
A protocol bridge is an integration pattern to connect between two different
protocols. For example, HTTP and JMS are two different transport protocols. If there
was a way to bridge these two, we could leverage the best of both worlds (open
standard nature of HTTP and reliable transport feature of JMS). Typically, it is not
straightforward to connect two different protocols and exchange information. We
need to connect individual, corresponding channels speaking different protocols in
the messaging system. This is demonstrated in the following figure:

Access Web Services Using the JMS Channel

[208]

A protocol bridge can be viewed as a combination of channel adapters. An adapter
can function as a client to the messaging system. With the client role, the adaptor
can invoke application functions through the application supplied interfaces. Thus a
HTTP channel adapter can be used to access the HTTP service and publish messages
on a JMS channel. Similarly, the same adapter can also receive messages from the
JMS channel and invoke the functionality over the HTTP service.

Along those lines, we can now think of a web service adapter to translate between
the HTTP-based web service and the JMS-based messaging system. By doing so,
the SOAP formatted messages can be routed through the traditional HTTP channel
through firewalls over the Internet, and also through the messaging channel over the
intranet for access by interdepartmental systems.

For example, you can think of a scenario where an enterprise provides a "Product
Query" service or an "Inventory Update" service. Such services can be accessed by
interdepartmental or LOB systems such as the "Order Entry" system or "Shipping"
system over JMS. If the enterprise wants to expose these services over the firewall
for B2B interaction with other enterprises, they can do so in the SOAP over HTTP
style of interaction. For both these two types of interaction, we don't need to define
two separate services. Instead, using an adapter, the same service can be made
accessible through multiple channels. The web services gateway provided by the
IBM Websphere Application server is a first class example of a web service adapter.

Web Service in the JMS Channel Binding
Sample
We will now look at a complete sample of how to bind a web service using the JMS
channel to ServiceMix. While doing so, we will also see how to use the Apache
Axis client-side APIs to send a request to and receive a response from the web
service, through the JMS channel rather than the normal HTTP channel. We may
not configure all of the QOS features for the JMS provider here such as transaction,
message persistence, or guaranteed delivery. Most of them are outside the standard
J2EE configurations and have to be done at the JMS provider-level based on the
vendor-specific mechanisms. Since this book is about JBI and ServiceMix and not
JMS, we will concentrate only on the binding part. Once we are successful in binding
the web service to JMS, then enabling other QOS features is similar to what we do in
the normal JMS configurations.

Chapter 11

[209]

ServiceMix Component Architecture for the
JMS Web Service
We will first look at the technical architecture for the whole component setup to see
how we can route messages through various ServiceMix components. The major
parties or roles taking part in the exchange are as follows:

External client (sending request and accepting response).
JMS consumer (request queue for client).
Pipeline bridge.
HTTP provider.
External web service.
JMS provider (response queue for client).

As we know, all the components are bound appropriately to the NMR and all the
message exchanges take place through the NMR. The following figure shows the
component architecture:

•

•

•

•
•
•

Access Web Services Using the JMS Channel

[210]

As shown in the above figure, when the client sends a message, the message-flow
through the NMR through various JBI components are marked by numbers in
sequence. You may note the dynamics of the Pipeline component in the previous
figure. Here, the Pipeline will send the input message in an In-Out MEP to the HTTP
Provider destination and then in turn forward the response in an In-Only MEP to the
JMS Provider.

An aspect to notice in the above architecture is that the whole interaction is in a
request-response style from the consumer (client) perspective. However, at the
transport-level we implement this as a combination of a In-Only request and its
corresponding response.

Let us now set up the individual components shown in the technical
architecture figure.

Deploy the Web Service
As a first step, if you haven't done it before, edit examples.PROPERTIES (provided
along with the code download for this chapter), and change the paths there to match
your development environment. The code download for this chapter also includes a
README.txt file, which gives the detailed steps to build and run the samples.

We have a simple web service in the codebase present in the folder
ch11\WebServiceInJmsChannel\01_ws. To deploy the web service, first change the
directory to ch11\WebServiceInJmsChannel\01_ws and execute ant as shown
as follows:

cd ch11\WebServiceInJmsChannel\01_ws

ant

The web service will be completely built and the war file can be found in the folder:

ch11\WebServiceInJmsChannel\01_ws\dist\AxisEndToEnd.war.

To deploy the web service, just drop this war file into your favorite web server's
webapps folder and restart the web server, if necessary.

Now to make sure that your web service deployment works fine, we have provided
two test clients. To invoke the test client run the following commands:

cd ch11\ServiceMixHttpBinding\01_ws

ant run

and/or

ant test

Chapter 11

[211]

We can also check the web service deployment by accessing the WSDL from the
following URL:

http://localhost:8080/AxisEndToEnd/services/HelloWebService?WSDL

The top-level folder, that is ch11\WebServiceInJmsChannel, will have a single
build.xml file which will build all the sub projects in a single go. To build the entire
sample, change directory to this folder and execute ant as follows:

cd ch11\WebServiceInJmsChannel

ant

XBean-based servicemix-jms Binding
For XBean-based deployment of servicemix-jms, our xbean.xml file looks like
the following:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns:jms="http://servicemix.apache.org/jms/1.0"
 xmlns:test="http://AxisEndToEnd.axis.apache.binildas.com">
 <classpath>
 <location>.</location>
 </classpath>
 <bean id="connectionFactory"
 class="org.apache.activemq.ActiveMQConnectionFactory">
 <property name="brokerURL" value="tcp://localhost:61616" />
 </bean>
 <jms:endpoint service="test:MyConsumerService"
 endpoint="myConsumer"
 role="consumer"
 soap="true"
 targetService="test:pipeline"
 defaultMep="http://www.w3.org/2004/08/wsdl/in-only"
 destinationStyle="queue"
 jmsProviderDestinationName="queue/A"
 connectionFactory ="#connectionFactory" />
 <jms:endpoint service="test:MyProviderService"
 endpoint="myProvider"
 role="provider"
 soap="true"
 destinationStyle="queue"
 jmsProviderDestinationName="queue/B"
 connectionFactory="#connectionFactory" />
</beans>

Access Web Services Using the JMS Channel

[212]

Perhaps, you might have noticed the fact that for the above consumer role the
targetService is not the actual web service, but a pipeline which is explained next.

XBean-based servicemix-eip Pipeline Bridge
The pipeline component is an integration bridge between an In-Only (or Robust-In-
Only) MEP and an In-Out MEP. By receiving an In-Only MEP by the pipeline, we
will send the input message in an In-Out MEP to the transformer destination and
then in turn forward the response in an In-Only MEP to the target destination. The
pipeline is a standard EIP component and hence is available readily as a standard JBI
EIP component in ServiceMix.

The pipeline EIP component can be configured using XBean and deployed. The
configuration xbean.xml file is as shown as follows:

<beans xmlns:http="http://servicemix.apache.org/http/1.0"
 xmlns:eip="http://servicemix.apache.org/eip/1.0"
 xmlns:test="http://AxisEndToEnd.axis.apache.binildas.com">
 <classpath>
 <location>.</location>
 </classpath>
 <eip:pipeline service="test:pipeline" endpoint="pipeline">
 <eip:transformer>
 <eip:exchange-target service="test:IHelloWebService" />
 </eip:transformer>
 <eip:target>
 <eip:exchange-target service="test:MyProviderService" />
 </eip:target>
 </eip:pipeline>
</beans>

XBean-based servicemix-http Provider
Destination
We now require an In-Out MEP-based target transformer as the message destination.
Since our target service is a web service, it makes sense to use a servicemix-http
component in the provider role to point to the external web service. The xbean.xml
configuration is as follows:

<beans xmlns:http="http://servicemix.apache.org/http/1.0"
 xmlns:test="http://AxisEndToEnd.axis.apache.binildas.com">
 <classpath>
 <location>.</location>

Chapter 11

[213]

 </classpath>
 <http:endpoint service="test:IHelloWebService"
 endpoint="HelloWebService"
 role="provider"
 locationURI="http://localhost:8080/AxisEndToEnd/
 ervices/HelloWebService"
 soap="true"
 soapAction=""
 wsdlResource="http://localhost:8080/AxisEndToEnd/
 services/HelloWebService?WSDL" />
</beans>

Deploying the Sample and Starting ServiceMix
To deploy the ServiceMix sample, we have the following servicemix.xml:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns:sm="http://servicemix.apache.org/config/1.0"
 xmlns:test="http://AxisEndToEnd.axis.apache.binildas.com" >
 <import resource="classpath:jmx.xml" />
 <import resource="classpath:jndi.xml" />
 <import resource="classpath:security.xml" />
 <import resource="classpath:tx.xml" />
 <import resource="classpath:activemq.xml" />
 <bean id="propertyConfigurer"
 class="org.springframework.beans.factory.config.
 PropertyPlaceholderConfigurer">
 <property name="location"
 value="classpath:servicemix.properties" />
 </bean>
 <sm:container id="jbi"
 MBeanServer="#jmxServer"
 useMBeanServer="true"
 createMBeanServer="true"
 rootDir="./wdir"
 installationDirPath="./install"
 deploymentDirPath="./deploy"
 flowName="seda">
 <sm:activationSpecs>
 </sm:activationSpecs>
 </sm:container>
</beans>

To bring up ServiceMix, change directory to ch11\WebServiceInJmsChannel and
bring up the ServiceMix container.

cd ch11\WebServiceInJmsChannel

%SERVICEMIX_HOME%\bin\servicemix servicemix.xml

Access Web Services Using the JMS Channel

[214]

Test Web Service Using JMS Channel
To test the web service deployed sending messages through JMS channel, we will
have two approaches as follows:

Test using JMS client—document style: This approach is simple and
straightforward. We can create a simple JMS client which can place a SOAP
request document in the input queue. The same client will also listen to an
output queue so that whenever (within a time limit) a response message is
received back in this queue then the client can consume it.

 public class JMSClient
 {
 public static String MESSAGE_1 = "<?xml version=\"1.0\"c String MESSAGE_1 = "<?xml version=\"1.0\" String MESSAGE_1 = "<?xml version=\"1.0\"
 encoding=\"UTF-8\"?> SOAP Message...";
 private static final long WAIT_TIME = 5 * 1000L;
 public static void main(String[] args) throws Exception
 {
 ActiveMQConnectionFactory factory = new
 ActiveMQConnectionFactory("tcp://localhost:61616");
 ActiveMQQueue pubTopic = new ActiveMQQueue("queue/A");ActiveMQQueue pubTopic = new ActiveMQQueue("queue/A");
 ActiveMQQueue subTopic = new ActiveMQQueue("queue/B");
 Connection connection = factory.createConnection();Connection connection = factory.createConnection();
 Session session = connection.createSession(false,
 Session.AUTO_ACKNOWLEDGE);
 MessageProducer producer = session.createProducer(pubTopic);
 MessageConsumer consumer = session.createConsumer(subTopic);
 connection.start();
 producer.send(session.createTextMessage(MESSAGE_1));
 TextMessage textMessage = (TextMessage)
 consumer.receive(1000 * 10);
 if(textMessage == null)
 {
 System.out.println("Response timed out.");
 }
 else
 {
 System.out.println("Response was: " +
 textMessage.getText());
 }
 System.out.println("Closing.");
 connection.close();
 }
 }

•

Chapter 11

[215]

The JMSClient is placed in the folder ch11\WebServiceInJmsChannel\
03_BindJms\src. The client class was already compiled when we built the
full project. To run the test client, change directory to ch11\WebServiceIn-
JmsChannel\03_BindJms and execute ant as follows:

 cd ch11\WebServiceInJmsChannel\03_BindJms

 ant run

Test using Axis client—RPC style: In the previous example, we followed a
pure document-oriented approach to invoke the web service and get back the
response. Due to the fact that the transport channel is JMS which is detached
and asynchronous, we may not be able to change the style fully from the
document-oriented approach. However, we can make the invocation close to
an RPC style by using the Apache Axis service and calling objects.
We need to have multiple artifacts to invoke the web service in RPC style,
and they are listed here in detail:

JMSTestClientRPCWebService.java: This is the main client
class used to invoke the web service. This class is placed in the
ch11\WebServiceInJmsChannel\05_AxisClient\src\com\
binildas\apache\axis\AxisEndToEnd folder.

 public class JMSTestClientRPCWebService
 {
 public static void main(String args[]) throws Exception
 {
 org.apache.axis.client.Service axisServiceObj =
 new org.apache.axis.client.Service();
 org.apache.axis.client.Call axisCall =
 (org.apache.axis.client.Call)axisServiceObj.
 createCall();
 axisCall.setOperationName("hello");
 axisCall.addParameter("in0", org.apache.axis.
 encoding.XMLType.XSD_STRING, javax.xml.rpc.javax.xml.rpc.
 ParameterMode.IN);
 axisCall.setReturnType(org.apache.axis.encoding.
 XMLType.XSD_STRING);
 org.apache.axis.client.Transport transport = new
 JMSTransportForAxis();
 axisCall.setTransport(transport);
 axisCall.setProperty("REQUEST_QUEUE", "queue/A");
 axisCall.setProperty("RESPONSE_QUEUE", "queue/B");
 String res = (String) axisCall.invoke(new Object[]
 {"Binil"});
 System.out.println("res: " + res);
 }
 }

•

°

Access Web Services Using the JMS Channel

[216]

As we can see in the code listing, we first create an Axis Call instance and
set the operation name (which is the method name of the remote web service)
and the input parameters to invoke the operation. We also need to set the
return type details so that the Call instance can unmarshall any return type
recieved from the transport channel to the suitable Java type.
The next important step is setting the transport class for the Call object.
Here, we set an instance of JMSTransportForAxis, which provides the
gateway to the transport channel.

JMSTransportForAxis.java: This class extends the Apache Axis
Transport class:

 public class JMSTransportForAxis extends org.apache.axis.
 client.Transport
 {
 public JMSTransportForAxis()
 {
 transportName = "JMSTransportForAxis";
 }
 }

client-config.wsdd: The next important piece is the
client-config.wsdd, which should be there in the classpath
while we invoke the JMSTestClientRPCWebService class. This
configuration is placed in ch11\WebServiceInJmsChannel\
05_AxisClient\config.

 <?xml version="1.0" encoding="UTF-8"?>
 <deployment name="defaultClientConfig"
 xmlns="http://xml.apache.org/axis/wsdd/"
 xmlns:java="http://xml.apache.org/axis/wsdd/
 providers/java">
 <transport name="http"
 pivot="java:org.apache.axis.transport.http.
 HTTPSender"/>
 <transport name="local"
 pivot="java:org.apache.axis.transport.local. pivot="java:org.apache.axis.transport.local.
 LocalSender"/>
 <transport name="java"<transport name="java"
 pivot="java:org.apache.axis.transport.java.
 JavaSender"/>
 <handler name="JMSSender"<handler name="JMSSender"
 type="java:org.apache.axis.transport.jms.
 JMSSender" />
 <transport name="JMSTransport" pivot="JMSSender"/>
 <handler name="CustomJMSSender"
 type="java:com.binildas.apache.axis.
 AxisEndToEnd.JMSSender" />

°

°

Chapter 11

[217]

 <transport name="JMSTransportForAxis" pivot=
 "CustomJMSSender"/>
 </deployment>

The lines to be noted from the above configuration are reproduced as follows:
 <handler name="CustomJMSSender"
 type="java:com.binildas.apache.axis.
 AxisEndToEnd.JMSSender" />
 <transport name="JMSTransportForAxis" pivot=
 "CustomJMSSender"/>

If we observe the JMSTransportForAxis class, we can see that the value of
the super class (Transport) field (transportName) is set as "JMSTransport-
ForAxis". In the client-config.wsdd, we then pivot CustomJMSSender
against JMSTransportForAxis value. Now, we again map the Custom-
JMSSender to a custom transport sender class java:com.binildas.
apache.axis.AxisEndToEnd.JMSSender

JMSSender.java: This is the class where the actual transport
plumbing happens and this call is not much different from the
JMSClient class we already saw in the previous test in the sense
that we will have an input and an output queue to place a request
and to read any response.

 public class JMSSender extends org.apache.axis.handlers.MSSender extends org.apache.axis.handlers.SSender extends org.apache.axis.handlers.
 BasicHandler
 {
 public void invoke(org.apache.axis.MessageContext
 msgContext) throws org.apache.axis.AxisFault
 {
 try
 {
 ActiveMQConnectionFactory factory = new
 ActiveMQConnectionFactory("tcp://
 localhost:61616");
 Object requestDestination = msgContext.
 getProperty("REQUEST_QUEUE");
 Object responseDestination = msgContext.
 getProperty("RESPONSE_QUEUE");
 ActiveMQQueue pubTopic = new ActiveMQQueue
 ((String) requestDestination);
 ActiveMQQueue subTopic = new ActiveMQQueue
 ((String) responseDestination);
 Connection connection = factory.
 createConnection();
 Session session = connection.createSession(false,
 Session.AUTO_ACKNOWLEDGE);

°

Access Web Services Using the JMS Channel

[218]

 MessageProducer producer = session.createProducer
 (pubTopic);
 MessageConsumer consumer = session.createConsumer
 (subTopic);
 connection.start();
 String reqSOAPMsgString = msgContext
 getRequestMessage().getSOAPPartAsString();
 producer.send(session.createTextMessage
 (reqSOAPMsgString));
 TextMessage m = (TextMessage) consumer.receive
 (1000*10);
 String respMessageStr = null;
 if(m == null)
 {
 System.out.println("Response timed out.");
 }
 else
 {
 respMessageStr = m.getText();
 System.out.println("Response was : " +
 respMessageStr);
 }
 System.out.println("Closing.");
 connection.close();
 org.apache.axis.Message respSoapMessage = new
 org.apache.axis.Message(respMessageStr);
 msgContext.setResponseMessage(respSoapMessage);
 }
 catch (Exception e)
 {
 throw new org.apache.axis.AxisFault
 ("failedSend", e);
 }
 }
 }

The previous project build has already built all the sub projects, including the one
containing all the above client classes. So, to run this client, we need to change folder
to ch11\WebServiceInJmsChannel\05_AxisClient and execute ant as follows:

cd ch11\WebServiceInJmsChannel\05_AxisClient

ant run

Chapter 11

[219]

Summary
MOM including JMS is a great enabler for reliable communication between
components, especially when you do that in a loosely coupled (asynchronous)
manner. JMS provides the required APIs and provider-level SPIs for Java
components to interact through MOM. Combining the power of messaging over a
reliable channel along with the interoperability of web services provides us a greater
flexibility with confidence in messaging characteristics. Web services over JMS are
positioned in this space and it is nothing new since we have been doing that for
many enterprise class transactions. The new thing here is the endless possibilities
provided by the ESB architecture when combined with tested and proven EAI
patterns. This is demonstrated in this chapter with samples. And keep reading—you
are going to see more practical usages of the ESB architecture such as web service
versioning in the coming chapters.

Java XML Binding
using XStream

While the Java programming language provides us a means to write portable code,
XML can be used to define portable data. We use XML extensively to format
data in SOA-based architectures. Moreover, today all new generation platforms,
frameworks, and even legacy platforms such as COBOL and Mainframes exhibit
support for XML formatted data.

ServiceMix is all about SOI and hence it is also concerned with portable data.
Naturally, the format of data inside the NMR is XML. Another aspect is that
ServiceMix is a Java-based JBI framework. Hence, the developers need to write
code in Java, whether they are SEs or BCs. It is in this context that the relationship
between Java and XML in the ServiceMix context needs attention.

This chapter will provide a brief introduction to Java XML binding and to the
concepts and technologies that it employs.

So we will cover the following in this chapter:

Java XML binding in general
Java XML binding frameworks including XStream
XStream integration with the ServiceMix ESB
Working code sample showing XStream in action in ServiceMix

•

•

•

•

Java XML Binding Using XStream

[222]

Java XML Binding
Java XML binding deals with transforming the XML instances to the Java instances and
vice versa. Even though we can do this by writing Java code from scratch against the
XML APIs, today we have multiple tools and frameworks which will do the same.

The above figure shows a typical scenario we might come across in B2B interactions.
Leave the advanced validations or CRUD operations one can do in the XML
documents alone, we are interested in the marshalling and unmarshalling
functionality of the JAXB. XML is the de-facto wire format in SOA and SOI. If we
need to process the XML data from within our Java components, we have to do some
form of XML binding. The frameworks such as Castor and XMLBeans do exactly
this. JAXB is the Java reference implementation for Java XML binding. Today, we
have XStream which will do the same functionality quickly. Let us see how these
frameworks are relevant in the JBI discussion.

Chapter 12

[223]

JAXB
Java API for XML Binding (JAXB) provides a convenient way to process XML
content using Java objects by binding its XML schema to Java representation. JAXB
provides an API and the required tool sets that automate the mapping between the
XML documents and the Java instances. Thus we can list out the main features as:

Unmarshal the XML instance into a Java instance.
Access, update, and validate the Java representation against
schema constraint.
Marshal the Java instance of the XML content into the XML
document instance.

XStream
XStream is a simple, open source library to serialize Java objects to the XML and
back again. It is lightweight in the sense that it doesn't require much configuration
or mapping files. XStream has a good integration with the ServiceMix. In fact,
ServiceMix provides an XStream backed API itself named JavaSource.

The main features of XStream are listed as follows:

Ease for use: A high-level facade-class called XStream is supplied which
simplifies the common use cases.
No mappings required: Most objects can be serialized by registering
their class.
Performance: XStream is suitable for large object graphs or systems with
high message throughput.
Works on normal objects: Serializes internal fields, including private and
final. Supports non-public and inner classes. The classes are not required to
have a default constructor.
Full object graph support: Duplicate references encountered in the
object-model will be maintained. Supports circular references.
Integrates with other XML APIs: By implementing suitable interfaces,
XStream supports serialization directly to or from any tree structure
including XML.

•

•

•

•

•

•

•

•

•

Java XML Binding Using XStream

[224]

Let us also look at a sample binding using XStream. Consider the following two
classes namely the Customer and the Contact:

public class Customer
{
 private String firstName;
 private String lastName;
 private Contact phone;
}
public class Contact
{
 private int code;
 private String number;
}

Now, if you have to use XStream to convert the above entities to XML, then first
instantiate the XStream façade and create aliases for your custom class names to
XML element names as shown in the following code:

XStream xStream = new XStream();
xStream.alias("customer", Customer.class);
xStream.alias("contact", Contact.class);

Now it is a matter of creating the entity tree, populating its fields, and then calling
the toXML method in XStream. This is reproduced in the following code:

Customer binil = new Customer("Binil", "Das");
binil.setPhone(new Contact(91, "471-2700888"));
String xml = xStream.toXML(binil);

The XML output will look like this:

<customer>
 <firstname>Binil</firstname>
 <lastname>Das</lastname>
 <phone>
 <code>91</code>
 <number>471-2700888</number>
 </phone>
</customer>

To reconstruct the object tree back from XML is easy, and is shown as follows:

Customer binilBack = (Customer) xstream.fromXML(xml);

Chapter 12

[225]

ServiceMix and XStream
ServiceMix has good integration with XStream as a mechanism for XML to Java
binding and vice versa. This is made possible in ServiceMix by exposing a few APIs,
the main ones are listed as follows:

org.apache.servicemix.jbi.messaging.DefaultMarshaler

org.apache.servicemix.components.util.xstream.XStreamMarshaler

org.apache.servicemix.components.util.xstream.XStreamSource

org.apache.servicemix.JavaSource

The relationship between these classes with com.thoughtworks.xstream.XStream
is shown in the following figure:

Now, if we need to integrate with XStream in our custom transformation
components, we can do so by creating an instance of XStreamSource.

XStream xStream = new XStream();
xStream.alias("ServiceParamTO", ServiceParamTO.class);
xStream.alias("CustomerTO", CustomerTO.class);
// Register other classes…
JavaSource JavaSource = new XStreamSource(payLoad, xStream);

Now, we just set this instance of XStreamSource as the in message to the inOut
method and send the message exchange.

normalizedMessageIn.setContent(javaSource);
inOut.setInMessage(normalizedMessageIn);
sendSync(inOut);

•

•

•

•

Java XML Binding Using XStream

[226]

As you know, the NMR of ServiceMix always deals with the normalized message
format, which is the XML format. The required plumbing will be done by the
XStream in the background.

XStream in a Normalized Message Router
Sample
In Chapter 7, you have learnt how to code and build custom components to be
deployed in the ServiceMix container. There we used an HttpInterceptor class to
intercept the contents of the JBI exchange and print them out on the console. We will
enhance the code from that sample to demonstrate how we can integrate XStream
with other JBI classes in ServiceMix.

Sample Use Case
In the SOA scenarios, we use the XML formatted messages to transport payload
across nodes. Whether SOAP formatted or not, XML provides a flexible mechanism
to transport data, which can be validated if required using the XML schemas. Let us
also build our sample around this. Hence, we will assume that we have an external
client sending an XML payload to the ESB. Let us see how we can interact with this
data inside the bus.

This is diagrammatically represented in the following figure:

HTTP Client

NMR

ESB

6

2

5

3

4
1

XStreamInspector HttpInterceptor HttpConnector

Chapter 12

[227]

The sample use case will consist of the following components:

HTTP Client: The HTTP Client is a client external to the ESB which interact
with the HTTP Connector inside the ESB to send the request message and get
the response back.
HTTP Connector: The HTTP Connector is a ServiceMix HttpConnector
component configured to listen to a specific port. Any messages arriving
at the HTTP Connector will be directed to the next component in the flow,
namely the HTTP Inspector.
HTTP Interceptor: The HTTP Interceptor is a ServiceMix Transform
Component. This component, as the name implies, will first intercept the
message contents. The XML formatted message sent by the HTTP Client will
be intercepted here, and then printed out to the console. We then unmarshal
the XML instance into a Java instance using the XStream. Next comes the
key sequence in this sample—we set the Java instance into the InOut of
the message exchange in the next chain of the interaction, to be sent to the
destination service, XStream Inspector.
XStream Inspector: In XStream Inspector, we try to retrieve back the message
content and print it to the console. Then XStream Inspector sends the same
XML content back to the HTTP Interceptor.

In the reverse stream flow, at HTTP Interceptor we again print out the content
received from the XStream Inspector to the console, and then send back the same
XML to the HTTP Client.

The following figure lists how the various code artifacts for the sample are organized:

•

•

•

•

Java XML Binding Using XStream

[228]

Code HTTPClient
HTTPClient is a normal HTTP Client and is coded in the file ch12\JavaXmlBinding\
Client.html. This component is capable of sending the following XML request to
the URL: http://localhost:8912.

<?xml version="1.0" encoding="UTF-8"?>
<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:tns="http://servicemix.apache.org/samples/wsdl-
 first/types">
 <env:Body>
 <ServiceParamTO>
 <customerTO>
 <firstName>Ann</firstName>
 <lastName>Binil</lastName>
 <addressTO>
 <houseNumber>222</houseNumber>
 <street>Lake View</street>
 <city>Cochin</city>
 </addressTO>
 </customerTO>
 <creditCardTO>
 <cardNumber>8888-9999-1111-2222</cardNumber>
 <validTill>01-APR-2007</validTill>
 <cardType>Master Card</cardType>
 </creditCardTO>
 </ServiceParamTO>
 </env:Body>
</env:Envelope>

Unmarshalling to Transfer Objects
We have a set of Java TO classes so that the XStream can unmarshal the above XML
document to the TO instances and back to the XML whenever required. This is
shown in the following list:

ch12\JavaXmlBinding\src\com\binildas\esb\javasource\
ServiceParamTO.java

 public class ServiceParamTO implements Serializable
 {
 private CustomerTO customerTO;
 private CreditCardTO creditCardTO;
 }

•

Chapter 12

[229]

ch12\JavaXmlBinding\src\com\binildas\esb\javasource\CustomerTO.
java

 public class CustomerTO implements Serializable
 {
 private String firstName;
 private String lastName;
 private AddressTO addressTO;
 }

ch12\JavaXmlBinding\src\com\binildas\esb\javasource\AddressTO.
java

 public class AddressTO implements Serializable{

 private String houseNumber;
 private String street;
 private String city;
 }

ch12\JavaXmlBinding\src\com\binildas\esb\javasource\
CreditCardTO.java

 public class CreditCardTO implements Serializable{

 private String cardNumber;
 private String validTill;
 private String cardType;
 }

These classes are related as shown in the following UML class diagram:

•

•

•

Java XML Binding Using XStream

[230]

HttpInterceptor Component
The HttpInterceptor is a ServiceMix Transform component. This component
will first intercept the message contents. The XML formatted message sent by the
HTTP client will be intercepted here, and then printed out to the console. We then
unmarshal the XML instance into a Java instance using XStream. The Java instance
is then sent through the NMR to the next component in the flow, which is the
XStreamInspector. Let us look into the code shown as follows:

public class HttpInterceptor extends TransformComponentSupport
{
 protected boolean transform(MessageExchange exchange,
 NormalizedMessage in,NormalizedMessage out) throws
 MessagingException
{
 System.out.println("HttpInterceptor(" + name + ").transform01.
 exchange.getService() = " + exchange.getService());
 XStream xStream = null;
 String contentString = null;
 ServiceParamTO payLoad = null;
 JavaSource javaSource = null;
 QName service = null;
 InOut inOut = null;
 NormalizedMessage normalizedMessageIn = null;
 NormalizedMessage normalizedMessageOut = null;
 NormalizedMessage copyReturnMessage = null;
 Source contentReturn = null;
 InputStream inputStream = null;
 byte[] bytes = null;
 int available = 0;
 String contentReturnString = null;
 NormalizedMessage copyMessage = exchange.createMessage();
 getMessageTransformer().transform(exchange, in, copyMessage);
 Source content = copyMessage.getContent();
 if (content instanceof DOMSource){
 contentString = XMLUtil.retreiveSoapContent(((DOMSource)
 content).getNode());
 System.out.println("HttpInterceptor(" + name +
 ").transform02.contentString = " + contentString);
 payLoad = (ServiceParamTO)
 XStreamUtil.xmlToObject(contentString);
 xStream = new XStream();
 xStream.alias("ServiceParamTO", ServiceParamTO.class);
 xStream.alias("CustomerTO", CustomerTO.class);
 xStream.alias("CreditCardTO", CreditCardTO.class);
 xStream.alias("AddressTO", AddressTO.class);
 javaSource = new XStreamSource(payLoad, xStream);
 service = new QName(namespaceURI, localPart);
 inOut = createInOutExchange(service, null, null);

Chapter 12

[231]

 normalizedMessageIn = inOut.createMessage();
 normalizedMessageIn.setContent(javaSource);
 inOut.setInMessage(normalizedMessageIn);
 sendSync(inOut);
 normalizedMessageOut = inOut.getOutMessage();
 copyReturnMessage = exchange.createMessage();
 getMessageTransformer().transform(exchange,
 normalizedMessageOut, copyReturnMessage);
 contentReturn = copyReturnMessage.getContent();
 if (contentReturn instanceof StringSource)
 {
 try
 {
 inputStream = ((StringSource)contentReturn).
 getInputStream();
 available = inputStream.available();
 bytes = new byte[available];
 inputStream.read(bytes);
 }
 catch(IOException ioException)
 {
 throw new MessagingException(ioException);
 }
 contentReturnString = new String(bytes);
 System.out.println("HttpInterceptor(" + name + ").
 transform03.contentReturnString = " +
 contentReturnString);
 out.setContent(contentReturn);
 System.out.println("HttpInterceptor(" + name + ").
 transform04.contentReturnString = " +
 contentReturnString);
 }
 System.out.println("HttpInterceptor(" + name + ").
 transform05. End");
 }
 return true;
 }
}

In the code, we create an instance of XStream and register all TO classes to XStream.
Then using this XStream instance and the XML payload, we create an instance
of XStreamSource. The XStreamSource instance is a JavaSource type, which
again is a javax.xml.transform.Source type. This makes it easy for us to set
this JavaSource into the InOut of the message exchange in the next chain of the
interaction, to be sent to the destination service which is XStreamInspector.

Java XML Binding Using XStream

[232]

XStreamInspector Component
Compared to HttpInterceptor, the XStreamInspector class is simple. It retrieves
back the message content and prints it to the console. The XStreamInspector class
then sends the same XML content back to HttpInspector.

public class XStreamInspector extends TransformComponentSupport
{
 protected boolean transform(MessageExchange exchange,
 NormalizedMessage in,NormalizedMessage out) throws
 MessagingException
 {
 System.out.println("XStreamInspector(" + name + ").transform01.
 exchange.getService() = " + exchange.getService());
 NormalizedMessage copyMessage = exchange.createMessage();
 getMessageTransformer().transform(exchange, in, copyMessage);
 Source content = copyMessage.getContent();
 String contentString = null;
 if (content instanceof DOMSource)
 {
 contentString = XMLUtil.node2XML(((DOMSource)content).
 getNode());
 System.out.println("XStreamInspector(" + name + ").
 transform02.contentString = " + contentString);
 }
 out.setContent(new StringSource(contentString));
 System.out.println("XStreamInspector(" + name + ").transform03.
 End");
 return true;
 }
}

Configure Interceptor and Inspector
Components
We can configure the HttpInterceptor and XStreamInspector components in a
single SU. Hence, we will do the configuration of these components as an SU in the
servicemix.xml file kept at ch12\JavaXmlBinding\su\servicemix.xml.

Chapter 12

[233]

The contents of this file is shown in the following code:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns:sm="http://servicemix.apache.org/config/1.0"
 xmlns:demo="http://www.binildas.com/esb/LightWeightOrPojo">
 <classpath>
 <location>.</location>
 </classpath>
 <sm:serviceunit id="jbi">
 <sm:activationSpecs>
 <sm:activationSpec componentName="interceptor"
 endpoint="interceptor"
 service="demo:interceptor">
 <sm:component>
 <bean class="com.binildas.esb.
 javasource.HttpInterceptor">
 <property name="name">
 <value>Interceptor-1</value>
 </property>
 <property name="namespaceURI">
 <value>
 http://www.binildas.com/esb/LightWeightOrPojo
 </value>
 </property>
 <property name="localPart">
 <value>inspector</value>
 </property>
 </bean>
 </sm:component>
 </sm:activationSpec>
 <sm:activationSpec componentName="inspector"
 endpoint="inspector"
 service="demo:inspector">
 <sm:component>
 <bean class="com.binildas.esb.javasource.
 XStreamInspector">
 <property name="name">
 <value>Inspector-1</value>
 </property>
 </bean>
 </sm:component>
 </sm:activationSpec>
 </sm:activationSpecs>
 </sm:serviceunit>
</beans>

Java XML Binding Using XStream

[234]

Package Interceptor and Inspector
Components
We will create an SU and then package it into an SA. We have already seen the SU
configuration, let us now look into the SA configuration at:

ch12\JavaXmlBinding\sa\META-INF\jbi.xml

The jbi.xml file is reproduced in the following code:

<?xml version="1.0" encoding="UTF-8"?>
<jbi xmlns="http://java.sun.com/xml/ns/jbi" version="1.0">
 <service-assembly>
 <identification>
 <name>InterceptorAssembly</name>
 <description>Interceptor Service Assembly</description>
 </identification>
 <service-unit>
 <identification>
 <name>Interceptor</name>
 <description>Interceptor Service Unit</description>
 </identification>
 <target>
 <artifacts-zip>Interceptor-su.zip</artifacts-zip>
 <component-name>servicemix-lwcontainer</component-name>
 </target>
 </service-unit>
 </service-assembly>
</jbi>

Deploy Interceptor and Inspector Components
The main point to be noted in the SA jbi.xml is the target element of the
service-unit. Here we specify that the SU artifact (that is Interceptor-su.zip)
is to be deployed into the servicemix-lwcontainer target container.

