

Java Development with Ant

Java Development
with Ant

ERIK HATCHER

STEVE LOUGHRAN

M A N N I N G

Greenwich
(74° w. long.)

For online information and ordering of this and other Manning books,
go to www.manning.com. The publisher offers discounts on this book
when ordered in quantity. For more information, please contact:

Special Sales Department
Manning Publications Co.
209 Bruce Park Avenue Fax: (203) 661-9018
Greenwich, CT 06830 email: orders@manning.com

©2003 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by means electronic, mechanical, photocopying, or otherwise, without prior
written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial
caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.

Manning Publications Co. Copyeditor: Maarten Reilingh
209 Bruce Park Avenue Typesetter: Martine Maguire-Weltecke
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 1930110588
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – VHG – 06 05 04 03 02

To my wife Carole and our two sons, Jakob and Ethan.
Thank you for taking care of me while I took care of this book.

Erik

To Bina and Alexander.
Thank you for being so patient during the long hours of this project.

Steve

brief contents

Part 1 Learning Ant 1

1 Introducing Ant 3

2 Getting started with Ant 23

3 Understanding Ant datatypes and properties 47

4 Testing with JUnit 85

5 Executing programs 111

6 Packaging projects 134

7 Deployment 163

8 Putting it all together 188

Part 2 Applying Ant 203

9 Using Ant in your development projects 205

10 Beyond Ant’s core tasks 234

11 XDoclet 260
vii

12 Developing for the web 278

13 Working with XML 317

14 Enterprise JavaBeans 333

15 Working with web services 355

16 Continuous integration 386

17 Developing native code 407

18 Production deployment 431

Part 3 Extending Ant 465

19 Writing Ant tasks 467

20 Extending Ant further 498

Appendices

A Installation 523

B XML primer as it applies to Ant 532

C IDE integration 536

D The elements of Ant style 544

E Ant task reference 561
viii BRIEF CONTENTS

contents
foreword xxv
preface xxvii
acknowledgments xxix
about this book xxxi
about the authors xxxvi
about the cover illustration xxxvii

Part 1 Learning Ant 1
1 Introducing Ant 3

1.1 What is Ant? 3
What is a build process and why do you need one? 4
Why do we think Ant makes a great build tool? 4

1.2 The core concepts of Ant 5
An example project 7

1.3 Why use Ant? 10
Integrated development environments 10
Make 11 ✦ Other build tools 13
Up and running, in no time 14

1.4 The evolution of Ant 14
1.5 Ant and software development methodologies 16

eXtreme Programming 16
Rational Unified Process 17

1.6 Our example project 17
Documentation search engine—example Ant project 18

1.7 Yeah, but can Ant… 19
1.8 Beyond Java development 21

Web publishing engine 21 ✦ Simple workflow engine 21
Microsoft .NET and other languages 21

1.9 Summary 22
ix

2 Getting started with Ant 23
2.1 Defining our first project 23

2.2 Step one: verifying the tools are in place 24

2.3 Step two: writing your first Ant build file 24
Examining the build file 25

2.4 Step three: running your first build 26
If the build fails 27 ✦ Looking at the build in more detail 29

2.5 Step four: imposing structure 31
Laying out the source directories 32 ✦ Laying out the
build directories 33 ✦ Laying out the dist directories 34
Creating the build file 35 ✦ Target dependencies 35
Running the new build file 36 ✦ Rerunning the build 37
How Ant handles multiple targets on the command line 38

2.6 Step five: running our program 39
Why execute from inside Ant 39
Adding an execute target 40 ✦ Running the new target 40

2.7 Ant command line options 41
Specifying which build file to run 42
Controlling the amount of information provided 42
Getting information about a project 44

2.8 The final build file 44

2.9 Summary 46

3 Understanding Ant datatypes and properties 47
3.1 Preliminaries 48

Datatype overview 48 ✦ Property overview 48

3.2 Introducing datatypes and properties with <javac> 49

3.3 Paths 51

3.4 Filesets 52
Fileset examples 53 ✦ Default excludes 53

3.5 Patternsets 54

3.6 Selectors 56

3.7 Datatype element naming 57

3.8 Filterset 58
Inserting date stamps in files at build-time 58

3.9 FilterChains and FilterReaders 59

3.10 Mappers 61
Identity mapper 61 ✦ Flatten mapper 62
Merge mapper 62 ✦ Glob mapper 63
Regexp mapper 63 ✦ Package mapper 64
x CONTENTS

3.11 Additional Ant datatypes 65
ZipFileset 65 ✦ Dirset 65
Filelist 65 ✦ ClassFileset 66

3.12 Properties 66
Setting properties with the <property> task 67
How the <property> task is different 70
Checking for the availability of resources: <available> 70
Saving time by skipping unnecessary steps: <uptodate> 72
Testing conditions with <condition> 72
Setting properties from the command-line 74
Creating a build timestamp with <tstamp> 75
Loading properties from an XML file 76

3.13 Controlling Ant with properties 77
Conditional target execution 77
Conditional patternset inclusion/exclusion 78
Conditional build failure 78

3.14 References 79
Properties and references 80
Using references for nested patternsets 81

3.15 Best practices 82
3.16 Summary 83

4 Testing with JUnit 85
4.1 Refactoring 86
4.2 Java main() testing 86
4.3 JUnit primer 87

Writing a test case 88 ✦ Running a test case 88
Asserting desired results 88 ✦ TestCase lifecycle 90
Writing a TestSuite 90 ✦ Obtaining and installing JUnit 91
Extensions to JUnit 91

4.4 Applying unit tests to our application 92
Writing the test first 92
Dealing with external resources during testing 93

4.5 The JUnit task—<junit> 94
Structure directories to accommodate testing 94
Fitting JUnit into the build process 95

4.6 Test failures are build failures 97
Capturing test results 97 ✦ Running multiple tests 99
Creating your own results formatter 100

4.7 Generating test result reports 100
Generate reports and allow test failures to fail the build 102
Run a single test case from the command-line 103
Initializing the test environment 103 ✦ Other test issues 104
CONTENTS xi

4.8 Short-circuiting tests 105
Dealing with large number of tests 108

4.9 Best practices 109

4.10 Summary 110

5 Executing programs 111
5.1 Why you need to run external programs 111

5.2 Running Java programs 112
Introducing the <java> task 113 ✦ Setting the classpath 114
Arguments 115 ✦ Defining system properties 116
Running the program in a new JVM 117
Setting environment variables 118 ✦ Controlling the
new JVM 118 ✦ Handling errors with failonerror 119
Executing JAR files 120 ✦ Calling third-party programs 121
Probing for a Java program before calling it 123
Setting a timeout 124

5.3 Starting native programs with <exec> 124
Setting environment variables 126 ✦ Handling errors 126
Handling timeouts 127 ✦ Making and executing
shell commands 127 ✦ Probing for a program before calling it 129

5.4 Bulk execution with <apply> 130

5.5 Processing output 131

5.6 Limitations on execution 132

5.7 Best practices 132

5.8 Summary 133

6 Packaging projects 134
6.1 Moving, copying, and deleting files 135

How to delete files 135 ✦ How to copy files 136
How to move files 137 ✦ Filtering 138

6.2 Preparing to package 139
Building and documenting release code 139
Adding data files 141 ✦ Preparing documentation 142
Preparing install scripts and documents 143
Preparing libraries for redistribution 145

6.3 Creating archive files 146
JAR files 148 ✦ Creating a JAR file 148
Testing the JAR file 149 ✦ Creating JAR manifests 150
Adding extra metadata to the JAR 152
JAR file best practices 152 ✦ Signing JAR files 152
xii CONTENTS

6.4 Creating Zip files 154
Creating a binary distribution 154 ✦ Creating a
source distribution 156 ✦ Merging Zip files 157
Zip file best practices 157

6.5 Creating tar files 158

6.6 Creating web applications with WAR files 160

6.7 Testing packaging 161

6.8 Summary 162

7 Deployment 163
7.1 Example deployment problems 164

Reviewing the tasks 164 ✦ Tools for deployment 164

7.2 Tasks for deployment 165
File transfer with <ftp> 166 ✦ Probing for server availability 166
Inserting pauses into the build with <sleep> 168
Ant’s email task 169 ✦ Fetching remote files with <get> 170
Using the tasks to deploy 171

7.3 FTP-based distribution of a packaged application 171
Asking for information with the <input> task 172

7.4 Email-based distribution of a packaged application 173

7.5 Local deployment to Tomcat 4.x 174
The Tomcat management servlet API 175
Deploying to Tomcat with Ant 176

7.6 Remote deployment to Tomcat 181
Interlude: calling targets with <antcall> 182
Using <antcall> in deployment 185

7.7 Testing deployment 187

7.8 Summary 187

8 Putting it all together 188
8.1 Our application thus far 188

8.2 Building the custom Ant task library 189

8.3 Loading common properties across multiple projects 194

8.4 Handling versioned dependencies 196
Installing a new library version 198

8.5 Build file philosophy 200
Begin with the end in mind 200 ✦ Integrate tests with
the build 200 ✦ Support automated deployment 200
Make it portable 200 ✦ Allow for customizations 201

8.6 Summary 201
CONTENTS xiii

Part 2 Applying Ant 203

9 Using Ant in your development projects 205
9.1 Designing an Ant-based build process 206

Analyzing your project 206 ✦ Creating the core build file 208
Evolve the build file 208

9.2 Migrating to Ant 209

9.3 The ten steps of migration 210
Migrating from Make-based projects 211
Migrating from IDE-based projects 211

9.4 Master builds: managing large projects 212
Refactoring build files 212 ✦ Introducing the <ant> task 213
Example: a basic master build file 213
Designing a scalable, flexible master build file 215

9.5 Managing child project builds 221
How to control properties of child projects 221
Inheriting properties and references from a master build file 223
Declaring properties and references in <ant> 224
Sharing properties via XML file fragments 225
Sharing targets with XML file fragments 227

9.6 Creating reusable library build files 228

9.7 Looking ahead: large project support evolution 230

9.8 Ant project best practices 231
Managing libraries 232 ✦ Implementing processes 232

9.9 Summary 233

10 Beyond Ant’s core tasks 234
10.1 Understanding types of tasks 235

So, what is an “optional” task? 235 ✦ Ant’s major
optional tasks 236 ✦ Why third-party tasks? 237

10.2 Optional tasks in action 237
Manipulating property files 237
Adding audio and visual feedback during a build 239
Adding dependency checks 241 ✦ Grammar parsing
with JavaCC 243 ✦ Regular expression replacement 244

10.3 Using software configuration management tasks 245
CVS 245 ✦ ClearCase 246

10.4 Using third-party tasks 247
Defining tasks with <taskdef> 247

10.5 Notable third-party tasks 248
Checkstyle 248 ✦ Torque–object-relational mapping 250
xiv CONTENTS

10.6 The ant-contrib tasks 253

10.7 Sharing task definitions among projects 258

10.8 Best practices 258

10.9 Summary 259

11 XDoclet 260
11.1 Installing XDoclet 261

11.2 To-do list generation 261

11.3 XDoclet architecture 262
XDoclet’s Ant tasks 263 ✦ Templating 264
How XDoclet works 265

11.4 Writing your own XDoclet template 265
Code generation 267 ✦ Per-class versus single-file
generation 272 ✦ Filtering classes processed 273

11.5 Advanced XDoclet 273
Custom subtasks 274
Creating a custom tag handler 274

11.6 The direction of XDoclet 275
XDoclet versus C# 275
Looking into Java’s future: JSR 175 and 181 276

11.7 XDoclet best practices 276
Dependency checking 276

11.8 Summary 277

12 Developing for the web 278
12.1 How are web applications different? 279

12.2 Working with tag libraries 280
Creating a tag library 280 ✦ Integrating tag libraries 286
Summary of taglib development with Ant 287

12.3 Compiling JSP pages 288
Installing the <jspc> task 289 ✦ Using the <jspc> task 289
JSP compilation for deployment 291
Other JSP compilation tasks 292

12.4 Customizing web applications 292
Filterset-based customization 292
Customizing deployment descriptors with XDoclet 294
Customizing libraries in the WAR file 297

12.5 Generating static content 297
Generating new content 297 ✦ Creating new files 298
Modifying existing files 299
CONTENTS xv

12.6 Testing web applications with HttpUnit 299
Writing HttpUnit tests 300 ✦ Compiling the tests 302
Preparing to run HttpUnit tests from Ant 303
Running the HttpUnit tests 303 ✦ Integrating the tests 304
Limitations of HttpUnit 306 ✦ Canoo WebTest 306

12.7 Server-side testing with Cactus 310
Cactus from Ant’s perspective 311 ✦ How Cactus works 313
And now our test case 314 ✦ Cactus summary 314

12.8 Summary 315

13 Working with XML 317
13.1 Preamble: all about XML libraries 318

13.2 Validating XML 319
When a file isn’t validated 320 ✦ Resolving XML DTDs 321
Supporting alternative XML validation mechanisms 322

13.3 Transforming XML with XSLT 323
Using the XMLCatalog datatype 325
Generating PDF files from XML source 327
Styler–a third-party transformation task 327

13.4 Generating an XML build log 327
Stylesheets 328 ✦ Output files 329
Postprocessing the build log 330

13.5 Loading XML data into Ant properties 331

13.6 Next steps in XML processing 332

13.7 Summary 332

14 Enterprise JavaBeans 333
14.1 EJB overview 333

The many types of Enterprise JavaBeans 334
EJB JAR 334 ✦ Vendor-specific situations 335

14.2 A simple EJB build 335

14.3 Using Ant’s EJB tasks 336

14.4 Using <ejbjar> 337
Vendor-specific <ejbjar> processing 339

14.5 Using XDoclet for EJB development 340
XDoclet subtasks 341 ✦ XDoclet’s @tags 342
Supporting different application servers with XDoclet 343
Ant property substitution 343

14.6 Middlegen 345

14.7 Deploying to J2EE application servers 348
xvi CONTENTS

14.8 A complete EJB example 349

14.9 Best practices in EJB projects 354

14.10 Summary 354

15 Working with web services 355
15.1 What are web services and what is SOAP? 356

The SOAP API 357 ✦ Adding web services to Java 357

15.2 Creating a SOAP client application with Ant 357
Preparing our build file 358 ✦ Creating the proxy classes 359
Using the SOAP proxy classes 361 ✦ Compiling the
SOAP client 361 ✦ Running the SOAP service 362
Reviewing SOAP client creation 363

15.3 Creating a SOAP service with Axis and Ant 363
The simple way to build a web service 364

15.4 Adding web services to an existing web application 367
Configuring the web application 367
Adding the libraries 368
Including SOAP services in the build 368
Testing the server for needed classes 369
Implementing the SOAP endpoint 370
Deploying our web service 370

15.5 Writing a client for our SOAP service 371
Importing the WSDL 371 ✦ Implementing the tests 372
Writing the Java client 375

15.6 What is interoperability, and why is it a problem? 376

15.7 Building a C# client 376
Probing for the classes 377 ✦ Importing the WSDL
in C# 378 ✦ Writing the C# client class 379
Building the C# client 379 ✦ Running the C# client 380
Review of the C# client build process 381

15.8 The rigorous way to build a web service 381

15.9 Reviewing web service development 382

15.10 Calling Ant via SOAP 383

15.11 Summary 384

16 Continuous integration 386
16.1 Scheduling Ant builds with the operating system 387

The Windows way 387 ✦ The Unix version 388
Making use of scripting 388
CONTENTS xvii

16.2 CruiseControl 388
How it works 389 ✦ It’s all about the cruise—getting the
build runner working 389 ✦ Build log reporting 395
Email notifications and build labeling 396
CruiseControl summary 396 ✦ Tips and tricks 396
Pros and cons to CruiseControl 396

16.3 Anthill 397
Getting Anthill working 398 ✦ How Anthill works 399
Anthill summary 400

16.4 Gump 401
Installing and running Gump 401
How Gump works 403 ✦ Summary of Gump 404

16.5 Comparison of continuous integration tools 405

16.6 Summary 406

17 Developing native code 407
17.1 The challenge of native code 407

17.2 Using existing build tools 408
Delegating to an IDE 408 ✦ Using Make 409

17.3 Introducing the <cc> task 410
Installing the tasks 410 ✦ Adding a compiler 411
A quick introduction to the <cc> task 411

17.4 Building a JNI library in Ant 412
Steps to building a JNI library 413 ✦ Writing the Java stub 414
Writing the C++ class 415 ✦ Compiling the C++ source 416
Deploying and testing the library 419

17.5 Going cross-platform 422
Migrating the C++ source 422 ✦ Extending the build file 423
Testing the migration 424 ✦ Porting the code 424

17.6 Looking at <cc> in more detail 425
Defining preprocessor macros 425 ✦ Linking to libraries
with <libset> 426 ✦ Configuring compilers and linkers 427
Customizing linkers 428

17.7 Distributing native libraries 429

17.8 Summary 430

18 Production deployment 431
18.1 The challenge of different application servers 432

Fundamentally different underlying behaviors 432
Different Java run-time behavior 433
Coping with different API implementations 434
xviii CONTENTS

Vendor-specific libraries 436 ✦ Deployment descriptors 436
Server-specific deployment processes 436
Server-specific management 436

18.2 Working with operations 437
Operations use cases 437 ✦ Operations tests 437
Operations defect tracking 438 ✦ Integrating operations
with the build process 438

18.3 Addressing the deployment challenge with Ant 440
Have a single source tree 440 ✦ Have a unified target
for creating the archive files 440 ✦ Run Ant server-side
to deploy 441 ✦ Automate the upload and
deployment process 442

18.4 Introducing Ant’s deployment power tools 442
The <copy> task 442 ✦ The <serverdeploy> task 443
Remote control with <telnet> 443

18.5 Building a production deployment process 446
The plan 446 ✦ The directory structure 447
The configuration files 447 ✦ The build files 447
The remote build.xml build file 447
Writing the build file for installing to a server 449
Uploading to the remote server 450
The remote deployment in action 454
Reviewing the deployment process 455

18.6 Deploying to specific application servers 456
Tomcat 4.0 and 4.1 456 ✦ BEA WebLogic 458
HP Bluestone application server 458 ✦ Other servers 459

18.7 Verifying deployment 459
Creating the timestamp file 460
Adding the timestamp file to the application 460
Testing the timestamp 462

18.8 Best practices 462
18.9 Summary 463

Part 3 Extending Ant 465

19 Writing Ant tasks 467
19.1 What exactly is an Ant task? 468

The world’s simplest Ant task 468 ✦ Compiling and using
a task in the same build 469 ✦ Task lifecycle 469

19.2 Ant API primer 470
Task 470 ✦ Project 471 ✦ Path 472 ✦ FileSet 472
DirectoryScanner 472 ✦ EnumeratedAttribute 473 ✦ FileUtils 473
CONTENTS xix

19.3 How tasks get data 474
Setting attributes 474 ✦ Supporting nested elements 480
Supporting datatypes 481 ✦ Allowing free-form body text 482

19.4 Creating a basic Ant Task subclass 483
Adding an attribute to a task 483 ✦ Handling element text 484

19.5 Operating on a fileset 485
19.6 Error handling 486
19.7 Testing Ant tasks 487
19.8 Executing external programs 487

Dealing with process output 490 ✦ Summary of native execution 490

19.9 Executing a Java program within a task 490
Example task to execute a forked Java program 490

19.10 Supporting arbitrarily named elements and attributes 493
19.11 Building a task library 495
19.12 Supporting multiple versions of Ant 497
19.13 Summary 497

20 Extending Ant further 498
20.1 Scripting within Ant 499

Implicit objects provided to <script> 500
Scripting summary 501

20.2 Listeners and loggers 502
Writing a custom listener 503 ✦ Using Log4j logging capabilities 506
Writing a custom logger 509 ✦ Using the MailLogger 513

20.3 Developing a custom mapper 514
20.4 Creating custom selectors 515

Using a custom selector in a build 516

20.5 Implementing a custom filter 517
Coding a custom filter reader 519

20.6 Summary 520

A Installation 523

B XML primer as it applies to Ant 532

C IDE integration 536

D The elements of Ant style 544

E Ant task reference 561
resources 621
index 625
license 635
xx CONTENTS

foreword

Ant started its life on a plane ride, as a quick little hack. Its inventor was Apache
member, James Duncan Davidson. It joined Apache as a minor adjunct—almost an
afterthought, really—to the codebase contributed by Sun that later became the foun-
dation of the Tomcat 3.0 series. The reason it was invented was simple: it was needed
to build Tomcat.

Despite these rather inauspicious beginnings, Ant found a good home in Apache
Jakarta, and in a few short years it has become the de facto standard not only for open
source Java projects, but also as part of a large number of commercial products. It even
has a thriving clone targeting .NET.

In my mind four factors are key to Ant’s success: its extensible architecture, per-
formance, community, and backward compatibility.

The first two—extensibility and performance—derive directly from James’s orig-
inal efforts. The dynamic XML binding approach described in section 19.3 of this
book was controversial at the time, but as Stefano Mazzocchi later said, it has proven
to be a “viral design pattern”: Ant’s XML binding made it very simple to define new
tasks, and therefore many tasks were written. I played a minor role in this as I (along
with Costin Manolache) introduced the notion of nested elements discussed in sec-
tion 19.3.2. As each task ran in the same JVM and allowed batch requests, tasks that
often took several minutes using make could complete in seconds using Ant.

Ant’s biggest strength is its active development community, originally fostered by
Stefano and myself. Stefano acted as a Johnny Appleseed, creating build.xml files for
numerous Apache projects. Many projects, both Apache and non-Apache, base their
Ant build definitions on this early work. My own focus was on applying fixes from
any source I could find, and recruiting new developers. Nearly three dozen developers
have become Ant “committers,” with just over a dozen being active at any point in
time. Two are the authors of this book.

Much of the early work was experimental, and the rate of change initially affected
the user community. Efforts like Gump, described in section 16.4, sprang up to track
the changes, and have resulted in a project that now has quite stable interfaces.

The combination of these four factors has made Ant the success that it is today.
Most people have learned Ant by reading build definitions that had evolved over time
xxi

and were largely developed when Ant’s functionality and set of tasks were not as rich
as they are today. You have the opportunity to learn Ant from two of the people who
know it best and who teach it the way it should be taught—by starting with a simple
build definition and then showing you how to add in just those functions that are
required by your project.

You should find much to like in Ant. And if you find things that you feel need
improving, then I encourage you to join Erik, Steve, and the rest of us and get
involved!

—SAM RUBY

Director, Apache Software Foundation
xxii FOREWORD

preface

In early 2000, Steve took a sabbatical from HP Laboratories, taking a break from
research into such areas as adaptive, context-aware laptops to build web services, a
concept that was very much in its infancy at the time.

He soon discovered that he had entered a world of chaos. Business plans, organi-
zations, underlying technologies—all could be changed at a moment’s notice. One
technology that remained consistent from that year was Ant. In the Spring of 2000,
it was being whispered that a “makefile killer” was being quietly built under the aus-
pices of the Apache project: a new way to build Java code. Ant was already in use out-
side the Apache Tomcat group, its users finding that what was being whispered was
true: it was a new way to develop with Java. Steve started exploring how to use it in
web service projects, starting small and slowly expanding as his experience grew and
as the tool itself added more functionality. Nothing he wrote that year ever got past
the prototype stage; probably the sole successful deliverable of that period was the “Ant
in Anger” paper included with Ant distributions.

In 2001, Steve and his colleagues did finally go into production. Their project—
to aggressive deadlines—was to build an image processing web service using both Java
and VB/ASP. From the outset, all the lessons of the previous year were applied, not
just in architecture and implementation of the service, but in how to use Ant to man-
age the build process. As the project continued, the problems expanded to cover
deployment to remote servers, load testing, and many other challenges related to real-
izing the web service concept. It turned out that with planning and effort, Ant could
rise to the challenges.

Meanwhile, Erik was working at eBlox, a Tucson, Arizona, consulting company
specializing in promotional item industry e-business. By early 2001, Erik had come
to Ant to get control over a build process that involved a set of Perl scripts crafted by
the sysadmin wizard. Erik was looking for a way that did not require sysadmin effort
to modify the build process; for example, when adding a new JAR dependency. Ant
solved this problem very well, and in the area of building customized releases for each
of eBlox’s clients from a common codebase. One of the first documents Erik encoun-
tered on Ant was the infamous “Ant in Anger” paper written by Steve; this document
was used as the guideline for crafting a new build process using Ant at eBlox.
xxiii

At the same time, eBlox began exploring Extreme Programming and the JUnit unit
testing framework. While working on JUnit and Ant integration, Erik dug under the
covers of Ant to see what made it tick. To get JUnit reports emailed automatically from
an Ant build, Erik pulled together pieces of a MIME mail task submitted to the ant-dev
team. After many dumb-question emails to the Ant developers asking such things as
“How do I build Ant myself?” and with the help of Steve and other Ant developers, his
first contributions to Ant were accepted and shipped with the Ant 1.4 release.

In the middle of 2001, Erik proposed the addition of an Ant Forum and FAQ to
jGuru, an elegant and top-quality Java-related search engine. From this point, Erik’s
Ant knowledge accelerated rapidly, primarily as a consequence of having to field tough
Ant questions. Soon after that, Erik watched his peers at eBlox develop the well-
received Java Tools for Extreme Programming book. Erik began tossing around the idea
of penning his own book on Ant, when Dan Barthel, formerly of Manning, contacted
him. Erik announced his book idea to the Ant community email lists and received very
positive feedback, including from Steve who had been contacted about writing a book
for Manning. They discussed it, and decided that neither of them could reasonably do
it alone and would instead tackle it together. Not to make matters any easier on him-
self, Erik accepted a new job, and relocated his family across the country while putting
together the book proposal. The new job gave Erik more opportunities to explore how
to use Ant in advanced J2EE projects, learning lessons in how to use Ant with Struts
and EJB that readers of this book can pick up without enduring the same experience.
In December of 2001, after having already written a third of this book, Erik was hon-
ored to be voted in as an Ant committer, a position of great responsibility, as changes
made to Ant affect the majority of Java developers around the world.

Steve, meanwhile, already an Ant committer, was getting more widely known as a
web service developer, publishing papers and giving talks on the subject, while explor-
ing how to embed web services into devices and use them in a LAN-wide, campus-
wide, or Internet-wide environment. His beliefs that deployment and integration are
some of the key issues with the web service development process, and that Ant can help
address them, are prevalent in his professional work and in the chapters of this book
that touch on such areas. Steve is now also a committer on Axis, the Apache project’s
leading-edge SOAP implementation, so we can expect to see better integration be-
tween Axis and Ant in the future.

Together, in their “copious free time,” Erik and Steve coauthored this book on how
to use Ant in Java software projects. They combined their past experience with
research into side areas, worked with Ant 1.5 as it took shape—and indeed helped
shape this version of Ant while considering it for this book. They hope that you will
find Ant 1.5 to be useful—and that Java Development with Ant will provide the solu-
tion to your build, test, and deployment problems, whatever they may be.
xxiv PREFACE

acknowledgments

When we used to visit a bookstore or library, we saw nothing but the learning of the
authors we enjoyed. Now we also see the collective and professional efforts of many
people. This book simply could not have been written had not so many fine people
supported us.

First comes each of our families. We could not have done this without their support
and understanding. Steve and Erik’s wives both gave birth to sons as we labored with
this book.

The wonderful people at Manning made writing this book as pleasurable as possible.
The folks that we interacted with most often were Lianna Wlasiuk, Susan Capparelle,
Ted Kennedy, Helen Trimes, Mary Piergies, Chris Hillman, Laura Lewin, Maarten
Reilingh, Elizabeth Martin, Martine Maguire-Weltecke, and publisher Marjan Bace.

Our many reviewers kept us on our toes, and gave us very beneficial feedback and
fixes. Special thanks go to Jon Skeet for his technical reviewing efforts. Not only did
Jon carefully check our Ant code, his expert Java knowledge also helped to refine our
Java code and related commentary. Our reviewers included Ara Abrahamian,
Scott Ambler, Shawn Bayern, Armin Begtrup, Cos Difazio, Gabe Beged-Dov, Rick
Hightower, Sally Kaneshiro, Nick Lesiecki, Max Loukianov, Ted Neward, Michael
Oliver, Toby Perkins, Tim Rapp, and Tom Valesky.

We also thank Aslak Hellesøy for his review of the XDoclet and Middlegen pieces,
Bobby Woolf and Jonathan Newbrough especially for their input on the EJB chapter.
Otis Gospodnetic found and fixed an issue in our HTML parser example code. David
Eric Pugh built the Torque piece of our sample application, and spent many hours
refining it and teaching it to us. Curt Arnold deserves credit, not just for reviewing our
chapter on native code generation, but for coauthoring the <cc> task that we cover
in that chapter.

Erik gives special thanks to eBlox, which is where his Ant learning started. Rick
Hightower and Nick Lesiecki gave Erik prods to write his own book, and they deserve
extra mention for this. The jGuru folks provided not only a forum for Erik to practice
and learn Ant in more detail, it also gave us access to the sharpest Java developers
in the world. Many ideas were bounced around with John Mitchell. Drew Davidson
provided insight into Ant’s limitations and the types of problems he has encountered
xxv

while developing a highly sophisticated multitiered Java build process. Ted Neward
was always an email away, giving us much needed moral and technical support, as well
as harassment and Ant bug reports.

Steve would like to thank Gabe Beged-Dov for pointing him to Ant back in April
2000, and Sally Kaneshiro for tolerating his development of a web service deployment
process on a schedule that didn’t have room for failures. Sally, and the rest of the Ever-
green team, chapters 12, 15, and 18 were born from the experiences we got from that
death march; next time we will be in control.

Key to the success of Ant—and this book—are all the great people at Apache, espe-
cially the Ant development and user communities. Without these dedicated develop-
ers, Ant would not be the award-winning Java build tool that it is. Specifically we’d
like to thank some committers by name: Stefan Bodewig, Conor MacNeill, Peter
Donald, Diane Holt, Sam Ruby, and Stephane Bailliez. Magesh Umasankar, also an
Ant committer, was the release manager for Ant 1.5. He did a superb job of getting
the releases built (which is no small feat for Ant) and distributed, and he dealt with
our patching Ant’s Javadoc comments for use in generating the task reference in
appendix E. Our patches added a lot of work for him during some of the beta releases,
because of the merging in CVS that was required. Magesh, here’s to you: +1.

Finally, we want to thank James Duncan Davidson for coming up with Ant in the
first place. Ant’s come a long way since then, but we know you still recognize it, and
are proud of its success.
xxvi ACKNOWLEDGMENTS

about this book

This book is about Ant, the award-winning Java build tool. Ant has become the cen-
terpiece of so many projects’ build processes because it is easy to use, is platform inde-
pendent, and addresses the needs of today’s projects to automate testing and
deployment. From its beginnings as a helper application to compile Tomcat, Sun’s
(now Apache’s) Java web server, it has grown to be a stand-alone tool adopted by all
major open source Java projects, and has changed people’s expectations of their devel-
opment tools.

If you have never before used Ant, this book will introduce you to it, taking you
systematically through the core stages of most Java projects: compilation, testing, exe-
cution, packaging, and delivery. If you are an experienced Ant user, we will show you
how to “push the envelope” in using Ant. Indeed, we believe that some of the things
shown in this book were never before done with Ant. We also place an emphasis on
how to use Ant as part of a large project, drawing out best practices from our own
experiences.

Whatever your experience with Ant, we believe that you will learn a lot from this
book, and that your software projects will benefit from using Ant as a foundation of
their build process.

WHO SHOULD READ THIS BOOK

This book is for all Java developers working on software projects ranging from the
simple personal project to the enterprise-wide team effort. We assume no prior expe-
rience of Ant, although even experienced Ant users should find much to interest
them in the later chapters. We do expect our readers to have basic knowledge of Java,
although the novice Java developer will benefit from learning Ant in conjunction
with Java. Some of the more advanced Ant projects, such as building Enterprise Java
applications and web services, are going to be of interest primarily to those people
working in those areas. We will introduce these technology areas, but will defer to
other books to cover them fully.
xxvii

HOW THIS BOOK IS ORGANIZED

We divided this book into three parts. Part 1 is designed to be read from start to fin-
ish, providing the fundamentals of Ant and its capabilities. Part 2 covers specialized
topics for each chapter. The relevance of each of the part 2 chapters depends on the
needs of your projects. We have covered the many types of projects we are personally
familiar with, and how Ant plays a crucial role in each of them. Part 3 is short, but it
is rich with content for the power users of Ant that need to extend it beyond its out-
of-the-box capabilities.

Part 1

In chapter 1, we first provide a gentle introduction to what Ant is, what it is not, and
what makes Ant the best build tool for Java projects. We also introduce the example
application we will build during the development of this book in order to showcase
Ant’s capabilities in a variety of situations.

Chapter 2 digs into Ant’s syntax and mechanics, starting with a simple project to
compile a single Java file and evolving it into an Ant build process, which compiles,
packages, and executes a Java application.

To go further with Ant beyond the basic project shown in chapter 2, Ant’s abstrac-
tion mechanisms need defining. Chapter 3 introduces properties, which is Ant’s way
of parameterization. Ant’s datatypes provide a high-level domain-specific language
that build file writers use to easily reuse common pieces among several steps. This is
a key chapter for the understanding of what makes Ant shine.

Before jumping into executing and deploying software, we want to ensure that our
build process integrates testing first. Ant works nicely with the JUnit framework, pro-
viding fine-grained control on the execution of test cases and very attractive and con-
figurable reporting. With automated testing in place, Ant makes it easy to write and
run test cases. By reducing the effort needed for constant testing, Ant is an enabler of
such agile methodologies as Extreme Programming. Chapter 4 covers testing with
JUnit from within Ant.

After showing how Ant can launch Java or native programs in chapter 5, we address
the challenges of delivering the software, covering packaging in chapter 6 and deploy-
ment in chapter 7.

It’s often difficult to envision the full picture when looking at fragments of code
in a book. In chapter 8, we show you a moderately complex build file, tying it back
to what was learned in the earlier chapters. We also discuss a method to deal with
library dependencies. Using this scheme, projects can reuse a common set of libraries
and be customized to depend on different versions of each library.

Part 2

The first chapter in this section, chapter 9, discusses the issues involved in migrating
to Ant, configuring a sensible directory structure, and other general topics related to
managing a project with Ant.
xxviii ABOUT THIS BOOK

Ant ships with many built-in capabilities, but often needs arise that require using
third-party Ant tasks or using some of Ant’s optional tasks that require the installation
of their dependencies. Chapter 10 covers the different types of Ant tasks, providing
examples of many, including the infamous ant-contrib tasks at SourceForge.

Chapter 11 gives special attention to XDoclet’s incredible third-party Ant tasks.
XDoclet can generate artifacts from source code metadata, reducing double-maintenance
on deployment descriptors, Enterprise JavaBeans, and many other time-saving benefits.

Web development is where many Java developers spend their time these days.
Chapter 12 addresses issues such as build-time customizations of deployment descrip-
tors, JavaServer Page taglibs, and HttpUnit and Cactus testing.

Chapter 13 discusses a topic that touches almost all Java developers, XML.
Whether you are using XML simply for deployment descriptors, or transforming doc-
umentation files into presentation format during a build process, this chapter covers it.

Chapter 14 is for the developers working with Enterprise JavaBeans. Ant provides
several tasks for automating EJB development. Two other third-party tools are covered
that make EJB development much easier. XDoclet was originally designed for EJB
development, so it shines in this area. Middlegen is a front-end tool to reverse engineer
databases into XDoclet-friendly code.

The buzzword of the day: web services. In chapter 15, we build web service clients
in both Java and C# and perform test cases against a web service using Ant.

Extreme programmer or not, we all benefit from continuous integration by having
our systems built, tested, and even deployed on an hourly basis to ensure quality is
never sacrificed. Chapter 16 covers several techniques and tools used for implementing
a continuous integration process using Ant.

Chapter 17 discusses the issues and challenges faced when developing native code.
The highlight of this chapter is the coverage of the C/C++ compilation Ant task that
is emerging.

We close part 2 with rigorous discussions on the complex issues of production
deployment. This is a topic that many developers neglect for one reason or another, but
it typically ends up coming back to haunt us. Starting with a production deployment
plan, and building it into an automated build process can save many headaches later.

Part 3

The final part of our book is about extending Ant beyond its built-in capabilities. Ant
is designed to be extensible in a number ways.

Chapter 19 provides all the information needed to write sophisticated custom Ant
tasks, with many examples. Wrapping native executable calls within an Ant task is a
popular reason for writing a custom task, and this is covered explicitly in detail.

Beyond custom tasks, Ant is extensible in several other ways such as executing
scripting languages and adding FilterReaders and Selectors. Monitoring or logging the
build process is easy to customize too, and all of these techniques are covered in detail
in chapter 20.
xxix

At the back

Last but not least are five appendices. Appendix A is for new Ant users, and explains
how to install Ant on Windows and Unix platforms and covers common installation
problems and solutions. Because Ant uses XML files to describe build processes,
appendix B is an introduction to XML for those unfamiliar with it. All modern Java
integrated development environments now tie in to Ant. Using an Ant-enabled IDE
allows you to have the best of both worlds. Appendix C details the integration avail-
able in several of the popular IDEs.

One of the items we’re most proud of in this book is appendix D, “The elements
of Ant style.” This appendix provides guidelines to make writing build files consistent,
maintainable, and extensible. There are several nice tidbits of trivia. This appendix will
be best understood after understanding the fundamentals of Ant covered in part 1.

We leave you with an Ant task reference at the end to easily look up those attribute
names you’ve forgotten, or to remind yourself of the datatypes or possible values
allowed. We recommend scanning the list of available tasks and their descriptions to
get an idea of what Ant has to offer.

ONLINE RESOURCES

All the source code and Ant build files accompanying this book can be downloaded
from the book’s web site at http://www.manning.com/antbook.

You can also download some quick start build files that you can use in your own
projects with minimal customization; these will let you get up and running with Ant
as quickly as possible. There is also a discussion forum on the web site, where you can
discuss the book.

The other key web site for Ant users is its Apache home page at http://jakarta.
apache.org/ant/. Ant, and its online documentation, can be found here, while this
book’s authors can be found in the Ant developer and Ant user mailing lists, alongside
many other Ant experts. If you have questions about Ant, or want to make it better,
the mailing lists are where to go.

CODE CONVENTIONS

Courier typeface is used to denote Java code and Ant build files. Bold Courier
typeface is used in some code listings to highlight important or changed sections.

Code annotations accompany many segments of code. Certain annotations are
marked with numbered bullets. These annotations have further explanations that fol-
low the code.
xxx ABOUT THIS BOOK

ON VERSIONS OF ANT AND OTHER PROJECTS

This book is written for Ant 1.5 and later. We started writing the book just as Ant 1.4
shipped, in Fall 2001, and finished it just as Ant 1.5 was released. There are many
changes between Ant 1.4 and Ant 1.5, changes that make Ant easier to use and more
flexible. There were also several fixes made to Ant as we discovered issues and incon-
sistencies in the process of writing the book. It is often easier to fix the source than
explain why something does not always work. Because of all the changes, this book is
not targeted at Ant 1.4 or earlier. If you do have a pre-1.5 version of Ant, now is the
time to upgrade.

Ant tries hard to retain backwards compatibility, so as Ant 1.6 and successors are
developed, everything in this book should still work. However, later versions of the
product may provide easier means to accomplish tasks. Check with the documentation
that comes with later versions of Ant to see what has changed.

In part 2 of the book, we work with third-party projects, such as XDoclet and Apache
Axis. These open source projects are currently less stable than Ant, and within a few
months of publishing, we fear that what we wrote about these projects may be incorrect.
Check at our web site to see if we have any additions to the book on these topics.

Finally, one of the fun things about open source is that the user can become the
developer. We would encourage the reader to not merely view Ant and the other open
source projects in the book as sources of binaries, but as communities of developers
that welcome more people to help with the code, the documentation, and even the art-
work. If you think the products are great, come and make them greater!

AUTHOR ONLINE

Purchase of Java Development with Ant includes free access to a private web forum
run by Manning Publications where you can make comments about the book, ask
technical questions, and receive help from the authors and from other users. To access
the forum and subscribe to it, point your web browser to www.manning.com/ant-
book. This page provides information on how to get on the forum once you are regis-
tered, what kind of help is available, and the rules of conduct on the forum.

Manning’s commitment to our readers is to provide a venue where a meaningful
dialog between individual readers and between readers and the authors can take place.
It is not a commitment to any specific amount of participation on the part of the
authors, whose contribution to the AO remains voluntary (and unpaid). We suggest
you try asking the authors some challenging questions lest their interest stray!

The Author Online forum and the archives of previous discussions will be acces-
sible from the publisher’s web site as long as the book is in print.
xxxi

about the authors

ERIK HATCHER, an Ant project committer, has written popular articles on Ant’s JUnit
integration. He maintains jGuru’s Ant FAQ where he answers the world’s toughest
Ant questions. Erik is both a Sun Certified Java Programmer and a Microsoft Certi-
fied Solution Developer. He has written several articles for IBM developerWorks,
most notably about, and improving upon, Ant’s JUnit integration. He lives in Char-
lottesville, Virginia, where he works as a Senior Java Architect by day, and enjoys
spending time with his beautiful wife, Carole, and two wonderful sons, Jakob and
Ethan. See him on the Web at http://erik.hatcher.net/.

STEVE LOUGHRAN works for Hewlett Packard, where he develops imaging and print-
ing web services that fuse Java and Ant. He is also a committer on the Ant and Axis
projects at Apache. Prior to this, he was a research scientist in HP Laboratories in
Bristol, England, dabbling in areas from distributed systems to context aware laptops.
He holds a first-class honors degree in Computer Science from Edinburgh University.
He lives in Corvallis, Oregon, with his wife Bina, and son, Alexander. For entertain-
ment he enjoys Alpine-style mountaineering, saying “it’s all about risk management.”
See him on the Web at http://www.iseran.com/Steve.
xxxii

about the cover illustration

The figure on the cover of Java Development with Ant is an “Yndiano de Goa,” an
inhabitant of Goa, which is a region on the western coast of India, south of Bombay.
The illustration is taken from a Spanish compendium of regional dress customs first
published in Madrid in 1799. The book’s title page states:

Coleccion general de los Trages que usan actualmente todas las Nacio-
nas del Mundo desubierto, dibujados y grabados con la mayor exacti-
tud por R.M.V.A.R. Obra muy util y en special para los que tienen la
del viajero universal

which we translate, as literally as possible, thus:

General collection of costumes currently used in the nations of the
known world, designed and printed with great exactitude by R.M.V.A.R.
This work is very useful especially for those who hold themselves to be
universal travelers

Although nothing is known of the designers, engravers, and workers who colored this
illustration by hand, the exactitude of their execution is evident in this drawing. The
“Yndiano de Goa” is just one of many figures in this colorful collection. Their diver-
sity speaks vividly of the uniqueness and individuality of the world’s towns and
regions just 200 years ago. This was a time when the dress codes of two regions sepa-
rated by a few dozen miles identified people uniquely as belonging to one or the
other. The collection brings to life a sense of isolation and distance of that period—
and of every other historic period except our own hyperkinetic present.

Dress codes have changed since then and the diversity by region, so rich at the time,
has faded away. It is now often hard to tell the inhabitant of one continent from
another. Perhaps, trying to view it optimistically, we have traded a cultural and visual
diversity for a more varied personal life. Or a more varied and interesting intellectual
and technical life.

We at Manning celebrate the inventiveness, the initiative, and the fun of the com-
puter business with book covers based on the rich diversity of regional life of two cen-
turies ago brought back to life by the pictures from this collection.
xxxiii

1
P A R T
Learning Ant

Chapters 1 through 8 lay the foundation for using Ant. In this section, you learn
the fundamentals of Java build processes—including compilation, packaging, testing,
and deployment—and how Ant facilitates each step. Ant’s reusable datatypes and
properties play an important role in writing maintainable and extensible build files.
After digesting the material in this section, you are ready to use Ant in your projects.

C H A P T E R 1

Introducing Ant

1.1 What is Ant? 3
1.2 The core concepts of Ant 5
1.3 Why use Ant? 10
1.4 The evolution of Ant 14
1.5 Ant and software development

methodologies 16

1.6 Our example project 17
1.7 Yeah, but can Ant… 19
1.8 Beyond Java development 21
1.9 Summary 22
Welcome to the future of your build process.
This is a book about Ant. But much more than a reference book for Ant syntax,

it is a collection of best practices demonstrating how to use Ant to its greatest potential
in real-world situations. If used well, you can develop and deliver your software
projects better than you have done before.

We begin by exploring what Ant is, its history, and its core concepts. Ant is not
the only build tool available, so we will also compare it to the alternatives and explain
how Ant can fit in to whatever formal or informal development methodologies you
may encounter. Finally, we’ll introduce the sample application we developed for this
book that demonstrates much of Ant’s capabilities.

1.1 WHAT IS ANT?

We certainly don’t want bugs in our software! However, this industrious creature
called Ant is just what we need to get control of our Java build process. While the
term Ant was coined by the original author to mean Another Neat Tool, this acro-
nym meaning has faded and the analogy to the actual ant insect has taken prece-
dence. Here are some insightful comparisons:
3

• Ants find the shortest distance around obstacles (“Behavior of Real Ants”).

• Ants can carry 50 times their own weight.

• Ants work around the clock; they do rest, but they work in shifts (Ant Colony
FAQs).

Ant is a Java-based build tool designed to be cross-platform, easy to use, extensible,
and scalable. It can be used in a small personal project, or it can be used in a large,
multiteam software project.

1.1.1 What is a build process and why do you need one?

Think of your source code as raw materials that you are sending into a factory for
processing and assembly into a product, say an automobile. These raw materials must
be cut, molded, welded, glued, assembled, tested for quality assurance, labeled, pack-
aged, and shipped. This process and these steps are so analogous to how software
products are constructed that it’s well worth keeping these similarities in mind
throughout this book and beyond. It’s our job as software, build, or QA engineers to
construct the “factory.” People made cars long before factory automation entered the
scene. Even after some forms of automation came about, things were still tough and
required much manual labor. The motor vehicle industry has come a long way in its
relatively brief existence. It is an interesting intellectual exercise to attempt matching
up the progress of both industries, and it’s likely that factory automation has us beat
because of its longer history. However, software is much more malleable than steel, so
with a bit of automation we can do amazing things with it in only a matter of seconds.

In order to build a software product, we manipulate our source code in various
ways: we compile, generate documentation, unit test, package, deploy, and even
dynamically generate more source code that feeds back into the previous steps. Not
unlike the auto industry, these steps are initially done manually, and when we tire
from doing the repetitive, we look for existing tools—or create our own—that can ease
the burden of repetition. Source code is the raw material; Ant is the factory floor with
all the whiz-bang gizmos.

1.1.2 Why do we think Ant makes a great build tool?

We have been working with Ant for a long time and are convinced that it is a great
build tool. Here are some of the reasons:

• It has a very simple syntax, which is easy to learn, especially if you have used
XML before.

• It is easy to use, eliminating the full-time makefile engineer common on large
Make-based software projects.

• It is cross-platform, handling Java classpaths and file directory structures in a
portable manner.
4 CHAPTER 1 INTRODUCING ANT

• It is very fast. Java routines such as the Java compiler or the code to make a JAR
file can all start inside the Ant JVM, reducing process startup delays. Ant tasks
are also designed to do dependency checking to avoid doing any more work
than necessary.

• It integrates tightly with the JUnit test framework for XP-style unit testing.

• It is easily extensible using Java.

• It has built-in support for J2EE development, such as EJB compilation and
packaging.

• It addresses the deployment problems of Java projects: FTP, Telnet, application
servers, SQL commands; all can be used for automated deployment

• It is the de facto standard for most open source Java projects, such as Apache
Tomcat and Apache Xerces. Many application servers even ship with embedded
versions of Ant for deployment.

Because Ant understands testing and deployment, it can be used for a unified build-
test-deploy process, either from a single command on the command-line or a button
press on an Ant-aware Java IDE, such as NetBeans, Eclipse, IDEA, and jEdit.

In a software project experiencing constant change, an automated build can pro-
vide a foundation of stability. Even as requirements change and developers struggle to
catch up, having a build process that needs little maintenance and remembers to test
everything can take a lot of housekeeping off developers’ shoulders. Ant can be the
means of controlling the building and deployment of Java software projects that would
otherwise overwhelm a team.

1.2 THE CORE CONCEPTS OF ANT

To understand Ant, you need to understand the core concepts of Ant build files. The
overall design goals aimed at meeting the core need—a portable tool for building and
deploying Java projects—are as follows:

• Simplicity—Ant should be simple for a competent programmer to use.

• Understandability—Ant should be easy for new users to understand.

• Extensibility—Ant should be easy to extend.

Ant mostly meets these goals. A complex build process may still look complicated,
but it will be manageable. The use of XML as a file format can be intimidating to
anyone who has limited experience with XML. Once you have crossed that hurdle,
however, an Ant build file is easy to work with. Having the build process described in
a portable text file format allows your build process to be easily communicated and
shared with others.

Ant meets the design goals in two key ways. First, Ant is Java-based and tries to hide
all the platform details it can. It is also highly extensible in Java itself. This makes it
easy to extend Ant through Java code, with all the functionality of the Java platform
THE CORE CONCEPTS OF ANT 5

and third party libraries available. It also makes the build very fast, as you can run Java
programs from inside the same Java virtual machine as Ant itself.

Putting Ant extensions aside until much later, here are the core concepts of Ant as
seen by a user of the tool.

XML format

Ant uses XML files called build files to describe how to build, test, and deploy an
application. Using XML enables developers to edit files directly, or in any XML editor,
and facilitates parsing the build file at run time. Using XML as the format also allows
enables developers to create templates easily and to generate build files dynamically.

Declarative syntax

Ant is declarative. Rather than spelling out the details of every stage in the build pro-
cess, developers list the high-level stages of the build, leaving Ant and its tasks to exe-
cute the high-level declaration. This keeps the build files short and understandable,
and lets the Ant developers change implementation details without breaking your
build files.

A build file contains one project

Each XML build file includes how to build, test, and deploy one project. Very large
projects may be composed of multiple smaller projects, each with its own build file.
A higher-level build file can coordinate the builds of the subprojects.

Each project contains multiple targets

Within the single project of a build file, you declare the different targets for the build
process. These targets may represent actual outputs of the build, such as a redistribut-
able file, or stages in the build process, such as compiling source or deploying the
redistributable file to a remote server.

Targets can have dependencies on other targets

When declaring a target, you can declare which targets have to be built first. This
ensures that the source gets compiled before the redistributables are built, and that
the redistributable is built before the remote deployment.

Targets contain tasks

Inside targets you declare what actual work is needed to complete that stage of the
build process. You do this by listing the tasks that constitute each stage. Each task is
actually a reference to a Java class, built into Ant or an extension library, that under-
stands the parameters in the build file and can execute the task based upon the
parameters. These tasks are expected to be smart—to handle much of their own argu-
ment validation, dependency checking, and error reporting.
6 CHAPTER 1 INTRODUCING ANT

New tasks can easily be added in Java

The fact that it is easy to extend Ant with new classes is one of its core strengths.
Often, someone will have encountered the same build step that you have and will
have written the task to perform it, so you can just use their work.

1.2.1 An example project

Figure 1.1 shows the conceptual view of an Ant build file as a graph of targets, each
target containing the tasks. When the project is built, the Ant run time determines
which targets need to be executed, and chooses an order for the execution that guar-
antees a target is executed after all those targets it depends on. If a task somehow fails,
it signals this to the run time, which halts the build. This lets simple rules such as
“deploy after compiling” be described, as well as more complex ones such as “deploy
only after the unit tests and JSP compilation have succeeded.”

Figure 1.1 Conceptual view of a build file. The project encompasses a collection of targets.

Inside each target are task declarations, which are statements of the actions Ant must take to

build that target. Targets can state their dependencies on other targets, producing a graph of

dependencies. When executing a target, all its dependents must execute first.

Listing 1.1 shows the build file for this typical build process.

<?xml version="1.0" ?>
<project name="OurProject" default="deploy">

 <target name="init">
 <mkdir dir="build/classes" />
 <mkdir dir="dist" />
 </target>

ourproject : Project

init : Target

<mkdir> : Task
<mkdir> : Task

doc : Target

<javadoc> : Task

compile : Target

<javac> :Task

deploy : Target

<ftp> :Task
<jar> :Task

Listing 1.1 A typical scenario: compile, document, package, and deploy
THE CORE CONCEPTS OF ANT 7

 <target name="compile" depends="init" >
 <javac srcdir="src"
 destdir="build/classes"/>
 </target>

 <target name="doc" depends="init" >
 <javadoc destdir="build/classes"
 sourcepath="src"
 packagenames="org.*" />
 </target>

 <target name="deploy" depends="compile,doc" >
 <jar destfile="dist/project.jar"
 basedir="build/classes"/>
 <ftp server="${server.name}"
 userid="${ftp.username}"
 password="${ftp.password}">
 <fileset dir="dist"/>
 </ftp>
 </target>

</project>

While listing 1.1 is likely to have some confusing pieces to it,1 it should be mostly
comprehensible to the Java-experienced Ant newbie; for example, deployment (tar-
get name="deploy") depends on the successful compilation and generation of
documentation (depends="compile,doc"). Perhaps the most confusing piece is
the ${...} notation used in the FTP task (<ftp>). These are Ant properties, which we
introduce in chapter 3. The output of our build is

> ant -propertyfile ftp.properties
Buildfile: build.xml

init:
 [mkdir] Created dir: /home/ant/Projects/OurProject/build/classes
 [mkdir] Created dir: /home/ant/Projects/OurProject/dist

compile:
 [javac] Compiling 1 source file to /home/ant/Projects/OurProject/build/
classes

doc:
 [javadoc] Generating Javadoc
 [javadoc] Javadoc execution
 [javadoc] Loading source files for package org.example.antbook.lesson1...
 [javadoc] Constructing Javadoc information...
 [javadoc] Building tree for all the packages and classes...
 [javadoc] Building index for all the packages and classes...
 [javadoc] Building index for all classes...

1 Hey, this is only chapter 1 after all!
8 CHAPTER 1 INTRODUCING ANT

deploy:
 [jar] Building jar: /home/ant/Projects/OurProject/dist/project.jar
 [ftp] sending files
 [ftp] 1 files sent

BUILD SUCCESSFUL
Total time: 5 seconds.

Why did we invoke Ant with -propertyfile ftp.properties? The ftp.proper-
ties file contains the three properties server.name, ftp.username, and
ftp.password. The property handling mechanism allows parameterization and
reusability of our build file. This particular example, while certainly demonstrative, is
minimal and gives only a hint of things to follow. In this build, we tell Ant to place
the generated documentation alongside the compiled classes, which is not a typical
distribution layout but allows this example to be abbreviated. Using the property-
file command-line option is also atypical and used in situations where forced over-
ride control is desired, such as forcing a build to deploy to a server other than the
default. One final note is that a typical distributable is not a JAR file; more likely it
would be a tar, Zip, WAR, or EAR. Caveats aside, the example shows Ant’s basics
well: target dependencies, use of properties, compiling, documenting, JAR’ing, and
finally deploying. To jump ahead, here are pointers to more information on the techni-
cal specifics: chapter 2 covers build file syntax, target dependencies, and <javac> in
more detail; chapter 3 explains Ant properties including -propertyfile; chapter 6
delves into <jar> and <javadoc>; and finally, <ftp> is covered in chapter 7.

Because Ant tasks are Java classes, the overhead of invoking each task is quite small.
Ant instantiates a Java object, sets some parameters, then tells it to perform its work.
A simple task such as <mkdir> would call a Java library package to execute the func-
tion. A more complex task such as <ftp> would invoke a third-party FTP library to
talk to the remote server, and optionally perform dependency checking to only upload
files that were newer than those at the destination. A very complex task such as
<javac> not only uses dependency checking to decide which files to compile, it sup-
ports multiple compiler back ends, calling Sun’s Java compiler in the same VM, or exe-
cuting IBM’s Jikes compiler as an external executable.

These are implementation details. Simply ask Ant to compile some files with the
debug flag turned on; how Ant decides which compiler to use and how to translate
the debug flag into a compiler specific option are issues that you rarely need to worry
about. It just works.

That is the beauty of Ant: it just works. Specify the build file correctly and Ant will
work out target dependencies and call the targets in the right order. The targets run
through their tasks in order, and the tasks themselves deal with file dependencies and
the actual execution of the appropriate Java package calls or external commands
needed to perform the work. Because each task is usually declared at a high level, one
or two lines of XML is often enough to describe what you want a task to do. Five or
six lines might be needed for something as complex as Enterprise JavaBean (EJB)
THE CORE CONCEPTS OF ANT 9

deployment. With only a few lines needed per task, you can keep each build target
small, and keep the build file itself under control.