To do this, we have servicemix.xml file in the topmost folder to start the
ServiceMix container. This is shown as follows:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns:sm="http://servicemix.apache.org/config/1.0"
 xmlns:demo="http://www.binildas.com/esb/LightWeightOrPojo">
 <bean id="propertyConfigurer"
 class="org.springframework.beans.factory.config.
 PropertyPlaceholderConfigurer">

Chapter 12

[235]

 <property name="location"
 value="classpath:servicemix.properties" />
 </bean>
 <import resource="classpath:jmx.xml" />
 <import resource="classpath:jndi.xml" />
 <import resource="classpath:security.xml" />
 <import resource="classpath:tx.xml" />
 <sm:container id="jbi"
 rootDir="./wdir"
 installationDirPath="./install"
 deploymentDirPath="./deploy"
 flowName="seda"
 monitorInstallationDirectory="true"
 createMBeanServer="true"
 useMBeanServer="true">
 <sm:activationSpecs>
 <sm:activationSpec componentName="httpReceiver"
 service="bt:httpBinding"
 endpoint="httpReceiver"
 destinationService="demo:interceptor">
 <sm:component>
 <bean class="org.apache.servicemix.components.http.
 HttpConnector">
 <property name="host" value="127.0.0.1"/>
 <property name="port" value="8912"/>
 </bean>
 </sm:component>
 </sm:activationSpec>
 </sm:activationSpecs>
 </sm:container>
</beans>

Here you can see that we configure an HttpConnector to listen at port 8912. It is to
this target that the HTTP Client sends the XML request.

Build and Run the Sample
As a first step, if you haven't done it before, edit examples.PROPERTIES (provided
along with the code download for this chapter), and change the paths there to match
your development environment. The code download for this chapter also includes a
README.txt file, which gives detailed steps to build and run the samples.

Java XML Binding Using XStream

[236]

To build and run the sample, first change directory to ch12\JavaXmlBinding folder
and execute ant as shown here:

cd ch12\JavaXmlBinding

ant

We can bring up ServiceMix by running the following commands:

cd ch12\JavaXmlBinding

%SERVICEMIX_HOME%/bin/servicemix servicemix.xml

When we start ServiceMix, the JBI container is configured using the above
servicemix.xml file.

To run the demo, there is a Client.html file provided in the top-level folder.

Summary
You have already deployed POJO components into ServiceMix and exposed them as
services. An external client can invoke the POJO services by sending SOAP requests
and receiving back the SOAP responses. At times, you may also need to deal with
non-SOAP formatted, but plain XML messages. We also need to stream such
messages too through firewalls to the bus and get them processed.

This chapter showed you how we can do this using XStream. Some legacy
integration scenario might warrant this approach. You might also have noted the
fact that we can replace the XStream used in this sample with any other Java XML
binding framework such as Castor or XMLBeans, but XStream's advantage is the
built-in integration XStream has with the ServiceMix JBI.

The ServiceMix JBI bus provides a framework for many lightweight integration
libraries like XStream. It also realizes many design patterns used in software
engineering like the well known Proxy pattern which we will explore in the
next chapter.

JBI Proxy
One of the most useful classes introduced by JDK 1.3 is the Proxy class in the
java.lang.reflect package. It allows us to create classes implementing a
particular type (interface) on the fly. ServiceMix provides a similar API in JBI so that
we can proxy a particular service in the JBI bus. This helps us to implement many
functionalities such as:

Intercepting and re-routing the services.
Wrapping and unwrapping messages targeted to a service.
Using request-message, formatted for a particular service type, for a different
service type.

In this chapter, we will first revisit JDK Proxy classes. This will set a background
for further reading wherein we will explain JBI Proxy in detail with examples for
multiple scenarios. Then the developer will be able to make use of Proxy pattern
within the JBI-based ESB, to suit their technical requirements.

We will cover the following in this chapter:

Proxy design pattern in general
Proxy support in Java SDK with examples
ServiceMix JBI Proxy
A few samples of defining and exposing proxies to services in the JBI bus
A practical use of JBI Proxy—to proxy external web services in the JBI bus

•

•

•

•

•

•

•

•

JBI Proxy

[238]

Proxy—A Primer
Wikipedia defines Proxy as:

Proxy may refer to something which acts on behalf of something else.

In the software a proxy is a substitute for a target instance and is a general pattern
which appears in many other patterns in different variants.

Proxy Design Pattern
A proxy is a surrogate class for the target object. If a method call has to be invoked
in the target object, it happens indirectly through the proxy object. The feature which
makes proxy ideal for many situations is that the client or the caller is not aware that
it is dealing with the proxy object. The proxy class is shown in the following figure:

In the above figure, when a client invokes a method target towards the Target
service, the proxy intercepts the call in between. The proxy also expose a similar
interface to the target, hence the client is unaware of the dealing with the proxy.
Thus the proxy method is invoked. The proxy then delegates the call to the actual
target since it cannot provide the actual functionality. When doing so, the proxy can
provide call management towards the actual method. The entire dynamics is shown
in the following figure:

ProxyService TargetService

+fx() +fx()

Client -uses>

<<implements>> <<implements>>
+fx()

<<depends>>

 interface
IService

Chapter 13

[239]

A proxy is usually implemented by using a common, shared interface or super class.
Both the proxy and the target share this common interface. Then, the proxy delegates
the calls to the target class.

JDK Proxy Class
JDK provides both the class Proxy and the interface InvocationHandler in the
java.lang.reflect package, since version 1.3. Using JDK Proxy classes, you can
create your own classes implementing multiple interfaces of your choice, at run time.

Proxy is the super class for any dynamic proxy instances you create at run time.
Moreover, the Proxy class also accommodates a host of static methods which will
help you to create your proxy instances. getProxyClass and newProxyInstance are
two such utility methods.

The Proxy API is listed in the following in brevity:

package java.lang.reflect;
public class Proxy implements java.io.Serializable
{
 protected InvocationHandler h;
 protected Proxy(InvocationHandler h);
 public static InvocationHandler getInvocationHandler(Object proxy)
 throws IllegalArgumentException;
 public static Class<?> getProxyClass(ClassLoader loader,
 Class<?>... interfaces)
 throws IllegalArgumentException;
 public static boolean isProxyClass(Class<?> cl);
 public static Object newProxyInstance(ClassLoader loader,
 Class<?>[] interfaces, InvocationHandler h)
 throws IllegalArgumentException
}

In the above code, you can invoke the Proxy.getProxyClass with a class
loader and an array of interfaces for which you need to proxy, to get a Class
instance for the proxy. Proxy objects have one constructor, to which you pass an
InvocationHandler object associated with that proxy. When you invoke a method
on the proxy instance, the method invocation is encoded and dispatched to the
invoke method of its invocation handler. Let us also look at the InvocationHandler
API reproduced as follows:

package java.lang.reflect;
public interface InvocationHandler
{
 Object invoke(Object proxy, Method method, Object[] args)
 throws Throwable;
}

JBI Proxy

[240]

We need to implement this interface and provide code for the invoke method. Once
you get a Class instance for the proxy by invoking the Proxy.getProxyClass with a
class loader and an array of interfaces for which you need to proxy to. Now, you can
get a Constructor object for this proxy from the Class instance. On the constructor
you can use newInstance (passing in an invocation handler instance) to create the
proxy instance. The created instance should be implementing all the interfaces that
were passed to getProxyClass. The steps are shown in the following code:

InvocationHandler handler = new SomeInvocationHandler(...);
Class proxyClazz = Proxy.getProxyClass(Blah.class.getClassLoader(),
 new Class[] {Blah.class});
Blah blah = (Blah) proxyClazz.getConstructor(new Class[] {
 InvocationHandler.class }).newInstance(new Object[]
 {handler});

There is also a shortcut to get a proxy object. You can invoke Proxy.
newProxyInstance, which takes a class loader, an array of interface classes, and an
invocation handler instance.

InvocationHandler handler = new SomeInvocationHandler(...);
Blah blah = (Blah) Proxy.newProxyInstance(Blah.class.
 getClassLoader(),new Class[] {Blah.class},
 handler);

Now you can invoke methods on the proxy object during which these method
invocations are turned into calls on to the invocation handler's invoke method is
shown here:

blah.interfaceMethod();

Sample JDK Proxy Class
We will now write some simple code to demonstrate how you can write your own
proxies at run time, for your interface classes.

As a first step, if you haven't done it before, edit examples.PROPERTIES (provided
along with the code download for this chapter), and change the paths there to match
your development environment. The code download for this chapter also includes a
README.txt file, which gives detailed steps to build and run the samples.

We will now look at the source code that can be found in the folder
ch13\JdkProxy\src.

Chapter 13

[241]

The files are explained here:

ch13\JdkProxy\src\SimpleIntf.java

public interface SimpleIntf
{
 public void print();
}

SimpleIntf is a simple interface with a single method print. print does not accept
any parameters and also does not return any value. Our aim is that when we invoke
methods on the proxy object for SimpleIntf, the method invocation should be
turned into calls to an invocation handler's invoke method. Let us now define an
invocation handler in the following code:

ch13\JdkProxy\src\SimpleInvocationHandler.java

import java.lang.reflect.InvocationHandler;
import java.io.Serializable;
import java.lang.reflect.Method;
public class SimpleInvocationHandler implements InvocationHandler,
Serializable
{
 public SimpleInvocationHandler(){}
 public Object invoke(final Object obj, Method method,
 Object[] args) throws Throwable
 {
 if (method.getName().equals("print") && (args == null
 || args.length == 0))
 {
 System.out.println("SimpleInvocationHandler.invoked");
 }
 else
 {
 throw new IllegalArgumentException("Interface method does
 not support param(s) : " + args);
 }
 return null;
 }
}

Since SimpleIntf.print() does not accept any parameters and also does not return
any value, in the invoke method of SimpleInvocationHandler, we double check
the intention behind the actual invoker. In other words, we check that no parameters
are passed and we return null only.

JBI Proxy

[242]

Now, we have all the necessary classes to implement a proxy for SimpleIntf
interface. Let us now execute it by writing a Test class.

ch13\JdkProxy\src\Test.java

import java.lang.reflect.Proxy;
import java.lang.reflect.InvocationHandler;
public class Test
{
 public static void main(String[] args)
 {
 InvocationHandler handler = new SimpleInvocationHandler();
 SimpleIntf simpleIntf = (SimpleIntf)Proxy.newProxyInstance
 (SimpleIntf.class.getClassLoader(),new Class[] { SimpleIntf.
 class }, handler);
 simpleIntf.print();
 }
}

The wiring of the above described interfaces and classes are better represented in the
UML class diagram in the following figure:

The above figure shows the relationship between various classes and interfaces
in the sample. $Proxy0 class represents the actual proxy class generated on the
fly and as you can deduce it from the class diagram. $Proxy0 is a type of our
interface (SimpleIntf).

Chapter 13

[243]

To build the sample, first change directory to ch13\JdkProxy and execute ant as
shown here:

cd ch13\JdkProxy

ant

The command ant run will execute the Test class which will print out the following
in the console:

ServiceMix JBI Proxy
Java proxies for the JBI endpoints can be created in ServiceMix using JSR181
components. For this, the requirement is that the JBI endpoints should expose
a WSDL.

A jsr181:endpoint takes a value for the serviceInterface attribute. The JBI
container will be able to generate the WSDL out of this serviceInterface. Thus, if
we have a jsr181:endpoint exposing service to the JBI bus, it is possible to provide
a proxy for that service too.

The basic configuration for defining a JBI proxy is shown as follows:

<jsr181:proxy id="proxyBean"
 container="#jbi"
 interfaceName="test:HelloPortType"
 type="test.Hello" />

Once a proxy is defined, the same can then be referenced from your client bean or
from one of your components. The proxied JBI endpoint can then be invoked just like
a normal POJO.

JBI Proxy

[244]

If you want to define a JBI proxy within a SU, you can follow the configuration given
as follows:

<jsr181:endpoint annotations="none"
 service="test:echoService"
 serviceInterface="test.Echo">
 <jsr181:pojo>
 <bean class="test.EchoProxy"><bean class="test.EchoProxy">
 <property name="echo">
 <jsr181:proxy service="test:EchoService"
 context="#context"
 type="test.IService" />
 </property>
 </bean>
 </jsr181:pojo>
</jsr181:endpoint>

Let us now look into a few examples to make the concept clearer.

JBI Proxy Sample Implementing
Compatible Interface
First, we will create a JBI proxy implementing an interface compatible with the target
service. Then, in place of the target service we will use the proxy instance, so that
any calls intended for the target service will be first routed to the proxy. The proxy
in turn will delegate the call to the target service. The structural relationship between
various classes participating in the interaction is shown in the following figure:

<<implements>>

<<implements>> <<implements>>

<<depends>>

EchoProxyService
-echo : IEcho
+setEcho(in echo : IEcho)

+echo(in input : string)

JbiProxy
-delegate

 interface
IEcho

+echo(in input : string)

+echo(in input : string)

TargetService

-proxy

*

*

*

*

Chapter 13

[245]

Here, EchoProxyService is the class which we later expose in the JBI bus as the
service. This class implements the IEcho interface. In order to demonstrate the
proxy, EchoProxyService doesn't implement the service as such, instead depends
on the JbiProxy derived out of another class TargetService. The TargetService
contains the actual service code. As you can see, both the EchoProxyService and the
TargetService implement the same interface.

Proxy Code Listing
The codebase for the sample is located in the folder ch13\JbiProxy\
01_CompatibleInterface\01_JsrProxy\src.

This folder contains an interface IEcho and two other classes implementing the
IEcho interface namely EchoProxyService and TargetService. These classes are
explained here:

IEcho.java: The IEcho interface declares a single method echo which takes a
String parameter and returns a String.

 public interface IEcho
 {
 public String echo(String input);
 }

EchoProxyService.java: EchoProxyService is a convenient class which
will act as mechanism for routing requests to the JBI proxy. Moreover,
EchoProxyService implements the above interface IEcho.

 public class EchoProxyService implements IEcho
 {
 private IEcho echo;private IEcho echo;
 public void setEcho(IEcho echo)
 {
 this.echo = echo;this.echo = echo;
 }
 public String echo(String input)
 {
 System.out.println("EchoProxyService.echo. this = " + this);
 return echo.echo(input);
 }
 }

•

•

JBI Proxy

[246]

TargetService.java: TargetService also implements the interface IEcho.
TargetService is supposed to be our target service, and we will be
generating a JBI proxy for the TargetService.

 public class TargetService implements IEcho
 {
 public String echo(String input)
 {
 System.out.println("TargetService.echo : String. this = " +
 this);
 return input;
 }
 }

XBean-based JBI Proxy Binding
Using XBean, we will now configure the JBI proxy to be deployed onto the standard
servicemix-jsr181 JBI component. The xbean.xml is as shown as follows:

<beans xmlns:sm="http://servicemix.apache.org/config/1.0"
 xmlns:jsr181="http://servicemix.apache.org/jsr181/1.0"
 xmlns:http="http://servicemix.apache.org/http/1.0"
 xmlns:test="http://test">
 <classpath>
 <location>.</location>
 </classpath>
 <jsr181:endpoint annotations="none"
 service="test:echoService"
 serviceInterface="test.IEcho">
 <jsr181:pojo>
 <bean class="test.EchoProxyService">
 <property name="echo">
 <jsr181:proxy service="test:TargetService"
 context="#context"
 type="test.IEcho" />
 </property>
 </bean>
 </jsr181:pojo>
 </jsr181:endpoint>
 <jsr181:endpoint annotations="none"
 service="test:TargetService"
 serviceInterface="test.IEcho">
 <jsr181:pojo>
 <bean class="test.TargetService" />
 </jsr181:pojo>
 </jsr181:endpoint>
</beans>

•

Chapter 13

[247]

Here we first wire both EchoProxyService and TargetService as JSR181-compliant
services onto the JBI bus. Next we define a JBI proxy for the TargetService. If we
closely observe the proxy configuration, we can see that we are insisting that the
proxy to implement the type test.IEcho. That makes sense and is not a surprise
since the target service class, test:TargetService is also of type test.IEcho.

Deployment Configuration
For deployment, we will package the relevant artifacts for the JSR proxy binding into
a standard SA. We will also have an HTTP bound SA so that we can use a simple
HTTP client to test the setup. As the configurations are exactly the same as what we
used in the previous example, they are not repeated here.

Deploying and Running the Sample
To build the entire codebase and deploy the sample, change directory to
ch13\JbiProxy\01_CompatibleInterface which contains a top-level build.xml
file. Execute ant as shown here:
cd ch13\JbiProxy\01_CompatibleInterface
ant

Now, bring up the ServiceMix container by executing the servicemix.xml file
contained in the same folder.
cd ch13\JbiProxy\01_CompatibleInterface
%SERVICEMIX_HOME%/bin/servicemix servicemix.xml

The Client.html provided again in the same folder can be used to send messages
to test the deployed service. Now clicking Send on the client will route the request
message to the ServiceMix ESB. At the ServiceMix console, you can see that
EchoProxyService.echo is invoked first, which will then delegate the call to
TargetService.echo. This is shown in the following screenshot:

JBI Proxy

[248]

JBI Proxy Sample implementing
In-Compatible interface
In the second sample on JBI Proxy, we will make a simple but significant change in
the interfaces implemented. We will create a JBI proxy implementing an interface
incompatible to the target service. Then, in place of the target service we will use the
proxy instance. Then any calls intended to the target service will be first routed to the
proxy and the proxy in turn will delegate the call to the target service. The structural
relationship between various classes participating in the interaction is shown in
the figure:

In the above figure, you might have noticed that even though we use two completely
different types (IEcho and ITarget) as the interfaces, the methods declared
in these two interfaces are the same in every respect. This is a hack we want to
introduce intentionally. In other words our aim here is to invoke the method in
TargetService. But, we want to do it through the proxy only. We want the proxy to
be created implementing a different interface, IEcho. Hence, IEcho is different from
the ITarget. This means if we go by the normal Java type compatibility rules, the
proxy which we created here is "technically incompatible" with the target service. But
a proxy is a proxy and hence it can proxy calls even to a different type. However, As
we want to invoke the same method in the proxy too, we have purposefully kept the
method name same in both the proxy interface and the target service interface.

Proxy Code Listing
The codebase for the sample is located in the folder ch13\JbiProxy\02_
IncompatibleInterface\01_JsrProxy\src.

This folder contains the interface IEcho and the class EchoProxyService
implementing the IEcho interface. Now, we have one more interface ITarget and
another class TargetService implementing the ITarget interface.

Chapter 13

[249]

These classes are explained here:
IEcho.java: In this sample also, the IEcho interface declares a single method
echo which takes a String parameter and returns a String too.

 public interface IEcho
 {
 public String echo(String input);
 }

EchoProxyService.java: Here also the EchoProxyService is a convenient
class which will act as mechanism for routing requests to the JBI Proxy.
Moreover, EchoProxyService implements the above interface IEcho.

 public class EchoProxyService implements IEcho
 {
 private IEcho echo;private IEcho echo;
 public void setEcho(IEcho echo)
 {
 this.echo = echo;this.echo = echo;
 }
 public String echo(String input)
 {
 System.out.println("EchoProxyService.echo. this = " + this);
 return echo.echo(input);
 }
 }

ITarget.java: Here, we introduce a new interface ITarget, which is
incompatible to the interface IEcho. But purposefully we have retained the
method echo.

 public interface ITarget
 {
 String echo(String input);
 }

TargetService.java: As per our discussion earlier, TargetService
implements the new interface ITarget, not IEcho.

 public class TargetService implements ITarget
 {
 public String echo(String input)
 {
 System.out.println("TargetService.echo : String. this = " +
 this);
 return input;
 }
 }

•

•

•

•

JBI Proxy

[250]

XBean-based JBI Proxy Binding
Using XBean, we will now configure the JBI proxy to be deployed onto the standard
servicemix-jsr181 JBI component. The xbean.xml is as shown as follows:

<beans xmlns:sm="http://servicemix.apache.org/config/1.0"
 xmlns:jsr181="http://servicemix.apache.org/jsr181/1.0"
 xmlns:http="http://servicemix.apache.org/http/1.0"
 xmlns:test="http://test">
 <classpath>
 <location>.</location>
 </classpath>
 <jsr181:endpoint annotations="none"
 service="test:echoService"
 serviceInterface="test.IEcho">
 <jsr181:pojo>
 <bean class="test.EchoProxyService">
 <property name="echo">
 <jsr181:proxy service="test:TargetService"
 context="#context" type="test.IEcho" />
 </property>
 </bean>
 </jsr181:pojo>
 </jsr181:endpoint>
 <jsr181:endpoint annotations="none"
 service="test:TargetService"
 serviceInterface="test.ITarget">
 <jsr181:pojo>
 <bean class="test.TargetService" />
 </jsr181:pojo>
 </jsr181:endpoint>
</beans>

Observe the proxy configuration again. We can see that this time we are insisting
that the proxy implements the type test.IEcho, even though the interface type for
the target service is test.ITarget. This is what a proxy is all about. In clear terms,
the JBI here will generate a proxy for test.TargetService. So the proxy's exposed
interface is, by default, compliant to test.ITarget. However, we want the proxy to
be compliant to test.IEcho also, which is the interface the client initially targeted to.

Chapter 13

[251]

Deployment Configuration
For deployment, we will package again all the relevant artifacts for the JSR proxy
binding into a standard SA. We will also have an HTTP bound SA so that we can use
a simple HTTP client to test the setup. As the configurations are exactly the same as
what we used in previous example, they are not repeated here.

Deploying and Running the Sample
To build the entire codebase and deploy the sample, change directory to ch13\
JbiProxy\02_IncompatibleInterface which contains a top-level build.xml file.
Execute ant as shown here:

cd ch13\JbiProxy\02_IncompatibleInterface

ant

Now, bring up the ServiceMix container by executing the servicemix.xml file
contained in the same folder.

cd ch13\JbiProxy\02_IncompatibleInterface

%SERVICEMIX_HOME%/bin/servicemix servicemix.xml

The Client.html file provided in the same folder can be used to send messages
to test the deployed service. Now clicking Send on the client will route the
request message to the ServiceMix ESB. At the ServiceMix console you can see
that EchoProxyService.echo is invoked first which will then delegate the call to
TargetService.echo. This is shown in the following screenshot:

JBI Proxy

[252]

Invoke External Web Service from the
ServiceMix Sample
You have now seen how to set up a JBI proxy and how to invoke a proxy just like
a POJO bound to JBI. Now you can extend the same principles if you need to call
out from a JSR181 SU to a HTTP provider in order to interact with an external web
service. You can use XFire to create stub classes based on your WSDL exposed by
your external web service. Now you can inject the stub into your JSR181 SU. The stub
will be used by the proxy to generate the exchange with the HTTP provider (which
should be referenced as the "service").

You have already seen in Chapter 10, how to bind a web service external to the JBI
onto the JBI bus. Then any JBI component can exchange messages with the remote
web service. One aspect which you need to note is that we have been exchanging
messages in a document-oriented fashion. However using JBI proxy now, it is
possible to invoke web services in the RPC style from within the JBI bus. For this we
leverage the stub classes generated out from the web service WSDL using Axis.

Web Service Code Listing
We are interested in proxy setup to access a remote web service, hence we will not
discuss the details of the web service deployment in this section. Instead, we will just
browse through the important web service interfaces and the associated WSDL and
then move on to binding the proxy.

The web service implements the IHelloWeb remote interface which in turn extends
the IHello business interface. They are listed here as follows:

IHello.java: IHello is a simple BI, having a single business method hello.
 public interface IHello
 {
 String hello(String param);
 }

IHelloWeb.java: In order to deploy a web service, we need an interface
complying with the Java RMI semantics, and IHelloWeb will serve
this purpose.

 public interface IHelloWeb extends IHello, java.rmi.Remote {}

•

•

Chapter 13

[253]

HelloWebService.wsdl:
The main sections in the web service WSDL is shown as follows:

 <?xml version="1.0" encoding="UTF-8"?>
 <wsdl:definitions targetNamespace="http://AxisEndToEnd.
 axis.apache.binildas.com" ...>
 <wsdl:types ... />
 <wsdl:message ... />
 <wsdl:portType name="IHelloWeb">
 </wsdl:portType>
 <wsdl:binding name="HelloWebServiceSoapBinding"
 type="impl:IHelloWeb">
 </wsdl:binding>
 <wsdl:service name="IHelloWebService">
 <wsdl:port binding="impl:HelloWebServiceSoapBinding"
 name="HelloWebService">
 <wsdlsoap:address
 location="http://localhost:8080/AxisEndToEnd/services/
 HelloWebService"/>
 </wsdl:port>
 </wsdl:service>
 </wsdl:definitions>

This is enough about the web service and we will move on to the next step.

Axis Generated Client Stubs
We use org.apache.axis.wsdl.WSDL2Java class in the wsdl2java task to generate
client-side binding classes and stubs. The main classes are available in the folder
ch13\JbiProxy\03_AccessExternalWebService\01_ws\gensrc and they are
as follows:

HelloWebService.java

HelloWebServiceSoapBindingStub.java

IHelloWeb.java

IHelloWebService.java

IHelloWebServiceLocator.java

•

•

•

•

•

•

JBI Proxy

[254]

All the above artifacts are Axis generated client-side stubs, hence we will not look
into the details of them here. Instead, let us look into the structural relationship
between the various developer created and Axis generated artifacts shown in the
following figure:

<<implements>>

<<extends>><<extends>>
<<interface>>

IHelloWeb

+hello(in param : string)

HelloWebService

Interfaces

ESDL

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions>

</wsdl:definitions>

Stub interface
Remote

 interface
Service

RPC
API

<<extends>> <<extends>>
 interface

IHelloWebService
 interface
IHelloWeb

Axis Client
Stubs

+hello(in0 : string)
<<extends>>

<<implements>>

+getHelloWebService() : IHelloWeb
HelloWebServiceSoapBindingStub

IHelloWebSericeLocator

<<depends>>

<<extends>>

<<implements>>

<<implements>>
<<implements>>

<<depends>>

HelloProxyService
-helloProxy : IHelloProxy

+setHelloProxy(in echo : IHelloProxy)
+echo(in input : string)

JbiProxy

 interface
IHelloProxy

+hello(in input : string)

 interface
ITarget

+echo(in input : string)

TargetService

-proxy
*

*

JBI Proxy
Wiring

-delegate

delegate

+echo(in input : string)

*

-helloWeb :IHelloWeb

<<interface>>
IHello

<<interface>>
Remote

*

Axis Web
Service

Chapter 13

[255]

Referring to the above diagram, let us understand the relevant artifacts. Similar to
the samples previously listed in this chapter, here our aim is to generate a JBI proxy
for an externally bound web service. We are doing this using the following classes:

ITarget.java: This interface is synonymous to the BI IHello, having a single
business method hello. We want to auto-route request-response through the
JBI proxy. In order to facilitate this we have retained the method signature in
the interfaces the same.

 public interface ITarget
 {
 String hello(String input);
 }

TargetService.java: In TargetService, we auto-wire the web service stub.
So, the helloWeb instance field in TargetService will hold a reference
to the stub to the web service. When the hello method is invoked in
TargetService, the call is delegated to the stub which will invoke the
remote web service.

 public class TargetService implements ITarget
 {
 private com.binildas.apache.axis.AxisEndToEnd.
 IHelloWeb helloWeb;
 public TargetService(){}
 public TargetService(com.binildas.apache.axis.
 AxisEndToEnd.IHelloWeb helloWeb)
 {
 this.helloWeb = helloWeb;
 }
 public String hello(String input)
 {
 System.out.println("TargetService.echo : String. this = " +
 this);
 try
 {
 return helloWeb.hello(input);
 }
 catch(Exception exception)
 {
 exception.printStackTrace();
 return exception.getMessage();
 }
 }
 }

•

•

JBI Proxy

[256]

IHelloProxy.java: We now need to wire the JBI proxy to the web services
stub. IHelloProxy is an interface defined for this purpose and hence is
having the same single business method, hello.

 public interface IHelloProxy
 {
 public String hello(String input);
 }

IHelloProxyService.java: HelloProxyService is a wrapper or adapter
for the JBI proxy. In other words, the helloProxy instance field in
HelloProxyService will refer to the JBI proxy.

 public class HelloProxyService implements IHelloProxy
 {
 private IHelloProxy helloProxy;
 public void setHelloProxy(IHelloProxy helloProxy)
 {
 this.helloProxy = helloProxy;
 }
 public String hello(String input)
 {
 System.out.println("HelloProxyService.hello. this = " + this);
 return helloProxy.hello(input);
 }
 }

The bean wiring discussed in this section is done using Spring and is shown in the
next section.

XBean-based JBI Proxy Binding
Using XBean, we will now configure the JBI proxy to be deployed onto the standard
servicemix-jsr181 JBI component.

The xbean.xml is as shown in the following code:

<beans xmlns:sm="http://servicemix.apache.org/config/1.0"
 xmlns:jsr181="http://servicemix.apache.org/jsr181/1.0"
 xmlns:http="http://servicemix.apache.org/http/1.0"
 xmlns:test="http://test">
 <classpath>
 <location>.</location>
 </classpath>
 <jsr181:endpoint annotations="none"
 service="test:echoService"

•

•

Chapter 13

[257]

 serviceInterface="test.IHelloProxy">
 <jsr181:pojo>
 <bean class="test.HelloProxyService">
 <property name="helloProxy">
 <jsr181:proxy service="test:TargetService"
 context="#context"
 type="test.IHelloProxy" />
 </property>
 </bean>
 </jsr181:pojo>
 </jsr181:endpoint>
 <jsr181:endpoint annotations="none"
 service="test:TargetService"
 serviceInterface="test.ITarget">
 <jsr181:pojo>
 <bean class="test.TargetService" >
 <constructor-arg type="com.binildas.apache.axis.
 AxisEndToEnd.IHelloWeb">
 <ref bean="stub"/>
 </constructor-arg>
 </bean>
 </jsr181:pojo>
 </jsr181:endpoint>
 <bean id="stub"
 class="com.binildas.apache.axis.AxisEndToEnd.
 HelloWebServiceSoapBindingStub">
 <constructor-arg type="java.net.URL" index="0">
 <ref bean="url"/>
 </constructor-arg>
 <constructor-arg type="javax.xml.rpc.Service" index="1">
 <ref bean="serviceLocator"/>
 </constructor-arg>
 </bean>
 <bean id="url" class="java.net.URL">
 <constructor-arg>
 <value>http://localhost:8080/AxisEndToEnd/
 services/HelloWebService</value>
 </constructor-arg>
 </bean>
 <bean id="serviceLocator"
 class="com.binildas.apache.axis.AxisEndToEnd.
 IHelloWebServiceLocator">
 </bean>
</beans>

JBI Proxy

[258]

We now have enough configurations to invoke the external web service. Is there
anything fishy in the configuration above? You can go through that once again and
let me wait till the end of our discussion to explain what I am hiding from you at
this point.

Deployment Configuration
For deployment, we will package again all the relevant artifacts for the JSR proxy
binding into a standard SA. We will also have an HTTP bound SA so that we can
use a simple HTTP client to test the setup. As the configurations are exactly the
same as what we used in the previous example, they are not repeated here. But
we need to mention one thing here. The JBI proxy uses web service stub classes to
invoke the external service and hence depends on the Axis libraries. We resolve this
dependency by compiling the stub classes and including them also in the SA. We
also copy all relevant Axis API jars to the ServiceMix optional library path. The ant
target for that is given here:

<target name="copy-dependency" depends="init">
 <javac srcdir="../01_ws/gensrc" destdir="${build.dir}">
 <classpath refid="javac.classpath" />
 <include name="**/*ServiceLocator.java"/>
 </javac>
 <copy todir="${servicemix.home}/lib/optional" overwrite="true">
 <fileset dir="${axis.home}/lib" includes="*.jar" />
 </copy>
</target>

Deploying and Running the Sample
To build the entire codebase and deploy the sample, change directory to ch13\
JbiProxy\03_AccessExternalWebService which contains a top-level build.xml
file. Execute ant as shown here:

cd ch13\JbiProxy\03_AccessExternalWebService

ant

This will build the web service, generate required web service client stubs, and
also package all the necessary service assemblies. First, we need to deploy the web
service. For that, transfer the web service war file placed in ch13\JbiProxy\03_
AccessExternalWebService\01_ws\dist folder into the webapps folder of your
favorite web container and restart the container. You can double check whether your
web service deployment works by executing a client kept in the web service folder
itself. For that, execute the ant run target as follows:

Chapter 13

[259]

ch13\JbiProxy\03_AccessExternalWebService\01_ws

ant run

Now, bring up the ServiceMix container by executing the servicemix.xml file
contained in the same folder.

ch13\JbiProxy\03_AccessExternalWebService

%SERVICEMIX_HOME%/bin/servicemix servicemix.xml

The Client.html provided again in the same folder can be used to send messages to
test the deployed service.

Proxy and WSDL Generation
I have asked you to go through the JBI proxy XBean configuration once more in a
previous section. Do you think we have actually made the web service a proxy? If
we need to truly proxy the web service, then the XBean configuration should be
something like the following code:

<jsr181:endpoint annotations="none"
 service="test:TargetService"
 serviceInterface="com.binildas.apache.axis.
 AxisEndToEnd.IHelloWeb">
 <jsr181:pojo>
 <bean class="com.binildas.apache.axis.AxisEndToEnd.
 HelloWebServiceSoapBindingStub" >
 <constructor-arg type="java.net.URL" index="0">
 <ref bean="url"/>
 </constructor-arg>
 <constructor-arg type="javax.xml.rpc.Service" index="1">
 <ref bean="serviceLocator"/>
 </constructor-arg>
 </bean>
 </jsr181:pojo>
</jsr181:endpoint>

The above configuration is right and that is what we need to proxy the web service.
However the issue here is that the class HelloWebServiceSoapBindingStub, which
if you look at the source code you can see, is dependent on many apache axis RPC
API classes. For proper JBI proxying, the JBI container should be able to generate
WSDL out of the exposed API but it may not make sense to generate WSDL out of
these RPC-dependent classes. In fact the WSDL generator fails and throws an error.
Hence instead what we have done in the previous example is that we have a proxy
wrapper TargetService to which we inject the HelloWebServiceSoapBindingStub
instance using the Spring injection mechanism. Then we delegate any calls from the
TargetService instance to the stub instances, and that does the magic.