Build file maintenance is simple, eliminating the need to have one person in charge
of the build; it can be left to the team as a whole to expand the build process as the
project progresses. It also becomes very easy to add new features to the build. Suddenly
the notion of automated FTP deployment—maybe even remote installation followed by
deployment testing—is not so far-fetched. In a recent project one of the authors
worked on, the development team managed to automate deployment to multiple
remote test systems through separate Ant targets. They then added keyboard shortcuts
in the IDE to compile, unit test, archive, and finally deploy to these servers. This reduced
the time from editing code to deploying the changes on an application server to one
and a half minutes, a time that included regression tests on the core functionality.

1.3 WHY USE ANT?

Ant is not the only build solution available. How does it fare in comparison to its
competition and predecessors? We’ll compare Ant to its most widely used competi-
tors: IDEs and Make.

1.3.1 Integrated development environments

The integrated development environment, or IDE, is the common development sys-
tem for small projects. IDEs are great for editing, compiling, and debugging code,
and are easy to use. It is hard to convince a user of a good IDE that they should aban-
don it for a build process based on a text file and a command line prompt. There are,
in fact, many good reasons to supplement an IDE with an Ant build process, extend-
ing rather than abandoning their existing development tools.

Several limitations of IDEs only become apparent as a project proceeds and grows.
First, the functionality of IDEs is limited: although they can compile and package
code, it is hard to include testing and deployment into an IDE process. This limits
how much of the build process can be automated. Second, it is hard to transfer one
person’s IDE settings to another user. Settings can end up tied to an individual’s envi-
ronment. You can take someone’s project and tweak it to work on your own system,
but then it usually does not work on the original system. Finally, IDE-based build pro-
cesses do not scale. If a project has a single deliverable, then an IDE can build it. How-
ever, if the project consists of many different subcomponents, you need to build each
project as its own IDE project. Producing replicable builds is an important part of
most projects, and it’s risky to use manual IDE builds to do so. Replication is difficult
because of the multiple steps involved in pulling a tagged version of code from the
repository and ensuring that the build environment is the same as it was for previous
builds that may have been done by a different team member on a different machine.
It is not uncommon for such teams to dedicate a machine solely for the purpose
of generating builds, often with yellow sticky notes around the monitor describing the
steps! This scalability issue gradually becomes apparent as a project progresses.
10 CHAPTER 1 INTRODUCING ANT

The IDE build works at the beginning, but by the end someone is manually triggering
multiple IDE builds, or struggling to put together a shell script or batch file wrapper,
or a makefile.

Ant does not supplant much of the functionality of an IDE; a good editor with
debugging and even refactoring facilities is an invaluable tool to have and use. Ant just
takes control of compilation, packaging, testing, and deployment stages of the build
process in a way that is portable, scalable, and often reusable. As such, it complements
IDEs. In fact, the latest generation of Java IDEs usually provides support for Ant-
based builds in some form or other, a topic we look at in chapter 10.

1.3.2 Make

Make is the definitive automated build tool in widespread use; variants of it are used
in nearly every large C or C++ project. In Make, you list targets, their dependencies,
and the actions to bring each target up to date.

The tool is inherently file-centric. Each target in a makefile is either the name of
a file to bring up-to-date or what, in make terminology, is called a phony target. A
named target triggers some actions when invoked. Make targets can be dependent
upon files or other targets. Phony targets have names like “clean” or “all” and can have
no dependencies (that is, they always execute their commands) or can be dependent
upon real targets. All the actual build stages that Make invokes are actually external
functions. Besides explicit build steps to produce one file from another, Make supports
pattern rules that it can use to determine how to build targets from the available
inputs.

Here is an example of a very simple makefile (for GNU make) to compile two Java
classes and archive them into a JAR file:

all: project.jar

project.jar: Main.class XmlStuff.class
 jar -cvf $@ $<

%.class: %.java
 javac $<

 The makefile has a phony target, all, which, by virtue of being first in the file, is the
default. The real target is project.jar, which depends on two compiled Java files.
The final rule states how to build class (.class) files from Java (.java) files. In
Make, you list the file dependencies, and the run time determines which rules to
apply and in what sequence, while the developer is left tracking down bugs related to
the need for invisible tab characters rather than spaces at the start of each action.

Make works well on a platform in which the underlying tools are good at perform-
ing the different tasks of the build process (which is why it excels on a Unix system)
and when all dependencies are quite simple. It is language-independent, flexible, and
widely understood.
WHY USE ANT? 11

When the build stages do not generate local files but issue commands to SQL data-
bases or deploy software to remote servers, the simple dependency checking of Make
does not work so well. It is possible to execute these tasks, but the makefile gets more
and more complex, making maintenance of the build a full-time operation.

How Ant is not Make

Besides learning the core concepts of Ant, it is important to forget preconceptions
that come with extensive use of Make. The two tools have the same role: they automate
a build process by taking a specification file and performing a sequence of operations
based on the content of that file and the state of the file system. Even ignoring opera-
tional details such as the different syntax and means of executing targets, Ant and
Make have some fundamentally different views of how the build process should work.

With Ant, you list sequences of operations and dependencies between them, and
let file dependencies sort themselves out through code that understands each operation
in the build process. The only targets that Ant supports are those like Make’s phony
targets: targets that are not files and exist only in the build file. The dependencies of
these targets are other targets. You omit file dependencies, along with any file conver-
sion rules. Instead, the Ant build file states the stages used in the process, and while
you may name the input or output files often you can use a wild card or even a default
wild card to specify the source files. For example, here the <javac> task automatically
includes all Java files in all subdirectories below the source directory:

<?xml version="1.0" ?>
<project name="makefile" default="all">
 <target name="all">
 <javac srcdir="."/>
 <jar destfile="project.jar" includes="*.class" />
 </target>
</project>

Both the <javac> and <jar> tasks will compare the sources and the destinations
and decide which to compile or add to the archive. Ant must call every task in the tar-
get-derived order, and the tasks can choose whether or not to do work. The advantage
of this approach is that the tasks can contain more domain-specific knowledge than
the build tool, such as performing directory hierarchy-aware dependency checking, or
even addressing dependency issues across a network: Ant’s FTP and HTTP tasks can
use dependency checking to manage their downloads or uploads. The other subtlety
of using wildcards to describe source files, JAR files on the classpath, and the like is
that you can add new files without having to edit the build file. This is nice when
projects start to grow—it keeps build file maintenance to a minimum.

It may seem that invoking tasks to check dependencies adds overhead to the exe-
cution, but because most tasks are just Java classes that are loaded into the current
JVM, there is little overhead compared to having the run time do any file dependency
checking. Even when a task works by executing a native application, the Java code can
perform the task-specific dependency checking before calling that native program.
12 CHAPTER 1 INTRODUCING ANT

Make’s related tools

Because makefiles are inherently nonportable, several tools exist to ease the burden of
creating them. Automake and imake are makefile generators, which build off of a file
describing the build process in a more general way than the resultant makefiles. The
Automake tool generates the appropriate makefile for the platform based upon the
results of the probes and a template makefile. There is also a tool called Autoconf
which produces configure shell scripts that adapt source code packages to their
environment, adjusting for all the various platform and environment differences.
Other tools, like CLAM, provide macros and rules to control GNU make (Koeritz 2001).

If you think this all sounds too messy to deal with, you are in the right place. Some
readers will come here with expert-level knowledge of Make, others will come here
with absolutely no knowledge of it. Knowledge of Make is not a prerequisite for this
text. We only mention it here for purposes of comparison, and later in discussions of
integrating Ant with Make in mixed-language environments. While we certainly tout
the benefits of Ant over Make in building pure Java projects, Ant is not necessarily the
right tool (yet) for building C/C++ applications. Ant plays well with spawning to
Make, and Make can execute Ant easily. Chapters 10 and 17 look at Ant and Make
integration in both directions.

1.3.3 Other build tools

Ant and Make are the two most popular build tools, but there are others worth men-
tioning.

Jam

Jam provides a simpler alternative to Make’s complexity. Its syntax is very similar to
Make, yet simpler. Jam is written in C and, with built-in handling of cross-platform
paths, is designed to be more cross-platform friendly than Make.

Amber

Differences of opinion led the original architect of Ant to leave the Ant community
and develop a build tool based on his architectural vision. This project is called
Amber. It currently appears to be stalled in development, but is worth keeping an eye
on. It is entirely Java-based.

Cons

Cons is a Perl-based build system. It is cross-platform and very powerful because you
can use any Perl command in the Conscript file used to build the project. The lan-
guage of Ant build files is not as powerful, and although you can embed scripts inside
the files, Ant is regularly extended in Java instead. Cons is good at Perl, C, and C++
projects as it can scan inside source files for dependency information, but it does not
work well with Java.
WHY USE ANT? 13

1.3.4 Up and running, in no time

One of the benefits of using Ant comes when a new developer joins a team. With a
nicely crafted build process, the new developer can be shown how to get code from
the source code repository, including the build file and library dependencies. Even
Ant itself could (and likely should) be stored in the repository for a truly repeatable
build process. The new developer then runs the build, which would build, test,
deploy, and perhaps even run a demo of the system.

We have seen environments where bringing up a new build environment takes
hours to configure and is prone to not being quite like the other build environments
in the group. With Ant and some planning, these types of problems can be alleviated.
Being capable of quickly getting a new development environment up and running is
a sign that your project is on the right track.

1.4 THE EVOLUTION OF ANT

Ant is still evolving, in the semistructured yet open process under which open-source
projects normally operate. As an Apache project, Ant is controlled by the Apache
bylaws, which cover decision making and write access to the source tree. Those with
write access to Ant’s source code repository are called committers, because they are
allowed to commit code changes directly. Both authors are privileged and honored to
be among the few in the world known as Ant committers. Anyone is allowed—
indeed encouraged—to make changes to the code, to extend Ant to meet their needs,
and to return those changes to the Ant community. Returning such changes and
extensions is entirely optional, yet doing so is beneficial not just for the author who
offloads the maintenance workload, but for all the other Ant users who benefit from
the improvements.

Ant is therefore under continuous change as people regularly submit improve-
ments and modifications to the system, some of which are accepted, others rejected.
As table 1.1 shows, the team releases a new version of Ant on a regular basis. When
this happens, the code is frozen for a few weeks with only bug fixes and documentation
changes accepted, and more rigorous testing is applied, including a brief beta release
program. The result of this process is that, while changes may “break” things in Ant’s
nightly build, point or milestone releases are stable and usable for a long period.

Table 1.1 The release history of Ant. Unless you are working on a short project, there will be a

new version during the life of your project.

Date Ant version Notes

March 2000 Ant 1.0 Really Ant 0.9; with Tomcat 3.1

July 2000 Ant 1.1 First stand-alone Ant release

October 2000 Ant 1.2

March 2001 Ant 1.3

September 2001 Ant 1.4 Followed by Ant 1.4.1 in October

July 2002 Ant 1.5
14 CHAPTER 1 INTRODUCING ANT

With a new release every six months or so, it is likely that a new version will emerge
during the lifetime of any significant project. This may seem like a risk, but really is
an opportunity: if the current version does not meet all your needs, then filing bug
reports or submitting changes may ensure that the next official version of Ant will
meet your needs. If the current version of Ant does work fine, then there is no need to
upgrade until you feel it is necessary; and there is nothing to stop you from keeping
the version used in your project under source code management, to ensure that it will
still build many years into the future.

One area where the evolution of Ant does create problems is in the documentation,
both online and printed. Although the core Ant manual pages are kept up to date, ref-
erenced articles and presentations on other sites may be out of date. This book has the
same problem. We started writing this just as Ant 1.4.1 came out, yet we targeted the
forthcoming version, Ant 1.5. If we had only covered Ant 1.4.1, readers would have
missed out on all the improvements that are already in the pipeline. Even the act of
writing this book has a side effect on the next version of Ant: rather than explain why
things do not always work as expected, sometimes it is easier to fix them. Conse-
quently, much of what we describe does not work on older versions. We have targeted
Ant 1.5 and successors with this book, because even if you were using an older version,
it costs you nothing but the time to download a new version from jakarta.apache.org.
If we had tried to be compatible with older versions of Ant, it would have been much
harder to explain and demonstrate many things.

Because new versions of Ant come out so regularly, this book will slowly become
less accurate. Nothing in the book should actually break with future versions of Ant;
the Ant team strives to maintain backwards compatibility with existing builds. But eas-
ier ways of doing things will emerge. We strongly recommend that you consult the lat-
est Ant online documentation as well as our book.

At some point, Ant 2.0 will come out. This new version of Ant will break many
things, probably including builds and plug-in tasks. We do not cover Ant 2.0 at all,
as we do not know what it will be, exactly. We do know what the feature requirements
are, and that one of them will be an automated means of migrating Ant 1.x builds to
Ant 2.0. So do not worry about Ant 2.0 making all your work obsolete. There could
even be a means of calling Ant 1.x builds from Ant 2.0, so old build code and new
build code can live side by side.

Because Ant’s change is so public and frequent, it may seem less stable than existing
products. However, every night, one person’s computer attempts to build the planet’s
most popular open-source Java projects from their latest source, using the latest ver-
sion of Ant as the foundation. When that build breaks because of a change in Ant, the
owner of that computer, Sam Ruby, lets the Ant development team know. Because of
that nightly build (known as Gump2), changes to Ant rarely break other people’s
projects, which is good news for everyone who relies on Ant as their build tool.

2 See http://jakarta.apache.org/gump/
THE EVOLUTION OF ANT 15

1.5 ANT AND SOFTWARE DEVELOPMENT METHODOLOGIES

Ant plays well on any platform that supports Java, but it also plays well with any soft-
ware development methodology in use. Regardless of the higher level processes in
place, we all, as Java developers, need a tool that facilitates the mundane error-prone
tasks involved in building a Java project from source code to end product. Two such
popular methodologies are eXtreme Programming and the Rational Unified Process,
and there are several other variants of these. How does Ant fit into these methodologies?

1.5.1 eXtreme Programming

At a business level, eXtreme Programming (XP) is about flattening the cost-of-change
curve so that it is no more costly to add a feature later in the development cycle than
early on. Viewed from traditional methodologies such as the waterfall methodology,
this seems insane. How can change have such little effect? The idea is that change is
embraced; it is planned for and expected. The software is continually refactored dur-
ing development to keep it simple, clean, and agile at all times. Change occurs in
small incremental steps when using XP, leaving the system ever in a production-ready
state. Feedback is rapid, with end-users ideally on site during development to provide
immediate answers.

Testing is the key to agility

Quality is the one inflexible variable of the four variables in a software project: cost,
time, quality, and scope. Quality is usually the one to focus on, because anything else
just delays problems until they cost more to fix. (Scope is the ideal adjustable param-
eter, with the others being more or less constrained outside of the development team.)
Quality is obtained by testing. Unit tests are developed before production code is
even written. Continuous testing and integration are crucial to obtaining agility in
adaptation to change. Keeping code simple and clean is tough as it evolves and as
cruft forms, but having test suites in place gives developers the courage to undertake
massive refactorings to simplify things once again. Run the tests successfully, make
some code changes, and run the tests again. If the tests break, you know precisely
what just changed to cause the breakage.

Ant and XP

Ant fits beautifully into an XP process! Automation is mandatory in XP processes.
Ant is all about automating build processes, including testing. Advanced uses for Ant
could include a continuous integration process, in which a server continually checks
out the source and builds and tests the system. Continuous integration is easily real-
ized using an Ant container tool such as CruiseControl or AntHill. We will cover
how to do this in chapter 16.
16 CHAPTER 1 INTRODUCING ANT

1.5.2 Rational Unified Process

The Rational Unified Process (RUP, from Rational Software Corporation) is an itera-
tive, prescriptive, architecture-centric process in which the code is merely one of the
artifacts delivered by iterations of the project; design models and code documentation
are usually other key artifacts. Use cases—the intended uses of the system—direct the
design and development of the system. These provide insight into the problem
domain, and a focus for development.

The RUP divides the software process into four phases (inception, elaboration,
construction, and transition), whereas different tasks (business modeling, analyzing
and designing requirements, implementing, testing, and deploying) consume different
resources in the different phases. There can be a number of iterations in each phase,
and even in later phases, the high-level tasks in the process, such as analyzing and
designing requirements, still take place. This enables yet controls change.

Rational provides a large and integrated suite of products to automate the different
stages of the software process. Their modeling tool, Rational Rose, and configuration
management tool, ClearCase, are probably the most well known.

Where we have personally found the RUP weak is that it delays deployment until
the end of development. For large web or enterprise applications, deployment is one
of the difficult and risky parts of the process. So, it should be emphasized sooner and
fed into the basic architecture (Loughran 2002a), as well as into every iteration. This
does not mean that RUP is unnecessary for such projects, merely insufficient. Scott
Ambler, a leading proponent of the Agile Software movement, has proposed that
developers explicitly include production as a new phase for the RUP, and operations
and infrastructure management as new tasks in a project (Ambler 2001). This revised
model aligns better with our experience, and enables Ant to act as the core of a con-
tinuous deployment system.

Ant integrates with the Unified Process as a means of automating the compilation
and deployment stages. It also supports the Rational ClearCase revision control tool
with tasks to check files in and out. Ant does not integrate with Rational’s testing
product family, such as Visual Test or Purify; the latter code analysis tool would be a
valuable task to be able to run from a build. The Rational TestSuite is more of a higher
level test system than the JUnit tests, and would be hard to integrate unless the Ratio-
nal product family actually hosted Ant itself.

1.6 OUR EXAMPLE PROJECT

This book covers how to use Ant, starting with first principles and finishing with
large projects complete with complex deployment, testing challenges, and extensions
of Ant’s capabilities. We also develop a Java application as we go along, because with-
out a project there is no need for a build process. We base most of our examples on
this project; although for some of the side topics, such as native code integration, we
include stand-alone examples.
OUR EXAMPLE PROJECT 17

1.6.1 Documentation search engine—example Ant project

The example project is a text search engine for indexing and searching through
HTML documentation files—such as the Ant documentation itself. This will work
from the command line, and on an application server. To avoid having to write most
of the search engine ourselves, we chose to use the Lucene search engine, which is
another subproject of the Apache Jakarta group. It is Java-based, fast, and flexible. We
also will integrate with Struts to provide a model/view/controller framework, and a
data tier that can easily switch between a simple object-relational (O/R) framework
and EJB to provide data persistence. For the complete source code of this application,
visit the companion Manning web site.

Our example project consists of several components designed for generalized reuse
and illustrates how Ant not only automates mundane tasks, but adds tremendous
value by accomplishing tasks that are simply not possible without it. Here are details
of our project with chapter cross-references:

• We wrote a custom Ant task to create a Lucene index at build time. We are cur-
rently indexing Ant’s own documentation, but it can index any set of HTML or
text files. Chapter 19 covers creating custom Ant tasks and the Ant API.

• Incorporating custom Ant tasks into a build file becomes much easier if a task-
name/classname-mapping properties file is included with the custom task dis-
tributable. We accomplish the automatic generation of this mapping file using
XDoclet templates and custom tags. This eliminates the need for a possibly
missed manual step, retains metadata in a single place, and reduces duplication.
We introduce XDoclet in chapter 11.

• We developed stand-alone command-line tools to allow indexing and searching.
Executing Java programs from within Ant is one topic of chapter 5.

• We wrote a web application incorporating a build-time generated index. The
web application uses Struts, and later Apache Axis for its Web Service entry
point. We start building a WAR file in chapter 6, and deploy it in chapter 7.
Incorporating third-party (or internally versioned) libraries takes the spotlight
in chapter 10. Chapter 12 goes into detail on customizing and testing web
applications, and chapter 15 adds SOAP support to the build.

• We developed a common component to be the Lucene liaison used by the com-
mand-line applications and web application. This allows a level of abstraction
so that our applications do not directly know that Lucene is the search engine.
Our search engine could theoretically be replaced without affecting any code in
any of the applications. This common component is in its own Ant build, the
control of which we cover in chapter 9.

• Each of our individual builds reuses common pieces such as library mapping
properties, directory naming conventions, and general build settings. XML
entity references are detailed in appendix B.
18 CHAPTER 1 INTRODUCING ANT

• Unit testing was performed at every step of our application development, gener-
ating detailed HTML reports of failures and (optionally) preventing our build
from proceeding until unit tests pass. Testing gets full attention in chapter 4.

• Documenting our application’s API using Javadoc occurs as an integral part of
our distribution process. Packaging files and purposing them for proper plat-
form line endings also occurs during distribution. We maintain our user manual
in XML format; Ant transforms it into web-based documentation using XSLT
and incorporates it into the web application. We can also generate PDF files for
more printer-friendly use. Packaging and documentation are covered in chapter 6.
Chapter 13 describes XML manipulation and XSL transformations.

• In-container testing (testing the web application and EJB layers through their
own containers) ensures that our Struts actions and session beans are performing
their job as expected. We explore in-container testing via Cactus in chapter 12.

• Automated deployment to Tomcat and other application servers, locally and
remotely, is an integral part of the process. Testing even occurs after deployment
to ensure that our application is alive and well. Deployment merits two whole
chapters, 7 and 18.

• Continuous integration via CruiseControl provides automated builds of our
system as code is being checked into our CVS server, notifying the relevant
developers upon failure and providing customizable intranet web reporting
capability. CruiseControl is covered in chapter 16.

1.7 YEAH, BUT CAN ANT…

…help with database driven applications?

Code generation from an initially developed schema can generate many artifacts,
such as code and documentation. Tools such as Torque and Middlegen facilitate this
process. Chapter 10 introduces Torque and chapter 14 describes Middlegen.

…take care of J2EE deployment descriptor issues?

Generating configuration data such as EJB deployment descriptors, EJB JAR files,
web.xml, and struts-config.xml are done with relative ease using XDoclet, the <ejb-
jar> task, and Ant techniques such as build-time textual replacement configuration.
Having the initial code generation generate extensible Javadoc-like tags allows tools
such as Torque and XDoclet to chain off the output. Chapter 11 demonstrates
XDoclet’s non-EJB capabilities, while chapter 14 expands on its EJB features as well
as the use of <ejbjar>.

…allow developers to use the IDE of their choice?

Building with Ant, rather than using proprietary IDE builds, minimizes IDE configu-
ration pain. Developers would be free to choose any IDE. Building a new development
YEAH, BUT CAN ANT… 19

environment would consist of only a few steps: install Ant, install the development
application server (which could be the IDE), pull the source code and build file from
the source code repository, and execute Ant from within the IDE or from a command
prompt. Ant works with relative paths, so each developer could store local source code
in any directory of their choosing without affecting the build.

…enhance deployment quality?

Compilation errors halt the build process. As a result, developers take great pains to
avoid “breaking the build.” It is our philosophy that compilation errors are indeed
showstoppers and should be addressed immediately. Chapter 2 introduces Java com-
pilation with Ant. Chapter 12 shows how to compile JSP pages at build time, which
catches JSP errors early.

Incorporating unit tests into an Ant build is easy, and with a few timesaving depen-
dency tricks shown in chapter 4, having every build perform unit tests (if necessary)
ensures that the only code that breaks tests is the code just touched. Tracking down
the cause in such situations is typically trivial. Chapter 4 goes into detail on JUnit
incorporation into a build process.

…deploy directly to production systems?

Deployments would be a matter of typing ant deploy at the command-line and
could be done by any developer (or routinely via time-scheduled jobs) any time in an
automated, repeatable manner. This would allow anyone (with proper permission, of
course!) to build—and even deploy—a live production system. We introduce deploy-
ment in chapter 7, and explore it further in chapter 17.

…provide flexible development environments?

Even with a unified Ant build process, each developer can have individual settings
that override the project defaults. Usually server passwords and switches to choose a
debug over a release build of the software are set on a per-developer basis. Ant pro-
vides a number of ways for user and system settings to override project defaults in a
clean, flexible, and safe manner. We discuss using Ant properties to accomplish this in
chapter 3.

…provide for build-time parameterization and customization?

Using the same mechanisms that enable developer customizations, end-user customi-
zations can be easily accomplished with Ant in ways that are impossible with typical
IDE build processes. For example, a web interface can be customized on a per-client
basis, allowing for client-specific text, graphics, and styles. With some naming con-
ventions for the customized files, a common base system can be overlaid, at build
time, with client-specific files and settings.
20 CHAPTER 1 INTRODUCING ANT

…automate it all?

Crafting an interactive build process lends itself directly (and without much addi-
tional effort) to waking up in the morning with an e-mail informing you that your
system built successfully overnight, or having a build run on an integration server
immediately upon code being committed to the source code repository. We show
how to set up a continuous integration system with Ant in chapter 16.

1.8 BEYOND JAVA DEVELOPMENT

Not only is Ant the ideal build tool for routine Java development needs such as com-
piling, packaging, documenting, and deploying, but there are many other uses
besides these. Ant is a task engine that automates routine chores. For example, we
used Ant to publish drafts of this book to Manning’s review web site via FTP. There
were many large files, and with Ant’s FTP dependency checking, we only uploaded
the files that had changed on our local system, saving lots of time and bandwidth.

1.8.1 Web publishing engine

Both of the authors have used Ant for personal web-site maintenance. Erik created an
XML file with information about his employment history, published articles, and
other professional data. Using Ant, he builds HTML files using XSL transformations,
and uploads them automatically. Steve has a similar process where he calls a com-
mand-line Win32 application to build HTML files from an Access database and then
uploads only the files that have changed.

Our good friend Ted Neward uses Ant to transform his XML-formatted white
papers using XSL:FO, into PDF files that he uploads with Ant. During the develop-
ment of this book, we became Ted’s personal Ant support hotline and fixed a bug in
Ant’s FTP task that he reported to us. He has even written a white paper describing
this process (Neward 2001).

1.8.2 Simple workflow engine

Ant plays well with other tools natively, or through custom Ant wrapper tasks that
can provide dependency checking and other benefits that native tools do not provide.
Ant can serve as a simple workflow engine that automates many routine computer
processes. Integrating your own custom Ant tasks into an Ant build file allows you to
focus on the task at hand, inheriting an execution infrastructure that provides many
useful facilities such as datatypes and parameterization.

1.8.3 Microsoft .NET and other languages

Certainly Ant was built to be a Java language build tool, but it is moderately adept at
building software in other languages. There are .NET tasks within Ant’s distribution
to wrap Microsoft’s C# compiler, for example. Efforts are under way to more tightly
integrate C/C++ compilation and linking into Ant’s framework.
BEYOND JAVA DEVELOPMENT 21

1.9 SUMMARY

To summarize Ant briefly, it is a Java-based tool that can build, test, and deploy Java
projects ranging in size from the very small to the very large. Ant uses XML build files
to describe what to build. Each file covers one Ant project; a project is divided into
targets; targets contain tasks. These tasks are the Java classes that actually perform the
construction work. Targets can depend on other targets. Ant orders the execution so
they execute in the correct order. Unlike Make, which is driven by file dependencies
and derivation rules, Ant lets the tasks worry about file dependencies; the build file
author merely lists the sequence of steps.

One of the most important points we want to get across in this book is that Ant
itself does not make a successful Java project; rather the use of best practices learned
from the cumulative experience of decades of software engineering is necessary for
projects to succeed. Ant itself does not organize your project’s directory tree in a nor-
malized manner. Ant does not write your business logic code for you. Ant is a tool and,
like any tool, provides greatest benefit when used properly. Sure, you could build a
house with the traditional hammer, a box of nails, and a stack of wood, but why do
things the harder way when you’ve got a cordless framing nailer handy?3

Ant is not only a Java build tool, but also an extensible simple workflow engine
enabling the automation of almost any routine set of tasks and steps. While this book’s
focus is primarily the use of Ant within the Java development world, its tasks and
extensibility allow it to go beyond this. And yet, the benefits Ant brings to Java
projects cannot be overstated.

3 And safety goggles!
22 CHAPTER 1 INTRODUCING ANT

C H A P T E R 2

Getting started with Ant

2.1 Defining our first project 23
2.2 Step one: verifying the tools

are in place 24
2.3 Step two: writing your first

Ant build file 24
2.4 Step three: running your first build 26

2.5 Step four: imposing structure 31
2.6 Step five: running our program 39
2.7 Ant command line options 41
2.8 The final build file 44
2.9 Summary 46
Let’s start a gentle introduction to Ant with a demonstration of what it can do. The
first chapter describes how Ant views a project: a project contains targets, targets con-
tain tasks and can depend on other targets, and all of these are declared in an XML
file. The simplest project is one that contains one target, so that is where we will begin.

2.1 DEFINING OUR FIRST PROJECT

We obviously need a reason to use Ant, and we will use the reason that is common to
almost all Java development projects: compiling Java source. We begin by creating an
empty directory, called GettingStarted, which will be the base directory of our first
project. We then create some real Java source to compile. In the new directory, we
create a file called Main.java, containing the following minimal Java program:

public class Main {

 public static void main(String args[]) {
 for(int i=0;i<args.length;i++) {
 System.out.println(args[i]);
 }
 }
}

23

The fact that this program does nothing but print the argument list is unimportant;
it is still Java code that we need to build, package, and execute—work we will dele-
gate to Ant.

2.2 STEP ONE: VERIFYING THE TOOLS ARE IN PLACE

First, ensure that Ant is installed and ready to run. You will also need a properly
installed Java development kit appropriate for your platform. Appendix A describes
how to set up an Ant development system on both Unix and Windows.

After having installed everything, at a command prompt type

ant -version

A good response would be something listing a recent version of Ant, ideally 1.5
or later:

Apache Ant version 1.5 compiled on May 1 2002

A bad response would be any error message saying Ant was a not a recognized com-
mand, such as this one on a Unix system:

bash: ant: command not found

On Windows, the response will be less terse, but contains the same underlying
message:

'ant' is not recognized as an internal or external command,
operable program or batch file.

Any such response indicates you have not installed or configured Ant yet, so turn to
appendix A: Installation and follow the instructions there on setting up and testing
the system. The rest of this chapter, and indeed the entire book, assumes that Ant is
installed and working.

2.3 STEP TWO: WRITING YOUR FIRST ANT BUILD FILE

With Ant installed, and the source file created, it is time for Ant to compile our
project.

Ant is controlled by providing a text file that tells how to perform all the stages of
building, testing, and deploying a project. These files are build files, and every project
that uses Ant must have at least one. The most minimal build file useful in Java devel-
opment is one that builds all Java source in and below the current directory:

<?xml version="1.0"?>
<project name="firstbuild" default="compile" >
 <target name="compile">
 <javac srcdir="." />
 <echo>compilation complete!</echo>
 </target>
</project>
24 CHAPTER 2 GETTING STARTED WITH ANT

This is a piece of XML text, which we save to a file called build.xml. It is not actually
a very good build file. We would not recommend you use it in a real project, for rea-
sons revealed later, but it does do something useful.

 It is almost impossible for a Java developer to be unaware of XML, but editing it
may be a new experience. Don’t worry. While XML may seem a bit hard to read at
first, and it can be an unforgiving language, it is not very complex. If you really need
to understand XML in all its gory details, the Annotated XML Reference (Bray 1998)
is a good reference on the subject (online at http://www.xml.com/axml/testaxml.htm).
We briefly skim over the surface of a subset of XML as it applies to Ant files in appen-
dix B. If you know XML already, the most unusual point about Ant’s use of XML is
that it cannot have a DTD, because it is entirely possible to extend the tags Ant sup-
ports during a build.1

2.3.1 Examining the build file

Let us look at that first build file from the perspective of XML format rules.
The <project> element is always the root element in Ant build files, in this case
containing two attributes, name and default. The <target> element is a child of
<project>. The <target> element contains two child elements: <javac> and <echo>.

This file could be represented as a tree, which is how XML parsers represent XML
content when a program asks the parser for a Document Object Model (DOM) of the
file. Figure 2.1 shows the tree representation.

The graphical view of the XML tree makes it easier to look at a build file, and so the
structure of the build file should become a bit clearer. At the top of the tree is a node
project, which has a name and another attribute, default. All Ant build files
must contain a single project as the root node.

1 Ant actually can dynamically generate its DTD using <antstructure>, although it is not perfect.
Most IDE plug-ins have their own DTDs to validate against.

<javac srcdir="."> <echo>

Compilation
complete!

<project name="firstbuild"
default="compile">

<target name="compile">

Figure 2.1

The XML representation of a build file is a tree:

the project at the root contains one target,

which contains two tasks. This matches with

the Ant conceptual model: projects contain

targets, targets contain tasks.
STEP TWO: WRITING YOUR FIRST ANT BUILD FILE 25

Underneath the project is a node called <target> with the name compile. In
Ant, a target is a single stage in the build process. It can be explicitly invoked from the
command line or it can be used internally. A build file can have many targets, each
of which must have a unique name that can be any arbitrary string. Note that a target
that contains spaces or begins with a hyphen is very hard to call from the command
line, so we recommended avoiding such situations.

The build file’s compile target contains two XML elements, one called <javac>
and one called <echo>. The names of these elements should hint as to their function:
one calls the javac compiler to compile Java source, the other echoes a message to
the screen. These are the tasks that do the work of this build. The compilation task
has one attribute, srcdir, which is set to ".". This tells the task to look for source
files from the current directory downward. The second task, <echo>, has a text child
node which will be printed when the build reaches that far. If the compilation fails
then the build will fail before the message gets printed.

In this example, we configured the <javac> task with attributes of the task: we
have told it to compile files in the current directory. Here, the <echo> task relies on
the text element inside it to determine its behavior. Attributes describe simple options
and settings that are only set once in a task. Elements can specify multiple entries
simultaneously, such as a list of files to delete, or of commands to send to a remote
server over a network connection. All tasks list the attributes and elements they sup-
port in the online documentation. This documentation is worth bookmarking, as you
will use it regularly when creating Ant build files. In the documentation, all “param-
eters” are XML attributes, and all “parameters specified as nested elements” are exactly
that: nested XML elements that configure the task. Usually the examples shown on
each task’s page provide handy examples of how to use the tasks, and can be cut,
pasted, and customized to your own needs.

2.4 STEP THREE: RUNNING YOUR FIRST BUILD

We’ve just covered the basic theory of Ant: an XML build file can describe targets to
build and the tasks used to build them. You have just created your first build file, so
let’s try it out. With the Java source and build file in the same directory, Ant should
be ready to build the project. At the command prompt type:

ant

If the build file has been typed in correctly, then you should see the following response:

Buildfile: build.xml

compile:
 [javac] Compiling 1 source file
 [echo] compilation complete!

BUILD SUCCESSFUL

Total time: 2 seconds
26 CHAPTER 2 GETTING STARTED WITH ANT

There it is. Ant has compiled all the Java source in the current directory (one file) and
printed a success message afterwards. This is the core build step of all Ant projects
that work with Java source. It may seem strange at first to have an XML file telling a
tool how to compile a single file, but it will soon become familiar. Note that we did
not have to name the source files; Ant just worked it out “somehow.” We will spend
time in chapter 3 covering how Ant decides which files to work on. For now, you just
need to know that the <javac> will compile any and all Java files in the current
directory and any subdirectories. If that is all you need to do, then this build file is
adequate for your project: you can just add more files and Ant will find them and
compile them.

Of course, a modern project has to do much more than just compile files, which
is where the rest of Ant’s capabilities, and the rest of this book, come in to play.

2.4.1 If the build fails

When you are learning any new computer language, it is easy to overlook mistakes
that cause the compiler or interpreter to generate error messages that do not make
much sense. Imagine if somehow the XML was mistyped so that the line calling the
<javac> task was misspelled:

<javaac srcdir="." />

With this task in the target, the output will look something like

Buildfile: build.xml

compile:

BUILD FAILED

C:\AntBook\gettingstarted\build.xml:4:
 Could not create task of type: javaac.

Ant could not find the task or a class this task relies upon.

This is common and has a number of causes; the usual
solutions are to read the manual pages then download and
install needed JAR files, or fix the build file:
 - You have misspelt ’javaac’.
 Fix: check your spelling.
 - The task needs an external JAR file to execute
 and this is not found at the right place in the classpath.
 Fix: check the documentation for dependencies.
 Fix: declare the task.
 - The task is an Ant optional task and optional.jar is absent
 Fix: look for optional.jar in ANT_HOME/lib, download if needed
 - The task was not built into optional.jar as dependent
 libraries were not found at build time.
 Fix: look in the JAR to verify, then rebuild with the needed
 libraries, or download a release version from apache.org

Target executed

File and line where the build failed

The problem:
“javac” was
misspelled
STEP THREE: RUNNING YOUR FIRST BUILD 27

 - The build file was written for a later version of Ant
 Fix: upgrade to at least the latest release version of Ant
 - The task is not an Ant core or optional task
 and needs to be declared using <taskdef>.
Remember that for JAR files to be visible to ant tasks implemented
in ANT_HOME/lib, the files must be in the same directory or on the
classpath

Please do not file bug reports on this problem, nor email the
ant mailing lists, until all of these causes have been explored,
as this is not an Ant bug.

Whenever Ant fails to build, the BUILD FAILED message appears—a message that
will hopefully not be too familiar. Usually it is associated with Java source errors or
unit test failures, but build file syntax problems result in the same failure message,
accompanied by some informative text.

If you do get an error, don’t worry. Nothing drastic will happen, files won’t be
deleted (not in this example, anyway!) and you can try to correct the error by looking
at the line of XML named, as well as the lines on either side of the error. If your editor
has good XML support, the editor itself will point out any XML language errors, leav-
ing the command line to find only Ant-specific errors. Editors that are Ant-aware or
validate against an Ant DTD will also catch many Ant-specific syntax errors. An XML
editor would also catch the omission of an ending tag from an XML element, such as
forgetting to terminate the target element:

<?xml version="1.0"?>
<project name="firstbuild" default="compile" >
 <target name="compile">
 <javac srcdir="." />
 <echo>compilation complete!</echo>
</project>

The error here would come from the XML parser:

C:\AntBook\gettingstarted\xml-error.xml:6:
 Expected "</target>" to terminate element starting on line 3.

Well laid out build files, formatted for readability, help to make such errors visible.
One error we still encounter regularly comes from having an attribute that isn’t

valid for that task. Spelling the srcdir attribute as sourcedir is an example of this:

 <javac sourcedir="." />

If the build file contains that line, you would see this error message:

compile:

BUILD FAILED

C:\AntBook\gettingstarted\build.xml:4:
 The <javac> task doesn’t support the "sourcedir" attribute.
28 CHAPTER 2 GETTING STARTED WITH ANT

This message indicates that the task description contained an invalid attribute. Usu-
ally this means whoever created the build file typed something wrong, but could
mean that the file’s author wrote it for a later version of Ant, one with newer
attributes or tasks than the version doing the build. That can be hard to fix without
upgrading; sometimes a workaround isn’t always possible. It is rare that an upgrade
would be incompatible or detrimental to your existing build file; such an upgrade is
not anything to fear, since the Ant 1.x product line maintains strict backwards com-
patibility.

The error you are likely to see often in Ant is not caused by an error in the build
file; rather, it is the build halting after the compiler failed to compile your code. If,
for example, someone forgot the semicolon after the println call, a compiler error
message would appear, followed by build failure information:

Buildfile: build.xml
compile:
 [javac] Compiling 1 source file
 [javac] /home/ant/Projects/firstbuild/Main.java:5: ';' expected
 [javac] System.out.println("hello, world")
 [javac] ^
 [javac] 1 error

BUILD FAILED
/home/ant/Projects/firstbuild/build.xml:4: Compile failed, messages should
have been provided.

Total time: 4 seconds

The build failed on the same line as the previous example error, line four, but this
time it did the correct action. The compiler found something wrong, printed out its
messages, and notified Ant of the error, which promptly stopped the build. When
you get compiler error messages, the line of the XML file is usually unimportant. The
name of the Java file and the location within it, along with the compiler error, are the
messages that matter.

The key point to note is that failure of a task will usually result in the build itself
failing. This is essential for a successful build process: there is no point packaging or
delivering a project if it did not compile. Ant enforces the rule that failure of a single
task halts the entire build.2

2.4.2 Looking at the build in more detail

If the build does actually succeed, then the only evidence of this is the message that
compilation was successful. Let’s run the task again, this time in verbose mode, to see
what happens. Ant produces a verbose log when invoked with the -verbose param-
eter. This is a very useful feature when figuring out what a build file does. For our
simple build file, it doubles the amount of text printed:

2 Some tasks allow for internal failure to be ignored and for the build to continue.
STEP THREE: RUNNING YOUR FIRST BUILD 29

 > ant -verbose
Apache Ant version 1.5alpha compiled on February 1 2002
Buildfile: build.xml
Detected Java version: 1.4 in: /usr/java/j2sdk1.4.0/jre
Detected OS: Linux
parsing buildfile /home/ant/Projects/firstbuild/build.xml with
 URI = file:/home/ant/Projects/firstbuild/build.xml
Project base dir set to: /home/ant/Projects/firstbuild
Build sequence for target `compile’ is [compile]
Complete build sequence is [compile]

compile:
 [javac] Main.java omitted as
 /home/ant/Projects/firstbuild/Main.class is up to date.
 [javac] build.xml skipped - don’t know how to handle it
 [javac] Main.class skipped - don’t know how to handle it
 [echo] compilation complete!

BUILD SUCCESSFUL

Total time: 1 second

For this build, the most interesting lines are those generated by the <javac> task. It
shows two things. First, the task has decided not to recompile Main.java, because it
has determined that the destination class is up to date. The task not only includes
source files without needing to know their names, it can determine the name and
location of the generated class file and, based on simple timestamp checking, decide
whether or not to recompile the files. All this is provided in the single line of the build
file, <javac srcdir="." />, which is a lot of functionality for twenty characters.

The second finding is that the task explicitly skipped the build file, and the gen-
erated Main.class bytecode file. This shows that the task looks at all files in the current
directory, but because it only knows how to compile Java source files, files without a
.java extension are ignored.

What is the login verbose mode if Ant compiled the source file? Delete Main.class
then run Ant again to see. The core part of the output provides detail on the compi-
lation process:

compile:
 [javac] Main.java added as
 /home/ant/Projects/firstbuild/Main.class doesn’t exist.
 [javac] build.xml skipped—don’t know how to handle it
 [javac] Compiling 1 source file
 [javac] Using modern compiler
 [javac] Compilation args: -classpath
 /home/ant/Java/jakarta-ant/lib/jaxp.jar:
 /home/ant/Java/jakarta-ant/lib/crimson.jar:
 /home/ant/Java/jakarta-ant/lib/ant.jar:
 /usr/java/j2sdk1.4.0/lib/tools.jar
 -sourcepath /home/ant/Projects/firstbuild -g:none
30 CHAPTER 2 GETTING STARTED WITH ANT

 [javac] File to be compiled:
 /home/ant/Projects/firstbuild/Main.java
 [echo] compilation complete!

BUILD SUCCESSFUL

This time the <javac> task does need to compile the source file, a fact it prints to
the log. It still skips the build.xml file, printing this fact out before it actually com-
piles any Java source. This provides a bit more insight into the workings of the task: it
builds a list of files to compile before it sends the set to the compiler. Actually, as you
can discover by looking at the Ant source, it hands off this entire list of Java files to
the compiler in one go. By default the Java-based compiler that came with the JDK is
used, from inside the same JVM as Ant itself. This makes the build fast, even though
it is all written in Java and has to parse an XML file before it even begins to do any work.

A final point of interest from these verbose runs is that we are clearly running under
Linux, while the earlier examples were clearly running on a Windows PC. We decided
to test the build on a different computer. Ant does not care what platform you are run-
ning on, as long as it is one of the many it supports. The same build file can compile,
package, test, and deliver the same source files on whatever platform it is executed on,
which helps unify a development team where multiple system types are used for devel-
opment and deployment.

Don’t worry yet about running the program we compiled. We need to get the com-
pilation process under control before actually running it.

2.5 STEP FOUR: IMPOSING STRUCTURE

The build file is now compiling Java files, but the build process is messy. Source files,
output files, the build file: they are all in the same directory. If this project gets any big-
ger, things will get out of hand. Before that happens, we must impose some structure.
The structure we are going to impose is the de facto standard in Ant, but it is imposed
for a reason, a reason driven by the three changes we want to make to the project.

• We want to automate the cleanup in Ant. If done wrong, this could accidentally
delete source files. To minimize that risk, you should always cleanly separate
source and generated files into different directories.

• We want to place the Java source file into a Java package.

• We want to create a JAR file containing the compiled code. This should be
placed somewhere that can also be cleaned up by Ant.

To add packaging and clean-build support to the build, we have to isolate the source,
intermediate, and final files. Once you have separated source and generated files, it is
easy and safe to automate cleanup of the latter, making it easy to perform clean
builds. A clean build is always preferable to an incremental build as there is no chance
of old classes sneaking into the build with out-of-date constants or method declara-
tions. It is good to get into the habit of doing clean builds. Do this not just when you
STEP FOUR: IMPOSING STRUCTURE 31

know something like a constant or compiler option has changed. Do it whenever you
are going to release code, or first thing after a big update from the source code repos-
itory, and do it when the build just seems “odd.”

The structure we are going to use is a subset of the standard structure we use
throughout this book, and which we encourage you to adopt—or at least ignore from
a position of knowledge. We list the structure in table 2.1.

2.5.1 Laying out the source directories

The first directory, src, contains the source and is the most important. The other
two contain files that are created during the build. To clean these directories up, these
entire directory trees can be deleted. Of course, this means the build file may need to
recreate the directories if they are not already present.

We want to move the Java source into the src directory and extend the build file
to create and use the other directories. Before moving the Java file, it needs a package
name; we have chosen org.example.antbook.lesson1. Add this at the top of
the source file in a package declaration:

package org.example.antbook.lesson1;
public class Main {

 public static void main(String args[]) {
 for(int i=0;i<args.length;i++) {
 System.out.println(args[i]);
 }
 }
}

You must then save the file in a directory tree beneath the source directory that
matches that package hierarchy: src/org/example/antbook/lesson1. This is
because the dependency checking code in <javac> relies on the source files being
laid out this way. When the Java compiler compiles the files, it always places the out-
put files in a directory tree that matches the package declaration. The next time the
<javac> task runs, its dependency checking code looks at the tree of generated class
files and compares it to the source files. It does not look inside the source files to find
their package declarations; it relies on the source tree being laid out to match the des-
tination tree.

Table 2.1 An Ant project should split source files, intermediate files, and distribution packages

into separate directories. This makes them much easier to manage during the build process.

The directories are a de facto standard in Ant projects. If you use them it will be easier to inte-

grate your build files with those of others.

Directory name Function

src source files

build/classes intermediate output (created; cleanable)

dist distributable files (created; cleanable)
32 CHAPTER 2 GETTING STARTED WITH ANT

NOTE For Java source dependency checking to work, you must lay out source in a
directory tree that matches the package declarations in the source.

Only when the source is not in any package can you place it in the base of the source
tree and expect <javac> to track dependencies properly, which is what we have been
doing up until now. If Ant keeps on recompiling your Java files every time you do
a build, it is probably because you have not placed them correctly in the package
hierarchy.

It may seem inconvenient having to rearrange your files to suit the build tool, but
the benefits become clear over time. On a large project, such a layout is critical to sep-
arating and organizing classes. If you start with it from the outset, even on a small
project, you can grow more gently from a small project to a larger one. Modern IDEs
also prefer this layout structure, as does the underlying Java compiler.

Be aware that dependency checking of <javac> is simply limited to comparing
the dates on the source and destination files. There is a secondary task to do more
advanced dependency checking, which is covered in chapter 10. Even then, a regular
a clean build is a good practice.

2.5.2 Laying out the build directories

We want to configure Ant to put all intermediate files—those files generated by any
step in the build process that are not directly delivered or deployed—into the build
directory tree. A large project can use Ant to generate many kinds of intermediate
files: HTML pages from XML source, Java source files from JSP source, even text or data
files generated by running programs that Ant compiles and executes during the build.

The simple project being developed in this chapter has none of these needs, but we
will plan ahead by putting the compiled files into a subdirectory of build, a directory
called classes. Different intermediate output types can have their own directories
alongside this one.

As we mentioned in section 2.4.1, the Java compiler lays out packaged files into a
directory structure that matches the package declarations in the source files. The com-
piler will create the appropriate subdirectories on demand, so we do not need to create
them by hand. What we do need to create is the top-level build directory, and the
classes subdirectory. We do this with the Ant task <mkdir>, which, like the shell com-
mand of the same name, creates a directory. In fact, it creates parent directories, too,
if needed:

<mkdir dir="build/classes">

This call is all that is needed to create the two levels of intermediate output. To actu-
ally place the output of Ant tasks into the build directory, we need to use whichever
attribute specifies a destination directory, and set it to a location in the build subdi-
rectories. For the <javac> task, as with many other Ant tasks, the appropriate
attribute is destdir.
STEP FOUR: IMPOSING STRUCTURE 33

2.5.3 Laying out the dist directories

The dist directories are usually much simpler than the intermediate file directories,
because one of the common stages in a build process is to package files up, placing the
packaged file into the dist directory. There may be different types of packaging: JAR,
Zip, tar, and WAR, for example, and so a subdirectory is needed to keep all of these
files in a place where they can be identified and deleted for a clean build. To create
the distribution directory, we insert another call to <mkdir>:

<mkdir dir="dist">

To create the JAR file, we are going to use an Ant task called, appropriately, <jar>.
We have dedicated a whole chapter, chapter 6, to this and the other tasks used in the
packaging process. For this introductory tour of Ant we use the task at its simplest,
when it can be configured to make a named JAR file out of a directory tree:

<jar destfile="dist/project.jar" basedir="build/classes" />

This shows the advantage of placing intermediate code into the build directory: you
can build a JAR file from it without having to list what files are included, because all
files in the directory tree should go in, which, conveniently, is the default behavior of
the <jar> task.

With the destination directories defined, we now have completed the directory
structure of the project, which looks like the illustration in figure 2.2. When the build
is executed, a hierarchy of folders will be created in the class directory to match the
source tree, but as these are automatically created we are not worrying about them.

dist

project.jar

src

org

example

antbook

Main.Java

build

Main.class

classes

org

example

antbook

build.xml

base

Figure 2.2

The directory layout for our project: a source tree sepa-

rate from the build and distribution output. The shaded

directories and files created by Ant during the build.
34 CHAPTER 2 GETTING STARTED WITH ANT

2.5.4 Creating the build file

Now that we have the files in the right places, and we know what we want to do, the
build file needs to be rewritten. Rather than glue all the tasks together in one long list
of actions, we have broken the separate stages—directory creation, compilation,
packaging, and cleanup—into four separate targets inside the build file.

<?xml version="1.0" ?>
<project name="structured" default="archive" >

 <target name="init">
 <mkdir dir="build/classes" />
 <mkdir dir="dist" />
 </target>

 <target name="compile" depends="init" >
 <javac srcdir="src"
 destdir="build/classes"
 />
 </target>

 <target name="archive" depends="compile" >
 <jar destfile="dist/project.jar"
 basedir="build/classes" />
 </target>

 <target name="clean" depends="init">
 <delete dir="build" />
 <delete dir="dist" />
 </target>

</project>

This build file adds an init target to do initialization work, which means creating
directories. We’ve also added two other new targets, clean and archive. The
archive target uses the <jar> task to create the JAR file containing all files in and
below the build/classes directory, which in this case means all .class files created by
the compile target. One target has a dependency upon another, a dependency that
Ant needs to know about. The clean target cleans up the output directories by
deleting them. It uses the <delete> task to do this. We have also changed the
default target to archive, so this will be the target that Ant executes when you run it.

2.5.5 Target dependencies

We need a way of ensuring that Ant runs some targets before other targets that
depend on their outputs.

In our current project, for the archive to be up to date, all the source files must be
compiled, which means the archive target must come after the compilation target.
Likewise, compile needs the directories created in init, so Ant must execute it after
the init task. These are dependencies that we need to communicate to Ant. We do
this as the targets are declared, listing the dependencies in their depends attributes:

Creates the output
directories

Compiles into the
output directories

Creates the
archive

Cleans the
output
directories
STEP FOUR: IMPOSING STRUCTURE 35

<target name="compile" depends="init" >
<target name="archive" depends="compile" >
<target name="clean" depends="init">

If a target directly depends on more than one predecessor target, then you should list
both dependencies in the dependency attribute, for example depends="com-
pile,test". In our example build, the archive task does depend upon both init
and compile, but we do not bother to state the dependency upon init because the
compile target depends upon it. If Ant must execute init before compile, and
archive depends upon compile then Ant must run init before archive. Put
formally, dependencies are transitive. They are not however reflexive: the compile
target does not know or care about the archive target. Another useful fact is that
the order of targets inside the build file is not important: Ant reads in the whole file
before it builds the dependency tree and executes targets. There is no need to worry
about forward references.

If you look at the dependency tree of targets in the current example, it looks like
figure 2.3. Before Ant executes any target, all the predecessor targets must already have
been executed. If these predecessors depend on targets themselves, the execution order
will also consider those and produce an order that satisfies all dependencies. If two tar-
gets in this execution order share a common dependency, then that predecessor will
only execute once.

Experienced makefile editors will recognize that Ant targets resemble Make’s
pseudotargets—targets in a makefile that you refer to by name in the dependencies of
other makefile targets. Usually in Make, you name the source files that a target
depends on, and the build tool itself works out what to do to create the target file from
the source files. In Ant, you name stages of work as targets, and the tasks inside each
target work out for themselves what their dependencies are.

2.5.6 Running the new build file

Now that there are multiple targets in the build file, we need a way of specifying
which to run. You can simply list one or more targets on the command line, so all of
the following are valid, as are other combinations:

ant

ant init
ant clean

init

cleancompile

archive

Figure 2.3

Once you add dependencies,

the graph of targets gets more

complex. Here clean depends

upon init; archive depends on

compile directly and init

indirectly. All of a target’s

dependencies will be executed

ahead of the target itself.
36 CHAPTER 2 GETTING STARTED WITH ANT

ant compile
ant archive
ant clean archive

Calling Ant with no target is the same as calling the default target named in the
project. In this example, it is the archive target:

init:
 [mkdir] Created dir: C:\AntBook\secondbuild\build
 [mkdir] Created dir: C:\AntBook\secondbuild\dist

compile:
 [javac] Compiling 1 source file to C:\AntBook\secondbuild\build

archive:
 [jar] Building jar: C:\AntBook\secondbuild\dist\project.jar

BUILD SUCCESSFUL
Total time: 2 seconds

This demonstrates that Ant has determined execution order of tasks. When you
invoke a target with dependencies, all their dependencies execute first. As both the
compile and archive targets depend upon the init target, Ant must call init
before it executes either of those targets. It orders the targets so that first the directo-
ries get created, then the source compiled, and finally the JAR archive built.

2.5.7 Rerunning the build

What happens when the build is run a second time? Let’s try it and see:

init:

compile:

archive:

BUILD SUCCESSFUL

Total time: 1 second

We go through all the targets, but none of the tasks say that they are doing any work.
Here’s why: all of these tasks check their dependencies, <mkdir> does not create
directories that already exist, <javac> compares source and class file timestamps,
and the <jar> task compares the time of all files to be added to the archive with the
time of the file itself. Only if a source file is newer than the generated archive file does
the task rebuild the JAR file.

If you add the -verbose flag to the command line you will get more detail on
what did or, in this case, did not take place.

>ant -verbose

Apache Ant version 1.5alpha compiled on February 1 2002
Buildfile: build.xml
Detected Java version: 1.3 in: D:\Java\jdk13\jre
Detected OS: Windows 2000
parsing buildfile C:\AntBook\secondbuild\build.xml with
STEP FOUR: IMPOSING STRUCTURE 37

 URI = file:C:/AntBook/secondbuild/build.xml
Project base dir set to: C:\AntBook\secondbuild
Build sequence for target `archive’ is [init, compile, archive]
Complete build sequence is [init, compile, archive, clean]

init:

compile:
 [javac] org\example\antbook\lesson1\Main.java omitted as
 C:\AntBook\secondbuild\build\org\example\antbook\
 lesson1\Main.class is up to date.

archive:
 [jar] org\example\antbook\lesson1\Main.class omitted as
 C:\AntBook\secondbuild\dist\project.jar is up to date.

BUILD SUCCESSFUL
Total time: 2 seconds

The verbose run provides a lot of information, much of which may seem distracting.
When a build is working well, you do not need it, but it is invaluable while develop-
ing that file.

TIP If ever you are unsure why a build is not behaving as expected, run Ant with
the -verbose option to get lots more information.