JBI Proxy

[260]

Summary
Proxies are strong features in the Java language package, and similar functionality
can be availed from within your JBI ESB using JBI proxies. Interception and
re-routing are some of the features we can implement using proxies. You have also
seen how an external web service can be bound to the JBI bus and then exposed
as proxies within the bus itself so that other components within the bus can route
messages through these proxies. The building blocks demonstrated in this chapter
can be used to solve your integration problems.

We will look into a more interesting concern in the services network—versioning of
services, in the next chapter.

Web Service Versioning
Versioning service, especially of the web services, is a topic of heated discussions in
many of the forums and sites. Even though there are many approaches to this topic,
we cannot often find any concrete guideline or code showing the implementation.
This is because the topic is not simple. The term "Versioning" means different
things to different people, depending upon the context in which they are speaking.
For some, versioning means a way to manage compatible change in the service
implementation alone, without any major change in the service description.
However, for those who define services for a large corporate enterprise, versioning is
a mechanism or tool without which he cannot control the ever increasing complexity
of an SOA ecosystem.

The effective use of an ESB infrastructure provides a means to solve the versioning
problems and in this chapter we are going to look at the working code in action
demonstrating how we can version the web services.

We will look into the following topics in particular:

The what and why of service versioning
Versioning in an SOA context—what is required
Different strategies in versioning the web services
Approaches in versioning the web services
A service versioning sample—working code in ESB

Service Versioning—A Means to SOA
Versioning is important, whether we are dealing with binary programming paradigms
such as the Global Assembly Cache (GAC) of .NET run time or we are dealing with
SOA infrastructures such as the ESB. However when it comes to SOA, versioning will
have a slightly different meaning which I will try to describe in this section.

•

•

•

•

•

Web Service Versioning

[262]

Services are Autonomous
SOA is now the buzzword—people use it in every other context; everyone has
their own beliefs and understanding. Whatever it is, autonomy becomes the prime
concern in an SOA implementation. First, let us ask ourselves why we moved
away from our old CORBA or our well-known Java RMI architectures for service
implementation and consumption. Leaving aside all the varied definitions of SOA
and the many advantages an SOA yields, autonomy is one of the best features SOA
brings to the table of both the providers and consumers. Service providers can keep
on changing their service implementations, either to add a new functionality or to
extend or enhance the existing functionality. In doing so, service consumers should
be unaffected; that is, they shouldn't even be aware that something has changed.
Needless to say that the services description shouldn't change, not even the service
URL should change.

Change is the Only Constant Thing
If everything remains static, it is an ideal world for an engineer, even though
an artist would then curse the world. However, time has shown that the only
constant thing in the world is change. Networks change, platforms and frameworks
change, operating systems change in versions and supportability, and service
implementations also change.

A change may be to enhance the QOS, perhaps to improve the response time by
introducing a new algorithm in the code. Change can also add a new functionality
to the existing service endpoints. Such changes are usually manageable by not
revealing the change to the external world, especially to the service consumer.
Sometimes, we may also need to introduce or cut short a parameter to the already
existing service method. In such a case the existing consumers may have to do some
changes at their end also, to make the stubs compatible to the server-side changes.
In fact many times, the service consumers have to rebuild and recompile their
client-side stubs and adjust their calling code to make them comply with the remote
interface. For small deployments these can be done by developers with the best
design and code practices and with the help of IDEs and tools. However, this will
turn out to be a nightmare when the number of services keeps on increasing, which
is typical of every growing enterprise.

All Purpose Interfaces
There is also the notion of a generic or whole purpose service interface. A sample is
shown in the following code:

public String serviceMethod(String serviceXml);

Chapter 14

[263]

The above interface talks about a generic service (even the method name is generic,
"serviceMethod"), which takes a generic parameter and returns again a generic
value. Passing the XML in a document style to a generic method interface like the
one shown above is an example. Here, whenever a change is required we needn't
reflect that in the interface-level, but every change is hidden in the string formatted
request and response messages. At first sight this might seem to be a solution to
the change problem, but experience has shown that this is in fact an anti-pattern in
the SOA world. We lose all static type binding which means even the tools will not
find out any mismatch or type validation errors. This will be revealed only after the
service invocation as a reactive error scenario.

SOA Versioning—Don't Touch the
Anti-Pattern
Let us consider a typical web service method such as the following:

public String transferFund(String fromAccount, String toAccount,
 double amount);

Here, the method will transfer the fund from one account to another. Let us assume
that one fine day we want to change the service to accept one more extra parameter,
like the one shown in the following code:

Public String transferFund(String fromAccount, String toAccount,
 double amount, String transactionPassword);

Now, here are a set of questions for the reader. We may or may not answer all these
questions but at least agree that we identify the possible caveats to our traditional
thinking! The following are the questions for the readers to think over.

1. Do we need to version services or operations?
The first question in SOA is whether transferFund is a service or an
operation. We need to appreciate that a web service is described by a WSDL
and a WSDL can contain multiple operations defined in the portType. If so,
when transferFund needs to include one more parameter in the request, has
the version of the operation changed or the version of the service changed?

2. Can we overload a service?
If we consider object-oriented programming, the same class can include both
"versions" of the transferFund method—we call it method overloading.
Fortunately or unfortunately, WSDL doesn't allow method overloading. Now
we are left with few other strategies (or hacks?) to combat the change, which
is described in the next point.

Web Service Versioning

[264]

3. New version or new service?
To handle the new extra parameter, I can create the transferFund02 method
which will take an extra parameter or rename the service name to something
different like transferFundSecurely. Whatever our strategy, the question
here is have we created a new version of the service or an entirely
new service?

4. Will our information model save us from schema changes?
Let us consider a new service:
public Address getAddress(CustomerInfo customerInfo);

The above service will return back an Address if you provide the Custom-
erInfo of the customer whose Address has to be retrieved. Now, let us look
into Address.

 public class Address{
 private String houseNumber;
 private String street;
 private String city;
 }

Now, we change the Address to include an additional field to also take care
of the zip code as shown here:

 public class Address{
 private String houseNumber;
 private String street;
 private String city;
 private String zip;
 }

Do you think this change has introduced any change to the getAddress
service? Apparently not, since the service definition remains the same, but
in fact I have altered my data type which in turn will make the existing
consumer codebase incompatible with the new service.

So far so good, now the final question—for scenarios that we have seen above,
should we create a new version of the existing service or should we define a new
service itself by not disturbing the existing one?

Rather let us restate the above points in this manner—in SOA, services shouldn't
mutate from version to version. This will safeguard any existing consumers.
However, new services can be introduced which is not too complicated because
new services will have their own separate endpoints. Moreover, irrespective of
whether the consumers are new or existing, they will use the new endpoint to avail
the new service. At the same time services can also be enhanced or upgraded. An
enhancement can involve increasing the QOS features of the service or bringing in

Chapter 14

[265]

new implementation technologies behind the scenes, keeping the service interface
untouched. When you upgrade a service, you can now decide what to do with the
"old version" of the same service. I purposely used the words "old version" this time
because versioning of services makes sense in the context of enhancing or upgrading
services only, not in the context of introducing new services.

Types can Inherit—Why not My Schemas
Again in OOP, you can define a base type (like Animal) and derive multiple types
(like Cat and Dog) from that. The derived classes are always type compatible to the
base type (You can always substitute an Animal with a Cat or a Dog).

W3C XML schema's <extension> provides us a means to extend XML schemas.
How can this be of any use to our web service? Can we substitute an Address XML
instance which contains a zip code element in place of where a service expects an
Address without the zip code? Whether the service will still work or not depends on
what extra hooks you attach to your web services infrastructure to bridge the schema
mismatch. Hence, we acknowledge the fact that schemas are extensible and are also
able to version. But that might not straightaway map to the concept of extending
versioning principles to services.

If Not Versions, Then What
Having discussed enough about versioning around services, let us now look into
what is needed in an SOA. We all agree that multiple flavor (variants) of service can
exist and if all of them coexist, we need a good governance mechanism also to satisfy
consumer requests as per the agreed upon SLA. This is where an ESB-based routing
mechanism will add value. The word "version" is very common to the software
developers and so, we prefers to retain that word in the discussions also—to point
to multiple variants of the service. Let us now look into versioning of services in
this context.

Strategy to Version Web Service
Given the problem of change, the next thing is to find out the exact mechanism
to follow to version control the services. In fact, we have already seen one way,
which is the generic string formatted messages approach, but as discussed, this may
not be the best available method. We will now look into multiple options available
for service versioning.

Web Service Versioning

[266]

Which Level to Version
One important question to answer in service versioning is the level at which we have
to version control. By level we mean whether at the whole service interface-level
or at the individual service method-level. Perhaps this question is out of context
because when we speak on SOA and its constituent services, we always means
services which are coarse grained, which are never individual fine grained method
invocations. In other words, we always speak about "transfer fund", "authorize
credit", or "validate service" request in SOA, but not fine grained methods such as
"update balance cell in account table". This follows that services can be versioned as
a whole. For example, in a fund transfer service we can either version control for the
service fund transfer or for the individual, composed services such as withdrawal
and deposit. To version control as a whole, we need to version the fund transfer
service, not the composed fine grained methods.

Version Control in a Schema
An XML schema is used in a web service description to define the message
parameters exchanged between the consumers and providers. The XML schema also
defines a namespace which differentiates one schema from another. Moreover, a
schema also provides a mechanism for extensibility. Thus, a XML schema is a double
edged sword. On one side, it gives the flexibility of extension and on the other side it
gives a mechanism to constraint or separate out between extensions. Let us look into
a sample schema and explain this.

<?xml version="1.0" encoding="ISO-8859-1" ?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.product.org">
 <xs:complexType name="employee">
 <xs:sequence>
 <xs:element name="firstName" type="xs:string"/>
 <xs:element name="lastName" type="xs:string"/>
 <xs:any namespace="##any"
 processContents="lax"
 minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
<xs:schema>

The above is an extensible XML schema. The firstName and lastName elements are
bound whereas it provides an extension mechanism to add additional constructs
after the lastName (for example, Binil Das Mr, Craig Maret PhD, and so on) while
still remaining valid based on the overall schema definition. At the same time, the
targetNamespace mechanism also helps us to separate out different schemas, and
thus to differentiate between schema constrained XML data.

Chapter 14

[267]

targetNamespace for WSDL
A WSDL document is the description of a web service and has a definitions element
that contains the types, message, portType, binding, and service elements.

For the definitions element, targetNamespace is the namespace for information
about the referred service. One WSDL document can import other WSDL documents,
and setting targetNamespace to a unique value ensures that the namespaces do
not clash. The default namespace of the WSDL document is xmlns, and it is set to
http://schemas.xmlsoap.org/wsdl/. All the WSDL elements, such as definitions,
types and messages reside in this namespace. xmlns:xsd and xmlns:soap are the
standard namespace definitions used for specifying SOAP-specific information as
well as data types. xmlns:tns stands for this namespace.

The WSDLs are generated out of the service interfaces. These interfaces may be
in Java or .NET. When tools generate the WSDL, they will have their default
strategy on what value to put for the targetNamespace attribute. Many a times,
this can be overridden by the tools. Apache Axis WSDL2Java and Java2WSDL do
this. Hence, targetNamespace is an attribute which we can control if required. The
targetNamespace can be given values in multiple formats, depending upon which
way we want to control. Examples are given here:

targetNamespace=http://www.binildas.com/types/products/v1/1
targetNamespace=http://www.binildas.com/2006/12/30/products

This also provides an excellent mechanism to version control services and we will
demonstrate this in examples later in this chapter.

Version Parameter
Including a version parameter is another method. This special parameter is usually
passed through the headers of the web service request. It is also possible to include
this parameter in the message payload (or body content). In either form, in order
to make this mechanism work we need to pass the value for the version parameter
along with every request. A sample SOAP request with a version parameter in the
header is shown in the following code:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
 <soap:Header>
 <Version xmlns="http://product.services/binildas.com">
 2.2
 </Version>
 </soap:Header>
 <soap:Body>

 </soap:Body>
</soap:Envelope>

Web Service Versioning

[268]

As disscussed before, the same can be included in the body as shown in the
following code:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
 <soap:Header>
 </soap:Header>
 <soap:Body>
 <svc:hello xmlns:svc="http://product.services/binildas.com">
 <Version xmlns="http://product.services/binildas.com">
 2.2
 </Version>

 </svc:hello>
 </soap:Body>
</soap:Envelope>

Web Service Versioning Approaches
We have seen a few strategies of web service versioning. Let us now look at some
approaches of implementing those versioning strategies.

Covenant
A covenant is an if-then-else way of versioning approach. This can be done using
multiple strategies which we saw earlier. In any strategy, the covenant approach
looks for some ifs, and depending upon the outcome of the condition a suitable
then clause will be executed. It can also have an else or a default clause. Hence this
approach is usually combined with a versioning flag and this flag can be either in
the form of a version parameter or in the form of a version sensitive value in the
targetNamespace. This is shown in the following figure:

Chapter 14

[269]

A covenant is usually exposed in a Single Endpoint Address. Hence, all Consumers
will send messages to the same address. Depending upon which version of the
service contract the Consumer is using a suitable version flag will be passed either
as a version parameter or through the targetNamespace. The covenant usually
implements a content-based router. A content-based router is used to route each
message to the correct recipient based on the message content. The routing can be
based on a number of criteria such as the existence of a version parameter and the
version info in targetNamespace,. The advantage of the covenant approach is that
Consumers are unaware that multiple service versions coexist at the Provider's end.
Hence they needn't adjust their address to route to specific service versions. Instead,
they will place their version flag in the message and send it to the same address. It is
up to the covenant to redirect the message to the appropriate version of the service.

Multiple Endpoint Addresses
In the Multiple Endpoint Address approach, each version of the web service
is allotted a separate endpoint address, and they are then bound to a look up
mechanism like a registry. Now, the Consumer has to decide the endpoint address
for service invocation by looking at the Service Registry, and cross matching the
version of interest. Then the Consumer sends messages to the selected endpoint
address of interest. This channel will route the Message straight to the exact version
of the service. The schema is shown in the following figure:

Web Service Versioning

[270]

Web Service Versioning Sample using
ESB
We discussed the theory of web service versioning, now it is time to put that in code.
Let us do that with the help of a sample use case. One thing to be noted here is that
to implement the sample we make use of EIPs building blocks which are described in
detail in a chapter of their own.

Sample Use Case
The sample use case is about setting up the JBI components to effectively enable the
versioning mechanism in the services. All these components are configured in the
ESB. An external client interacts with the ESB thus testing the versioning mechanism.
The ESB is bound to the different versions of services, which are defined external and
remote to the ESB. The ESB will apply the versioning rules and route the requests
to the respective version of the service. The sample use case is illustrated here in the
following figure:

Chapter 14

[271]

In fact this sample is not as complicated as the figure make it look. We will see the
individual components first and understand the flow.

JMS client: In this sample, we use the JMS channel to send web service
requests. The JMS Client reads the SOAP request message from a file and
sends the message to the JMS Consumer queue configured in the ESB. One
point to be noted here is that we are going to use the targetNamespace
mechanism of the WSDL to implement the service versioning. If we open
the SOAP request, we can see how we have designed the SOAP request so
as to include a version specific value for the namespace attribute. The value
corresponds to the targetNamespace attribute of WSDL for the SOAP request.
JMS consumer: The JMS Consumer is a servicemix-jms component which
allows you to send JMS messages to the configured queue. A consumer role
for the servicemix-jms component implies the component is a consumer
to the NMR. Any messages coming to the queue will be transferred to the
targetService attribute for the JMS Consumer.
WhiteSpace transformer: A valid SOAP request can come in several forms,
all in a single long line or separated out into multiple lines, formatted with
indentations and spaces. To make the content ready for an XPath query
match later in the flow, we use the extraneous WhiteSpace Transformer
component which will trim out all extraneous white spaces from the SOAP
request payload and normalize it into a single line.
Content-based router: The ContentBased Router is used for all kinds of
content-based routing. We earlier discussed that we have designed the SOAP
request so as to include a version specific value in the targetNamespace
attribute for the SOAP request. Hence now we will use a ContentBased
Router which is a servicemix-eip component. This component will inspect
the value for the namespace attribute corresponding to the targetNamespace
attribute of the WSDL embedded in the SOAP request and see the matching
rule configured at the component-level. Depending upon the match, the
ContentBased Router will route the SOAP request message to any one of the
set of Transformer Pipelines configured.
Transformer pipeline: The pipeline is a standard EIP component and hence
is available readily as a standard JBI EIP component in ServiceMix. The
pipeline component is an integration bridge between an In-Only (or Robust-
In-Only) MEP and an In-Out MEP. By receiving an In-Only MEP by the
pipeline, it will send the input message in an In-Out MEP to the transformer
destination and then in turn forward the response in an In-Only MEP to the
target destination. As per that, our aim here is to send the message to an In-
Out MEP component (a content retriever in our case) and then to route the
out message from that component to the next chain in the flow (which again
in our case is a second pipeline).

•

•

•

•

•

Web Service Versioning

[272]

Content retriever: The functionality of this component is to extract the
payload part from the incoming SOAP request. Hence, we trim out the
SOAP envelope and body tags, and extract only the contents within the body
element to be sent to the next component. We said that we need to invoke
a web service and you might wonder why we want to extract the payload
alone rather than sending the whole SOAP request to the target web service.
The reason why we are doing this will be evident when we review the HTTP
Provider. Content Retriever will send the out part of the message back to the
transformer pipeline. The Transformer Pipeline will route this message to the
next component in the chain, which is the Service Pipeline.
Service pipeline: Our aim here is to send the input message in an In-Out
MEP to the next component which is the HTTP Provider. Then in turn
forward the response in an In-Only MEP to the target destination, which is
the output JMS queue.
HTTP provider: A HTTP Provider role implies that the NMR is the consumer
to the component. Hence, the HTTP Provider is linked with the Remote Web
Service so that any request coming to the HTTP Provider can be routed to
the web service. When the HTTP Provider sends a request to the web service,
it needs to specify a SOAP action in the request header. To facilitate this
we have two attributes namely, soap and soapAction at the HTTP
Provider-level. A true value for soap attributes is supposed to wrap the
message body in a SOAP envelope whereas the value for soapAction will be
embedded as the SOAP action in the request header. For some reason, if we
specify the soapAction attribute alone, servicemix-http does not forward
the SOAP action header. Hence we are specifying soap and soapAction
together. However, soap will wrap the request in the SOAP envelope. We
don't want the body content wrapped in two levels of SOAP envelope. That
is why in the Content Retriever component (we already have seen this short
while ago) we extract only the contents within the body element to be send to
the next component.
Remote web service: This is a normal web service which can be deployed in
any web container infrastructure.
JMS provider: The SOAP response is placed back in the queue configured
in the JMS Provider component from where the client program picks up
the message.
HTTP consumer: The HTTP Consumer components configured here are
just to help you to send arbitrary messages to the sample set up for any
ad-hoc testing.

•

•

•

•

•

•

Chapter 14

[273]

We have now seen the major components configured for the sample application and
how the message flows through them. We also have a few more settings so that we
can actually demonstrate that we can control multiple versions of web services to be
exposed to clients in the covenant-based settings. Let us look that now.

In fact, we have two SOAP requests, each having two different values for the
targetNamespace attribute. We also have two JMS client programs so that the readers
can easily test these two SOAP requests on the ESB. To make sure the requests are
routed separately to different web services based on the value of targetNamespace
attribute, we also have two web services hosted and bound to the ESB infrastructure.

Now we will move on to the details of the configuration and other settings for
the demonstration. For that, also have a look at the files and folder structure
organization we have so that we can host and manage two versions of web service in
the demo setup.

Web Service Versioning

[274]

The figure shows only the files required for the demo setup. The top-level build is
capable of calling the build files in the child project folders and thus can build the
entire demo in a single go. This will then create many intermediate and final folders
and artifacts which are not shown here.

Configure Components in ESB
In the sample use case section you have seen the various components used for the
demo, and you have also seen the flow of message. Let us follow the same order for
components and see how they are configured in ServiceMix so that you can easily
correlate to the flow we explained earlier.

JMS client: There are two versions of the JMS clients. They are:
ch14\WebServiceVersioning\JMSClient20061231.java

ch14\WebServiceVersioning\JMSClient20070101.java

Both these client programs are similar except the fact that JMSCli-
ent20061231.java refers to SoapRequest20061231.xml whereas JMSCli-
ent20070101.java refers to SoapRequest20070101.xml. The code for
JMSClient20061231 is shown as follows:

 public class JMSClient20061231
 {
 private static final String REQUEST_FILE =
 "/SoapRequest20061231.xml";
 public static void main(String[] args) throws Exception
 {
 ActiveMQConnectionFactory factory =
 new ActiveMQConnectionFactory("tcp://localhost:61616");
 ActiveMQQueue pubTopic = new ActiveMQQueue("queue/A");ActiveMQQueue pubTopic = new ActiveMQQueue("queue/A");
 ActiveMQQueue subTopic = new ActiveMQQueue("queue/B");
 Connection connection = factory.createConnection();Connection connection = factory.createConnection();
 Session session = connection.createSession(false,
 Session.AUTO_ACKNOWLEDGE);
 MessageProducer producer = session.createProducer(pubTopic);
 MessageConsumer consumer = session.createConsumer(subTopic);
 connection.start();
 InputStream inputStream = JMSClient20061231.class.
 getClass().getResourceAsStream(REQUEST_FILE);
 int available = inputStream.available();
 byte[] bytes = new byte[available];
 inputStream.read(bytes);
 inputStream.close();

•

Chapter 14

[275]

 String requestString = new String(bytes);
 producer.send(session.createTextMessage(requestString));
 TextMessage textMessage = (TextMessage)
 consumer.receive(1000 * 10);
 if(textMessage == null)
 {
 System.out.println("Response timed out.");
 }
 else
 {
 System.out.println("Response was: " +
 textMessage.getText());
 }
 connection.close();
 }
 }

The program opens the file SoapRequest20061231.xml, reads the content,
and then sends the content to the JMS queue configured as the web service
gateway channel at the ESB end. Let us also look at the SOAP request
format to understand how we place a value for the namespace of the XML
element corresponding to the targetNamespace attribute of WSDL. For this,
SoapRequest20061231.xml contents are shown as follows:

 <?xml version="1.0" encoding="UTF-8"?>
 <soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/
 soap/envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-
 instance">
 <soapenv:Body>
 <ns1:hello soapenv:encodingStyle=
 "http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:ns1="http://version20061231.ws.
 servicemix.esb.binildas.com">
 <in0 xsi:type="soapenc:string"
 xmlns:soapenc="http://schemas.xmlsoap.org/
 soap/encoding/">
 Binil
 </in0>
 </ns1:hello>
 </soapenv:Body
</soapenv:Envelope>

Web Service Versioning

[276]

Let us pay attention to the ns1 namespace. We have given a value of
"http://version20061231.ws.servicemix.esb.binildas.com" for this
namespace and we are going to use this tweak to version control the services.
You may want to have a look at the WSDL for the remote web service also
to correlate how the ns1 namespace corresponds to the targetNamespace
attribute of WSDL.
JMS consumer: JMS consumer is a servicemix-jms component
configured in the consumer role. We configure queue "A" as the
input queue for all the test messages. We have also configured test:
extraneousWhiteSpaceTransformer as the targetService for this JMS
consumer so that the JMS consumer will route any messages coming to the
queue "A" to the extraneousWhiteSpaceTransformer component. This is
shown in the following code:

 <sm:activationSpec>
 <sm:component>
 <jms:component>
 <jms:endpoints>
 <jms:endpoint service="test:MyConsumerService"
 endpoint="myConsumer"
 role="consumer"
 soap="false"
 targetService="test:
 extraneousWhiteSpaceTransformer"
 defaultMep="http://www.w3.org/2004/08/
 wsdl/in-only"
 destinationStyle="queue"destinationStyle="queue"
 jmsProviderDestinationName="queue/A"
 connectionFactory ="#connectionFactory"connectionFactory ="#connectionFactory"
 />
 </jms:endpoints>
 </jms:component>
 </sm:component>
 </sm:activationSpec>

Whitespace transformer: The whitespace transformer is a ServiceMix
XsltComponent. It uses a stylesheet to remove all extraneous white
spaces from the message. The trimmed message is then routed to the next
component, which is the test:router.

 <sm:activationSpec componentName="extraneousWhiteSpaceTransformer"
 service="test:extraneousWhiteSpaceTransformer"
 destinationService="test:router">
 <sm:component>
 <bean class="org.apache.servicemix.components.
 xslt.XsltComponent">
 <property name="xsltResource"

•

•

Chapter 14

[277]

 value="RemoveExtraneousWhiteSpace.xsl"/>
 </bean>
 </sm:component>
 </sm:activationSpec>

The XsltComponent uses a stylesheet to strip out all extraneous white
spaces from the message. The stylesheet is shown as follows:

 <?xml version="1.0" encoding="utf-8"?>
 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/
 Transform" version="1.0">
 <xsl:output method="xml" version="1.0" indent="no"/>
 <xsl:strip-space elements="*"/>
 <xsl:preserve-space elements="xsl:text"/>
 <xsl:template match="/|*|@*|processing-instruction()">
 <xsl:copy>
 <xsl:apply-templates select="@*|node()
 [not(self::comment())]"/>
 </xsl:copy>
 </xsl:template>
 </xsl:stylesheet>

Content-based router: This is the core of the demonstration setup and this is
where the decision as to which version of the service is to be invoked takes
place. Let us look at this component in detail.

 <eip:content-based-router service="test:router"
 endpoint="endpoint">
 <eip:rules>
 <eip:routing-rule>
 <eip:predicate>
 <eip:xpath-predicate xpath="number(substring-before(
 substring-after(namespace-uri-for-prefix(
 substring-before(name(/*/child::node()/
 child::node()), ':'),/*/child::node()/
 child::node()), 'http://version'),
 '.ws.servicemix.esb.binildas.com'))
 < 20061231" />
 </eip:predicate>
 <eip:target>
 <eip:exchange-target service="test:
 pipelineTransformBefore20061231" />
 </eip:target>
 </eip:routing-rule>
 <eip:routing-rule>
 <eip:predicate>

•

Web Service Versioning

[278]

 <eip:xpath-predicate xpath="number(substring-before(
 substring-after(namespace-uri-for-prefix(
 substring-before(name(/*/child::node()/
 child::node()), ':'),/*/child::node()/
 child::node()), 'http://version'),
 '.ws.servicemix.esb.binildas.com'))
 = 20061231" />
 </eip:predicate>
 <eip:target>
 <eip:exchange-target service="test:
 pipelineTransform20061231" />
 </eip:target>
 </eip:routing-rule>
 <eip:routing-rule>
 <eip:predicate>
 <eip:xpath-predicate xpath="number(substring-before(
 substring-after(namespace-uri-for-prefix(
 substring-before(name(/*/child::node()/
 child::node()), ':'),/*/child::node()/
 child::node()), 'http://version'),
 '.ws.servicemix.esb.binildas.com'))
 > 20061231" />
 </eip:predicate>
 <eip:target>
 <eip:exchange-target
 service="test:pipelineTransformAfter20061231" />
 </eip:target>
 </eip:routing-rule>
 <eip:routing-rule>
 <eip:target>
 <eip:exchange-target
 service="test:pipelineTransformAfter20061231" />
 </eip:target>
 </eip:routing-rule>
 </eip:rules>
 </eip:content-based-router>

The above content-based router has three conditional targets and a default
target. To evaluate the content, the router uses the XPath predicate where we
can plug in our rules in the XPath format.
The rule which we plug in here is repeated again:

 number(substring-before(substring-after(namespace-uri-for-prefix(
 substring-before(name(/*/child::node()/child::node()), ':'),
 /*/child::node()/child::node()), 'http://version'),
 '.ws.servicemix.esb.binildas.com'))

Chapter 14

[279]

This rule has to be understood in relation to the SOAP request which we
have already seen. Let us repeat the relevant portion again here:

 <?xml version="1.0" encoding="UTF-8"?>
 <soapenv:Envelope …>
 <soapenv:Body>
 <ns1:hello xmlns:ns1="http://version20061231.ws.
 servicemix.esb.binildas.com" …>
 <in0 xsi:type="soapenc:string"
 xmlns:soapenc="http://schemas.xmlsoap.org/
 soap/encoding/">Binil</in0>
 </ns1:hello>
 </soapenv:Body
 </soapenv:Envelope>

The XPath predicate shown above is intended to cut the version part alone
from the namespace attribute in the SOAP request. We have appended year,
month and date in integer form together to form an easy representation
of version. If required, we can also append the timestamp portion to the
version attribute to make it more agile! In any case, we take the version
value and compare it in the router. In the above router, we have following
pseudocoded rule:

 if(${version} < 20061231)
 target : test:pipelineTransformBefore20061231
 else
 if(${version} = 20061231)
 target : test:pipelineTransform20061231
 else
 if(${version} > 20061231)
 target : test:pipelineTransformAfter20061231
 else
 target : test:pipelineTransformAfter20061231

Hence, depending upon which version the SOAP request is targeted to,
the content-based router will route the request to the appropriate
pipeline transform.
We have provided two SOAP request files for testing. They are:
SoapRequest20061231.xml

SoapRequest20070101.xml

As is evident from their names, SoapRequest20061231.xml has 20061231
embedded as the version in the body whereas SoapRequest20070101.xml
has 20070101 as its version. The readers are free to change this version
values to their own figures to test whether or not the router behaves
appropriately. If required, the readers can also add more clauses to the
rules in the content-based router and understand the behavior.

Web Service Versioning

[280]

Transformer pipeline: The pipeline is a standard EIP component and is an
integration bridge between an In-Only (or Robust-In-Only) MEP and an
In-Out MEP. By receiving an In-Only MEP by the pipeline, it will send the
input message in an In-Out MEP to the transformer destination and then in
turn forward the response in an In-Only MEP to the target destination. Let us
look at our pipeline configuration shown in the following code:

 <eip:pipeline service="test:pipelineTransformBefore20061231"
 endpoint="pipelineTransformBefore20061231">
 <eip:transformer>
 <eip:exchange-target service="test:soapContentRetreiver" />
 </eip:transformer>
 <eip:target>
 <eip:exchange-target
 service="test:pipelineServiceBefore20061231" />
 </eip:target>
 </eip:pipeline>

The pipeline receives the SOAP request in an In-Only MEP. This request is
then routed to the test:soapContentRetreiver target in an In-Out MEP.
The response from soapContentRetreiver is then routed to the
exchange-target of the pipeline, which is another pipeline in the chain,
test:pipelineServiceBefore20061231.
Content retriever: The functionality of this component is to extract the
payload part from the incoming SOAP request. So, we trim out the
SOAP envelope and body tags, and extract only the contents within the
body element to be sent to the next component. We use a ServiceMix
XsltComponent as the content retriever. It uses a stylesheet to remove
all extraneous white spaces from the message. The trimmed message is
then routed to the consumer for this component which is the previous
transformer pipeline.

 <sm:activationSpec componentName="soapContentRetreiver"
 service="test:soapContentRetreiver">
 <sm:component>
 <bean class="org.apache.servicemix.components.
 xslt.XsltComponent">
 <property name="xsltResource"
 value="SoapRequest-To-Request.xsl"/>
 </bean>
 </sm:component>
 </sm:activationSpec>

•

•

Chapter 14

[281]

This XsltComponent also uses a stylesheet to extract the payload from the
SOAP message. The stylesheet is shown as follows:

 <xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/
 envelope/">
 <xsl:output method="xml"/>
 <xsl:template match="/">
 <xsl:copy-of select="soapenv:Envelope/soapenv:Body/*" />
 </xsl:template>
 </xsl:stylesheet>

The output of this component is shown as follows:
 <ns1:hello soapenv:encodingStyle="http://schemas.xmlsoap.org/
 soap/encoding/"
 xmlns:ns1="http://version20061231.ws.
 servicemix. esb.binildas.com">
 <in0 xsi:type="soapenc:string"
 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/">
 Binil
 </in0>
 </ns1:hello>

Service pipeline: This component is very similar to the transformer pipeline
seen above. Let us look at the configuration and then understand it more:

 <eip:pipeline service="test:pipelineServiceBefore20061231"
 endpoint="pipelineServiceBefore20061231">
 <eip:transformer>
 <eip:exchange-target service="version20061231:
 IHelloWebService" />
 </eip:transformer>
 <eip:target>
 <eip:exchange-target service="test:MyProviderService" />
 </eip:target>
 </eip:pipeline>

This pipeline will send the SOAP payload alone (without the SOAP
envelope) as an In-Out MEP to the eip:exchange-target which is
version20061231:IHelloWebService. Any response is then routed to the
test:MyProviderService, which is the output queue for the client.

•

Web Service Versioning

[282]

HTTP provider: The HTTP provider is a servicemix-http used for HTTP
or SOAP binding of services and components into the ServiceMix NMR.
A provider role implies that the NMR is the consumer to the component.
Hence, the NMR sends out an In-Out to the HTTP provider and the HTTP
provider in turn routes the message to the remote web service. The web
service gets invoked and the response received is routed back to the
consumer of the HTTP provider which is the service pipeline described
above. The HTTP provider configuration is shown as follows:

 <http:endpoint service="version20061231:IHelloWebService"
 endpoint="HelloWebService"
 role="provider"
 locationURI="http://localhost:8080/
 AxisEndToEnd20061231/services/
 HelloWebService20061231"
 soap="true"
 soapAction=""
 wsdlResource="http://localhost:8080/
 AxisEndToEnd20061231/services/
 HelloWebService20061231?WSDL" />

Here, the locationURI refers to the actual URL where the web service is
hosted. As we have two versions of the web services hosted to test the ver-
sion functionality, we also have another HTTP provider pointing to the other
web service versions as shown in the following code:

 <http:endpoint service="version20070101:IHelloWebService"
 endpoint="HelloWebService"
 role="provider"
 locationURI="http://localhost:8080/
 AxisEndToEnd20070101/services/
 HelloWebService20070101"
 soap="true"
 soapAction=""
 wsdlResource="http://localhost:8080/
 AxisEndToEnd20070101/services/
 HelloWebService20070101?WSDL" />

Remote web service: This section needs some detailed explanation, as
we need to look into mechanisms on hooking the version control into our
development engineering process itself.

We have seen that there are options to set the targetNamespace attribute on the
WSDL. It is better to hook this to the tool infrastructure associated with web service
generation and most tools including the Apache Axis provides mechanisms to do
this. Let us look into that now.

•

•

Chapter 14

[283]

Axis provides the Java org.apache.axis.wsdl.Java2WSDL class to help us in
generating WSDL from the Java interfaces used for creating the web service. The
WSDL generation can be controlled using the parameters. Two parameters that are
important to us are the following:

-n, --namespace <target namespace>

indicates the name of the target namespace of the WSDL.