2.5.8 How Ant handles multiple targets on the command line

Here is an interesting question which expert users of Make will usually get wrong:
what happens when you type ant compile archive at the command line? Many
people would expect Ant to pick an order that executes each target and its dependen-
cies once only: init, compile, archive. Make would certainly do that, but Ant
does not. Instead, it executes each target and dependents in turn, so the actual
sequence is init, compile, then init, compile, archive:

C:\AntBook\secondbuild>ant compile archive
Buildfile: build.xml

init:
 [mkdir] Created dir: C:\AntBook\secondbuild\build
 [mkdir] Created dir: C:\AntBook\secondbuild\dist

compile:
 [javac] Compiling 1 source file to C:\AntBook\secondbuild\build

init:

compile:

archive:
 [jar] Building jar: C:\AntBook\secondbuild\dist\project.jar

BUILD SUCCESSFUL
Total time: 2 seconds

This behavior can be unexpected to anyone experienced in other build tools, as it seems
to add extra work rather than save work by sharing dependencies. However, if you
38 CHAPTER 2 GETTING STARTED WITH ANT

look closely, the second time Ant executes the compile target it does no work; the
tasks get executed but their dependency checking stops existing outputs being rebuilt.

Our next question is this: when a target lists multiple dependencies, does Ant exe-
cute them in the order listed? The answer is yes, unless other dependency rules prevent
it. Imagine if we modified the archive target with the dependency attribute
depends="compile,init". A simple left-to-right execution order would run the
compile target before it was initialized. Ant would try to execute the targets in this
order, but because the compile target depends upon init, Ant will call init first.
This subtle detail can catch you out. If you try to control the execution order by listing
targets in order, you may not get the results you expect as explicit dependencies always
take priority.

2.6 STEP FIVE: RUNNING OUR PROGRAM

We now have a structured build process that creates the JAR file from the Java source.
At this point the next steps could be to run tests on the code, distribute it, or deploy
it. We shall be covering how to do all these things in the following chapters. For now,
we just want to run the program.

2.6.1 Why execute from inside Ant

We could just call our program from the command line, stating the classpath, the
name of the entry point and the arguments:

>java -cp build/classes org.example.antbook.lesson1.Main a b .
a
b
.

If the classpath is not complex and the arguments to the application are simple, call-
ing Java programs from the command line is not particularly hard, just a manual pro-
cess. We still want to run our program from the build file, not just to show it is
possible, but because it provides some tangible benefits the moment we do so:

• A target to run the program can depend upon the compilation target, so we
know we are always running the latest version of the code.

• It is easy to pass complex arguments to the program.

• It is easier to set up the classpath.

• The program can run inside Ant’s own JVM; so it loads faster.

• You can halt a build if the return code of the program is not zero.

The fact that the execute target can be made to depend on the compile target is one
of the key benefits during development. There is simply no need to split program
compilation from execution.
STEP FIVE: RUNNING OUR PROGRAM 39

2.6.2 Adding an execute target

To call the program from inside Ant, we merely add a new target, execute, which
we make dependent upon compile. It contains one task, <java>, that runs our
Main.class using the interim build/classes directory tree as our classpath:

<target name="execute" depends="compile">
 <java
 classname="org.example.antbook.lesson1.Main"
 classpath="build/classes">
 <arg value="a"/>
 <arg value="b"/>
 <arg file="."/>
 </java>
</target>

We have three <arg> tags inside the <java> task; each tag contains one of the argu-
ments to the program: "a", "b", and ".", as with the command line version. Note,
however, that the final argument, <arg file="."/>, is different from the other two.
The first two arguments use the value attribute of the <arg> tag, which passes the
value straight down to the program. The final argument uses the file attribute, which
tells Ant to resolve that attribute to an absolute file location before calling the program.

2.6.3 Running the new target

What does the output of the run look like? First, let’s it run it on Windows:

C:\AntBook\secondbuild>ant execute
Buildfile: build.xml

init:

compile:

execute:
 [java] a
 [java] b
 [java] C:\AntBook\secondbuild

The compile task didn’t need to do any recompilation, and the execute task
called our program. Ant has prefixed every line of output with the name of the task
currently running, showing here that this is the output of an invoked Java applica-
tion. The first two arguments went straight to our application, while the third argu-
ment was resolved to the current directory; Ant turned "." into an absolute file
reference. Next, let’s try the same program on Linux:

[secondbuild]$ ant execute
Buildfile: build.xml

init:

compile:

execute:
 [java] a
 [java] b
 [java] /home/ant/Projects/secondbuild
40 CHAPTER 2 GETTING STARTED WITH ANT

Everything is identical, apart from the final argument, which has been resolved to a dif-
ferent location, the current directory in the Unix path syntax, rather than the DOS one.
This shows another benefit of starting programs from Ant rather than any batch file or
shell script: a single build file can start the same program on multiple platforms, trans-
forming file names and file paths into the appropriate values for the target platform.

This is a very brief demonstration of how and why to call programs from inside
Ant; enough to round off this little project. We have dedicated an entire chapter to the
subject of calling Java and native programs from Ant during a build process. Chapter 5
explores the options and issues of the topic in detail.

2.7 ANT COMMAND LINE OPTIONS

We have nearly finished our quick look at some of what Ant can do, but we have one
more little foundational topic to cover: how to call Ant. We have already shown that
Ant is a command-line program, and that you can specify multiple targets as parame-
ters, and we have introduced the -verbose option to get more information on a
build. We want to do some more with Ant’s command line to run our program. First,
we want to remove the [java] prefixes, then we will run the build without any out-
put at all unless something goes wrong. Ant command line options can do this.

Ant can take a number of options, which it lists if you ask for them with ant
-help. The current set of options is listed in table 2.2.

Table 2.2 Ant command line options

Option Meaning

-help List the options Ant supports and exit

-version Print the version information and exit

-buildfile file Use the named buildfile, use -f as a shortcut

-find file Search for the named buildfile up the tree

-projecthelp Print information about the current project

-verbose Be extra verbose

-quiet Be extra quiet

-debug Print debugging information

-emacs Produce logging information without adornments

-Dproperty=value Set a property to a value

-propertyfile file Load all properties from file

-logfile file Use given file for log

-listener classname Add a project listener

-logger classname Name a different logger

-inputhandler classname The name of a class to respond to <input> requests

-diagnostics Print information that might be helpful to diagnose or report
problems.
ANT COMMAND LINE OPTIONS 41

Some options require more explanation of Ant before they make sense. In particular,
the two options related to properties are not relevant until we explore Ant’s properties
in chapter 3. Likewise, we don’t introduce listeners and loggers until chapter 13, so
let’s ignore those options for now. Just keep in mind that it is possible to write Java
classes that get told when targets are executed, or that get fed all the output from the
tasks as they execute, a feature that is the basis for integrating Ant into IDEs.

2.7.1 Specifying which build file to run

Perhaps the most important option for Ant is -buildfile. This option lets you
control which build file Ant uses, allowing you to divide the targets of a project into
multiple files, and select the appropriate build file depending on your actions.
A shortcut to -buildfile is -f. To invoke our existing project, we just name it im-
mediately after the -f or -buildfile argument:

ant -buildfile build.xml compile

This is exactly equivalent to calling ant compile with no file specified. If for some
reason the current directory was somewhere in the source tree, which is sometimes
the case when you are editing text from a console application such as vi, emacs, or
even edit, then you can refer to a build file by passing in the appropriate relative file
name for your platform, such as ../../../build.xml or ..\..\..\build.xml.
This is fiddly. It is better to use the -find option, which must be followed by the
name of a build file. This variant does something very special: it searches up the
directory tree to find the first build file in a parent directory of that name, and
invokes it. With this option, when you are deep down the source tree editing files,
you can easily invoke the project build with the simple command:

ant -find build.xml

2.7.2 Controlling the amount of information provided

We stated that we want to reduce the amount of information provided when we
invoke Ant. Getting rid of the [java] prefix is easy: we run the build file with the
-emacs option; this omits the task-name prefix from all lines printed. The option is
called -emacs because the output is now in the emacs format for invoked tools,
which enables that and other editors to locate the lines on which errors occurred.
When calling Ant from any IDE that lacks built-in support, the -emacs option may
tighten the integration.

For our exercise, we only want to change the presentation from the command line,
which is simple enough:

[secondbuild]$ ant -emacs execute
Buildfile: build.xml

init:

compile:

execute:
42 CHAPTER 2 GETTING STARTED WITH ANT

 a
 b
 /home/ant/Projects/secondbuild

BUILD SUCCESSFUL
Total time: 2 seconds.

This leaves the next half of the problem, hiding all the output entirely. Three of the
Ant options control how much information is output when Ant runs. Two of these
(-verbose and -debug) progressively increase the amount. The verbose option is
useful when you are curious about how Ant works, or why a build isn’t behaving. The
debug option includes all the normal and verbose output, and much more low level
information, primarily only of interest to Ant developers. The -quiet option
reduces the amount of information to a success message or errors:

[secondbuild]$ ant -quiet execute

BUILD SUCCESSFUL
Total time: 2 seconds

This leaves us with no way of telling if the program worked, unless we can infer it
from the time to execute. Would adding an <echo> statement in the execute tar-
get help? Not by default. One of the attributes of echo is the level attribute:
error, warning, info, verbose, and debug control the amount of information
that appears. The default value info ensures that echoed messages appear in normal
builds, or the two levels of even more information, verbose and debug. By insert-
ing an echo statement into our execute target with the level set to warning,
we ensure that even when the build is running in quiet mode the output appears. The
Ant task declaration

<echo level="warning" message="running" />

results in the following output:

>ant -quiet
 [echo] running

To eliminate the [echo] prefix, we add the -emacs option again, calling

>ant -quiet -emacs

to get the following output:

running

BUILD SUCCESSFUL
Total time: 2 seconds.

Controlling the output level of programs is not only useful when debugging, but
when trying to run a large build that has worked in the past; only errors and occa-
sional progress messages matter. A quiet build with a few manual <echo level=
"warning"> tags is ideal for a bulk build. Likewise, some <echo level="verbose">
tags can provide extra trace information when more detail is required.
ANT COMMAND LINE OPTIONS 43

2.7.3 Getting information about a project

The final option of immediate relevance is -projecthelp. It lists the main targets
in a project, and is invaluable whenever you need to know what targets a build file
provides. Ant only lists targets containing the optional description attribute, as
these are the targets intended for public consumption.

>ant -projecthelp
Buildfile: build.xml
Main targets:

Subtargets:

 archive
 clean
 compile
 execute
 init

Default target: archive

This is not very informative, which is our fault for not documenting the file thor-
oughly enough. If we add a description attribute to each target, such as
description="Compiles the source code" for the compile target, and a
<description> tag right after the project declaration, then the target listing
includes these descriptions, marks all the described targets as “main targets,” and
hides all sub targets from view:

Buildfile: build.xml
Compiles and runs a simple program
Main targets:

 archive Creates the JAR file
 clean Removes the temporary directories used
 compile Compiles the source code
 execute Runs the program

Default target: archive

To see both main and sub targets in a project, you must call Ant with the options
-projecthelp and -verbose. The more complex a project is, the more useful the
-projecthelp feature becomes. We strongly recommend providing description
strings for every target intended to act as an entry point to external callers, and a line
or two at the top of each build file describing what it does.

2.8 THE FINAL BUILD FILE

We close with the complete listing of the final build file, listing 2.1. As well as adding the
description tags, we decided to change the default target to run the program, rather
than just create the archive. We have marked the major changes in bold, to show
where this build file differs from the build files and build file fragments shown earlier.
44 CHAPTER 2 GETTING STARTED WITH ANT

<?xml version="1.0" ?>
<project name="secondbuild" default="execute" >
<description>Compiles and runs a simple program</description>

 <target name="init">
 <mkdir dir="build/classes" />
 <mkdir dir="dist" />
 </target>

 <target name="compile" depends="init"
 description="Compiles the source code">
 <javac srcdir="src"
 destdir="build/classes"
 />
 </target>

 <target name="archive" depends="compile"
 description="Creates the JAR file">
 <jar destfile="dist/project.jar"
 basedir="build/classes"
 />
 </target>

 <target name="clean" depends="init"
 description="Removes the temporary directories used">
 <delete dir="build" />
 <delete dir="dist" />
 </target>

 <target name="execute" depends="compile"
 description="Runs the program">
 <echo level="warning" message="running" />
 <java
 classname="org.example.antbook.lesson1.Main"
 classpath="build/classes">
 <arg value="a"/>
 <arg value="b"/>
 <arg file="."/>
 </java>
 </target>

</project>

It seems somewhat disproportionate, forty-some lines of Ant build file to compile a
ten-line program, but think of what those lines of build file do: they compile the pro-
gram, package it, run it, and can even clean up afterwards. More importantly, if we
added a second Java file to the program, how many lines of code need to change in
the build file? Zero. As long as the build process does not change, you can now add

Listing 2.1 Our first complete build file, including packaging

and executing a Java program
THE FINAL BUILD FILE 45

Java classes and packages to the source tree to build a larger JAR file and perform
more useful work on the execution parameters, yet you don’t have to make any
changes to the build file itself. That is one of the nice features of Ant: you don’t need
to modify your build files whenever a new source file is added to the build process. It
all just works.

2.9 SUMMARY

Ant is a command-line tool that takes a build file describing how to build and deploy
Java software projects.

The tool uses XML as the file format, with the root element of a build file repre-
senting an Ant project. This project contains one or more targets, which represent
stages of the project, or actual outputs. Each target can be dependent upon one or
more other targets, which creates a graph-like structure representing the processing
stages in a project.

A target can contain tasks, which perform the actual steps in the build process.
These tasks themselves implement dependency checking and execute actions.

Some of the basic Ant tasks are <echo>, which simply prints a message,
<delete>, which deletes files, <mkdir>, which creates directories, <javac>, which
compiles Java source, and <jar> to create an archive of the binaries. The first three
of these tasks look like XML versions of shell commands, which is roughly what they
are, but the latter two demonstrate the power of Ant. They are aware of dependency
rules, so that <javac> will only compile those source files for which the destination
binary is missing or out of date, and <jar> will only create a JAR file if its input files
are newer than the output.

Running Ant is called building; a build either succeeds or fails. Builds fail when
there is an error in the build file, or when a task fails by throwing an exception. In
either case, Ant lists the line of the build file where the error occurred. Rerunning the
build with the -verbose option may provide more information as to why the failure
occurred. Alternatively, the -quiet option runs a build nearly silently.

Now that you have sampled this powerful build tool called Ant, we’ll plant some
seeds for effective use before you get too carried away. We recommend separating
source files from generated output files. This keeps valuable source code safely isolated
from the generated files. Also remember that the Java source must be stored in a direc-
tory hierarchy that matches the package naming hierarchy; the <javac> dependency
checking relies on this layout.

Another best practice we strongly encourage including description attributes
for all targets, and a <description> tag for the project as a whole. These help make
a build file self-documenting, as the -projecthelp option to Ant will list the targets
that have descriptions. By explaining what targets do, you not only provide an expla-
nation for the reader of the build file, you show the user which targets they should call
and what they can do.
46 CHAPTER 2 GETTING STARTED WITH ANT

C H A P T E R 3

Understanding Ant
datatypes and properties
3.1 Preliminaries 48 3.9 FilterChains and FilterReaders 59

3.2 Introducing datatypes and

properties with <javac> 49
3.3 Paths 51
3.4 Filesets 52
3.5 Patternsets 54
3.6 Selectors 56
3.7 Datatype element naming 57
3.8 Filterset 58

3.10 Mappers 61
3.11 Additional Ant datatypes 65
3.12 Properties 66
3.13 Controlling Ant with properties 77
3.14 References 79
3.15 Best practices 82
3.16 Summary 83
Reusability is often a primary goal as developers, and Ant gives us this capability. This
chapter is foundational. Understanding the concepts presented here is crucial to craft-
ing build files that are adaptable, maintainable, reusable, and controllable. This chap-
ter contains a lot of material that can’t be digested in one reading. Read this chapter
completely to understand how Ant operates and about the facilities it provides to
make your build life easier, and then use this chapter later as a reference to pick up
the syntax details when you begin incorporating datatypes and properties into your
build files.
47

3.1 PRELIMINARIES

There are two fundamental concepts at the core of Ant’s capabilities: properties and
datatypes. Let’s start with a gentle overview of them both.

3.1.1 Datatype overview

One of the great advantages Ant has over the alternatives to building and packaging
Java applications is that it understands the primary problem domain, that of building
Java projects. Most steps to build a typical Java project deal with files and paths (such
as classpaths). Ant provides datatypes to handle these two concepts natively. You can
think of an Ant datatype as similar to Java’s own built-in core classes: data that can be
passed around and provided to tasks. The fileset and path datatypes, and several oth-
ers, form the basic building blocks of Ant build files.

Classpath-related headaches are commonplace in Java development. Ant makes
dealing with classpaths much more natural and pleasant than the command-line man-
ual alternative, and provides for the reuse of defined classpaths wherever needed. For
example, compiling source code requires that referenced classes be in the classpath. A
path can be defined once for compilation with <javac>, and reused for execution
(via <java>, covered in chapter 5). One of the consequences of classpaths being spec-
ified inside the build file is that Ant can be invoked without an explicitly defined sys-
tem classpath, making it easy to install Ant and build a project with little or no
environmental configuration.1 Another no less important consequence is that class-
paths can be easily and tightly controlled. This reduces CLASSPATH configuration
problems, both for compilation and execution.

A set of files is a common entity to manipulate for such tasks as compiling, pack-
aging, copying, deleting, and documenting. Defining a fileset of all .java files, for
example, is straightforward:

<fileset dir="src" includes="**/*.java" id="source.fileset"/>

By providing an id attribute, we are defining a reference. This reference name can be
used later wherever a fileset is expected. For example, copying our source code to
another directory using the previously defined source.fileset is

<copy todir="backup">
 <fileset refid="source.fileset"/>
</copy>

3.1.2 Property overview

Ant’s property handling mechanism allows for build file extensibility and reusability
by parameterizing any string-specified item. The control users get over build files can
be dramatically increased with the techniques shown in this chapter. For example,

1 This is somewhat oversimplified, as Ant’s wrapper scripts do build a system classpath before invoking
Ant. It is also, unfortunately, necessary to add dependent JAR files to ANT_HOME/lib to utilize some tasks.
48 CHAPTER 3 UNDERSTANDING ANT DATATYPES AND PROPERTIES

changing a build to use a different version of a third-party library, perhaps for testing
purposes, can be made as trivial as this:

ant -Dstruts.jar=/home/ant/newstruts/struts.jar

In this case, struts.jar represents an Ant property, and in our build file, we refer
to it with special syntax: ${struts.jar}.

A key feature of an Ant property is its immutability; it resists change once set.2 The
interesting and powerful consequence of properties retaining their first set value is that
build files can be coded to load property files in a specific order to allow user-, project-,
or environment-controlled overrides.

3.2 INTRODUCING DATATYPES AND PROPERTIES WITH <JAVAC>

Compiling Java source is the most fundamental task during a build. Ant provides Java
compilation using the <javac> task. The <javac> task provides a façade over Java
source compilation by wrapping many different Java compilers and their associated
switches behind a generalized task definition. A façade is a design pattern that pro-
vides an interface to a system of classes, hiding the implementation details of those
classes behind a common interface. The <javac> task is the common interface to
JDK 1.1 and up, Jikes, and several other Java compilers.

There is much more to Java compilation than just specifying a source directory and
destination directory. A comparison of Sun’s JDK 1.3.1 javac command-line com-
piler switches to Ant’s <javac> task is shown in table 3.1.

2 There are exceptions to this rule, but properties generally are immutable.

Table 3.1 Sun’s JDK 1.3.1 javac compared to Ant’s wrapper <javac> task. Note the similarities between all

of the parameters. Also note Ant’s way of using domain-specific terminology for concepts such as classpath.

This fundamental concept of specifying a build in a higher-level “language” is one of Ant’s greatest benefits

over any other alternative to building Java projects.

Option Name JDK’s javac switch Ant’s <javac> syntax

Debugging info -g (generate all debugging info) debug="yes"

-g:none (generate no debugging info) debug="no"

-g:{lines,vars,source}
(generate only some debugging info)

debug="yes"
debuglevel="lines,vars,source"

Optimize -O optimize="yes"

Generate no warnings -nowarn nowarn="true"

Output messages about
what the compiler is doing

-verbose verbose="true"

Output source locations
where deprecated APIs
are used

-deprecation deprecation="on"

continued on next page
INTRODUCING DATATYPES AND PROPERTIES WITH <JAVAC> 49

NOTE Ant itself is not a Java compiler; it simply contains a façade over compilers
such as Sun’s javac. You need a Java compiler such as the JDK javac
compiler. See appendix A for installation and configuration information in
order to use <javac>.

The <javac> syntax shown in table 3.1 introduces several new attributes, as well as
several new subelements of <javac>. Most of these attributes are Boolean in
nature—debug, optimize, nowarn, verbose, and deprecation. Ant allows
flexibility in how Booleans can be specified with on, true, and yes all representing true,
and any other value mapping to false. The elements <classpath>, <src>,
<bootclasspath>, and <extdirs> introduce one of Ant’s greatest assets—its
path and file handling capability. Each of these elements represents a path.

For comparisons sake, to compile the code for our projects-indexing Ant task using
Sun’s JDK 1.3.1 javac compiler, the following command line is used:

javac -d build\classes
 -classpath lib\lucene-1.2-rc3\lucene-1.2-rc3.jar;
 lib\jtidy-04aug2000r7-dev\build\Tidy.jar;
 C:\AntBook\jakarta-ant-1.5\lib\ant.jar;
 -sourcepath src
 -g
 src\org\example\antbook\ant\lucene*.java

The following Java compilation with Ant, utilizing Ant’s datatypes and properties,
shows the equivalent Ant task declaration in our build file.

Specify where to find refer-
enced class files and libraries

-classpath <path> <classpath>
 <pathelement
 location="lib/some.jar"/>
</classpath>

Specify where to find input
source files

-sourcepath <path> <src path="src"/>

Override location of
bootstrap class files

-bootclasspath <path> <bootclasspath …/>

Override location of installed
extensions

-extdirs <dirs> <extdirs …/>

Specify where to place
generated class files

-d <directory> destdir="build"

Specify character encoding
used by source files

-encoding <encoding> encoding="…"

Generate class files for
specific VM version

-target 1.1 target="1.1"

Enable JDK 1.4 assertions -source 1.4 source="1.4"

Table 3.1 Sun’s JDK 1.3.1 javac compared to Ant’s wrapper <javac> task. Note the similarities between all

of the parameters. Also note Ant’s way of using domain-specific terminology for concepts such as classpath.

This fundamental concept of specifying a build in a higher-level “language” is one of Ant’s greatest benefits

over any other alternative to building Java projects. (continued)

Option Name JDK’s javac switch Ant’s <javac> syntax
50 CHAPTER 3 UNDERSTANDING ANT DATATYPES AND PROPERTIES

<javac destdir="${build.classes.dir}"
 debug="${build.debug}"
 includeAntRuntime="yes"
 srcdir="${src.dir}">
 <classpath refid="compile.classpath"/>
 <include name="**/*.java"/>
 </javac>

In this build file, we have already defined the path compile.classpath as

 <path id="compile.classpath">
 <pathelement location="${lucene.jar}"/>
 <pathelement location="${jtidy.jar}"/>
 </path>

This <javac> example is dramatically more sophisticated than shown in the previ-
ous chapter. Each of these new concepts will be covered in detail in this chapter. Here
is a quick roadmap of what is to follow:

• The "${...}" notation denotes an Ant property, which is simply a mapping from
a name to a string value, in this case referring to the source directory, the desti-
nation directory, what debug mode to use, and JAR locations.

• The subelement <classpath> specifies a path using a reference (indicating
which previously defined path to use). The previously defined <path> indi-
cates which JAR files to use, which here are specified by the use of properties
within the location attribute.

• The srcdir attribute implicitly defines a fileset containing all files in the speci-
fied directory tree, and the nested <include> specifies a patternset used to
constrain the files to only Java source files.

We have set the includeAntRuntime attribute because we are compiling a custom
Ant task; this flag tells the task to add ant.jar to the classpath as well as the rest of
Ant’s classpath.

3.3 PATHS

A path, sometimes called a “path-like structure” in Ant’s documentation, is an
ordered list of path elements. It is analogous to the Java CLASSPATH, for example,
where each element in the list could be a file or directory separated by a delimiter. An
example of a path definition is:

<classpath>
 <pathelement location="lib/some.jar"/>
</classpath>

The location attribute lets you specify a single file or directory. You can also
extend a path with another path, using path instead of location:
PATHS 51

<classpath>
 <pathelement path="build/classes;lib/some.jar"/>
</classpath>

The path specified can have its elements separated by either a semicolon (;) or colon
(:) and directories separated by either forward-slash (/) or back-slash (\),3 regardless of
operating system, making it extremely friendly for cross-platform use. If a path struc-
ture only consists of a single path or location, it can be specified using a shortcut
form as in <classpath location="lib/some.jar"/> or <classpath
path="build/classes;lib/some.jar"/>.

Paths can also include a set of files:

<classpath>
 <fileset dir="lib">
 <include name="*.jar"/>
 </fileset>
</classpath>

It is important to note that Ant guarantees no order within a <fileset>. Each ele-
ment in a path is ordered from the top and down so that all files within a fileset
would be grouped together in a path. However, the order within that fileset is not
guaranteed.

3.4 FILESETS

Implicitly, all build processes will operate on sets of files, either to compile, copy, delete,
or operate on them in any number of other ways. Ant provides the fileset as a native
datatype. It is difficult to imagine any useful build that does not use a fileset. Some tasks
support paths, which implicitly support filesets, while other tasks support filesets
directly—and this distinction should be made clear in each task’s documentation.

A fileset is a set of files rooted from a single directory. By default, a fileset specified
with only a root directory will include all the files in that entire directory tree, includ-
ing files in all subdirectories recursively. For a concrete running example that will dem-
onstrate fileset features as we discuss them, let’s copy files from one directory to
another:

<copy todir="new_web">
 <fileset dir="web"/>
</copy>

In its current form, all files from the web directory are copied to the new_web direc-
tory. This example will evolve into copying only specific files, altering them during
the copy with token replacement, and flattening the directory hierarchy in the
new_web directory.

3 Ant is not at all ashamed to be bi-slashual, and is actually quite proud of it!
52 CHAPTER 3 UNDERSTANDING ANT DATATYPES AND PROPERTIES

3.4.1 Fileset examples

During a build, you often need to build a fileset by including or excluding sets of
files. A few examples of typical filesets follow.

Include all JAR files in the lib directory (nonrecursive, no subdirectories are con-
sidered):

<fileset dir="lib">
 <include name="*.jar"/>
</fileset>

Include all .java files below the test directory that end with the word “Test”
(Chapter 4 will elaborate on this particular usage.):

<fileset dir="test">
 <include="**/*Test.java"/>
</fileset>

All non-JSP pages in the web directory and below:

<fileset dir="web">
 <exclude name="**/*.jsp"/>
</fileset>

By default, includes and excludes are case-sensitive, but this can be disabled by speci-
fying casesensitive="false". The <include> and <exclude> elements are
called patternsets.

3.4.2 Default excludes

In many cases, special or temporary files end up in your source tree from IDEs and
source code management (SCM) systems like CVS. In order to avoid the unpleasant
situation of always specifying exclude clauses in each fileset, exclude patterns are
enabled by default for many of these special patterns. The default exclude patterns are
shown in table 3.2.

Table 3.2 Default exclude patterns, and the typical reason for their existence.

Pattern Typical program that creates and uses these files

**/*~ jEdit and many other editors use this as previous version backup

**/#*# editors

**/.#* editors

**/%*% editors

**/CVS CVS (Concurrent Version System) metadata directory

/CVS/ CVS, metadata files

**/.cvsignore CVS, contains exclusion patterns for CVS to ignore during routine operations

**/SCCS SCCS metadata directory

/SCCS/ SCCS metadata files

**/vssver.scc Microsoft Visual SourceSafe metadata file

**/._* Mac OS/X resource fork files
FILESETS 53

The ** is a pattern to match multiple directories in a hierarchy. (These patterns are
discussed in more detail in the Patternset section.) Many users have been bitten by
the confusion caused when a fileset does not include every file that was intended
because it matches one of these default exclude patterns. The <fileset> element
has a defaultexcludes attribute for turning off this behavior. Simply use
defaultexcludes="no" to turn off the automatic exclusions. Unfortunately,
these default exclude patterns are hard-coded and not extensible, but in most cases
using the default excludes is the desired behavior and rarely becomes an issue.

NOTE Filesets resolve their files when the declaration is encountered during exe-
cution. This is important to know when referring to a previously defined
fileset later, as new files and directories matching the patterns may have ap-
peared between the resolution and reference—these new files would not be
seen by tasks operating upon that fileset.

3.5 PATTERNSETS

Filesets accomplish the include/exclude capability by utilizing another of Ant’s core
datatypes: the patternset. A patternset is a collection of file matching patterns. A pat-
ternset itself does not refer to any actual files until it is nested in a fileset and therefore
rooted at a specific directory. A pattern is a path-matching specification similar to
Unix- and MS-DOS-based file matching. Examples of this have already been shown
with *.jar used to represent all files with the .jar extension in the top directory and
**/*.jsp to represent all files in the entire directory tree with the .jsp extension.
The pattern matching features are as follows:

• * matches zero or more characters.

• ? matches a single character.

• **, used as the name of a directory, represents matching of all directories from
that point down, matching zero or more directories.

• A pattern ending with a trailing / or \ implies a trailing **.

Implicitly a <fileset> holds a patternset, but patternsets can also be specified
independently, allowing for the reuse of patternsets in multiple filesets. (See
section 3.14.) Table 3.3 lists the attributes available on the <patternset> element.

**/.svn Subversion SCM files

/.svn/ Subversion SCM files

Table 3.2 Default exclude patterns, and the typical reason for their existence. (continued)

Pattern Typical program that creates and uses these files
54 CHAPTER 3 UNDERSTANDING ANT DATATYPES AND PROPERTIES

.

Excludes take precedence, so that if a file matched both an include and exclude pat-
tern the file would be excluded. Elements corresponding to these attributes are also
available as child elements of <patternset> for increased flexibility and control.
The elements are <include>, <exclude>, <includesfile>, and <excludes-
file>. Each of these elements has a name attribute. For <include> and
<exclude>, the name attribute specifies the pattern to be included or excluded,
respectively. For the <includesfile> and <excludesfile> elements, the name
attribute represents a file name. Each of these elements has if/unless attributes,
which are covered in the conditional patternset section later in this chapter Here are
some examples of patternsets:

<patternset>
 <include name="*.jsp"/>
</patternset>

The <patternset> element is not always explicitly specified when used within a
fileset. A fileset implicitly contains patternsets. Our running copy example is shown
again using a patternset to include all JSP files:

<copy todir="new_web">
 <fileset dir="web" includes="**/*.jsp"/>
</copy>

This is equivalent to

<copy todir="new_web">
 <fileset dir="web">
 <include name="**/*.jsp"/>
 </fileset>
</copy>

Had we specified just *.jsp, only the JSP files in the web directory would have been
copied, but no files in its subdirectories.

Patternsets may be nested within one another, such as

Table 3.3 Patternset attributes. Including and excluding patterns allows filesets to be defined

precisely to encompass only the files desired. The includesfile and excludesfile adds a level of

indirection and external customization.

Attribute Description

includes Comma-separated list of patterns of files that must be included. All files are
included when omitted.

excludes Comma-separated list of patterns of files that must be excluded. No files (except
default excludes) are excluded when omitted.

includesfile The name of a file; each line of this file is taken to be an include pattern. You can
specify more than one include file by using nested includesfile elements.

excludesfile The name of a file; each line of this file is taken to be an exclude pattern. You can
specify more than one exclude file by using nested excludesfile elements.
PATTERNSETS 55

<patternset>
 <include name="**/*.gif,**/*.jpg"/>
 <patternset>
 <exclude name="**/*.txt,**/*.xml"/>
 </patternset>
</patternset>

This is a contrived example simply demonstrating the nesting capability. This nesting
is unnecessary in this example, but datatype references make the nesting capability
powerful. Patternset nesting is a feature introduced with Ant 1.5. This example is
shown again using references in section 3.14.2

3.6 SELECTORS

Ant 1.5 includes a sophisticated new feature, called selectors, for selecting the files
included in a fileset. The selectors are listed in table 3.4.

These selectors can be combined inside selector containers to provide grouping and
logic. The containers are <and>, <or>, <not>, <none>, and <majority>. Con-
tainers may be nested inside containers, allowing for the construction of complex
selection logic. Rather than detailing every available selector, container, and their
options, we refer you to Ant’s documentation for this information. We will, however,
provide a couple of examples showing how selectors work.

To compare two directory trees and copy the files that exist in one tree but not
another we use a combination of <not> and <present>:

<copy todir="newfiles" includeemptydirs="false">
 <fileset dir="web">
 <not>
 <present targetdir="currentfiles"/>
 </not>
 </fileset>
</copy>

Table 3.4 Ant’s built-in selectors

Selector Description

<filename> Works like a patternset <include> or <exclude> element to match files based
on a pattern.

<depth> Selects files based on a directory depth range.

<size> Selects files that are less, equal, or more than a specified size.

<date> Selects files (and optionally directories) that have been last modified before, after,
or on a specified date.

<present> Selects files if they exist in another directory tree.

<depend> Selects files that are newer than corresponding ones in another directory tree.

<contains> Selects files that contain a string.
56 CHAPTER 3 UNDERSTANDING ANT DATATYPES AND PROPERTIES

The <copy> task is copying only the files from the web directory that do not exist in
the currentfiles directory. Using the <contains> selector, we can choose only the
files that contain a certain string:
<copy todir="currentfiles" includeemptydirs="false">
 <fileset dir="web">
 <contains text="System"/>
 </fileset>
</copy>

Only the files containing the text “System” in the web directory are copied to the cur-
rentfiles directory. By default <contains> is case-sensitive, but can be changed
using casesensitive="no".

All rules must be satisfied before a file is considered part of a fileset, so when using
selectors in conjunction with patternsets, the file must match the include patterns,
must not match any exclude patterns, and the selector rules must test positively.
A <custom> selector enables you to write your own selector logic in a Java class.
(See chapter 20 for more details on writing a custom selector.)

3.7 DATATYPE ELEMENT NAMING

Ant exposes the patternset, path, and fileset datatypes (and some others) in its API so,
for example, task writers have the luxury of implementing tasks to operate on a set of
files very easily. The framework does not force these datatypes to have specific ele-
ment names and tasks can support these datatypes without the need to explicitly
specify <fileset>.

<javac> is an example of a task implicitly encompassing a fileset, with
includes, excludes, includesfile, and excludesfile attributes as well as
nested <include>, <exclude>, <includesfile>, and <excludesfile> ele-
ments. Note that a <fileset> has a mandatory root dir attribute, and in the case
of <javac> this is specified with the srcdir attribute. Confusing? Yes. However,
it was done this way in order to remove ambiguity for build file writers. Would a dir
attribute on <javac> have represented a source directory or a destination directory?

The <javac> task is also an example of a task allowing paths as nested elements.
Different types of paths may be specified (<src>, <classpath>, <bootclass-
path>, and <extdirs>); and they may be combined in any way. For example, you
could use two <src> tags to compile two directory trees of source code into a single
output directory:
<javac destdir="build/classes">
 <src path="src"/>
 <src path="test/junit"/>
</javac>

The <javac> task aggregates all <src> paths for compilation. There are lots of per-
mutations of all the ways in which these fileset and path capabilities can work
together to accomplish choosing precisely the files desired. You will be exposed to
some of these variations throughout this book.
DATATYPE ELEMENT NAMING 57

3.8 FILTERSET

During the build process, it is common to encounter situations that require simple
text substitutions in files based on dynamic build information or state. The two pri-
mary tasks that support filterset functionality are <copy> and <move>. Two situa-
tions typically take advantage of filtered copy:

• Putting the current date or version information into files bundled with a build,
such as documentation.

• Conditionally “commenting out” pieces of configuration files.

A filter operation replaces tokenized text in source files during either a <move> or
<copy> to a destination file. In a filtered <copy>, the source file is not altered. A
token is defined as text surrounded by beginning and ending token delimiters. These
delimiters default to the at-sign character (@), but can be altered using the <filter-
set> begintoken and endtoken attributes.

3.8.1 Inserting date stamps in files at build-time

Returning to our running copy example, we will now enhance the copy to substitute
a date and time stamp tokens with the actual build date and time into the resultant
files, leaving the original files unaltered. An example JSP file including the tokens is:

<html>
 <head><title>Ant Book</title></head>
 <body>
 System build time: @DATE@ @ @TIME@
 </body>
</html>

Here @DATE@ and @TIME@ will be replaced during the copy:

 <tstamp/>
 <copy todir="new_web" overwrite="true">
 <fileset dir="web" includes="**/*.jsp"/>
 <filterset>
 <filter token="DATE" value="${DSTAMP}"/>
 <filter token="TIME" value="${TSTAMP}"/>
 </filterset>
 </copy>

There are a few new features introduced here. The <tstamp> task creates the
DSTAMP and TSTAMP Ant properties. Ant properties get covered extensively in sec-
tion 3.12, but, for our purposes, the values of ${DSTAMP} and ${TSTAMP} contain
the date and time stamps respectively. The <copy> task has dependency checking so
that it does not copy files if the source file’s modification timestamp is earlier than the
destination file’s. Because our filtered copy should always replace the destination files,
we disable the dependency checking with overwrite="true". Applying this fil-
tered copy on the templated JSP file shown produces the following:
58 CHAPTER 3 UNDERSTANDING ANT DATATYPES AND PROPERTIES

<html>
 <head><title>Ant Book</title></head>
 <body>
 System build time: 20020207 @ 1501
 </body>
</html>

NOTE Do not try to filter binary files as they may be corrupted in the process.

A <filter> task creates a globally defined filterset. Because this filter applies on all
<copy> or <move> tasks that are then executed, it can be dangerous, unexpectedly
transforming binary files. We recommend, therefore, that filtered <copy> or <move>
tasks individually specify their own filterset. If a filterset needs to be reused for several
instances within a build, it can be defined globally using the <filterset id="glo-
bal.filterset"> syntax and referenced where needed. (See section 3.14.)

3.9 FILTERCHAINS AND FILTERREADERS

Processing text files has never been so easy with Ant until the introduction, in version
1.5, of FilterChains and FilterReaders. A FilterReader is a simple filter of text input
that can remove or modify the text before it is output. A FilterChain is an ordered
group of one or more FilterReaders. A FilterChain is analogous to piping output from
one command to another in Unix, with the output of one command being the input
to the next, and so on.

There are a number built-in FilterReaders, as shown in table 3.5.

Four of Ant’s tasks support FilterChains: <copy>, <move>, <loadfile>, and
<loadproperties>. Stripping comments out of a Java properties file, perhaps to
ship without comments and keep comments in developer files, is a simply matter of
using the <striplinecomments> FilterReader within a <copy>.

Table 3.5 Ant’s built-in FilterReaders

FilterReader Description

<classconstants>. Generates “name=value" lines for basic and String datatype constants
found in a class file.

<expandproperties> Replaces Ant property values. (See section 3.12 for property discussion.)

<headfilter> Extracts the first specified number of lines.

<linecontains> Only lines containing the specified string are passed through.

<linecontainsregexp> Only lines matching specified regular expression(s) are passed through.

<prefixlines> All lines have a prefix prepended.

<replacetokens> Performs token substitution, just as filtersets do.

<stripjavacomments> Removes Java style comments.

<striplinebreaks> Removes line breaks, defaulting to “\r" and “\n" but characters
stripped can be specified.

<striplinecomments> Removes lines beginning with a specified set of characters.

<tabstospaces> Replaces tabs with a specified number of spaces.

<tailfilter> Extracts the last specified number of lines.
FILTERCHAINS AND FILTERREADERS 59

Our properties file contains

<Internal developer info>
config.parameter=47

We copy our original properties file to our build directory.

<copy file="config.properties" todir="build">
 <filterchain>
 <striplinecomments>
 <comment value="#"/>
 </striplinecomments>
 </filterchain>
</copy>

The resultant build/config.properties file will not have the comment line, only con-
fig.parameter=47.

Pulling class constants from Java class files is an even more spectacular display of
the power of FilterReaders. Using the <loadproperties> task, which is getting a
bit ahead of ourselves because Ant properties are not introduced until section 3.10, we
are able to pull values from Java code into Ant as parameters. Take an interface that
defines a constant:

package org.example.antbook;

public interface Constants {
 public static final String VERSION ="1.7";
}

Our build compiles the code into the build directory. Using the <classcon-
stants> and <prefixlines> FilterReaders in a <loadproperties> task, we
can now give Ant access to the VERSION constant.

<loadproperties srcfile="build/org/example/antbook/Constants.class">
 <filterchain>
 <classconstants/>
 <prefixlines prefix="Constants."/>
 </filterchain>
</loadproperties>

<echo>Constants.VERSION = ${Constants.VERSION}</echo>

This results in the following output:

[echo] Constants.VERSION = 1.7

NOTE <classcontants> operates on .class files rather than .java files. This
FilterReader uses the Byte Code Engineering Library (BCEL) API to di-
rectly access the byte code information rather than parsing Java source
code. The Jakarta BCEL JAR is required in ANT_HOME/lib for this Fil-
terReader to work.
60 CHAPTER 3 UNDERSTANDING ANT DATATYPES AND PROPERTIES

This is only scratching the surface of the FilterChain/FilterReader capability. It is
even possible to use a generic <filterreader> FilterReader to provide your own
Java implementation. It is beyond the scope of this chapter to provide extensive detail
on all of the FilterReaders and their options. See chapter 20 for details on writing cus-
tom FilterReaders. The capabilities that FilterReaders provide are astounding! Pulling
actual constants from our Java code to parameterize our build process gives us the
flexibility to store values where it makes the most sense, either as part of the build
process or within our source code.

3.10 MAPPERS

Ant’s mapper datatype is used to match sets of files with one another. There are sev-
eral built-in mapper types as shown in table 3.6. Mappers are used by <uptodate>,
<move>, <copy>, and <apply> and several other tasks. Depending on the mapper
type, to and from attributes may be required.

3.10.1 Identity mapper

The target file name maps exactly to the source file name. The to and from
attributes are not used by the identity mapper.

<mapper type="identity"/>

By default, the <copy> task uses the identity mapper. The following two <copy>
tasks have the same effect:

<copy todir="new_web">
 <fileset dir="web" includes="**/*.jsp"/>
 <mapper type="identity"/>
</copy>

<copy todir="new_web">
 <fileset dir="web" includes="**/*.jsp"/>
</copy>

Table 3.6 Mapper types. Mappers are used to flatten a directory tree during a <copy>, or check

all files mapped into an archive against the archives modification date.

Type Description

identity The target is identical to the source file name.

flatten Source and target file names are identical, with the target file name having all leading
directory path stripped.

merge All source files are mapped to a single target file specified in the to attribute.

glob A single asterisk (*) used in the from pattern is substituted into the to pattern. Only
files matching the from pattern are considered.

package A subclass of the glob mapper, it functions similarly except replaces path separators with
the dot character (.) so that a file with the hierarchical package directory structure can be
mapped to a flattened directory structure retaining the package structure in the file name.

regexp Both the from and to patterns define regular expressions. Only files matching the
from expression are considered.
MAPPERS 61

3.10.2 Flatten mapper

The flatten mapper removes all directory path information from the source file
name to map to the target file name. The to and from attributes are not used. The
flatten mapper is useful in copying files from a nested directory structure into a
single directory eliminating the hierarchy.

To copy all JSP pages from the web directory hierarchy into a single flat directory,
the flatten mapper is used in this manner:

<copy todir="new_web">
 <fileset dir="web" includes="**/*.jsp"/>
 <mapper type="flatten"/>
</copy>

Note that if multiple files have the same name in the source fileset, regardless of direc-
tory, only one of them will make it to the destination directory; it is unspecified
which one it will be.

3.10.3 Merge mapper

The target file name remains fixed to the to attribute specified. All source file names
map to the single target.

<mapper type="merge" to="archive.zip"/>

The merge mapper is used with <uptodate> in cases where many files map to a
single destination. For example, many files are bundled together into a single Zip file.
A property can be set if the Zip contains all the latest sources:

<uptodate property="zip.notRequired">
 <srcfiles dir="src" includes="**/*.java"/>
 <mapper type="merge" to="${dist.dir}/src.zip"/>
</uptodate>

The <uptodate> task is covered in section 3.12.4.
The merge mapper in <copy> is not extremely useful since all files get copied to

the same file, with the last unpredictable file becoming the sole new file. There is one
interesting case, however, that is worthy of mention. If, for example, you have a direc-
tory containing a single file whose name is not precisely known (perhaps with a time-
stamp suffix), you can copy this file to a known file name using the merge mapper:

<copy todir="output">
 <fileset dir="data"/>
 <mapper type="merge" to="data.dat"/>
</copy>

Assume that there is a single file in the data directory called data_20020202.dat, yet
this file name is dynamically generated. The use of the merge mapper will copy it to
the output directory with the name data.dat. This particular technique, remember, is
only useful with filesets containing a single file.
62 CHAPTER 3 UNDERSTANDING ANT DATATYPES AND PROPERTIES

3.10.4 Glob mapper

The glob mapper uses both the to and from attributes, each allowing a single aster-
isk (*) pattern. The text matched by the pattern in the from attribute is substituted
into the to pattern.

<mapper type="glob" from="*.jsp" to="*.jsp.bak"/>

The glob mapper is useful for making backup copies of files by copying them to new
names as shown in the example. Files not matching the from pattern are ignored.

<copy todir="new_web">
 <fileset dir="web" includes="**/*.jsp"/>
 <mapper type="glob" from="*.jsp" to="*.jsp.bak" />
</copy>

All JSP pages are copied from the web directory to the new_web directory with the
directory hierarchy preserved, but each source .jsp is renamed with the .jsp.bak exten-
sion in the new_web directory.

3.10.5 Regexp mapper

The king of all mappers, but overkill for most cases, is regexp. The from attribute
specifies a regular expression. Only source files matching the from pattern are con-
sidered. The target file name is built using the to pattern with pattern substitutions
from the from pattern, including \0 for the full matched source file name and \1
through \9 for patterns matched with enclosing parenthesis in the from pattern.

In order to use the regexp mapper, a regular expression library is needed. The Ant
documentation refers to several implementations. We recommend Jakarta ORO,
although JDK 1.4 comes with an implementation as well and is used by default if
present. Simply drop the JAR file for the regular expression implementation into
ANT_HOME/lib to have it automatically recognized by Ant. Here’s a simple example
having the same effect as the glob mapper example to map all .java files to
.java.bak files:

<mapper type="regexp" from="^(.*)\.java$" to="\1.java.bak"/>

The <copy> example shown for the glob mapper can be replicated using the
regexp mapper:

<copy todir="new_web">
 <fileset dir="web" includes="**/*.jsp"/>
 <mapper type="regexp" from="^(.*)\.jsp$" to="\1.jsp.bak" />
</copy>

Quite sophisticated mappings can occur with the regexp mapper, such as removing
a middle piece of a directory hierarchy and other wacky tricks. This can be just the
technique for complex situations, but think twice before using this mapper, as it usu-
ally means you’re making life much too complicated and doing unnecessarily com-
plex operations. Neither of the authors have found a need to use it thus far in our
extensive Ant usage.
MAPPERS 63

3.10.6 Package mapper

The package mapper is a specialized form of the glob mapper that transforms the
matching piece of the from pattern into a dotted package string in the to pattern.
The transformation simply replaces each directory separator (forward or back slashes)
with a dot (.). The result is a flattening of the directory hierarchy for scenarios where
Java files need to be matched against data files that have the fully qualified class name
embedded in the file name. More specifically, this mapper was developed for use with
the data files generated by the <junit> task.

The data files written out from running a test case with <junit> are written to
a single directory with the filenames TEST-<fully qualified classname>.xml. In order
to determine if the test case data file is no older than its corresponding Java class file,
the <uptodate> task is used with the package mapper.

<property name="results.dir" location="test_results"/>
<uptodate property="tests.uptodate">
 <srcfiles dir="src" includes="**/*.java"/>
 <mapper type="package" from="*.java" to="${results.dir}/TEST-*.xml" />
</uptodate>

One of the tricky aspects of using the package mapper with <uptodate> is that
the to path is relative to the <srcfiles> dir. This is resolved by ensuring that the
<mapper> to attribute contains an absolute path. The absolute path can be obtained
by using the location variant of <property>, which is covered in section 3.12.1.
When using the <copy> task, the to mapper pattern is relative to the <copy>
todir attribute, so converting to an absolute path is not necessary. If this example is
a bit too esoteric, don’t worry, as we will explain the <uptodate> in section 3.12.4,
and the rationale for this particular mapping in chapter 4.

A simpler yet perhaps marginally useful example is creating a flat directory tree of
your source code:

<copy todir="flat_source">
 <fileset dir="src" includes="**/*.java"/>
 <mapper type="package" from="*.java" to="*.java" />
</copy>

For example, the file src/org/example/antbook/ant/lucene/Html-
DocumentTest.java is copied to output/org.example.antbook.ant.lucene.
HtmlDocumentTest.java. The resulting file, of course, will not compile properly
because <javac> expects classes to be in a directory hierarchy matching the package
name, but it will present a different view of all of your source code.
64 CHAPTER 3 UNDERSTANDING ANT DATATYPES AND PROPERTIES

3.11 ADDITIONAL ANT DATATYPES

We have covered the Ant datatypes that are frequently used by Ant tasks, but there are
several other datatypes that are used by a smaller number of tasks. These datatypes are
no less important, of course, when you need them for your build. Rather than pro-
vide detailed discussion of these types here, we show them with the appropriate tasks
elsewhere in this book.

3.11.1 ZipFileset

Building an archive that contains the contents of other archive files can be accom-
plished using the <zipfileset> datatype. A <zipfileset> not only allows put-
ting the contents of one archive inside another, it also provides the capability to prefix
an archives contents within another. For example, when building the WAR file for
our search engine application, we incorporate the Javadoc HTML in an api subdirec-
tory and our documentation under the help directory. These were not the directory
names used during our build process, yet the WAR file will have these names in its
structure.

<war destfile="dist/antbook.war" webxml="web.xml">
 <classes dir="${build.classes.dir}"/>

 .
 .
 .

 <fileset dir="web"/>

 <zipfileset dir="${javadoc.dir}" prefix="api" />
 <zipfileset dir="${build.dir}/webdocs" prefix="help"/>
</war>

The tasks that support the ZipFileset datatype are <zip>, <jar>, <war>, and <ear>.

3.11.2 Dirset

The fileset datatype incorporates both files and directories, but some tasks prefer to
only operate on directories. The <dirset> datatype is used in only the <javadoc>
and <pathconvert> tasks. The path datatype also supports a nested <dirset>,
which allows for easier construction of classpath elements for multiple directories.

3.11.3 Filelist

Recall that a fileset is an unordered collection of files and directories. When concate-
nating files or doing other operations that require a specific order, the filelist datatype
comes in handy. The filelist datatype is supported in the <concat>, <dependset>,
and <pathconvert> tasks, as well as a nested element within the <path> datatype.
ADDITIONAL ANT DATATYPES 65

3.11.4 ClassFileset

The ClassFileset datatype can be used by reference wherever a fileset is used. It pro-
vides only the .class files that are explicitly referenced by a set of specified classes. This
can be important when constructing a minimal archive, for example, and ship only
the classes used. It is important to note, however, that classes referenced via reflection
will not be considered dependencies, and therefore overlooked by ClassFileset.

3.12 PROPERTIES

Perhaps the most important concept to fully understand in Ant is its notion of prop-
erties. Properties are loosely analogous to variables in that they are mappings between
names and values and, not coincidentally, are very similar conceptually to java.
util.Properties. Ant provides the built-in properties listed in table 3.7.

Ant properties are typically, depending on the context of their use, denoted by
${property.name} within the build file. To examine the properties provided in
table 3.7, we can use the <echo> task:

<target name="echo">
 <echo message="ant.file = ${ant.file}"/>
 <echo message="ant.home = ${ant.home}"/>
 <echo message="ant.java.version = ${ant.java.version}"/>
 <echo message="ant.version = ${ant.version}"/>
 <echo message="basedir = ${basedir}"/>
</target>

This generates output similar to this:

echo:
 [echo] ant.file = C:\AntBook\Sections\Learning\datatypes\properties.xml
 [echo] ant.home = c:\AntBook\jakarta-ant-1.5Beta1
 [echo] ant.java.version = 1.3
 [echo] ant.version = Apache Ant version 1.5Beta1 compiled on April 30 2002
 [echo] basedir = C:\AntBook\Sections\Learning\datatypes

Table 3.7 Built-in properties

Name Definition

ant.file The absolute path of the build file.

ant.home The path to executing version of Ant’s root directory.

ant.java.version The JVM version Ant detected; currently it can hold the values 1.1, 1.2,
1.3, and 1.4.

ant.project.name The name of the project that is currently executing; it is set in the name
attribute of <project>.

ant.version The version of Ant.

basedir The absolute path of the project's basedir (as set with the basedir
attribute of <project>).
66 CHAPTER 3 UNDERSTANDING ANT DATATYPES AND PROPERTIES

This example was run with the -f command-line option to specify a different build
file name as shown in ant.file. By the time of publication, many of us will proba-
bly see 1.4 for ant.java.version. The latest release version of Ant at the time of
writing was version 1.5 Beta, but it will be an official release by the time of publica-
tion. The basedir property defaults to the path of the current build file, and can be
changed by specifying basedir on the <project> element or controlled externally
using property overrides as discussed shortly.

Implicitly, all JVM system properties are provided as Ant properties, allowing valu-
able information such as the users home directory path and the current username to
be utilized as desired. The JVM system properties will vary from platform-to-platform,
but there are many that you can rely on, for example

<echo message="user.name = ${user.name}"/>
<echo message="user.home = ${user.home}"/>
<echo message="java.home = ${java.home}"/>

Here are sample results from running this code on a Windows machine:

[echo] user.name = erik

[echo] user.home = C:\Documents and Settings\erik
[echo] java.home = c:\jdk1.3.1\jre

3.12.1 Setting properties with the <property> task

The <property> task allows build files to define their own sets of custom proper-
ties. The most common variants of creating properties are

• Name/value attributes

• Load a set of properties from a properties file

• Load environment variables

Setting and using a simple property

A typical development-versus-production build difference is in the enabling or dis-
abling of debug mode on compilation. Since we want a single build file with a single
<javac> task, we use a property to parameterize it. We define a property named
build.debug and set its value to on (the value that <javac> uses on its debug
attribute).

<property name="build.debug" value="on"/>

Enhancing the <javac> example from the previous chapter, we now have this:

<javac srcdir="src" debug="${build.debug}"/>

The obvious next step is to vary that property value; to begin, let’s load properties
from a file.
PROPERTIES 67

Loading properties from a properties file

A useful method to provide configuration and settings information to a build process
is to load all name/value pairs from a properties file that creates internal Ant proper-
ties for each one. To demonstrate: we create a file named build.properties in
the root directory of our project, where our build file lives. This file has the following
contents:

build.debug=off

To load it we use one of the variants of the <property> task:

<property file="build.properties"/>

Property values in the properties file may also contain property references. For exam-
ple, consider a properties file containing these lines:

build.dir=build
output.dir=${build.dir}/output

When loaded, output.dir will have the value build/output. Forward-referenc-
ing property values may be used in a single properties file as well; if the previous lines
had been in opposite order, the same results would be obtained. Circular definitions
will cause a build failure.

NOTE Properties that refer to relative paths are best set using the location
variant. See “Fixing properties to absolute path locations.” Properties set
from a properties file are set as a simple values.

Since properties are immutable, you may want to load properties from a file and pre-
fix their name. In the last example, had we used prefix="temp", the properties
created would have been temp.build.dir and temp.output.dir. This is a nice
trick to load two property files that may have the same named property, yet ensure
that you have access to both values.

Overriding a property

First, a little pop-quiz—examine the following code lines and guess their output
given the properties file just defined:

<target name="override">
 <property file="build.properties"/>
 <property name="build.debug" value="on"/>
 <echo message="debugging is turned ${build.debug}"/>
</target>

As you may have guessed, we would not have asked this question had it been com-
pletely straightforward. The result is

[echo] debugging is turned off
68 CHAPTER 3 UNDERSTANDING ANT DATATYPES AND PROPERTIES

A property’s value does not change once set: properties are immutable. Let’s explore
what this mechanism gives us in terms of control and flexibility. What if our proper-
ties file had not contained the line defining build.debug, or what if
build.properties had not existed? The <property file="..."> task simply
does nothing but warn in verbose mode when the specified property file does not
exist. Only properties listed in an existing properties file are loaded, so in the case
where build.debug is not present in the properties file, its value would not be set
until it is defined in the build file itself, in the line <property name="build.
debug" value="on"/>.

NOTE Once a property has been set, either in the build file or on the command
line, it cannot be changed. Whoever sets a property first fixes its value. This
is the direct opposite of variables in a program, where the last assignment
becomes its value.