-p, --PkgToNS <package> <namespace>

indicates the mapping of a package to a namespace.

If a package is encountered that does not have a namespace, the Java2WSDL emitter
will generate a suitable namespace name. This option may be specified multiple
times. By default, Java2WSDL will take the package name of the web service
interface class.

Now, we need to version control the web service exposure as well as the whole
web service generation process. Hence, we have arranged our web service artifacts
(source files, and their package names too) in a folder structure which represents the
version. By doing that we don't need to control further the Java2WSDL process using
the above parameters, instead the "versioned" package name of the classes is used to
define the targetNamespace attribute on the WSDL.

We have two versions, namely 20061231 and 20070101, referring to the two
versions of the service, one defined on the 2007 New Year's eve and the other on the
new year itself.

Let us look at this in the WSDLs generated for the two web services we have:

In HelloWebService20061231.wsdl we have the following code:

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions targetNamespace="http://version20061231.ws.
 servicemix.esb.binildas.com" …>
 <wsdl:types>
 <schema elementFormDefault="qualified"
 targetNamespace="http://version20061231.ws.
 servicemix.esb.binildas.com"
 xmlns="http://www.w3.org/2001/XMLSchema">
 </schema>
 </wsdl:types>
 <wsdl:message name="helloResponse">
 <!-- other code goes here -->
 </wsdl:message>
 <wsdl:portType name="IHelloWeb">

Web Service Versioning

[284]

 <!-- other code goes here -->
 </wsdl:portType>
 <wsdl:binding name="HelloWebService20061231SoapBinding"
 type="impl:IHelloWeb">
 <!-- other code goes here -->
 </wsdl:binding>
 <wsdl:service name="IHelloWebService">
 <wsdl:port binding="impl:HelloWebService20061231SoapBinding"
 name="HelloWebService20061231">
 <wsdlsoap:address location="http://localhost:8080/
 AxisEndToEnd20061231/services/
 HelloWebService20061231"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

In HelloWebService20070101.wsdl, we have the following code:

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions targetNamespace="http://version20070101.ws.
 servicemix.esb.binildas.com" ...>
 <wsdl:types>
 <schema elementFormDefault="qualified"
 targetNamespace="http://version20070101.ws.
 servicemix.esb.binildas.com"
 xmlns="http://www.w3.org/2001/XMLSchema">
 </schema>
 </wsdl:types>
 <wsdl:message name="helloRequest">
 <!-- other code goes here -->
 </wsdl:message>
 <wsdl:portType name="IHelloWeb">
 <!-- other code goes here -->
 </wsdl:portType>
 <wsdl:binding name="HelloWebService20070101SoapBinding"
 type="impl:IHelloWeb">
 <!-- other code goes here -->
 </wsdl:binding>
 <wsdl:service name="IHelloWebService">
 <wsdl:port binding="impl:HelloWebService20070101SoapBinding"
 name="HelloWebService20070101">
 <wsdlsoap:address location="http://localhost:8080/
 AxisEndToEnd20070101/services/
 HelloWebService20070101"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

Chapter 14

[285]

If you observe these WSDL files closely you can see that the wsdlsoap:address
points to different addresses for different versions of the service. If we expose the
WSDL as such to consumers, then the consumers will be tempted to access the web
service using the "Multiple endpoint address" approach. However, we want to
demonstrate the covenant-based approach and for that we can edit the wsdlsoap:
address element in the WSDLs of both the web services to point to the same
endpoint address (the JMS consumer address as is in our case, or a HTTP consumer
address). If so, our content-based router will do the rest.

JMS provider: The JMS provider is similar to the JMS consumer already
discussed and the configuration is listed as follows:

 <jms:endpoint service="test:MyProviderService"
 endpoint="myProvider"
 role="provider"
 soap="false"
 destinationStyle="queue"destinationStyle="queue"
 jmsProviderDestinationName="queue/B"
 connectionFactory="#connectionFactory" />connectionFactory="#connectionFactory" />

Here, we refer the output queue as "B". This is the queue to where the Service
pipeline targets the SOAP response from the remote web service. The JMS client can
retrieve the response from this queue.

Deploy and Run the Sample
To build the entire sample, it is easier to change directory to the top-level folder
and execute the build.xml file provided there. As a first step, if you haven't done
it before, find examples.properties file provided along with the sample and
change the paths accordingly to match your development environment. Then
execute the following:

cd ch14\WebServiceVersioning

ant

This will build the following both versions of web service and place the deployable
war file in the dist folder as shown as follows:

ch14\WebServiceVersioning\01_WebService20061231\dist\
AxisEndToEnd20061231.war

ch14\WebServiceVersioning\02_WebService20070101\dist\
AxisEndToEnd20070101.war

•

Web Service Versioning

[286]

You can transfer these war files into the webapps folder of your favorite web
container and restart the web server. Make sure your web services are deployed
correctly by trying out the following URLs:

http://localhost:8080/AxisEndToEnd20061231/services/HelloWebService20
061231?WSDL

http://localhost:8080/AxisEndToEnd20070101/services/HelloWebService20
070101?WSDL

Now there are also test clients provided for you to test the two versions of the web
service. To test that, do the following:

To test the version 20061231 of the service, execute the following commands:

cd ch14\WebServiceVersioning\01_WebService20061231

ant run

To test the version 20070101 of the service, execute the following commands:

cd ch14\WebServiceVersioning\02_WebService20070101

ant run

As the second step, you need to bring up your ServiceMix ESB. Before doing that you
have to plug-in the Saxon XPath Factory class to the Java run time. This can be done
in two steps:

Place the Saxon jars in %SERVICEMIX_HOME%\lib\optional folder.
In the %SERVICEMIX_HOME%\bin\servicemix.bat file, add the following entry:

set BOOT_OPTS=%BOOT_OPTS% -Djavax.xml.xpath.
XPathFactory:http://java.sun.com/jaxp/xpath/
dom="net.sf.saxon.xpath.XPathFactoryImpl"

Now bring up ServiceMix by executing the following commands:

cd ch14\WebServiceVersioning

%SERVICEMIX_HOME%\bin\servicemix servicemix.xml

Your web service and ESB are ready now to serve clients. Two clients are provided to
test the web service. You can test them by executing the following commands:

cd ch14\WebServiceVersioning

ant run1

and

cd ch14\WebServiceVersioning

ant run2

•

•

°

Chapter 14

[287]

run1 will test the web service requesting version 20061231 and run2 will test version
20070101. Both these clients will send messages to the covenant and the covenant
will route the requests to different versions of the web service.

For your convenience we have also provided two HTTP clients which will directly
send requests to the different versions of the web service endpoint addresses
configured in the ESB. They are just for your convenience and they are not intended
to test the web service versioning mechanism per se. These clients are:
cd ch14\WebServiceVersioning\Client20061231.html

and
cd ch14\WebServiceVersioning\Client20070101.html

Web Service Versioning Operational
Perspective
At the operations perspective, we can use tools to edit the WSDLs to reflect this
change and then place all the WSDLs in a repository for the consumers to find or
even supply these WSDLs to the consumers. The consumers can then use their
conventional tools to generate client stubs and send SOAP requests to access the
service. The version aspect is not revealed to the clients, instead they are limited to
the WSDLs.

As we are using an ESB as the middleware messaging infrastructure, another option
is that the WSDLs can be retrieved from their original source (for example, http://
localhost:8080/AxisEndToEnd20061231/services/HelloWebService20061231?
WSDL) on demand basis from the client. Moreover, do an XSL transform to replace the
different endpoint addresses with a single covenant address and supply them.

Summary
While the need to version a service is still to be debated, one aspect which we
all need to accept is that services need to be maintained in multiple variants to
satisfy multiple classes of consumers. Service request can be enhanced to include
additional information which will help providers to apply rules to route requests
to the appropriate class or variant of the service. While it is tricky to handle this
kind of routing using a trivial handler or interceptor-level, an ESB provides you
all the required design patterns and hooks to enforce content-based routing. Then
neither the service provider nor the service consumer needs to be aware of these
complexities. These design patterns and hooks are grouped under the broader
heading of EIP and the next chapter is going to look at them in greater depth, again
with working code samples.

Enterprise Integration
Patterns in ESB

By now you will appreciate the fact that integration is not simple. Now, how can you
make it manageable and/or repeatable and thus simplify integration? Haven't you
come across the same problem in traditional software engineering before?
How did you manage the problem then? Yes, I am referring to nothing else other
than Patterns.

In this chapter, we are going to cover the following:

EAI patterns in general
EAI patterns in ServiceMix
Working code demonstrating EAI patterns

Enterprise Integration Patterns
Enterprise integration has to be made simpler. We need to apply best practices tested
and proven in the traditional software engineering paradigms like OOP to enterprise
integration scenarios also. Reusability is a prime concern in all IT design related
decisions and this reusability has to happen at multiple levels including architecture,
design, implementation, and testing. While we architect or design for integration
problems, one way of reusing the existing artifacts is to abstract out the common
methods used for solutions and apply them again and again for recurring, similar
problems—we call this EIP. Let us delve more into this.

•

•

•

Enterprise Integration Patterns in ESB

[290]

What are EAI Patterns?
Even though we do enterprise integration daily knowingly or unknowingly, it takes
some experience and a holistic approach to separate out the integration aspects
from the routine application development aspects in a systems environment. When
we understand this difference, we have taken the first step in recognizing EAI as a
separate stream, in fact a specialized stream which requires specific skill sets to look
at systems and services from an integration point of view.

We will start thinking in terms of connectors, brokers, or message routers which
have a very specific role and responsibility in the integration domain. These are
integration blocks which when combined together in different ways will give out
new styles or patterns of message exchange. Hence, EAI patterns are nuggets of
advice made out of aggregating basic MEP elements to solve frequently recurring
integration problems. For every practical purpose these are similar to design patterns
and we can look at EAI patterns as design patterns for solving integration problems.

EAI Patterns Book and Site
In writing a chapter discussing EAI patterns, I have to invariably point to the
great book on EAI patterns by Gregor Hohpe and Bobby Woolf. In fact, this
book is a collection of about 65 patterns, all providing means to solve the day to
day integration problems. Each of the patterns is described using the following
subheadings:

Name
Icon
Context
Problem
Forces
Solution
Sketch
Results
Next
Sidebars
Examples

The beauty of these patterns is that they solve not only common integration
problems but also enable the integration architect to combine them together
to create designs. Using these they can solve problems which they had never
thought about.

•

•

•

•

•

•

•

•

•

•

•

Chapter 15

[291]

Equally important is the influence of the diagrams and notations in the integration
patterns. This helps architects and designers to share a common vocabulary in
integration. The EAI book and the associated site provide notations which have a
certain "sketch" quality. Then it is not required to read hundreds of pages of a manual
like that of UML to understand and use. However, due to the objective-oriented
notations, it is easy to convey the essence of the pattern to the reader at a quick glance.
For example, let us look into a few notations given in the following:

Let us now look into simple definitions for the patterns corresponding to the
notations shown above:

Aggregator: An aggregator is used to collect and store individual message
parts until a complete set of co-related message parts has been received. Once
all the related parts have been received, they are aggregated together to form
a single message.
Splitter: A splitter can split out a composite message into a series of
individual message parts.
Wire Tap: A wire tap can consume messages from a single input channel and
publish the unmodified message to two output channels.

Having gone through the simple explanation for the above notations, if you now
look at the notations per se, you will appreciate how easy is it to correlate the
functionality with its notation.

ServiceMix EAI Patterns
ServiceMix and JBI are all about integrating business services. Let us now see what
ServiceMix has to offer in terms of the EAI patterns.

Why ServiceMix for EAI Patterns?
ServiceMix provides the servicemix-eip component as a standard JBI-compliant
component. This provides implementations for many of the patterns discussed in
the EAI patterns book. When I first read the EAI patterns book, I was wondering
whether we have all these patterns together in some reusable form, other than just
patterns and diagrams. But as we all agree, patterns are nuggets of guidelines which
we can implement in many ways, using any technology or platform.

•

•

•

Enterprise Integration Patterns in ESB

[292]

In fact, if we look at many MOM for integrations such as Websphere MQ, Microsoft
Biztalk, TIBCO, Webmethods, and Microsoft MQ, they already provide many of
these patterns at the framework-level. Perhaps, we didn't notice them as patterns
in the first go, but surely as experience builds up we cannot miss a repeated way of
addressing a problem of a particular nature.

Months after my first reading of the EAI patterns book I started evaluating a few of
the SOI-based products, especially in the Java world including Mule and the ESB
framework. The best part of these frameworks is that we have many of the EAI
patterns in the form of code! Believe me, if I were to have used these integration
frameworks a few years back, it would have saved me many man months! Today,
I am wondering how much code our team has written previously for receiving,
selecting, storing, and then sequencing, and aggregating multiple passenger name
lists (PNL) messages for a major airline. Look at the flow given in the following:

Here, I used EAI pattern blocks to connect them together to create my own design
for my PNL part merging problem. For this, we no longer write Java or .NET code
to parse my entire PNL message part, select them, and store them and finally when
all parts are reached, to resequence them to form the full PNL. Instead, as these
individual problems are already addressed as EAI pattern components, I just need
to select the required blocks, configure, and connect them together and route my
message through that. Don't you think that is a smart way of doing things?

I can understand, you may not agree if you are reading about the EAI patterns
for the first time. However, I can guarantee that once you finish reading this
chapter and also a couple of more chapters in this book which solves some of the
major headaches in the industry, you will be in a better position to appreciate the
importance of EAI patterns in integration.

For example, building a protocol bridge to bring reliability to a web service
channel or to implement a web service versioning mechanism, you no more think
traditionally. However, I need to remind you that EAI, EAI patterns, and MOM are
great enablers for SOA and SOI, but may not be the solution for every problem at
hand. In other words, none of these patterns or frameworks is going to replace the
judicious decision you are obliged to take as a designer or an architect, to pick the
best technology or frameworks to solve your problems.

Chapter 15

[293]

Hence, by any chance if you decide that MOM is the way to go and you want to use
ServiceMix as your ESB middleware, you can use many EAI pattern blocks available
here. The ServiceMix servicemix-eip component is a routing container onto which
you can deploy your own EAI patterns or combination of patterns to solve complex
routing or MEP problems.

For example, you may sometimes want to transform an In-Out MEP to a combination
of In-Only MEP or you may want to route your messages destination. Parallelly you
also want to deliver a copy of the message to a trace component in between. Don't
ever write code for these in ServiceMix, instead route your messages through a
suitable EAI pattern block deployed onto servicemix-eip.

ServiceMix EAI Patterns Configuration
We can configure servicemix-eip either in a SU as a standard JBI component or
using the servicemix.xml configuration file. This is shown in the following list:

Configure servicemix-eip as a standard JBI component: servicemix-eip
supports the standard XBean-based deployment. For this, the xbean.xml file
will have the following entry:

 <beans xmlns:eip="http://servicemix.apache.org/eip/1.0">
 <!-- configure your EAI Pattern components here -->
 </beans>

Configure servicemix-eip using the servicemix.xml file:
 <beans xmlns:sm="http://servicemix.apache.org/config/1.0"
 xmlns:eip="http://servicemix.apache.org/eip/1.0"
 xmlns:test="http://test.eip.servicemix.esb.binildas.com">
 <sm:container ...>
 <sm:activationSpecs>
 <sm:activationSpec>
 <sm:component>
 <eip:component>
 <eip:endpoints>
 <!-- configure EAI Pattern components here -->
 </eip:endpoints>
 </eip:component>
 </sm:component>
 </sm:activationSpec>
 </sm:activationSpecs>
 </sm:container>
 </beans>

•

•

Enterprise Integration Patterns in ESB

[294]

EAI Patterns—Code and Run Samples
in ESB
The main EAI pattern components supported by ServiceMix are listed as follows:

Content-based router
Content enricher
XPath splitter
Message filter
Split aggregator
Pipeline
Wiretap
Static recipient list
Static routing slip

Let us now configure EAI pattern components in the ServiceMix and run the
samples. All the samples are arranged in subfolders under ch15\. Make sure
that you edit examples.PROPERTIES and change the paths there to match your
development environment to build the samples.

Content-based Router
A content-based router consumes a message from one message channel. Based on a
set of conditions on the headers or the body content of the message, it republishes
the message on to a different message channel.

Notation

•

•

•

•

•

•

•

•

•

Chapter 15

[295]

Explanation
The message router inspects the contents of the message and routes the message to
multiple channels. While doing so, the router will not alter the message contents.
While inspecting, the router can look into a field in the message body or the message
header. Usually, a condition or a rule is attached to the router which will try a match
with the field in the message. Hence this rule matching hook is to be designed as
extensible and is the target of constant maintenance when we want to add more rules
or when we want to plug-in more channels matching the rules.

Illustrative Design
Let us consider the Acme Company providing the web interface to end customers
to place orders for buying the gadgets online. The Acme ordering gateway can
provide a single channel for all the incoming messages due to maintenance and
security reasons. Now we need a mechanism to segregate out orders for different
kinds of gadgets. Each kind of gadgets (apparels and electricals, for example) has
its own inventory system. Hence we need to route different kinds of orders to their
respective inventory systems.

We plug-in a content-based router and attach multiple outgoing channels to this
router. The router will look at the message contents and identify the kind of order.
Based on that, it will route the message to their respective outgoing channels from
where the respective inventory systems can pick up the messages. This is shown in
the following figure:

Enterprise Integration Patterns in ESB

[296]

Sample Use Case
The sample use case has a set of components as shown in the following figure:

Let us now look into the individual components in detail in the following list:

JMS client: This is a normal external JMS client, placing different XML
messages onto the JMS consumer component configured within the ESB.
JMS consumer: This is a servicemix-jms listening on queue "A". Any
incoming messages to this queue will be routed to the next component in the
flow chain, the content-based router.

•

•

Chapter 15

[297]

Content-based router routerrouter: The content-based router is auter is ater is a servicemix-eip
component. Based on the content of the XML message it receives, it will
route the message, unaltered, to any one amongst the set of Receiver
components configured.
Receiver: The receiver component is a custom transform component. Any
message it receives will be logged into the console and then echoed by
writing back to the out message of the In-Out. The out message is placed in
the out queue.
JMS provider: This is a servicemix-jms listening on queue "B". The receiver
component will place its out message onto this queue from where the
JMS client can pick up (even though in this sample we don't pick up
the messages).

Sample Code and Configuration
We configure the content-based router in the servicemix.xml file, along with other
components described above. This is shown in the following code:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://xbean.org/schemas/spring/1.0"
 xmlns:sm="http://servicemix.apache.org/config/1.0"
 xmlns:test="http://cbr.eip.servicemix.apache.binildas.com"
 xmlns:eip="http://servicemix.apache.org/eip/1.0"
 xmlns:jms="http://servicemix.apache.org/jms/1.0">
 <classpath>
 <location>.</location>
 </classpath>
 <import resource="classpath:jmx.xml" />
 <import resource="classpath:jndi.xml" />
 <import resource="classpath:security.xml" />
 <import resource="classpath:tx.xml" />
 <import resource="classpath:activemq.xml" />
 <bean id="propertyConfigurer" class="org.springframework.beans.
 factory.config.PropertyPlaceholderConfigurer">
 <property name="location"
 value="classpath:servicemix.properties" />
 </bean>
 <sm:container name="jbi"
 monitorInstallationDirectory="false"
 createMBeanServer="true"
 useMBeanServer="true">
 <sm:activationSpecs>
 <sm:activationSpec>
 <sm:component>

•

•

•

Enterprise Integration Patterns in ESB

[298]

 <jms:component>
 <jms:endpoints>
 <jms:endpoint service="test:MyConsumerService"
 endpoint="myConsumer"
 role="consumer"
 soap="false"
 targetService="test:router"
 defaultMep="http://www.w3.org/2004/
 08/wsdl/in-only"
 destinationStyle="queue"destinationStyle="queue"
 jmsProviderDestinationName="queue/A"
 connectionFactory="#connectionFactoryconnectionFactory="#connectionFactory
 " />
 <jms:endpoint service="test:MyProviderService"
 endpoint="myProvider"
 role="provider"
 soap="false"
 destinationStyle="queue"destinationStyle="queue"
 jmsProviderDestinationName="queue/B"
 connectionFactory="#connectionFactoryconnectionFactory="#connectionFactory
 " />
 </jms:endpoints>
 </jms:component>
 </sm:component>
 </sm:activationSpec>
 <sm:activationSpec componentName="receiver1"
 service="test:receiver1"
 destinationService="test:MyProviderService">
 <sm:component>
 <bean xmlns="http://xbean.org/schemas/spring/1.0"
 class="MyReceiver" >
 <property name="name">
 <value>1</value>
 </property>
 </bean>
 </sm:component>
 </sm:activationSpec>
 <sm:activationSpec componentName="receiver2"
 service="test:receiver2"
 destinationService="test:MyProviderService">
 <sm:component>
 <bean xmlns="http://xbean.org/schemas/spring/1.0"
 class="MyReceiver" >
 <property name="name">
 <value>2</value>
 </property>
 </bean>

Chapter 15

[299]

 </sm:component>
 </sm:activationSpec>
 <sm:activationSpec componentName="receiver3"
 service="test:receiver3"
 destinationService="test:MyProviderService">
 <sm:component>
 <bean xmlns="http://xbean.org/schemas/spring/1.0"
 class="MyReceiver" >
 <property name="name">
 <value>3</value>
 </property>
 </bean>
 </sm:component>
 </sm:activationSpec>
 <sm:activationSpec componentName="receiver4"
 service="test:receiver4"
 destinationService="test:MyProviderService">
 <sm:component>
 <bean xmlns="http://xbean.org/schemas/spring/1.0"
 class="MyReceiver" >
 <property name="name">
 <value>4</value>
 </property>
 </bean>
 </sm:component>
 </sm:activationSpec>
 <sm:activationSpec id="servicemix-eip">
 <sm:component>
 <eip:component>
 <eip:endpoints>
 <eip:content-based-router service="test:router"
 endpoint="endpoint">
 <eip:rules>
 <eip:routing-rule>
 <eip:predicate>
 <eip:xpath-predicate
 xpath="number(/hello/@id) < 2" />
 </eip:predicate>
 <eip:target>
 <eip:exchange-target service=
 "test:receiver1" />
 </eip:target>
 </eip:routing-rule>
 <eip:routing-rule>
 <eip:predicate>

Enterprise Integration Patterns in ESB

[300]

 <eip:xpath-predicate xpath="number
 (/hello/@id) = 2" />
 </eip:predicate>
 <eip:target>
 <eip:exchange-target
 service="test:receiver2" />
 </eip:target>
 </eip:routing-rule>
 <eip:routing-rule>
 <eip:predicate>
 <eip:xpath-predicate
 xpath="number(/hello/@id) > 3" />
 </eip:predicate>
 <eip:target>
 <eip:exchange-target
 service="test:receiver4" />
 </eip:target>
 </eip:routing-rule>
 <eip:routing-rule>
 <eip:target>
 <eip:exchange-target
 service="test:receiver3" />
 </eip:target>
 </eip:routing-rule>
 </eip:rules>
 </eip:content-based-router>
 </eip:endpoints>
 </eip:component>
 </sm:component>
 </sm:activationSpec>
 </sm:activationSpecs>
 </sm:container>
 <bean id="connectionFactory"
 class="org.apache.activemq.ActiveMQConnectionFactory">
 <property name="brokerURL" value="tcp://localhost:61616" />
 </bean>
</beans>

The components configured in the above JBI configuration have already been
explained in the previous section. We need to declare the eip namespace as
xmlns:eip=http://servicemix.apache.org/eip/1.0. We will also use the
servicemix-jms component for which we declare the JMS namespace as
xmlns:jms=http://servicemix.apache.org/jms/1.0.

Chapter 15

[301]

The MyReceiver class is shown as follows:

public class MyReceiver extends TransformComponentSupport
 implements MessageExchangeListener
{
 private String name;
 public void setName(String name){this.name = name;}
 public String getName(){return name;}
 protected boolean transform(MessageExchange exchange,
 NormalizedMessage in,NormalizedMessage out)
 throws MessagingException
 {
 NormalizedMessage copyMessage = exchange.createMessage();
 getMessageTransformer().transform(exchange, in, copyMessage);
 Source content = copyMessage.getContent();
 String contentString = null;
 if (content instanceof DOMSource)
 {
 contentString = XMLUtil.node2XML(((DOMSource)
 content).getNode());
 }
 if (content instanceof StreamSource)
 {
 contentString = XMLUtil.formatStreamSource((StreamSource)
 content);
 }
 System.out.println("MyReceiver.transform(" + name + ").
 contentString = " + contentString);
 out.setContent(new StringSource(contentString));
 return true;
 }
}

The MyReceiver class prints out the message and echoes the same message back.

Deploy and Run the Sample
To build the sample, change directory to ch15\01_ContentBasedRouter and type
the following:

ant

This will compile all the files, including the JMS client program. Now to test the
sample, first bring ServiceMix up by executing the following commands:
cd ch15\01_ContentBasedRouter

%SERVICEMIX_HOME%\bin\servicemix servicemix.xml

Enterprise Integration Patterns in ESB

[302]

Now in a different command prompt execute ant run, as shown here:
cd ch15\01_ContentBasedRouter

ant run

The JMS client program console will print out the messages it sends to the ESB. This
is shown in the following screenshot:

Now, have a look at the content-based router. As shown in the content-based router
configuration, we have the content-based router rules embedded as the XPath
predicates. Based on the match in the message content, the router will route the
message to their respective destinations (Receiver 1 or 2 or 3 or 4). The ESB-side
console printout validates this as shown in the following screenshot:

Chapter 15

[303]

Content Enricher
The content enricher supplements the original message with more related
information retrieved from the other sources. The original message will be altered to
contain enriched information.

Notation

Explanation
Sometimes a message may not contain all the required information for the next
processing step to act or the next processing required more additional information
to be appended to the incoming message. In such scenarios, the content enricher can
append the additional information to the original message and then send to the next
link in the processing chain.

Illustrative Design
The Acme online customers at the time of checkout will enter credit card details. The
Acme back end would need to do credit authorization. However, the data entered by
the web page customers might be minimal and for the actual authorization we might
need to add more details such as SSN, before the request is routed to Credit Check
Service. A Content Enricher can get the customer identification data (customer key)
from the incoming message and retrieve the extra details from a local resource store.
The extra details can now be appended to the original message and then routed to
the target service. The whole setup is shown in the following figure:

Enterprise Integration Patterns in ESB

[304]

Sample Use Case
The following figure illustrates how various components can be assembled in the JBI
bus for our sample use case:

The sample use case will have following components:

JMS client: This is a normal external JMS client, placing XML messages onto
the JMS Consumer component configured within the ESB.
JMS consumer: This is a servicemix-jms listening on queue "A". Any
incoming messages to this queue will be routed to the next component in the
flow chain which is the Content Enricher.
Content enricher: The Content Enricher router is a servicemix-eip
component. It enriches the original message with additional information. The
enriched message will be placed back in the JMS Provider queue.
Content appender: The Content Appender is a custom transform component.
It provides a resultElement with name test:kerberosticket so that
the content enricher can enrich the original message with this additional
resultElement.
JMS provider: This is a servicemix-jms listening on queue "B". The Content
Enricher component will place its out message into this queue from where
the JMS Client can pick up.

•

•

•

•

•

Chapter 15

[305]

Sample code and configuration
We configure the content enricher in the servicemix.xml file, along with other
components described above. The content of this file is shown in the following code:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://xbean.org/schemas/spring/1.0"
 xmlns:sm="http://servicemix.apache.org/config/1.0"
 xmlns:test="http://cer.eip.servicemix.esb.binildas.com"
 xmlns:eip="http://servicemix.apache.org/eip/1.0"
 xmlns:jms="http://servicemix.apache.org/jms/1.0">
 <classpath>
 <location>.</location>
 </classpath>
 <import resource="classpath:jmx.xml" />
 <import resource="classpath:jndi.xml" />
 <import resource="classpath:security.xml" />
 <import resource="classpath:tx.xml" />
 <import resource="classpath:activemq.xml" />
 <bean id="propertyConfigurer" class="org.springframework.beans.
 factory.config.PropertyPlaceholderConfigurer">
 <property name="location"
 value="classpath:servicemix.properties" />
 </bean>
 <sm:container name="jbi"
 monitorInstallationDirectory="false"
 createMBeanServer="true"
 useMBeanServer="true">
 <sm:activationSpecs>
 <sm:activationSpec>
 <sm:component>
 <jms:component>
 <jms:endpoints>
 <jms:endpoint service="test:MyConsumerService"
 endpoint="myConsumer"
 role="consumer"
 soap="false"
 targetService="test:contentEnricher"
 defaultMep="http://www.w3.org/2004/
 08/wsdl/in-only"
 destinationStyle="queue"destinationStyle="queue"
 jmsProviderDestinationName="queue/A"
 connectionFactory =connectionFactory =
 "#connectionFactory" />
 <jms:endpoint service="test:MyProviderService"
 endpoint="myProvider"
 role="provider"
 soap="false"
 destinationStyle="queue"destinationStyle="queue"
 jmsProviderDestinationName="queue/B"

Enterprise Integration Patterns in ESB

[306]

 connectionFactory=connectionFactory=
 "#connectionFactory" />
 </jms:endpoints>
 </jms:component>
 </sm:component>
 </sm:activationSpec>
 <sm:activationSpec id="servicemix-eip">
 <sm:component>
 <eip:component>
 <eip:endpoints>
 <eip:content-enricher
 service="test:contentEnricher"
 endpoint="endpoint"
 enricherElementName="test:subject"
 requestElementName="test:principal"
 resultElementName="test:credential">
 <eip:enricherTarget>
 <eip:exchange-target
 service="test:contentAppender" />
 </eip:enricherTarget>
 <eip:target>
 <eip:exchange-target
 service="test:MyProviderService" />
 </eip:target>
 </eip:content-enricher>
 </eip:endpoints>
 </eip:component>
 </sm:component>
 </sm:activationSpec>
 <sm:activationSpec componentName="contentAppender"
 service="test:contentAppender">
 <sm:component>
 <bean xmlns="http://xbean.org/schemas/spring/1.0"
 class="ContentAppender" >
 <constructor-arg ref="jbi"/>
 </bean>
 </sm:component>
 </sm:activationSpec>
 </sm:activationSpecs>
 </sm:container>
 <bean id="connectionFactory"
 class="org.apache.activemq.ActiveMQConnectionFactory">
 <property name="brokerURL" value="tcp://localhost:61616" />
 </bean>
</beans>

Chapter 15

[307]

When we configure the content enricher we can specify the enricherElementName,
requestElementName, and the resultElementName. The output of the content
enricher will be wrapped within these elements as seen in the sample output in the
following screenshot. Let us also look at the ContentAppender Java class:

public class ContentAppender extends ComponentSupport
 implements MessageExchangeListener
{
 private JBIContainer container;
 public ContentAppender(JBIContainer container)
 {
 this.container = container;
 }
 public void onMessageExchange(MessageExchange exchange)
 throws MessagingException
 {
 if (exchange.getStatus() == ExchangeStatus.ACTIVE)
 {
 boolean txSync = exchange.isTransacted() && Boolean.TRUE.
 equals(exchange.getProperty(JbiConstants.SEND_SYNC));
 NormalizedMessage out = exchange.createMessage();
 out.setContent(new StringSource("<?xml version='1.0'
 encoding='UTF-8'?><test:kerberosticket xmlns:test=
 \"http://xslt.servicemix.apache.binildas.com\">
 123456789</test:kerberosticket>"));
 exchange.setMessage(out, "out");
 if (txSync)
 {
 sendSync(exchange);
 }
 else
 {
 send(exchange);
 }
 }
 }
}

Here, we write the information to enrich the original message to the out. In actual
scenarios, we may want to retrieve some key from the incoming message, retrieve
more data from a local resource using this key and generate the additional information.

Deploy and Run the Sample
To build the sample, change directory to ch15\ 02_ContentEnricher and type ant.
This is shown as follows:

cd ch15\02_ContentEnricher

ant

Enterprise Integration Patterns in ESB

[308]

This will compile all the files, including the JMS client program. Now to test the
sample, first, bring the ServiceMix up by executing the following:

cd ch15\02_ContentEnricher

%SERVICEMIX_HOME%\bin\servicemix servicemix.xml

Now in a different command prompt execute ant run.

cd ch15\02_ContentEnricher

ant run

The JMS client program console will print out the messages it sends to the ESB.
It also prints out the response message from the content enricher. The JMS client
console is shown in the following screenshot:

XPath Splitter
An XPath splitter is based on the original splitter EAI pattern. A splitter can identify
repeating elements in a message and split the message and publish each element
part as separate messages to a different channel. The splitter can also separate out
non-repeating elements, in such case the published message will be a subset of the
original message. XPath splitter uses XPath to find the repeating element pattern.

Chapter 15

[309]

Notation

Explanation
Many composite documents like a full airline passenger name list or an order with
many order items will contain repeating elements. Sometimes we may need to
process each of these repeating elements separately. An XPath splitter can split the
composite message into individual parts based on the repeat pattern and publishes
the parts onto different destinations.

Illustrative Design
Using the Acme's online e-commerce pages, a customer can add multiple items to the
shopping cart and at the end of the shopping trip he can check out. This will submit
a single order in the back end, but the order can contain multiple order items. Now,
for each order item, we need to do a separate inventory check. To solve this problem,
we can route the order to an XPath splitter first. The splitter can split the order into
individual order items and each order item can be pushed to the queue as a separate
message. Now it is easy to plug-in a content-based router as we have discussed
already. Then each new message encapsulating one order item can be routed to their
respective inventory queues.

Enterprise Integration Patterns in ESB

[310]

Sample Use Case
The sample use case will have the following components:

JMS client: This is a normal external JMS client, placing the XML composite
messages onto the JMS consumer component configured within the ESB.
JMS consumer: This is a servicemix-jms listening on queue "A". Any
incoming messages to this queue will be routed to the next component in the
flow chain which is the XPath splitter.
XPath splitter: The XPath splitter is a servicemix-eip component. On
receiving the in messages, the splitter will try to match the XPath configured
at the splitter-level with the message content. In finding a match, the splitter
will split the original message into as many parts as there are repeating
elements as per the XPath. Each of these individual elements is republished
as a separate message to the exchange-target which is a trace component.
Trace component: The trace component just spits out whatever message it
receives into the console.