You have just witnessed the mechanism that will bring your build files to life: allow-
ing them to adapt to user preferences, environment conditions, provide mapping
indirections, and scaling to large multi-build-file processes.

NOTE There are ways to break the immutability of properties using <ant>,
<antcall>, <available>, and the -D command-line option. Most of
the reasons for these exceptions are logically legitimate, yet certainly an area
of confusion and concern.

Loading environment variables

Another important variant of <property> allows environment variables to be
pulled into Ant properties. In order to avoid inadvertent collision with existing Ant
properties (in other words: what would happen if an environment variable was
named build.debug?), environment variables are loaded with a name prefix. Con-
sider the following example:

<property environment="env"/>

All environment variables are loaded into Ant’s internal properties with the prefix
env. (including the trailing period). This gives us properties like env.
CATALINA_HOME, which we can then use in tasks related to deployment, for exam-
ple. Although you can use any prefix for environment variables, it is customary to use
env. as the prefix. For consistency, we shall use this convention in the book and
build files, and we recommend that readers do the same.

Fixing properties to absolute path locations

One of the key uses of properties is to abstract file system paths so that tasks deal only
with the property names, and the concrete definition is defined, or more likely built
up, elsewhere. To craft build files without absolute paths is easy; simply define paths
relative from the base directory of the project. Relative paths work great in most cases,
PROPERTIES 69

but can cause confusion and problems when passed to a subbuild or handed to a task
or another executable that is expecting an absolute path. The <property> task has
yet another variation that sets a property to the absolute path of the path specified:

<property name="build.dir" location="build"/>

The build.dir property is not simply set to the string build. The current project
base directory (typically the directory where build.xml resides) is used as the root for
relative references and the full path resolved to /home/erik/AntBook/Sections/
Learning/datatypes/build. We recommend that you use direct references to
files or directories by using the location feature to lock logically relative paths to
absolute paths.

A useful analogy for defining properties for directories is the Unix concept of
mount points. Logically the root directory / has several underlying top-level directo-
ries, yet /usr or /home do not have to physically reside under /. Setting properties to
mirror this concept allows, for example, the distribution directory of a build to be
lifted up and placed elsewhere by simply overriding a single property value. Building
directory paths up from root directories (i.e., the “mount” points) allows for this capa-
bility. The crafting of properties in this hierarchical and loosely bound way is crucial
in allowing a build to be easily integrated into other build files.

3.12.2 How the <property> task is different

The <property> task is special in that it has the special right to function outside of
a <target>: it is allowed to stand alone directly as a child element of <project>.
All tasks that appear outside of targets are evaluated before any target is executed. We
recommend that you to put all such “nontarget declarations” of <project> before
any target declarations, to avoid confusion.

3.12.3 Checking for the availability of resources: <available>

The <available> task will set a property value if a specified resource exists. It has
the capability to check for

• Existence of a class in a classpath

• Existence of a file or directory

• Existence of a JVM system resource

Checking for the existence of a class in a classpath

It can be quite useful to craft your build file to adapt to the existence or nonexistence
of a particular class in a classpath. For example, Ant can omit steps from a build if a
dependency is missing and still allow the build to proceed successfully. Conditional
targets are discussed in section 3.13.1; first let’s find out how to set a property condi-
tionally. The variant of <available> to check a classpath for a class is
70 CHAPTER 3 UNDERSTANDING ANT DATATYPES AND PROPERTIES

<available property="xdoclet.present"
 classname="xdoclet.doc.DocumentDocletTask"
 classpath="${xdoclet.jar}"/>
<echo message="xdoclet.present = ${xdoclet.present}"/>

If the class xdoclet.doc.DocumentDocletTask is found, xdoclet.present is
set to true. If it is not present in the classpath, the property is not touched and
hence has no value whatsoever. The output will either be xdoclet.present =
true or xdoclet.present = ${xdoclet.present}. Optionally, the value set to
the property in the true case can be specified using the value attribute of <avail-
able>, with true being the default value.

NOTE An undefined property will not be expanded, and the string ${<prop-
erty.name>} will be used literally.

At the time of this writing, several holes in Ant’s property immutability rule were
being patched. In the spirit of backwards compatibility the hole in <available> is
being left—but deprecated—so that build files relying on this undocumented “fea-
ture” do not break. While we would rather not have to write about this anomaly, it
deserves mention so that it is not stumbled upon inadvertently, causing unexpected
behavior. Here is an example:

<property name="xdoclet.present" value="maybe"/>
<available property="xdoclet.present"
 classname="xdoclet.doc.DocumentDocletTask"
 classpath="${xdoclet.jar}"/>
<echo message="xdoclet.present = ${xdoclet.present}"/>

If xdoclet.present were truly immutable once set, then the value displayed
should be maybe after executing <available>. If XDoclet is present, the output is:

[available] DEPRECATED - <available> used to overide an existing property.
 Build writer should not reuse the same property name for different values.
 [echo] xdoclet.present = true

Had XDoclet not been present the warning would not have appeared and
xdoclet.present = maybe would have displayed. The deprecation warning is
saying that the <available> task is breaking the rules by using a deprecated
method in Ant’s API, but also saying that we, as build file writers, should carefully use
unique property names for each situation rather than attempting to reuse them for
other purposes. We recommend you avoid writing build files to take advantage of this
property immutability loophole, as one day it may be closed off completely.

Checking for the existence of a file or directory

A property can be set, using a variant of <available>, if a file or directory exists.
This is useful in allowing the build process to adapt, for example, to existence of a dif-
ferent Java compiler as you will see in chapter 4. An example of its usage is:
PROPERTIES 71

<available property="lib.properties.present"
 file="${lib.dir}/lib.properties"
 type="file"/>

The file attribute specifies the file or directory to locate. The type attribute deter-
mines whether the file should be a file or directory specifically. The default
behavior, without a type attribute, is to indicate success if the file exists as either a
file or directory.

Checking for the existence of a JVM system resource

The final availability check is for a resource, which is any file that can be found on the
classpath. This is usually used to check for the availability of configuration files:

<available property="resource.exists" resource="org/example/etc/struts.xml" />

3.12.4 Saving time by skipping unnecessary steps: <uptodate>

To determine if target files are up-to-date with source files, Ant provides the <upto-
date> task. Most tasks (such as <javac>) deal with source/target out-of-date
checking internally, but there are cases where it is necessary to do this yourself. For
example, the JUnit test (see chapter 4 for in-depth coverage) task does no dependency
checking and simply runs all tests regardless of whether or not any .class files were
modified. Skipping the unit test target if all the test related files are up-to-date dra-
matically improves build time without sacrificing integrated testing:

<uptodate property="tests.unnecessary">
 <srcfiles dir="src" includes="**/*.java"/>
 <mapper type="glob" from="*.java" to="${build.dir}/classes/*.class" />
</uptodate>

Deferring the discussion of the <mapper> element for just a moment, this example
is setting the property tests.unnecessary to true if each module from the
source tree is not newer than its corresponding .class file. (This default is changed by
specifying a value attribute.) This example is showing a one-to-one mapping from
source file to target file, also ignoring any non-.java files in the source tree. Other sce-
narios take advantage of many-to-one mappings or other more complex mappings
available with the mappers. Combining the use of <uptodate> and conditional tar-
gets is a useful technique to allow your build file to handle some dependency check-
ing that tasks do not.

3.12.5 Testing conditions with <condition>

For Ant old-timers, the introduction of <condition> in Ant 1.4 was a real treat—pre-
viously build files that required checking of multiple properties required several dummy
targets to accomplish some simple property-based logic. The <condition> task pro-
vides property setting capability using logical operators <and>, <or>, and <not>.

Within the logical elements, the Boolean conditions shown in table 3.8 are available.
72 CHAPTER 3 UNDERSTANDING ANT DATATYPES AND PROPERTIES

Some examples of complex conditions will be shown in chapter 4, as tests for the
availability of classes and programs are made. Here is the partial example of <condi-
tion> usage from our sample application:

<condition property="tests.unnecessary">
 <and>
 <uptodate>
 <srcfiles dir="src" includes="**/*.java"/>
 <mapper type="glob" from="*.java" to="${build.dir}/classes/*.class" />
 </uptodate>
 <uptodate>
 <srcfiles dir="test" includes="**/*.java"/>
 <mapper type="glob" from="*.java" to="${test.dir}/*.class" />
 </uptodate>
 <uptodate>
 <srcfiles dir="test" excludes="**/*.java"/>
 <mapper type="glob" from="*" to="${test.dir}/*" />
 </uptodate>
 </and>
</condition>

It sets the property tests.unnecessary to true if all files relating to testing are
up-to-date. The .class files of both the production code (src) and testing code
(test) are checked, as well as non-.java files. Chapter 4 will explain the use of the
non-.java files used during testing. Using a <condition> to check for available
dependencies and failing the build if necessary components are not present is also
another useful technique using <condition>. Refer to Ant’s documentation for
syntax details of the conditions.

Table 3.8 Conditions available within <condition>

Element Definition

<available> Exactly the same semantics and syntax as the <available> task, except
property and value are ignored. Evaluates to true if the resource is available.

<uptodate> Exactly the same semantics and syntax as the <uptodate> task, except prop-
erty and value are ignored. Evaluates to true if file(s) are up-to-date.

<os> Evaluates to true if the O/S family (mac, windows, dos, netware, os/2, or
unix), name, architecture, and version match.

<equals> Evaluates to true if both properties have the same value.

<isset> Evaluates to true if the property exists.

<checksum> Uses the same syntax as the <checksum> task, evaluating to true if the
checksum of the file(s) match.

<http> Checks for a status code < 500 from a URL.

<socket> Checks for a socket listener on a specified port and host.

<filesmatch> Byte-for-byte file comparison between two files.

<contains> Tests whether one string contains another, optionally case-sensitive.

<istrue> True if the value is on, true, or yes.

<isfalse> The negation of <istrue>.
PROPERTIES 73

3.12.6 Setting properties from the command-line

Controlling the build process can be accomplished on a per-build basis by setting an
Ant property from the command line. For example, if you want to use a new library
version for a single build to ensure that it passes all the test cases, or if you want to
supply a password to a deploy process. There are two command-line switches used to
set properties: -D and -propertyfile.

A property set from the command line cannot be overridden, even using <avail-
able> or <condition>. There are two classes of properties, user properties and stan-
dard properties. User properties consist of system properties and command-line
defined properties, as well as properties overridden using <ant>. Properties defined
on the command line get set as user properties and are truly immutable, ignoring even
the immutability exceptions noted earlier.

Building with a different library version

In our project, we use Ant properties to represent the absolute paths to all the JAR
files we use. These absolute paths are determined by using something like

<property name="${lucene.jar}" location="lib/lucene/lucene.jar"/>4

We use ${lucene.jar} wherever needed for classpath definitions and incorporat-
ing into a WAR file. When the Lucene development team announced a new version
release, as occurred more than once while writing this book, we upgraded to it to stay
as up-to-date as possible. Before involving the entire development team on our
project (the pair of us!) by converting the build to use the new version, a single devel-
oper ensured the builds and test cases ran successfully. Our build files were designed
to be adaptable and controllable by using properties for JAR file location indirection.
Running a full build/test/deploy with a new local library is as simple as running the
following from the command line:

ant -Dlucene.jar=c:/dev/lucene-dev.jar clean dist

Properties defined with -D are defined before any processing of the build file occurs.
The -propertyfile switch defines all properties from the specified property file
exactly as if each were individually specified with -D. Properties specified from -D take
precedence over -propertyfile-defined ones to allow for individual override con-
trol. For example, suppose lucene.jar had been defined in newlibraries.properties:

lucene.jar=lib/lucene/lucene-recent.jar

If the following command line is executed

ant -propertyfile newlibraries.properties -Dlucene.jar=c:/dev/lucene-dev.jar

the value from the -D switch would be used, in this case lucene.jar would have
the value c:/dev/lucene-dev.jar.

4 There is actually a bit more indirection than this in our build files, as explained in chapter 8.
74 CHAPTER 3 UNDERSTANDING ANT DATATYPES AND PROPERTIES

3.12.7 Creating a build timestamp with <tstamp>

The <tstamp> task in its simplest form

<tstamp/>

sets three properties automatically based on the current date/time. These properties
are listed in table 3.9.

The <tstamp/> task also allows any number of nested <format> elements, which
define properties given a format specification. For example, to create a property with
only the day of the week, use <format property="..." pattern="...">:

<tstamp>
 <format property="dayofweek" pattern="EEEE"/>
</tstamp>
<echo message="It is ${dayofweek}"/>

This results in the following:

[echo] It is Monday

The pattern is specified using the format described in Javadoc for
java.text.SimpleDateFormat. <format> also supports locale and offsets—
refer to the task reference for these specifics.

Creating ISO 8601 timestamp

Creating a timestamp in a recognized standard format is important. We use it in our
application to embed into a properties file. This build-time–generated properties file
is embedded into our distributables such as the web applications WAR file. The
<tstamp> task can create an ISO timestamp:

<tstamp>
 <format property="buildtime"
 pattern="yyyy-MM-dd'T'HH:mm:ss" />
</tstamp>
<echo message="buildtime = ${buildtime}"/>

This produces output similar to

 [echo] buildtime = 2002-02-09T17:17:21

Table 3.9 Properties set by the <tstamp/> task

Property Value format (based on current date/time)

DSTAMP “yyyymmdd”

TSTAMP “hhmm”

TODAY “month day year”
PROPERTIES 75

Prefixing timestamps

The <tstamp> task supports an optional prefix attribute to allow setting unique
property names and avoid clashing with already-set property names. The immutabil-
ity rules of Ant properties prevent overwriting the value of an already-set property,
including the ones <tstamp> sets.

<tstamp prefix="start"/>

This sets three properties—start.DSTAMP, start.TSTAMP, and start.TODAY—
with the same formats as the default <tstamp> usage.

3.12.8 Loading properties from an XML file

Ant 1.5 includes a handy new task that pulls in properties from an XML file. Hierar-
chy of the XML file is preserved using dotted property notation. Here is an example
of a build scenario in which our build is designed to handle customization for cus-
tomers. Each customer has a corresponding XML file with specific information, such
as a name and possibly some specific implementation details like a custom class name
used to override default behavior. For example, Acme, Inc.’s definition file, acme.xml, is

<customer name="Acme, Inc.">
 <settings>
 <impl>org.example.antbook.acme.SomeClass</impl>
 </settings>
</customer>

The <xmlproperty> traverses the XML file, creating properties for element and
attribute data as it goes. Our build file can use this information easily:

<project name="xmlprops" default="main">
 <target name="main">
 <property name="customer" value="acme"/>
 <xmlproperty file="${customer}.xml"/>
 <echo message="Building for ${customer(name)}..."/>
 <echo level="verbose">
 classname = ${customer.settings.impl}
 </echo>
 </target>
</project>

First, we use a property, customer, to define the customer nickname which defaults
to acme. The output of our build, using verbose mode, is

main:
 [echo] Building for Acme, Inc....
 [echo] classname = org.example.antbook.acme.SomeClass

This indirection allows us to build for any customer by overriding the value of cus-
tomer. For example, we could use

ant -Dcustomer=joes_garage
76 CHAPTER 3 UNDERSTANDING ANT DATATYPES AND PROPERTIES

The <xmlproperty> task has a few notable options. Like loading a properties file,
it has a prefix option that prepends a prefix to all properties created. By default the
XML file is not validated, but setting validate="true" enables validation. If the
root element in your XML file is simply a placeholder, keeproot="false" can be
used to skip its processing; in our example it would have omitted setting cus-
tomer(name) and the classname property would be named settings.impl
instead. The final option for <xmlproperty> controls how XML attributes are
named as properties. Normally attributes are assigned to Ant properties using paren-
thesis notation, such as customer(name). Using collapseAttributes="true",
dotted syntax is used instead and would result in the name attribute being mapped to
a customer.name property.

A limitation exists with <xmlproperty> in how it handles multiple sibling ele-
ments with the same name. Only the first of duplicate named sibling elements is pro-
cessed; there is no indexing.

3.13 CONTROLLING ANT WITH PROPERTIES

Utilizing Ant’s properties wisely can give a build file a highly dynamic nature, allow-
ing it to easily adjust to its operating environment and user preferences. Here are
some of the many ways in which properties can help control builds.

NOTE The value of a property is not always important. In several contexts, simply
the existence of a property is relevant and its actual value not.

3.13.1 Conditional target execution

Properties are the mechanism used to provide conditional target execution. A target
definition can include optional if and/or unless attributes.

NOTE Property names are left unadorned in target if/unless clauses. In other
words, you can simply specify the property name with no ${ }. Only the
existence of a property, regardless of value, is taken into consideration for
if/unless.

The following lines demonstrate the use of the if attribute to conditionally include
source code in a JAR file built:

<target name="init">
 <mkdir dir="build/classes"/>
 <mkdir dir="dist"/>
</target>

<target name="compile" depends="init">
 <javac srcdir="src" destdir="build/classes"/>
</target>

<target name="copysource" depends="init" if="copy.source">
 <copy todir="build/classes">
 <fileset dir="src"/>
CONTROLLING ANT WITH PROPERTIES 77

 </copy>
</target>

<target name="jar" depends="compile,copysource">
 <jar basedir="build/classes" jarfile="dist/our.jar">
</target>

The target conditions are evaluated just prior to the execution of each target. This
allows dependent targets to set properties influencing future target execution dynam-
ically. In this little demonstration, the copysource target could be enabled by set-
ting copy.source, the value is irrelevant. (Even “false” would enable it.) This could
be done from the command line:

ant -Dcopy.source=true jar

Alternatively, the copy.source property could be defined using one of the many
variants of <property>.

3.13.2 Conditional patternset inclusion/exclusion

As mentioned in section 3.5, patternsets have an if and unless property on the
<include> and <exclude> elements. This is a useful feature for including or
excluding files from compilation depending on the existence of libraries.

<javac srcdir="src"
 destdir="${build.dir}/classes"
 <exclude name="org/example/antbook/xdoclet/*.java"
 unless="xdoclet.present" />
</javac>

This example takes advantage of <javac> acting as an implicit fileset, but the if/
unless technique works for any patternset.

3.13.3 Conditional build failure

An enhancement from Ant 1.4.1 to Ant 1.5 is the addition of the if/unless con-
struct to the <fail> task. The <fail> task forces the failure of a build with an
optional message (similar to <echo>). In versions prior to 1.5 conditionally failing
a build required several dummy targets with the one containing <fail> having a
condition on it. Using the example shown for <condition> to set a property if all
dependencies are present along with the conditional <fail>, a build can exit alert-
ing the user of missing dependencies:

<target name="init">
 <condition property="all.dependencies.present">
 <and>
 <available classname="xdoclet.doc.DocumentDocletTask" />
 <available classname="junit.framework.TestCase" />
 </and>
 </condition>

 <fail message="Missing dependencies" unless="all.dependencies.present"/>
</target>
78 CHAPTER 3 UNDERSTANDING ANT DATATYPES AND PROPERTIES

In chapter 4, we use a conditional <fail> to exit a build when the unit tests fail.
Because you may encounter Ant 1.4.1 or earlier build files, we should mention the tech-
nique used to accomplish conditional failure pre-Ant 1.5 is a build-file construct like

<project name="fail" default="dist">

 <target name="compile"/>

 <target name="check-tests-failed" if="tests.failed">
 <fail>Tests failed</fail>
 </target>

 <target name="test">
 <property name="tests.failed" value="true"/>
 </target>

 <target name="dist" depends="compile,test,check-tests-failed"/>

</project>

The dist target specifies its dependencies, and they execute in the order shown:
compile, test, and then check-tests-failed. Note that the test target has
not been implemented yet; our mock implementation sets a property to indicate a
failure. Use of the conditional <fail> attributes eliminates this complexity.

3.14 REFERENCES

Ant provides rich datatypes to work with, and it also provides the ability to reuse
these datatype definitions. Each Ant datatype declaration allows an optional unique
identifier, which you can refer to elsewhere—these are called references. Our sample
application takes full advantage of references, particularly with paths. Many tasks
accept a classpath, defaulting to the one used by the executing virtual machine if one
is not specified. We recommend specifying classpaths explicitly as this provides the
greatest amount of control and reproducibility. We define our compile classpath with
an id="compile.classpath" in this fashion:

<path id="compile.classpath">
 <pathelement location="${lucene.jar}"/>
 <pathelement location="${tidy.jar}"/>
</path>

There is a level of indirection going on in this example that will be explained later,
but each of the properties used in <pathelement location=?...?> refer to the
full path of the corresponding JAR file. This is the complete set of dependencies
needed to compile our main production code. This, however, is not the full set of
dependencies required for compiling and running our test code. To ensure that we
compile and run against the minimum dependencies necessary, we craft several
<path> declarations for use in different situations. The classpath used for testing is a
superset of the one used for compilation; references allow us to reuse com-
pile.classpath’s definition in this manner:
REFERENCES 79

<path id="test.classpath">
 <path refid="compile.classpath"/>
 <pathelement location="${junit.jar}"/>
 <pathelement location="${build.dir}/classes"/>
 <pathelement location="${build.dir}/test"/>
</path>

The refid and id attributes are available on all datatypes, which include the ones
discussed in this chapter: path, fileset, patternset, filterset, and mapper. Anywhere a
datatype is declared, it can have an id associated with it, even when used inside a
task. It is recommended, however, that datatypes that will be reused with refid be
declared as stand-alone datatypes for readability and clarity.

3.14.1 Properties and references

In the Ant conceptual model, a property is not a datatype but is implicitly reusable by
its name, such as ${build.dir}. While users can view properties, datatypes, and
their references as independent from one another for most practical purposes, there
are a couple of interesting intersections between them. Another variant of the
<property> task converts a reference to its string representation.

Obtaining a string representation of a path

If a <path> has been dynamically constructed, being built from <pathelement
location="..."/> or <path refid="..."/> nested elements, you can get its string
representation. This can be used for displaying or passing to a spawned command
through <exec> or <apply>. Here is an example of displaying:

<path id="the.path">
 <pathelement path="some.jar;another.jar"/>
</path>

<property name="path.string" refid="the.path"/>
<echo message="path = ${path.string}"/>

The <path> datatype resolves all relative items to their absolute paths and converts
all file and path separators to the local platform, and so the result is

[echo] path = /home/ant/some.jar: /home/ant/another.jar

Dereferencing properties

Makefile experts, and others desiring tricky variable dereferencing may be disap-
pointed to find that Ant does not have advanced evaluation of properties. They are
simply string substitutions and nesting properties does not accomplish what some
may expect. For example
<property name="X" value="Y"/>
<property name="Y" value="Z"/>
<property name="A" value="${${X}}"/>
<property name="B" value="$${${X}}"/> The “$$” is replaced by “$”
80 CHAPTER 3 UNDERSTANDING ANT DATATYPES AND PROPERTIES

<echo message="A = ${A}"/>
<echo message="B = ${B}"/>

The output of the above is

 [echo] A = ${${X}}
 [echo] B = ${Y}

It is possible, however, to accomplish this, though rarely, if ever, would this particular
technique be needed in a build file. Make has a feature called “computed variable
names,” which is similar to our first attempts at dereferencing, yet with different
results. (In other words, A would have equaled Z.) Using an additional property is
required as a selector:

<property name="X" value="Y" id="X.prop"/>
<property name="Y" value="Z" id="Y.prop"/>
<property name="selector" value="${X}"/>
<property name="A" refid="${selector}.prop"/>
<echo message="A = ${A}"/>

While this appears fairly straightforward, it is actually taking advantage of some fairly
complex capability of Ant, that of assigning an id to a task (in this case <prop-
erty>). The value of selector becomes Y, and the assignment of A uses the value
of the referenced “object” (in this case a task) by the name of Y.prop. Avoid this
kind of wackiness at almost all costs because there are much more standard and
clearer ways to choose a different set of properties, such as

<property name="props" value="default"/>
<property file="${props}.properties"/>

In this case, we load default.properties unless the property props has been
overridden previously, perhaps with

ant -Dprops=my

This would load my.properties instead, thanks to property immutability and -D
setting props first.

NOTE There is a third-party task <propertycopy> provided at the Source-
forge ant-contrib project that more cleanly accomplishes property deref-
erencing. We recommend using this task instead of the craziness shown
here. See section 10.6 for details on <propertycopy>.

3.14.2 Using references for nested patternsets

Patternsets provide a nice abstraction for file and directory name matching for use
inside of filesets. Defining a patternset only once with an id allows it to be reused in
any number of filesets. Nesting patternsets allows for patternset grouping. Here’s an
example:

<patternset id="image.files" includes="**/*.gif,**/*.jpg"/>

REFERENCES 81

<patternset id="binary.files">
 <exclude name="**/*.txt"/>
 <exclude name="**/*.xml"/>
 <patternset refid="image.files"/>
</patternset>

<property name="binary.files.debug" refid="binary.files"/>
<echo level="verbose">
 binary.files.debug = ${binary.files.debug}
</echo>

The binary.files patternset excludes both .txt and .xml files, and the files
included or excluded by the image.files patternset. In this case, binary.files
will also include .jpg and .gif files. The string representation of a patternset is useful
for debugging purposes, so defining a property using the patternset refid yields
these results:

 [echo] binary.files.debug = patternSet{ includes: [**/*.gif, **/
*.jpg] excludes: [**/*.txt, **/*.xml] }

3.15 BEST PRACTICES

While it is necessary to understand the correct syntax and rules for utilizing Ant’s
datatypes and properties, this is only scratching the surface. There are several prac-
tices that we recommend in order to realize far greater benefit from these abstractions:

• Use <property location="..."/> to define file and paths. Use the value
variant for other string values, including file name fragments if needed.

• Nest path definitions. For example, our application has a <path id="com-
pile.classpath"> defined, and that same path along with some other
dependencies are needed in our testing compilation and execution. Our <path
id="test.classpath"> is defined as including <path refid="compile.
classpath"/>. This is to eliminate duplication and increases maintainability
and reusability.

• Using <filterset> to perform simple text substitutions during a build can
accomplish powerful things like inserting dates or other dynamic build-time
information. Be careful not to use it on binary files, however.

• Take advantage of conditional target execution and conditional patternset capa-
bilities to allow your build to adapt to its environment. Perhaps it is acceptable
if a dependency is not present, and its absence will simply omit some classes
from compilation, testing, packaging, and deployment. For example, Ant’s very
own build makes extensive use of conditional patternsets to exclude compila-
tion of the many optional tasks if their dependencies are not present; this allows
Ant to be easily built with no configuration changes or need to install depen-
dencies for unused tasks.
82 CHAPTER 3 UNDERSTANDING ANT DATATYPES AND PROPERTIES

• Carefully consider the directory structure of your project, including how prop-
erties will map to top-level or subordinate directories. By planning this well, a
parent build can easily control where it receives the output of the child build.
View properties that refer to directories as Unix-like mounted directories—they
reside logically as a rooted tree from the base build directory, yet physically do
not necessarily reside in that hierarchy.

3.16 SUMMARY

The purpose of this chapter is to introduce the foundational Ant concepts of paths,
filesets, patternsets, filtersets, properties, and references. Let’s now take a look at how
these concepts are used in practice with an example straight from our sample applica-
tion build file. Our compilation step shown in section 3.2 utilizes all of these facili-
ties, either directly or indirectly.

<target name="compile" depends="init">
 <javac destdir="${build.dir}"
 debug="${build.debug}"
 includeAntRuntime="yes"
 srcdir="src">
 <classpath refid="compile.classpath"/>
 </javac>
</target>

We use a property, build.debug, to control whether compilation is performed
with debug on or off. Typically, the includeAntRuntime value should be set to
no, but our compilation is building a custom Ant task and requires ant.jar. The
<javac> task acts as an implicit fileset, with srcdir mapping to <fileset>’s
dir attribute. All files in the src tree are considered for compilation because no
excludes or explicit includes were specified. A reference to a previously defined path,
compile.classpath, is used to define our compilation classpath.

From this chapter, several important facts about Ant should stick with you
throughout this book and on into your build file writing:

• Ant uses datatypes to provide rich reusable parameters to tasks.

• <javac> is a task utilizing most of Ant’s datatypes.

• Paths represent an ordered list of files and directories. Many tasks can accept a
classpath, which is an Ant path. Paths can be specified in a cross platform man-
ner, using the MS-DOS conventions of semicolon (;) and slash mark (/) or the
Unix conventions of colon (:) and backslash (\); Ant sorts it all out at run time.

• Filesets represent a collection of files rooted from a specified directory. Tasks
that operate on sets of files often use Ant’s fileset datatype. Filesets are resolved
when they are encountered by the build process and therefore do not take into
account files that are added or removed afterwards.
SUMMARY 83

• Patternsets represent a collection of file matching patterns. Patternsets can be
defined and applied to any number of filesets.

• The actual element names used for datatypes within a task may vary, and a task
may have several different elements all using the same datatype. Some tasks even
implicitly represent a path or fileset. Ant’s documentation clearly defines the
types each attribute and element represent, and is the best reference for such
details.

• Properties are the heart of Ant’s extensibility and flexibility. They provide a
mechanism to store variables and load them from external resources including
the environment. The rules governing properties, such as immutability, are crit-
ical to understand in designing build files.

• Wisely utilizing the features presented in this chapter gives the build file ele-
gance, structure, reusability, extensibility, and control. The rest of the book—
including our sample application’s build process—will take full advantage of
each of these facilities, and so should yours!

Several additional datatypes have been introduced, yet not much detail provided yet.
The XMLCatalog datatype, for example, is best covered with the XML tasks that uti-
lize it in chapter 13. To reiterate—an underlying theme of our book is Ant best prac-
tices and effective use of Ant for real-world build situations. We refrained from
making this book too much of a reference-only type of text because Ant’s documenta-
tion serves this purpose, and as such the details and syntax of some datatypes is not
explicitly provided here. You now have a solid general overview of Ant’s abstractions,
which enable you to define your build process at a higher level than otherwise possi-
ble with shell scripting or other build tools.
84 CHAPTER 3 UNDERSTANDING ANT DATATYPES AND PROPERTIES

C H A P T E R 4

Testing with JUnit

4.1 Refactoring 86
4.2 Java main() testing 86
4.3 JUnit primer 87
4.4 Applying unit tests to our application 92
4.5 The JUnit task—<junit> 94

4.6 Test failures are build failures 97
4.7 Generating test result reports 100
4.8 Short-circuiting tests 105
4.9 Best practices 109
4.10 Summary 110
“Any program feature without an automated test simply doesn’t exist.” 1

Software bugs have enormous costs: time, money, frustrations, and even lives. How
do we alleviate as much of these pains as possible? Creating and continuously execut-
ing test cases for our software is a practical and common approach to address software
bugs before they make it past our local development environment.

The JUnit testing framework is now the de facto standard unit testing API for Java
development. Ant integrates with JUnit to allow executing test suites as part of the
build process, capturing their output, and generating rich color enhanced reports. In
this chapter, we cover in more detail what testing can give us beyond knowing that
our code is working well within some boundaries, then we cover the primary alterna-
tive to JUnit testing and why it is insufficient. The bulk remainder of the chapter, the
largest part, is devoted to Ant’s JUnit integration: how to use it, its limitations, and
the techniques to make seamless integrated testing part of every build.

1 Extreme Programming Explained, Kent Beck, page 57
85

4.1 REFACTORING

Assuming we accept the statement that all software systems must and will change over
time, and also assuming that we all want our code to remain crisp, clean, and unclut-
tered of quick-and-dirty patches to accommodate the customer request du jour, how
do we reconcile these conflicting requirements? Refactoring is the answer! Refactor-
ing, as defined by Fowler, is the restructuring of software by applying a series of inter-
nal changes that do not affect its observable behavior (Fowler 1999).

Refactoring is one of the primary duties in agile methodologies such as eXtreme
Programming. How can we facilitate constant refactoring of our code? Some of the
key ways this can become easier is to have coding standards, simple design, a solid
suite of tests, and a continuous integration process (Beck 1999). In an eXtreme Pro-
gramming team, the names of the refactorings “replace type code with strategy” can
become as commonplace as design patterns such as “the strategy pattern.” Fowler’s
definitive Refactoring book provides a catalog of refactorings and when and how to
apply them, just as the “Gang of Four” book (Gamma et al. 1995) is the definitive
guide to design patterns.

We are not going to tell you how you should write your Java programs; instead,
we refer you to some of the books in the Bibliography, such as The Elements of Java
Style (Vermeulen et al. 2000) and Bloch’s Effective Java (2001). These should be on
the desk of every Java developer. We address Ant coding standards in appendix D. Just
as good Java code should be simple, testable, and readable, your build file should be
simple, testable, and follow coding standards; the XP methodology applies to build
files and processes as much as to the Java source.

The remainder of this chapter is all about how to use Ant for testing. Continuous
integration is a topic that will be touched upon in this chapter, but covered in more
detail in chapter 16.

4.2 JAVA MAIN() TESTING

A common way that many Java developers exercise objects is to create a main method
that instantiates an instance of the class, and performs a series of checks to ensure that
the object is behaving as desired. For example, in our HtmlDocument class we define
a main method as

public static void main(String args[]) throws Exception {
 HtmlDocument doc = new HtmlDocument(new File(args[0]));
 System.out.println("Title = " + doc.getTitle());
 System.out.println("Body = " + doc.getBodyText());
}

We are then able to run the program from the command-line, with the proper class-
path set:

java org.example.antbook.ant.lucene.HtmlDocument
 test/org/example/antbook/ant/lucene/test.html
86 CHAPTER 4 TESTING WITH JUNIT

Using Ant as a Java program launcher, we can run it with the <java> task:

<java classname="org.example.antbook.ant.lucene.HtmlDocument">
 <arg value="test/org/example/antbook/ant/lucene/test.html"/>
 <classpath refid="test.classpath"/>
</java>

Writing main method checks is convenient because all Java IDEs provide the ability
to compile and run the class in the current buffer, and certainly have their place for
exercising an object’s capability. There are, however, some issues with this approach
that make it ineffective as a comprehensive test framework:

• There is no explicit concept of a test passing or failing. Typically, the program
outputs messages simply with System.out.println; the user has to look at
this and decide if it is correct.

• main has access to protected and private members and methods. While
you may want to test the inner workings of a class may be desired, many tests
are really about testing an object’s interface to the outside world.

• There is no mechanism to collect results in a structured fashion.

• There is no replicability. After each test run, a person has to examine and inter-
pret the results.

The JUnit framework addresses these issues, and more.

4.3 JUNIT PRIMER

JUnit is a member of the xUnit testing framework family and now the de facto stan-
dard testing framework for Java development. JUnit, originally created by Kent Beck
and Erich Gamma, is an API that enables developers to easily create Java test cases. It
provides a comprehensive assertion facility to verify expected versus actual results. For
those interested in design patterns, JUnit is also a great case study because it is very
pattern-dense. Figure 4.1 shows the UML model. The abstract TestCase class is of
most interest to us.

<Test>
run(TestResult)

TestCase
setUp
tearDown

TestSuite

Figure 4.1

JUnit UML diagram depicting the composite

pattern utilized by TestCase and TestSuite.

A TestSuite contains a collection of tests,

which could be either more TestSuites

or TestCases, or even classes simply

implementing the test interface.
JUNIT PRIMER 87

4.3.1 Writing a test case

One of the primary XP tenets is that writing and running tests should be easy. Writ-
ing a JUnit test case is intentionally designed to be as easy as possible. For a simple
test case, you follow three simple steps:

1 Create a subclass of junit.framework.TestCase.

2 Provide a constructor, accepting a single String name parameter, which calls
super(name).

3 Implement one or more no-argument void methods prefixed by the word test.

An example is shown in the SimpleTest class code:

package org.example.antbook.junit;

import junit.framework.TestCase;

public class SimpleTest extends TestCase
{
 public SimpleTest (String name) {
 super(name);
 }

 public void testSomething() {
 assertTrue(4 == (2 * 2));
 }
}

4.3.2 Running a test case

TestRunner classes provided by JUnit are used to execute all tests prefixed by the
word “test.” The two most popular test runners are a text-based one, junit.textui.
TestRunner, and an attractive Swing-based one, junit.swingui.TestRunner.
From the command line, the result of running the text TestRunner is

java junit.textui.TestRunner org.example.antbook.junit.SimpleTest
.
Time: 0.01

OK (1 tests)

The dot character (.) indicates a test case being run, and in this example only one
exists, testSomething. The Swing TestRunner displays success as green and fail-
ure as red, has a feature to reload classes dynamically so that it can remain open while
code is recompiled, and will pick up the latest test case class each time. For this same
test case, its display appears in figure 4.2.

4.3.3 Asserting desired results

The mechanism by which JUnit determines the success or failure of a test is via asser-
tion statements. An assert is simply a comparison between an expected value and an
88 CHAPTER 4 TESTING WITH JUNIT

actual value. There are variants of the assert methods for each primitive datatype and for
java.lang.String and java.lang.Object, each with the following signatures:

assertEquals(expected, actual)

assertEquals(String message, expected, actual)

The second signature for each datatype allows a message to be inserted into the
results, which makes clear identification of which assertion failed. There are several
other assertion methods:

• assertEquals(expected, actual)
assertEquals(String message, expected, actual)
This assertion states that the test expected.equals(actual) returns true,
or both objects are null. The equality test for a double also lets you specify a
range, to cope with floating point errors better. There are overloaded versions of
this method for all Java’s primitive types.

• assertNull(Object object),
assertNull(String message, Object object)
This asserts that an object reference equals null.

• assertNotNull(Object object),
assertNotNull(String message, Object)
This asserts that an object reference is not null.

• assertSame(Object expected, Object actual),
assertSame(String message, Object expected, Object actual)
Asserts that the two objects are the same. This is a stricter condition than simple
equality, as it compares the object identities using expected == actual.

Figure 4.2

JUnit’s Swing TestRunner
JUNIT PRIMER 89

• assertTrue(boolean condition),
assertTrue(String message, boolean condition)
This assertion fails if the condition is false, printing a message string if supplied.
The assertTrue methods were previously named simply assert, but
JDK 1.4 introduces a new assert keyword. You may encounter source using the
older method names and receive deprecation warnings during compilation.

• fail(),
fail(String message)
This forces a failure. This is useful to close off paths through the code that
should not be reached.

JUnit uses the term failure for a test that fails expectedly, meaning that an assertion
was not valid or a fail was encountered. The term error refers to an unexpected
error (such as a NullPointerException). We will use the term failure typically to
represent both conditions as they both carry the same show-stopping weight when
encountered during a build.

4.3.4 TestCase lifecycle

The lifecycle of a TestCase used by the JUnit framework is as follows:

1 Execute public void setUp().

2 Call a test-prefixed method.

3 Execute public void tearDown().

4 Repeat these steps for each test method.

Any number of test methods can be added to a TestCase, all beginning with the
prefix test. The goal is for each test to be small and simple, and tests will usually re-
quire instantiating objects. In order to create some objects and preconfigure their state
prior to running each individual test method, override the empty TestCase.setUp
method, and store state as member variables to your test case class. Use the
TestCase.tearDown method to close any open connections or in some way reset
state. Our HtmlDocumentTest takes advantage of setUp and tearDown (see later
this chapter) so that all test methods will have implicit access to an HtmlDocument.

NOTE The setUp and tearDown methods are called before and after every test
method is invoked, preventing one test from affecting the behavior of an-
other. Tests should never make assumptions about the order in which they
are called.

4.3.5 Writing a TestSuite

With JUnit’s API, tests can be grouped into a suite by using the TestSuite class.
Grouping tests may be a benefit to let you build several individual test cases for a par-
ticular subsystem and write an all-inclusive TestSuite that runs them all.
A TestSuite also allows specific ordering of tests, which may be important—
90 CHAPTER 4 TESTING WITH JUNIT

although ideally the order of tests should not be relevant as each should be able to
stand alone. Here is an example of a test suite:

public class AllTests extends TestSuite {
 static public Test suite() {
 TestSuite suite = new TestSuite();
 suite.addTestSuite(SimpleTest.class);
 return suite;
 }
}

You don’t need to bother with test suites when running JUnit tests using Ant, because
you can list a group of TestCase classes to run as a batch from the build file itself.
(See section 4.6.2 for discussion of <batchtest>.) However, running a single
TestSuite using the “running a single test case” trick in section 4.7.2 gives you
flexibility in the grouping and granularity of test cases. Remember that a TestCase
is a Test, and a TestSuite is also a Test, so the two can be used interchangeably
in most instances.

4.3.6 Obtaining and installing JUnit

JUnit is just a download away at http://www.junit.org. After downloading the Zip or
tar file, extract the junit.jar file. You must put junit.jar into ANT_HOME/lib so that
Ant can find it. Because of Ant class loader issues, you must have junit.jar in the sys-
tem classpath or ANT_HOME/lib; our recommendation is to keep your system
classpath empty by placing such Ant dependencies in its lib directory.

Many IDEs can create JUnit test cases automatically from an existing Java class—
refer to the documentation of your IDE for details. Be careful, however, not to let the
habit of automatic test generation deter you from writing the tests first! We also
encourage the exploration of the many great resources also found at the JUnit web site.

4.3.7 Extensions to JUnit

Because of its architecture, it is easy to build extensions on top of JUnit. There are
many freely available extensions and companions for JUnit. Table 4.1 shows a few.

Table 4.1 A few notable companions to enhance the capabilities of JUnit testing

Name Description

HttpUnit A test framework that could be embedded in JUnit tests to perform automated web
site testing.

JUnitPerf JUnit test decorators to perform scalability and performance testing.

Mock Objects Allows testing of code that accesses resources such as database connections
and servlet containers without the need of the actual resources.

Cactus In-container unit testing. Covered in detail in chapter 12.

DBUnit Sets up databases in a known state for repeatable DB testing.
JUNIT PRIMER 91

4.4 APPLYING UNIT TESTS TO OUR APPLICATION

This is the first place in our book where we delve into the application built to accom-
pany this text. We could have written the book without a sample application and
contrived the examples, but we felt that to have a common theme throughout the
book would give you the benefit of seeing how all the pieces fit together.

Without a doubt, one of the key points we want to emphasize is the importance
of testing. Sure, this book is about Ant, yet Ant exists as a tool for assisting with the
development of software and does not stand alone. To reiterate: “any program feature
without an automated test simply doesn’t exist.” For developers to embrace testing as
a routine, and even enjoyable, part of life, it must be easy. Ant facilitates this for us
nicely with the ability to run JUnit test cases as an integral part of the build.

Why is the “Testing” chapter the right place to start seriously delving into our
application? Because the tests were written first, our application did not exist until
there was an automated test in place.

4.4.1 Writing the test first

At the lowest level of our application is the capability to index text files, including
HTML files. The Jakarta Project’s Lucene tool provides fantastic capabilities for
indexing and searching for text. Indexing a document is simply a matter of instantiat-
ing an instance of org.apache.lucene.document.Document and adding
fields. For text file indexing, our application loads the contents of the file into a field
called contents. Our HTML document handling is a bit more involved as it parses the
HTML and indexes the title (<title>) as a title field, and the body, excluding
HTML tags, as a contents field. Our design calls for an abstraction of an HTML doc-
ument, which we implement as an HtmlDocument class. One of our design deci-
sions is that content will be indexed from filesystem files, so we will build our
HtmlDocument class with constructor accepting a java.io.File as a parameter.

What benefit do we get from testing HtmlDocument? We want to know that
JTidy, the HTML parser used, and the code wrapped around it is doing its job. Per-
haps we want to upgrade to a newer version of JTidy, or perhaps we want to replace
it entirely with another method of parsing HTML. Any of those potential scenarios make
HtmlDocument an ideal candidate for a test case. Writing the test case first, we have

package org.example.antbook.ant.lucene;
import java.io.IOException;
import junit.framework.TestCase;

public class HtmlDocumentTest extends DocumentTestCase
{
 public HtmlDocumentTest (String name) {
 super(name);
 }

 HtmlDocument doc;

92 CHAPTER 4 TESTING WITH JUNIT

 public void setUp() throws IOException {
 doc = new HtmlDocument(getFile("test.html"));
 }

 public void testDoc() {
 assertEquals("Title", "Test Title", doc.getTitle());
 assertEquals("Body", "This is some test", doc.getBodyText());
 }

 public void tearDown() {
 doc = null;
 }
}

To make the compiler happy, we create a stub HtmlDocument adhering to the signa-
tures defined by the test case. Take note that the test case is driving how we create our
production class—this is an important distinction to make; test cases are not written
after the code development, instead the production code is driven by the uses our test
cases make of it. We start with a stub implementation:

package org.example.antbook.ant.lucene;
import java.io.File;

public class HtmlDocument {
 public HtmlDocument(File file) { }
 public String getTitle() { return null; }
 public String getBodyText() { return null; }
}

Running the unit test now will fail on HtmlDocumentTest.testDoc(), until we
provide the implementation needed to successfully parse the HTML file into its com-
ponent title and body. We are omitting the implementation details of how we do this,
as this is beyond the scope of the testing chapter.

4.4.2 Dealing with external resources during testing

As you may have noticed, our test case extends from DocumentTestCase rather
than JUnit’s TestCase class. Since our application has the capability to index
HTML files and text files, we will have an individual test case for each document
type. Each document type class operates on a java.io.File, and obtaining the
full path to a test file is functionality we consolidate at the parent class in the get-
File method. Creating parent class TestCase extensions is a very common tech-
nique for wrapping common test case needs, and keeps the writing of test cases easy.

Our base DocumentTestCase class finds the desired file in the classpath and
returns it as a java.io.File. It is worth a look at this simple code as this is a valu-
able technique for writing test cases:

package org.example.antbook.ant.lucene;
import java.io.File;
import java.io.IOException;
import junit.framework.TestCase;
APPLYING UNIT TESTS TO OUR APPLICATION 93

public abstract class DocumentTestCase extends TestCase
{
 public DocumentTestCase(String name) {
 super(name);
 }

 protected File getFile(String filename) throws IOException {
 String fullname =
 this.getClass().getResource(filename).getFile();
 File file = new File(fullname);
 return file;
 }
}

Before implementing the HtmlDocument code that will make our test case succeed,
our build must be modified to include testing as part of its routine process. We will
return to complete the test cases after adding testing to our Ant build process.

4.5 THE JUNIT TASK—<JUNIT>

One of Ant’s many “optional”2 tasks is the <junit> task. This task runs one or more
JUnit tests, then collects and displays results in one or more formats. It also provides
a way to fail or continue a build when a test fails.

In order to execute the test case that we have just written via Ant, we can declare
the task with the name of the test and its classpath:

<junit>
 <classpath refid="test.classpath"/>
 <test name="org.example.antbook.ant.lucene.HtmlDocumentTest"/>
</junit>

And, oddly, the following is displayed:

 [junit] TEST org.example.antbook.ant.lucene.HtmlDocumentTest FAILED
BUILD SUCCESSFUL

There are two issues to note about these results: no details were provided about which
test failed or why, and the build completed successfully despite the test failure. First
let’s get our directory structure and Ant build file refactored to accommodate further
refinements easily, and we will return in section 4.6 to address these issues.

4.5.1 Structure directories to accommodate testing

A well-organized directory structure is a key factor in build file and project manage-
ment simplicity and sanity. Test code should be separate from production code,
under unique directory trees. This keeps the test code out of the production binary
distributions, and lets you build the tests and source separately. You should use a
package hierarchy as usual. You can either have a new package for your tests, or

2 See chapter 10 for a discussion on Ant’s task types
94 CHAPTER 4 TESTING WITH JUNIT

mimic the same package structure that the production classes use. This tactic makes it
obvious which tests are associated with which classes, and gives the test package-level
access privileges to the code being tested. There are, of course, situations where this
recommendation should not be followed (verifying package scoping, for example),
but typically mirroring package names works well.

NOTE A peer of one of the authors prefers a different and interesting technique
for organizing test cases. Test cases are written as public nested static classes
of the production code. The advantage is that it keeps the production and
test code in very close proximity. In order to prohibit packaging and de-
ploying test cases, he takes advantage of the $ that is part of a nested class
filename and excludes them. We mention this as an alternative, but do not
use this technique ourselves.

During the build, Ant compiles production code to the build/classes directory. To
separate test and production code, all test-generated artifacts go into build/test,
with classes into build/test/classes. The other products of the testing process
will be result data and reports generated from that data. Figure 4.3 shows the relevant
structure of our project directory tree.

4.5.2 Fitting JUnit into the build process

Adding testing into our build process is straightforward: simply add a few additional
targets to initialize the testing directory structure, compile the test code, and then
execute the tests and generate the reports. Figure 4.4 illustrates the target dependency
graph of the build file.

Figure 4.3 Our directory structure for unit test source code and corresponding compiled code

and test results
THE JUNIT TASK—<JUNIT> 95

We use several build file properties and datatypes to make writing our test targets
cleaner, to avoid hard-coded paths, and to allow flexible control of the testing process.
First, we assign properties to the various directories used by our test targets:

<property name="test.dir" location="${build.dir}/test"/>
<property name="test.data.dir" location="${test.dir}/data"/>
<property name="test.reports.dir" location="${test.dir}/reports"/>

As we stated in chapter 3, when constructing subdirectories, like test.data.dir
and test.reports.dir, of a root directory, you should define a property referring
to the root directory and build the subdirectory paths from the root-referring prop-
erty. If, for example, we had defined test.data.dir as ${build.dir}/test/
data, then it would not be possible to relocate the entire test output directory struc-
ture easily. With test.dir used to define the subdirectory paths, it is straightfor-
ward to override the test.dir property and move the entire tree. Another benefit
could be to individually control where Ant places test reports (overriding test.
reports.dir), so that we could place them in a directory served by a web server.

Compiling and running tests requires a different classpath than the classpath used
in building our production compilation. We need JUnit’s JAR file compilation and
execution, and the test/classes directory for execution. We construct a single <path>
that covers both situations:

<path id="test.classpath">
 <path refid="compile.classpath"/>
 <pathelement location="${junit.jar}"/>
 <pathelement location="${build.dir}/classes"/>
 <pathelement location="${build.dir}/test"/>
</path>

We originally defined the compile.classpath path in chapter 3; we reference it
here because our test code is likely to have the same dependencies as our production
code. The test-compile target utilizes test.classpath as well as test.dir:

<target>
init

<target>
test

Any further targets should
directly or indirectly

depend on the target test

<target>
compile

<target>
test-init

Figure 4.4

Refactoring our build

process with unit

testing targets
96 CHAPTER 4 TESTING WITH JUNIT

<target name="test-compile" depends="compile,test-init">
 <javac destdir="${test.dir}"
 debug="${build.debug}"
 includeAntRuntime="true"
 srcdir="test">
 <classpath refid="test.classpath"/>
 </javac>

 <copy todir="${test.dir}">
 <fileset dir="test" excludes="**/*.java"/>
 </copy>
</target>

Note that in this particular example we are planning on building a custom Ant task
so we set the includeAntRuntime attribute. Typically, you should set this at-
tribute to false, to control your classpaths better. We follow the compilation with a
<copy> task to bring over all non-.java resources into the testing classpath, which
will allow our tests to access test data easily. Because of dependency checking, the
<copy> task does not impact incremental build times until those files change.

4.6 TEST FAILURES ARE BUILD FAILURES

By default, failing test cases run with <junit> do not fail the build process. The
authors believe that this behavior is somewhat backwards and the default should be to
fail the build: you can set the haltonfailure attribute to true to achieve this
result.3 Developers must treat test failures in the same urgent regard as compilation
errors, and give them the same show-stopping attention.

Adding both haltonfailure="true" and printsummary="true" to our
<junit> element attributes, we now get the following output:

 [junit] Running org.example.antbook.ant.lucene.HtmlDocumentTest
 [junit] Tests run: 1, Failures: 1, Errors: 0, Time elapsed: 0.01 sec
BUILD FAILED

Our build has failed because our test case failed, exactly as desired. The summary out-
put provides slightly more details: how many tests run, how many failed, and how
many had errors. We still are in the dark about what caused the failure, but not for long.

4.6.1 Capturing test results

The JUnit task provides several options for collecting test result data by using format-
ters. One or more <formatter> tags can be nested either directly under <junit>
or under the <test> (and <batchtest>, which we will explore shortly). Ant
includes three types of formatters shown in table 4.2.

3 The authors do not recommend haltonfailure to be enabled either. Read on for why.
TEST FAILURES ARE BUILD FAILURES 97

By default, <formatter> output is directed to files, but can be directed to Ant’s
console output instead. Updating our single test case run to include both the build
failure upon test failure and detailed console output, we use this task declaration:

<junit printsummary="false" haltonfailure="true">
 <classpath refid="test.classpath"/>
 <formatter type="brief" usefile="false"/>
 <test name="org.example.antbook.ant.lucene.HtmlDocumentTest"/>
</junit>

This produces the following output:

 [junit] Testsuite: org.example.antbook.ant.lucene.HtmlDocumentTest
 [junit] Tests run: 1, Failures: 1, Errors: 0, Time elapsed: 0.01 sec
 [junit]
 [junit] Testcase: testDoc(org.example.antbook.ant.lucene

 .HtmlDocumentTest):FAILED
 [junit] Title expected:<Test Title> but was:<null>
 [junit] junit.framework.AssertionFailedError:
 Title expected:<Test Title> but was:<null>
 [junit] at org.example.antbook.ant.lucene
 .HtmlDocumentTest.testDoc(HtmlDocumentTest.java:20)
 [junit]
 [junit]

BUILD FAILED

Now we’re getting somewhere. Tests run as part of our regular build, test failures
cause our build to fail, and we get enough information to see what is going on. By
default, formatters write their output to files in the directory specified by the <test>
or <batchtest> elements, but usefile="false" causes the formatters to write
to the Ant console instead. It’s worth noting that the stack trace shown is abbreviated
by the formatter, showing only the most important pieces rather than line numbers
tracing back into JUnit’s classes. Also, we turned off the printsummary option as it
duplicates and interferes with the output from the brief formatter.

XML formatter

Using the brief formatter directed to Ant’s console is very useful, and definitely rec-
ommended to allow quick inspection of the results and details of any failures.
The <junit> task allows more than one formatter, so you can direct results toward

Table 4.2 Ant JUnit task result formatter types.

<formatter> type Description

brief Provides details of test failures in text format.

plain Provides details of test failures and statistics of each test run in text format.

xml Provides an extensive amount of detail in XML format including Ant’s properties
at the time of testing, system out, and system error output of each test case.
98 CHAPTER 4 TESTING WITH JUNIT

several formatters at a time. Saving the results to XML files lets you process them in a
number of ways. Our testing task now evolves to this:

<junit printsummary="false" haltonfailure="true">
 <classpath refid="test.classpath"/>
 <formatter type="brief" usefile="false"/>
 <formatter type="xml"/>
 <test todir="${test.data.dir}"
 name="org.example.antbook.ant.lucene.HtmlDocumentTest"/>
</junit>

The effect of this is to create an XML file for each test case run in the
${test.data.dir} directory. In this example, the file name will be TEST-org.
example.antbook.ant.lucene.HtmlDocumentTest.xml.

Viewing System.out and System.err output

While it is typically unnecessary to have test cases write to standard output or stan-
dard error, it might be helpful in troubleshooting. With no formatters specified and
printsummary either on or off, the <junit> task swallows the output. A special
value of printsummary lets you pass this output through back to Ant’s output:
printsummary="withOutAndErr". The plain, brief, and xml formatters
capture both output streams, so in our example printsummary is disabled because
we use the brief formatter to output to the console instead.

With a System.out.println("Hi from inside System.out.println")
inside a testOutput method of SimpleTest, our output is

test:
 [junit] Testsuite: org.example.antbook.junit.SimpleTest
 [junit] Tests run: 2, Failures: 0, Errors: 0, Time elapsed: 0.09 sec
 [junit] ------------- Standard Output ---------------
 [junit] Hi from inside System.out.println
 [junit] ------------- ---------------- ---------------
 [junit]
 [junit] Testcase: testSomething took 0.01 sec
 [junit] Testcase: testOutput took 0 sec
[junitreport] Using Xalan version: 2.1.0
[junitreport] Transform time: 932ms

BUILD SUCCESSFUL
Total time: 2 seconds.

Note that it does not identify the test method, testOutput in this case, which gen-
erated the output.

4.6.2 Running multiple tests

So far, we’ve only run a single test case using the <test> tag. You can specify any
number of <test> elements but that is still time consuming. Developers should not
have to edit the build file when adding new test cases. Enter <batchtest>. You can
nest filesets within <batchtest> to include all your test cases.
TEST FAILURES ARE BUILD FAILURES 99

TIP Standardize the naming scheme of your test cases classes for easy fileset in-
clusions, while excluding helper classes or base test case classes. The normal
convention-naming scheme calls for test cases, and only test cases, to end
with the word “Test.” For example, HtmlDocumentTest is our test case,
and DocumentTestCase is the abstract base class. We use “TestCase”
as the suffix for our abstract test cases.