The following figure illustrates how the various components can be assembled in the
JBI bus for our sample use case:

•

•

•

•

Chapter 15

[311]

Sample Code and Configuration
We configure the XPath splitter in servicemix.xml, along with other components
described above:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://xbean.org/schemas/spring/1.0"
 xmlns:sm="http://servicemix.apache.org/config/1.0"
 xmlns:test="http://xslt.servicemix.apache.binildas.com"
 xmlns:eip="http://servicemix.apache.org/eip/1.0"
 xmlns:jms="http://servicemix.apache.org/jms/1.0">
 <classpath>
 <location>.</location>
 </classpath>
 <import resource="classpath:jmx.xml" />
 <import resource="classpath:jndi.xml" />
 <import resource="classpath:security.xml" />
 <import resource="classpath:tx.xml" />
 <import resource="classpath:activemq.xml" />
 <bean id="propertyConfigurer"
 class="org.springframework.beans.factory.config.
 PropertyPlaceholderConfigurer">
 <property name="location"
 value="classpath:servicemix.properties" />
 </bean>
 <sm:container name="jbi"
 monitorInstallationDirectory="false"
 createMBeanServer="true"
 useMBeanServer="true">
 <sm:activationSpecs>
 <sm:activationSpec>
 <sm:component>
 <jms:component>
 <jms:endpoints>
 <jms:endpoint service="test:MyConsumerService"
 endpoint="myConsumer"
 role="consumer"
 soap="false"
 targetService="test:xpathSplitter"
 defaultMep="http://www.w3.org/2004/
 08/wsdl/in-only"
 destinationStyle="queue"destinationStyle="queue"
 jmsProviderDestinationName="queue/A"
 connectionFactory=connectionFactory=
 "#connectionFactory" />
 </jms:endpoints>
 </jms:component>
 </sm:component>

Enterprise Integration Patterns in ESB

[312]

 </sm:activationSpec>
 <sm:activationSpec id="servicemix-eip">
 <sm:component>
 <eip:component>
 <eip:endpoints>
 <eip:xpath-splitter service="test:xpathSplitter"
 endpoint="xpathSplitterEndpoint"
 xpath="/hello/*" >
 <eip:target>
 <eip:exchange-target service="my:trace" />
 </eip:target>
 </eip:xpath-splitter>
 </eip:endpoints>
 </eip:component>
 </sm:component>
 </sm:activationSpec>
 <sm:activationSpec componentName="trace" service="my:trace">
 <sm:component>
 <bean class="org.apache.servicemix.components.
 util.TraceComponent" />
 </sm:component>
 </sm:activationSpec>
 </sm:activationSpecs>
 </sm:container>
 <bean id="connectionFactory"
 class="org.apache.activemq.ActiveMQConnectionFactory">
 <property name="brokerURL" value="tcp://localhost:61616" />
 </bean>
</beans>

The XPath we configured here is /hello/*. This will split each element inside the
hello element into individual messages.

Deploy and Run the Sample
To build the sample, change directory to ch15\03_XPathSplitter and type ant as
given here:

cd ch15\03_XPathSplitter

ant

This will compile all the files, including the JMS client program. Now to test the
sample, first bring ServiceMix up by executing the following commands:

cd ch15\03_XPathSplitter

%SERVICEMIX_HOME%\bin\servicemix servicemix.xml

Chapter 15

[313]

Now in a different command prompt execute ant run as shown here:

cd ch15\03_XPathSplitter

ant run

The JMS client program console will print out the messages it sends to the ESB as
shown in the following screenshot:

Now on the ESB-side, the first message will be split into three parts whereas the last
(third) message will be split into two parts.

INFO - TraceComponent - Body is: <?xml version="1.0"
encoding="UTF-8"?><one/>
INFO - TraceComponent - Body is: <?xml version="1.0"
encoding="UTF-8"?><three/>
INFO - TraceComponent - Body is: <?xml version="1.0"
encoding="UTF-8"?><two/>
INFO - TraceComponent - Body is: <?xml version="1.0"
encoding="UTF-8"?><five/>
INFO - TraceComponent - Body is: <?xml version="1.0"
encoding="UTF-8"?><four/>

Static Recipient List
A recipient list can inspect an incoming message, and depending upon the number
of recipients specified in the recipient list, it can forward the message to all channels
associated with the recipients in the recipient list.

Enterprise Integration Patterns in ESB

[314]

Notation

Explanation
The example for a scenario where we need to send the same message to multiple
recipients is the email message. With every email message, the sender can specify
multiple recipients in the To, Cc, or Bcc fields. Now, the email system can inspect
these fields and if more than one recipient is specified in these lists, it will forward
the same message to all the recipient addresses specified.

Illustrative Design
Whenever the Acme back-end system receives a confirmed order, the same has to be
distributed to both packing systems and shipping systems, along with the inventory
systems which we have already discussed. We can configure a static recipient list
specifying a shipping queue, a packing queue, and a third queue for a content-based
router for inventory systems as shown in the following figure. The advantage is
that all these LOB systems will receive the same order so that they can initiate their
associated business processes. This is illustrated in the following figure:

Chapter 15

[315]

Sample Use Case
The sample use case will have following components:

JMS client: This is a normal external JMS client, placing XML composite
messages onto the JMS consumer component configured within the ESB.
JMS consumer: This is a servicemix-jms listening on queue "A"'. Any
incoming messages to this queue will be routed to the next component in the
flow chain which is the Static Recipient List.
Static recipient list: The Static Recipient List is a servicemix-eip
component. On receiving in messages, the Static Recipient List will forward
the message to all recipients, which are different instances of receiver
components, configured in the Static Recipient List.
Receiver component: The receiver component just spits out whatever
message it receives into the console.

The following figure illustrates how the various components can be assembled in the
JBI bus for our sample use case:

•

•

•

•

Enterprise Integration Patterns in ESB

[316]

Sample Code and Configuration
We configure the Static Recipient List in servicemix.xml, along with the other
components described above. The servicemix.xml file is shown in the following code:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://xbean.org/schemas/spring/1.0"
 xmlns:sm="http://servicemix.apache.org/config/1.0"
 xmlns:test="http://xslt.servicemix.apache.binildas.com"
 xmlns:eip="http://servicemix.apache.org/eip/1.0"
 xmlns:jms="http://servicemix.apache.org/jms/1.0">
 <classpath>
 <location>.</location>
 </classpath>
 <import resource="classpath:jmx.xml" />
 <import resource="classpath:jndi.xml" />
 <import resource="classpath:security.xml" />
 <import resource="classpath:tx.xml" />
 <import resource="classpath:activemq.xml" />
 <bean id="propertyConfigurer"
 class="org.springframework.beans.factory.config.
 PropertyPlaceholderConfigurer">
 <property name="location"
 value="classpath:servicemix.properties" />
 </bean>
 <sm:container name="jbi"
 monitorInstallationDirectory="false"
 createMBeanServer="true"
 useMBeanServer="true">
 <sm:activationSpecs>
 <sm:activationSpec>
 <sm:component>
 <jms:component>
 <jms:endpoints>
 <jms:endpoint service="test:MyConsumerService"
 endpoint="myConsumer"
 role="consumer"
 soap="false"
 targetService="test:recipients"
 defaultMep="http://www.w3.org/2004/
 08/wsdl/in-only"
 destinationStyle="queue"destinationStyle="queue"
 jmsProviderDestinationName="queue/A"
 connectionFactory =connectionFactory =
 "#connectionFactory" />
 </jms:endpoints>
 </jms:component>

Chapter 15

[317]

 </sm:component>
 </sm:activationSpec>
 <sm:activationSpec id="servicemix-eip">
 <sm:component>
 <eip:component>
 <eip:endpoints>
 <eip:static-recipient-list
 service="test:recipients"
 endpoint="endpoint">
 <eip:recipients>
 <eip:exchange-target
 service="test:receiver1" />
 <eip:exchange-target
 service="test:receiver2" />
 <eip:exchange-target
 service="test:receiver3" />
 </eip:recipients>
 </eip:static-recipient-list>
 </eip:endpoints>
 </eip:component>
 </sm:component>
 </sm:activationSpec>
 <sm:activationSpec componentName="receiver1"
 service="test:receiver1">
 <sm:component>
 <bean xmlns="http://xbean.org/schemas/spring/1.0"
 class="MyReceiver" >
 <property name="name">
 <value>1</value>
 </property>
 </bean>
 </sm:component>
 </sm:activationSpec>
 <sm:activationSpec componentName="receiver2"
 service="test:receiver2">
 <sm:component>
 <bean xmlns="http://xbean.org/schemas/spring/1.0"
 class="MyReceiver" >
 <property name="name">
 <value>2</value>
 </property>
 </bean>
 </sm:component>
 </sm:activationSpec>

Enterprise Integration Patterns in ESB

[318]

 <sm:activationSpec componentName="receiver3"
 service="test:receiver3">
 <sm:component>
 <bean xmlns="http://xbean.org/schemas/spring/1.0"
 class="MyReceiver" >
 <property name="name">
 <value>3</value>
 </property>
 </bean>
 </sm:component>
 </sm:activationSpec>
 </sm:activationSpecs>
 </sm:container>
 <bean id="connectionFactory"
 class="org.apache.activemq.ActiveMQConnectionFactory">
 <property name="brokerURL" value="tcp://localhost:61616" />
 </bean>
</beans>

We have configured three recipients namely test:receiver1, test:receiver2, and
test:receiver3 in the static recipient list above.

Deploy and Run the Sample
To build the sample, change directory to ch15\04_StaticRecipientList and type
ant as shown here:

cd ch15\04_StaticRecipientList

ant

This will compile all the files, including the JMS client program. Now to test the
sample, first, bring ServiceMix up by executing the following commands:

cd ch15\04_StaticRecipientList

%SERVICEMIX_HOME%\bin\servicemix servicemix.xml

Now in a different command prompt execute ant run.

cd ch15\04_StaticRecipientList

ant run

Chapter 15

[319]

The JMS client program console will print out the messages it sends to the ESB as
shown in the following screenshot:

At the same time, if you observe the ESB console, you can see the message is
delivered to all the three recipients in the recipient list.

Wiretap
The wiretap is a kind of simple recipient list which, when inserted into the message
channel, will publish each incoming message into the main channel as well as into a
secondary channel.

Notation

Enterprise Integration Patterns in ESB

[320]

Explanation
The wiretap is a static recipient list, with only two recipients in the list. When
inserted into the main channel, it publishes the input message into the main channel
as well as the secondary channel configured in the wiretap. The wiretap will not
modify the message contents in any manner.

Illustrative Design
Suppose you want to do an audit for every credit card payment that you make
through your Acme online store. Your credit card information will reach the
back-end system and there we can use a wiretap. Hence this message is also
published into a secondary audit module which will write all required information
to a non-erasable disk.

Sample Use Case
The sample use case will have the following components:

HTTP client: This is an external HTTP client, placing the XML messages onto
the HTTP connector component configured within the ESB.
HTTP connector: This is a ServiceMix HTTP component listening on port
8912. Any incoming messages to this queue will be routed to the next
component in the flow chain which is the wiretap.
Wiretap: The wiretap is a servicemix-eip component. On receiving in
messages, the wiretap will forward the message to the main target (an Echo
component in our case) as well as to the listener (a Trace component here).
Wiretap can handle all four standard MEPs, but can only send an In-Only
MEP to the listener.
Echo component: The echo component is the main target of the wiretap
and will take part in an In-Out MEP in the flow. Hence the request is echoed
back to the wiretap and then to the consumer component of the wiretap
(HTTP connector).

•

•

•

•

Chapter 15

[321]

Trace component: The Trace component takes part in an In-Only MEP in the
flow and will print the message in the console.

The following figure illustrates how the various components can be assembled in the
JBI bus for our sample use case:

Sample Code and Configuration
We configure the wiretap in the servicemix.xml file, along with other components
described above. This file is reproduced in the following code:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://xbean.org/schemas/spring/1.0"
 xmlns:sm="http://servicemix.apache.org/config/1.0"
 xmlns:test="http://xslt.servicemix.apache.binildas.com"
 xmlns:eip="http://servicemix.apache.org/eip/1.0"
 xmlns:jms="http://servicemix.apache.org/jms/1.0">
 <classpath>
 <location>.</location>
 </classpath>
 <import resource="classpath:jmx.xml" />
 <import resource="classpath:jndi.xml" />
 <import resource="classpath:security.xml" />

•

Enterprise Integration Patterns in ESB

[322]

 <import resource="classpath:tx.xml" />
 <import resource="classpath:activemq.xml" />
 <bean id="propertyConfigurer"
 class="org.springframework.beans.factory.
 config.PropertyPlaceholderConfigurer">
 <property name="location"
 value="classpath:servicemix.properties" />
 </bean>
 <sm:container name="jbi"
 monitorInstallationDirectory="false"
 createMBeanServer="true"
 useMBeanServer="true">
 <sm:activationSpecs>
 <sm:activationSpec componentName="httpReceiver"
 service="test:httpBinding"
 endpoint="httpReceiver"
 destinationService="test:wireTap">
 <sm:component>
 <bean class="org.apache.servicemix.
 components.http.HttpConnector">
 <property name="host" value="localhost"/>
 <property name="port" value="8912"/>
 </bean>
 </sm:component>
 </sm:activationSpec>
 <sm:activationSpec componentName="echo" service="test:echo">
 <sm:component>
 <bean class="org.apache.servicemix.
 components.util.EchoComponent" />
 </sm:component>
 </sm:activationSpec>
 <sm:activationSpec componentName="trace" service="test:trace">
 <sm:component>
 <bean class="org.apache.servicemix.components.
 util.TraceComponent" />
 </sm:component>
 </sm:activationSpec>
 <sm:activationSpec id="servicemix-eip">
 <sm:component>
 <eip:component>
 <eip:endpoints>
 <eip:wire-tap service="test:wireTap"
 endpoint="wireTapEndpoint">
 <eip:target>
 <eip:exchange-target service="test:echo" />

Chapter 15

[323]

 </eip:target>
 <eip:inListener>
 <eip:exchange-target service="test:trace" />
 </eip:inListener>
 </eip:wire-tap>
 </eip:endpoints>
 </eip:component>
 </sm:component>
 </sm:activationSpec>
 </sm:activationSpecs>
 </sm:container>
</beans>

We have configured both test:echo and test:trace as the listeners for the
message exchange in the wiretap. Hence the message will be forwarded to both these
components.

Deploy and Run the Sample
To build the sample, change directory to ch15\05_WireTap and type ant:

cd ch15\05_WireTap

ant

This will compile all the files, including the HTTP client program. Now to test the
sample, first bring ServiceMix up by executing:

cd ch15\05_WireTap

%SERVICEMIX_HOME%\bin\servicemix servicemix.xml

Now in a different command prompt execute ant run.

cd ch15\05_WireTap

ant run

The HTTP client program will send the test XML message to the HTTP connector
configured in the ESB. In the ESB console we can validate that the message is
delivered to both the test:echo and test:trace services. The HTTP client also
prints out the response received back from the ESB.

Message Filter
Message filter can eliminate the unwanted messages from a set of messages published.

Enterprise Integration Patterns in ESB

[324]

Notation

Explanation
Messages are of different kinds, and the same is true with events also. There are
unwanted events and events which are to be tracked and reacted based on event
type in particular fashions. Whether a message is of interest or not is again based on
the message content. Hence the messages which match the filter rule of interest need
to be routed further whereas the messages which didn't match the filter criterion
are ignored. All the messages which match the criterion will be routed to the output
channel of the message filter.

Illustrative Design
Acme has decided to offer discounts and gifts for all purchases exceeding a certain
amount in a single checkout. To process this, we can first use a wiretap to send a
copy of all orders to a message filter. The message filter will inspect the message
for the total dollar value of checkout and if it exceeds the threshold, the message
will be forwarded to the offer management module. Any order messages with total
dollar value less than the threshold will be ignored (dropped) at the message filter,
not forwarding them to the offer management module. Note that, we are directing
copies of orders only to the message filter hence all the original messages will be
routed to their respective inventory modules, irrespective of whether their copies are
forwarded or dropped at the message filter. This is illustrated in the following figure:

Chapter 15

[325]

Sample Use Case
The sample use case will have following components:

JMS client: This is a normal external JMS client, placing XML messages onto
the JMS consumer component configured within the ESB.
JMS consumer: This is a servicemix-jms listening on queue "A". Any
incoming messages to this queue will be routed to the next component in the
flow chain which is the Message Filter.
Message filter: The Message Filter is a servicemix-eip component. On
receiving the in messages, the filter will try to match the filter rule configured
at the filter-level with the message content. In the sample, we use the XPath
predicate to define the filter rule. In finding a match, the filter will forward
the message to the exchange-target which is a receiver component. Any
message which doesn't match will be dropped at the filter-level.
Receiver component: The receiver component just spits out whatever
message it receives into the console.

The following figure illustrates how the various components can be assembled in the
JBI bus for our sample use case:

•

•

•

•

Enterprise Integration Patterns in ESB

[326]

Sample Code and Configuration
We configure the Message Filter in the servicemix.xml file, along with other
components described above. This is shown in the following code:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://xbean.org/schemas/spring/1.0"
 xmlns:sm="http://servicemix.apache.org/config/1.0"
 xmlns:test="http://xslt.servicemix.apache.binildas.com"
 xmlns:eip="http://servicemix.apache.org/eip/1.0"
 xmlns:jms="http://servicemix.apache.org/jms/1.0">
 <classpath>
 <location>.</location>
 </classpath>
 <import resource="classpath:jmx.xml" />
 <import resource="classpath:jndi.xml" />
 <import resource="classpath:security.xml" />
 <import resource="classpath:tx.xml" />
 <import resource="classpath:activemq.xml" />
 <bean id="propertyConfigurer"
 class="org.springframework.beans.factory.config.
 PropertyPlaceholderConfigurer">
 <property name="location"
 value="classpath:servicemix.properties" />
 </bean>
 <sm:container name="jbi"
 monitorInstallationDirectory="false"
 createMBeanServer="true"
 useMBeanServer="true">
 <sm:activationSpecs>
 <sm:activationSpec>
 <sm:component>
 <jms:component>
 <jms:endpoints>
 <jms:endpoint service="test:MyConsumerService"
 endpoint="myConsumer"
 role="consumer"
 soap="false"
 targetService="test:messageFilter"
 defaultMep="http://www.w3.org/2004/
 08/wsdl/in-only"
 destinationStyle="queue"
 jmsProviderDestinationName="queue/A"jmsProviderDestinationName="queue/A"
 connectionFactory =connectionFactory =
 "#connectionFactory" />
 </jms:endpoints>
 </jms:component>

Chapter 15

[327]

 </sm:component>
 </sm:activationSpec>
 <sm:activationSpec componentName="receiver"
 service="test:receiver">
 <sm:component>
 <bean xmlns="http://xbean.org/schemas/spring/1.0"
 class="MyReceiver" >
 <property name="name">
 <value>1</value>
 </property>
 </bean>
 </sm:component>
 </sm:activationSpec>
 <sm:activationSpec id="servicemix-eip">
 <sm:component>
 <eip:component>
 <eip:endpoints>
 <eip:message-filter service="test:messageFilter"
 endpoint="messageFilterEndpoint">
 <eip:target>
 <eip:exchange-target
 service="test:receiver" />
 </eip:target>
 <eip:filter>
 <eip:xpath-predicate
 xpath="/hello/@id = '1'"/>
 </eip:filter>
 </eip:message-filter>
 </eip:endpoints>
 </eip:component>
 </sm:component>
 </sm:activationSpec>
 </sm:activationSpecs>
 </sm:container>
 <bean id="connectionFactory"
 class="org.apache.activemq.ActiveMQConnectionFactory">
 <property name="brokerURL" value="tcp://localhost:61616" />
 </bean>
</beans>

The filter rule we are specifying here is the XPath "/hello/@id = '1'". The code for
MyReceiver.java class is very similar to the MyReceiver used in the content-based
router sample. The only difference is that it won't write any content back to the out.
Hence we are not repeating the code here.

Enterprise Integration Patterns in ESB

[328]

Deploy and Run the Sample
To build the sample, change directory to ch15\06_MessageFilter and type ant as
shown here:

cd ch15\06_MessageFilter

ant

This will compile all the files, including the JMS client program. Now to test the
sample, first, bring ServiceMix up by executing:

cd ch15\06_MessageFilter

%SERVICEMIX_HOME%\bin\servicemix servicemix.xml

Now in a different command prompt execute ant run.

cd ch15\06_MessageFilter

ant run

The JMS client program console will print out the messages it sends to the ESB as
shown in the following figure:

Chapter 15

[329]

If we look at the ESB console, we can see that only two of the messages are filtered
and forwarded to the receiver component and the other two messages are dropped.

Split Aggregator
An aggregator is a kind of stateful filter which can store message parts which are
correlated by some form of ID or field. When all the parts are ready it can aggregate
all the parts and publish a single aggregate message.

Notation

Explanation
In many cases message parts which are co-related arrive at different times and
we cannot proceed further processing unless we receive the message in full. The
scenario is common in the airline domain where the messaging channel splits and
sends passenger reservation lists and passenger name lists in parts, due to size
limitations imposed by EDI messaging gateways. The processing module has to wait
until it receives all the parts of a co-related message. To help the correct ordering of
messages back and to identify whether we have received all parts of the message, the
aggregator depends on several properties such as count, index, and correlation
ID. Each intermittent result is stored by the aggregator until the message is fully
aggregated. Hence the aggregator is stateful in nature.

Enterprise Integration Patterns in ESB

[330]

Illustrative Design
Every full order in the Acme back-end system has to be validated with an available
stock before we can confirm the order. We already discussed that we split the
order into order items and send individual messages corresponding to each item to
different inventory modules. Now, before we can return back the order validation
message to the customer we need to examine the validation status of each order item
from the inventory modules. One possible configuration is to use an aggregator to
which all the inventory modules can route the individual order item status messages.
The aggregator, when it receives the status messages from all the related order items,
can evaluate the overall status and send back the decision (confirmed order or error).
This is shown in the following figure:

Sample Use Case
The sample use case will have the following components:

Default ServiceMix client: The default ServiceMix client will send several
In-Only messages to the split aggregator configured in the ESB. Each of these
messages is correlated, and they also carry the splitCount and splitIndex
along with their message properties.
Split aggregator: The split aggregator is a servicemix-eip component. On
receiving the in messages, the aggregator will look at the correlation ID,
splitCount, and splitIndex and can rearrange and aggregate the messages
irrespective of the order in which the messages arrive. When every part of a
message has arrived, the fully aggregated message is forwarded to the next
component in the flow chain which is the trace component.
Trace component: The trace component prints out the aggregated messages
received from the split aggregator to the ESB console.

•

•

•

Chapter 15

[331]

The following figure illustrates how the various components can be assembled in the
JBI bus for our sample use case:

Sample Code and Configuration
We configure the Split Aggregator in the servicemix.xml file, along with other
components described above.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://xbean.org/schemas/spring/1.0"
 xmlns:sm="http://servicemix.apache.org/config/1.0"
 xmlns:test="http://xslt.servicemix.apache.binildas.com"
 xmlns:eip="http://servicemix.apache.org/eip/1.0"
 xmlns:jms="http://servicemix.apache.org/jms/1.0">
 <classpath>
 <location>.</location>
 </classpath>
 <import resource="classpath:jmx.xml" />
 <import resource="classpath:jndi.xml" />
 <import resource="classpath:security.xml" />
 <import resource="classpath:tx.xml" />
 <import resource="classpath:activemq.xml" />
 <bean id="propertyConfigurer"
 class="org.springframework.beans.factory.config.
 PropertyPlaceholderConfigurer">
 <property name="location"
 value="classpath:servicemix.properties" />

Enterprise Integration Patterns in ESB

[332]

 </bean>
 <sm:container id="jbi"
 monitorInstallationDirectory="false"
 createMBeanServer="false"
 useMBeanServer="false">
 <sm:activationSpecs>
 <sm:activationSpec id="servicemix-eip">
 <sm:component>
 <eip:component>
 <eip:endpoints>
 <eip:split-aggregator service="test:aggregator"
 endpoint="aggregatorEndpoint"
 aggregateElementName=
 "test:MessageEnvelope"
 messageElementName=
 "test:MessagePart">
 <eip:target>
 <eip:exchange-target service="test:trace" />
 </eip:target>
 </eip:split-aggregator>
 </eip:endpoints>
 </eip:component>
 </sm:component>
 </sm:activationSpec>
 <sm:activationSpec componentName="trace" service="test:trace">
 <sm:component>
 <bean class="org.apache.servicemix.components.
 util.TraceComponent" />
 </sm:component>
 </sm:activationSpec>
 </sm:activationSpecs>
 </sm:container>
 <bean id="client" class="org.apache.servicemix.client.
 DefaultServiceMixClient">
 <constructor-arg ref="jbi"/>
 </bean>
</beans>

The split aggregator is configured with the elements aggregateElementName and
messageElementName. These two elements will decide the message envelopes to be
used when the split aggregator aggregates the message.

Deploy and Run the Sample
To build the sample, change directory to ch15\07_SplitAggregator and type ant
as shown here:

cd ch15\07_SplitAggregator

ant

Chapter 15

[333]

This will compile all the files. Now to test the sample, just execute the run target of
build.xml as shown as follows:

cd ch15\07_SplitAggregator

ant run

Observe the ESB console; you can see the messages being sent out to the aggregator
and finally the aggregator combines all related messages and forwards them to the
trace component which will print out the message to the console. This is shown
as follows:

Send msg : corrId<1178104210727> : splitterCount<3> : splitterIndex<1>
: msg<<hello id="1"><binil/><sowmya/></hello>>
Waiting 5000 millis before next message...
Send msg : corrId<1178104215726> : splitterCount<2> : splitterIndex<1>
: msg<<hello id="1"><ann/></hello>>
Waiting 5000 millis before next message...
Send msg : corrId<1178104210727> : splitterCount<3> : splitterIndex<0>
: msg<<hello id="0"><binil/><sowmya/></hello>>
Waiting 5000 millis before next message...
Send msg : corrId<1178104215726> : splitterCount<2> : splitterIndex<0>
: msg<<hello id="0"><ann/></hello>>
Waiting 5000 millis before next message...

INFO - TraceComponent - Exchange: InOnly[
 id: ID:10.10.10.10-1124c7badc9-2:0
 status: Active
 role: provider
 service: {http://xslt.servicemix.apache.binildas.com}trace
 endpoint: trace

 in: <?xml version="1.0" encoding="UTF-8"?><test:MessageEnvelope
xmlns:test="http://xslt.servicemix.apache.binildas.com"
count="2"><test:MessagePart index="0"><hello id="0"><ann/></hello></
test:MessagePart><test:MessagePart index="1"><hello id="1"><ann/></
hello></test:MessagePart></test:MessageEnvelope>
] received IN message: org.apache.servicemix.jbi.messaging.Normalized
MessageImpl@199197b{properties: {org.apache.servicemix.eip.splitter.
corrid=1178104215726}}
INFO - TraceComponent - Body is: <?xml version="1.0"
encoding="UTF-8"?><test:MessageEnvelope xmlns:test="http://xslt.
servicemix.apache.binildas.com" count="2"><test:MessagePart
index="0"><hello id="0"><ann/></hello></test:MessagePart><test:
MessagePart index="1"><hello id="1"><ann/></hello></test:
MessagePart></test:MessageEnvelope>

Send msg : corrId<1178104210727> : splitterCount<3> : splitterIndex<2>
: msg<<hello id="2"><binil/><sowmya/></hello>>

Enterprise Integration Patterns in ESB

[334]

Waiting 5000 millis before next message...

INFO - TraceComponent - Exchange: InOnly[
 id: ID:10.10.10.10-1124c7badc9-2:1
 status: Active
 role: provider
 service: {http://xslt.servicemix.apache.binildas.com}trace
 endpoint: trace

 in: <?xml version="1.0" encoding="UTF-8"?><test:MessageEnvelope
xmlns:test="http://xslt.servicemix.apache.binildas.com"
count="3"><test:MessagePart index="0"><hello id="0"><binil/
><sowmya/></hello></test:MessagePart><test:MessagePart
index="1"><hello id="1"><binil/><sowmya/></hello></test:
MessagePart><test:MessagePart index="2"><hello id="2"><binil/
><sowmya/></hello></test:MessagePart></test:MessageEnvelope>
] received IN message: org.apache.servicemix.jbi.messaging.Normalized
MessageImpl@195ff24{properties: {org.apache.servicemix.eip.splitter.
corrid=1178104210727}}

INFO - TraceComponent - Body is: <?xml
version="1.0" encoding="UTF-8"?><test:MessageEnvelope xmlns:
test="http://xslt.servicemix.apache.binildas.com" count="3"><test:
MessagePart index="0"><hello id="0"><binil/><sowmya/></hello></
test:MessagePart><test:MessagePart index="1"><hello id="1"><binil/
><sowmya/></hello></test:MessagePart><test:MessagePart
index="2"><hello id="2"><binil/><sowmya/></hello></test:MessagePart></
test:MessageEnvelope>

Pipeline
A Pipeline is a kind of bridge which can transform one form of MEP to another.

Notation

For a pipeline, there is no notation provided in the EAI patterns collection. Hence the
bridge EAI pattern is extended and shown here. The motivation behind doing so is
that it is possible to build a bridge between two message exchange patterns using
a pipeline.

Chapter 15

[335]

Explanation
A pipeline can be configured to transform an In-Only MEP to an In-Out. That is,
when the pipeline receives an In-Only MEP, it sends the message in an In-Out MEP
to the transformer component. Hence, the transformer will send a response as an out
message for the In-Out. This out message is then forwarded to the pipeline target in
another In-Only MEP.

Using the MEP transformation property of pipeline, it is possible to construct a
protocol bridge. For example, we can bridge between a HTTP protocol (In-Out) and a
JMS (In-Only) protocol. This is what we have done in Chapter 11 (Access Web Services
using JMS Channel).

Illustrative Design
The Acme e-commerce system allows customers online to make payments and each
such payment message is routed to the financial institution's system in a secure
and reliable manner. The financial institution is Acme's payment partner and their
systems are separated in a different network and domain. Sending requests through
Internet is a feasible method, but the usual HTTP channel does not have the required
reliability. Hence there is a dedicated network between Acme and the financial
institution. Moreover, to make messaging reliable it is possible to send messages
using a reliable channel through MOM. Using JMS, we can send messages through
MOM. However, the payment service at the financial institution's end is a HTTP
service with a request-reply style. Hence the In-Only MEP used in JMS doesn't fit
well. A pipeline can solve this problem by providing a bridge between the two
protocols—JMS and HTTP. This design is shown in the following figure:

You may also refer the Chapter 11 (Access Web Service using JMS Channel) to see an
implementation for this.

Enterprise Integration Patterns in ESB

[336]

Sample Use Case
The sample use case will have the following components:

JMS client: This is a normal external JMS client, placing XML messages onto
the JMS consumer component configured within the ESB.
JMS consumer: This is a servicemix-jms listening on queue "A". Any
incoming messages to this queue will be routed to the next component in the
flow chain which is the pipeline.
Pipeline: The Pipeline is a servicemix-eip component. The pipeline
receives an In-Only MEP from JMS consumer. The pipeline then sends
the same message in an In-Out MEP to the echo component. The echoed
response is send back to the pipeline which is then forwarded to the JMS
consumer in another In-Only MEP.
Echo component: The echo component echoes back any messages it receives.
The message received from the pipeline is thus sent back to the pipeline.
JMS provider: This is a servicemix-jms listening on queue "B". The pipeline
will place the echoed back message into this queue in an In-Only MEP from
where the JMS client can pick up.

The following figure illustrates how the various components can be assembled in the
JBI bus for our sample use case:

•

•

•

•

•

Chapter 15

[337]

Sample Code and Configuration
We configure the pipeline in the servicemix.xml file, along with other components
described above. The content of this file is shown here:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://xbean.org/schemas/spring/1.0"
 xmlns:sm="http://servicemix.apache.org/config/1.0"
 xmlns:test="http://xslt.servicemix.apache.binildas.com"
 xmlns:eip="http://servicemix.apache.org/eip/1.0"
 xmlns:jms="http://servicemix.apache.org/jms/1.0">
 <classpath>
 <location>.</location>
 </classpath>
 <import resource="classpath:jmx.xml" />
 <import resource="classpath:jndi.xml" />
 <import resource="classpath:security.xml" />
 <import resource="classpath:tx.xml" />
 <import resource="classpath:activemq.xml" />
 <bean id="propertyConfigurer"
 class="org.springframework.beans.factory.config.
 PropertyPlaceholderConfigurer">
 <property name="location"
 value="classpath:servicemix.properties" />
 </bean>
 <sm:container name="jbi"
 monitorInstallationDirectory="false"
 createMBeanServer="true"
 useMBeanServer="true">
 <sm:activationSpecs>
 <sm:activationSpec>
 <sm:component>
 <jms:component>
 <jms:endpoints>
 <jms:endpoint service="test:MyConsumerService"
 endpoint="myConsumer"
 role="consumer"
 soap="false"
 targetService="test:pipeline"
 defaultMep="http://www.w3.org/2004/
 08/wsdl/in-only"
 destinationStyle="queue"destinationStyle="queue"
 jmsProviderDestinationName="queue/A"
 connectionFactory=connectionFactory=
 "#connectionFactory" />

Enterprise Integration Patterns in ESB

[338]

 <jms:endpoint service="test:MyProviderService"
 endpoint="myProvider"
 role="provider"
 soap="false"
 destinationStyle="queue"destinationStyle="queue"
 jmsProviderDestinationName="queue/B"
 connectionFactory=connectionFactory=
 "#connectionFactory" />
 </jms:endpoints>
 </jms:component>
 </sm:component>
 </sm:activationSpec>
 <sm:activationSpec componentName="echo" service="test:echo">
 <sm:component>
 <bean class="org.apache.servicemix.components.
 util.EchoComponent" />
 </sm:component>
 </sm:activationSpec>
 <sm:activationSpec id="servicemix-eip">
 <sm:component>
 <eip:component>
 <eip:endpoints>
 <eip:pipeline service="test:pipeline"
 endpoint="pipelineEndpoint">
 <eip:transformer>
 <eip:exchange-target service="test:echo" />
 </eip:transformer>
 <eip:target>
 <eip:exchange-target
 service="test:MyProviderService" />
 </eip:target>
 </eip:pipeline>
 </eip:endpoints>
 </eip:component>
 </sm:component>
 </sm:activationSpec>
 </sm:activationSpecs>
 </sm:container>
 <bean id="connectionFactory"
 class="org.apache.activemq.ActiveMQConnectionFactory">
 <property name="brokerURL" value="tcp://localhost:61616" />
 </bean>
</beans>

Chapter 15

[339]

Deploy and Run the Sample
To build the sample, change directory to ch15\08_Pipeline and type ant as
shown here:

cd ch15\08_Pipeline

ant

This will compile all the files, including the JMS client program. Now to test the
sample, first bring ServiceMix up by executing:

cd ch15\08_Pipeline

%SERVICEMIX_HOME%\bin\servicemix servicemix.xml

Now in a different command prompt execute ant run as shown here:

cd ch15\08_Pipeline

ant run

The output for the above command is shown in the following screenshot:

As seen in the figure, the request and response message will pass through the
pipeline which will bridge the two In-Only MEP exchanges (request and response) to
an In-Out MEP exchange (Echo component).

Static Routing Slip
A static routing slip can route a message coming in an In-Out MEP through a series
of configured target services.

Enterprise Integration Patterns in ESB

[340]

Notation

Explanation
You might be aware of the servlet filters, which is a kind of pipe and filter
configuration to do processing at the presentation tier. Sometimes we may need to
do similar processing, through a series of process blocks. The exact processing blocks
through which the message has to be routed can be dynamic based on the type of
message. In a static routing slip, these processing blocks or target services are fixed.
The ServiceMix routing slip uses In-Out MEPs and errors or faults sent by the targets
are reported back to the consumer. In case of errors the routing process is interrupted.

Illustrative Design
When the Acme customer drops items into the shopping cart, we may also need to
extend any offers or discounts associated with the selected item. This has to be done
after the initial inventory check. We can attach a routing slip to each message so
that the messages are routed in series through the inventory module and the offer
module. This is explained in the following figure:

Chapter 15

[341]

Sample Use Case
The sample use case will have following components:

HTTP client: This is an external HTTP client, placing the XML messages onto
the HTTP connector component configured within the ESB.
HTTP connector: This is a ServiceMix HTTP component listening on port
8912. Any incoming messages to this queue will be routed to the next
component in the flow chain which is the Static Routing Slip.
Static routing slip: The Static Routing Slip is a servicemix-eip component.
On receiving in messages, the Static Routing Slip will attach routing slips
which are pre-configured to the message. Now the ESB can route the
message in series through the services specified through the slips.
Receiver component: Multiple instances of the receiver component are
configured in the ESB. The routing slip attaches slips corresponding to only
a few of the receivers with every incoming message. Hence the messages are
forwarded through these receiver instances only, others are neglected.

On completing the flow, the HTTP client can retrieve back the message from the
HTTP connector as shown in the following figure:

•

•

•

•

Enterprise Integration Patterns in ESB

[342]

Sample Code and Configuration
We configure the pipeline in the servicemix.xml file, along with other components
described above.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://xbean.org/schemas/spring/1.0"
 xmlns:sm="http://servicemix.apache.org/config/1.0"
 xmlns:test="http://xslt.servicemix.apache.binildas.com"
 xmlns:eip="http://servicemix.apache.org/eip/1.0"
 xmlns:jms="http://servicemix.apache.org/jms/1.0">
 <classpath>
 <location>.</location>
 </classpath>
 <import resource="classpath:jmx.xml" />
 <import resource="classpath:jndi.xml" />
 <import resource="classpath:security.xml" />
 <import resource="classpath:tx.xml" />
 <import resource="classpath:activemq.xml" />
 <bean id="propertyConfigurer"
 class="org.springframework.beans.factory.config.
 PropertyPlaceholderConfigurer">
 <property name="location"
 value="classpath:servicemix.properties" />
 </bean>
 <sm:container name="jbi"
 monitorInstallationDirectory="false"
 createMBeanServer="true"
 useMBeanServer="true">
 <sm:activationSpecs>
 <sm:activationSpec componentName="httpReceiver"
 service="test:httpBinding"
 endpoint="httpReceiver"
 destinationService="test:routingSlip">
 <sm:component>
 <bean class="org.apache.servicemix.components.
 http.HttpConnector">
 <property name="host" value="localhost"/>
 <property name="port" value="8912"/>
 </bean>
 </sm:component>
 </sm:activationSpec>
 <sm:activationSpec componentName="receiver1"
 service="test:receiver1">
 <sm:component>
 <bean xmlns="http://xbean.org/schemas/spring/1.0"
 class="MyReceiver" >

Chapter 15

[343]

 <property name="name">
 <value>1</value>
 </property>
 </bean>
 </sm:component>
 </sm:activationSpec>
 <sm:activationSpec componentName="receiver2"
 service="test:receiver2">
 <sm:component>
 <bean xmlns="http://xbean.org/schemas/spring/1.0"
 class="MyReceiver" >
 <property name="name">
 <value>2</value>
 </property>
 </bean>
 </sm:component>
 </sm:activationSpec>
 <sm:activationSpec componentName="receiver3"
 service="test:receiver3">
 <sm:component>
 <bean xmlns="http://xbean.org/schemas/spring/1.0"
 class="MyReceiver" >
 <property name="name">
 <value>3</value>
 </property>
 </bean>
 </sm:component>
 </sm:activationSpec>
 <sm:activationSpec id="servicemix-eip">
 <sm:component>
 <eip:component>
 <eip:endpoints>
 <eip:static-routing-slip service="test:routingSlip"
 endpoint="routingSlipEndpoint">
 <eip:targets>
 <eip:exchange-target
 service="test:receiver1" />
 <eip:exchange-target
 service="test:receiver3" />
 </eip:targets>
 </eip:static-routing-slip>
 </eip:endpoints>
 </eip:component>
 </sm:component>
 </sm:activationSpec>
 </sm:activationSpecs>
 </sm:container>
</beans>

Enterprise Integration Patterns in ESB

[344]

Deploy and Run the Sample
To build the sample, change directory to ch15\09_StaticRoutingSlip and type
ant as shown here:

cd ch15\09_StaticRoutingSlip

ant

This will compile all the files, including the JMS client program. Now to test the
sample, first bring ServiceMix up by executing:

cd ch15\09_StaticRoutingSlip

%SERVICEMIX_HOME%\bin\servicemix servicemix.xml

Now in a different command prompt execute ant run.

cd ch15\09_StaticRoutingSlip

ant run

The output for the above command is shown in the following screenshot:

If you observe the ESB console you can see that the ESB routes the message in
series through the services specified through the slips (test:receiver1 and
test:receiver3).

Chapter 15

[345]

Summary
Integration requires a level of thinking different from the traditional software
engineering where you have to think in terms of software "plugs" and "sockets".
I have to admit that my university courses in Machine Design helped me a lot to
think of the software integration problem in terms of "shafts" and coupling"—in fact,
their counterparts in EAI. I hope you too admit that after reading this chapter. So,
the next time when you want to integrate software components think in terms of
EAI and patterns. Moreover, try to "select and assemble integration building blocks"
rather than hand coding and hardwiring endpoints. This will help you to integrate
in a loosely-coupled manner which will facilitate easy service collaboration and
orchestration. The next chapter will show you a sample of aggregating multiple
services on the ESB using the EAI patterns and guidelines which we learned in
this chapter.

Sample Service Aggregation
In the previous chapters we covered many JBI components in ServiceMix and also
saw a few useful use cases to help solve real life problems using the ESB patterns.
Another useful application of ESB is to provide a "Services Workbench" wherein
we can use various integration patterns available to aggregate services to carry out
business processes. We will look into such a sample use case in this chapter.

We will look at the following topics in the business integration sample:

Solution architecture
JBI-based ESB component architecture
Understanding the message exchange
Deploy and run the sample

Provision Service Order—Business
Integration Sample
To demonstrate the service aggregation, we will choose a typical business integration
scenario happening as an outcome of a customer attempting to make a web order
entry. Let us take the scenario of a Communication Service Provider (CSP) providing
a web access channel for its customers to order Voice over IP (VOIP) service.

We will consider a single process of order generation, which is a core process in an
order management system (OMS). The order generation process accepts and issues
orders. This process can be divided into steps such as order entry and validation. If
we consider a single step such as the validation, it can be decomposed into multiple
validation activities to be performed by more than one third-party service providers.
This makes sense in today's service-oriented environment, where services are
provided by multiple vendors and a single aggregate service is composed of
multiple line-item services offered by multiple vendors.

•

•

•

•

Sample Service Aggregation

[348]

In our example scenario, let us consider three validation services to be done:

Address validation
Credit card validation
Bank history validation

The above fine-grained services are offered by different third-party vendors. Hence,
as per industry standards, the best way to access those services is using SOAP over
HTTP. The Address Service validates the address entered by the user and also
checks to see whether the VOIP service can be provided in the requested area. Credit
Gateway is a composite service, and the successful operation of this service depends
upon the responses from two other third-party vendor services called "Credit Agency"
and "Bank Agency". The Credit Agency checks for the credit worthiness of the
customer, and the Bank Agency checks for the customer's banking transaction history.

Solution Architecture
Let us first look at what JBI-based technical components are required for framing our
solution architecture. This is shown in the following figure:

•
•
•

Chapter 16

[349]

The above figure shows the solution architecture for the business scenario described
earlier. In order to frame the ESB solution architecture for the sample scenario, we
will first list the individual components required. Individual ESB components are
chosen based on the transport requirements to facilitate the information flow. These
components are explained in the following list:

Endpoint: An endpoint connects services across systems, applications, and
enterprises together. An endpoint exposes standard interfaces and hides
all transport-specific aspects, thus providing an abstract plug-in point.
The endpoints are required for the sample business scenario to access the
address, credit, and bank service.
Translator: The translators convert between message formats and are
synonymous with the adapter pattern listed in the Gang of Four Design
Patterns book. In the sample architecture, the validation broker service needs
to talk to the external services through the SOAP protocol. Hence, the Java
objects need to be translated to XML format, and vice versa.
Normalizer: The credit and bank services deal with messages that have
the same meaning but different formats. This is because different external
systems have their own message formats. This means the messages are
in different formats, but are semantically equal. A normalizer routes
semantically equal messages to different message translators.
Recipient list: In scenarios where we need to route message to multiple
endpoints, we will use a recipient list. The recipients can be specified
dynamically also. In our scenario, we need to send the same message to
both the credit and bank services. Here, once the endpoints are defined, the
recipient list will forward the message to all channels associated with the
recipients in the list.

•	 Aggregator: As the Credit Gateway depends upon the combined outcome
of two other services (Credit Agency and Bank Agency), we need to use
a stateful filter to collect and store individual messages until a complete
set of related messages has been received. An aggregator does this job by
combining the results of individual, but related messages so that they can be
processed as a whole.

•

•

•

•

Sample Service Aggregation

[350]

JBI-based ESB Component Architecture
The following figure shows the various JBI components we assemble to design the
integration solution for the order validation business process. The functionality of
these components is already discussed. We are showing the message flow in this
diagram. We will detail out the message flows in the next section with the help of a
UML diagram.

Chapter 16

[351]

Understanding the Message Exchange
As it's said that a diagram speaks a thousand words, so does the UML diagram that
narrates complex message flows in a simple manner. Hence, let us understand the
message exchanges with the help of sequence diagrams. The Sequence 1 is shown in
the following figure:

Sample Service Aggregation

[352]

The Sequence 1 shows the main "Control flow", orchestrated by the broker. The
control code is provided within the onMessageExchange method in the broker and is
reproduced in the following code:

public class SyncVoipBroker extends ComponentSupport implements
 MessageExchangeListener
{
 private Map aggregations = Collections.synchronizedMap(
 new HashMap());
 private JBIContainer container;
 private String name;
 private String addressNamespaceURI;
 private String addressLocalPart;
 private String creditGatewayNamespaceURI;
 private String creditGatewayLocalPart;
 private Object payLoad;
 private boolean creditVetoed;
 private volatile int stack = 0;
 public void onMessageExchange(MessageExchange exchange)
 throws MessagingException
 {
 System.out.println("SyncVoipBroker.onMessageExchange.
 ExchangeId :X: " +
 exchange.getExchangeId());
 ServiceEndpoint serviceEndpoint = null;
 if (exchange.getStatus() == ExchangeStatus.DONE)
 {
 System.out.println("SyncVoipBroker.onMessageExchange.
 ExchangeStatus.DONE");
 dispose();
 return;
 }
 if (exchange.getStatus() == ExchangeStatus.ERROR)
 {
 System.out.println("SyncVoipBroker.onMessageExchange.
 ExchangeStatus.ERROR");
 return;
 }
 if (exchange.getRole() == Role.PROVIDER)
 {
 System.out.println("SyncVoipBroker.onMessageExchange.
 Role.PROVIDER");
 processInputRequest(exchange);
 }
 else
 {
 System.out.println("SyncVoipBroker.onMessageExchange.
 Role.CONSUMER");
 serviceEndpoint = exchange.getEndpoint();

Chapter 16

[353]

 if (serviceEndpoint.getServiceName().getLocalPart().
 equals(addressLocalPart))
 {
 processAddressValidationResponse(exchange);
 }
 else if (serviceEndpoint.getServiceName().getLocalPart().
 equals(creditGatewayLocalPart))
 {
 processCreditGatewayResponse(exchange);
 }
 else
 {
 processServiceRequest(exchange);
 }
 }
 }
}

If the ExchangeStatus is "DONE" or "ERROR" for the initial MessageExchange,
we simply log and return. If not, then the broker component can take part in the
message exchange in two roles namely the provider or the consumer.

For the consumer role, there are multiple paths which will be explained later. But
for the provider role, the broker transfers control to Sequence 2 listed in the
following figure:

Sample Service Aggregation

[354]

In the normal flow when a client sends a message to the ESB, the
onMessageExchange method in the broker will be invoked in the provider role. We
label this messageExchange as the Root Exchange (to differentiate this exchange
from other nested exchanges, which will be described shortly) and keep a pointer
of that in a Map for future reference. The XML payload which we retrieve from
the normalizedMessage is converted to Java objects using the XStream Java XML
binding utilities and stored for future reference. We then create a new InOut
exchange with address as the LocalPart and send it to the deliveryChannel. The
following code snippet details out these sequence of events:

public class SyncVoipBroker extends ComponentSupport implements
 MessageExchangeListener
{
 private void processInputRequest(MessageExchange exchange)
 throws MessagingException
 {
 NormalizedMessage copyMessage = exchange.createMessage();
 NormalizedMessage inNormalizedMessage =
 exchange.getMessage("in");
 getMessageTransformer().transform(exchange,
 inNormalizedMessage, copyMessage);
 Source content = copyMessage.getContent();
 String contentString = null;
 if (content instanceof DOMSource)
 {
 contentString = XMLUtil.retreiveSoapContent(
 ((DOMSource) content).getNode());
 payLoad = XStreamUtil.xmlToObject(contentString);//Cache it
 }
 CustomerTO customerTO = ((ServiceParamTO)
 payLoad).getCustomer();
 AddressTO addressTO = customerTO.getAddress();
 String xmlAddress = XStreamUtil.objectToXml(addressTO);
 Source addressSource = new StreamSource(new
 ByteArrayInputStream(xmlAddress.
 getBytes()));
 String correlationId = null;
 if (exchange.getStatus() == ExchangeStatus.ACTIVE)
 {
 correlationId = exchange.getExchangeId();
 aggregations.put(correlationId, exchange);
 InOut inout = createInOutExchange(new QName(
 addressNamespaceURI, addressLocalPart),
 null, null);
 inout.setProperty(Constants.CORRELATION_ID_KEY,

Chapter 16

[355]

 correlationId);
 NormalizedMessage msg = inout.createMessage();
 msg.setContent(addressSource);
 inout.setInMessage(msg);
 send(inout);
 }
 System.out.println("SyncVoipBroker.processInputRequest.
 correlationId : " + correlationId);
 }
}

Note the newly created messageExchange which will again invoke the
onMessageExchange method of the address (which in turn calls the transform
method of Address—Sequence 3). When the Address service returns, the
onMessageExchange method in the broker will be invoked again, but this time in
the consumer role—consumer to the address. This difference is subtle but important
because in an In-Out exchange, it is the consumer who has to end a message
exchange with a "done" or "error" status. The Address service is simple and is shown
in Sequence 3. The following figure shows the Sequence 3 UML diagram:

In Address service, we validate the address and the result of the validation is set
as a property in the "out" message of the MessageExchange. This is shown in the
following code:

public class AddressValidationService extends
 TransformComponentSupport
{

Sample Service Aggregation

[356]

 protected boolean transform(MessageExchange exchange,
 NormalizedMessage in, NormalizedMessage out)
 throws MessagingException
 {
 String correlationId = (String)exchange.getProperty(
 Constants.CORRELATION_ID_KEY);
 System.out.println("AddressValidationService.transform.
 correlationId : " + correlationId);
 Source content = in.getContent();
 String contentString = null;
 AddressTO addressTO = null;
 if(content instanceof StreamSource)
 {
 contentString = XMLUtil.formatStreamSource(
 (StreamSource) content);
 addressTO = (AddressTO)XStreamUtil.
 xmlToObject(contentString);
 }
 else
 {
 log.debug("AddressValidationService-content.getClass() : " +
 content.getClass() + " ; content : " + content);
 }
 out.setProperty(Constants.ADDRESS_VALIDATED_KEY, Boolean.TRUE);
 return true;
 }
}

When the Address service returns, the onMessageExchange method in the
broker will be invoked (Sequence 1). Now as the broker component is in
the consumer role and the LocalPart is "address", the control flows to the
processAddressValidationResponse which is given in Sequence 4.

Chapter 16

[357]

In processAddressValidationResponse we check whether the address is
validated. If not, we set the XML message "<AddressNotValidated/>" at the
normalizedMessage to the Root Exchange so that the message exchange flow will
be completed and control flows back to the deliveryChannel first and then to the
client. If address is validated, we create a new InOut exchange with creditGateWay
as the LocalPart and send it to the deliveryChannel.

In both the scenarios above, note that we set the (Address Validation)
messageExchange status to "done". The code listing in the following shows
processing the address validation response:

public class SyncVoipBroker extends ComponentSupport
 implements MessageExchangeListener
{
 private void processAddressValidationResponse(MessageExchange
 exchange) throws MessagingException
 {
 String correlationId = (String) getProperty(exchange,
 Constants.CORRELATION_ID_KEY);
 System.out.println("SyncVoipBroker.
 processAddressValidationResponse.correlationId :
 " + correlationId);
 boolean isAaddressValidated = ((Boolean)
 getOutProperty(exchange,
 Constants.ADDRESS_VALIDATED_KEY)).booleanValue();
 MessageExchange rootExchange = null;

Sample Service Aggregation

[358]

 if(isAaddressValidated)
 {
 InOut inout = createInOutExchange(new QName(
 creditGatewayNamespaceURI,
 creditGatewayLocalPart), null, null);
 inout.setProperty(Constants.CORRELATION_ID_KEY,
 correlationId);
 NormalizedMessage msg = inout.createMessage();
 inout.setInMessage(msg);
 send(inout);
 }
 else
 {
 rootExchange = (MessageExchange)aggregations.
 get(correlationId);
 NormalizedMessage response = rootExchange.createMessage();
 response.setContent(new StringSource("
 <AddressNotValidated/>"));
 rootExchange.setMessage(response, "out");
 send(rootExchange);
 aggregations.remove(correlationId);
 }
 done(exchange);
 }
}

Assuming the "Address Validated" scenario as the normal flow, the newly created
MessageExchange will now again invoke the onMessageExchange method of the
Credit Gateway (which in turn calls the transform method of creditGateway—
Sequence 5). When the Credit Gateway service returns, the onMessageExchange
method in the broker will be invoked again, this time also in the consumer role—
consumer to the Credit Gateway service. The Credit Gateway service is simple. The
Sequence 5 is shown in the following figure:

Chapter 16

[359]

In the Credit Gateway service we create a recipient list and set it as a property in the
"out" message of the MessageExchange. This is shown in the following code:

public class CreditGateway extends TransformComponentSupport
{
 private Map endPoints;
 public void setEndPoints(Map endPoints)
 {
 this.endPoints = endPoints;
 }
 protected boolean transform(MessageExchange exchange,
 NormalizedMessage in, NormalizedMessage out)
 throws MessagingException
 {
 String correlationId = (String)exchange.getProperty(
 Constants.CORRELATION_ID_KEY);
 System.out.println("CreditGateway.transform.correlationId
 : " + correlationId);
 out.setProperty(Constants.RECIPIENTS_KEY, getRecipients());
 return true;
 }
 private QName[] getRecipients()
 {
 QName[] recipients = new QName[endPoints.size()];
 String theNamespaceURI = null;
 String theLocalPart = null;
 int times = 0;
 for(Iterator iterator = endPoints.keySet().iterator();
 iterator.hasNext();)
 {
 theLocalPart = (String) iterator.next();
 theNamespaceURI = (String) endPoints.get(theLocalPart);
 recipients[times++] = new QName(theNamespaceURI,
 theLocalPart);
 }
 return recipients;
 }
}

Here we generate a static recipient list. The recipient list is configured in the
servicemix.xml file for the Credit Gateway component as shown here:

<sm:activationSpec componentName="creditGateWay"
 endpoint="creditGateWay"
 service="binil:creditGateWay">
 <sm:component>
 <bean class="com.binildas.esb.servicemix.serviceassembly.
 voipservice.CreditGateway">
 <property name="name">
 <value>Credit</value>

Sample Service Aggregation

[360]

 </property>
 <property name="endPoints">
 <map>
 <entry key="creditAgency">
 <value>http://www.binildas.com/voipservice</value>
 </entry>
 <entry key="bankAgency">
 <value>http://www.binildas.com/voipservice</value>
 </entry>
 </map>
 </property>
 </bean>
 </sm:component>
</sm:activationSpec>

When the Credit Gateway service returns, the onMessageExchange method in the
broker will be invoked (Sequence 1). Now as the broker component is again in
the consumer role and the LocalPart is "creditGateWay", the control flows to the
processCreditGatewayResponse which is given in Sequence 6. This is shown in
the following figure:

Chapter 16

[361]

Our next aim is to route the message to all the targets defined in the recipient list. We
create as many new InOut exchanges as there are entries in the recipient list and send
them to the delivery channel. The following code snippet details out these sequence
of events:

public class SyncVoipBroker extends ComponentSupport
 implements MessageExchangeListener
{
 private void processCreditGatewayResponse(MessageExchange
 exchange) throws MessagingException
 {
 String correlationId = (String) getProperty(exchange,
 Constants.CORRELATION_ID_KEY);
 System.out.println("SyncVoipBroker.
 processCreditGatewayResponse.
 correlationId : " +
 correlationId);
 QName[] recipients = (QName[]) getOutProperty(exchange,
 Constants.RECIPIENTS_KEY);
 CreditCardTO creditCardTO = ((ServiceParamTO)
 payLoad).getCreditCard();
 String xmlCreditCard = XStreamUtil.objectToXml(creditCardTO);
 Source creditCardSource = null;
 InOut inout = null;
 NormalizedMessage msg = null;
 for(int qNames = 0; qNames < recipients.length; qNames++)
 {
 inout = createInOutExchange(recipients[qNames], null, null);
 inout.setProperty(Constants.CORRELATION_ID_KEY,
 correlationId);
 msg = inout.createMessage();
 creditCardSource = new StreamSource(new
 ByteArrayInputStream(xmlCreditCard.
 getBytes()));
 msg.setContent(creditCardSource);
 inout.setInMessage(msg);
 stack++;
 send(inout);
 }
 done(exchange);
 }
}

Sample Service Aggregation

[362]

Here we send the credit card details to the recipients (Bank Agency &
Credit Agency).

The newly created message exchanges will now invoke the onMessageExchange
method of the Bank Agency & Credit Gateway (which in turn calls the transform
method of Bank Agency & Credit Agency respectively) which is again simple and is
shown in Sequence 7 and Sequence 8. The code is not reproduced here, since they are
very trivial. The Sequence 7 is shown in the following figure:

The Sequence 8 is shown in the following figure:

Chapter 16

[363]

When the Bank Agency or the Credit Agency services returns, the
onMessageExchange method in the broker will be invoked again in the consumer
role—consumer to the Bank Agency and Credit Agency. In both the scenarios, the
control will be the transform method.

The Sequence 9 is shown in the following figure:

Let us now look into the code of processServiceRequest in detail:

public class SyncVoipBroker extends ComponentSupport
 implements MessageExchangeListener
{
 private void processServiceRequest(MessageExchange exchange)
 throws MessagingException
 {
 String correlationId = (String) getProperty(exchange,
 Constants.CORRELATION_ID_KEY);
 System.out.println("SyncVoipBroker.processServiceRequest.
 correlationId : " + correlationId);
 Boolean creditauthorized = (Boolean) getOutProperty(exchange,
 Constants.CREDIT_AUTHORIZED_KEY);
 Boolean goodhistory = (Boolean) getOutProperty(exchange,
 Constants.GOOD_HISTORY_KEY);
 MessageExchange rootExchange = (MessageExchange) aggregations.

Sample Service Aggregation

[364]

 get(correlationId);
 done(exchange);
 stack--;
 if(((creditauthorized != null) &&
 !(creditauthorized.equals(Boolean.TRUE)))
 ||
 ((goodhistory != null) &&
 !(goodhistory.equals(Boolean.TRUE))))
 {
 creditVetoed = true;
 System.out.println("SyncVoipBroker.processServiceRequest -
 creditVetoed : " + creditVetoed);
 }
 if(0 == stack)
 {
 NormalizedMessage response = rootExchange.createMessage();
 if(creditVetoed)
 {
 response.setContent(new StringSource(
 "<ServiceNotProvisioned/>"));
 }
 else
 {
 response.setContent(new StringSource(
 "<ServiceProvisioned/>"));
 }
 rootExchange.setMessage(response, "out");
 send(rootExchange);
 aggregations.remove(correlationId);
 }
 }
}

Here, based on the outcome of the previous service responses we can decide
whether the service can be provisioned or not and accordingly we can create an XML
message. Now comes the difference—we create a normalized message out of the
Root Exchange (we are not going to create a new message exchange, since we are
almost done with the process), set the XML message as its content and call send on
the rootExchange.

The Root Exchange will again be routed through the delivery channel back to the
onMessageExchange of the Broker, but this time the message exchange status is
already set as "DONE". So as shown in Sequence 1, the broker now returns back to
the delivery channel and the delivery channel in turn sends back any response to
the client.

This completes the entire process.

Chapter 16

[365]

Deploying and Running the Sample
As a first step, if you haven't done it before, edit examples.PROPERTIES (provided
along with the code download for this chapter) and change the paths there to match
your development environment. Now to build the entire codebase and deploy the
sample in a single go, change directory to ch16\voipservice which contains a
top-level build.xml file. Execute ant there.
cd ch16\voipservice

ant

Now, bring up the ServiceMix container by executing the broker.xml file contained
in the same folder.
cd ch16\voipservice

%SERVICEMIX_HOME%/bin/servicemix broker.xml

The Client.html file provided again in the same folder can be used to send
messages to test the deployed service.

The message exchanges we described in the previous section can be understood better
by looking at the ServiceMix console logging shown in the following screenshot:

Sample Service Aggregation

[366]

Summary
MOM has been serving as a great enabler for creating loosely coupled applications
for many years. Now MOM provides us the EAI pattern to integrate not only
applications but also services and components in a seamless manner.

Distributed components are the norm in today's enterprise computing, aggregating,
and orchestrating the message flows across such multiple components provide us
with a new flexibility in defining business process—by separating out individual
services into multiple components and thus reducing the overall complexity of
the process.

We use the "divide and rule" principle to manage the complexity by splitting out
the functionality into multiple components and services. However, then these
distributed components have to integrate together to provide aggregate or composite
services which we can do at the ESB-level. You have seen such a sample in
this chapter.

In the next chapter we will look at the JBI bus in a slightly different perspective—in a
non-functional or a QOS perspective.

Transactions, Security,
Clustering, and JMX

No book on programming with any framework will be complete without a mention
of the various non functional and QOS features supported by the framework. In
this chapter we will visit a few selected QOS features which have an impact on the
programming and deployment aspects using the ServiceMix ESB, which are listed
as follows:

Transactions
Security
Clustering
JMX

In fact, if we have to address the above features exhaustively then we may need
many pages (or a single book by itself). However, as this book is intended to cover
many other aspects, we will limit our discussion to a single chapter. At the same
time we will see that the reader will not only have an overview of the above features
within ServiceMix, but also is equipped with the tools, code samples, and design
aspects so as to enable him for further reading and development.

In this chapter we will look into the following:

Cross cutting concerns in ServiceMix
Samples demonstrating transactions, security, clustering, and JMX

•

•

•

•

•

•

Transactions, Security, Clustering, and JMX

[368]

Cross Cutting Concerns—Support Inside
ServiceMix
This chapter is slightly different from others because almost all the other chapters
were dealing with a particular way of binding services to ServiceMix. In this chapter
we are going to address programming and/or deployment concerns which can be
applied across any or all of the binding mechanisms covered in the other chapters.

Just as it is possible in normal programming such as web component development
or server-side business component development, we can also attach various QOS
features to the component deployment model in ServiceMix. The peculiar thing with
these QOS features is that they are not hardwired through code along with the BCs
or SEs, but applied over the components in a declarative manner. The advantage is
that the characteristics of these QOS features can be easily changed by altering the
particular configuration.

Let us now look into the selected QOS features and their support within ServiceMix.

Transactions
Transactions guarantee atomicity of the operations (message flows) between the
components. We know that various components can be plugged into the JBI bus
which can take part in the message exchange. Transactions can be associated with
these message exchange flows. The scope and synchronicity of these transactions
mainly depends upon which "send" primitive we use to exchange messages
between components.

The ServiceMix JBI provides an option to set transactions at the container-level. The
following listing shows how to enlist JBI exchanges in transactions.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns:sm="http://servicemix.apache.org/config/1.0">
 <sm:container id="jbi"
 embedded="true"
 depends-on="jndi,broker"
 autoEnlistInTransaction="true"
 transactionManager="#transactionManager">
 </sm:container>
 <jencks:transactionManager id="transactionManager" />
</beans>

Chapter 17

[369]

We can set the autoEnlistInTransaction attribute for the ServiceMix JBI
container to true so that every time a JBI exchange is sent, it will be enlisted in the
current transaction.

We can now use send or sendSync to send the message exchanges and depending
upon which one is used, the semantics of transaction propagation also is different.

If sendSync is used to send an exchange, the implied semantic is that the transaction
flows with the exchange and that the service provider has to answer synchronously
and also enlist any required resources inside the transaction. In Chapter 3 we
discussed about the various flow (NMR Flows) options available within ServiceMix
of which the JCA flow needs special attention. The servicemix-jms component, if
used in a JCA flow, can start transactions whereas transactions within a synchronous
flow are not created by default.

The following figure shows the propagation of transaction context when sendSync
is used:

Transactions, Security, Clustering, and JMX

[370]

If we use send, the sending of the message will be enlisted in the current transaction,
but the message exchange processing will be deferred and then handled in its own
thread disjoint from the previous transaction. We have to use the JCA flow to use the
transactions with the asynchronous message exchanges. A sample flow is shown in
the following figure:

Programming the two types of synchronicity of transaction in the message exchange
are shown in the following list:

Programming synchronous transactional exchange: Synonymous
to the JDBC API, we need to first get a handle to the underlying
TransactionManager and then mark the transaction to begin. Then we send
the message exchange using sendSync followed by a commit or a rollback.
The sequences of steps are shown here:

 TransactionManager txManager = (TransactionManager)
 jbiContext.getTransactionManager();

•

Chapter 17

[371]

 tm.begin();
 InOnly messageExchange = createInOnly();
 jbiContext.getDeliveryChannel().sendSync(messageExchange);
 tm.commit();

Programming asynchronous transactional exchange: Creating asynchronous
transactional exchange is similar to the synchronous method, but we use
send instead of sendSync.

 TransactionManager txManager = (TransactionManager)
 jbiContext.getTransactionManager();
 tm.begin();
 InOnly messageExchange = createInOnly();
 jbiContext.getDeliveryChannel().send(messageExchange);
 tm.commit();

The later sections in this chapter will have working samples which will make clear
the points explained here.

Security
ServiceMix's HTTP component namely servicemix-http provides facility to
configure security. Let us look at a few of them listed here:

HTTP basic authentication: HTTP 1.1 specifications defines basic
authentication. As per that, when a client tries to access a resource
marked as protected in the server, the server prompts for a username and
password combination. This is followed by the browser prompting with a
username and password entry form where the user can enter the relevant
information and submit. If the username and password entered by the
user is authenticated by the server, access will be granted to the requested
resource. Otherwise, depending upon the server's policy, the prompt will
be repeated for a few times (usually three). The main drawback with HTTP
basic authentication is that the passwords are sent across the network base64
encoded, which is a kind of plain text format. As the passwords are not
encrypted, they are vulnerable to hacks. Hence as an additional precaution,
we can either do encryption or use some other stronger mechanism.
For the servicemix-http component, we can configure basic authentication by
configuring the endpoint as shown in the following code:

 <http:endpoint service="test:httpConsumer"
 endpoint="httpConsumer"
 targetService="test:echo"
 role="consumer"
 locationURI="http://localhost:8198/Service/"
 authMethod="basic"
 defaultMep="http://www.w3.org/2004/08/wsdl/in-out">
 </http:endpoint>

•

•

Transactions, Security, Clustering, and JMX

[372]

In this case, before the servicemix-http component routes the request to
the targetService, a basic authentication challenge is initiated by the server
and the request will be routed to the targetService if and only if the
username and the password entered by the user matches with what is
configured in the container.
SSL: ServiceMix can be configured to use secure transport using SSL.
The HTTP consumer role for the servicemix-http component can be config-
ured to use SSL as follows:

 <http:endpoint service="test:YourConsumerService"
 endpoint="yourConsumer"
 role="consumer"
 locationURI="https://localhost:8193/Service/"
 defaultMep="http://www.w3.org/2004/08/wsdl/in-out">
 <http:ssl>
 <http:sslParameters keyStore="classpath:com/binildas/esb/
 servicemix/security/server.keystore"
 keyStorePassword="keystorepassword"/>
 </http:ssl>
 </http:endpoint>

In the consumer role, test:YourConsumerService will be set as the
destination for the above consumer after the message is received through
the SSL transport.
Similarly, the HTTP provider role for the servicemix-http component can
be configured to use SSL as follows:

 <http:endpoint service="test:YourProviderService"
 endpoint="yourProvider"
 role="provider"
 locationURI="https://localhost:8193/Service/"
 defaultMep="http://www.w3.org/2004/08/wsdl/in-out">
 <http:ssl>
 <http:sslParameters keyStore="classpath:com/binildas/esb/
 servicemix/security/server.keystore"
 keyStorePassword="keystorepassword"
 trustStore="classpath:com/binildas/esb/
 servicemix/security/client.keystore"
 trustStorePassword="truststorepassword"/>
 </http:ssl>
 </http:endpoint>

We will have a working sample demonstrating HTTP basic security later in
this chapter.

•

Chapter 17

[373]

Clustering
Architecting and designing an application by looking at the Non Functional
Requirements (NFR) along with the usual functional requirements is important
to ensure fail safe operation under normal as well as abnormal usage conditions.
There can be specific hours in a day or specific months during a year when your
application will receive more hits than normal. The applications need to be designed
taking this into account.

The scalability and availability of any application depends on the multiple layers in
the application deployment stack. The following list gives a few of the main aspects:

Application algorithms and design patterns.
Application frameworks for functionalities such as caching, session
replication, and persistence.
Operating system support providing heap limit, green threads, and
native threads.
Hardware infrastructure, providing 32 or 64 bit word capability.