The <junit> task has now morphed into

<junit printsummary="true" haltonfailure="true">
 <classpath refid="test.classpath"/>
 <formatter type="brief" usefile="false"/>
 <formatter type="xml"/>
 <batchtest todir="${test.data.dir}">
 <fileset dir="${test.dir}" includes="**/*Test.class"/>
 </batchtest>
</junit>

The includes clause ensures that only our concrete test cases are considered, and
not our abstract DocumentTestCase class. Handing non-JUnit, or abstract, classes
to <junit> results in an error.

4.6.3 Creating your own results formatter

The authors of the JUnit task framework wisely foresaw the need to provide extensi-
bility for handling unit test results. The <formatter> element has an optional
classname attribute, which you can specify instead of type. You must specify a
fully qualified name of a class that implements the org.apache.tools.ant.
taskdefs.optional.junit.JUnitResultFormatter interface. Given that
the XML format is already provided, there is probably little need to write a custom
formatter, but it is nice that the option is present. Examine the code of the existing
formatters to learn how to develop your own.

4.7 GENERATING TEST RESULT REPORTS

With test results written to XML files, it’s a straightforward exercise to generate
HTML reports using XSLT. The <junitreport> task does exactly this, and even
allows you to use your own XSL files if you need to. This task works by aggregating
all of the individual XML files generated from <test>/<batchtest> into a single
XML file and then running an XSL transformation on it. This aggregated file is
named, by default, TESTS-TestSuites.xml.

Adding the reporting to our routine is simply a matter of placing the <junit-
report> task immediately following the <junit> task:

<junitreport todir="${test.data.dir}">
 <fileset dir="${test.data.dir}">
 <include name="TEST-*.xml"/>
 </fileset>
 <report format="frames" todir="${test.reports.dir}"/>
</junitreport>
100 CHAPTER 4 TESTING WITH JUNIT

The <fileset> is necessary, and typically will be specified using an include pattern
of "TEST-*.xml" since that is the default naming convention used by the XML
formatter of <junit>. The <report> element instructs the transformation to use
either frames or noframes Javadoc-like formatting, with the results written to the
todir directory. Figure 4.5 shows the frames report of this example.

Navigating to a specific test case displays results like figure 4.6.

Clicking the Properties » hyperlink pops up a window displaying all of Ant’s proper-
ties at the time the tests were run, which can be handy for troubleshooting failures
caused by environmental or configuration issues.

NOTE There are a couple of issues with <junit> and <junitreport>. First,
<junit> does not have any dependency checking logic; it always runs all tests.
Second, <junitreport> simply aggregates XML files without any knowledge
of whether the files it is using have any relation to the tests just run. A technique
using <uptodate> takes care of ensuring tests only run if things have changed.
Cleaning up the old test results before running tests gives you better reports.

Requirements of <junitreport>

The <junitreport> task requires an XSLT processor to do its thing. We recom-
mend Xalan 2.x. You can obtain Xalan from http://xml.apache.org/xalan-j/. As with
other dependencies, place xalan.jar into ANT_HOME/lib.

Figure 4.5

The main page, index.html, of

the default frames <junitreport>.

It summarizes the test

statistics and hyperlinks

to test case details.

Figure 4.6

Test case results. The

specific assertion that

failed is clearly shown.
GENERATING TEST RESULT REPORTS 101

4.7.1 Generate reports and allow test failures to fail the build

We run into a dilemma with <junitreport> though. We’ve instructed <junit>
to halt the build when a test fails. If the build fails, Ant won’t create the reports. The
last thing we want to do is have our build succeed when tests fail, but we must turn
off haltonfailure in order for the reports to generate. As a solution, we make the
<junit> task set specified properties upon a test failure or error, using the failure-
Property and errorProperty attributes respectively.

Using the properties set by <junit>, we can generate the reports before we fail
the build. Here is how this works:

<target name="test" depends="test-compile">
 <junit printsummary="false"
 errorProperty="test.failed"
 failureProperty="test.failed">
 <classpath refid="test.classpath"/>
 <formatter type="brief" usefile="false"/>
 <formatter type="xml"/>
 <batchtest todir="${test.data.dir}">
 <fileset dir="${test.dir}" includes="**/*Test.class"/>
 </batchtest>
 </junit>

 <junitreport todir="${test.data.dir}">
 <fileset dir="${test.data.dir}">
 <include name="TEST-*.xml"/>
 </fileset>
 <report format="frames"
 todir="${test.reports.dir}"/>
 </junitreport>

 <fail message="Tests failed. Check log and/or reports."
 if="test.failed"/>
</target>

 NOTE Remember that properties are immutable. Use a unique previously undefined
property name for failureProperty and errorProperty. (Both
may be the same property name.) As for immutability, here is one of the
holes in its rules. The value of these properties will be overwritten if an error
or failure occurs with the value true. See chapter 3 for more information
on properties.

Customizing the JUnit reports

If the default HTML generated by <junitreport> does not suit your needs, the
output can be customized easily using different XSL files. The XSL files used by the
task are embedded in Ant’s optional.jar, and ship in the etc directory of the
installation for customization use. To customize, either copy the existing junit-
frames.xsl and junit-noframes.xsl files to another directory or create new

haltonfailure has been removed

Conditional <fail> task-based
102 CHAPTER 4 TESTING WITH JUNIT

ones—you do need to use these exact file names. To use your custom XSL files, sim-
ply point the styledir attribute of the <report> element at them. Here we have
a property junit.style.dir that is set to the directory where the XSL files exist:

<junitreport todir="${test.data.dir}">
 <fileset dir="${test.data.dir}">
 <include name="TEST-*.xml"/>
 </fileset>
 <report format="frames"
 styledir="${junit.style.dir}"
 todir="${test.reports.dir}"/>
</junitreport>

4.7.2 Run a single test case from the command-line

Once your project has a sufficiently large number of test cases, you may need to iso-
late a single test case to run when ironing out a particular issue. This feat can be
accomplished using the if/unless clauses on <test> and <batchtest>. Our
<junit> task evolves again:

<junit printsummary="false"

 errorProperty="test.failed"
 failureProperty="test.failed">
 <classpath refid="test.classpath"/>
 <formatter type="brief" usefile="false"/>
 <formatter type="xml"/>
 <test name="${testcase}" todir="${test.data.dir}" if="testcase"/>
 <batchtest todir="${test.data.dir}" unless="testcase">
 <fileset dir="${test.dir}" includes="**/*Test.class"/>
 </batchtest>
</junit>

By default, testcase will not be defined, the <test> will be ignored, and
<batchtest> will execute all of the test cases. In order to run a single test case, run
Ant using a command line like

ant test -Dtestcase=<fully qualified classname>

4.7.3 Initializing the test environment

There are a few steps typically required before running <junit>:

• Create the directories where the test cases will compile to, results data will be
gathered, and reports will be generated.

• Place any external resources used by tests into the classpath.

• Clear out previously generated data files and reports.

Because of the nature of the <junit> task, old data files should be removed prior to
running the tests. If a test case is renamed or removed, its results may still be present.
The <junit> task simply generates results from the tests being run and does not
concern itself with previously generated data files.
GENERATING TEST RESULT REPORTS 103

Our test-init target is defined as:

<target name="test-init">
 <mkdir dir="${test.dir}"/>

 <delete dir="${test.data.dir}"/>
 <delete dir="${test.reports.dir}"/>
 <mkdir dir="${test.data.dir}"/>
 <mkdir dir="${test.reports.dir}"/>
</target>

4.7.4 Other test issues

Forking

The <junit> task, by default, runs within Ant’s JVM. There could be VM conflicts,
such as static variables remaining defined, so the attribute fork="true" can be
added to run in a separate JVM. The fork attribute applies to the <junit> level
affecting all test cases, and it also applies to <test> and <batchtest>, overriding
the fork setting of <junit>. Forking unit tests can enable the following (among others):

• Use a different JVM than the one used to run Ant (jvm attribute)

• Set timeout limitations to prevent tests from running too long (timeout
attribute)

• Resolve conflicts with different versions of classes loaded by Ant than needed by
test cases

• Test different instantiations of a singleton or other situations where an object
may remain in memory and adversely affect clean testing

Forking tests into a separate JVM presents some issues as well, because the classes
needed by the formatters and the test cases themselves must be in the classpath. The
nested classpath will likely need to be adjusted to account for this:

<classpath>
 <path refid="test.classpath"/>
 <pathelement path="${java.class.path}"/>
</classpath>

The JVM provided property java.class.path is handy to make sure the
spawned process includes the same classpath used by the original Ant JVM.

Configuring test cases dynamically

Test cases ideally are stateless and can work without any external information, but
this is not always realistic. Tests may require the creation of temporary files or some
external information in order to configure themselves properly. For example, the test
case for our custom Ant task, IndexTask, requires a directory of documents to
index and a location to place the generated index. The details of this task and its test
case are not covered here, but how those parameters are passed to our test case is relevant.
104 CHAPTER 4 TESTING WITH JUNIT

The nested <sysproperty> element of <junit> provides a system property to
the executing test cases, the equivalent of a -D argument to a Java command-line program:

<junit printsummary="false"
 errorProperty="test.failed"
 failureProperty="test.failed">
 <classpath refid="test.classpath"/>
 <sysproperty key="docs.dir" value="${test.dir}/org"/>
 <sysproperty key="index.dir" value="${test.dir}/index"/>
 <formatter type="xml"/>
 <formatter type="brief" usefile="false"/>
 <test name="${testcase}" if="testcase"/>
 <batchtest todir="${test.data.dir}" unless="testcase">
 <fileset dir="${test.dir}" includes="**/*Test.class"/>
 </batchtest>
</junit>

The docs.dir property refers to the org subdirectory so that only the non-.java
files copied from our source tree to our build tree during test-init are seen by
IndexTask. Remember that our test reports are also generated under test.dir,
and having those in the mix during testing adds unknowns to our test case. Our
IndexTaskTest obtains these values using System.getProperty:

private String docsDir = System.getProperty("docs.dir");
private String indexDir = System.getProperty("index.dir");

Testing database-related code and other dynamic information

When crafting test cases, it is important to design tests that verify expected results
against actual results. Code that pulls information from a database or other dynamic
sources can be troublesome because the expected results vary depending on the state
of things outside our test cases’ control. Using mock objects is one way to test data-
base-dependent code. Refactoring is useful to isolate external dependencies to their
own layer so that you can test business logic independently of database access, for
example.

Ant’s <sql> task can preconfigure a database with known test data prior to run-
ning unit tests. The DBUnit framework (http://dbunit.sourceforge.net/) is also a
handy way to ensure known database state for test cases.

4.8 SHORT-CIRCUITING TESTS

The ultimate build goal is to have unit tests run as often as possible. Yet running tests
takes time—time that developers need to spend developing. The <junit> task per-
forms no dependency checking; it runs all specified tests each time the task is encoun-
tered. A common practice is to have a distribution target that does not depend on the
testing target. This enables quick distribution builds and maintains a separate target
that performs tests. There is certainly merit to this approach, but here is an alternative.
SHORT-CIRCUITING TESTS 105

In order for us to have run our tests and have build speed too, we need to perform our
own dependency checking. First, we must determine the situations where we can skip
tests. If all of the following conditions are true, then we can consider skipping the tests:

• Production code is up-to-date.

• Test code is up-to-date.

• Data files used during testing are up-to-date.

• Test results are up-to-date with the test case classes.

Unfortunately, these checks are not enough. If tests failed in one build, the next build
would skip the tests since all the code, results, and data files would be up-to-date; a
flag will be set if a previous build’s tests fail, allowing that to be taken into consider-
ation for the next build. In addition, since we employ the single-test case technique
shown in section 4.7.2, we will force this test to run if specifically requested.

Using <uptodate>, clever use of mappers, and conditional targets, we will
achieve the desired results. Listing 4.1 shows the extensive <condition> we use to
accomplish these up-to-date checks.

 <condition property="tests.uptodate">
 <and>
 <uptodate>
 <srcfiles dir="${src.dir}" includes="**/*.java"/>
 <mapper type="glob"
 from="*.java"
 to="${build.classes.dir}/*.class" />
 </uptodate>

 <uptodate>
 <srcfiles dir="${test.src.dir}" includes="**/*.java"/>
 <mapper type="glob"
 from="*.java"
 to="${test.classes.dir}/*.class" />
 </uptodate>

 <uptodate>
 <srcfiles dir="${test.src.dir}" excludes="**/*.java"/>
 <mapper type="glob"
 from="*"
 to="${test.classes.dir}/*" />
 </uptodate>

 <not>
 <available file="${test.last.failed.file}"/>
 </not>

 <not>
 <isset property="testcase"/>
 </not>

Listing 4.1 Conditions to ensure unit tests are only run when needed

b

c

d

e

f

106 CHAPTER 4 TESTING WITH JUNIT

 <uptodate>
 <srcfiles dir="${test.src.dir}" includes="**/*.java"/>
 <mapper type="package"4
 from="*Test.java"
 to="${test.data.dir}/TEST-*Test.xml"/>
 </uptodate>
 </and>
 </condition>

Let’s step back and explain what is going on in this <condition> in detail.

Has production code changed? This expression evaluates to true if production class
files in ${build.classes.dir} have later dates than the corresponding .java files
in ${src.dir}.

Has test code changed? This expression is equivalent to the first, except that it’s com-
paring that our test classes are newer than the test .java files.

Has test data changed? Our tests rely on HTML files to parse and index. We main-
tain these files alongside our testing code and copy them to the test classpath. This
expression ensures that the data files in our classpath are current with respect to the
corresponding files in our test source tree.

Did last build fail? We use a temporary marker file to flag if tests ran but failed. If the
tests succeed, the marker file is removed. This technique is shown next.

Single test case run? If the user is running the build with the testcase property set
we want to always run the test target even if everything is up to date. The conditions
on <test> and <batchtest> in our “test” target ensure that we only run the one
test case requested.

Test results current? The final check compares the test cases to their corresponding
XML data files generated by the “xml” <formatter>.

Our test target, incorporating the last build test failure flag, is now

<property name="test.last.failed.file"
 location="${build.dir}/.lasttestsfailed"/>

<target name="test" depends="test-compile"
 unless="tests.uptodate">

 <junit printsummary="false"
 errorProperty="test.failed"
 failureProperty="test.failed"
 fork="${junit.fork}">
 <!-- . . . -->
 </junit>

4 The package mapper was conceived and implemented by Erik while writing this chapter.

g

b

c

d

e

f

g

SHORT-CIRCUITING TESTS 107

 <junitreport todir="${test.data.dir}">
 <!-- . . . -->
 </junitreport>

 <echo message="last build failed tests"
 file="${test.last.failed.file}"/>
 <fail if="test.failed">
 Unit tests failed. Check log or reports for details
 </fail>

 <!-- Remove test failed file, as these tests succeeded -->
 <delete file="${test.last.failed.file}"/>
</target>

The marker file ${build.dir}/.lasttestsfailed is created using <echo>’s
file creation capability and then removed if it makes it past the <fail>, indicating
that all tests succeeded.

While the use of this long <condition> may seem extreme, it accomplishes an
important goal: tests integrated directly in the dependency graph won’t run if every-
thing is up-to-date.

Even with such an elaborate up-to-date check to avoid running unit tests, some
conditions are still not considered. What if the build file itself is modified, perhaps
adjusting the unit test parameters? What if an external resource, such as a database,
changes? As you can see, it’s a complex problem and one that is best solved by deciding
which factors are important to your builds. Such complexity also reinforces the impor-
tance of doing regular clean builds to ensure that you’re always building and testing
fully against the most current source code.

This type of up-to-date checking technique is useful in multiple component/build-
file environments. In a single build-file environment, if the build is being run then
chances are that something in that environment has changed and unit tests should be
run. Our build files should be crafted so that they play nicely as subcomponent builds
in a larger system though, and this is where the savings become apparent. A master
build file delegates builds of subcomponents to subcomponent-specific build files.
If every subcomponent build runs unit tests even when everything is up-to-date, then
our build time increases dramatically. The <condition> example shown here is an
example of the likely dependencies and solutions available, but we concede that it is
not simple, foolproof, or necessary. Your mileage is likely to vary.

4.8.1 Dealing with large number of tests

This technique goes a long way in improving build efficiency and making it even
more pleasant to keep tests running as part of every build. In larger systems, the number
of unit tests is substantial, and even the slightest change to a single unit test will still
cause the entire batch to be run. While it is a great feeling to know there are a large
number of unit tests keeping the system running cleanly, it can also be a build burden.
Tests must run quickly if developers are to run them every build. There is no single
solution for this situation, but here are some techniques that can be utilized:
108 CHAPTER 4 TESTING WITH JUNIT

• You can use conditional patternset includes and excludes. Ant properties can be
used to turn off tests that are not directly relevant to a developer’s work.

• Developers could construct their own JUnit TestSuite (perhaps exercising
each particular subsystem), compiling just the test cases of interest and use the
single test case method.

4.9 BEST PRACTICES

This chapter has shown that writing test cases is important. Ant makes unit testing
simple by running them, capturing the results, and failing a build if a test fails. Ant’s
datatypes and properties allow the classpath to be tightly controlled, directory map-
pings to be overridden, and test cases to be easily isolated and run individually. This
leaves one hard problem: designing realistic tests.

We recommend the following practices:

• Test everything that could possibly break. This is an XP maxim and it holds.

• A well-written test is hard to pass. If all your tests pass the first time, you are
probably not testing vigorously enough.

• Add a new test case for every bug you find.

• When a test case fails, track down the problem by writing more tests, before
going to the debugger. The more tests you have, the better.

• Test invalid parameters to every method, rather than just valid data. Robust
software needs to recognize and handle invalid data, and the tests that pass
using incorrect data are often the most informative.

• Clear previous test results before running new tests; delete and recreate the test
results and reports directories.

• Set haltonfailure="false" on <junit> to allow reporting or other
steps to occur before the build fails. Capture the failure/error status in a single
Ant property using errorProperty and failureProperty.

• Pick a unique naming convention for test cases: *Test.java. Then you can use
<batchtest> with Ant’s pattern matching facility to run only the files that
match the naming convention. This helps you avoid attempting to run helper
or base classes.

• Separate test code from production code. Give them each their own unique direc-
tory tree with the same package naming structure. This lets tests live in the same
package as the objects they test, while still keeping them separate during a build.

• Capture results using the XML formatter: <formatter type="xml"/>.

• Use <junitreport>, which generates fantastic color enhanced reports to
quickly access detailed failure information.

• Fail the build if an error or failure occurred: <fail if="test.failed"/>.
BEST PRACTICES 109

• Use informative names for tests. It is better to know that testDocumentLoad
failed, rather than test17 failed, especially when the test suddenly breaks four
months after someone in the team wrote it.

• Try to test only one thing per test method. If testDocumentLoad fails and
this test method contains only one possible point of failure, it is easier to track
down the bug than to try and find out which one line out of twenty the failure
occurred on.

• Utilize the testing up-to-date technique shown in section 4.8. Design builds to
work as subcomponents, and be sensitive to build inefficiencies doing unneces-
sary work.

Writing test cases changes how we implement the code we’re trying to test, perhaps
by refactoring our methods to be more easily isolated. This often leads to developing
software that plays well with other modules because it is designed to work with the
test case. This is effective particularly with database and container dependencies
because it forces us to decouple core business logic from that of a database, a web
container, or other frameworks. Writing test cases may actually improve the design of
our production code. In particular, if you cannot write a test case for a class, you have
a serious problem, as it means you have written untestable code.

Hope is not lost if you are attempting to add testing to a large system that was built
without unit tests in place. Do not attempt to retrofit test cases for the existing code
in one big go. Before adding new code, write tests to validate the current behavior and
verify that the new code does not break this behavior. When a bug is found, write a
test case to identify it clearly, then fix the bug and watch the test pass. While some test-
ing is better than no testing, a critical mass of tests needs to be in place to truly realize
such XP benefits as fearless and confident refactoring. Keep at it and the tests will accu-
mulate allowing the project to realize these and other benefits.

4.10 SUMMARY

Unit testing makes the world a better place because it gives us the knowledge of a
change’s impact and the confidence to refactor without fear of breaking code
unknowingly. Here are some key points to keep in mind:

• JUnit is Java’s de facto testing framework; it integrates tightly with Ant.

• <junit> runs tests cases, captures results, and can set a property if tests fail.

• Information can be passed from Ant to test cases via <sysproperty>.

• <junitreport> generates HTML test results reports, and allows for custom-
ization of the reports generated via XSLT.

Now that you’ve gotten Ant fundamentals down for compiling, using datatypes and
properties, and testing, we move to executing Java and native programs from within Ant.
110 CHAPTER 4 TESTING WITH JUNIT

C H A P T E R 5

Executing programs

5.1 Why you need to run

external programs 111
5.2 Running Java programs 112
5.3 Starting native programs

with <exec> 124

5.4 Bulk execution with <apply> 130
5.5 Processing output 131
5.6 Limitations on execution 132
5.7 Best practices 132
5.8 Summary 133

We now have a build process that compiles and tests our Java source. The tests say th
e
code is good, so it is time to run it. This means that it is time for us to explore the
capabilities of Ant to execute external programs, both Java and native.

5.1 WHY YOU NEED TO RUN EXTERNAL PROGRAMS

In the Make tool, all the real functionality of the build comes from external pro-
grams. Ant, with its built-in tasks, accomplishes much without having to resort to
external code. Yet most large projects soon discover that they need to use external
programs, be they native code or Java applications.

The most common program to run from inside Ant is the one you are actually
building, or test applications whose role is to perform unit, system, or load tests on
the main program. The other common class of external program is the “legacy build
step”: some part of your software needs to use a native compiler, a Perl script, or just
some local utility program you need in your build.

When you need to run programs from inside Ant, there are two solutions. One
option, worthwhile if you need the external program in many build files, is to write a
custom Ant task to invoke the program. We will show you how to do this in chapter 19.
It is no harder than writing any other Java class, but it does involve programming, test-
ing, and documentation. This is the most powerful and flexible means of integrating
external code with Ant, and the effort is usually justified on a long project. We have often
111

written Ant task wrappers to our projects, simply because for an experienced Ant devel-
oper, this is a great way of making our programs easier to use from a build file.

The alternative to writing a new Ant task is simply to invoke the program from the
build file. This is the best approach if reuse is unlikely, your use of it is highly non-
standard, or you are in a hurry. Ant lets you invoke Java and native programs with rel-
ative ease. Not only can it run both types of applications as separate processes, Java
programs can run inside Ant’s own JVM for higher performance. Figure 5.1 illustrates
the basic conceptual model for this execution. Interestingly enough, many Ant tasks
work by calling native programs or Java programs. Calling the programs directly from
the build file is a simple first step toward writing custom tasks.

Whatever type of program you execute, and however you run it, Ant halts the build
until the program has completed. All console output from the program goes to the
Ant logger, where it usually goes to the screen. The spawned program cannot read in
input from the console, so programs that prompt the user for input cannot run. This
may seem inconvenient, but remember the purpose of Ant: manual and automated
builds. If user input is required, builds could not be automated. You can specify a file
that acts as input for native applications, although this feature is currently missing
from the Java execution path.

5.2 RUNNING JAVA PROGRAMS

As you would expect, Ant is good at starting Java programs. One of the best features
is the way that classpath specification is so easy. It is much easier than trying to write
your own batch file or shell script with every library manually specified; being able to
include all files in lib/**/*.jar in the classpath is a lot simpler.

The other way that Ant is good at Java execution is that it can run programs inside
the current JVM. It does this even if you specify a classpath through the provision of
custom classloaders. An in-JVM program has reduced startup delays; only the time to
load the new classes is consumed, and so helps keep the build fast. However, there are
a number of reasons why executing the code in a new JVM, “forking” as it is known
in Unix and Ant terminology, is better in some situations:

• If you do not fork, you cannot specify a new working directory.

• If you get weird errors relating to classloaders or security violations that go away
when you fork, it is probably because you have loaded the same class in two

Ant

<exec> task

Native
application

Java application
in own JVM

<java> task

Ant
classloader

Java application
inside ant

Figure 5.1

Ant can spawn native applications, while Java

programs can run inside or outside Ant's JVM.
112 CHAPTER 5 EXECUTING PROGRAMS

classloaders: the original Ant classloader and the new one. Either fork or track
down the errant JAR in the parent or child classloader and remove it.

• You cannot execute a JAR in the same JVM; you must fork instead. Alterna-
tively, you can specify the actual class inside to run, although then any JAR files
referenced in the manifest will not be loaded automatically.

• Memory hungry or leaky Java programs should run in their own JVM with an
appropriate memory size defined.

• Forking also lets you run code in a version of Java that is different from the one
you started with.

With all these reasons to fork, you might feel that it is not worth trying to run in the
same JVM, but there is no need to worry. Most programs run perfectly well inside the
Ant JVM, so well that it soon becomes a more convenient way of starting Java programs
than shell scripts or batch files, primarily because it makes setting up the classpath so
easy. It also only takes one attribute setting to move a program into its own JVM.

5.2.1 Introducing the <java> task

The name of the task to start Java programs is, not very surprisingly, <java>. It has
many options, and is well worth studying. We demonstrated it briefly in our intro-
ductory build file in chapter 2. Now it is time to study it in-depth. First, let’s look at
running our own code, by calling a routine to search over the index files we have
somehow created. The Java class to do this is simple, taking two arguments: the name
of an index directory and the search term. It then searches the index for all entries con-
taining the term. Listing 5.1 shows the entry point.

package org.example.antbook;

import org.example.antbook.common.Document;
import org.example.antbook.common.SearchUtil;

public class Search {

 public static void main(String args[]) throws Exception {
 if(args.length!=2) {
 System.out.println("search: index searchterm");
 System.exit(-1);
 }
 SearchUtil.init(args[0]);
 Document[] docs = SearchUtil.findDocuments(args[1]);
 for (int i=0; i < docs.length; ++i) {
 System.out.println((i + 1) + ": "
 + docs[i].getField("path"));
 }
 System.out.println("files found: "+docs.length);
 }
}

Listing 5.1 A Java main entry point to search an index for a search term
RUNNING JAVA PROGRAMS 113

This program is a typical Java entry point class. We validate our arguments, exiting
with an error code if they are invalid, and can throw an Exception for the run time
itself to handle. So let’s run it against an existing index:

 <target name="run-search" depends="compile">
 <echo>running a search</echo>
 <java classname="org.example.antbook.Search">
 <arg file="${index.dir}"/>
 <arg value="WAR"/>
 </java>
 </target>

We call the task with the name of the class we want to run. What is the output? First,
there is the whole compilation process, bringing the classes up to date when needed.
Then Ant reaches the target itself:

 [echo] running a search

BUILD FAILED
build.xml:504: Could not find org.example.antbook.Search.
 Make sure you have it in your classpath

We left out the classpath, and so nothing works. Let’s fix that now.

5.2.2 Setting the classpath

The <java> task runs with Ant’s classpath, in the absence of any specified classpath;
that of ant.jar and any other libraries in the ANT_HOME/lib directory, plus anything
in the CLASSPATH environment variable. For almost any use of the <java> task,
you should specify an alternate classpath. When you do so, the contents of the exist-
ing classpath other than the java and javax packages are immediately off-limits.
This is very different from <javac>, where the Ant run-time classpath is included
unless the build file says otherwise.

Adding classpaths is easy: you just fill out the <classpath> element with a path
or the classpath attribute with a simple path in a string. If you are going to use the
same classpath in more than one place, it is always better to set the classpath first and
then refer to it using the classpathref attribute. This is simple and convenient to
do. One common practice is to extend the compile time classpath with a second class-
path that includes the newly built classes, either in archive form or as a directory tree
of .class files. This is what we do, declaring two classpaths, one for compilation, the
other for execution:

<path id="compile.classpath">
 <pathelement location="${antbook-common.jar}"/>
 <pathelement location="${lucene.jar}"/>
</path>

<path id="run.classpath">
 <path refid="compile.classpath"/>
114 CHAPTER 5 EXECUTING PROGRAMS

 <pathelement location="${build.dir}/classes"/>
</path>

The first classpath includes the libraries we depend upon to build, and the second
appends the code just written. The advantage of this approach is ease of maintenance;
any new library needed at compile time automatically propagates to the run time
classpath.

With the new classpath defined, we can modify the <java> task and run our program:

<java
 classname="org.example.antbook.Search"
 classpathref="run.classpath"
 >
 <arg file="${index.dir}"/>
 <arg value="WAR"/>
</java>

The successful output of this task delivers the results we want: all references to the
word “WAR” in the Ant documentation.

run-search:

 [echo] running a search
 [java] 1: C:\jakarta-ant\docs\manual\CoreTasks\war.html
 [java] 2: C:\jakarta-ant\docs\manual\coretasklist.html
 [java] 3: C:\jakarta-ant\docs\manual\CoreTasks\unzip.html
 [java] 4: C:\jakarta-ant\docs\manual\CoreTasks\ear.html
 [java] 5: C:\jakarta-ant\docs\manual\OptionalTasks\jspc.html
 [java] 6: C:\jakarta-ant\docs\manual\CoreTasks\overview.html
 [java] 7: C:\jakarta-ant\docs\ant_in_anger.html
 [java] 8: C:\jakarta-ant\docs\external.html
 [java] files found: 8

BUILD SUCCESSFUL
Total time: 7 seconds.

5.2.3 Arguments

The most important optional parameter of the <java> task is the nested argument
list. You can name arguments by a single value, a line of text, a file to resolve prior to
use in the argument list, or a path. You specify these in the <arg> element of the
task, which supports the four attributes listed in table 5.1. Ant passes the arguments
to the Java program in the order they are declared.

Table 5.1 The attributes of Java’s <arg> element. Each <arg> may use only one at a time.

<arg> attribute Meaning

value String value

file File or directory to resolve to an absolute location before invocation

line Complete line to pass to the program

path A string containing files or directories separated by colons or semicolons
RUNNING JAVA PROGRAMS 115

We have used the first two of these already, one to provide a string to search on:

<arg value="WAR"/>

This is the simplest argument passing. Any string can be passed in; the task will for-
ward the final string to the invoked class. Remember to escape XML’s special symbols,
such as > with > and other special characters with their numeric equivalents, such
as
 for the newline character.

The other argument option we used specified the name of the index directory:

<arg file="${index.dir}"/>

As with <property location> assignments, this attribute can take an absolute or
relative path. Ant will resolve it to an absolute location before passing it down.

An alternative approach would have been to create the entire argument list as a sin-
gle string, then pass this to the task

<arg line="${index.dir} WAR" />

This would have let us pass an arbitrary number of arguments to the program. How-
ever the file arguments would not have been resolved and it would have been impos-
sible to use a search term containing a space without surrounding it by single quote
characters:

<arg line="${index.dir} 'search term'" />

For these reasons, we do not encourage its use in normal situations. Certainly using
the <arg line> option for specifying arguments is risky. The argument-by-argu-
ment specification is more detailed, providing more information about the type of
arguments to Ant, and to readers.

The final option, path, takes a path parameter, generating a single argument from
the comma- or colon-separated file path elements passed in

<arg path="${env.ProgramFiles};../bin" />

As with other paths in Ant, relative locations are resolved and Unix or MS-DOS
directory and path separators can be used. The invoked program will receive a path as
a single argument containing resolved file names with the directory and path separa-
tors appropriate to the platform.

5.2.4 Defining system properties

System properties are those definitions passed to the Java command line as -Dprop-
erty=value arguments. The nested <sysproperty> element lets you define
properties to pass in. At its simplest, it can be used as a more verbose equivalent of the
command line declaration, such as when defining the socks server and port used to
get through a firewall:

<sysproperty key="socksProxyHost" value="socks-server"/>
<sysproperty key="socksProxyPort" value="1080"/>
116 CHAPTER 5 EXECUTING PROGRAMS

There are two alternate options instead of the value parameter: file and path.
Just as with arguments, the file attribute lets you name a file; Ant resolves relative
references to pass in an absolute file name, and convert file separators to the native
platform. The path attribute is similar, except that you can list multiple files

<sysproperty key="configuration.file" file="./config.properties"/>
<sysproperty key="searchpath"
 path="build/classes:lib/j2ee.jar" />

5.2.5 Running the program in a new JVM

As we stated at the beginning of section 5.1, the <java> task runs the program
inside the current JVM unless the fork attribute is set to true. This can reduce the
startup time of the program. As an experiment, we can run the search in a new JVM:

<target name="run-search-fork" depends="create-jar">
 <echo>running a search</echo>
 <java
 classname="org.example.antbook.Search"
 classpathref="run.classpath"
 fork="true">
 <arg file="${index.dir}"/>
 <arg value="WAR"/>
 </java>
</target>

What difference does it make to the performance? None that we can measure:

run-search-fork:
 [echo] running a search
 [java] 1: C:\jakarta-ant\docs\manual\CoreTasks\war.html
 [java] 2: C:\jakarta-ant\docs\manual\coretasklist.html
 [java] 3: C:\jakarta-ant\docs\manual\CoreTasks\unzip.html
 [java] 4: C:\jakarta-ant\docs\manual\CoreTasks\ear.html
 [java] 5: C:\jakarta-ant\docs\manual\OptionalTasks\jspc.html
 [java] 6: C:\jakarta-ant\docs\manual\CoreTasks\overview.html
 [java] 7: C:\jakarta-ant\docs\ant_in_anger.html
 [java] 8: C:\jakarta-ant\docs\external.html
 [java] files found: 8

BUILD SUCCESSFUL
Total time: 7 seconds.

We repeated this experiment a few times; while there was no apparent difference in
overall build file execution time between the forked and unforked options, rerunning
the build itself did speed the process up by a second or so. We conclude that for this
problem, on the test system having data files in file system cache mattered more than
whether we chose to run in the same or a different JVM. The limited granularity of
the timer, one second, will hide small differences in this particular example. Different
programs with different uses may not behave the same, and even our search example
will have different times on another platform.
RUNNING JAVA PROGRAMS 117

Based on this test, we don’t see a compelling reason not to fork Java programs
inside a build file. If you are concerned with the performance of your own build files,
you will have to conduct a test and make up your own mind. A good strategy could
be to always fork unless you are trying to shave off a few seconds from a long build
process, or when you are running many Java programs in your build.

5.2.6 Setting environment variables

You can set environment variables in a forked JVM, using the nested element <env>.
The syntax of this element is identical to that of the <sysproperty> element intro-
duced in section 5.1.4.

Because it is so hard to examine environment variables in Java, they are rarely used
inside a pure Java application. Unless you are using environment variables to control
the Java run time itself or configure a native program started by the Java program you
are forking, there is no real reason to use this element.

5.2.7 Controlling the new JVM

You can actually choose a Java run time that is different from the one hosting Ant by
setting the command of the JVM with the jvm attribute. This is useful if you need to
run a program under an older JVM, such as a test run on a Java 1.1 system, or perhaps
a beta version of a future Java release. One JVM not well supported is Microsoft’s
jview.exe, as this one has different command parameters from the standard run
times. However, nobody has found this much of a limitation, judging by the com-
plete absence of bug reports on the matter.

As well as specifying the JVM, it is also possible to declare parameters to control
it. The most commonly used option is the amount of memory to be used, which is
so common that it has its own attribute, the maxmemory attribute, and some behind-
the-scenes intelligence to generate the appropriate command for Java1.1 and Java1.2
systems. The memory option, as per the java command, takes a string listing the
number of bytes (4096), kilobytes (64), or megabytes (512) to use. Usually the mega-
byte option is the one to supply.

Other JVM options are specific to individual JVM implementations. A call to
java -X will list the ones on your local machine. Although nominally subject to
change without notice, some of the -X options are universal across all current JVMs.
The memory size parameter is one example. Incremental garbage collection
(-Xincgc) is another one you can expect to find on all of Sun’s recent Java run times.
When you start using more advanced options (such as selecting the HotSpot server
VM with -server and adding more server specific commands), JVM portability is
at risk. If you are setting JVM options, make sure to put the JVM argument assign-
ment into a property so that it can be overridden easily:

<target name="run-search-jvmargs" depends="create-jar">
 <property name="Search.JVM.extra.args" value="-Xincgc"/>
 <java
118 CHAPTER 5 EXECUTING PROGRAMS

 classname="org.example.antbook.Search"
 classpathref="run.classpath"
 fork="true"
 maxmemory="64m">
 <jvmarg line="${Search.JVM.extra.args}"/>
 <arg file="${index.dir}"/>
 <arg value="WAR"/>
 </java>
</target>

You supply generic JVM arguments using <jvmarg> elements nested inside the
<java> task. The exact syntax of these arguments is the same as for the <arg> ele-
ments. We set the line in the previous example, as that makes it possible for a single prop-
erty to contain a list of arguments; if the build file is explicitly setting many JVM
arguments, then the alternate means of providing individual arguments is probably better.

The final option is to specify the starting directory. This lets you use relative file
references in your code, and have them resolved correctly when running. It is usually
a bad thing for programs to be so dependent on their location. If only the location of
files passed in as arguments needs to be specified, then the <arg file> element lets
you specify relative files for resolution by Ant itself. If the program uses relative file
access to load configuration data, then you have no such workaround, especially if the
code is not yours. If it is your program, then consider adding a directory argument
to control the directory to load configuration information, or store data within the
classpath instead, and use getClass.getResourceAsStream to read in configu-
ration data from the classpath.

None of the JVM options has any effect when fork="false"; only a warning
message is printed. So if any attempt to change them does not seem to work, look
closely at the task declaration and see if forking needs to be turned on. Using Ant’s
-verbose flag can be helpful to see more details as well.

5.2.8 Handling errors with failonerror

Although the core build steps such as compile and JAR must complete for a build to
be viewed as successful, there are other tasks in the build process whose failure is non-
critical. As an example, emailing a progress report does not have to break the build
just because the mail server is missing, nor should many aspects of deployment, such
as stopping a web server.

Several Ant tasks have a common attribute, failonerror, which lets you control
whether the failure of a task should break the build. Most tasks have a default of failon-
error="true", meaning any failure of the task is signalled as a failure to the Ant run
time, resulting in the BUILD FAILED message which all Ant users know so well.

The <java> task supports this attribute, in a new JVM only, to halt the build if
the return value of the Java program is non-zero. When an in-JVM program calls
System.exit(), the whole build stops suddenly with no BUILDFAILED message
because Java has stopped running: the call exits Ant as well as the program. There is
RUNNING JAVA PROGRAMS 119

no clear solution for this in the Ant 1.x codebase. If you use a security manager to
intercept the API call, other parts of the program will behave oddly, as the java.*
and javax.* packages will be running under a different security manager.

To return to our example, we can not only set the failonerror flag, we can gen-
erate an error by sending an incorrect number of arguments to the program, for exam-
ple by removing the search term:

<target name="run-search-invalid" depends="compile">
 <echo>running a search</echo>
 <java
 classname="org.example.antbook.Search"
 classpathref="run.classpath"
 failonerror="true"
 fork="true">
 <arg file="${index.dir}"/>
 </java>
</target>

The result of calling this target is an error message from our program followed by fail-
ure of the build:

run-search-invalid:
 [echo] running a search
 [java] search: index searchterm
BUILD FAILED
C:\AntBook\app\tools\build.xml:532: Java returned: -1

Handling error failures, as opposed to ignoring them, is a complex problem. This is
because Ant was designed to build programs, where either the build succeeded or it
failed completely. Recovery from partial failure becomes important when dealing
with deployment and installation, which are areas that Ant has grown to cover only
over time. We will review some of the details of logging and reporting errors in
chapter 20.

5.2.9 Executing JAR files

As most Java developers know, a JAR file can list in its manifest the name of a class to
use as an entry point when the JAR is started with java -jar on the command line.
Ant can run JAR files similarly, but only in a forked JVM. This is because the process
of executing a JAR file also loads files listed on the classpath in the manifest, and
other details related to Java “extensions.” To tell the task to run a JAR file, set the jar
attribute to the location of the file. For example, to run the search against a jar, use

<target name="run-search-jar" depends="create-jar">
 <echo>running a search</echo>
 <java
 jar="${jarfile.path}"
 classpathref="run.classpath"
 failonerror="true"
 fork="true">
120 CHAPTER 5 EXECUTING PROGRAMS

 <arg file="${index.dir}"/>
 <arg value="WAR"/>
 </java>
</target>

This example target does not actually work, because we have not set the manifest up
correctly:

run-search-jar:
 [echo] running a search
 [java] Failed to load Main-Class manifest attribute from
 [java] C:\AntBook\app\tools\dist\antbook-tools-1.1.jar
BUILD FAILED
C:\AntBook\app\tools\build.xml:548: Java returned: 1

At least we can see that failure to run a Java program raises an error that the failon-
error attribute causes Ant to pick up. We will have to wait until we explore the
<jar> task in chapter 6 to create a JAR file with a manifest which enables the JAR to
be run this way.

5.2.10 Calling third-party programs

You can, of course, use the task to run programs supplied by third parties. For exam-
ple, imagine that part of our deployment process consists of stopping the web server,
specifically Jakarta Tomcat 3.x. This is quite a common action during deployment; to
deploy from the build file we must automate every step of deployment. Fortunately,
most web servers provide some means or other to do this. We have extracted the
Tomcat commands from its startup scripts and made a <java> task from it:

<property environment="env"/>

<target name="stop-tomcat"
 description="stop tomcat if it is running">
 <java
 classname="org.apache.tomcat.startup.Tomcat">
 <classpath>
 <fileset dir="${env.TOMCAT_HOME}/lib">
 <include name="**/*.jar"/>
 </fileset>
 </classpath>
 <arg value="-stop"/>
 <sysproperty key="tomcat.home" value="${env.TOMCAT_HOME}"/>
 </java>
</target>

To run this task, we must not only name the entry point, we must set up the classpath
to include everything in the applications library directory, and name its home direc-
tory in a system property that we pass down. We do that by turning all the environ-
ment variables into Ant properties and then extracting the one we need.

Get the environment variables

Pass the Tomcat
home directory down
RUNNING JAVA PROGRAMS 121

When running the target, Ant will stop Tomcat if it is present and the library files
are where they are supposed to be. The output of this revised build should be one of
three responses. The first indicates that the Tomcat stopped successfully:

 [java] Stopping Tomcat.
 [java] Stopping tomcat on :8007 null

BUILD SUCCESSFUL

The second displays a message that means that there was no version of Tomcat run-
ning locally to stop. This is not an error as far as the build is concerned.

 [java] Stopping Tomcat.
 [java] Stopping tomcat on :8007 null
 [java] Error stopping Tomcat with Ajp12 on
 nordwand/192.168.1.2:8007
 java.net.ConnectException: Connection refused: connect

BUILD SUCCESSFUL

A third message is possible, one that indicates that even though the classpath was set,
because Tomcat is not installed, or because its environment variable is not configured
correctly, the classpath could not be created as the lib directory was missing:

BUILD FAILED

C:\AntBook\callingotherprograms\java.xml:52:
 C:\AntBook\callingotherprograms\${env.TOMCAT_HOME}\lib not found.

To have a more robust build process, the build file needs to be resistant to such non-
critical failures. In this particular example, the simplest method is to check that the
environment variable is set before running the task. We do this by making the target
conditional.

As covered in section 3.13.1, Ant skips conditional targets if its condition is not
satisfied, yet it still executes predecessors and dependents. To make the Tomcat stop
target conditional on Tomcat being present, we check for property env.
TOMCAT_HOME.

Figure 5.2 shows how conditional targets can be included in a build process. The
project loads the current environment variables, so any task can declare that they are
conditional on an environment variable being present or absent. The conditional
build-and-deploy target depends on the copy-to-tomcat target, which
depends on the unconditional build target and the conditional stop-tomcat tar-
get. If Tomcat is present, all targets execute in the order determined by their depen-
dencies, probably build, stop-tomcat, copy-to-tomcat, build-and-
deploy. If env.TOMCAT_HOME is undefined, then Ant skips the conditional tasks to
produce an execution order of build, build-and-deploy. This stops the build
from breaking just because that system lacks a web server.
122 CHAPTER 5 EXECUTING PROGRAMS

5.2.11 Probing for a Java program before calling it

It is easy to look for a Java class on the classpath before attempting to call it. Doing so
makes it possible to print a warning message or even fetch a JAR file from a remote
server. For the Tomcat problem, we could use the <available> task, or better yet,
the <condition> task, which can combine an <available> test with a check for
the environment variable:

<target name="validate-tomcat"
 <condition property="tomcat.available">
 <and>
 <isset property="env.TOMCAT_HOME"/>
 <available
 classname="org.apache.tomcat.startup.Tomcat">
 <classpath>
 <fileset dir="${env.TOMCAT_HOME}/lib">
 <include name="**/*.jar"/>
 </fileset>
 </classpath>
 </available>
 </and>
 </condition>
 <echo>tomcat.available=${tomcat.available}</echo>
</target>

Here we have specified that the property tomcat.available must be set to true
only if the env.TOMCAT_HOME is defined, and the class we intend to call, org.
apache.tomcat.startup.Tomcat is on the classpath under the TOMCAT
directory. Because the <and> element of the <condition> task is short-cutting, it
does not run the second test if the first one fails, which is good, as the classpath is not
going to be valid when env.TOMCAT_HOME is undefined.

The test can be used for a conditional task, or, if a program must be present, the
conditional <fail> task can be used to halt the build immediately. For the target in
section 5.1.10, we choose simply to skip the process if Tomcat is missing, by making
the target depend upon the validation target, and conditional on the tomcat.
available property:

<target> build-and-deploy

<project>
<property environment="env"/>

<target> build
<javac>

<target> stop-tomcat
if="env.TOMCAT_HOME"

<java>

<target> copy-to-tomcat
if="env.TOMCAT_HOME"

<copy>

Figure 5.2

How to combine conditional deployment

tasks into a build and deploy process. The

<property declarations> in the build

file at the same level as the the <target>

declarations beneath project are evaluated

before any target, so all targets are implictly

dependent upon them. Here that ensures

that the environment has been copied to

properties before any target is executed.
RUNNING JAVA PROGRAMS 123

<target name="stop-tomcat"
 if="tomcat.available"
 depends="validate-tomcat"
 description="stop tomcat if it is running">
 <java
 classname="org.apache.tomcat.startup.Tomcat">
 <classpath>
 <fileset dir="${env.TOMCAT_HOME}/lib">
 <include name="**/*.jar"/>
 </fileset>
 </classpath>
 <arg value="-stop"/>
 <sysproperty key="tomcat.home" value="${env.TOMCAT_HOME}"/>
 </java>
</target>

This practice of probing for classes and making parts of the build process conditional
on their presence is very powerful: it helps you write a build file that integrates with
components that are not guaranteed to be on all developers’ desks.

5.2.12 Setting a timeout

Ant 1.5 extended the <java> task with a timeout attribute that lets you specify the
maximum time in milliseconds that a spawned Java application can run. Only use
this attribute in a forked JVM, as the stability of Ant itself may be at risk after it forc-
ibly terminates the timed out <java> thread.

We will look at timeouts shortly in section 5.3.2, in connection with <exec>.

5.3 STARTING NATIVE PROGRAMS WITH <EXEC>

Java execution does not give a build file access to the full capabilities of the underly-
ing OS, or native platform build steps, unless the Java program calls a native pro-
gram. Actually, almost all the Ant source code control tasks do this, as do some
others. You can call native programs from inside Ant, although in our personal expe-
rience, this is less common than running Java programs. Native programs are less por-
table, so to support in a cross-platform manner custom tasks can provide a portable
wrapper. Yet, there are many commands that can be useful in a small project, from
mounting a shared drive to running a native installer program. Ant can call these with
the parameters you desire.

Ant lets you execute native programs through a task that is very similar to the
<java> task. The moment you do so, you are going to create portability problems.
If the command is something built into the operating system, such as the call ln -s
to create a symbolic link, then the execution stage is bound to an operating system
family, in this case Unix. If the native program is portable, but requires manual instal-
lation, then the build may be cross-platform, though it needs to handle the case that
the native program is missing. At the very least, you should document these require-
ments, so that whoever tries to build your program without you can find out what
124 CHAPTER 5 EXECUTING PROGRAMS

they need. It is possible to go one step further and have the build file probe for the
existence of the program before running it. This is a powerful trick that, like most
maintenance-related coding, gets most appreciated long after the effort has been
expended.

To run an external program in Ant, use the <exec> task. It lets you perform the
following actions:

• Specify the name of the program and arguments to pass in.

• Name the directory in which it runs. There is a lot of platform-specific work
behind the scenes here to support Java 1.2 and earlier.

• Use the failonerror flag to control whether application failure halts the build.

• Specify a maximum program duration, after which a watchdog timer will kill
the program. The task is deemed to have failed at this point, but at least the
build will terminate, rather than hang. This is critical for automated builds.

• Store the output into a file or a property.

• Specify environment variables that will be set prior to calling the program from Java.

One thing that the task does not do that would be convenient is to use an OsFamily
flag to restrict operation to an operating system family, such as Windows or Unix.
Instead, you have to name every platform supported, which does not work so well for
targeting Unix. The <condition> task does have an OsFamily test that you can
use for clearer operating system tests, but then the whole target needs to be made
conditional.

It is somewhat bad practice to tie an <exec> call to a particular operating system,
unless the call is definitely an underlying operating system feature. The flaw in tying
a call to an operating system is that if a different platform implements the appropriate
functionality, the os attribute will stop it from being called. It is much better to probe
for the program and call it, if it exists. We will cover that technique shortly.

To run a program with <exec>, the syntax is similar to <java>, except that you
name an executable rather than a Java classname. For example, one use of the
task would be to create a symbolic link to a file, for which there is no intrinsic Java
command:

<exec executable="ln">
 <arg value="-s"/>
 <arg location="execution.xml"/>
 <arg location="symlink.xml"/>
</exec>

You do not need to supply the full path to the executable if it is on the current path.
You can use all the options for the <arg> nested element as with the <java> task, as
covered in section 5.3.1.
STARTING NATIVE PROGRAMS WITH <EXEC> 125

5.3.1 Setting environment variables

Just as the <java> task supported system properties as nested elements, the <exec>
task allows environment variables to be set, using the <env> child element. This has
syntax identical to that of the <sysproperty> element of <java>, apart from the
different element name. One extra feature of <exec> is that you can also choose
whether or not the program inherits the current environment. Usually it makes sense
to pass down all current environment settings, such as PATH and TEMP, but some-
times you may want absolute control over the parameters:

<exec executable="preprocess"
 newenvironment="true" >
 <env key="PATH" path="${dist.dir}/win32;${env.PATH}"/>
 <env key="TEMPLATE" file="${src.dir}/include/template.html"/>
 <env key="USER" value="self"/>
</exec>

Even if the existing environment is passed down, with newenvironment=
"false" (which is the default) any environment variables that are explicitly defined
will override those passed in. In this example, there was no real need to request a new
environment unless some other environment variable could have affected the behav-
ior of the executable.

5.3.2 Handling errors

The <exec> task is another of the Ant tasks which has failonerror="false"
by default. This is one of those historical accidents: there was no return value check-
ing originally, so when someone implemented it, the check had to be left as false to
avoid breaking existing builds. At least the Java and native execution tasks have a con-
sistent default, even if it is different from most other tasks.

It is important when using <exec> to state when you want failure on an error, and
to avoid confusing future readers of your build file, it is wise to declare when you don’t
want to fail on an error. You should always declare failonerror as true or false,
ignoring the default value entirely.

The failonerror parameter does not control how the system reacts to a failure
to execute the program, which is a different problem. In Ant 1.5, <exec> added a sec-
ond failure test, failIfExecuteFails, which controls whether or not actual exe-
cution failures are ignored. If this seems confusing, it is for those historical reasons
again. After someone1 noticed that the failonerror flag did not catch execution
failures, he wrote a patch. Because the default of failonerror was false, it was sud-
denly likely that existing builds would get into trouble if they did not want to process
the return value of the program, but did need to know if the program failed. Hence,
the new attribute.

1 Steve says: I was the one who noticed it and put the patch in. This bit is my fault.
126 CHAPTER 5 EXECUTING PROGRAMS

5.3.3 Handling timeouts

Suppose your external program sometimes hangs, perhaps when talking to a remote
site, and you don’t want your build to hang forever as a result. You may want it to fail
explicitly, or perhaps you can even recover from the failed execution. Either way, you
need to kill the task after it runs out of time. To solve this problem, the <exec> task
supports a timeout attribute, which takes a number in milliseconds. It’s easy to for-
get the unit and assume that it takes seconds: if your <exec> times out every run,
you may have made the same mistake.

If this timeout attribute is set, then a watchdog timer starts running, which kills
the external program if it takes longer than the timeout. The watchdog does not
explicitly tell the run time that the timeout occurred, but then the return code of the
execution is set to the value “1”. If failonerror is set, then this will break the build;
if not, it will be silently ignored.

<target name="sleep-fifteen-seconds" >
 <echo message="sleeping for 15 seconds" />
 <exec executable="sleep"
 failonerror="true"
 timeout="2000">
 <arg value="15" />
 </exec>
</target>

Running this target produces an error when the timeout engages:

sleep-fifteen-seconds:
 [echo] sleeping for 15 seconds
 [exec] Timeout: killed the sub-process

BUILD FAILED

execution.xml:18: exec returned: 1

If your external program is set to pass its result into a property and failonerror is
off, then there is no way of differentiating between a legitimate result of value 1 and a
timeout. Be careful when using this combination of options.

Note that if you really need to insert a pause into a build, the <sleep> task works
across all platforms.

5.3.4 Making and executing shell commands

A common problem for an Ant beginner is that their build file issues a native com-
mand that works on the console but not in the build file. This can happen whenever
the command only works if it is processed by the current command line interpreter:
the current shell on Unix, and usually CMD.EXE or COMMAND.COM on Win-
dows. This means that it contains shell-specific wild cards or a sequence of one or
more shell or native commands glued together using shell parameters, such as the
pipe (|), the angle bracket (>), double angle brackets (>>), and the ampersand (&).
STARTING NATIVE PROGRAMS WITH <EXEC> 127

For example, one might naively try to list the running Java processes and save them
to a file by building a shell string, and use this in <exec> as a single command, via
the deprecated command attribute:

<exec command="ps -ef | grep java > processes.txt"
 failonerror="false"/>

This will not work. As well as getting a warning for the use of the command attribute,
the whole line needs to be interpreted by a shell. Instead, you will probably see a
usage error from the first program on the line:

[exec] The command attribute is deprecated.
 Please use the executable attribute and nested
 arg elements.
[exec] ps: error: Garbage option.
[exec] usage: ps -[Unix98 options]
[exec] ps [BSD-style options]
[exec] ps --[GNU-style long options]
[exec] ps --help for a command summary
[exec] Result: 1

You could set vmlauncher="false" to ensure that the program is executed
through the Ant support scripts, rather than any launcher code built directly into the
Java libraries. This may work. However, the method that really works is to start the
shell as the command, and pass in a string containing the parameters. The Unix sh
program does let you do this with its -c command but it wants the commands it has
to interpret to follow in a quoted string. XML does not permit double quotes inside a
double quote–delimited literal, so you must use single quotes, or delimit the whole
string in the XML file with single quotes:

<exec executable="sh"
 failonerror="true"/>
 <arg line="-c 'ps -ef | grep java > processes.txt'"
 />
</exec>

A command that uses both single and double quotes needs to use the " notation
instead of the double quote. The simple example shown does not have this problem.

The Windows NT command shell CMD behaves moderately the same as the Unix
one, except there is no ps command installed by default, so a more contrived example
will be used:

<exec executable="cmd"
 failonerror="true"/>
 <arg line="/c echo hello > hello.txt"
 />
</exec>

For Windows NT and successors, including Windows XP, you do not usually need to
quote the command passed to the shell. The NT command line interpreter has some
complex rules about quotes, which you can see if you type help cmd. In particular,
128 CHAPTER 5 EXECUTING PROGRAMS

there is one option /s to turn on a behavior which matches the Unix style more. If
you do want to get into handing off commands to the Windows shell on a regular
basis, it probably merits reading this help page and experimenting to understand its
exact behavior.

Windows 9x, from Windows 95 to Windows Me, uses command.com as the com-
mand interpreter. It has the same basic syntax as the NT cmd shell, so you can switch
from one to the other using a <condition> test prior to calling the shell. Alterna-
tively, and relying on the fact that Windows 2000 and Windows XP both ship with
a version of command.com for backwards compatibility support, you could write a
shell command that works under that shell for both the NT and 9x branches of win-
dows, and not bother with testing. There is still the risk that the different platforms
will behave differently.

Another tactic for supporting not just Windows 9x and NT in a uniform manner,
but also to unify the build file with the Unix support, is to use the cygwin port of the
GNU command line tools to Win32. This gives the Win32 platforms a Unix-like shell
and the programs to accompany it.

Finally, remember that Ant runs on many other platforms, each with its own native
code model and shell equivalent. Targeting Windows NT and Unix covers a lot of
developer platforms, but not all. If the build file is robust and fails gracefully in the
absence of native applications and shells, then people will be able to use those portions
that still work on their system.

5.3.5 Probing for a program before calling it

Sometimes if a program is not available, you can skip a step in the build or fail with a
helpful error. If you know where the program must be, then an <available> call
can test for it. But what if the only requirement is that is must be on the path? The
<available> task can search a whole file path for a named file, so probing for a
program’s existence is a simple matter of searching for its name down the environ-
ment variable PATH. Of course, in a cross-platform manner, nothing is ever simple;
MS-DOS and Unix systems name executables differently, and sometimes even the path
variable. Taking these into account, a probe for a file becomes a multicondition test.
The test needs to look for the executable with and without the .exe extension, and the
MS-DOS/Windows executable must be searched across two options for the environ-
ment variable, Path and PATH:

<target name="probe_for_gcc" >
 <condition property="found.gcc">
 <or>
 <available file="gcc" filepath="${env.PATH}" />
 <available file="gcc.exe" filepath="${env.PATH}" />
 <available file="gcc.exe" filepath="${env.Path}" />
 </or>
 </condition>
</target>
STARTING NATIVE PROGRAMS WITH <EXEC> 129

You can then write dependent targets that fail if the program is missing, using the
<fail> task, or merely bypass an execution stage:

<target name="compile_cpp" depends="verify_gcc" if="found.gcc">
 <exec executable="gcc" ... />
</target>

We sometimes use this in our build files to probe for programs. In chapter 15, for
example, we will look for the C# compiler, CSC.EXE before trying to compile a C#
program.

5.4 BULK EXECUTION WITH <APPLY>

What if you have a set of files that you want to pass in as parameters to some native
program? How can you do it? If you know in advance the list of files, you can just
repeat the task, but that makes maintenance worse. You could use a special task
<antcall> to call targets dynamically; this complex task has not been covered yet
because it has many subtle issues. For the special problem of passing a list of files to
an external executable, there is a better solution: <apply>. This task takes a fileset
and hands it off to the named application, either in one go or one at a time.

Apply is implemented as a subclass of <exec>, so all the attributes of that task can
be used with <apply>, with the additional feature of bulk execution. Let’s start with
an example. Suppose we have a native program that converts XML files to PDF, which
takes two command-line parameters: the path to an XML file, and a path to the result-
ant PDF file. Before we go crazy and accidentally run our program destructively, let’s
first just have it output to the screen what it would do. This is a nice way to develop
the use of <apply> in your build files so that you can see what it’s going to, giving
you the chance to tweak the parameters.

<apply executable="cmd"
 dest="docs">
 <arg line="/c echo"/>
 <arg value="convert"/>
 <srcfile/>
 <targetfile/>
 <fileset dir ="." includes="*.xml"/>
 <mapper type="glob" from="*.xml" to="*.pdf"/>
</apply>

We are running on a Windows platform, and use the built-in echo command. We
must set our executable to cmd for echo to work properly, and the /c switch causes
the command shell to exit after echo completes. Our output, run on a directory with
several XML files, is:

 [apply] convert C:\AntBook\Sections\Learning\callingotherprograms\apply.xml
C:\AntBook\Sections\Learning\callingotherprograms\docs\apply.pdf
 [apply] convert C:\AntBook\Sections\Learning\callingotherprograms\execution.
xml C:\AntBook\Sections\Learning\callingotherprograms\docs\execution.pdf
 [apply] convert C:\AntBook\Sections\Learning\callingotherprograms\java.xml C
130 CHAPTER 5 EXECUTING PROGRAMS

:\AntBook\Sections\Learning\callingotherprograms\docs\java.pdf
 [apply] convert C:\AntBook\Sections\Learning\callingotherprograms\probes.xml
 C:\AntBook\Sections\Learning\callingotherprograms\docs\probes.pdf
 [apply] convert C:\AntBook\Sections\Learning\callingotherprograms\shells.xml
 C:\AntBook\Sections\Learning\callingotherprograms\docs\shells.pdf

For now, all it did was display the command that we want executed, but did not actu-
ally execute it. We used a nested <mapper> to specify the name conversion from
source to target. The <srcfile> and <targetfile> elements are placeholders
that define where in the argument list the source and target names should appear. All
the standard <exec> <arg> variants are allowed. The dest attribute defines the
directory used for generating the mapped target file name. The nice thing about
<apply> is its implicit dependency checking. If the target file is newer than the
source file, then it is skipped. This is roughly equivalent to Make’s dependency check-
ing behavior. If you do not want this dependency checking, you must delete the tar-
get files first, or simply not provide a mapper.

Once we are satisfied with the echo output and see that it will be executing the
desired command line for each file, we move the convert to the executable
attribute and remove the /c echo argument and we are in business.

Note that the parallel option of this task means “pass all files in one go,” rather
than “execute this task many times in parallel.” There is a difference: only one copy
of the program will be called in parallel mode. In that case the created command
would be one convert call, with all the source XML files listed first, followed by all
the target PDF files.

5.5 PROCESSING OUTPUT

All three of the execution tasks, <java>, <exec>, and <apply>, let you save the
output of the execution to a file, using the output parameter. You can feed this file
into another program, or an Ant task. Two of the tasks, <exec> and <apply>, can
also save the value of the call to a property, which can then be used for expansion into
other task parameters. This is a powerful facility, if used sparingly. For example, you
could email the results of a build stage to somebody:

<exec executable="unregbean" output="beans.txt" >
 <arg value="-d"/>
</exec>
<mail from="build" tolist="operations"
 subject="list of installed beans for ${user.name}"
 failonerror="false"
 files="beans.txt"/>

Such emailing of generated files and reports is a common feature of automated build
and test systems, as only the salient points of the build success or where and how it
failed need to be reported.
PROCESSING OUTPUT 131

5.6 LIMITATIONS ON EXECUTION

You cannot (currently) spawn an application that outlives Ant, although a spawned
process can start a new program that can then outlive the build. This is an ongoing
issue related to JVM implementations.

All console output in a subprocess goes to the Ant logging system; all console input
is also subverted. For Java applications, this means System.out, System.in, and
System.err are under Ant’s control, as are stdin, stdout, and stderr for native
applications. You cannot handle prompts for input at the console. If the application
is waiting for user input, Ant just hangs.

Finally, there is currently no Java equivalent of <apply>. This is a sensitive issue:
it is mostly deliberate; the intent is to force you to write your own task instead.

5.7 BEST PRACTICES

This chapter has demonstrated that while it is simple to call other programs from
Ant, it soon gets complicated as you try to produce a robust, portable means of exe-
cuting external applications as part of the build process.

Java programs are easy to work with, as the classpath specification and JVM
options make controlling the execution straightforward. In-JVM execution has a faster
startup, but external execution is more trouble-free, which makes it the wise choice for
any complex program.

For Java programs to be callable from Ant, they should be well documented. Ide-
ally, they should have a library API as well as a main entry point. The API enables
Java programs to use the external program as a set of classes to use, rather than just as
something to run once. This makes migration to a custom task much easier. The pro-
grams should let you set the base directory for reading in relative information, or have
parameters setting the full paths of any input and output files used. One feature that
Ant does not support in a Java or native program is user input. If a program needs any
user intervention then it does not work in an automated build process.

When calling a Java program, we recommend that you:

• Set the arguments using one <arg> entry per parameter, instead of one entry
for the whole line

• Use <arg file> whenever you pass in a file parameter, for better portability

• Explicitly state the classpath, rather than rely on the Ant classpath

• Explicitly state the failonerror behavior when fork is set

• Consider probing for classes being present using the <available> task

• Implement a custom task if the integration with Ant is getting very complex

Using <exec> to call external applications or glue together commands in the local
shell is a more complex undertaking, as you are vulnerable to all the behavior of the
132 CHAPTER 5 EXECUTING PROGRAMS

underlying operating system. It is very hard to write a portable build file that uses
native programs. Our recommendations for native programs are very similar to those
of the Java recommendations:

• Set the arguments using one <arg> entry per parameter, instead of one entry
for the whole line.

• Use <arg file> whenever you pass in a file parameter.

• Explicitly state the failonerror behavior.

• Probe for programs using a <condition> task.

• Test on more than one platform to see what breaks.

• Test on a system that does not have the program to see what happens. This can
be your own system if you just rename the native program or change the path.

• Implement a custom task if the integration with Ant is getting very complex.

The final recommendation is to remember that Ant is not a scripting language. Call-
ing external programs and processing the results through chained input and output
files is not its strength. Ant expects tasks that do their own dependency checking and
hide all the low-level details of program invocation from the user. If you find yourself
using many <exec> and <java> calls, then maybe you are working against Ant,
rather than with it.

5.8 SUMMARY

The <java> and <exec> tasks let you invoke external Java and native programs
from a build; both have many similarities in function and parameters.

The <java> task lets you start any Java program, using the current classpath, or,
through the <classpath> element, any new classpath. You will likely find this task
an essential tool in executing your newly written software, and in integrating existing
code with your Ant-based development process. By default, Java programs run inside
the current JVM, which is faster, although the forked version is more controllable and
robust. If ever anything does not work under Ant, set fork="true" to see if this fixes
the problem.

The <exec> task is the native program equivalent. This gives Ant the ability to
integrate with existing code and with existing development tools, though the moment
you do so, you sacrifice a lot of portability.

For either task, you can probe for the availability of the program before you
attempt to call it. This lets you skip targets that are not available on the current system,
or fail with an informative error message. We strongly advise you do this, even for
small projects, as over time you forget what external programs you depend upon. Doc-
umenting these dependencies in any build process documentation is also a good coun-
terpart to a robust build file.
SUMMARY 133

C H A P T E R 6

Packaging projects

6.1 Moving, copying, and deleting files 135
6.2 Preparing to package 139
6.3 Creating archive files 146
6.4 Creating Zip files 154
6.5 Creating tar files 158

6.6 Creating web applications
with WAR files 160

6.7 Testing packaging 161
6.8 Summary 162
So far in this book we have created a build process that now compiles, tests, and exe-
cutes the Java programs being developed in our software project. It is now time to
start thinking about packaging the software for distribution and delivery to its desti-
nation. This does not mean the software is ready for release yet, just that the software
is ready to deploy to local client and server test systems. The same targets used for the
development phase work are used for the final release process, so the build process
will not only generate packages for testing, it will verify that the packaging process
itself is working correctly.

The steps that a team needs to cover when preparing a release usually include:

1 Writing the documentation

2 Writing any platform-specific bootstrap scripts, batch files, or programs

3 Writing any installer scripts, using installation tools

4 Checking all the source, documentation, and sundries into the source repository

5 Labeling the source in the source code repository

6 Running a clean build directly off the source repository image

7 Running the complete test suite

8 Packaging the software in a form suitable for distribution and installation
134

For early internal package builds, you can omit the documentation if it is incomplete.
Even internal builds will benefit from a change log and a build version number, so
start adding documentation like this as early as possible.

The steps in the production process that Ant can handle are shown in figure 6.1;
the Java source, data files, documentation, and shell scripts all need to be taken and
transformed into Zip and tar files containing the software packages for execution and
the documentation to accompany them.

6.1 MOVING, COPYING, AND DELETING FILES

A general part of the packaging and deployment process is simply copying and mov-
ing files around. Before we get any deeper into the processes, it is important to intro-
duce the three main tasks used for package and deploy applications.

6.1.1 How to delete files

We have been deleting files since chapter 2, but now is a good time to look more
closely at the tool we have been using, the <delete> task. To date we have either
deleted individual files <delete file="somefile" /> or a whole directory
<delete dir="somedir" />. Some other options are useful during installation
and deployment. The most important feature is that the task takes a fileset as a nested
element, so you can specify a more detailed pattern, such as all backup files in the
source directories:

<delete>
 <fileset dir="${src.dir}"
 includes="*~"
 defaultexcludes="false"
 />
</delete>

Data files

Java source

<javac> <javadoc>

<jar>

<zip>,<gzip>,<tar>

Documentation

JAR file

Documentation
package

Distribution
package

Java source

Figure 6.1

The packaging process for a Zip or tar file of

a JAR library consists of getting the source

and data files into the JAR, the manual and

autogenerated documentation into a directory,

then creating different final packages for

downloading to different platforms. We will

create Ant targets to mimic these dependencies.
MOVING, COPYING, AND DELETING FILES 135

Here, as well as providing a pattern to delete, we have told the task to ignore the
default exclusion patterns. We introduced these patterns in section 3.4.2. Usually,
automatically omitting editor- and SCM-generated backup files is useful, but when
trying to delete such files you need to turn this filtering off. Setting the default-
excludes attribute to false has this effect.

There are two Boolean attributes, quiet and failonerror, that tell the task
how to behave when something can’t be deleted. This happens quite often if a pro-
gram has a lock on a file, such as when a JAR is loaded into an application server. It
also happens when Windows Explorer has a directory listed in a window, preventing
Ant from deleting the directory. When the failonerror flag is set, as it is by default,
Ant reports the error and the build breaks. If the flag is false, then Ant reports the error
before it continues to delete the remaining the files. You can tell that something went
wrong, but the build continues:

<delete defaultexcludes="false"
 failonerror="false" >
 <fileset dir="${src.dir}" includes="*.~"/>
</delete>

The quiet option is nearly the exact opposite of failonerror. When
quiet="true", errors are not reported and the build continues. Setting this flag
implies you don’t care whether the deletion worked, and don’t want any information
if it doesn’t. It is the equivalent of rm -q in Unix.

There is also a verbose flag that causes the task to list all the files as it goes. This
can be useful for verifying that it does clean up:

<delete failonerror="false"
 verbose="true">
 <fileset dir="${src.dir}" includes="*.bak"/>
</delete>

Using this combination of verbose output with errors logged but ignored makes it
easy to notice when a file was not deleted, and which files were. This is useful if you
can delete the file by hand afterward, or just rerun the task a second time with more
windows and applications closed.

We should warn that the <delete dir> option is unforgiving, as it can silently
delete everything in the specified directory and those below it. If you have acciden-
tally set the directory attribute to the current directory (dir="."), then the entire
project will be destroyed. This will happen regardless of any settings in nested filesets.
Setting the directory to root, (dir="/"), would be even more destructive.

6.1.2 How to copy files

The task to copy files is, of course, <copy>. At its simplest, you can copy files from
somewhere, to somewhere else. You can specify the destination directory, which the
task creates if it is not already present:

<copy file="readme.txt" todir="doc"/>
136 CHAPTER 6 PACKAGING PROJECTS

You can also give the complete destination file name, which renames the file during
the copy:

<copy file="readme.txt" tofile="doc/README"/>

The task performs bulk copies when you specify a fileset inside the copy task; you
must also specify the destination directory with the todir attribute and omit the
tofile attribute:

<copy todir="${dist.bin.dir}">
 <fileset dir="src/scripts" >
 <include name="**/*.*"/>
 </fileset>
</copy>

Be aware that <copy> is timestamp-aware by default; sometimes that can catch you
out. One of the authors used Ant to install a web application off a CD onto a server,
but one system wouldn’t upgrade because the CD file was older than the dates of the
file installed on the server. A build file that had worked for months suddenly broke.
The solution to such a problem is to set overwrite="true", which tells Ant to
overwrite the file regardless of timestamp differences.

Another point to note is <copy> gives the file a timestamp of the current time.
You can request that the date of the original file is propagated to the new file, by set-
ting preservelastmodified="true". This may be useful, even though we have
not used it ourselves.

If you want to change the names of files when copying or moving them, or change
the directory layout as you do so, you can specify a <mapper> as a nested element of
the task. We introduced mappers in chapter 3; packaging is one of the times where
you may want to make use of them.

6.1.3 How to move files

To move files around, use the <move> task. It first tries to rename the file or directory;
if this fails then it copies the files and deletes the originals. Note that this is a change in
Ant 1.5; previous versions always copied files, even when a rename was possible.

The syntax of this task is nearly identical to <copy>, as it is a direct subclass of
the <copy> task, so any of the examples listed in section 6.1.2 can be renamed and
used to move files:

<move file="readme.txt" todir="doc"/>

As with <copy>, this task uses timestamps unless overwrite is set to true.
Although the task supports the preservelastmodified attribute, it is undoc-

umented and has no effect upon the task itself: it is simply a vestigial attribute of the
parent class. When the task copies a file, it gets a new timestamp; when the task renames
a file, it retains the original timestamp unless the operating system prevents this.
MOVING, COPYING, AND DELETING FILES 137

6.1.4 Filtering

We introduced Ant’s filtering feature in section 3.8. Both the <move> and <copy>
tasks can be set up to act as token filters for files. When filtering, the tasks replace
tokens in the file with absolute values. This is sometimes useful in documentation;
you can enter timestamps and URLs into the pages. You do this by nesting a <fil-
terset> element inside the <copy> task. For example, we can set a property to cur-
rent time. Then, when Ant copies our text file, the <filterset> instructs it to
replace all references to the token TIMESTAMP with the property:

<tstamp>
 <format property="timestamp.isoformat"
 pattern="yyyy-mm-dd'T'HH:mm:ss" locale="en"/>
</tstamp>

<copy file="${readme.file}"
 tofile="${doc.dir}/readme.txt">
 <filterset>
 <filter token="TIMESTAMP" value="${timestamp.isoformat}"/>
 </filterset>
</copy>

Replacing text in a file can be tricky, which is why the filter token specified in the fil-
ter set is searched for within delimiters. The default token prefix and suffix is the at
sign (@), so the filterset will only replace occurrences of @TIMESTAMP@ in the file. If
for some reason that prefix string is not appropriate, you can supply a new prefix and
suffix in the filterset declaration. For example, to replace the string [[TIMESTAMP]]
the declaration would be

<filterset begintoken="[[" endtoken ="]]">
 <filter token="TIMESTAMP" value="${timestamp.isoformat}"/>
</filterset>

Although it is possible to manipulate Java files prior to compilation in a similar man-
ner, we strongly advise against it. If you do want to do this, only filter a simple source
file, such as a class containing nothing but static final declarations of constants.
Have the <copy> task place it somewhere under the build directory, for example as
build/generated, and then include an extra <src> element in <javac> to include it
in the build.

We have used a similar service provided by the <replace> task to modify ASP
and HTML pages before deployment; it was the best way to configure the pages auto-
matically. Another common use is to modify template deployment descriptors, such
as web.xml and application.xml, with per-system configuration options. This lets you
easily build different WAR or EAR files for different installations, each with its own
custom settings such as database URLs and passwords. The easiest way to do this is
to use <filtersfile>, which is another child element of <filterset> that you
point at a Java properties file to act as the source of filter tokens. Each name=value
assignment in the file declares a token and its value. You can then use a different prop-
erties file for each server:
138 CHAPTER 6 PACKAGING PROJECTS

<copy file="web/WEB-INF/web.xml"
 tofile="${dist.dir}/web.xml">
 <filterset>
 <filtersfile file="${targetname}.properties"/>
 </filterset>
</copy>

Note that Ant properties are not resolved from inside the filter file itself, in contrast
to the system’s behavior when loading a property with <property file="...">,
where properties used inside the file are expanded.

You may also notice the <filter> task in Ant, which lets you specify a default
filter for every move and copy that follows, but only with @ as a token prefix and suffix.
This is dangerous; using an explicit filter for every copy where you need it is extra
work, but is much less dangerous. Once set, global filtering remains set for the rest of
the build. Do not use the <filter> task unless you really, really want to make life
hard for yourself and the rest of the team.

6.2 PREPARING TO PACKAGE

Although our source is written and tested, you must take additional steps before the
program can be packaged.

6.2.1 Building and documenting release code

When preparing to distribute code, always do a clean build first, regardless whether it
is a release build or a debug build. It is important to ensure that you build all classes
with the same compiler flags.

You should usually make sure that release code includes some debug information,
at the very least line numbers, which help to track down exceptions. If you are de-
ploying to a trusted destination, or redistributing open source software, including
complete symbol information is useful to the recipients. If you want to keep code pri-
vate, then Java bytecode obfuscation is needed along with line-number removal. In-
cluding debugging information does not have a direct effect on performance, merely
JAR file size.

NOTE In Ant 1.3, setting debug="false" in <javac> defaulted to generat-
ing line-number data from the Sun compilers; in Ant 1.4 this option really
does mean “generate no debug information.” Ant 1.5 added the debu-
glevel attribute, which gives you complete control.

Although the Java compiler has a flag to enable source optimization, and the Ant
<javac> task has a matching attribute, we choose to remain with the default of an
unoptimized compile. The flag only tells the Java compilers of Java 1.1 and 1.2 to
inline some methods, which the hotspot JVM can do automatically when it sees the
need (Shirazi 2000). By not optimizing the source, we keep our binaries smaller and
let the JVM do the inlining when and where appropriate. This has an added benefit:
PREPARING TO PACKAGE 139

we don’t run the risk of optimizing compiler bugs, a risk large enough in C++ devel-
opment to mandate running all tests on release builds.1

Ideally, the release code build sequence should be clean, build, test, pack-
age. You can do this by making the package task dependencies include clean and
test in that order; the test target should be dependent upon the build itself. If some
of the tests take a long time, it may make sense to split the tests into two targets by
adding a full-test target that thoroughly tests everything. You or an automated
process can run this target sporadically, and still run the core tests before packaging.

The first step in adding a release build is to provide property-based control of the
parameters of the <javac> task by defining the default values and using them in the
task declaration. Here is our modified compile target.

<target name="compile" depends="init,release-settings">
 <property name="build.debug" value="true"/>
 <property name="build.debuglevel" value="lines,vars,source"/>
 <echo>debug level=${build.debuglevel}</echo>
 <javac destdir="${build.dir}/classes"
 debug="${build.debug}"
 debuglevel="${build.debuglevel}"
 includeAntRuntime="no"
 srcdir="src">
 <classpath refid="compile.classpath"/>
 </javac>
</target>

Now that properties control the generation of debug information, we can override
them. We add another target to do this, one that we schedule before the compile tar-
get but whose condition prevents it from being run unless the property release.
build is defined:

<target name="release-settings" if="release.build">
 <property name="build.debuglevel" value="lines"/>
</target>

We can now enable a release build by defining the release.build on the com-
mand line:

ant clean compile -Drelease.build=true

If you have a dedicated machine for release builds, it could have a default properties
file that sets the flag for a release option, or the ANT_ARGS environment variable
could define it. We do not like the latter approach as it can lead to confusion; it’s bet-
ter to write your own wrapper script to call Ant with the property defined for clarity.
That approach is convenient when the release process gets more complicated.

1 Different compilers may provide optimizations worth enabling, but Jikes does not, and it is the main
alternative to javac in widespread use in Ant projects. Neither Sun's nor IBM's compiler needs the op-
timization flag.
140 CHAPTER 6 PACKAGING PROJECTS

When setting up the release process it is useful to see what the compile options are;
this is what the <echo> task in the compile target does. Downgrading the level of this
message to verbose (with level="verbose") might be worthwhile once the build
is working.

6.2.2 Adding data files

Any complex program needs to store some data with the code: initialization and con-
figuration files, XML files and schemas, or simply localized text messages. The ideal
way to transport such static content with a JAR file is inside the file, on the classpath.
It can then be retrieved using the current classloader with a call to this.get-
Class().getResource() or getResourceAsStream() to retrieve the data.
The Java program can reference resources using a directory pattern. For example,
xml/manifest.xml finds the resource in the package data below that of the package
containing the class whose classloader is being loaded. Absolute references can be
resolved by starting the path with a forward slash, such as /org/example/xml/mani-
fest.xml. Alternatively, you can use the getResourceAsStream() method in the
java.lang.Classloader class. If you do this, then you must not use a forward
slash at the beginning of the resource name, here org/example/xml/manifest.xml.
Even if the data files are in the source tree, you need to pull them in the package. You
can do this in two ways. One is to copy the selected files into build/classes, the
other is to import the files explicitly when creating the JAR.

We recommend the first approach, as it ensures that the data is available during
unit tests, and it makes it easier to verify that Ant copied the files. The mechanism for
getting the files into the location is the ubiquitous <copy> task. Whenever we build,
we tack in to the compile target a quick recursive copy of other file types we need.

<copy todir="${build.dir}/classes">
 <fileset dir="src"
 includes="**/*.properties,**/*.dtd,**/*.xml,**/*.xsd"/>
</copy>

Very old Ant versions (e.g., Ant 1.1) had a version of the <java> task that automati-
cally copied everything it found in its source path that was not a Java file into the des-
tination tree, pulling in data files without extra coding. This may seem like a good
feature, but it tended to pull too much cruft, backup files for example, into the build
file. If you come across an old build file that produces code that fails with errors
about missing files, it may be expecting Ant to copy the files over implicitly; you need
to add a <copy> task to fix this.

Some developers keep their resources in a parallel tree to the source, because this
lets them keep different configurations from different customers. Their build files have
to copy in the appropriate resources for each customer when creating the customer-
specific JAR file.
PREPARING TO PACKAGE 141

6.2.3 Preparing documentation

This is a good time to start creating the Javadoc web pages from the code. If you and
the rest of the team have been thorough in creating the documentation, you can do
this simply by using the <javadoc> task. The task provides complete control of the
normal javadoc program. For example, it enables custom doclets to generate cus-
tomized documentation files and provides control over the generated HTML.

Its basic use is quite straightforward:

<target name="javadocs" depends="compile" description="make the java docs" >
 <mkdir dir="${javadoc.dir}"/>
 <javadoc author="true"
 destdir="${javadoc.dir}"
 packagenames="org.example.antbook.*"
 sourcepath="src"
 use="true"
 version="true"
 windowtitle="documentation"
 private="true">
 <classpath refid="compile.classpath"/>
 </javadoc>
</target>

We aren’t going to cover how to use the <javadoc> task because it would take far
too long. It has 50-some parameters and over a dozen nested elements that show how
complex creating the documentation can be. The underlying javadoc program has
about 25 arguments; the complexity in the task is mainly to provide detailed control
as to what that program does. Fortunately, only three arguments are required: the
source and destination directories, and a list of files to document. The source
attribute and <source> nested element let you name the Java files to document, but
specifying packages is usually much easier, especially when you can give a wildcard to
import an entire tree. There are three ways to specify a package, as listed in table 6.1.
For any complex project, the standard tactic is to list the packages to compile with
nested <package> elements, using wild cards to keep the number of declarations to
a minimum.

Table 6.1 Ways to specify packages to include. The final option, packagelist is not usually

used; it exists to make it easier to migrate from Ant.

Attribute/element Specification Example

packagenames List of packages, wildcards OK packagenames="org.*,edu.*,com.*"

<package> One package, wildcards OK <package name="org.example.antbook.*"/>

packagelist File listing the packages to
import. This is handed directly
to the javadoc program using
the @ command.

packagelist="packages.txt"

packages.txt=
org.example.
org.example.antbook
142 CHAPTER 6 PACKAGING PROJECTS

As well as declaring the packages or files to document, you must point to the source
and provide a classpath to the libraries used in the application. If the task cannot
resolve references to objects used by classes it documents, it prints out warnings and
the documentation ends up incomplete. To avoid this, we pass the task the same
classpath as we used for the compilation, using the classpathref attribute. By
placing the <javadoc> task in a target that depends upon the compilation succeed-
ing, we know this classpath is valid and all the source actually compiles.

If you are making a public release that doesn’t expose all the internal methods of
a library or application, a separate documentation build could be made that only
includes the public methods and hides the author details. For open source develop-
ment, we advise against including author information, as it only encourages direct
email of support questions to the authors. By hiding the names in the source, you
ensure that the person sending the email has to put in some effort to fix the problem
before mailing the individuals.

If the distribution package includes the javadoc documentation, then you could
make the task that creates the package explicitly dependent upon the <javadoc>
task. Doing that, however, runs the risk of significantly extending the build time, as
the task takes much longer than compiling the code, perhaps even longer than testing
it. We are going to do exactly that in the rest of this chapter, but advise developers to
avoid generating the documentation for any internal build that is rebuilt many times
an hour, as it slows down the whole build process.

You need a more complex documentation process if the base format of the rest of
the documentation is in XML, such as the DocBook format, and if the distribution
process consists of generating HTML or even PDF from the base files. Ant can do this,
but it is an advanced technique covered in chapter 13. We are also going to introduce
the XDoclet task, which uses Javadoc comments to generate deployment descriptors,
to-do lists, and many other useful artifacts of a project, in chapter 11.

6.2.4 Preparing install scripts and documents

Preparing documentation for packaging is mostly a matter of copying files into place
for incorporating into the archive file used for redistribution.

There is one extra step for scripts and some documentation: the lines need the
appropriate line endings for the target platform. Files intended for use on Windows
should have \r\n line endings, and Unix files have \n terminators. This is usually
needed just for plain text files, not HTML or XML files.

Batch files and shell scripts must have the correct line endings or they will not work.
It is very frustrating when building and deploying a complex system to a remote site
only to discover that the line endings on the Perl scripts are wrong. The task for adjust-
ing line endings is <fixcrlf>; this can be set to convert to the Unix (\n), MS-DOS
(\r\n), or MacOS (\r) line endings, depending on the setting of the eol option. If
that option is not set, the task defaults to setting the line ending of the local system:
PREPARING TO PACKAGE 143

<fixcrlf srcdir="${dist.bin}" eol="crlf"
 includes="*.bat" />
<fixcrlf srcdir="${dist.bin}" eol="lf" includes="*.sh" />
<fixcrlf srcdir="${dist.bin}" includes="*.pl" />
<fixcrlf srcdir="${dist.bin}" includes="*.txt" />

 The <fixcrlf> task is a MatchingTask. Like many other Ant tasks it has an
implicit fileset and attributes such as includes and excludes. By default, it over-
writes the source files; if the destdir attribute is set to a directory, then the task
makes copies of the original files.

One problem is that the appropriate line ending for the build system may not be
that of the end user, so using local file options can introduce intermittent defects.
Depending upon who releases the project, different files will be usable by different
people.

The trick is to take the same source file and generate multiple output files, such as
one with the Unix title README and Unix line endings, and another nearly identical
copy called README.TXT with MS-DOS line endings. Listing 6.1 shows a target
that does this. It also uses another service provided by the task, the conversion of tabs
to spaces. This avoids layout surprises when the recipient views a file in an editor with
different tab spacing parameters than normal.

<target name="prepare-docs" depends="init">
 <property name="readme.file"
 location="xdocs/readme.txt" />

 <copy file="${readme.file}" todir="${doc.dir}"/>

 <copy file="${readme.file}"
 tofile="${doc.dir}/README"/>

 <fixcrlf srcdir="${doc.dir}"
 tab="remove" tablength="8"
 eol="crlf"
 includes="**/readme.txt" />

 <fixcrlf srcdir="${doc.dir}"
 tab="remove" tablength="8"
 eol="lf"
 includes="**/README" />
</target>

Shell scripts and executables for Unix also need to have their execute bit set, so that
the OS will run them. There is a <chmod> task in Ant that can be used to set the per-
missions for files, using the standard Unix permissions syntax. Continuing our exam-
ple, after setting the file line endings, the permissions can follow.

Listing 6.1 Example target to generate Unix and Windows Readme files

from the same original
144 CHAPTER 6 PACKAGING PROJECTS

<patternset id="unix.script.patterns">
 <include name="**/*.sh"/>
 <include name="**/*.pl"/>
</patternset>

<target name="prepare-scripts" depends="init">
 <copy todir="${dist.bin.dir}">
 <fileset dir="src/scripts" >
 <include name="**/*.*"/>
 </fileset>
 </copy>

 <fixcrlf srcdir="${dist.bin.dir}" eol="crlf" includes="*.bat" />

 <fixcrlf srcdir="${dist.bin.dir}" eol="lf">
 <patternset refid="unix.script.patterns"/>
 </fixcrlf>

 <chmod perm="ugo+rx" type="file">
 <fileset dir="${dist.bin.dir}">
 <patternset refid="unix.script.patterns"/>
 </fileset>
 </chmod>
</target>

This <chmod> declaration requests that read and execute permissions be added to
the user, the user’s group, and the “other” users on the system for the shell and Perl
files in the distribution directory. The task only works on Unix; on other systems, it is
silently skipped. Thus, you can use the task in targets that are called on any platform.
Unfortunately, file permissions are lost when <copy> copies a file or <tar> tars it.
The reason for this is simple: there is no way in Java to read or set file permissions.
Until this is possible in Java, you need to set the permissions after moving or copying
files. You also need to set the permissions in the <tar> task, which is equally unable
to pick up any file permissions. Effectively the <chmod> task is only of use to set the
permissions on files you intend to use immediately, without doing any copying or
packaging.

6.2.5 Preparing libraries for redistribution

What versions of dependent libraries are you going to ship? How are you going to
ensure that the correct dependent versions are shipped? WAR and EAR files can
include dependent JAR files inside themselves; JAR files do not have this option. You
can specify dependencies in the manifest, or document the needs, and/or include the
JARs in the main distribution.

To build your classes you often need more libraries under your lib directory than
you actually need at run time, especially when writing code to run under an applica-
tion server. Such server applications will need j2ee.jar or servlet.jar to build, but nei-
ther of these should be included in the distribution. More problematic is the question
of what to do about XML parsers. Should you redistribute XML and XSLT support
libraries, and if so, which versions?

The rest get
Unix endings

Set the permissions
for the Unix files

Define a reusable
patternset

Batch files
need crlf
endings
PREPARING TO PACKAGE 145

XML parser versioning issues, especially of jaxp.jar and parser implementations,
cause inordinate amounts of grief. Java 1.4 and its built-in XML libraries may simplify
the process, or make it worse over time if updates to the run time are needed to run
applications. The whole endorsed directory mechanism complicates things further: if
you are planning to redistribute libraries that implement javax.* packages, you
need to understand this mechanism and its implications, which is beyond the scope
of our book. Consult the section “Endorsed Standards Override Mechanism” in the
Java1.4 documentation.

 For a web application, first try deploying without including any XML parsers in
your distribution, to see if it works. This will give you whichever parser the application
server chooses to supply. Attempting to replace this with your own choice can often
prevent the server or application from working.

Another potential issue is that you compile against j2ee.jar but deploy to a web
server such as Tomcat, instead of a full J2EE engine, some services may be missing or
need to be implemented by other means. For example, you can add the mail support
of J2EE to Tomcat by adding Sun’s activation.jar and mail.jar libraries.

The final application server issue is that each one may have different requirements
of libraries to include. For our example program, we are going to target Tomcat 4.x.
We recommend that you develop against the same server that you finally intend to
deploy to; if you are targeting different servers for production, start working with them
as early as possible.

6.3 CREATING ARCHIVE FILES

In many ways, Java simplifies the software development process, and makes cross-
platform development significantly easier than almost all predecessor technology.
But, the problem of producing software that installs and runs across multiple platforms
is still a major issue in any large client-side software project. Originally, Java applica-
tions were distributed with a directory tree full of the class files. The arrival in Java 1.1
of the JAR file format containing the same tree inside a single file significantly
improved the deployment process. As they stand, JAR files still contain weaknesses.

First, they are not treated as executables by the different platforms; usually to start
the JAR file, helper scripts are used to call java -jar against the file, setting up envi-
ronment variables and generally providing an easier interface to the program. Some-
times native binaries provide this service, but the functionality is the same. A more
insidious problem with the JAR file has been that few modern Java program is stand-
alone. Most Java programs have dependencies outside the core Java library, usually to
packages such as an XML parser, and sometimes to native libraries that also need to
be on the execution path. The JAR file has historically not completely addressed these
issues, which frequently lead to CLASSPATH-related installation problems. The Java
versioning and extension mechanisms have started to address these issues, but they are
not yet trouble free. If you ever have to field support calls, you will know that “What
146 CHAPTER 6 PACKAGING PROJECTS

is on your CLASSPATH?” comes just after asking what version of Java and what appli-
cation they have, and usually just before “what version of Crimson/Xerces is that?”

Server-side development has been reasonably tractable since the WAR and EAR
files were standardized. WAR files are JAR files for web applications, combining the
Java code with web content such as images, HTML, and JSP pages. The WAR file also
added an innovation: all dependent libraries other than those provided by the web
application server could actually be included inside the WAR file. This simplifies
deployment significantly; the WAR file should nominally be stand-alone. The WAR
file also contained a new feature, an XML file declaring many of the operational
parameters of the service. An application server could read this file and configure itself.
That said, because each application server bundles a different set of extra packages, dif-
ferent WAR files are often needed for different servers; the XML parser is a core source
of problems, and the configuration file is another focal point for customization. If you
are only developing for one application server, this is not an issue, but for generally
reusable web applications, each application server is likely to need its own WAR file,
testing, and installation notes.

EAR files are the archive files for J2EE applications; they can contain JAR library
files, EJB beans as JAR files, web application WAR files, and a deployment descriptor
to describe the entire application. This makes them a superset of WAR files— more
powerful and more complex.

While the server-side deployment process has been evolving, client-side deploy-
ment has remained somewhat stagnant—until the emergence of Java Web Start. This
is a radical improvement in client-side software; now you can publish your compo-
nents on a web server, along with a descriptor of the components and invocation
details of the application. With this new service, which is bundled with Java1.4SE, cli-
ent deployment may actually be almost as easy as server-side deployment.

Regardless of the ultimate packaging format, JAR files are the foundation, and the
successor formats are primarily JAR files with extensions. All the packaging tasks have
roughly the same parameters; learn one and you can configure the others by cut-and-
paste coding (figure 6.2).

Zip

JAR

Manifest

.class

WAR EAR

0..

1

1

0..

web.xml application.xml

0..

1

0..

Figure 6.2

A UML view of the Java archives. WAR and EAR files

are subclasses of the JAR file, which is itself a subclass

of a Zip file class. WAR files can contain JAR libraries;

EAR files can contain JAR and WAR files. JAR files

contain a manifest, and usually some compiled class

files. Omitted is the fact that Zip and gzipped tar files

are often used to distribute JAR, WAR, and EAR files.
CREATING ARCHIVE FILES 147

The Ant tasks that provide the packaging services all have a class hierarchy similar to
the archive class model (see figure 6.3).

6.3.1 JAR files

A normal JAR file stores classes in a simple tree, resembling a package hierarchy, with
any metadata added to the META-INF directory. This directory should contain at
least the manifest file MANIFEST.MF, which describes the JAR file to the classloader.

6.3.2 Creating a JAR file

We have been generating JAR files since chapter 2 with the <jar> task. At its sim-
plest, it compiles an entire tree of files, usually the output of the build.

<target name="dist" depends="compile">
 <jar destfile="${dist.dir}/antbook-tools.jar"
 compress="true">
 <fileset dir="${build.dir}/classes"/>
 </jar>
</target>

The task will automatically create a manifest file inside the archive, unless one is
explicitly provided. The compress attribute controls whether or not the archive is
compressed. By default compress="true", but for loading speed an uncompressed
archive may be faster to load. We will opt to compress all our files as the benefits for
storage and downloads can be significant.

One good practice is to create the archive filename from a project name and a pre-
defined version number, with some property definitions ahead of the <jar> task to
build a customized short filename, and the full path to the soon-to-be-created file.

<jar>

Task

Expand

<war> <ear>

<unzip> <untar>

MatchingTask

<tar>

Pack

<gzip> <bzip><zip>

Figure 6.3

A UML view of the archive tasks. The classes

corresponding to the zip, jar, war and ear tasks

exactly mirror the inheritance model of the file

formats. The four classes at the top of the tree are

implementation classes, and are not directly

creatable in a build file. Expand is the exception;

you can create a task <expand> and it does

everything <unzip> does, though it will complain

that you should use <unzip> instead
148 CHAPTER 6 PACKAGING PROJECTS

<property name="project.name" value="${ant.project.name}"/>
<property name="project.version" value="1.1"/>
<property name="jarfile.name"
 value="${project.name}-${project.version}.jar" />
<property name="jarfile.path"
 location="${dist.dir}/${jarfile.name}"/>

These declarations should all go at the top of the project. Remember that Ant auto-
matically defines the property ant.project.name from the <project> declara-
tion in the build file; we reassign this to a new property to give people (and their
property files) the opportunity to pick a different name. The targets to create output
file names, and the target to generate the archive, are both now highly reusable, pro-
vided you use a consistent naming scheme across projects. To create the JAR file, sim-
ply use the property to specify its name:

<target name="dist" depends="compile"
 description="make the distribution" >
 <jar destfile="${jarfile.path}"
 index="true">
 <fileset dir="${build.dir}/classes"/>
 </jar>
</target>

This invocation adds one new unrelated option, the index flag, which is a new
attribute in Ant 1.5 that controls whether it creates an index file. Java 1.3 added a lit-
tle speedup to JAR file processing in the classloader: if it finds the file META-INF/
INDEX.LIST in the archive, it uses it to construct a hash table of files in the archive.
This apparently speeds up classloading on applets and other network-launched pro-
grams, as the class hierarchy can be built up from a few selective downloads, without
downloading the contents of all the files. We suspect that the Web Start library uses
this, as one really needs an API with a consistent partial archive download mecha-
nism; HTTP1.1 with byte ranges is a crude alternative. Provided nobody changes the
JAR file by adding or removing files, requesting an index file on the off-chance it may
deliver a speedup in some use cases seems worth the effort. If one line in the build file
may deliver a speedup on network application loading, why not use it?

Before closing our coverage of the <jar> task, we should mention the update
attribute. This mimics the -u option of the jar command-line tool; it adds files to an
existing JAR file. This enables a very large project to incrementally create a single big
JAR, or to edit an existing JAR as part of some very complex deployment process, for
example, injecting classes into an existing (unsigned) JAR file.

6.3.3 Testing the JAR file

Just as there is a <jar> task, there is an <unjar> task to expand a JAR. This enables
you to expand a file into a directory tree, where you can then verify that files and direc-
tories are in place either manually, or within the build file using the <available>
and <filesmatch> tests. Graphical tools may be easier to use, but they have a habit
of changing the case of directories for usability, which can cause confusion. Thus,
CREATING ARCHIVE FILES 149

<target name="unjar" depends="dist" >
 <unjar
 src="${jarfile.path}"
 dest="${build.dir}/unjar"/>
</target>

The task takes a source file, specified by src, and a destination directory, dest, and
unzips the file into the directory, preserving the hierarchy. It is dependency-aware;
files will not be overwritten if they are newer, and the timestamp of the files in the
archive is propagated to the unzipped files, except on Java 1.1.

You can selectively unzip parts of the archive, which may save time when the file
is large. To use the task to validate the build process, after the archive has been un-
zipped, you should check for the existence of needed files, or perhaps even their values:

<target name="test-dist" depends="dist" >
 <unjar
 src="${antbook-ant.jar}"
 dest="${build.dir}/unjar">
 <patternset>
 <include name="org/**"/>
 </patternset>
 </unjar>
 <condition property="jar.uptodate">
 <filesmatch
 file1="${build.dir}/classes/org/example/antbook/Search.class"
 file2="${build.dir}/unjar/org/example/antbook/Search.class"
 />
 </condition>
 <fail unless="jar.uptodate" message="file mismatch in JAR"/>
</target>

Here we expand classes in the archive and then verify that a file in the expanded
directory tree matches that in the tree of compiled classes. Binary file comparison is a
highly rigorous form of validation, which works well for comparing files downloaded
from web sites, making it ideal for validating upload processes.

6.3.4 Creating JAR manifests

JAR files are required to contain a manifest. The <jar> task will create one if
needed; it contains the manifest version and the version of Ant used to build the file:

 Manifest-Version: 1.0
 Created-By: Apache Ant 1.5

Sometimes this is not enough, such as when you want to specify the default entry
point of the JAR, or add version information to the manifest, as is covered in the JDK
document “Java Product Versioning Specification.” You also need to provide a mani-
fest if you want to add extension libraries, following the even more complex Java
extension specification “Extension Mechanism Architecture.” Extension libraries
aren’t so much a complex specification, as they are a complex implementation.
150 CHAPTER 6 PACKAGING PROJECTS

They have historically caused trouble; see Understanding Class.forName() in the Bibli-
ography for details (Neward 2000).

Adding a manifest to the JAR file is trivial; set the manifest parameter of the task
to a predefined manifest file:

<target name="dist-with-manifest"
 depends="compile"
 description="make the distribution" >
 <jar destfile="${jarfile.path}"
 index="true"
 manifest="src/META-INF/MANIFEST.MF">
 <fileset dir="${build.dir}/classes"/>
 </jar>
</target>

This target needs a manifest file, here in src/META-INF/MANIFEST.MF

Manifest-Version: 1.0
Created-By: Apache Ant 1.5alpha
Sealed: false
Main-Class: org.example.antbook.Search

This manifest reinforces that our package is not sealed; the classloader should not
throw an exception if it finds any classes in these packages outside the JAR, and that
our default entry point is to our Search class.

This process has one weakness: someone has to create the manifest first. Why not
create it during the build process, enabling us to use Ant properties inside the mani-
fest? This is where the <manifest> task comes in.

<target name="create-manifest"
 depends="init"
 description="make the manifest" >
 <manifest file="${build.dir}/MANIFEST.MF">
 <attribute name="Built-By" value="${user.name}"/>
 <attribute name="Built-On" value="${timestamp.isoformat}"/>
 <attribute name="Main-Class" value="org.example.antbook.Search"/>
 </manifest>
</target>

The outcome of this task will be something like the following manifest, although the
exact details depend on who created the file, when they created it, and the version of Ant:

Manifest-Version: 1.0
Built-By: slo
Main-Class: org.example.antbook.Search
Built-On: 2002-02-15T23:22:33
Created-By: Apache Ant 1.5alpha

For complex manifests the task can create manifest sections, using the <section
name="..."> nested element, which can contain attributes and values to be defined in
that section. The task also acts as an element inside the <jar> task, avoiding the
need to save the manifest to a temporary file. We prefer the stand-alone action, as it is
easier to examine the generated content.
CREATING ARCHIVE FILES 151

6.3.5 Adding extra metadata to the JAR

Sometimes you may need to add extra content to the META-INF directory, alongside
the manifest, such as when providing extra declarative data for use in applications
that use JAR files for plug-in code. There is a nested fileset element, <metainf>,
which lets you specify the metadata files to add to the JAR. To avoid seeing a warning
message, do not refer to the manifest file in this fileset. Either keep the files in sepa-
rate locations, or exclude the manifest from the fileset:

<target name="dist-with-meta-inf"
 depends="compile,create-manifest"
 description="make the distribution">
 <jar destfile="${jarfile.path}"
 index="true"
 manifest="${build.dir}/MANIFEST.MF">
 <fileset dir="${build.dir}/classes"/>
 <metainf dir="src/META-INF/"/>
 </jar>
</target>

This may seem quite a complex task, but provided the same layout patterns are used
across projects, the same tasks can be copied into new build files and tuned to indi-
vidual projects.

6.3.6 JAR file best practices

There are two tricks to consider for better <jar> tasks. First, copy all the files you
want to include in the JAR into one place before building. This makes it easier to test
that the needed files have been copied.

Second, create your own manifest so you can be sure what is going in there. If you
leave it to the <jar> task, you get a very minimal manifest.

6.3.7 Signing JAR files

If you need to sign a JAR file, such as for use in the Java Web Start system, or to cre-
ate a signed applet with extra rights in the web browser, then the <signjar> task is
for you. The task can sign a JAR with a certificate that, for proper authentication,
you should buy from one of the appropriate certificate vendors. For testing purposes,
you can generate a self-signed certificate using Sun’s Keytool tool, which is wrapped
up by the <genkey> task. This task adds a key into a Keystore, creating the store if
needed:

<target name="create-signing-key">
 <genkey
 alias="autosigner"
 keystore="local.keystore"
 storepass=".oO00Oo." >
 <dname>
 <param name="CN" value="autosigner"/>
 <param name="OU" value="Erik Hatcher"/>
 <param name="O" value="Eric Conspiracy"/>
152 CHAPTER 6 PACKAGING PROJECTS

 <param name="C" value="US"/>
 </dname>
 </genkey>
</target>

Remember, self-generated certificates cannot sign production code. Even though the
generated keys are cryptographically sound, tools such as the applet loader do not
trust self-generated keys, and make a point of expressing their concern at load time.
Developers are supposed to pay the annual premium for a commercial certificate,
which for a commercial application is not much of an outlay. For open source devel-
opment, the outlay is significant, and the whole signing process is more tortuous.
Anyone with commit rights can release a version of the code. You can authenticate a
<genkey> generated key by signing it with your PGP/GPG key to authenticate the
key yourself, but the classic certification authority-based mechanism of the Java class-
loaders and Web Start will not use that information.

To sign the JAR file, use the <signjar> task after generating it. This will add sig-
nature information to the META-INF directory of the JAR, and add signatures to the
manifest. The task needs to be given the location and the password of the Keystore
file, and the alias and any optional extra password for the signature itself. It will then
modify the JAR file in place, by invoking the Jarsigner tool in the JDK:

<target name="sign-jar"
 depends="dist-with-meta-inf">
 <signjar jar="${jarfile.path}"
 alias="autosigner"
 keystore="local.keystore"
 storepass=".oO00Oo."
 verbose="true"
 />
</target>

Our manifest now contains digest signatures of the classes inside the JAR:

Manifest-Version: 1.0
Built-By: slo
Main-Class: org.example.antbook.Search
Built-On: 2002-02-15T23:51:51
Created-By: Apache Ant 1.5alpha

Name: org/example/antbook/Index.class
SHA1-Digest: dnjKU+kElUammJHy1kq7SOYM4Pg=

Name: org/example/antbook/Search.class
SHA1-Digest: 1y52Hx31qHqJSXxvYXpMJoLwwVM=

The <signjar> task can bulk sign a set of JAR files, using a nested fileset element.
It also performs basic dependency checking, by not attempting to sign any files that
are already signed by the identity in the task. It does not check to see if the file has
changed since the last signing.
CREATING ARCHIVE FILES 153

Signing JAR files adds extra complexity to a build, especially to perform it securely.
The passwords should not be kept in the build file; a personal properties file with tight-
ened access controls may be acceptable. With the <input> task you can ask for user
input during the build, so perhaps you could avoid keeping the key on the computer,
but then automated processes and GUI-based execution are not possible. A better
solution may be to keep the Keystore on a physically removable object, such as a CD-
ROM disc, and only insert it when needed.

6.4 CREATING ZIP FILES

Ant creates Zip files as easily as it creates JAR files, using the <zip> task. The most
complex part is deciding which files to include and where to put them. The task is
the parent class of <jar>. All attributes and elements of <zip> can be used in
<jar>, but the JAR-specific extras (the manifest and the metadata fileset) are not
supported. What is useful in the <zip> task and its subclasses, is the <zip-
fileset> element. This extends the normal fileset with some extra parameters, as
listed in table 6.2. This fileset lets you include the contents of one Zip file into
another, expanding it in the directory tree where you choose, and it lets you place files
imported from the file system into chosen places in the Zip file. This obviates the
need to create a complete directory tree on the local disk before creating the archive.

To include the Zip file creation in the delivery process we are putting together, the
first step is to define the names of the new output files. We use the plural as we plan
to create two files for distribution: a binary redistributable and a source edition. We
do this by adding four properties to the start of the project, declaring the name and
full path of each Zip file.

<property name="zipfile.name"
 value="${project.name}-${project.version}.zip" />
<property name="zipfile.path"
 location="${dist.dir}/${zipfile.name}"/>
<property name="srczipfile.name"
 value="${project.name}-${project.version}-src.zip" />
<property name="srczipfile.path"
 location="${dist.dir}/${srczipfile.name}"/>

6.4.1 Creating a binary distribution

To create a binary distribution, use a <zip> task in a target that depends upon the
JAR file, and other targets that prepare artifacts for the binary, such as the documen-

Table 6.2 Extra attributes in <zipfileset> compared to a <fileset>

Attribute Meaning

prefix A directory prefix to use in the Zip file

fullpath The full path to place the single file in archive

src The name of a Zip file to include in the archive
154 CHAPTER 6 PACKAGING PROJECTS

tation and script preparation tasks. These files are to be included in the file: simple
documentation and JAR file at the base, scripts in the bin directory. Here is how we
create the binary Zip file:

<target name="create-bin-zipfile"
 depends="dist-with-meta-inf,prepare-docs,prepare-scripts">
 <zip destfile="${zipfile.path}">
 <fileset dir="${dist.dir}"
 includes="${jarfile.name}"/>
 <fileset dir="${doc.dir}"
 includes="README,readme.txt"/>
 <zipfileset dir="${dist.bin.dir}"
 prefix="bin">
 <include name="**/*.sh"/>
 <include name="**/*.pl"/>
 <include name="**/*.bat"/>
 </zipfileset>
 </zip>
</target>

The first two filesets used to create the Zip file are quite straightforward: the JAR file
and the two README files are included by name. Because the filesets are based in
the directory where these files are stored, and the <zip> task stores all path informa-
tion from the base of the fileset onward, these files are all imported to the base direc-
tory of the archive. The final fileset is for files we want placed into the bin directory,
files created in the directory named in the property dist.bin.dir. It would be
possible to rely on the fact that the name of this directory is really dist/bin and use a
fileset one directory up, asking for files in the bin subdirectory:

<fileset dir="${dist.bin.dir}/..">
 <include name="bin/*.sh"/>
 <include name="bin/*.pl"/>
 <include name="bin/*.bat"/>
</fileset>

This does work today, but there is no guarantee that it will work tomorrow; it is too
brittle. Because we use a property to name the directory, we can never be sure what
the property will be in future. If the name is changed, the files will not be included.
Using the <zipfileset> element makes it possible to produce a build file that is
more robust, which means it needs less maintenance.

You can manually test the task by expanding the archive. The JDK jar tool can do
this, giving a log of its actions:

>jar xvf antbook-tools-1.1.zip

extracted: antbook-tools-1.1.jar
extracted: README
extracted: readme.txt
 created: bin/
extracted: bin/indexer.bat
extracted: bin/indexer.pl
extracted: bin/indexer.sh
CREATING ZIP FILES 155

This is exactly what is wanted. You can make a manual check to verify that the line
endings are correct for the file types by opening the files in a text editor, then this Zip
file is ready to distribute. Well almost; there is still the need to pull in the javadoc
documentation. With the target to generate the documentation written, we need
only a new dependency and another <zipfileset>:

<target name="create-bin-zipfile"
 depends="dist-with-meta-inf,prepare-docs,prepare-scripts,javadocs">
 <zip destfile="${zipfile.path}">
 <fileset dir="${dist.dir}"
 includes="${jarfile.name}"/>
 <fileset dir="${doc.dir}"
 includes="README,readme.txt"/>
 <fileset dir="${dist.bin.dir}/..">
 <include name="bin/*.sh"/>
 <include name="bin/*.pl"/>
 <include name="bin/*.bat"/>
 </fileset>
 <zipfileset dir="${dist.bin.dir}"
 prefix="bin">
 <include name="**/*.sh"/>
 <include name="**/*.pl"/>
 <include name="**/*.bat"/>
 </zipfileset>
 <zipfileset dir="${javadoc.dir}"
 prefix="doc/javadocs"/>
 </zip>
</target>

With these changes, the Zip file of the application binary is ready for redistribution.
There is the small issue of dependent libraries; we are not redistributing them. In this
particular build process, we are creating and distributing them separately, though we
may write a master build file to include all libraries and documentation in one unified
package. If you need to bundle JAR files in the distribution, the common practice is
to include them in the lib subdirectory of the Zip file, then write launcher scripts to
include these files in the classpath.

6.4.2 Creating a source distribution

Hand in hand with the binary distribution goes the source distribution. In the open
source world there is often little difference between the two. In commercial closed-
source software there is, but the source is still regularly archived and emailed around.

There seem to be two types of source distribution in common circulation. First,
there is the pure source distribution, containing the source tree and the build file(s);
the recipient has to compile everything. At the other extreme is the binary distribution
with the source and build files included. In between are distributions that omit some
of the generated files, such as the javadoc pages, for brevity. Pure source distribution
is common for C++ projects where everyone’s platform and compiler are different.
Because Java is so portable, and because JAR files are relatively compact, we prefer
156 CHAPTER 6 PACKAGING PROJECTS

source distributions that also include the binaries. This lets users get started faster, and
if they don’t want to build the code immediately, they can get working now and fix
things later.

Having made the decision to include the binaries of the project, the components
for the source build file become clear. They are: the source tree, the build file, and the
binary Zip file itself. Remember how we mentioned <zipfileset> could import
one Zip file into another? That is what we are going to do:

<target name="create-src-zipfile"
 depends="create-bin-zipfile">
 <zip destfile="${srczipfile.path}">
 <zipfileset src ="${zipfile.path}"
 excludes="doc/javadocs/**" />
 <fileset dir="." includes="src/**" />
 <fileset dir="." includes="xdocs/**" />
 <fileset dir="." includes="*.xml" />
 </zip>
</target>

The target to create the source archive reuses most of the work the binary Zip file tar-
get has performed. It depends on the create-bin-zipfile target, and uses
<zipfileset> to import all the content of the first Zip file except for the javadocs.
Even when importing the contents of one Zip file into another, the fileset patterns
can control what to import or omit. Alongside the binary files, we include the source,
the documents in the xdocs directory, and any XML files in the base directory—
which means the build.xml file itself. The result is a file that runs out the box, but
which contains the entire source and, of course, the build file.