The above list is never exhaustive, but just the main and evident layers.

The availability of any application depends on the ability of the deployment
environment to recover from a failure with a minimum amount of downtime
without any data corruption. Software and hardware are prone to failure, but that is
no reason to show back "Application not available" messages to the end user through
the browser. Such a scenario will create unsatisfied customers who might migrate to
a competitor's service. We all agree that retaining an existing customer is as (or more)
important than gaining a new customer.

One way to address software and hardware failure is to leverage the
industry-leading clustering solutions to deliver best-in-class high availability,
manageability, and performance for applications in enterprise and application
service grid environments. If we don't want to go for such third-party clustering
services, we can also see whether our own chosen application infrastructure (such
as ServiceMix) will provide its own clustering features. So, let us understand the
ServiceMix cluster in more detail.

A ServiceMix cluster is a logical grouping of multiple ServiceMix instances running
simultaneously and working together thus providing increased scalability and
reliability. From a client or a consumer perspective, the cluster is transparent. This
means, a ServiceMix cluster appears to clients to be a single ServiceMix container
instance. The ServiceMix instances that participate in a cluster can run on the same
machine, or be located on different machines. You can also increase a ServiceMix
cluster's capacity by adding additional ServiceMix instances to the cluster on an
existing machine, or you can also add new machines to the cluster to host new
ServiceMix server instances.

•
•

•

•

Transactions, Security, Clustering, and JMX

[374]

Individual components or application components need to be installed to the
ServiceMix server instances taking part in the cluster. It is recommended to follow a
uniform installation schema where we will deploy components homogenously into
all the ServiceMix server instances in the cluster. However, this is not mandatory
as is shown in the clustering sample we provide later in the chapter. The
exact topology and deployment schema for a ServiceMix cluster has to be
decided based on what level of QOS features we are targeting from each of the
deployed components.

There are multiple benefits which we can leverage from a ServiceMix clustering
topology, a few of them are listed as follows:

Scalability: A software system is said to be scalable if its performance does
not degrade significantly as the load on the system increases. The scalability
of a ServiceMix cluster can be increased dynamically to meet the demand.
You can add the ServiceMix instances to a cluster without interruption of the
deployed service—the applications and services already deployed continue
to run without impact to the existing consumers.
High availability: Availability is defined as the fraction of time the software
system is up and available to its consumers.

For example, a system with 99.99% availability over a period of 1 year
would be unavailable for:
(1 - 0.9999) X 1 Year X 365 Days X 24 Hours per Day X 60 Minutes per Hour
= 52.56 Minutes.

For many systems such as the web-based e-commerce systems a 99.99% avail-
ability would be sufficient but for many other systems like those used for life
saving or defence purposes a higher-level of availability would be required.
In a ServiceMix cluster, SEs and BCs can still continue to run in a different
server instance when one of the server instances fails. As you can deploy the
application components to multiple server instances in the cluster, if a server
instance on which a component is running fails, another server instance on
which that component is deployed can continue the processing thus increas-
ing the overall system availability.
Load balancing: Load balancing is the even distribution of jobs and processes
across the computing and networking resources in your ServiceMix cluster.
For load balancing to occur, there must be multiple copies of a ServiceMix
component that can serve a particular consumer. Information about the
location and operational status of all the ServiceMix components must be
available centrally and across.

•

•

•

Chapter 17

[375]

To set up a ServiceMix cluster, a JMS flow is used. The JMS flow collaborates
the communication between more than one ServiceMix JBI container instance. A
message queue is used for each JBI endpoint, so that multiple instances of the same
named component deployed in different instances of the ServiceMix in the cluster
have requests load balanced across them.

In a ServiceMix cluster, deployment happens in the same way as we do in a normal
ServiceMix JBI container (both for POJO and archive Component deployment) but
all ServiceMix container instances in the cluster are notified of a deployment. The
underlying JMS flow will handle automatic routing, load balancing, and failover of
MessageExchange(s) between the different ServiceMix containers instances in
the cluster.

In the cluster mode all ServiceMix instances participating in the cluster must have
a unique name in the whole cluster. Let us look into a sample configuration to
understand this well. In our hypothetical sample cluster, assume that we will have
three ServiceMix containers instances. As one of these ServiceMix instances also
manages a JMS connection broker, we will arbitrarily name that instance with the
name "admin".

<beans xmlns:sm="http://servicemix.apache.org/config/1.0">
 <bean id="propertyConfigurer"
 class="org.springframework.beans.factory.config.
 PropertyPlaceholderConfigurer">
 <bean id="jndi"
 class="org.apache.xbean.spring.jndi.
 SpringInitialContextFactory"
 factory-method="makeInitialContext" singleton="true" />
 <sm:container id="jbi"
 name="admin"
 flowName="jms?jmsURL=tcp://localhost:61616"
 useMBeanServer="true"
 createMBeanServer="true"
 rmiPort="1111">
 <sm:activationSpecs>
 <!-- other code -->
 </sm:activationSpecs>
 </sm:container>
 <bean id="broker"
 class="org.apache.activemq.xbean.BrokerFactoryBean">
 <property name="config" value="classpath:activemq.xml"/>
 </bean>
 <bean id="jmsFactory"
 class="org.apache.activemq.pool.PooledConnectionFactory">
 <property name="connectionFactory">
 <ref bean="connectionFactory"/>
 </property>
 </bean>

Transactions, Security, Clustering, and JMX

[376]

 <bean id="connectionFactory"
 class="org.apache.activemq.ActiveMQConnectionFactory">
 <property name="brokerURL" value="tcp://localhost:61616" />
 </bean>
</beans>

The important thing to note here is that, we first set the flowName to be of JMS type
and then set the jmsURL to point to the location where the JMS broker is listening.
Now, we can add any number of instances for the ServiceMix to the cluster, simply
by pointing them to the same JMS broker. For our sample purpose we will have two
instances for ServiceMix named "managed1" and "managed2".

The flow settings for managed1 are shown in the following code:

<beans xmlns:sm="http://servicemix.apache.org/config/1.0" >
 <bean id="jndi"
 class="org.apache.xbean.spring.jndi.
 SpringInitialContextFactory"
 factory-method="makeInitialContext" singleton="true" />
 <sm:container id="jbi"
 name="managed1"
 flowName="jms?jmsURL=tcp://localhost:61616"
 useMBeanServer="true"
 createMBeanServer="true">
 <sm:activationSpecs>
 <!-- other code -->
 </sm:activationSpecs>
 </sm:container>
</beans>

We will have a similar configuration for managed2. This is listed in the
following code:

<beans xmlns:sm="http://servicemix.apache.org/config/1.0" >
 <bean id="jndi"
 class="org.apache.xbean.spring.jndi.
 SpringInitialContextFactory"
 factory-method="makeInitialContext" singleton="true" />
 <sm:container id="jbi"
 name="managed2"
 flowName="jms?jmsURL=tcp://localhost:61616"
 useMBeanServer="true"
 createMBeanServer="true">
 <sm:activationSpecs>
 <!-- other code -->
 </sm:activationSpecs>
 </sm:container>
</beans>

We will look into a clustering sample with code later in this chapter.

Chapter 17

[377]

JMX
JMX (Java Management Extensions) technology provides the required APIs and tools
for building distributed, web-based, modular, and dynamic solutions for managing
and monitoring devices, applications, and service-driven networks. Starting with the
J2SE platform 5.0, JMX technology is included in the Java SE platform.

The ServiceMix JBIContainer will expose internal services and components through
the JMX. The JBIContainer can be passed as a JMXBeanServer. Alternatively, it can
be configured to create one if it doesn't exist.

The following code will create a remote JMXConnector to the JBIContainer:

String jndiPath = "jmxrmi";
JMXServiceURL url = new JMXServiceURL
("service:jmx:rmi:///jndi/rmi://127.0.0.1:1099/" + jndiPath) ;
JMXConnector connector = JMXConnectorFactory.connect(url);

Configuring JMX in ServiceMix is done in the jmx.xml file again found in the conf
directory. The following code shows how to do this:

<sm:jmxConnector objectName="connector:name=rmi"
 serviceUrl="${jmx.url}"
 threaded="true"
 daemon="true"
 depends-on="rmiRegistry, jndi"
 environment="#jmxConnectorEnvironment" />

The jmx.url is service:jmx:rmi:///jndi/rmi://localhost:1099/jmxrmi.

These are the default settings for ServiceMix version 3.x. For version 2.x, jmx.url
changes to service:jmx:rmi:///jndi/rmi://localhost:1099/defaultJBIJMX.

Once ServiceMix is up and running, then you can use any JMX compatible console
tools to connect to the ServiceMix container. We will demonstrate this later in
this chapter.

Sample Demonstrating Transaction
In this section we will demonstrate configuring transactions for a message exchange
in an asynchronous pattern.

Transactions, Security, Clustering, and JMX

[378]

Sample Use Case
In the sample scenario to demonstrate transactions, we will configure
DefaultServiceMixClient within the JBI container as the client or consumer for
the JBI bus. We will first start a transaction and then ask DefaultServiceMixClient
to send an InOnly message exchange to the JBI bus. We will use "send" here so
that the act of sending the message will be enlisted in the current transaction, but
the processing of the message exchange will be deferred and handled in a
separate thread.

We will have a servicemix-jms component configured in the provider role to
which the DefaultServiceMixClient can target message exchange. We then
have a servicemix-jms in the consumer role to which the JMS provider pipelines
messages. For the JMS consumer, we have configured a Receiver component using
the targetService attribute. Hence any messages in the chain will be ultimately
routed to the Receiver component.

The component setup is shown in the following figure:

Chapter 17

[379]

In the sample, we use "send" for sending the message. Hence sending will be enlisted
in the current transaction which includes reception of the message by the bus. Any
further processing, including forwarding the message to the next component will be
deferred and handled in separate threads.

Configure Transaction in ServiceMix
All the components specified in the selected use case are configured in the
servicemixjms.xml file as shown here:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns:sm="http://servicemix.apache.org/config/1.0"
 xmlns:jms="http://servicemix.apache.org/jms/1.0"
 xmlns:amq="http://activemq.org/config/1.0"
 xmlns:amqra="http://activemq.org/ra/1.0"
 xmlns:jencks="http://jencks.org/2.0"
 xmlns:test="http://binildas.com/esb/servicemix/tx/
 jms/inonlyasync">
 <sm:container id="jbi"
 embedded="true"
 depends-on="jndi,broker"
 autoEnlistInTransaction="true"
 transactionManager="#transactionManager">
 <sm:flows>
 <sm:sedaFlow />
 <sm:jcaFlow connectionManager="#connectionManager"
 jmsURL="tcp://localhost:61616?
 jms.asyncDispatch=true&
 jms.useAsyncSend=true" />
 </sm:flows>
 <sm:activationSpecs>
 <sm:activationSpec>
 <sm:component>
 <jms:component>
 <jms:endpoints>
 <jms:endpoint service="test:MyConsumerService"
 endpoint="consumerEP"
 targetService="test:
 MyReceiverService"
 role="consumer"
 defaultMep="http://www.w3.org/2004/
 08/wsdl/in-only"
 processorName="jca"
 connectionFactory="
 #connectionFactory"
 resourceAdapter="#resourceAdapter"

Transactions, Security, Clustering, and JMX

[380]

 bootstrapContext="#bootstrapContext"
 synchronous="false">
 <jms:activationSpec>
 <amqra:activationSpec
 destination="queue/A"
 destinationType="javax.jms.Queue" />
 </jms:activationSpec>
 </jms:endpoint>
 <jms:endpoint service="test:MyProviderService"
 endpoint="providerEP"
 role="provider"
 processorName="jca"
 connectionFactory="
 #connectionFactory"
 destinationStyle="queue"
 jmsProviderDestinationName=
 "queue/A" />
 </jms:endpoints></jms:endpoints>
 </jms:component>
 </sm:component>
 </sm:activationSpec>
 <sm:activationSpec id="receiver"
 service="test:MyReceiverService"
 endpoint="receiverEP">
 <sm:component>
 <bean class="org.apache.servicemix.tck.
 ReceiverComponent" />
 </sm:component>
 </sm:activationSpec>
 </sm:activationSpecs>
 </sm:container>
 <bean id="client"
 class="org.apache.servicemix.client.
 DefaultServiceMixClient">
 <constructor-arg ref="jbi"/>
 </bean>
 <bean id="jndi"
 class="org.apache.xbean.spring.jndi.
 SpringInitialContextFactory"
 factory-method="makeInitialContext"
 singleton="true">
 <property name="entries">
 <map>
 <entry key="jms/ConnectionFactory"
 value-ref="connectionFactory" />
 </map>

Chapter 17

[381]

 </property>
 </bean>
 <amqra:managedConnectionFactory id="activemqMCF"
 resourceAdapter="#resourceAdapter" />
 <amqra:resourceAdapter id="resourceAdapter"
 serverUrl="tcp://localhost:61616?
 jms.asyncDispatch=true&
 jms.useAsyncSend=true"/>
 <jencks:connectionFactory id="connectionFactory"
 managedConnectionFactory="#activemqMCF"
 connectionManager="#connectionManager"/>
 <amq:broker id="broker" persistent="false">
 <amq:transportConnectors>
 <amq:transportConnector uri="tcp://localhost:61616" />
 </amq:transportConnectors>
 </amq:broker>
 <jencks:transactionManager id="transactionManager" />
 <jencks:workManager id="workManager"
 transactionManager="#transactionManager" />
 <jencks:bootstrapContext id="bootstrapContext"
 workManager="#workManager"
 transactionManager="#transactionManager"/>
 <jencks:connectionTracker id="connectionTracker"
 geronimoTransactionManager=
 "#transactionManager" />
 <jencks:poolingSupport id="poolingSupport"
 allConnectionsEqual="false" />
 <jencks:connectionManager id="connectionManager"
 containerManagedSecurity="false"
 transaction="xa"
 transactionManager="#transactionManager"
 poolingSupport="#poolingSupport"
 connectionTracker="#connectionTracker"
 />
</beans>

In order to leverage transactions with asynchronous message exchanges,
the JCA flow must be used. This is what we do by including jcaFlow inside
the flows element. While we configure the JBI container, if we set the
autoEnlistInTransaction flag to true, each time a JBI exchange is sent, it will be
enlisted in the current transaction.

Transactions, Security, Clustering, and JMX

[382]

Deploy and Run the Sample
Before running any samples in this chapter, if you haven't done it before edit
examples.PROPERTIES (provided along with the code download for this chapter)
and change the paths there to match your development environment.

Now to build the entire sample, it is easier to change directory to the top-level folder
and execute the build.xml file provided there:

cd ch17\01_Transactions\InOnlyAsync

ant

This will build the entire codebase for the transaction demonstration. Now we need
to open another command prompt and start ServiceMix in the embedded mode, as
follows:

cd ch17\01_Transactions\InOnlyAsync

ant run

In case you want to run the test as a JUnit test case, execute the following code:

ant test

At the end of the run, we will attempt to close the JBI container by destroying the
context. As we are starting the ServiceMix in embedded mode it will generate
exceptions in the console. These errors can be ignored. Instead you can concentrate
on the application logging which is reproduced here:

[junit] JmsInOnlyAsyncTest.testJmsInOnlySync - Start...
[junit] JmsInOnlyAsyncTest.testJmsInOnlySync - Transaction Committed.
[junit] INFO - MessageList - Waiting for message to
arrive
[junit] INFO - MessageList - End of wait for 1001
millis
[junit] JmsInOnlyAsyncTest.testJmsInOnlySync - End.
[junit] JmsInOnlyAsyncTest.tearDown...
[junit] Closing down the Spring ApplicationContext

Chapter 17

[383]

We can see that the MessageList waits for messages which it receives at the end of
1001 milliseconds. The following screenshot shows the ESB console:

Sample demonstrating Security
The security in ServiceMix can be configured at multiple levels and at multiple
layers. In this section we will demonstrate a simple security configuration for the
servicemix-http component. We will configure HTTP basic authentication and as
per that, when a client tries to access a resource marked as protected in the server,
the server prompts for a username and password combination. This is followed by
the browser prompting with a username and password entry form where the user
can enter the relevant information and submit.

Transactions, Security, Clustering, and JMX

[384]

Sample Use Case
The setup of components for the sample use case is shown in the following figure:

The security sample use case will have servicemix-http configured in the
consumer role, listening for HTTP transport for a particular port. We then configure
an Echo service component as the targetService for the above HTTP consumer.
When doing so, we also tell that the HTTP basic authentication has to be applied.
An external HTTP client provided can be used to target messages to the HTTP
consumer. When the external client sends requests, the server prompts for a
username and password combination. This is followed by the browser prompting
with a username and password entry form.

Configure Basic Authorization in
servicemix-http

Chapter 17

[385]

We will use a set of properties file and configuration files as shown above, for setting
up the security sample.

The servicemix.xml file will host the main security configurations as shown here:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns:sm="http://servicemix.apache.org/config/1.0"
 xmlns:http="http://servicemix.apache.org/http/1.0"
 xmlns:soap="http://servicemix.apache.org/soap/1.0"
 xmlns:test="http://binildas.com/esb/servicemix/security">
 <import resource="classpath:activemq.xml" />
 <import resource="classpath:jmx.xml" />
 <import resource="classpath:jndi.xml" />
 <import resource="classpath:tx.xml" />
 <import resource="classpath:security.xml" />
 <classpath>
 <location>.</location>
 </classpath>
 <bean id="propertyConfigurer"
 class="org.springframework.beans.factory.config.
 PropertyPlaceholderConfigurer">
 <property name="location"
 value="classpath:servicemix.properties" />
 </bean>
 <sm:systemProperties>
 <property name="properties">
 <map>
 <entry key="java.security.auth.login.config">
 <bean class="org.springframework.util.ResourceUtils"
 factory-method="getFile">
 <constructor-arg value="classpath:basiclogin.
 properties"/>
 </bean>
 </entry>
 </map>
 </property>
 </sm:systemProperties>
 <sm:container id="jbi" rootDir="./wdir">
 <sm:broker>
 <sm:securedBroker>
 <sm:authorizationMap>
 <sm:authorizationMap>
 <sm:authorizationEntries>
 <sm:authorizationEntry service="*:*"
 roles="superuser" />
 <sm:authorizationEntry service="test:echo"

Transactions, Security, Clustering, and JMX

[386]

 roles="secureuser" />
 </sm:authorizationEntries>
 </sm:authorizationMap>
 </sm:authorizationMap>
 </sm:securedBroker>
 </sm:broker>
 <sm:activationSpecs>
 <sm:activationSpec id="http">
 <sm:component>
 <http:component>
 <http:endpoints>
 <http:endpoint service="test:httpConsumer"
 endpoint="httpConsumer"
 targetService="test:echo"
 role="consumer"
 locationURI="http://localhost:
 8192/Service/"
 authMethod="basic"
 defaultMep="http://www.w3.org/
 2004/08/wsdl/in-out">
 </http:endpoint>
 </http:endpoints>
 </http:component>
 </sm:component>
 </sm:activationSpec>
 <sm:activationSpec componentName="echo" service="test:echo">
 <sm:component>
 <bean class="org.apache.servicemix.components.
 util.EchoComponent" />
 </sm:component>
 </sm:activationSpec>
 </sm:activationSpecs>
 </sm:container>
</beans>

Here, for the http:endpoint element you define the HTTP basic authentication by
setting authMethod="basic".

We can also plug-in authorization in the configuration. For this, we first define a
secured broker (sm:broker) which can match the basic HTTP authenticated user
against an Access Control List (ACL). To plug-in the ACL, we first set the system
properties with key "java.security.auth.login.config" and value pointing to
basiclogin.properties. basiclogin.properties is shown in the following code:

Chapter 17

[387]

servicemix-domain
{
 org.apache.servicemix.jbi.security.login.PropertiesLoginModule
 required
 debug=true
 org.apache.servicemix.security.properties.user="basicusers.
 properties"
 org.apache.servicemix.security.properties.group="basicgroups.
 properties";
};

The basicgroups.properties defines various groups and maps which all users
belong to which all groups. The basicgroups.properties is shown here:

superuser=manager
secureuser=binil

Now, the user credentials are stored in the basicusers.properties and are shown
here:

system=manager
binil=binil
user1=user1

The secured broker puts the authorization rules as follows:

As a default policy, let only the "superuser" role be allowed to access
JBI endpoints.

 <sm:authorizationEntry service="*:*" roles="superuser" />

Let users with role "secureuser" be authorized to access test:echo service.

 <sm:authorizationEntry service="test:echo" roles="secureuser" />

Deploy and Run the Sample
To build the entire sample, change directory to the BasicHttp folder and execute the
build.xml file provided as follows:

cd ch17\02_Security\BasicHttp
ant

Now bring the ServiceMix server up by executing the following command:

%SERVICEMIX_HOME%\bin\servicemix servicemix.xml

•

•

Transactions, Security, Clustering, and JMX

[388]

Once ServiceMix is up, execute Client.html file provided again in the same folder,
and click the send button. The browser will prompt for the username and password
entry form where you can enter the credentials binil and binil belonging to the
secureuser group to access the service.

If you try to access the service with a different credential (for which the ACL
permission is not granted), the service will not be accessible for you.

Sample Demonstrating Clustering
This section will demonstrate the clustering features provided by ServiceMix which
we discussed earlier with the help of the running samples.

Chapter 17

[389]

Sample Use Case
The sample scenario we use for clustering will consist of three ServiceMix instances
configured in a cluster. For the sake of simplicity, all three instances will currently
run in a single physical node, hence we are using the "localhost" as the server
IP everywhere. However, it is possible to distribute these instances into different
physical nodes in which case we may have to use the IP address of these nodes to
form the cluster.

The following figure shows the cluster set up. Here, we have three different
ServiceMix instances. Since in cluster mode, all the ServiceMix instances must have
a unique name in the whole cluster. We will name the instances with different
names namely admin, managed1, and managed2. One of these ServiceMix instances
also manages a JMS connection broker, and hence we have arbitrarily named that
instance with the name "admin".

The JBI services can be deployed into any of the ServiceMix instances in this cluster.
To deploy a service into the cluster, we will deploy those services into all (or many)
instances into the cluster. When we do so, all the containers in the cluster are notified
of the deployment. Now the cluster can administer routing or load balancing policies
when it receives client requests by automatically routing MessageExchange(s)
between the members of the cluster. Such services which we deploy across clusters
are called clustered services. We can also deploy services into a single instance of the
JBI container in the cluster in which case we call the service a pinned service.

Transactions, Security, Clustering, and JMX

[390]

For a clustered service, even if one of the ServiceMix instances hosting the service is
down the service is still up since there are other cluster instances to serve the request.
However for a pinned service we have to make sure that the server instance to which
the service is pinned should be up, otherwise the service will cease to serve.

For the sample (refer to the previous figure) we will make use of both clustered
and pinned services. As shown in figure, receiver3 is a clustered service since it is
deployed in both the instances of the cluster. receiver1 and receiver2 are pinned
services since they are deployed to managed1 and managed2 instances alone,
respectively. The external JMS client will target the messages to all the above three
services. We can see that for messages targeted to receiver1 and receiver2, they are
always routed to managed1 and managed2 server instances respectively. However,
for messages targeted to receiver3 the cluster will load balance the requests to any
of the servers in the cluster. If by any chance we bring down any of the managed
servers, then the pinned services in that instance will no longer be available, but all
the subsequent requests for the clustered service will then onwards be routed to the
other instance(s) of the server in the cluster alone.

The various artifacts used for the clustering demonstration are arranged within
different subfolders as shown in the directory structure in the following figure:

Chapter 17

[391]

Configure ServiceMix Cluster
For each of the ServiceMix server instances participating in the cluster, we have
different server configuration files, and let us look at them one by one:

The admin server configuration is included in ch17\03_Clustering\admin\
servicemixadmin.xml, which is shown in the following code.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns:sm="http://servicemix.apache.org/config/1.0"
 xmlns:amq="http://activemq.org/config/1.0"
 xmlns:eip="http://servicemix.apache.org/eip/1.0"
 xmlns:jms="http://servicemix.apache.org/jms/1.0"
 xmlns:foo="http://servicemix.org/demo/">
 <bean id="propertyConfigurer"
 class="org.springframework.beans.factory.config.
 PropertyPlaceholderConfigurer">
 <property name="location"
 value="classpath:servicemix.properties" />
 </bean>
 <import resource="classpath:jmx.xml" />
 <import resource="classpath:jndi.xml" />
 <import resource="classpath:security.xml" />
 <import resource="classpath:tx.xml" />
 <import resource="classpath:activemq.xml" />
 <bean id="jndi"
 class="org.apache.xbean.spring.jndi.
 SpringInitialContextFactory"
 factory-method="makeInitialContext" singleton="true" />
 <sm:container id="jbi"
 name="admin"
 flowName="jms?jmsURL=tcp://localhost:61616"
 useMBeanServer="true"
 createMBeanServer="true"
 rmiPort="1111">
 <sm:activationSpecs>
 <sm:activationSpec>
 <sm:component>
 <jms:component>
 <jms:endpoints>
 <jms:endpoint service="test:MyConsumerService"
 endpoint="myConsumer"
 role="consumer"
 soap="false"
 targetService="foo:recipients"
 defaultMep="http://www.w3.org/2004/
 08/wsdl/in-only"
 destinationStyle="queue"destinationStyle="queue"
 jmsProviderDestinationName="queue/A"

Transactions, Security, Clustering, and JMX

[392]

 connectionFactory=connectionFactory=
 "#connectionFactory" />
 </jms:endpoints>
 </jms:component>
 </sm:component>
 </sm:activationSpec>
 <sm:activationSpec id="servicemix-eip">
 <sm:component>
 <eip:component>
 <eip:endpoints>
 <eip:static-recipient-list service="foo:recipients"
 endpoint="endpoint">
 <eip:recipients>
 <eip:exchange-target
 service="foo:receiver1" />
 <eip:exchange-target
 service="foo:receiver2" />
 <eip:exchange-target
 service="foo:receiver3" />
 </eip:recipients>
 </eip:static-recipient-list>
 </eip:endpoints>
 </eip:component>
 </sm:component>
 </sm:activationSpec>
 </sm:activationSpecs>
 </sm:container>
 <bean id="broker"
 class="org.apache.activemq.xbean.BrokerFactoryBean">
 <property name="config" value="classpath:activemq.xml"/>
 </bean>
 <bean id="jmsFactory"
 class="org.apache.activemq.pool.PooledConnectionFactory">
 <property name="connectionFactory">
 <ref bean="connectionFactory"/>
 </property>
 </bean>
 <bean id="connectionFactory"
 class="org.apache.activemq.ActiveMQConnectionFactory">
 <property name="brokerURL" value="tcp://localhost:61616" />
 </bean>
</beans>

Here we have a JMS consumer through which the external JMS client can send
messages to the NMR. Then we have configured JMS broker to be listening at
localhost:61616. Moreover, we have also set the flow to be of type JMS by setting
flowName="jms?jmsURL=tcp://localhost:61616".

Chapter 17

[393]

The first managed server configuration is included in ch17\03_Clustering\
managed1\ servicemixmanaged1.xml, which is listed in the following code:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns:sm="http://servicemix.apache.org/config/1.0"
 xmlns:amq="http://activemq.org/config/1.0"
 xmlns:eip="http://servicemix.apache.org/eip/1.0"
 xmlns:foo="http://servicemix.org/demo/">
 <classpath>
 <location>.</location>
 <location>./build</location>
 </classpath>
 <bean id="jndi"
 class="org.apache.xbean.spring.jndi.
 SpringInitialContextFactory"
 factory-method="makeInitialContext" singleton="true" />
 <sm:container id="jbi"
 name="managed1"
 flowName="jms?jmsURL=tcp://localhost:61616"
 useMBeanServer="true"
 createMBeanServer="true">
 <sm:activationSpecs>
 <sm:activationSpec componentName="receiver1"
 service="foo:receiver1">
 <sm:component>
 <bean xmlns="http://xbean.org/schemas/spring/1.0"
 class="managed1.MyReceiver" >
 <property name="name">
 <value>1</value>
 </property>
 </bean>
 </sm:component>
 </sm:activationSpec>
 <sm:activationSpec componentName="receiver3"
 service="foo:receiver3">
 <sm:component>
 <bean xmlns="http://xbean.org/schemas/spring/1.0"
 class="managed1.MyReceiver" >
 <property name="name">
 <value>3</value>
 </property>
 </bean>
 </sm:component>
 </sm:activationSpec>
 </sm:activationSpecs>
 </sm:container>
</beans>

Transactions, Security, Clustering, and JMX

[394]

Here we set name="managed1" and also set flowName="jms?jmsURL=tcp://
localhost:61616". Then this managed server also will form a part of the same
cluster joined by the admin server. Then we deploy receiver1 and receiver3
services to this server.

The second managed server configuration is included in ch17\03_Clustering\
managed2\ servicemixmanaged2.xml, which is listed as follows:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns:sm="http://servicemix.apache.org/config/1.0"
 xmlns:amq="http://activemq.org/config/1.0"
 xmlns:eip="http://servicemix.apache.org/eip/1.0"
 xmlns:foo="http://servicemix.org/demo/">
 <classpath>
 <location>.</location>
 <location>./build</location>
 </classpath>
 <bean id="jndi"
 class="org.apache.xbean.spring.jndi.
 SpringInitialContextFactory"
 factory-method="makeInitialContext" singleton="true" />
 <sm:container id="jbi"
 name="managed2"
 flowName="jms?jmsURL=tcp://localhost:61616"
 useMBeanServer="true"
 createMBeanServer="true"
 rmiPort="1111">
 <sm:activationSpecs>
 <sm:activationSpec componentName="receiver3"
 service="foo:receiver3">
 <sm:component>
 <bean xmlns="http://xbean.org/schemas/spring/1.0"
 class="managed2.MyReceiver" >
 <property name="name">
 <value>3</value>
 </property>
 </bean>
 </sm:component>
 </sm:activationSpec>
 <sm:activationSpec componentName="receiver2"
 service="foo:receiver2">
 <sm:component>
 <bean xmlns="http://xbean.org/schemas/spring/1.0"
 class="managed2.MyReceiver" >
 <property name="name">
 <value>2</value>
 </property>
 </bean>

Chapter 17

[395]

 </sm:component>
 </sm:activationSpec>
 </sm:activationSpecs>
 </sm:container>
</beans>

Here the main difference is that we set name="managed2". Moreover we set flowN
ame="jms?jmsURL=tcp://localhost:61616" so that this managed server too will
form a part of the same cluster joined by the admin and previous managed server.
Then we deploy receiver2 and receiver3 services to this server.

So in a nutshell, receiver1 and receiver2 are pinned services whereas receiver3
is a clustered service.

Deploy and run the sample
To build the entire sample, it is easier to change directory to the top-level folder and
execute the build.xml file provided there:
cd ch17\03_Clustering
ant

This will build the entire codebase for the clustering demonstration. Now we need
to take three different command prompts and bring up all the server instances in the
cluster, in the same order as shown as follows:
cd ch17\03_Clustering\admin
%SERVICEMIX_HOME%\bin\servicemix servicemixadmin.xml
cd ch17\03_Clustering\managed1
%SERVICEMIX_HOME%\bin\servicemix servicemixmanaged1.xml
cd ch17\03_Clustering\managed2
%SERVICEMIX_HOME%\bin\servicemix servicemixmanaged2.xml

The cluster should be up by now. Now to test the cluster setup, in a different
command prompt execute the following:
cd ch17\03_Clustering
ant run

Keep watching on the server-side console printouts, especially the console of the
managed1 and managed2 servers. Execute ant run a couple of times and understand
how the cluster load balances requests targeted to the different services.

Transactions, Security, Clustering, and JMX

[396]

The managed1 server console is shown in the following screenshot:

The managed2 server console is shown in the following screeenshot:

Chapter 17

[397]

We can see that the request routed to receiver3 (which is a clustered service) is
load balanced whereas the requests routed to receiver1 and receiver2 (which are
pinned services) are always served by their respective pinned servers.

You may also want to kill one of the managed servers and try the effect of that on
new incoming requests. You can later bring this dead server back to join the cluster
without disturbing the cluster setup.

Sample demonstrating JMX
To demonstrate JMX in ServiceMix, we will use the same sample we used for
Chapter 9 (Pojo Binding Using Jsr181). The sample ch09\Jsr181BindPojo is repeated
in this chapter and is kept in folder ch17\04_JMX.

Enable JMX in ServiceMix Application
ServiceMix uses the following parameter for enabling JMX:

The default namingPort: 1099.

The default container name: jmxrmi.

The JMX Service URL: service:jmx:rmi:///jndi/rmi://localhost:1099/jmxrmi.

These are the default settings for ServiceMix version 3.x. For version 2.x, JMX Service
URL alone changes to: service:jmx:rmi:///jndi/rmi://localhost:1099/
defaultJBIJMX.

The above values are configured through %SERVICEMIX_HOME%\conf\jmx.xml.
To start simple, edit the jmx.xml file to disable the security feature. This can be
done by first searching for "Comment the following lines to disable JAAS
authentication for jmx" and then commenting the succeeding lines.

Now, bring ServiceMix up. This can be done by trying out any of the samples in the
previous chapters or you can use the JMX sample provided with this chapter. To do
that, change directory to ch17\04_JMX which contains a top-level build.xml file.
Execute ant there.

cd ch17\04_JMX

ant

Now, bring up the ServiceMix container by executing the servicemix.xml file
contained in the same folder.

%SERVICEMIX_HOME%/bin/servicemix servicemix.xml

Transactions, Security, Clustering, and JMX

[398]

Initialize JMX Console—MC4J
You can use any of your favorite JMX tools to control the ServiceMix application.
The Java-2 Platform, Standard Edition (J2SE) 5.0 release onwards includes a JMX
monitoring tool, JConsole. To bring JConsole up, execute the following commands:

cd %JAVA_HOME%\bin

jconsole

For our demonstration we will use MC4J provided by SourceForge. MC4J is the
management software for J2EE application servers and other Java applications. It
utilizes the JMX specification to connect to and introspect to the information
within the supported servers and applications. It provides the ability to browse the
existing managed beans (MBeans), update configurations, monitor operations, and
execute tasks.

Click on the "MC4J Console 1.2b9.exe" file found in the top-level directory of the
MC4J installation to bring up the MC4J window. This MC4J window is shown in the
following screenshot:

Chapter 17

[399]

Select Management | Create Server Connection... from the menu. This will start My
Wizard. A connection to ServiceMix can be created using the wizard.

In the wizard, enter the following into the text boxes and pull-down menus:

Select your server connection type as JSR160.

The Name textbox is filled with any name, for example, ServiceMix.

Select Server URL as service:jmx:rmi:///jndi/rmi://localhost:1099/jmxrmi.

Accept the defaults for the rest of the fields in the wizard and click the Next> button.
Now click Finish in the next window. This will make a connection to ServiceMix!