6.4.3 Merging Zip files

One addition to the <zip> task in Ant 1.5 is the <zipgroupfileset>. This is a
nested fileset element that lets you list one or more Zip files whose entire contents
will get pulled into the current Zip file. This could be useful when creating JAR files,
as well as pure Zip files:

<jar destFile="everything.jar">
 <zipgroupfileset dir="lib" includes="**/*.jar" />
</jar>

6.4.4 Zip file best practices

Here are some tips to make creating Zip files easier:

• Copy all files you want to include in the JAR into one place before building.
This makes it easier to test that the needed files have been copied.

• Leave compression enabled unless you have a particular reason not to.

• Don’t distribute JAR files with a .zip extension. Some software publishers still
do this, but it is an outdated approach and not entirely compatible with Ant’s
classloader policies.
CREATING ZIP FILES 157

• Use the <zipfileset> element to produce a more robust build file.

• Remember that Unix file permissions are not retained: this needs to be docu-
mented on your download page.

Our final observation is that many people can use the Zip format for Unix installa-
tions too, so you should include the Unix documents and scripts alongside the Win-
dows ones, with a note listing all scripts that need to have their execute bit set.

6.5 CREATING TAR FILES

Tar files are the best format for the Unix platform, as the format includes not only the
folder hierarchy, but also the file permissions, permissions Ant can set when it creates
a tar file, regardless of the platform it runs on. A version of the tar program can be
found on every Unix platform, and even cross-compiled for Windows. To create a tar
file in Ant, use the <tar> task. This task takes an implicit fileset; with attributes such
as includes and excludes to control which files to include. We prefer a more ver-
bose and explicit policy of listing filesets as nested elements. This task is more than
simply a style policy for better maintenance, it is a way of having more control over
the build. Listing 6.2 shows our tar target to create the archive of source with bina-
ries, including scripts with read permissions.

<property name="tarfile.name"
 value="${project.name}-${project.version}.tar" />
<property name="tarfile.path"
 location="${dist.dir}/${tarfile.name}"/>

<target name="create-tarfile"
 depends="dist-with-meta-inf,prepare-docs,prepare-scripts,javadocs">

 <tar destfile="${tarfile.path}"
 longfile="warn">
 <tarfileset dir="${dist.dir}"
 includes="${jarfile.name}"/>
 <tarfileset dir="${doc.dir}"
 includes="README,readme.txt"/>
 <tarfileset dir="." >
 <include name="src/**"/>
 <include name="xdocs/**"/>
 <include name="doc/javadocs/**"/>
 </tarfileset>
 <tarfileset dir="${dist.dir}"
 mode="755" >
 <include name="bin/*.sh"/ >
 <include name="bin/*.pl"/ >
 <include name="bin/*.bat"/>
 </tarfileset>
 </tar>
 </target>

Listing 6.2 A target to create a tar archive of the source and binaries
158 CHAPTER 6 PACKAGING PROJECTS

This task extends the usual <fileset> element to produce the <tarfileset>: a
fileset with Unix user and group identity and Unix file permissions. Users and groups
are simply strings: user="root", group="system". The file permission is in the
low-level octal permission format used in the UMASK environment variable and in
Unix API calls. The default permission is 644 (read/write to the owner, read to every-
one else) and the default identity is simply the empty string. A mask of 755 adds an
executable flag to this, whereas 777 grants read, write, and execution access to all.
The <tarfileset> element also supports the prefix element found in <zip-
fileset>, which lets you place files into the archive in a different directory from
their origin. This is a new addition in Ant 1.5; previously you had to create the final
structure with <copy> tasks before creating the archive.

One major problem with the tar format is that the original file format does not
handle very long path names; there is a hundred-character limit, which is easily
exceeded in any Java source tree. However, the GNU implementation of tar does sup-
port longer file names. You can tell the <tar> task what to do when it encounters this
situation with its longfile attribute, which takes any of the values listed in table 6.3.

If you choose to use the GNU format, add a warning note in the documentation
about using GNU tar to expand the library. Also, tell whoever deals with support
calls about the issue, because not enough people read the documentation.

After making the archive, use the <gzip> task to compress it. This task takes a
source file and a destination filename and generates the output file. We place this in
the create-tarfile target immediately after we create the tar file, first defining the
name of the output as the name of the tar archive with a .gz file ending appended. This
is the convention of the gzip process; the standard gunzip program expects this and
uses it to determine the name of the unzipped file. First, we add the appropriate prop-
erties at the top of the file:

<property name="tarfile.gz.name"
 value="${tarfile.name}.gz" />
<property name="tarfile.gz.path"
 location="${dist.dir}/${tarfile.gz.name}"/>

Then we append the <gzip> task to the create-tarfile target:

Table 6.3 Values for the longfile attribute. Although optional, setting it shows that you have

chosen an explicit policy. Of the options, fail, gnu and warn make the most sense.

Longfile value Meaning

fail Fail the build

gnu Save long pathnames in the gnu format

omit Skip files with long pathnames

truncate Truncate long pathnames to 100 characters

warn Save long pathnames in the gnu format, and print a warning message [default]
CREATING TAR FILES 159

<gzip

 src ="${tarfile.path}"
 zipfile="${tarfile.gz.path}"/>

The result of this is that whenever Ant creates the tar file, it builds a gzipped copy of
the file.

At the time of writing, this task does not perform any dependency checking, which
means it always creates the .gz file. Someone really needs to fix this. Maybe by the time
you read this document someone may have done so; check the online documentation.

6.6 CREATING WEB APPLICATIONS WITH WAR FILES

As stated earlier WAR files are JAR files with an extended format, a WEB-INF folder
containing classes and a lib folder containing libraries. A web.xml file in the WEB-
INF directory describes the application to the web server; if this file is missing or
invalid the WAR file does not contain a web application. Figure 6.4 shows an exam-
ple WAR file layout.

Sometimes, and especially when developing under an IDE, it may be useful to actu-
ally mimic the same layout in the directory structure of the code under development.
Ant does not require this, letting you use a directory structure that is independent of
the actual distribution layout. There is still merit in keeping metadata files such as
web.xml in the directory under src/WEB-INF, because the <jspc> task to compile
JSP pages prefers it.

To generate WAR files in Ant, there are two strategies. The first is to create the
WAR folder tree manually, using <copy>, then <jar> the output. The second is to
use the <war> task to generate the layout as class, web, and library files are built up.
This is simpler, but there is one key advantage of the first approach: if your web server
can run from a directory, rather than a web file, then building up the directory by hand

lib

web.xml

something.jsp

MANIFEST.MF

struts.jar

struts.tld

index.html

META-INFWEB-INF

classes

Servlet.class data.xml

org

example

/

Figure 6.4

A WAR file pushes the class files under the WEB-INF

directory, along with imported library files. The meta-

data includes the web application and optional taglib

descriptors. The web server serves all content not under

the META-INF and WEB-INF directories, adding the

classes and libraries under WEB-INF to the classpath.
160 CHAPTER 6 PACKAGING PROJECTS

gives you a directory tree to point the server to. If the <war> task is used, the
<unwar> task can create the same effect.

<war
 destfile="${dist.dir}/antbook.war"
 webxml="web/WEB-INF/web.xml">
 <classes dir="${build.dir}/classes"/>
 <webinf dir="${struts.dir}/lib" includes="*.tld,*.dtd"/>
 <fileset dir="web" excludes="WEB-INF/web.xml"/>
 <lib dir="${struts.dir}/lib" includes="struts.jar"/>
</war>

This looks like a complex task, but it is not really. You specify different fileset ele-
ments of content to include in the WAR file, just as for the <zip> and <jar> tasks.
Here you have to declare what they are: library files, classes, WEB-INF files, or sim-
ply web content to serve up. The task then places these files in their appropriate
places. You could just use the <jar> task and <zipfileset> elements with the
prefix attribute to achieve the same effect. Then there would be no need to explicitly
include the web.xml file at the start and exclude it later from the web content fileset.
So why use it? It is simpler and stops you having to know so much about the file lay-
outs inside a WAR file.

Because the <war> task is a subclass of the <jar> task, it also supports all of the
parent task’s attributes and elements. In particular, you can specify the manifest for
the archive with the manifest attribute, or create it with the <manifest> element.
You can also sign the <war> file afterwards, for an authenticated binary.

6.7 TESTING PACKAGING

There is no easy automated mechanism for completely testing redistribution pack-
ages, short of redistributing them, installing them, and testing the installations.

What you can do is expand the archive into a directory and verify that everything
is in place. This is important when tasks such as <war> create a complex archive file
from a number of sources, or just when creating a complex tar or Zip file. You can
do this by using multiple <available> tests inside a <condition> task and then
using <fail> to halt the build if any of the files are missing.

It is also possible to use native tools such as tar and gzip to verify that they can pro-
cess the data correctly. It is conceivable that Ant tasks somehow create content that
cannot be recognized by the native tools. This should not be the case for the JAR file
and its derivatives, as they use the same Java packages as the command line tools, but
it may be true for the other file formats. A manual check here may be sufficient; an
<exec> to expand the files using the native program is an option if you really feel this
is an issue. Be cautious when using WinZip and similar graphical tools to view ar-
chives; they often prettify the file names by changing the display case, which can cause
confusion.
TESTING PACKAGING 161

6.8 SUMMARY

Ant provides a multitude of tasks for packaging up your Java code for redistribution.
The basic <jar> task generates a JAR archive, with extended tasks <war> and
<ear> for special derivatives of the JAR file.

After generating the JAR file, it is usually common to generate a redistribution
package to include the archive and any documentation and startup scripts. The <zip>
and <tar> tasks are the foundation for this, <tar> being preferred for Unix as you
can state the permissions of files and mark executable files as executable.

Before creating the distribution packages, there are often preparation tasks such as
setting the line endings on text files to the appropriate form for the target platform,
creating the Javadoc documentation, and including data files with the binary. There
are tasks in Ant to meet all these needs, including <fixcrlf>, <javadoc>, and
<move>, <copy>, and <delete>.

Ant also contains special tasks to create WAR and EAR files, which you can use
to create deployment packages for application servers. These are helpful for the server
applications, but not essential, as <jar> can do everything that is required.
162 CHAPTER 6 PACKAGING PROJECTS

C H A P T E R 7

Deployment

7.1 Example deployment problems 164
7.2 Tasks for deployment 165
7.3 FTP-based distribution of

a packaged application 171
7.4 Email-based distribution of

a packaged application 173

7.5 Local deployment to
Tomcat 4.x 174

7.6 Remote deployment to
Tomcat 181

7.7 Testing deployment 187
7.8 Summary 187
Deployment covers the process of getting Java client code out the door. For client
code, this usually involves email or uploading to a redistribution site, such as an FTP
server. For server code, deployment means getting it actually executed on a server.
This is one area where older build tools and applications are weak, and where Ant is
relatively strong. This does not mean that Ant makes deployment easy, it merely
makes it possible. The more complex your deployment problem, the harder it is to
automate.

Many deployment processes are manual, especially on production systems where
you have to test on a staging server before deploying over a secure channel to the
remote production server. Ant can help with such a process by reducing the number
of manual steps, and thus reducing the likelihood of something going wrong after
someone leaves a step out or performs two steps in the wrong order. Ant is best, how-
ever, at the fully automated deployment, where invoking “ant stack-a” will trigger a
rebuild, a rerun of the JUnit test suite, followed by an upload to and restart of the
application on a remote web application server.

With such a broad spread of deployment problems, covering how to automate the
tasks in Ant will be a long task. We are going to start with a short chapter on basic
deployment, covering two use cases of deployment to a web server, and two use cases
163

of redistributing a binary package. We are also going to cover only one server: Jakarta
Tomcat, version 4, also known as Catalina. This is the Apache project’s own Java web
application server. As it is free, robust, and easy to install and use there is almost no
reason not to have a copy installed on your system. The only argument against using
it for any servlet development project is that to minimize problems, you should always
use the same application server in production as development. If you plan to use a dif-
ferent server in production, start with that product from the outset.

7.1 EXAMPLE DEPLOYMENT PROBLEMS

We are going to use four deployment problems as “stories” to explore what Ant can
do in deployment terms. All these deployment options are being used in the applica-
tion we are writing for the book. The great thing about deployment is that there are
so many ways to deploy a single project. These include:

• FTP-based distribution of a packaged application
An application has been packaged up into source and binary distributions, with
Windows Zip and Unix gzip packages to redistribute. The distribution files are
to be uploaded to a remote server such as SourceForge.

• Email-based distribution of a packaged application
The application is to be distributed to multiple recipients by email. Recipients
will receive the source distribution in Zip or gzip format. The recipient list will
be manually updated, but it must be kept separate from the build file for easy
editing.

• Local deployment to Tomcat
Tomcat 4.x is installed into a directory pointed to by CATALINA_HOME. Ant
must deploy the web application as a WAR file into CATALINA_HOME
/webapps and restart Tomcat or get the site updated by some other means.

• Remote deployment to Tomcat
Tomcat 4.x is installed on a remote server. The build file must deploy the WAR
file it creates to this server.

7.1.1 Reviewing the tasks

Looking at these tasks, they represent the two alternate ways of delivering software:
redistributing for other people to install and use, or deploying to a server for use as an
executing program. Complex projects blur the distinction: people can redistribute a
server program, giving the recipient their own server deployment challenges. To keep
our examples tractable we will split the two delivery routes cleanly. See figure 7.1.

7.1.2 Tools for deployment

We are going to use Ant to deploy everything, but because we are using optional tasks
with dependencies upon external libraries, you need the libraries listed in table 7.1 in
your ANT_HOME/lib directory. We list the location to download these libraries in
164 CHAPTER 7 DEPLOYMENT

our installation guide; the online Ant documentation contains live links to the most
up-to-date locations.

The other tool for deployment is, of course, Tomcat, which you should have installed
and running before trying to deploy to it from Ant. For remote deployment, the
remote server should support FTP and perhaps Telnet. This is pretty much standard
for Unix systems; for Windows systems it is not. Microsoft supplies an FTP server as
part of IIS1: you can install it from the Add/Remove Windows Components section
of the control panel.

An email server is also useful. We are assuming that the local system is running
an SMTP server of some kind, but use a property to define the mail server for easy
overriding.

7.2 TASKS FOR DEPLOYMENT

We have covered the basic deployment tasks already: <copy>, <delete>, <java>.
These are the foundation for local server deployment. For remote deployment, we
need to introduce a few more tasks.

Table 7.1 Libraries you need for deployment. If you get an error using these tasks, make sure

these files are found.

Library Comment

optional.jar May have a name such as jakarta-ant-1.4.1-optional.jar

netcomponents.jar Needed for <ftp> and <telnet>

activation.jar Needed for <mail>

mail.jar Needed for <mail>

1 Just be sure to stay on top of Microsoft security bulletins and be aware of all the services your Windows
system is running. In a former life, Erik was an NT security “expert” having co-authored award-win-
ning NT security analysis software. Long live NtSpectre!

jar Make WAR file

tarzip

Java source LibrariesJava source

Local
deploy

Remote
deploy

ftp email

Figure 7.1

The two deployment paths

being addressed. A complex

project may well use both

paths, with common source

acting as the foundation.
TASKS FOR DEPLOYMENT 165

7.2.1 File transfer with <ftp>

If you have a development server’s file system mounted on your own machine, such as
with NFS or LAN Manager, then you can deploy files to a remote server using
<copy>. If you cannot do this, then you need to resort to <ftp>. The <ftp> task is
very powerful; it lets you perform the following tasks in a build file:

• Connect to a remote server using a specified username and password.

• Control the port of the server and whether passive mode is used for better fire-
wall pass-through.

• Upload files to a remote server using timestamp-based dependency checking.

• Download files from a remote server using timestamp-based dependency checking.

• Delete remote files.

• Save a listing of a directory to a file.

• Create remote directories.

For deployment, we are only concerned with connecting to a server and uploading
changed files. The remaining functionality may be of use in more complex deploy-
ment situations, and for automating other parts of the build process, such as fetching
updated libraries and data files from a central server.

One important point to note is that for Ant to work with Windows’ FTP server,
you should configure the server to provide Unix, not MS-DOS, directory listings. If
this is not done, then some commands won’t work.

7.2.2 Probing for server availability

The <condition> task can contain a few tests that probe to see whether remote sys-
tems are available.

The <http> test can probe for a remote page on a local or remote web server. The
test only succeeds if the server responds to the request with an HTTP status code
below 400. Missing pages, error code 401, and access-denied pages, error code 403,
both fail the test. With the condition we can test for local or remote web servers:

<http url="http://127.0.0.1/"/>
<http url="http://127.0.0.1:8080/"/>
<http url="http://eiger:8080/antbook/happy.jsp"/>
<http url="http://jakarta.apache.org/ant/"/>

You can use the command to fetch a JSP page, forcing its compilation. Web applica-
tion containers generate an error code of 500 when the page won’t compile, breaking
the build.

A sibling test, <socket>, probes for a local or remote TCP socket being reachable.
This can be used to test for any well-known port being available, including telnet (23),
SMTP (25), and HTTP (80, sometimes 8080 and 8088):
166 CHAPTER 7 DEPLOYMENT

<socket port="8080" server="127.0.0.1"/>
<socket port="23" server="${deployment.server}"/>
<socket port="25" server="${mail.server}"/>
<socket port="2401" server="${cvs.server}"/>

Using these tests in a <condition> statement lets you control actions that could
otherwise fail. For example, you could send email if the local mail server is running,
or deploy to a server if it was accessible, but skip that part of the build process if it was
not reachable. What if you have just restarted a server and want to wait for a service
to become available?

There is another task in which the tests can be used, called <waitfor>. Any test,
complex or simple, that you can use in <condition>, you can also use in <wait-
for>. While <condition> evaluates a test once, then sets a property, <waitfor>
evaluates a test repeatedly until it succeeds or the time limit is reached, sleeping
between each test. You can specify the maximum wait and sleep times in units ranging
from milliseconds to weeks. To an extent, the <waitfor> task represents the funda-
mental difference between a declarative language and a procedural one. To implement
the same behavior as <waitfor> in Java you would have to implement some
while() loop, testing for the condition, and having a sleep and a timeout test in the
body of the loop. In Ant, you just state the time to loop and the sleep interval and let
it choose its own implementation. Listing 7.1 demonstrates using the task to wait for
a local server to become available; to probe a remote server simply change the server
attribute to a different machine.

<target name="wait-for-server">
 <waitfor maxwait="30" maxwaitunit="second"
 timeoutproperty="server.missing">
 <socket port="8080" server="127.0.0.1"/>
 </waitfor>
 <fail if="server.missing">No server found</fail>
</target>

The <waitfor> task has five attributes, listed in table 7.2. You can specify how long
to wait, how often to poll for changes, and what property to set if the condition
timed out. There is no explicit property to set on success: if the condition is success-
ful, the containing target continues executing, perhaps long before the timeout was
reached. The timeoutproperty names the property to be set to “true” if timeout
occurred; a conditional <fail> task can be set to break the build if probe timed out,
or conditional targets can be used to control build actions.

Listing 7.1 Waiting for a local web server to appear
TASKS FOR DEPLOYMENT 167

It is tempting to use these network probes as a preamble to performing arbitrary net-
work operations, the aim being to degrade when off line, such as on a notebook or
home system with a dial-up connection. Even a DNS lookup can trigger a network
connection attempt, and in areas such as Europe or with paid wireless connectivity,
this may incur costs of some sort. If you use this test to set a property such as net-
work.unavailable for tasks to use as a condition, then make the probe task con-
ditional on this property not being already set. This enables a notebook or home
computer to run the build with the property set from the command line, disabling all
network connection attempts.

7.2.3 Inserting pauses into the build with <sleep>

One of this book’s authors wrote <sleep> explicitly to deal with a deployment
problem. Our team needed to completely delete the directory tree of an expanded
WAR file on a server, yet when we tried this with <delete> the files would still be
in use. We added the failonerror attribute to the task so that a failed deletion
would not break the build, but it did not solve the fundamental problem. A short bit
of coding later and we had a sleep task that could wait for thirty seconds before we
tried to delete things. Contributing the task back to Ant, it has found many more
uses; deployment is where it tends to crop up.

The task has four time attributes: hours, minutes, seconds, and millisec-
onds. You can specify any or all of them and the total time to sleep is the sum of the
values. In fact, you can specify negative values to any of the attributes; provided the
total time is positive, this is not an error. A simple sleep for deployment usually only
has one time attribute specified:

<sleep seconds="15"/>

The multiple attribute specification permits more in obscure timeouts:

<sleep minutes="5" seconds="-15"/>

Table 7.2 Attributes for the <waitfor> task. Usually the polling interval of every half a second is

adequate, but the maximum wait time needs tuning for the particular problem. Too short and

the task fails prematurely, too long and the build takes too long before giving up.

Attribute Description

timeoutproperty A property to set if the task times out

maxwait How long to keep waiting. Defaults to 180000 maxwaitunits;
usually 180 seconds.

checkevery How often to check. By default, 500 checkeveryunits;
effectively twice a second.

maxwaitunit The time unit used by the maxwait attribute, a millisecond by default.
One of millisecond, second, minute, hour, day, or week.

checkeveryunit The time unit used by the checkevery attribute, a millisecond by default.
This takes the same options as the maxwaitunit.
168 CHAPTER 7 DEPLOYMENT

Such a declaration sleeps for four minutes and forty-five seconds, give or take a few
tens of milliseconds, which is a level of precision rarely needed in a build file. You can
use <sleep> to delay after starting or stopping a web server before doing other
work, although wherever possible we prefer the <waitfor> test. Subtle changes in
system configuration can cause a <sleep> to be too short; <waitfor> uses testing
to wait for as long as required, which makes it much less brittle.

7.2.4 Ant’s email task

Prior to version 1.4, Ant had a <mail> task that could send plain text emails.
Ant 1.4 added the <mimemail> task that added MIME and attachment capabilities.
Ant 1.5 brings these two tasks together under the <mail> façade. In order to take
advantage of the more sophisticated MIME and attachment features, the JavaMail
libraries (mail.jar and activation.jar) must be on the classpath or in ANT_HOME/
lib. If they are not there, the task falls back to plain text mode. See table 7.3.

It needs an available SMTP server; the default is localhost; this usually works on a
Unix system, but not a Windows box. When declaring the task, always specify the
mailhost attribute from a property, even if the default is simply localhost, so
that other users can override it. Also, unless delivery of the message is central to the
build process, set failonerror="false" to keep the build alive if a mail server is
not available.

The simplest use of the <mail> task is to send notification messages:

Table 7.3 <mail> task attributes

Attribute Description Required?

from Sender Yes

tolist Recipient list Yes

subject Subject of message No

message Text of the email Yes, unless included elsewhere

mailhost Mail server host name No, default to localhost

failonerror Stops the build if an error occurs send-
ing the email

No, default to true

files A list of files Yes, if message is not set

includefilenames Flag to include the names of included
files in the next

No, default to false

mailport Port number of the server No, default to 25

messageFile File to use as the text of the message No, but a message or attach-
ment is needed somehow

messageMimeType Mime type to use for message body No, default to text/plain

cclist CC: recipient list No

bcclist BCC: recipient list No
TASKS FOR DEPLOYMENT 169

<mail
 from="ant@example.org"
 tolist="team@example.org"
 mailhost="${deploy.mail.server}"
 subject="new build ready"
 message="build ${build.version} is on the server" />

You can send binaries by nesting one or more <fileset> elements inside. To
send HTML text messages, simply state the MIME type of the message body to be
text/html:

<mail
 from="ant@example.org"
 tolist="team@example.org"
 mailhost="${deploy.mail.server}"
 subject="new build test results"
 messageFile="build/tests/junit.html"
 messageMimeType="text/html" />

7.2.5 Fetching remote files with <get>

Once Ant has deployed something to a remote web or FTP server, the <get> task
can be used to retrieve it. This task has very few parameters, as shown in table 7.4.

Any URL schema the run time supports is valid here, even though the task contains
biases towards HTTP. If the Java Secure Socket Extension package is added to the
Java run time, the task also supports HTTPS; you must add JSSE by hand for ver-
sions of Java prior to version 1.4.

You specify the download destination in the dest attribute; you must specify this
even if all you want to do is probe for a URL being valid. When using HTTP or
HTTPS, you can apply version-based checking to the download by using the use-
timestamp attribute, so that it sends the If-Modified-Since header to the web
server. The web server may then reply, stating that the file is unmodified, in which case
the task does not download the file again.

The fundamental flaw with the <get> task is that it is based on the java.net
implementation of the HTTP client, a portion of the Java run time that is not only

Table 7.4 The attributes of the <get> command. The usetimestamp attribute for dependency

based downloads is only valid with HTTP.

Attribute Description Required?

src The source URL Yes

dest The local destination file Yes

verbose Print a ‘.’ every 100KB of download No, default to false

ignoreerrors Don’t fail on errors No, default to false

password Password No, unless username is set

username Username for ‘BASIC’ http authentication No, unless password is set

usetimestamp Download an HTTP file only if it is newer than the
local copy

No, default to false
170 CHAPTER 7 DEPLOYMENT

quirky, but the quirks vary from version to version. This means it is impossible to write
code that works consistently across all implementations. In the <get> task, these plat-
form differences surface in two places. First, the task will not necessarily detect an
incomplete download. Second, if the remote page, say application.jsp, returns an error
code, such as 501 and detailed exception information, that information cannot be read
from all versions of Java. If the task ran on Java 1.2, it may be able to get the informa-
tion, but not on Java 1.3, and this behavior depends on the value of the file extension
of the remote URL. This is sometimes problematic when attempting to test JSP page
installation. There are even other quirks of the java.net.HttpURLConnection
class that you probably will not encounter when using this task. These issues have
stopped the Ant team from releasing a reworked and more powerful HTTP support
framework of <httpget>, <httppost>, and <httphead>, pending someone
refactoring an existing prototype implementation to use the Jakarta project’s own
HttpClient library. When it does see the light of day, Ant will be able to POST files
and forms, which could be of use in many deployment processes.

7.2.6 Using the tasks to deploy

Having run through the tasks for deployment, and having the repertoire of other
tasks, such as <exec> and <java>, plus all the packaging we have just covered in
chapter 6, we are ready to sit down and solve those distribution problems. We are pre-
senting the tasks in XP style, each with a story card stating what we need. Where we
have diverted from the XP ethos is in testing, as some of these problems are hard to
test. We will do the best we can with automated testing, but these tasks force you to
check inboxes and the like, to verify complete functionality.

7.3 FTP-BASED DISTRIBUTION OF A PACKAGED APPLICATION

An application has been packaged up into source and binary distributions, with Windows
Zip and Unix gzip packages to redistribute. The distribution files are to be uploaded to a
remote server such as SourceForge.

We created the distribution packages in chapter 6, so they are ready to go. All that we
need is the <ftp> task. There is one little detail, however. If you put the password to
the server into the build file, everyone who gets a copy of the source can log in to the
server. You have to pull the password out into a properties file that you keep private
and secure.

SourceForge is such a popular target for deployment that we want to show how to
deploy to it. The current process is that you FTP up the distribution, using anony-
mous FTP, then go to the project web page where a logged-in project administrator
can add a new package or release an update to an existing package in the project
administration section, under “edit/release packages.”

 Ant can perform the upload, leaving the web page work to the developers.
Listing 7.2 shows the basic upload target.
FTP-BASED DISTRIBUTION OF A PACKAGED APPLICATION 171

<target name="ftp-to-sourceforge"
 depends="create-tarfile,create-src-zipfile">
 <ftp server="upload.sourceforge.net"
 remotedir="incoming"
 userid="ftp"
 password="nobody@"
 depends="true"
 binary="true"
 verbose="true"
 >
 <fileset dir="${dist.dir}"
 includes="${tarfile.gz.name},${srczipfile.name}"
 />
 </ftp>
 <echo>go to
 https://sourceforge.net/projects/YOUR-PROJECT
 and make a new release </echo>
</target>

This target depends upon the create-tarfile and create-src-zipfile tar-
gets of chapter 6, so the distribution packages are all ready to go. Following the
SourceForge rules, we upload the file to the directory incoming on the server
upload.sourceforge.net. We use the anonymous account ftp and a password
of nobody@, which SourceForge accepts.

We explicitly state that we want binary upload, with binary="yes"; with that
as the default we are just being cautious. We do override a default where we ask for
dependency checking on the upload, by declaring depends="true". The effect of
this is that the task only uploads changed files.

The build file selects files to upload by declaring a simple fileset of two files. The
<ftp> task can take a complex fileset, such as a tree of directories and files, in which
case the task replicates the tree at the destination, creating directories as needed. In such
a bulk upload the dependency checking makes deployment significantly faster. After
uploading the files, the target prints a message out, telling the user what to do next.

Deploying to any other site is just as simple. For example, the task could upload
a tree full of web content served up by a static web server, only uploading changed files
and images. Selecting text upload (binary="false") is useful to upload files used
in the deployment process or by the server, such as shell scripts to go into a cgi-bin
directory.

7.3.1 Asking for information with the <input> task

To allow people to ask for a password, or other user input, there is a little task called
<input>. This displays a message and asks for a response:

<target name="get-input">
 <input

Listing 7.2 FTP upload to SourceForge
172 CHAPTER 7 DEPLOYMENT

 message="what is the password for SourceForge?"
 addproperty="sf.password"
 />
 <echo message="sf.password=${sf.password}"/>
</target>

We could insert this task in the above, and use the property sf.password in the
password attribute of the <ftp> task. However, the password is then visible on the
screen, as the user types it:

 [input] what is the password for SourceForge?
who knows
 [echo] sf.password=who knows

The input task also adds complications in an automated build, or in IDEs. You can
specify a class that implements the InputHandler interface, a class that returns the
values in a property file, using the request message as the property name to search for.
To use this new property handler is complex: you must select the class on the command
line with the -inputhandler PropertyFileInputHandler options, and name
the file to hold the inputs, as a Java property defined with a -D definition in
ANT_OPTS, not as a Java property. In this use case, it’s a lot easier to place the pass-
word in a private properties file with very tight access controls and omit the
<input> task. You may find the task useful in other situations, such as when you use
<ant> as a way of running Java programs from the command line.

7.4 EMAIL-BASED DISTRIBUTION OF A PACKAGED APPLICATION

The application is to be distributed to multiple recipients as email. Recipients will receive
the source distribution in Zip or gzip format. The recipient list will be manually updated,
but it must be kept separate from the build file for easy editing.

This is not a hard problem; it is a simple application of the <mail> task with the
JavaMail libraries present. Maintaining the recipient list and mapping it to the task
could be complex. We shall keep the recipients in a separate file and load them in. We
use a property file, in this case one called “recipients.properties”:

deploy.mail.ziprecipients=steve
deploy.mail.gziprecipients=erik

There is a task called <loadfile>, to load an entire file into a single property. This
could be a better way of storing the recipient names. If you were mailing to many
recipients, having a text file per distribution would be a good idea.

To send the mail, we simply read in the recipient list using the <property file>
task to load a list of properties from a file, and then use <mail> to send the two mes-
sages, as shown in listing 7.3. This sends the different packages to different distribu-
tion lists.
EMAIL-BASED DISTRIBUTION OF A PACKAGED APPLICATION 173

<property name="deploy.projectname" value="antbook" />
<property name="deploy.mail.server" value="localhost" />

<property name="deploy.mail.sender"
 value="support-never-reads-this@example.org" />

<target name="deploy-to-mail"
 depends="create-tarfile,create-src-zipfile">
 <property file="recipients.properties" />
 <mail
 from="${deploy.mail.sender}"
 bcclist="${deploy.mail.ziprecipients}"
 mailhost="${deploy.mail.server}"
 subject="new source distribution"
 >
 <fileset dir="${dist.dir}"
 includes="${srczipfile.name}"
 />
 </mail>
 <mail
 from="${deploy.mail.sender}"
 bcclist="${deploy.mail.gziprecipients}"
 mailhost="${deploy.mail.server}"
 subject="new source distribution"
 >
 <fileset dir="${dist.dir}"
 includes="${tarfile.gz.name}"
 />
 </mail>

We send the mail using the BCC: field, to prevent others from finding out who else is
on the list, and use localhost as a mail server by default. Some of the systems on
which we run the build file override this value, as they have a different mail server.
This is very common in distributed development; in a single site project you can
nominate a single mail server.

The first <mail> task sends the Zip file; the second dispatches the gzip file to the
Unix users. We use an invalid sender address in the example: any real user must use
a valid sender address, not just to field user queries or delivery failure messages, but
also to ensure that any SMTP server that performs address validation through DNS
lookup will accept the messages. The domain we used, example.org, is one of the offi-
cial “can never exist” domains, so will automatically fail such tests.

7.5 LOCAL DEPLOYMENT TO TOMCAT 4.X

Tomcat 4.x is installed into a directory pointed to by CATALINA_HOME. Ant must
deploy the web application as a WAR file into CATALINA_HOME/webapps and restart
Tomcat or get the site updated in some other means.

Listing 7.3 Delivering by email
174 CHAPTER 7 DEPLOYMENT

Before describing how we can do this, we should observe that it is possible to config-
ure Tomcat to treat a directory tree as a WAR file and to poll for updated JSP and
.class pages, dynamically updating a running application. If this works for your
project, then Ant can just use <copy> to create the appropriate directory structure
and Tomcat will pick up the changes automatically. Be warned, however, that some-
times behavior can be unpredictable when you change parts of the system. A full
deployment is cleaner and more reliable, even if it takes slightly longer.

7.5.1 The Tomcat management servlet API

Tomcat 4.x lets you perform a hot update on a running server. That is, without
restarting the web server you can remove a running instance of your application and
upload a new version, which is ideal for busy servers or simply fast turnaround devel-
opment cycles. The secret to doing this is to use the web interface that the server pro-
vides for local or remote management. This management interface exports a number
of commands, all described in the Tomcat documentation. Table 7.5 lists the com-
mands that HTTP clients can issue as GET requests. Most commands take a path as
a parameter; this is the path to the web application under the root of the server, not a
physical path on the disk. The install command also takes a URL to content,
which is of major importance to us.

To use these commands, you must first create a Tomcat user with administration
rights. Do this by adding a user entry in the file CATALINA_HOME/conf/tomcat-
users.xml with the role of manager.

<tomcat-users>

 <user name="admin" password="password" roles="manager" />
 ...
</tomcat-users>

The same user name and password will be used in <get> tasks to access the pages, so
if you change these values, as would seem prudent, the build file or the property files
it uses will need changing. After saving the users file and restarting the server, a simple
test of it running is to have a task to list running applications and print them out:

Table 7.5 The Tomcat deployment commands, which are all password-protected endpoints

under the manager servlet. Enabling this feature on a production system is somewhat danger-

ous, even if convenient.

Command Function Parameters

install Install an application Path to application and URL to WAR file contents

list List all running applications N/A

reload Reload an application from disk Path to application

remove Stop and unload an application Path to application

sessions Provide session information Path to application

start Start an application Path to application

stop Stop an application Path to application
LOCAL DEPLOYMENT TO TOMCAT 4.X 175

<target name="list-catalina-apps">

 <get src="http://localhost:8080/manager/list"
 dest="status.txt"
 username="admin"
 password="password" />
 <loadfile property="catalina.applist" srcFile="status.txt"/>
 <echo>${catalina.applist}</echo>
</target>

This target saves the list of running applications to a file, and then loads this file to a
property, which <echo> can then display. There is a <concat> task that combines
the latter two actions; our approach of loading it into a property gives us the option
of adding a <condition> test to look for the word OK in the response, to verify the
request. We have not exercised this option, but it is there if we need to debug deploy-
ment more thoroughly.

The output when the server is running should look something like:

list-catalina-apps:

 [get] Getting: http://localhost:8080/manager/list
 [echo] OK - Listed applications for virtual host localhost
/examples:running:0
/webdav:running:0
/tomcat-docs:running:0
/manager:running:0
/:running:0

If a significantly different message appears, something is wrong. If the build fails with
a java.net.ConnectException error, then no web server is running at that
port. Other failures, such as a FileNotFoundException, are likely due to user-
name and password being incorrect, or it may not be Catalina running on that port.
Restart the server, then try fetching the same URL with a web browser to see what is
wrong with the port or authentication settings.

7.5.2 Deploying to Tomcat with Ant

To deploy to Tomcat, Ant checks that the server is running, and then issues a com-
mand to the server to force it to load a web application. The first step in this process
is to set the CATALINA_HOME environment variable to the location of the tool; this
has to be done by hand after installing the server. The Ant build file will use the envi-
ronment variable to determine where to copy files. Ant uses this to verify that the
server is installed; we use a <fail unless> test to enforce this. Making the targets
conditional on the env.CATALINA_HOME property would create a more flexible
build file.

To deploy locally you need to provide two things. The first is the path to the appli-
cation you want; we are using “/antbook” for our web application. The second piece
of information is more complex: a URL to the WAR file containing the web applica-
tion, and which is accessible to the server application.
176 CHAPTER 7 DEPLOYMENT

If the WAR file is expanded into a directory tree, you can supply the name of this
directory with a “file:” URL, and it will be treated as a single WAR file. Clearly, this file
path must be visible to the management servlet, which is trivial on a local system, but
harder for remote deployment, as we must copy the files over or use a shared file system.

The alternative URL style is to pass in the name of a single WAR file using the
“jar:” URL schema. This is a cascading schema that must be followed by a real URL
to the WAR file, and contain an exclamation mark to indicate where in this path the
WAR file ends and the path inside it begins. The resultant URL would look something
like jar:http://stelvio:8080/redist/antbook.war!/, which could be
readily included in a complete deployment request:

http://remote-server:8080/manager/install?

 path=/antbook&
 war=jar:http://stelvio:8080/redist/antbook.war!/

With this mechanism, you could serve the WAR file from your local web server, then
point remote servers at the file for a live remote deployment, with no need to worry
about how the files are copied over; all the low-level work is done for you. This would
make it easy to update remote systems without needing login access, only an account
on the web server with management rights.

Unfortunately, we found out it does not work properly. To be precise, on the ver-
sion of Tomcat we were using (Tomcat 4.02), the deployment worked once, but then
the server needed to be restarted before the WAR file can be updated. The server needs
to clean out its cached and expanded copy of the WAR file when told to remove an
application. It did not do this, and the second time Ant sent an install request, it
discovered the local copy and ran with that. It is exactly this kind of deployment sub-
tlety that developers need to look out for. It works the first time, but then you change
your code, the build runs happily, and nothing has changed at the server.2

Given that we cannot upload a WAR file in one go to the server, we need to resort
to the “point the server at an expanded archive in the file system” alternative, of which
the first step is to create an expanded WAR file. This could be done by following up
the <war> task with an <unzip> task, thereby handing off path layout work to the
built in task. We are going to eschew that approach and create the complete directory
tree using <copy>, and then <zip> it up afterwards, if a WAR file is needed for
other deployment targets. This approach requires more thinking, but has two benefits.
First, it makes it easy to see what is being included in the WAR file, which aids testing.
Second, it is faster. The war/unzip pair of tasks has to create the Zip file and then
expand it, whereas the copy/zip combination only requires one Zip stage, and the copy
process can all be driven off file timestamps, keeping work to a minimum. The larger
the WAR file, in particular the more JAR files included in it, the more the speed dif-
ference of the two approaches becomes apparent.

2 Later versions apparently fix this. We are sticking with our approach as it works better for remote deployment.
LOCAL DEPLOYMENT TO TOMCAT 4.X 177

Our original target to create the WAR file was eleven lines long:

<war destfile="${warfile}"

 webxml="web/WEB-INF/web.xml">
 <classes dir="${build.classes.dir}"/>
 <webinf dir="${build.dir}" includes="index/**"/>
 <webinf dir="${struts.dir}/lib" includes="*.tld,*.dtd"/>
 <fileset dir="web" excludes="WEB-INF/web.xml"/>
 <fileset dir="${build.dir}" includes="${buildinfo.filename}"/>
 <lib dir="${struts.dir}/lib" includes="*.jar"/>
 <lib dir="${lucene.dir}" includes="${lucene.map}.jar"/>
 <lib dir="${build.dir}" includes="antbook-common.jar"/>
</war>

The roll-your-own equivalent is more than double this length, being built out of five
<copy> tasks, each for a different destination in the archive, a manifest creation, and
finally the zip-up of the tree:

<property name="warfile.asdir"

 location="${dist.dir}/antbook" />

<target name="makewar"
 depends="compile,webdocs">

 <copy todir="${warfile.asdir}/WEB-INF/classes"
 preservelastmodified="true" >
 <fileset dir="${build.classes.dir}"/>
 <fileset dir="${struts.dir}/lib" includes="*.tld,*.dtd"/>
 </copy>

 <copy todir="${warfile.asdir}/WEB-INF/lib"
 preservelastmodified="true" >
 <fileset dir="${struts.dir}/lib" includes="*.jar"/>
 <fileset dir="${lucene.dir}" includes="${lucene.map}.jar"/>
 <fileset dir="${build.dir}" includes="antbook-common.jar"/>
 </copy>

 <copy todir="${warfile.asdir}/WEB-INF"
 preservelastmodified="true" >
 <fileset dir="${build.dir}" includes="index/**"/>
 <fileset dir="${struts.dir}/lib" includes="*.tld,*.dtd"/>
 </copy>

 <copy todir="${warfile.asdir}" preservelastmodified="true" >
 <fileset dir="web"/>
 </copy>

 <mkdir dir="${warfile.asdir}/META-INF"/>
 <manifest file="${warfile.asdir}/META-INF/MANIFEST.MF"/>
 <zip destfile="${warfile}">
 <fileset dir="${warfile.asdir}"/>
 </zip>
 </target>
178 CHAPTER 7 DEPLOYMENT

None of the <copy> task declarations are particularly complex, but they do add up.
With the WAR file now available as a directory, all we need to do to deploy to the
server is:

• Unload any existing version of the application.

• Point the application at the new one.

Once Tomcat has installed the application, it should keep an eye on the file time-
stamps and reload things if they change, but we prefer to restart applications for a
more rigorous process. A clean restart is, well, cleaner. We could actually issue the
reload command to the management servlet and have the reload done, but we are
choosing to not differentiate between the “application not installed” and “application
already installed” states, and always force the installation of our application. This
keeps the build file simpler.

First, a few up-front definitions are needed, such as the name of the web applica-
tion, the port the server is running on, and the logon details:

<property name="webapp.name" value="antbook"/>

<property name="catalina.port" value="8080" />
<property name="catalina.username" value="admin" />
<property name="catalina.password" value="password" />

We should really keep the passwords outside the build file; we certainly will for more
sensitive boxes. The remove-local-catalina target uninstalls the existing copy
by sending the application path to the management servlet:

<target name="remove-local-catalina">
 <fail unless="env.CATALINA_HOME"
 message="Tomcat 4 not found" />

 <property name="deploy.local.remove.url" value=
 "http://localhost:${catalina.port}/manager/remove"
 />

 <get
 src="${deploy.local.remove.url}?path=/${webapp.name}"
 dest="deploy-local-remove.txt"
 username="admin"
 password="password" />

 <loadfile property="deploy.local.remove.result"
 srcFile="deploy-local-remove.txt"/>
 <echo>${deploy.local.remove.result}</echo>
</target>

Running this target produces the message that Tomcat removed the application, after
which a new installation succeeds:

remove-local-catalina:

 [get] Getting: http://localhost:8080/manager/remove?path=/antbook
 [echo] OK - Removed application at context path /antbook

The removal
command

The complete
URL to get
LOCAL DEPLOYMENT TO TOMCAT 4.X 179

Calling the target twice in a row reveals that a second call generates a FAIL message,
but as Ant does not interpret the response, the build continues. Only if the local
server is not running, or the username or password is incorrect, does the <get>
request break the build. This means that the deployment target can depend on
removing the web application without a <condition> test to see if the web applica-
tion is actually there and hence in need of removal.

Once the old version is unloaded, it is time to install the new application. We do
this with a target that calls management servlet’s “install” URL:

<target name="deploy-local-catalina"

 depends="makewar,remove-local-catalina" >
 <property name="deploy.local.urlpath"
 value="file:///${ warfile.asdir}/" />

 <property name="deploy.local.url.params" value=
 "path=/${webapp.name}&war=${deploy.local.urlpath}"
 />

 <property name="deploy.local.url" value=
 "http://localhost:${catalina.port}/manager/install"
 />

 <get src="${deploy.local.url}?${deploy.local.url.params}"
 dest="deploy-local.txt"
 username="${catalina.username}"
 password="${catalina.password}" />

 <loadfile property="deploy.local.result"
 srcFile="deploy-local.txt"/>
 <echo>${deploy.local.result}</echo>
</target>

Because of its predecessors, invoking this target will create the WAR file image and
remove any existing application instance, before installing the new version:

makewar:

 [copy] Copying 1 file to C:\AntBook\app\webapp\dist\antbook
 [zip] Building zip: C:\AntBook\app\webapp\dist\antbook.war

remove-local-catalina:
 [get] Getting: http://localhost:8080/manager/remove?
 path=/antbook
 [echo] FAIL - No context exists for path /antbook

deploy-local-catalina:
 [get] Getting: http://localhost:8080/manager/install?
 path=/antbook
 &war=file:///C:\AntBook\app\webapp\dist\antbook/
 [echo] OK - Installed application at context path /antbook

BUILD SUCCESSFUL
180 CHAPTER 7 DEPLOYMENT

In three targets, we have live deployment to a local Tomcat server. This allows us to
check this deployment problem off as complete.

7.6 REMOTE DEPLOYMENT TO TOMCAT

Tomcat 4.x is installed on a remote server. The build file must deploy the WAR file it
creates to this server.

This is simply an extension of the previous problem. If you can deploy locally, then
you can deploy remotely; all you need is a bit of remote access. The management
interface of Tomcat works remotely, so the only extra work is the file copy to the
server. This can be done with <ftp>, or by using <copy> if the client can mount
the remote server’s disk drive. Using FTP, the expanded WAR file can be copied up in
one task declaration:

<target name="ftp-warfile"
 depends="makewar" if="ftp.login" >
 <ftp server="${target.server}"
 remotedir="${ftp.remotedir}"
 userid="${ftp.login}"
 password="${ftp.password}"
 depends="true"
 binary="true"
 verbose="true"
 ignoreNoncriticalErrors="true"
 >
 <fileset dir="${warfile.asdir}" />
 </ftp>
</target>

This target needs a login account and password on the server, which must be kept out
the build file. We will store it in a property file and fetch it in on demand. The
<ftp> task has set the ignoreNonCriticalErrors to avoid warnings that the
destination directory already exists; the standard Linux FTP server, wu-ftpd, has a
habit of doing this. The flag tells the task to ignore all error responses received when
creating a directory, on the basis that if something really has gone wrong, the follow-
ing file uploads will break. Note that we have made the <ftp> task conditional on a
login being defined; this lets us bypass the target on a local deployment.

Once <ftp> has uploaded the files, the build file needs to repeat the two steps of
removing and installing the application. This time we have refactored the targets to
define common URLs as properties, producing the code in listing 7.4.

<target name="build-remote-urls" >
 <property name="target.port" value="8080" />
 <property name="target.base.url"
 value="http://${target.server}:${target.port}" />
 <property name="target.manager.url"
 value="${target.base.url}/manager" />

This target depends
upon makewar

Upload the
expanded
WAR file

Listing 7.4 The targets to deploy to a remote Tomcat server

Define the base
URL properties
REMOTE DEPLOYMENT TO TOMCAT 181

</target>

<target name="remove-remote-app" depends="build-remote-urls">
 <property name="status.file"
 location="deploy-${target.server}.txt" />
 <get
 src="${target.manager.url}/remove?path=/${webapp.name}"
 dest="${status.file}"
 username="${target.username}"
 password="${target.password}" />
 <loadfile property="deploy.result" srcFile="${status.file}"/>
 <echo>${deploy.result}</echo>
</target>

<target name="deploy-remote-server"
 depends="build-remote-urls,remove-remote-app,ftp-warfile">
 <property name="redist.url"
 value="file://${target.directory}" />
 <property name="target.url.params"
 value="path=/${target.appname}&war=${redist.url}" />
 <get
 src="${target.manager.url}/install?${target.url.params}"
 dest="deploy-remote-install.txt"
 username="${target.username}"
 password="${target.password}"
 />
 <loadfile property="deploy.remote.result"
 srcFile="deploy-remote-install.txt"/>
 <echo>${deploy.remote.result}</echo>
</target>

The most significant change is that all the targets use properties; there is no hard cod-
ing of machine names or other details in the targets. These properties have to be set in
a properties file or passed in on the command line. The deployment task also needs to
know the absolute directory into which FTP-uploaded files go, as seen by the web
server. Usually it is a subdirectory of the account used to upload the files.

The targets to deploy to the remote server are all in place. All that remains is to exe-
cute them with the appropriate properties predefined. We are going to do this, but we
plan to deploy to more than one server and do not want to cut and paste targets, or
invoke Ant with different command line properties. Instead, we want a single build
run to be able to deploy to multiple destinations, all using the same basic targets. This
means we need to be able to reuse the targets with different parameters, a bit like call-
ing a subroutine. We need <antcall>.

7.6.1 Interlude: calling targets with <antcall>

The <antcall> task is somewhat controversial: excessive use of this task usually
means someone has not fully understood how Ant works. As long as you use it with
restraint, it is a powerful task. The task lets you call any target in the build file, with

Remove the
old copy

Create a URL to
the uploaded files

Install the
application
182 CHAPTER 7 DEPLOYMENT

any property settings you choose. This makes it equivalent to a subroutine call, except
that instead of passing parameters as arguments, you have to define “well known
properties” instead. Furthermore, any properties that the called target sets will not be
remembered when the call completes.

A better way to view the behavior of <antcall> is as if you are actually starting
a new version of Ant, setting the target and some properties on the command line.
When you use this as a model of the task’s behavior, it makes more sense that when
you call a target, its dependent targets are also called. This fact causes confusion when
people try to control their entire build with <antcall>. Although it is nominally
possible to do this with high-level tasks which invoke the build, test, package, and
deploy targets, this is the wrong way to use Ant. Usually, declaring target dependencies
and leaving the run time to sort out the target execution order is the best thing to do.
Our deployment task in listing 7.5 is the exception to this practice. This target can
deploy to multiple remote servers, simply by invoking it with <antcall> with the
appropriate property settings for that destination. That is why we left out any target
dependencies: to avoid extra work when a build deploys to a sequence of targets.

To illustrate the behavior, let’s use a project containing a target that prints out
some properties potentially defined by its predecessors, do-echo:

<project name="antcall" default="do-echo">

 <target name="init">
 <property name="arg3" value="original arg3" />
 </target>

 <target name="do-echo" depends="init">
 <echo>${arg1} -- ${arg2} -- ${arg3}</echo>
 </target>
</project>

When you call the do-echo target directly, the output should be predictable:

init:

do-echo:
 [echo] ${arg1} -- ${arg2} -- original arg3

Now let’s add a new target, which invokes the target via <antcall>:

<target name="call-echo" depends="init">

 <property name="arg1" value="original arg1" />
 <property name="arg2" value="original arg2" />
 <echo>calling...</echo>
 <antcall target="do-echo">
 <param name="arg1" value="overridden"/>
 </antcall>
 <echo>...returned</echo>
</target>

This target defines some properties and then calls the do-echo target with one of
the parameters overridden. The <param> element inside the <antcall> target is a
REMOTE DEPLOYMENT TO TOMCAT 183

direct equivalent of the <property> task: all named parameters become properties
in the called target’s context, and all methods of assigning properties in that method
(value, file, available, resource, location, and refid)can be used. In
this declaration, we have used the simple, value-based assignment.

The output of running Ant against that target is:
init:

call-echo:
 [echo] calling...
init:
do-echo:
 [echo] overridden -- original arg2 -- original arg3
 [echo] ...returned

The first point to notice is that the init target has been called twice, once because
call-echo depended upon it, the second time because do-echo depended upon
it; the second time both init and call-echo were called, it was in the context of
the <antcall>. The second point to notice is that now the previously undefined
properties, arg1 and arg2, have been set. The arg1 parameter was set by the
<param> element inside the <antcall> declaration; the arg2 parameter was
inherited from the current context. The final observation is that the final trace mes-
sage in the call-echo target only appears after the echo call has finished. Ant has
executed the entire dependency graph of the do-echo target as a subbuild within the
new context of the defined properties.

The task has one mandatory attribute, target, which names the target to call, and
two optional Boolean attributes, inheritall and inheritrefs. The inherit-
all flag controls whether the task passes all existing properties down to the invoke tar-
get, which is the default behavior. If the attribute is set to “false”, only those defined in
the task declaration are passed down. To demonstrate this, we add another calling target:

<target name="call-echo2" depends="init">

 <property name="arg1" value="original arg1" />
 <property name="arg2" value="original arg2" />
 <echo>calling...</echo>
 <antcall target="do-echo"
 inheritall="false">
 <param name="arg1" value="newarg1"/>
 </antcall>
 <echo>...returned</echo>
</target>

When you execute this target the log showed that do-echo did not know the defini-
tion of arg2, as it was not passed down:

[echo] newarg1 -- ${arg2} -- original arg3

Note that arg3 is still defined, because the second invocation of the init target will
have set it; all dependent tasks are executed in an <antcall>. Effectively, arg3 has
been redefined to the same value it held before.
184 CHAPTER 7 DEPLOYMENT

Regardless of the inheritance flag setting, Ant always passes down any properties
explicitly set on the command line. This ensures that anything manually overridden
on the command line stays overridden, regardless of how you invoke a target. Take,
for example, the command line

ant -f antcall.xml call-echo2 -Darg2=predefined -Darg1=defined

This results in an output message of

[echo] defined -- predefined -- original arg3

This clearly demonstrates that any properties defined on the command line override
anything set in the program, no matter how hard the program tries to avoid it. This is
actually very useful when you do want to control a complex build process from the
command line.

You can also pass references down to the invoked target. If you set inheri-
trefs="true", all existing references are defined in the new “context”. You can cre-
ate new references from existing ones by including a <reference> element in the
<antcall> declaration, stating the name of a new reference to be created using the
value of an existing path or other reference:

<reference refid="compile.classpath" torefid="execution.classpath" />

This is useful if the invoked target needs to use some path or patternset as one of its
customizable parameters.

Now that we have revealed how to rearrange the order and context of target exe-
cution, we want to state that you should avoid getting into the habit of using <ant-
call> everywhere, which some Ant beginners do. The Ant run time makes good
decisions about the order in which to execute tasks; a target containing nothing but
a list of <antcall> tasks is a poor substitute.

7.6.2 Using <antcall> in deployment

Our first invocation of the deployment target will be to deploy to our local machine,
using the remote deployment target. This acts as a stand-alone test of the deployment
target, and if it works, it eliminates the need to have a separate target for remote
deployment. It relies on the fact that Ant bypasses the FTP target if the property
ftp.login is undefined; instead of uploading the files, we simply set the tar-
get.directory property to the location of the expanded WAR file:

<target name="deploy-localhost-remotely"

 depends="dist">
 <antcall target="deploy-and-verify">
 <param name="target.server" value="127.0.0.1"/>
 <param name="target.appname" value="antbook"/>
 <param name="target.username" value="admin"/>
 <param name="target.password" value="password"/>
 <param name="target.directory" value="${warfile.asdir}"/>
 </antcall>
</target>
REMOTE DEPLOYMENT TO TOMCAT 185

Running this target deploys to the server, uninstalling the old application and
uploading a new version, building the WAR package in the process. This enables us
to remove the targets written only to deploy to the local server. The same build file
target can be used for remote and local deployment.