Transactions, Security, Clustering, and JMX

[400]

Click on org.apache.servicemix(1). The components of the POJO binding example
will be shown. Right-click on a component and select Available dashboards... |
Basic MBean View to see the JMX information available as shown in the
following screenshot:

Retrieve WSDL through JMX
At times when you try out your samples in ServiceMix you may feel that something
is not working properly or some information retrieved is not as per your expectation.
In such scenarios it makes sense to make use of a JMX console and look into the
component configurations. Let us do a similar activity now.

Chapter 17

[401]

In the POJO binding sample you have already wired the service interface and service
implementation as follows:

<jsr181:endpoint annotations="none"
 service="test:helloService"
 serviceInterface="samples.HelloServiceBI">
 <jsr181:pojo>
 <bean class="samples.HelloServicePojo">
 </bean>
 </jsr181:pojo>
</jsr181:endpoint>

Let us now load the WSDL generated by the JBI bus by clicking on the loadWSDL
button. You may have to uncheck the View as HTML checkbox to make the WSDL
visible, which is shown in the following figure:

Transactions, Security, Clustering, and JMX

[402]

Summary
I hope you have enjoyed this last chapter. The samples demonstrated here, especially
the usage of the JMX tool to look into the artifacts inside the bus will be highly useful
when you run your own components inside the ServiceMix JBI bus.

If you have gone through all the previous chapters also in this text, by now you
should have "hands on" knowledge of what an ESB is and what JBI has to do in
defining ESB-based architectures. This will give you an edge over your peers in
understanding ESB and in preparing yourselves to leverage ESB to solve your
integration problems.

In my entire career I have interacted with a lot of people who talk and write a lot on
ESB in white papers, but they never gave me any code to play around with. It is in
this context I decided to spend a few chapters on ESB with code. I hope you enjoyed
reading just as I enjoyed writing it.

Index
 A
Apache SOAP

about 85
artifacts 86
binding services 86
checkMustUnderstands attribute, service

element 87
encoding styles 85
message oriented 86
provider element 87
RPC oriented 85
service element 86
type attribute, provider element 87

Apache SOAP binding 83, 84
Artix 64
autonomy 262

B
binding

about 83
Apache SOAP binding 84
endpoints 84

bindings, XFire
Aegis 100
Castor 100
JAXB 100
Message 100
XMLBeans 100

C
Celtix

about 63
objectives 63, 64

ChainBuilder 64

CIM 22
clustering, QOS features

about 373
application deployment stack, layers 373
sample 388
ServiceMix clustering, features 374

clustering, sample
deploying 395
running 395, 397
sample use case 389, 390
ServiceMix cluster, configuring 391, 392,

393, 394, 395
Common Object Request Broker Protocol.

See CORBA
Communication Service Provider (CSP) 347
component helper classes, ServiceMix

MessageExchangeListener 137
TransformComponentSupport 137, 139

components, EAI patterns
configuring, in ServiceMix 294
content-based router 294
content enricher 303
message filter 323
pipeline 334
split aggregator 329
static recipient list 313
static routing slip 339
wiretap 319
XPath splitter 308

components, ServiceMix
httpConnector 79
httpGetData 79
httpInvoker 79
httpReceiver 79
servicemix-jsr181 162
trace, configuring 79

[404]

quartz 79
component versus services

about 147, 148
EJB components with services, coexistence

148
technical indiscrimination 148

consumer configuration parameters,
servicemix-http

defaultMEP 186
endpoint 186
interfaceName 186
locationURI 186
role 186
service 186
soap 186
targetEndpoint 186
targetService 186
wsdlResource 186

consumer configuration parameters, service-
mix-jms

connectionFactory 205
defaultMEP 205
destinationStyle 205
endpoint 204
jmsProviderDestinationName 205
role 204
service 204
soap 204
targetService 205
useMsgIdInResponse 205

content-based router, EAI patterns
components

about 269, 294
configuring 297
content-based router component, sample

use case 297
definition 295
illustrative design, Acme company 295
JMS client component, sample use case 296
JMS consumer component, sample use case

296
JMS provider component, sample use case

297
receiver component, sample use case 297
sample, deploying 301
sample, running 301
sample code 297-301

sample use case 296
symbol 294

content enricher, EAI patterns components
about 303
configuring 305
content appender component, sample use

case 304
content enricher component, sample use

case 304
definition 303
illustrative design, Acme company 303
JMS client component, sample use case 304
JMS consumer component, sample use case

304
JMS provider component, sample use case

304
sample, deploying 307
sample, running 307
sample code 305, 306, 307
sample use case 304
symbol 303

CORBA 12
covenant approach

about 268, 269
advantages 269

E
EAI 12
EAI pattern blocks 292
EAI patterns

about 290
aggregator, notations 291
book 290
components 294
notations 291
ServiceMix, need for 291
site 291
splitter, notations 291
wire tap, notations 291

EIP
about 289
EAI patterns 290

EJB-SOAP sample
Apache SOAP binding, code listing 90, 91
client, running 93, 94
code listing 89

[405]

EJB, binding to SOAP 92, 93
EJB, deploying 91, 92
running 91
ServiceMix, relating to 96
session EJB, code listing 89
scenario 88

EJB-XFire sample
classes 115-119
client, running 120
code listing 115
EJB, deploying 119, 120
running 119, 120
sample scenario 114

EJB resources
reconciling 160

EJB sample, binding
Axis client-side stubs, generating 158-160
Axis client code base, building 160
EJB, binding to ServiceMix 150-154
EJB binding, deploying in ServiceMix 155
EJB service, defining 149
EJB service, deploying 150
WSDL, accessing 156, 157

Enterprise Application Integration. See EAI
enterprise integration

about 8
issues 8

Enterprise Integration Patterns. See EIP
enterprise message bus 15, 17
Enterprise Service Bus. See ESB
ESB

about 16
abstraction, beyond interface 24
business concerns 20
channels, for interoperability 20, 21
data redundancy 22
EIP 289
features 17
functionalities 17
industry adoption 19
issues 20
linked servers 28
linked services 28
new systems, addition 22
service 23, 24
service aggregation 25
service consolidation 26

service enablement 26
service reuse 23
services fabric 30
service sharing 27, 28
service virtualization 29, 30
system management 23
system monitoring 23
versus message bus 17
versus message bus, differences 18
versus message bus, similarities 17
volatile interfaces 22

ESB integration
about 16
features 16

external web service invoking sample, JBI
proxy

Axis generated client-side stubs 253
deploying 258
deployment, configuring 258
HelloWebService.wsdl 253
IHello business interface 252
IHello.java 252
IHelloProxy.java 256
IHelloProxyService.java 256
IHelloWeb.java 252
ITarget.java 255
JBI proxy binding, XBean-based 256, 258
running 258
TargetService.java 255
web service code listing 252
WSDL, generating 259

G
Global Assembly Cache (GAC) 261

H
HTTP

about 182
headers 182
web service request header, sample

182, 183

I
installing, ServiceMix

classpath issues, resolving 67, 68

[406]

hardware requirements 65
in Unix 67
in Windows 66
OS requirements 65
run-time environment 65
ServiceMix, configuring 67
ServiceMix, starting 67
ServiceMix, stopping 67

integration 11, 12
integration architectures

about 12
enterprise message bus integration 15
enterprise message bus integration,

diagramatic representation 15
enterprise service bus integration,

diagramatic representation 16
ESB integration 16
hub-and-spoke architecture 13
hub-and-spoke architecture, diagrammatic

representation 14
hub-and-spoke architecture, drawbacks 14
hub-and-spoke architecture, features 13
message broker 13
point-to-point integration 13
point-to-point integration, diagrammatic

representation 13
issues, enterprise integration

autonomous system 9
data duplication 8, 9
intranet versus internet 10
multiple systems 8
trading partners system 10

J
J2EE

components 37
JBI 36

J2EE Connector Architecture. See JCA
Java-2 Platform Standard Edition (J2SE) 398
Java 2 Enterprise Edition. See J2EE
Java API for XML Binding. See JAXB
Java XML binding

about 222
Castor, frameworks 222
frameworks 222
JAXB 223

sample binding, XStream used 224
XMLBeans, frameworks 222
XStream 223

JAXB
about 223
features 223

JBI
about 38
in J2EE 36
JCA, competing with 38
JSR 208 39
message exchange patterns 47
nomenclature 40
provider-consumer contract 42

JBI-POJO binding sample
about 164
Axis client-side stubs, generating 172
Axis client codebase, building 173
deploying 167, 168
POJO class 164, 166
POJO code listing 166
running 169
use case 164
WSDL, accessing 169, 171
XBean-based POJO binding 166, 167

JBI bus, accessing
components, for implementing sample use

case 175
sample 173
sample, building 179
sample, deploying 179
sample, running 179
sample code listing 177, 178
sample use case 175

JBI compliant container
Artix 64
Celtix 63
ChainBuilder 64
Mule 63
PEtALS 64

JBI components
binding components 41
delivery channel 42
JBI container 41
JBI environment 40
normalized message 41
normalized message router 41

[407]

pluggable components 42
service consumers 42
service engine 41
service providers 42

JBI components, ServiceMix
developing 135
HttpInterceptor component, building 144
HttpInterceptor component, coding 140,

141
HttpInterceptor component, configuring

142
HttpInterceptor component, deploying 143
HttpInterceptor component, packaging 142
HttpInterceptor component, running 144

JBI container
about 41
ServiceMix 57

JBI Proxy sample
compatible interface, implementing 244
in-compatible interface, implementing 248

JBI Proxy sample, compatible interface
deploying 247
deployment, configuring 247
EchoProxyService.java 245
IEcho.java 245
IEcho interface 245
JBI proxy binding, XBean used 246
proxy code listing 245
running 247
TargetService.java 246

JBI Proxy sample, in-compatible interface
deploying 251
deployment, configuring 251
EchoProxyService.java 249
IEcho.java 249
ITarget.java 249
JBI proxy binding, XBean used 250
proxy code listing 248
running 251
TargetService.java 249

JCA 37
JDK Proxy class

about 239
getProxyClass, utility methods 239
InvocationHandler 239
InvocationHandler, implementing 240
newProxyInstance, utility methods 239

sample 240-242
sample, building 243
utility methods 239

JMS
about 199
ServiceMix 203

JMS API
about 199
J2EE, enhancing ways 200

JMX, QOS features
about 377
configuring, in ServiceMix 377
JConsole tool 398
sample 397

JMX, sample
enabling, in ServiceMix 397
JMX console, initializing 398, 399
WSDL, retrieving 400, 401

JSR181 101, 162
JSR 208

about 39
abstract business process 39
business protocol 39

L
lightweight JBI components, ServiceMix

about 69
cache 69
component helper classes 69
drools 69
email 69
file 69
FTP 69
Groovy 69
HTTP 69
Jabber 69
JAX WS 69
JCA 69
JMS 69
Quartz 70
reflection 70
RSS 70
SAAJ 70
scripting 70
validation 70
VFS 70

[408]

WSIF 70
XFire 70
XSLT 70
XSQL 70

Line of Business. See LOB
LOB 7

M
MC4J 398
MEP 205
message exchange patterns, JBI

In-Only MEP 48
In-Only MEP, normal scenario 48
In-Optional-Out MEP 52
In-Optional-Out MEP, consumer fault

scenario 54
In-Optional-Out MEP, one way scenario 52
In-Optional-Out MEP, provider fault

scenario 53
In-Optional-Out MEP, two way scenario

52, 53
In-Out MEP 50
In-Out MEP, fault scenario 51
In-Out MEP, normal scenario 50
Robust In-Only MEP 48
Robust In-Only MEP, fault scenario 49, 50
Robust In-Only MEP, normal scenario 48
service invocations 47

message filter, EAI patterns components
about 323
configuring 326
definition 324
illustrative design, Acme company 324
JMS client component, sample use case 325
JMS consumer component, sample use case

325
message filter component, sample use case

325
receiver component, sample use case 325
sample, deploying 328
sample, running 328
sample code 326, 327
symbol 324

Message Oriented Middleware. See MOM
MOM. See JMS

MOM
about 19
Microsoft Biztalk 292
Microsoft MQ 292
TIBCO 292
Webmethods 292
WebSphere MQ 292

Mule 63
multiple endpoint address approach 269

N
NMR flow types, ServiceMix

JCA flow 62
JMS flow 61
SEDA flow 60
ST flow 59

O
Order Management System (OMS) 347

P
packaging and deployment sample,

ServiceMix
component development, phase 128
component packaging, phase 129-131
phases 127
running 132, 134

patterns 291
PEtALS 64
pipeline, EAI patterns components

about 334
configuring 337
definition 335
echo component, sample use case 336
illustrative design, Acme company 335
JMS client component, sample use case 336
JMS consumer component, sample use case

336
JMS provider component, sample use case

336
pipeline component, sample use case 336
sample, deploying 339
sample, running 339
sample code 337, 338

[409]

sample use case 336
symbol 334

POJO
about 161
advantages 162
overview 161

POJO class 164
protocol bridge 207, 208
provider-consumer contract, JBI

detached message exchange 44
message exchange 47
provider-consumer, responsibilities 46
provider-consumer role 45
service invocation 47
WSDL representation of service 43

provider configuration parameters,
servicemix-http

endpoint 187
interfaceName 187
locationURI 187
role 187
service 187
soap 188
soapAction 188
wsdlResource 188

provider configuration parameters,
servicemix-jms

connectionFactory 206
destinationStyle 206
endpoint 206
jmsProviderDestinationName 206
role 206
service 206
soap 206

proxy
about 238
design pattern 238

Q
QOS 11
QOS features

clustering 373
JMX 377
security 371
transactions 368

Quality of Service. See QOS

S
security, QOS features

about 371
HTTP basic authentication 371
HTTP basic authentication, configuring 371
HTTP basic authentication, drawback 371
HTTP consumer role configuring, SSL used

372
HTTP provider role configuring, SSL used

372, 373
sample 383
SSL 372

security, sample
deploying 387
HTTP basic security, configuring 385, 386
running 388
sample use case 384

service aggregation
business integration sample 347

service aggregation, business integration
sample

Address validation service 348
aggregator, ESB components 349
Bank history validation service 348
Credit card validation service 348
deploying 365
endpoint, ESB components 349
ESB components 349
JBI-based ESB component architecture 350
JBI-based ESB component architecture,

UML diagram 350
message exchange 351
message exchange, onMessageExchange

method 352
message exchange, sequence 1 352, 353
message exchange, sequence 2 354, 355
message exchange, sequence 3 355, 356
message exchange, sequence 4 357, 358
message exchange, sequence 5 359
message exchange, sequence 6 360, 362
message exchange, sequence 7 362
message exchange, sequence 8 363
message exchange, sequence 9 363, 364
message exchange, sequence diagrams 351
message exchange, transform method 358
normalizer, ESB components 349

[410]

recipient list, ESB components 349
running 365
solution architecture 348
translator, ESB components 349
validation services 348

Service Level Agreement. See SLA
SLA 23
ServiceMix

about 58, 123
architecture 58
client code, running 78
component helper classes 136
components 68
custom JBI components, need for 135, 136
deployment 126
external HTTP service, binding 70
features 58
HTTP service, configuring 74, 75
installing 65
JBI components, developing 135
JMS 203
lightweight JBI components 69
NMR flows 59
packaging 124
packaging and deployment sample 127
QOS features, support 368
running 76, 77
sample 70
servicemix-eip component 293
servicemix-http 183
servicemix-jms 203
servicemix-jsr181 162
servlet-based HTTP service 71-73
Spring XML configuration 79
standard JBI components 68

ServiceMix, deployment
about 126
deployment modes 126
lightweight, deployment modes 127
standard and JBI compliant, deployment

modes 126
ServiceMix, packaging

about 124
installing 124, 125
jbi.xml installation descriptor 124
Service Assembly, jbi.xml deployment

descriptor 125

Service Assembly packaging 125
Service Unit, jbi.xml deployment descriptor

126
Service Unit packaging 126

servicemix-http, ServiceMix
about 183
configuration parameters 185
features 183, 184
lightweight configuration 188
servicemix-http as consumer 185
servicemix-http as provider 186, 187
XBean configuration 185

servicemix-jms, ServiceMix
about 203
configuration parameters 204
configuring 204
features 203
lightweight configuration 206
servicemix-jms as consumer 204
servicemix-jms as provider 205
XBean configuration 204

servicemix-jsr181, ServiceMix
about 162
deploying, XBean-based deployment used

163, 164
endpoints, configuring 164
features 163
JBI chanel, linking to XFire transport 163
JBI channel, linking to XFire transport 162
POJO as services, exposing 162

ServiceMix cluster
about 373
configuring 375, 376
deploying 375
features 374
setting up 375

ServiceMix EAI patterns
configuring 293
servicemix-eip, configuring as standard JBI

component 293
servicemix-eip configuring, servicemix.xml

file used 293
ServiceMix JBI Proxy 243
Service Oriented Integration. See SOI
SOA

about 32
drawbacks 32

[411]

features 32
need for 32
SOI 36
technologies 32
web services 33

SOA, versioning
about 261
autonomous services 262
change, need for 262
fund transfer example 263, 264
interfaces 262, 263
jargon version 265
schemas, need for 265
web service method 263

SOAP 201
SOI 36
split aggregator, EAI patterns components

about 329
configuring 331
Default ServiceMix client component, sam-

ple use case 330
definition 329
illustrative design, Acme company 330
sample, deploying 332
sample, running 333
sample code 331, 332
sample use case 330
split aggregator component, sample use

case 330
symbol 329
trace component, sample use case 330

standard JBI components, ServiceMix
about 68
servicemix-bean 68
servicemix-bpe 68
servicemix-camel 68
servicemix-drools 68
servicemix-eip 68
servicemix-file 68
servicemix-ftp 68
servicemix-http 68
servicemix-jms 68
servicemix-jsr181 68
servicemix-lwcontainer 68
servicemix-quartz 69
servicemix-saxon 69
servicemix-script 69

servicemix-wsn2005 69
servicemix-xmpp 69

static recipient list, EAI patterns compo-
nents

about 313
configuring 316
definition 314
illustrative design, Acme company 314
JMS client component, sample use case 315
JMS consumer component, sample use case

315
receiver component, sample use case 315
sample, deploying 318
sample, running 318
sample code 316, 317, 318
sample use case 315
static recipient list component, sample use

case 315
symbol 313

static routing slip, EAI patterns components
about 339
configuring 342
definition 340
HTTP client component, sample use case

341
HTTP connector component, sample use

case 341
illustrative design, Acme company 340
receiver component, sample use case 341
sample, deploying 344
sample, running 344
sample code 342, 343
sample use case 341
static routing slip component, sample use

case 341
symbol 340

STP 22
Straight Through Processing. See STP
system integration

EAI 12

T
transactions, QOS features

about 368
asynchronous transactional exchange, pro-

gramming 371

[412]

JBI exchanges 368
message exchange sending, send method

used 370
message exchange sending, sendSync

method used 369
sample 377
synchronous transactional exchange,

programming 370
transactions, sample

configuring, in Servicemix 379, 381
deploying 382
running 382
sample use case 378

V
versioning 261
Voice over IP (VOIP) 347

W
web service

about 181
binding 182
building, XFireConfigurableServlet used

101
building, XFire Spring Jsr181 handler used

109
building, XFire Spring XFireExporter used

106
consumer and provider, indirection 182
SOAP over HTTP versus SOAP over JMS

201, 202
testing, Axis client used 215
testing, document style 214
testing, JMS channel used 214
testing, JMS client used 214, 215
testing, RPC style 215

web service, classes
client-config.wsdd, RPC style 216
JMSSender.java 217
JMSTestClientRPCWebService.java, RPC

style 215
JMSTransportForAxis.java, RPC style 216

web service-JMS channel binding sample
servicemix-eip pipeline bridge,

XBean-based 212

servicemix-http provider destination,
XBean-based 212

servicemix-jms, XBean-based binding 211
ServiceMix component architecture 209
ServiceMix sample, deploying 213
web service, deploying 210

web service binding sample
Axis-based stubs, generating 196, 197
Axis client codebase, building 198
deploying 193
running 193
use case 190
web service, deploying 190,-192
WSDL, accessing 194, 195
XBean-based deployment 193

Web Service Reliable Messaging
specifications 200
specifications, aspects 201
Web Services Reliability specification 200
Web Services Reliable Messaging

specification 201
web service, SOA

SOAP 34
SOAP request 35
SOAP response 35
WSDL 33
WSDL, sections 34

web service versioning
approaches 268
levels 266
operational perspective 287
strategy 265
targetNamespace, for WSDL 267
version parameter 267
XML schema used 266

web service versioning, approaches
covenant 268, 269
multiple endpoint address 269

web service versioning-ESB sample
about 270
content-based router, configuring in

ServiceMix 277, 279
content-based router, JBI components 271
content retriever, configuring in ServiceMix

280
content retriever, JBI components 272

[413]

deploying 285, 287
HTTP consumer, JBI components 272
HTTP provider, configuring in ServiceMix

282
HTTP provider, JBI components 272
JMS client, configuring in ServiceMix 274,

276
JMS client, JBI components 271
JMS consumer, configuring in ServiceMix

276
JMS consumer, JBI components 271
JMS provider, configuring in ServiceMix

285
JMS provider, JBI components 272
pipeline component, configuring in

ServiceMix 280
pipeline component, JBI components 271
remote web service, configuring in

ServiceMix 282, 284
remote web service, JBI components 272
running 285, 287
sample use case 270
service pipeline, configuring in ServiceMix

281
service pipeline, JBI components 272
whitespace transformer, configuring in

ServiceMix 276
whitespace transformer, JBI components

271
wiretap, EAI patterns components

about 319
configuring 321
definition 320
echo component, sample use case 320
HTTP client component, sample use case

320
HTTP connector component, sample use

case 320
illustrative design, Acme company 320
sample, deploying 323
sample, running 323
sample code 321, 323
sample use case 320
symbol 319
trace component, sample use case 321
wiretap component, sample use case 320

WS-Reliability 200
WS-Reliable Messaging 201
WSDL document 267

X
XFire

about 99
binding 100
transport mechanism 100

XFireConfigurableServlet
classes 102-104
client, running 105
code listing 102
sample, running 104
sample scenario 101

XFire Spring Jsr181 handler
classes 111, 112
client, running 113
code listing 110
sample, running 113
sample scenario 109

XFire Spring XFireExporter
classes 108, 109
client, running 109
code listing 107
sample, running 109
sample scenario 106

XML 222
XML schema 266
XML streams 182
XPath splitter, EAI patterns components

about 308
configuring 311
definition 309
illustrative design, Acme company 309
JMS client component, sample use case 310
JMS consumer component, sample use case

310
sample, deploying 312
sample, running 312, 313
sample code 311, 312
sample use case 310
symbol 309
trace component, sample use case 310
XPath splitter component, sample use case

310

[414]

XStream
about 223
features 223
integrating, with ServiceMix 225, 226

XStream in NMR sample
building 235
components 227
HTTPClient 228
HTTP Connector, components 227
HTTPInterceptor, components 227, 230, 231
HTTPInterceptor component, configuring

232, 233
HTTPInterceptor component, deploying

234

HTTPInterceptor component, packaging
234

Java Transfer Objects classes 228, 229
running 235
sample use case 226
XML documents, unmarshaling to Transfer

Objects 228
XStreamInspector, components 227, 232
XStreamInspector component, configuring

232, 233
XStreamInspector component, deploying

234
XStreamInspector component, packaging

234

	Service Oriented Java Business Integration
	Table of Contents
	Preface
	Chapter 1: Why Enterprise Service Bus
	Boundary-Less Organization
	Multiple Systems
	No Canonical Data Format
	Autonomous, but Federated
	Intranet versus Internet
	Trading Partners

	Integration
	Enterprise Application Integration

	Integration Architectures
	Point-to-Point Solution
	Hub-and-Spoke Solution
	Enterprise Message Bus Integration
	Enterprise Service Bus Integration

	Enterprise Service Bus versus Message Bus
	Similarities and Differences
	Maturity and Industry Adoption

	Making the Business Case for ESB
	How many Channels
	Volatile Interfaces
	New Systems Introducing Data Redundancy
	Service Reuse
	System Management and Monitoring

	Enterprise Service Bus
	Service in ESB
	Abstraction beyond Interface
	Service Aggregation
	Service Enablement
	Service Consolidation
	Service Sharing
	Linked Services
	Virtualization of Services
	Services Fabric

	Summary

	Chapter 2: Java Business Integration
	SOA—the Motto
	Why We Need SOA
	What is SOA?
	SOA and Web Services
	Service Oriented Integration (SOI)

	JBI in J2EE—How they Relate
	Servlets, Portlets, EJB, JCA, and Then
	JBI and JCA—Competing or Complementing
	JBI—a New Standard

	JBI in Detail
	JSR 208
	JBI Nomenclature

	Provider—Consumer Contract
	Detached Message Exchange
	Provider—Consumer Role
	Message Exchange
	Service Invocation

	Message Exchange Patterns (MEP)
	In-Only MEP
	Robust In-Only MEP
	In-Out MEP
	In-Optional-Out MEP

	ESB—Will it Solve all Our Pain Points
	Summary

	Chapter 3: JBI Container—ServiceMix
	ServiceMix—under the Hood
	Salient Features

	ServiceMix Architecture
	Architecture Diagram
	Normalized Message Router Flows

	Other ESBs
	Mule
	Celtix
	Iona Artix
	ChainBuilder

	Installing ServiceMix
	OS Requirements
	Run-time Environment
	Installing ServiceMix in Windows
	Installing ServiceMix in Unix
	Configuring ServiceMix
	Stopping ServiceMix
	Resolving classpath Issues

	ServiceMix Components—a Synopsis
	Lightweight JBI Components

	Your First JBI Sample—Binding an External HTTP Service
	Servlet-based HTTP Service
	Configure the HTTP Service in ServiceMix
	Run ServiceMix Basic JBI Container
	Run a Client against ServiceMix
	What Just Happened in ServiceMix
	Spring XML Configuration for ServiceMix

	Summary

	Chapter 4: Binding—The Conventional Way
	Binding—What it Means
	Binding
	Endpoints

	Apache SOAP Binding
	A Word about Apache SOAP
	Apache SOAP Format and Transports
	RPC and Message Oriented
	Binding Services

	Sample Bind a Stateless EJB Service to Apache SOAP
	Sample Scenario
	Code Listing
	Running the Sample
	Deploying the EJB
	Bind EJB to SOAP
	Run the Client

	What Just Happened
	How the Sample Relates to ServiceMix

	Summary

	Chapter 5: Some XFire Binding Tools
	Binding in XFire
	XFire Transports
	JSR181 and XFire

	Web Service Using XFireConfigurableServlet
	Sample Scenario
	Code Listing
	Running the Sample

	Web Service Using XFire Spring XFireExporter
	Sample Scenario
	Code Listing
	Running the Sample

	Web Service Using XFire Spring Jsr181 Handler
	Sample Scenario
	Code Listing
	Running the Sample

	XFire Export and Bind EJB
	Sample Scenario
	Code Listing
	Running the Sample

	XFire for Lightweight Integration
	Summary

	Chapter 6: JBI Packaging and Deployment
	Packaging in ServiceMix
	Installation Packaging
	Service Assembly Packaging
	Service Unit Packaging

	Deployment in ServiceMix
	Standard and JBI compliant
	Lightweight

	Packaging and Deployment Sample
	Phase One—Component Development
	Phase Two—Component Packaging

	Running the Packaging and Deployment Sample
	Summary

	Chapter 7: Developing JBI Components
	Need for Custom JBI Components
	ServiceMix Component Helper Classes
	MessageExchangeListener
	TransformComponentSupport

	Create, Deploy, and Run JBI Component
	Code HttpInterceptor Component
	Configure HttpInterceptor Component
	Package HttpInterceptor Component
	Deploy HttpInterceptor Component
	Build and Run the Sample

	Summary

	Chapter 8: Binding EJB in a JBI Container
	Component versus Services
	Coexisting EJB Components with Services
	Indiscrimination at Consumer Perspective

	Binding EJB Sample
	Step One—Define and Deploy the EJB Service
	Step Two—Bind EJB to ServiceMix
	Step Three—Deploy and Invoke EJB Binding in ServiceMix
	Step Four—Access WSDL and Generate Axis-based Stubs to Access EJB Outside Firewall

	Reconciling EJB Resources
	Summary

	Chapter 9: POJO Binding Using JSR181
	POJO
	What are POJOs
	Comparing POJO with other Components

	ServiceMix servicemix-jsr181
	JSR 181
	servicemix-jsr181
	servicemix-jsr181 Deployment
	servicemix-jsr181 Endpoint

	POJO Binding Sample
	Sample Use Case
	POJO Code Listing
	XBean-based POJO Binding
	Deployment Configuration
	Deploying and Running the Sample
	Access WSDL and Generate Axis-based Stubs to Access POJO Remotely

	Accessing JBI Bus Sample
	Sample Use Case for Accessing JBI Bus
	Sample Code Listing
	Build, Deploy, and Run the Sample

	Summary

	Chapter 10: Bind Web Services in ESB—Web Services Gateway
	Web Services
	Binding Web Services
	Why Another Indirection?

	HTTP
	ServiceMix's servicemix-http
	servicemix-http
	Consumer and Provider Roles
	servicemix-http XBean Configuration
	servicemix-http Lightweight Configuration

	Web Service Binding Sample
	Sample Use Case
	Deploy the Web Service
	XBean-based servicemix-http Binding
	Deploying and Running the Sample
	Access WSDL and Generate Axis Stubs to Access the Web Service Remotely

	Summary

	Chapter 11: Access Web Services Using the JMS Channel
	JMS
	Web Service and JMS
	Specifications for Web Service Reliable Messaging
	SOAP over HTTP versus SOAP over JMS

	JMS in ServiceMix
	Servicemix-jms
	Consumer and Provider Roles
	servicemix-jms XBean Configuration
	servicemix-jms Lightweight Configuration

	Protocol Bridge
	Web Service in the JMS Channel Binding Sample
	ServiceMix Component Architecture for the JMS Web Service
	Deploy the Web Service
	XBean-based servicemix-jms Binding
	XBean-based servicemix-eip Pipeline Bridge
	XBean-based servicemix-http Provider Destination
	Deploying the Sample and Starting ServiceMix
	Test Web Service Using JMS Channel

	Summary

	Chapter 12: Java XML Binding Using XStream
	Java XML Binding
	JAXB
	XStream
	ServiceMix and XStream

	XStream in a Normalized Message Router Sample
	Sample Use Case
	Code HTTPClient
	Unmarshalling to Transfer Objects
	HttpInterceptor Component
	XStreamInspector Component
	Configure Interceptor and Inspector Components
	Package Interceptor and Inspector Components
	Deploy Interceptor and Inspector Components
	Build and Run the Sample

	Summary

	Chapter 13: JBI Proxy
	Proxy—a Primer
	Proxy Design Pattern
	JDK Proxy Class
	Sample JDK Proxy Class

	ServiceMix JBI Proxy
	JBI Proxy Sample Implementing Compatible Interface
	Proxy Code Listing
	XBean-based JBI Proxy Binding
	Deployment Configuration
	Deploying and Running the Sample

	JBI Proxy Sample implementing In-Compatible interface
	Proxy Code Listing
	XBean-based JBI Proxy Binding
	Deployment Configuration
	Deploying and Running the Sample

	Invoke External Web Service from the ServiceMix Sample
	Web Service Code Listing
	Axis Generated Client Stubs
	XBean-based JBI Proxy Binding
	Deployment Configuration
	Deploying and Running the Sample
	Proxy and WSDL Generation

	Summary

	Chapter 14: Web Service Versioning
	Service Versioning—a Means to SOA
	Services are Autonomous
	Change is the Only Constant Thing
	All Purpose Interfaces
	SOA Versioning—Don't Touch the Anti-Pattern
	Types can Inherit—Why Not My Schemas
	If Not Versions, Then What

	Strategy to Version Web Service
	Which Level to Version
	Version Control in a Schema
	targetNamespace for WSDL
	Version Parameter

	Web Service Versioning Approaches
	Covenant
	Multiple Endpoint Addresses

	Web Service Versioning Sample Using ESB
	Sample Use Case
	Configure Components in ESB
	Deploy and Run the Sample

	Web Service Versioning Operational Perspective
	Summary

	Chapter 15: Enterprise Integration Patterns in ESB
	Enterprise Integration Patterns
	What are EAI Patterns?
	EAI Patterns Book and Site

	ServiceMix EAI Patterns
	Why ServiceMix for EAI Patterns?
	ServiceMix EAI Patterns Configuration

	EAI Patterns—Code and Run Samples in ESB
	Content-based Router
	Notation
	Explanation
	Illustrative Design
	Sample Use Case
	Sample Code and Configuration
	Deploy and Run the Sample

	Content Enricher
	Notation
	Explanation
	Illustrative Design
	Sample Use Case
	Sample code and configuration
	Deploy and Run the Sample

	XPath Splitter
	Notation
	Explanation
	Illustrative Design
	Sample Use Case
	Sample Code and Configuration
	Deploy and Run the Sample

	Static Recipient List
	Notation
	Explanation
	Illustrative Design
	Sample use case
	Sample Code and Configuration
	Deploy and run the sample

	Wiretap
	Notation
	Explanation
	Illustrative Design
	Sample Use Case
	Sample Code and Configuration
	Deploy and Run the Sample

	Message Filter
	Notation
	Explanation
	Illustrative Design
	Sample Use Case
	Sample Code and Configuration
	Deploy and Run the Sample

	Split Aggregator
	Notation
	Explanation
	Illustrative Design
	Sample Use Case
	Sample Code and Configuration
	Deploy and Run the Sample

	Pipeline
	Notation
	Explanation
	Illustrative Design
	Sample Use Case
	Sample Code and Configuration
	Deploy and Run the Sample

	Static Routing Slip
	Notation
	Explanation
	Illustrative Design
	Sample use case
	Sample Code and Configuration
	Deploy and Run the Sample

	Summary

	Chapter 16: Sample Service Aggregation
	Provision Service Order—Business Integration Sample
	Solution Architecture
	JBI-based ESB Component Architecture
	Understanding the Message Exchange
	Deploying and Running the Sample

	Summary

	Chapter 17: Transactions, Security, Clustering, and JMX
	Cross Cutting Concerns—Support Inside ServiceMix
	Transactions
	Security
	Clustering
	JMX

	Sample Demonstrating Transaction
	Sample Use Case
	Configure Transaction in ServiceMix
	Deploy and Run the Sample

	Sample demonstrating Security
	Sample Use Case
	Configure Basic Authorization in servicemix-http
	Deploy and Run the Sample

	Sample Demonstrating Clustering
	Sample Use Case
	Configure ServiceMix Cluster
	Deploy and run the sample

	Sample demonstrating JMX
	Enable JMX in ServiceMix Application
	Initialize JMX Console—MC4J
	Retrieve WSDL through JMX

	Summary

	Index