To justify that claim we need to demonstrate remote deployment. First, we create
a properties file called deploy.eiger.properties which contains the sensitive deployment
information:

target.server=eiger

target.appname=antbook
target.username=admin
target.password=password
ftp.login=tomcat
ftp.password=.oO00Oo.
ftp.remotedir=warfile
target.directory=/home/tomcat/warfile

We do not add this to the SCM system, and we alter its file permissions to be read-
able only by the owner. We now want a target to load the named file into a set of
properties and deploy to the named server. We do this through the <property
file> technique, this time to a <param> element inside the <antcall>:

<target name="deploy-to-eiger">

 <antcall target="deploy-remote-server">
 <param file="deploy.eiger.properties" />
 </antcall>
</target>

That is all we need. A run of this target shows a long trace finishing in the lines:

 [get] Getting: http://eiger:8080/manager/install?

 path=/antbook&war=file:///home/tomcat/warfile
 [echo] OK - Installed application at context path /antbook
BUILD SUCCESSFUL
Total time: 28 seconds

That is it: twenty-eight seconds to build and deploy. Admittedly, we had just built
and deployed to the local system, but we do now have an automated deployment pro-
cess. As a finale, we write a target to deploy to both servers one after the other:

<target name="deploy-all"
 depends="deploy-localhost-remotely,deploy-to-eiger" />

This target does work, but it demonstrates the trouble with <antcall>: depen-
dency re-execution. All the predecessors of the deployment targets to make the WAR
file are called again, even though there is nothing new to compile. With good depen-
dency checking this is not necessarily a major delay; our combined build time is
thirty-eight seconds, which is fast enough for a rapid edit-and-deploy cycle.
186 CHAPTER 7 DEPLOYMENT

7.7 TESTING DEPLOYMENT

How can you verify that the deployment process worked?
If you are redistributing the files by email or FTP, then all you can do is verify that

files that come through the appropriate download mechanism can be unzipped and
then used. Ant does let you fetch the file with <get>; it can expand the downloaded
files with the appropriate tasks or with the native applications. For rigorous testing,
the latter are better, even if they are harder to work with.

A build file can test Web server content more automatically, and more rigorously,
by probing pages written specifically to act as deployment tests. A simple <get> call
will fetch a page; a <waitfor> test can spin for a number of seconds until the server
finally becomes available.

We want to cover this process in detail, as deployment can be unreliable, and a
good test target to follow the deployment target can reduce a lot of confusion. How-
ever, we don’t want to cover the gory details in this chapter, as it would put everyone
off using Ant to deploy their code. Rest assured, however, that in chapter 18, when
we get into the techniques and problems of production deployment, we will show you
how to verify that the version of the code you just built is the version the users see.

7.8 SUMMARY

Deployment is the follow-on step of packaging an application for redistribution. It
may be as simple as uploading the file to an FTP site or emailing it to a mailing list. It
may be as complex as updating a remote web server while it is running. Ant can
address all such deployment problems, and more advanced ones. The <get> task can
fetch content after deployment, but for a web server with a web-based management
interface, you can use it for deployment itself. The Tomcat 4 web server is well suited
to this deployment mechanism.

The key to successful deployment, in our experience, is to keep the process simple
and to include automated tests for successful deployment. Another success factor is to
use the same targets for local and remote deployment, on the basis that it simplifies
debugging of the deployment process, and reduces engineering overhead: only one target
needs maintenance. The <antcall> task lets you call targets with different properties
predefined, which is exactly what you need for reusable targets within the same build file.

One of the other best practices in deployment is to make the targets conditional
on any probes you can make for the presence of a server. It is very easy to forget that
a build file deploys to two server types until someone else tries to run the build and
it does not work for them. The <condition> task lets you probe for server avail-
ability, while the <waitfor> task lets the build spin until a condition is met. This
can be used when waiting for a server to start, for it to stop, or to see if a web server
exists at that location at all.

This chapter is not our last word in Ant deployment. Chapter 18 is dedicated to
the subject. We also have a chapter on web applications (chapter 12), where we explore
running functional tests against a newly deployed application.
SUMMARY 187

C H A P T E R 8

Putting it all together

8.1 Our application thus far 188
8.2 Building the custom Ant task library 189
8.3 Loading common properties across

multiple projects 194

8.4 Handling versioned
dependencies 196

8.5 Build file philosophy 200
8.6 Summary 201

In the previous chapters, we introduced the basic concepts and tasks of Ant. You

should now be able to create build files to accomplish many of the most common
build-related tasks. What we have not shown you is a single build file that incorpo-
rates these.

It is easier to explain concepts piece by piece, yet it is difficult to get the full scope
and rationale for each element of the build process when you only see it in little frag-
ments. This chapter provides a higher-level view of our sample application’s build pro-
cess, glossing over the details that we have already presented, and introducing new
some new concepts. We have not covered all of the techniques shown in the sample
build files; these will be noted with references to later chapters.

8.1 OUR APPLICATION THUS FAR

Our application consists of a custom Ant task that indexes documents at build time,
uses a command-line tool to search an existing index, and contains an interface to
allow searching the index and retrieving the results through a web application. In
order to maximize reusability of our components and minimize the coupling between
them, we split each into its own stand-alone build. Note:

• The custom Ant task to build a Lucene index (IndexTask) is useful in many
projects and its only dependencies are the Lucene and JTidy libraries.
188

• A common component that hides the Lucene API details is used in both the
command-line search tool and the web application.

• The command-line search tool only relies on the shared common component
and is used to demonstrate running a Java application from Ant.

• The web application has the same dependencies as the command-line search
tool, as well as the Struts web framework.

In an effort to demonstrate as much of Ant’s capabilities as possible within the con-
text of our documentation search engine application’s build process, we have used a
number of techniques and tasks that may be overkill or unnecessary in your particular
situation. Ant often provides more than one way to accomplish things, and it is our
job to describe these ways and the pros/cons.

8.2 BUILDING THE CUSTOM ANT TASK LIBRARY

Without further ado, let’s jump right into listing 8.1, which is the build file for our
custom Ant task library.

<?xml version="1.0"?>
<!DOCTYPE project [
 <!ENTITY properties SYSTEM "file:../properties.xml">
 <!ENTITY tests_uptodate SYSTEM "file:../tests_uptodate.xml">
 <!ENTITY taskdef SYSTEM "file:../taskdef.xml">
 <!ENTITY targets SYSTEM "file:../targets.xml">
]>
<project name="AntBook - Custom Ant Tasks" default="default">

 <description>
 Custom Ant task to index text and HTML documents
 </description>

 <!-- import external XML fragments -->
 &properties;
 &taskdef;
 &targets;

 <!-- For XDoclet usage -->
 <property name="template.dir" location="templates"/>
 <property name="taskdef.template"
 location="${template.dir}/taskdef.xdt"/>
 <property name="taskdef.properties" value="taskdef.properties"/>

 <!-- == -->
 <!-- Datatype declarations -->
 <!-- == -->
 <path id="compile.classpath">
 <pathelement location="${lucene.jar}"/>
 <pathelement location="${jtidy.jar}"/>
 </path>

Listing 8.1 Build.xml for our custom Ant task library

Declare include
files

Include project-
wide pieces

XDoclet
properties

Define compile
path
BUILDING THE CUSTOM ANT TASK LIBRARY 189

 <path id="test.classpath">
 <path refid="compile.classpath"/>
 <pathelement location="${junit.jar}"/>
 <pathelement location="${build.classes.dir}"/>
 <pathelement location="${test.classes.dir}"/>
 </path>

 <!-- == -->
 <!-- Public targets -->
 <!-- == -->

 <target name="default" depends="dist"
 description="default: build verything" />
 <target name="all" depends="test,dist"
 description="build and test everything"/>
 <target name="test" depends="run-tests"
 description="run tests" />
 <target name="docs" depends="javadocs"
 description="generate documentation" />

 <target name="clean"
 description="Deletes all previous build artifacts">
 <delete dir="${build.dir}"/>
 <delete dir="${build.classes.dir}"/>
 <delete dir="${dist.dir}"/>

 <delete dir="${test.dir}"/>
 <delete dir="${test.classes.dir}"/>
 <delete dir="${test.data.dir}"/>
 <delete dir="${test.reports.dir}"/>
 </target>

 <target name="dist" depends="taskdef,compile"
 description="Create JAR">
 <jar destfile="${antbook-ant.jar}"
 basedir="${build.classes.dir}"/>
 </target>

 <!-- == -->
 <!-- Private targets -->
 <!-- == -->

 <target name="release-settings" if="release.build">
 <property name="build.debuglevel" value="lines"/>
 </target>

 <!-- compile the java sources using the compilation classpath -->
 <target name="compile" depends="init,release-settings">
 <property name="build.optimize" value="false"/>
 <property name="build.debuglevel" value="lines,vars,source"/>
 <echo>debug level=${build.debuglevel}</echo>
 <javac destdir="${build.classes.dir}"
 debug="${build.debug}"
 includeAntRuntime="yes"
 srcdir="${src.dir}">
 <classpath refid="compile.classpath"/>
 <include name="**/*.java"/>

Remove
build
artifacts

Build JAR

Nest compile
path in test path

Atypical—our code
uses Ant’s API
190 CHAPTER 8 PUTTING IT ALL TOGETHER

 </javac>
 </target>

 <target name="javadocs" depends="compile"
<mkdir dir="${javadoc.dir}"/>
 <javadoc author="true"
 destdir="${javadoc.dir}"
 packagenames="org.example.antbook.*"
 sourcepath="${src.dir}"
 use="true"
 version="true"
 windowtitle="ant book task"
 private="true"
 >
 <classpath refid="compile.classpath"/>
 </javadoc>
 </target>

 <target name="test-compile" depends="compile"
 unless="tests.uptodate">
 <javac destdir="${test.classes.dir}"
 debug="${build.debug}"
 includeAntRuntime="yes"
 srcdir="${test.src.dir}">
 <classpath refid="test.classpath"/>
 </javac>

 <!-- copy resources to be in classpath -->
 <copy todir="${test.classes.dir}">
 <fileset dir="${test.src.dir}" excludes="**/*.java"/>
 </copy>
 </target>

 <target name="run-tests" depends="test-compile"
 unless="tests.uptodate">
 <junit printsummary="no"
 errorProperty="test.failed"
 failureProperty="test.failed"
 fork="${junit.fork}">
 <classpath refid="test.classpath"/>

 <sysproperty key="docs.dir" value="${test.classes.dir}"/>
 <sysproperty key="index.dir" value="${test.dir}/index"/>

 <formatter type="xml"/>
 <formatter type="brief" usefile="false"/>

 <test name="${testcase}" if="testcase"/>
 <batchtest todir="${test.data.dir}" unless="testcase">
 <fileset dir="${test.classes.dir}"
 includes="**/*Test.class"/>
 </batchtest>
 </junit>

Generate API docs

Run single test
technique

Compile
test code

Pass params to
test cases

Copy
resources

b

TEST!
BUILDING THE CUSTOM ANT TASK LIBRARY 191

 <junitreport todir="${test.data.dir}">
 <fileset dir="${test.data.dir}">
 <include name="TEST-*.xml"/>
 </fileset>
 <report format="frames" todir="${test.reports.dir}"/>
 </junitreport>

 <!-- create temporary file indicating these tests failed -->
 <echo message="last build failed tests"
 file="${test.last.failed.file}"/>
 <fail if="test.failed">
 Unit tests failed. Check log or reports for details
 </fail>

 <!-- Remove test failed file, as these tests succeeded -->
 <delete file="${test.last.failed.file}"/>
 </target>

 <target name="todo" depends="init">
 <mkdir dir="${build.dir}/todo"/>
 <document sourcepath="${src.dir}"
 destdir="${build.dir}/todo"
 classpathref="xdoclet.classpath">
 <fileset dir="${src.dir}">
 <include name="**/*.java" />
 </fileset>
 <info header="Todo list"
 tag="todo"/>
 </document>
 </target>

 <target name="taskdef" depends="init" unless="taskdef.uptodate">
 <echo message="Building taskdef descriptors"/>
 <property name="xdoclet.classpath.value"
 refid="xdoclet.classpath"/>
 <xdoclet sourcepath="${src.dir}"
 destdir="${build.classes.dir}"
 classpathref="xdoclet.classpath">
 <fileset dir="${src.dir}">
 <include name="**/*.java" />
 </fileset>
 <template templateFile="${taskdef.template}"
 destinationfile="${taskdef.properties}">
 <configParam name="date" value="${DSTAMP} @ ${TSTAMP}"/>
 </template>
 </xdoclet>
 </target>

 <target name="init">
 <echo message="Building ${ant.project.name}"/>
 <tstamp/>

 <!-- create directories used for building -->

Generate test
reports

Last
tests
failed
check
trick

Generate
descriptor

from source

d

Generate to-do
list from source

c

192 CHAPTER 8 PUTTING IT ALL TOGETHER

 <mkdir dir="${build.dir}"/>
 <mkdir dir="${build.classes.dir}"/>
 <mkdir dir="${dist.dir}"/>

 <!-- create directories used for testing -->
 <mkdir dir="${test.dir}"/>
 <mkdir dir="${test.classes.dir}"/>
 <mkdir dir="${test.data.dir}"/>
 <mkdir dir="${test.reports.dir}"/>

 <!-- Include common test bypass check condition -->
 &tests_uptodate;

 <!-- Check taskdef.properties dependency to speed up build -->
 <uptodate property="taskdef.uptodate"
 targetfile="${build.classes.dir}/${taskdef.properties}">
 <srcfiles dir="${src.dir}" includes="**/*.java"/>
 <srcfiles dir="${template.dir}" includes="taskdef.xdt"/>
 </uptodate>
 </target>

</project>

Some items in listing 8.1 deserve explanation in greater detail. At the beginning of
the build file we take advantage of XML entity references to share build file fragments
with other build files. Entity reference includes are covered in more detail in
chapter 9.

All temporary build directories are deleted, even if they default to being physically
under one another. We cannot assume that this default configuration is always the
case. A user could override test.reports.dir, for example, to generate test reports to a
different directory tree, perhaps under an intranet site.

Copying of non-.java files from the source tree to the compiled class directory is a
common practice. Often property files or other metadata files live alongside source
code. In our case, we have test cases that need known test data files. We keep them
tightly coupled with our JUnit test case source code.

XDoclet is used to generate a to-do list from @todo Javadoc comments and to
dynamically construct a descriptor file making our custom tasks easier to integrate
into build files. We cover these techniques in chapter 11.

For the same reason we delete all temporary directories explicitly in our “clean” target,
we create them individually here.

Create
directoriese

b

c, d

e

BUILDING THE CUSTOM ANT TASK LIBRARY 193

8.3 LOADING COMMON PROPERTIES ACROSS
MULTIPLE PROJECTS

Our project consists of multiple components, as shown in listing 8.2.

<property environment="env"/>

<property name="env.COMPUTERNAME" value="${env.HOSTNAME}"/>

<!-- == -->
<!-- Load property files -->
<!-- Note: the ordering is VERY important. -->
<!-- == -->
<property name="user.properties.file"
 location="${user.home}/.build.properties"/>

<!-- Load the application specific settings -->
<property file="build.properties"/>

<!-- Load user specific settings -->
<property file="${user.properties.file}"/>

<!-- == -->
<!-- Directory mappings -->
<!-- == -->
<property name="root.dir" location="${basedir}"/>
<property name="masterbuild.dir" location="${root.dir}/.."/>

<property file="${masterbuild.dir}/build.properties"/>

<property name="src.dir" location="${root.dir}/src"/>

<property name="build.dir" location="build"/>
<property name="build.classes.dir"
 location="${build.dir}/classes"/>
<property name="dist.dir" location="dist"/>
<property name="dist.bin.dir" location="${dist.dir}/bin"/>
<property name="doc.dir" location="doc"/>
<property name="javadoc.dir" location="${doc.dir}/javadoc"/>
property name="lib.dir" location="${masterbuild.dir}/lib"/>

<!-- == -->
<!-- Compile settings -->
<!-- == -->
<property name="build.debug" value="on"/>
<property name="build.optimize" value="off"/>

<!-- == -->
<!-- Test settings -->
<!-- == -->

Listing 8.2 Properties.xml—an include file that all subcomponent build files use

Load environment variables as properties

Cross-
platform
machine

name
trick

Allow user
properties to
be relocated

Load user properties

Application-wide
properties

Default compile settings
194 CHAPTER 8 PUTTING IT ALL TOGETHER

<property name="test.dir" location="${build.dir}/test"/>
<property name="test.classes.dir" location="${test.dir}/classes"/>
<property name="test.data.dir" location="${test.dir}/data"/>
<property name="test.reports.dir" location="${test.dir}/reports"/>
<property name="test.src.dir" location="${root.dir}/test"/>
<property name="test.last.failed.file"
 location="${build.dir}/.lasttestsfailed"/>

<!-- == -->
<!-- Library dependency settings -->
<!-- == -->
<property name="lib.properties.file"
 location="${lib.dir}/lib.properties"/>

<!-- lib.properties.file contains .version props -->
<property file="${lib.properties.file}"/>

<!-- library directory mappings -->
<!-- . . . others omitted -->
<property name="lucene.dir"
 location="${lib.dir}/lucene-${lucene.version}"/>
<property name="struts.dir"
 location="${lib.dir}/jakarta-struts-${struts.version}"/>

<!-- each library has its own unique directory structure -->
<!-- . . . others omitted -->
<property name="lucene.subdir" value=""/>
<property name="struts.subdir" value="lib"/>

<!-- JAR file mappings -->
<!-- . . . others omitted -->
<property name="lucene.dist.dir"
 location="${lucene.dir}/${lucene.subdir}"/>

<property name="lucene.jarname"
 value="lucene-${lucene.version}.jar"/>

<property name="lucene.jar"
 location="${lucene.dist.dir}/${lucene.jarname}"/>

<property name="struts.dist.dir"
 location="${struts.dir}/${struts.subdir}"/>
<property name="struts.jar"
 location="${struts.dist.dir}/struts.jar"/>

<!-- == -->
<!-- index info -->
<!-- == -->
<property name="index.dir"
 location="${masterbuild.dir}/index/build/index"/>

<property name="docstoindex.dir" value="${ant.home}/docs"/>

<fileset dir="${docstoindex.dir}" id="indexed.files"/>

Library mappings section

Library .dir mappings

Library .dist.dir mappings

.jar mappings

Library .subdir mappings
LOADING COMMON PROPERTIES ACROSS MULTIPLE PROJECTS 195

<!-- == -->
<!-- generated output -->
<!-- == -->
<property name="antbook-ant.dist.dir"
 location="${masterbuild.dir}/ant/dist/"/>

<property name="antbook-ant.jar"
 location="${antbook-ant.dist.dir}/antbook-ant.jar"/>

<property name="antbook-common.dist.dir"
 location="${masterbuild.dir}/common/dist/"/>

<property name="antbook-common.jar"
 location="${antbook-common.dist.dir}/antbook-common.jar"/>

<property name="antbook-webapp.name"
 value="antbook.war" />
<property name="antbook-webapp.dist.dir"
 location="${masterbuild.dir}/webapp/dist/"/>
<property name="antbook-webapp.war"
 location="${antbook-webapp.dist.dir}/${antbook-webapp.name}"/>

<property name="warfile"
 location="${antbook-webapp.war}" />

<property name="war.expanded.dir"
 location="${masterbuild.dir}/webapp/build/war" />

8.4 HANDLING VERSIONED DEPENDENCIES

The many Ant properties shown in listing 8.2 that are used to handle our library
dependency mappings is arguably overkill for our needs, but it illustrates the power of
Ant’s property mechanisms quite well. We do not necessarily recommend this partic-
ular scheme for your project, but certainly a subset of this type of mapping indirec-
tion will add greater adaptability to your build process.

The whole purpose of the build file is to let individual build files refer to a library
by a short name, such as ${struts.jar}, provide a single place where these libraries
are named, and provide a way for subprojects to override the supplied library versions
on a case-by-case basis. It certainly seems easier just to place all the JAR files in a single
lib directory, but this does not scale to large projects. Using an indirection mechanism
gives you the control that large projects need. Figure 8.1 shows our library directory
structure.

There are some important goals for our library layout and Ant property mappings:

• Make it easy to introduce a new version of a library alongside an existing one.

• Give a single place to upgrade the system as a whole to a new version.

• Let different users, projects, and builds override the default version.

• Allow ability to override on a per-user, per-project, or per-build level.
196 CHAPTER 8 PUTTING IT ALL TOGETHER

Our properties.xml file, by default, points to a lib/lib.properties file, the location of
which users can override. This properties file contains simply the version number (or
label) of all of our dependencies. A snapshot of our file contains:

checkstyle.version = 2.1
j2ee.version = 1.3
jtidy.version = 04aug2000r7-dev
log4j.version = 1.1.3
lucene.version = 1.2-rc3
struts.version = 20011223
xdoclet.version = dev
xalan.version = 2.2
hsqldb.version = 1.61
torque.version = 3.0-dev
httpunit.version = 1.4
axis.version = beta-2

Not only does this give an example to fit into our discussion about dependency prop-
erty mappings, it is also illustrative of the versions of software that we used for our
project, many of which put us on the bleeding edge.1

Figure 8.2 shows how the version number property works in conjunction with the
directory property mappings.

We minimize the effort to install a new version of, say, Lucene, by placing full dis-
tributions into our lib directory, in their normal directory structure. Figure 8.2 shows
the standard distribution directory structures of both Lucene and Struts. They differ; we
account for this with our.subdir property. Table 8.1 describes each of these propeties.

With these properties, build files do not need to know the directory structure of a
library distribution. This defends our projects against products which change packaging
from version to version: we can just change a property or two and everything works again.

1 And we in fact did bleed profusely! We really tried to only use released versions of libraries, but in sev-
eral cases, we found bugs, fixed them, and sent patches back to the appropriate developer communities.

lib

jakarta-struts-
<version>

lib

lucene-
<version>

lucene-<version>.jar

struts.jar struts-*.tld

Figure 8.1

Library directory layout

for dependent libraries
HANDLING VERSIONED DEPENDENCIES 197

8.4.1 Installing a new library version

All that work and indirection for what benefit? What if we want to upgrade to a new
version of Struts or Lucene? It’s easy! We simply drop the new version of a product into
a new subdirectory of lib, named with the new library version number, and then change
the version label in our lib.properties—that’s it. The next time the build runs, it pulls
the version number from the properties file, and binds to the new version. It’s that sim-
ple, but it is also only one of the numerous ways we can control our dependencies.
There are a number of different scenarios that illustrate the flexibility we’ve added.

Switching versions on a per-component basis

Each component in our application may have its own build.properties file, and the
order in which it is loaded allows for it to take precedence over user and application-
wide properties. The idea is that if a project has overridden something, it has done so
for a very good reason and it should be one of the higher priority places to pick up
such settings. For example, one of our components could specify an exception to the
project suite’s standard library versions by specifying a new version it its build.proper-
ties file (figure 8.2).

Table 8.1 The different properties used to reference a library. The path to the JAR file, here

${struts.jar}, is the most important, though we use the distribution directory when we create

the WAR file.

Property Description

struts.version Version label. By default, it is defined in lib.properties.

struts.dir Top-level directory to the specified version of Struts.

struts.subdir The name of the subdirectory (no path included, just the name) where the
libraries are stored. This value may be blank if the libraries are in the top-
level directory, as in the case of Lucene.

struts.dist.dir The complete path to the directory containing the Struts libraries.

struts.jar Mapping to the full path of the actual JAR file.

lib

lucene-
<version>

lucene-<version>.jar

jakarta-struts-
<version>

lib.dir

lucene.dir

lucene.dist.dir

lucene.jar

struts.dir

struts.subdir

struts.jar

struts.dist.dirlib

struts.jar struts-*.tld

Figure 8.2

Property mappings for the

library directory structure
198 CHAPTER 8 PUTTING IT ALL TOGETHER

lucene.version = 1.2

For maximum flexibility, any of the properties shown in table 8.1 could be overrid-
den, though that is rarely, if ever, needed.

Allowing user-specific overrides

In our property loading hierarchy, user-specific properties are loaded after the compo-
nent-specific properties, allowing per-user overrides for settings that are not hard-
coded for a component. The user.home property is supplied by the JVM system
properties, which Ant automatically provides, and refers to the current users operat-
ing system defined home directory. The properties file we load from the users home
directory is named .build.properties, with the preceding dot (.) used to hide the file
on Unix systems so the home directory doesn’t look cluttered with preference files
strewn about. If a user wanted to make sure their builds used a special version of a
library, their ${user.home}/.build.properties file could say:

lucene.jar = c:/lucene-special/lucene.jar

It’s important to note that in the case of a dependency like Struts, there is more to it
than its single JAR file. While overriding the struts.jar property could be handy, care
must be taken because our web application build file not only uses the struts.jar prop-
erty, it uses struts.dist.dir to get at other pieces such as tag library descriptor (TLD)
files. In order to override the full directory of a Struts installation, you should really
set struts.dir; the other properties will be adjusted accordingly by default.

Controlling properties for a single build

As we discussed in chapter 3, a property takes on the first value that sets it, and is
immutable from then on. The first possible place that a property can be set is from
the command line. Why would we want to do such a thing? Suppose the Lucene
team releases a new version of Lucene. Before upgrading our source code repository
to rely on the new version, potentially breaking everyone’s builds, we want to ensure
that our code compiles, and our tests run successfully.

We would install the new library in a directory of our choosing, probably under
our standard lib directory using its unique version-labeled directory. From the com-
mand line we run:

ant test -Dlucene.version=1.2

If we had not installed the new version under our lib directory, we could instead over-
ride lucene.dir, or even lucene.jar.

Using a different set of dependencies

This is by far on the extreme edge of use cases, but with the property mappings
we have created, it is possible even to point lib.dir at a different directory altogether.
This would have the effect of shifting all dependencies to that directory tree, unless
HANDLING VERSIONED DEPENDENCIES 199

otherwise individually overridden. The main idea to take away from these examples is
that by making logically organized hierarchical properties that are constructed from
one another, entire directory trees can be redirected easily.

8.5 BUILD FILE PHILOSOPHY

There are several key ideas that we want to convey with our build file examples:

• Begin with the end in mind.

• Integrate tests with the build.

• Support automated deployment.

• Make it portable.

• Allow for customizations.

We achieve each of these by using features such as properties, datatypes, and target
dependencies.

8.5.1 Begin with the end in mind

Your build file exists to build something. Start with that end result and work back-
wards as you write your targets. The goal of our Ant task build file is to build a dis-
tributable JAR library that we can use in other build files. We started with the dist
target of listing 8.1 and created its dependent targets such as compile. We want the
JAR to contain a dynamically built taskdef.properties file, so we also depend on a tar-
get that creates it using XDoclet.

8.5.2 Integrate tests with the build

We cannot overemphasize the importance of integrated and automated testing. By
putting testing into your build processes early, developers can write and execute tests
without having to worry about the mechanics of how to run them. The easier you
make testing, the more tests get written, and the more tests get run. The result is that
your project will be of higher quality.

8.5.3 Support automated deployment

Automating deployment early in the project is as important as being test-centric. By
ensuring your code goes from source to deployment server at all stages of the project
you can rest easy that on the delivery date, your project will deploy successfully. Why
wouldn’t it? With continuous deployment, you have been deploying your application
since you wrote the first line of code.

8.5.4 Make it portable

We’re writing Java code, and as such we want to make sure our code and builds work
in other environments from the start. Ant runs on many platforms, but be wary of
using tasks, such as <exec>, that can prevent your build files from running on other
200 CHAPTER 8 PUTTING IT ALL TOGETHER

platforms. Not only is it a good idea to make sure your builds work cross-platform, it
is probably a good idea for you to make sure your tests and deployments work well in
other environments. Portability can also mean that your code deploys successfully on
multiple application servers. With a little up-front attention to portability, there will
be fewer headaches when you need to migrate from, say, WebSphere to JBoss.

8.5.5 Allow for customizations

We’ve shown how Ant properties allow for user, project, and per-build overrides for
settings. You can use build files to allow them to adapt well to their environment.
Basing parameters on environment variables is another way to ensure build files work
well when moved from machine to machine. For example, by basing its deployment
location off the CATALINA_HOME environment variable, our deployment targets
deploy to Tomcat, wherever it lives.

Per-user customizations give developers build-specific options. For example, a
developer may want to deploy the application locally with full debugging enabled; a
production build from the same source and same build file should disable it. You can
accomplish this by taking advantage of Ant properties, understanding their rules, and
always loading in user-specific properties files at the start of every build.

8.6 SUMMARY

This chapter demonstrated a full build file in our project and described many of its
details. Our build file uses some shared pieces that all build files in our project use.
The shared definitions of our properties give all our build files consistency and main-
tainability that we could not have achieved through cut-and-paste editing.

The library dependency mappings used in our project give us several benefits,
thanks to Ant’s property mechanisms. We can easily upgrade a library by simply
installing a distribution and changing the version number in a common properties file.
We can have one component in our project depend on a different version of a library
than the others, if necessary. We can run a single build and test cycle using a new
library version to smoke test our project, without forcing an upgrade for everyone until
we know it works acceptably well.

Finally, we’d like to congratulate the reader on reaching the end of the first part
of this book. You are now equipped with the knowledge and tools necessary to build
sophisticated, production-quality build files. While there certainly are more tools and
techniques available, they all rely upon the fundamentals covered thus far. In the next
section of this book we will apply Ant and the techniques we have covered to a number
of common development situations, such as code generation, Enterprise JavaBeans,
web development, XML manipulation, web services, and much more.
SUMMARY 201

2
P A R T
Applying Ant

Once you have a good understanding of Ant’s fundamentals, you will want to
start applying Ant in enterprise development situations. Typical uses include web
application development, XML processing, and Enterprise JavaBeans. In chapters 9
through 18, we show you how to use Ant in such projects, along with other areas
such as web services and native code. We also explore how to use Ant in larger
projects, addressing migration, continuous integration mechanisms, and the chal-
lenge of deploying to production servers.

C H A P T E R 9

Using Ant in your
development projects

9.1 Designing an Ant-based

build process 206
9.2 Migrating to Ant 209
9.3 The ten steps of migration 210
9.4 Master builds: managing

large projects 212
9.5 Managing child project builds 221

9.6 Creating reusable library
build files 228

9.7 Looking ahead: large project
support evolution 230

9.8 Ant project best practices 231
9.9 Summary 233
The first part of this book introduced Ant, showing you how to use Ant to compile,
test, run, package, and deploy a Java project.

Now it’s time to apply this basic technical knowledge: you need to integrate an
Ant-based build process with your software process. This integration needs a bit of
care to work properly; if you introduce or implement Ant badly then your build pro-
cess will be slower and more complex than you need, and may not take advantage of
all the facilities that Ant has to offer.

This chapter is going to show you how to use Ant effectively: how to migrate to
it, ways to use it with an IDE, what makes a good build file, and what to do when
things don’t work. We will also cover how to use Ant in a large project that has mul-
tiple build files. It is important to know how to do this, as it keeps the project man-
ageable. Finally, we will introduce some of the best practices for Ant build files.

Let’s start with the fundamentals: how to design a build file from scratch.
205

9.1 DESIGNING AN ANT-BASED BUILD PROCESS

As we have already shown, Ant can do much more than just compile Java programs; it
can create archive files, test them, deploy them, and even run them. It can act as the
means to automate your entire build process. This is only possible if your build pro-
cess is structured to work with Ant. By build process we mean the mechanics of com-
piling and delivering the project, not the full software development process, which is
a methodology for how the people in the team work. Ant does not dictate what soft-
ware process you use, but it does have preferences about the build process. It likes a
build process that has been thought out in advance and coded into the build file in a
way that lets all team members work from the same build file.

9.1.1 Analyzing your project

When you start with a new build file, you have complete control as to what it will do.
Where should you begin? Look at what the project has to deliver, and think about
how Ant can help you do that.

Determine your deliverables

The type of application you are writing determines what the deliverables are and how
you deploy or deliver these outputs. Table 9.1 shows the basic outputs and deploy-
ment routes for common Java project types. A complex project may have more than
one deliverable, such as a client applet and a web application; you should have sepa-
rate projects for each of these components.

Let’s use a client application as an example. It will consist of code with a Swing GUI.
We will include some HTML documentation, and deploy the program as a Web
Start application.

Determine the build stages

Once you have deliverables, you can list the stages needed to make them and depen-
dencies between them. These become your targets. Start with the common targets
such as build, test, and deploy, and work backwards to the steps needed to

Table 9.1 Common application types, their deliverables, and deployment routes. The worst-

case project combines everything. Ant should be able to create all the deliverables, and address

most of the deployment.

Application Type Deliverables Deployment

Client application JAR, Zip, tar; PDF and HTML
documentation

Upload to web site; email; Web Start
served installation

Applet JAR, documentation Upload to web server

Web application WAR; code+JSP; SQL data Deploy to web server; reload server

Enterprise application EAR file containing EJB and WAR
files, SQL data

Deploy to application server
206 CHAPTER 9 USING ANT IN YOUR DEVELOPMENT PROJECTS

achieve these goals. Each major step in the build should have its own target, for indi-
vidual testing and use. You should also create targets in a way that minimizes duplica-
tion. For example, there should be only one target to make a JAR file of all the code;
the tasks to make the WAR and EAR files can simply depend upon this.

Deployment should be in separate targets from the deliverables, as you can have
many different deployment routes. It is also nice to be able to reuse deployment targets
in multiple projects. We will show you how to reuse build files later in this chapter.

For our example client application, the main targets would be: all, test, dist,
deploy, and clean. We will have internal targets compile, archive, doc, and
init, with more to come when needed.

Plan your tests

If you plan to have Ant perform unit tests or other validation of the code, now is a
good time to pick a mechanism to execute the tests, and write them. We will intro-
duce more testing technologies, such as HttpUnit and Cactus, in chapter 12.

For our hypothetical client application, we have the challenge of testing a Swing
GUI. A good split between model and view lets us test the model with normal JUnit
tests, leaving only the view as a problem. One of the side exercises in the project will be
to browse to junit.org and explore the current options for testing Swing applications.
With luck, we should be able to perform the core GUI tests from a <junit> call.

Outline a package hierarchy

You need to have a Java package hierarchy defined so that directories can begin and
coding can take place. These are the packages into which you place your Java source
by declaring this fact in the with package statements, such as this one for our cli-
ent application:

package com.example.coolapp.view;

Ant requires Java source to be stored in a directory tree matching the package hierar-
chy, here com/example/coolapp/view/. Dependency checking relies on this, and Sun’s
javac compiler also prefers this layout.

We like having separate packages between the model, the view, and the controller
code for any implementation of the Model-View-Controller pattern, as it prevents
cross-contamination of the view into the model. For EJB designs we keep the beans
in their own tree, split into entity and session beans.

You need to place JUnit tests into the same package as the classes they test if you
want to access package-scoped methods. The test classes should all adhere to a stan-
dard naming pattern, so that a wildcard such as **/*Test.class can include them
in <junit>, and can exclude them from any distribution tasks. In our client appli-
cation, we would have the layout illustrated in figure 9.1.
DESIGNING AN ANT-BASED BUILD PROCESS 207

9.1.2 Creating the core build file

With the basic design of the build in place, you can now create the build file for the
project, perhaps by taking a standard base build file and customizing it to your
project. If no such file exists, start by coding the basic set of targets needed to get
yourself and any colleagues building and testing code; other targets can follow as the
need arises.

You can create the core build file before there is any code to compile, test, or
deploy; all the targets and tasks should just chain together without doing much work.
Ant will create the output directories and build a JAR file containing nothing but a
manifest.

Having some code, even a stub class and stub test case, provides a better test of the
build, as it will use all the tasks which depend upon it, such as <javac> and
<junit>. Ant will make calls to tools such as the compiler and the JUnit library,
which will fail if these tools are missing. If they are found, the generated JAR file
should then contain the class files in the appropriate place, while a source Zip file
should include the stub classes and the build file.

At this point, you have the foundation for your project: check it in, share with oth-
ers, and start coding.

9.1.3 Evolve the build file

Nobody in the team should be afraid of looking at the build file and adding new tar-
gets, be they for deliverables, deployment options, or new intermediate steps in the
build process. As they do so, they should try to keep the build file concise yet read-
able, a few short pages intended to tell readers how to build the project. The practice
to beware of is cut-and-paste task reuse; this leads to maintenance problems in build
processes as much as it does with source code. Correct use of dependencies is one
solution. The other is the <antcall> method we covered in chapter 7, section
7.8.1, which lets you reuse targets with a different set of properties defined.

base

src

Search.Java SearchTest.Java

build

Search.class

SearchTest.class

classes

com

example

coolapp

model view

test

com

example

coolapp

model view

main

com

example

coolapp

model view

Figure 9.1

How to lay out classes in a large

project. You can split the test and

the main source into separate trees;

a distribution build only compiles

the main tree, a test build compiles

both. All end up together, giving test

classes access to methods scoped

at the package access level. Core

concepts, here "model" and "view,"

can be given their own package to

emphasize the split between them.
208 CHAPTER 9 USING ANT IN YOUR DEVELOPMENT PROJECTS

One challenge is deciding what to do when Ant does not directly support your
project. Start by looking in the Ant documentation: there are so many tasks, you may
find what you want. For our client application, we want to create a Java Web Start
installer, so we need to learn how to do that and find out how to do it from Ant. We
can’t find anything in the documentation, but the External Tools and Tasks page on
Ant’s web site (http://jakarta.apache.org/ant/external.html) has a pointer to an exter-
nal project, Vamp, which not only contains the Ant tasks we need, it has the docu-
mentation. Extension tasks like these make a complex build possible.

9.2 MIGRATING TO ANT

Migrating an existing project is harder than starting from scratch, as existing projects
already have deliverables; JAR and Zip files, test reports, and deployment processes
that need to be reimplemented in an Ant-based build. There are also the inevitable
time pressure and fear of breaking something. This all makes people reluctant to change
an existing process, even if it is hard work to use and extend. In fact, the more ugly
and complex the build process is, the more scared people are of “fixing” it. This fear is
unfounded: the uglier and more complex the build process is, the more it needs Ant.

We have found that it usually doesn’t take that long to move an existing project
to Ant: that is, for a build file to compile, run, and archive an application. Extending
that build file with tests and deployment does take effort, but that can be an ongoing
project.

One particularly troublesome migration was a complex project, comprising eight
teams of four to ten engineers, spread across two continents, each with their own sub-
project. We used Ant to unify the build, providing an integrated build where none
existed before and duplicating everyone’s existing projects to run the unified build
alongside their original build process. When the ease and benefits of being able to
rebuild everyone’s code in one go became obvious, the teams eventually began to
adopt Ant themselves.1

If there were one suggestion we would make about migration, it would be “do it
after a deadline.” There is almost always some slack time after a milestone to write a
build file, or perhaps you can suggest an interim postmortem to see if any aspects of
the project could be improved. Most likely, any project would benefit from more tests,
automated testing, and automated deployment, so suggest Ant as the means of con-
trolling these tasks.

Next, we are going to look at the basic process for migrating from an IDE or Make
to Ant.

1 Some remnants of this effort are the “Ant in Anger” paper (Loughran 2000-2), and the Perl script to
start Ant.
MIGRATING TO ANT 209

9.3 THE TEN STEPS OF MIGRATION

Migrating to Ant is mostly a matter of following a fairly simple and straightforward
process. The ten steps of migration are listed in table 9.2.

Migration is slightly trickier than starting with a new project because the existing
build process probably works. You need to bring the Ant build up quickly to an
equivalent standard, without disrupting anyone else working on the project. You may
also need to rearrange the source files and other directories; this makes the migration
obvious to the rest of the team, and is the biggest single source of disruption.

If the project is a simple IDE or makefile one, creating a JAR or two, you can con-
sider the migration complete when the same files can be created with Ant. The rest
of the Ant development—tests, new deployment targets, and new deliverables—are
build file evolution, which are common in all Ant projects.

During the life of the project, you should rarely need to edit the build file to
include new source files, documents, or unit tests; they should all be accommodated
automatically. If you do need to keep editing the build file for such changes, then
something is wrong with your task declarations—usually file path patterns. The only
reasons for build file maintenance should be new deliverables, new processing steps,
and refactorings to clean up the process, such as moving all hard-coded paths and file-
names into properties for easier overriding. Such refactoring is when a working build
is most likely to break; as with source, tests help verify that the changes worked. Test-
ing after every little change is the key to a successful build file refactoring.

Table 9.2 Steps to migrate an existing project to Ant

Migration step Purpose

1. Check in Check everything in for safety, and tag it with a BEFORE_ANT label.

2. Clean up Clean out the old .class files to prevent confusion; copy the old JAR files
somewhere for safety. There should be no generated files in the project at
this point.

3. Determine the
deliverables

From examining your existing build tool, make a list of your project
outputs and the stages in creating them; build a list of Ant targets and
dependencies from this.

4. Define directories Define your directory structure and the property names used to refer to
these different directories.

5. Design the build file Make an initial design of your build file, or reuse an existing one.

6. Arrange the source If you need to place the source into new directories, do so now.

7. Implement the
build file

Create the build file that you have defined, or customize one you
are reusing.

8. Run a verbose build Run the build, verify that it is working with the -verbose flag.

9. Add some tests Start writing tests if there were none already.

10. Evolve the build file Add more targets as you need them.
210 CHAPTER 9 USING ANT IN YOUR DEVELOPMENT PROJECTS

9.3.1 Migrating from Make-based projects

A Make-based project is usually implemented as a tree of makefiles, one per directory,
recursively calling subdirectories to perform the full build. Usually you can replace all
makefiles in a stand-alone project by a single build file at the top of the source tree
whose build and clean targets invoke the implementations in the subprojects. You
can usually derive the targets and deliverables of the Ant file by looking at the targets
of the makefile: these name the entry points and list the outputs.

Makefile builds often create the .class files in the same directory as the Java source,
which the Ant task should not duplicate, even though it is possible to recreate this
effect. Instead, the intermediate and final files should go into separate build and dist
directories.

In a large project, with many subprojects, the migration gets harder. Replacing the
entire build process in one go is probably too ambitious and dangerous to succeed and,
in a multiteam project, not always feasible. Here you can migrate the subprojects one
by one. You do not even need to change the master makefile until you are finally ready
to replace Make completely. Instead, have the subsidiary makefiles hand off their work
to Ant, with a makefile that redirects Make targets to Ant targets:

ANT=ant.sh
ANT_COMMANDS=-emacs

all:
 $(ANT) $(ANT_COMMANDS) all

clean:
 $(ANT) $(ANT_COMMANDS) clean

All this wrapper file does is pass each target in the makefile down to our nominated
Ant wrapper script, setting any options we want to have (here, emacs-style output).
The great thing about this tactic is it nominally adheres with a “Make everywhere”
build policy: it uses Make everywhere and just hands off parts of the build process to
a helper application called Ant. In chapter 17, we shall go the other way, handing off
native code generation to make from Ant.

IMPORTANT The Windows ant.bat file does not set the error code when a build fails, be-
cause nobody has been able to do this consistently across all supported ver-
sions of Windows. Use the Perl version, runant.pl, instead.

9.3.2 Migrating from IDE-based projects

Although Ant provides much more than a traditional IDE does in terms of automat-
ing building, testing, and deployment, migrating from an IDE to Ant is difficult for
two reasons. First, it is hard to see the complete build process in an IDE at a glance;
you need to delve into all the settings dialogs to enumerate the build stages. Secondly,
a good IDE integrates coding, compilation, and debugging so well that developers
may see little incentive to change their tools. To move to Ant, you need to demon-
THE TEN STEPS OF MIGRATION 211

strate to developers that it is worthwhile, which means showing that Ant can do more
than just compile the source.

One of the best ways to migrate to Ant is to find the Ant plug-in for your IDE listed
on the Ant web site. You can then stay in the IDE, although unless the plug-in can
create a build file from your project’s configuration settings, you still have to manually
create the build file.

If you want to stay with an IDE that is not Ant aware, invoke Ant from inside it
by running the command via some sort of macro. You need to have the IDE parse the
Ant error messages so that you can go to a line of source by clicking on the relevant
error message: Ant’s -emacs option generates output that most development environ-
ments can handle.

One danger in working with an IDE ignorant of Ant is that it will have its own
means of compiling files. This can cause confusion if the two tools are compiling
source files into different places, or with different build options. We can suggest no
solutions here, other than to change the key bindings so that the normal “build” key-
stroke invokes Ant with your preferred target, be it dist or test. The other is to con-
figure Ant and the IDE to compile into different places, but this makes it harder to
use the IDE as a debugger.

9.4 MASTER BUILDS: MANAGING LARGE PROJECTS

Large projects create their own problems. There is more to do, they are more visible,
so failure and delays are often less acceptable, there are more people on the team, and
the integration issues are worse. A small project could have one product, such as a
JAR file, and its documentation. A large project could have client-side and server-side
components, native library add-ins, and a database somewhere. These all need to be
built, tested, and deployed together. If the build process is inadequate, the effort of
managing the build can spiral out of control.

Can Ant manage the build for a big project? Yes. It may be great for small to
medium projects, but it also scales up to work with large ones. Like any software scal-
ing exercise, scaling up does not come automatically: you need to plan. You also need
the other foundational tools of a large project that we will assume you have in place:
source control, defect tracking, and perhaps even a change control process.

Our ongoing example project is slowly becoming a large project. It has some core
libraries, an Ant task, and a web application, and we are about to write an EJB com-
ponent. This is a broad mix of deliverables, but we still want to be able to run a single
build file to bring it all up to date.

9.4.1 Refactoring build files

The standard solution to size in any software project is to break it into smaller, more
manageable child projects, each with their own set of deliverables. For our example
application, penciling in some future subprojects gives us a number of child projects,
as shown in table 9.3.
212 CHAPTER 9 USING ANT IN YOUR DEVELOPMENT PROJECTS

Some of these projects depend upon other projects just as in a build file, targets can
depend upon other targets. It would be nice to be able to declare in a master build
how these Ant projects were interdependent, so that this tool could then build the
projects in the appropriate order. Ant does not integrate subprojects so seamlessly, but
it does make it possible to write a master build file that can call the subprojects in the
order that the file’s authors specify, with significant control over these invoked builds.
The key to this is the <ant> task.

9.4.2 Introducing the <ant> task

We covered the <antcall> task in chapter 7. As you may recall, it lets you call a tar-
get inside the current build file with a different set of properties. The <ant> task is
almost identical except that it also allows you to specify the build file that contains
the target. This enables you to divide your build file into subprojects; one for each of
the child projects of the actual software project. It also enables you to write library
build files. These are build files that contain reusable targets to perform standard
actions, such as incrementing a build counter or deploying to a web server.

The basic functionality of the <ant> task is simple: you use it to call any target
in any other build file, passing in properties and references if you desire. When you
call a target with it, you implicitly invoke any other target in the build file that the
invoked target depends upon.

9.4.3 Example: a basic master build file

With all our projects laid out under a single main directory (app), we can create a
basic master build file that calls the targets. Listing 9.1 shows a master build file that
will build five subprojects.

<?xml version="1.0"?>
<project name="Master Build" default="all">
 <target name="all" description="Build everything">
 <ant dir="ant" inheritAll="false"/>
 <ant dir="common" inheritAll="false"/>
 <ant dir="tools" inheritAll="false"/>

Table 9.3 Subprojects within our example project.

The EJB project is still on the list of things to do.

Child project Deliverables

Common Common libraries

Tools Utility classes

Ant Ant task <index>

Index Ant documentation index

Webapp Web application

EJB EJB classes and EAR file

Listing 9.1 A simple master build file to build five subprojects
MASTER BUILDS: MANAGING LARGE PROJECTS 213

 <ant dir="index" inheritAll="false"/>
 <ant dir="webapp" inheritAll="false"/>
 </target>
</project>

This build file contains one target that lists the order in which to build the sub-
projects. We ordered the targets to ensure that all predecessor targets are built before
those that depend upon them. We could have placed the dependencies inside the sub-
projects themselves, so that calling the webapp project would cause it to build its
direct dependents, tools and index, from a predecessors target:

<project name="webapp" default="all">
 <target name="all" depends="predecessors,dist"/>

 <target name="predecessors" />
 <ant dir="../tools" inheritAll="false"/>
 <ant dir="../index" inheritAll="false"/>
 </target>

But we rejected this approach for a two reasons:

• It couples projects too tightly.
A subproject does not need to know where the components it needs came from,
only that they are available. Sometimes you need to run a project against
archived versions of its dependent components; hard coding the steps for gener-
ating the predecessor in the build file prevents this. Keeping the dependency
rules inside the master build makes it easier to change them, to split subprojects,
or change their order.

• It makes development builds faster.
As an example, if you are working on the webapp project, you don’t want to
run the tools or index build files every time you run your own build file. The
other projects have not changed, so there is no need to rebuild them

Examining the master build

With our master build file written, and run with -verbose for detailed output, we
can see what the master build is doing. When in verbose mode, the <ant> task
names the build files and targets it is invoking, using [default] when it is calling
the default entry point for that file:

 [ant] calling target [default] in build file
 C:\AntBook\app\ant\build.xml
 ...
 [ant] calling target [default] in build file
 C:\AntBook\app\common\build.xml
 ...
 [ant] calling target [default] in build file
 C:\AntBook\app\tools\build.xml
 ...
214 CHAPTER 9 USING ANT IN YOUR DEVELOPMENT PROJECTS

 [ant] calling target [default] in build file
 C:\AntBook\app\index\build.xml
 ...
 [ant] calling target [default] in build file
 C:\AntBook\app\webapp\build.xml
 ...
BUILD SUCCESSFUL
Total time: 1 minute 7 seconds

Just over a minute is a long time for an incremental build. The cause of the delays
turns out to be that two build files are creating the index. Such duplication becomes
obvious when you create a master build. We can fix this, but there are some other
changes to make first.

Enhancing the build files

We’d like to add some validation to the subproject build files, to verify that the files
they need are present. We can do this by adding a validate target to each build file
which will use a series of <available> tests to probe for needed files and classes.

Another enhancement is more fundamental: we want to call different targets from
the master build file, such as a global target clean. The quick and dirty solution
would be to cut-and-paste our all target into the clean target:

<target name="clean" description="Clean everything">
 <ant dir="ant" inheritAll="false" target="clean"/>
 <ant dir="common" inheritAll="false" target="clean"/>
 <ant dir="tools" inheritAll="false" target="clean"/>
 <ant dir="index" inheritAll="false" target="clean"/>
 <ant dir="webapp" inheritAll="false" target="clean"/>
</target>

This works, but what about the next target, test, or the one after that, docs. Cut-
and-paste editing would soon get out of hand—something that you would only
notice when you had to add a new subproject, or change the dependency order; every
single master build target would need changing.

There must be a better way.

9.4.4 Designing a scalable, flexible master build file

A better way to structure a master build file is to use an intrinsic feature of all single
file Ant projects: the ability to divide your build file into targets with explicitly
declared dependencies between them. If we define a target in the master build file
for each subproject—ant, common, tools, index, and webapp—then we can use
the depends attribute to state how they depend upon each other, and let Ant con-
trol the order in which subprojects are built. We want to be able to call different tar-
gets inside the projects without too much cut-and-paste coding. The same set of
targets should be able to hand off a clean command to subprojects as easily as a
test command.
MASTER BUILDS: MANAGING LARGE PROJECTS 215

The trick will be to use a property to name a common target to invoke on every
subproject. Here, the property named target lets us control which target to invoke
from a set of targets that we implement in every build file. This will let us write a mas-
ter build file containing targets that call down to the child projects like this:

<target name="do-tools" depends="do-ant">
 <ant dir="tools" target="${target}"
 inheritAll="false"/>
</target>

<target name="do-index" depends="do-task">
 <ant dir="index" target="${target}"
 inheritAll="false"/>
</target>

<target name="do-webapp" depends="do-tools,do-index">
 <ant dir="webapp" target="${target}"
 inheritAll="false"/>
</target>

With such a build file, calling a target across all the subprojects is a simple as:

ant -Dtarget=clean

Even better, we can implement the same entry points in the master build file, and use
<antcall> to set the target property before calling the graph of subprojects.

Defining standard targets for projects

The first step in this process is to define a standard set of target names. We have cho-
sen the set in table 9.4. Most are from the de facto standard set of Ant target names:
all, clean, dist, docs, and test. These should all perform known functions to
an experienced Ant user.

Two nonstandard targets are default and noop. The default target is going to be
the default target for each project, which will usually depend upon dist to create a
distribution. The noop target is a special target we added for two reasons: it lets us

Table 9.4 Our unified set of entry points. We implement these targets across all

our child projects.

Target Name Function

default The default entry point

all Builds and tests everything; creates a distribution, optionally installs

clean Deletes all generated files and directories

dist Produces the distributables

docs Generates all documentation

test Runs the unit tests

noop Does nothing but print the name of the project
216 CHAPTER 9 USING ANT IN YOUR DEVELOPMENT PROJECTS

test the whole master build more easily and it paves the way for using extra properties
to control the individual targets that each subproject executes.

Adding these targets to the subprojects is simply a matter of adding those that we
have not already implemented and pointing them at the appropriate internal targets.
For the webapp project, for example, we add the following:

<target name="default" depends="dist"
 description="default: Make everything" />
<target name="all" depends="dist"
 description="build everything"/>
<target name="test" depends="dist"
 description="run tests" />
<target name="docs" depends="javadocs"
 description="generate documentation" />
<target name="noop" />

We now add similar targets for the other projects, resulting in a set of entry points
whose meaning is consistent across the projects. It is important that each target brings
its project up to date for the sake of the dependents. This means that all the test tasks
must also generate the outputs that the dependent projects need. This is why the
default, all, and test targets for the webapp project create a distribution, by
being dependent upon the dist target. Of course, the noop target consistently does
nothing.

After defining the targets, we declare each project’s default entry point, as stated
in the <project> declaration, to be the target called default. For example:

<project name="AntBook - Web App" default="default" basedir=".">

We need this default target because once we move to using a property to define a target,
we need to know the name of the default target. Passing in an empty string as the target
<ant target=""/> does not call the default target; it calls any target named "".
Having a target called "" is very silly, as you cannot use it as a dependency. But some
projects do use this as their default target, so we cannot change the behavior of <ant>.

After implementing these targets in each of the projects, we manually call each of
them once. It is important to know that a build file works on its own before trying
to integrate it into a larger project.

Creating a dependency graph

With each subproject implementing the same entry points, we can now create the
graph of dependencies between the projects. This tells us the order in which to call
the projects from the master build. What we cannot do is have a different depen-
dency graph for different targets in each project: test cannot have a different set of
dependencies from docs. We need to combine all predecessor projects of all the
entry point targets into a single list. As long as there is no looping created by this pro-
cess, we are ready for the next step.

Figure 9.2 shows our project’s dependency graph.
MASTER BUILDS: MANAGING LARGE PROJECTS 217

This graph is slightly different from the order in listing 9.2. In altering the project
common so that we could use the index files created by index for its tests, it became
dependent upon that index project. This showed up that we always must have had a
circular dependency: the ant project depended upon common, but the test target
in common depended upon ant. We hadn’t noticed this before because we only
clean-built individual projects, not the entire suite. To remove the loop, we moved
the tests into the file common-tests and made the test target in common do
nothing. The final outputs of the project still depend on passing these tests, which is
why webapp and tools depend upon the common-tests project.

We can now rework our single master build target to become a parameterized tar-
get that builds the projects, which we show in listing 9.2.

<target name="do-all-builds" >
 <ant dir="common" inheritAll="false" target="${target}"/>
 <ant dir="ant" inheritAll="false" target="${target}"/>
 <ant dir="index" inheritAll="false" target="${target}"/>
 <ant dir="common" antfile="common-test.xml"
 inheritAll="false" target="${target}"/>
 <ant dir="tools" inheritAll="false" target="${target}"/>
 <ant dir="webapp" inheritAll="false" target="${target}"/>
</target>

When calling the common-test build file, we have to specify the name of the file as
well as the directory in which it exists. When the file you are calling with <ant> is
called build.xml, as those of most projects are, then specifying the directory is all you
need to do. When you want to call a build file with a different name, then you state
the name in the antfile attribute, and the directory in which it is to execute.
The name must be relative to the directory in the dir attribute. We will explain later,
in our discussion of library build files, why the dir attribute should always be speci-
fied when naming a file. For now, take our word that naming the directory contain-
ing the build file is a sensible action.

Figure 9.2

The dependency graph of our projects.

To avoid a loop (which must always have

existed), the tests of the common file had

to be pulled out into a separate build file.

antcommon

webapp tools

common
tests

index

Listing 9.2 A target-independent master build target
218 CHAPTER 9 USING ANT IN YOUR DEVELOPMENT PROJECTS

We can then write the well-known entry points to the build file, each invoking the
do-all target, setting the target parameter to the name of the target to execute in
every build file. For example, here is the noop target.

<target name="noop"
 description="do nothing">
 <antcall target="do-all-builds">
 <param name="target" value="noop"/>
 </antcall>
</target>

To show it works, we call this target, which will trace out the projects as we execute them:

app$ ant noop
Buildfile: build.xml
noop:
do-all:
noop:
 [echo] no-op in AntBook - Common
noop:
 [echo] no-op in AntBook - Custom Ant Tasks
noop:
 [echo] no-op in AntBook - Index
noop:
 [echo] no-op in AntBook - Common - Test
noop:
 [echo] no-op in Antbook - Tools
noop:
 [echo] no-op in AntBook - Web App
BUILD SUCCESSFUL

At this point, we can use the master build file to provide a unifying build of our
project, adding new entry points for each target name defined in table 9.4. We have
lost all the explicit dependency information, but the build file works.

Writing the invocation targets

Even with only a few child projects, our build files are getting complex dependencies
between them. This may be a symptom of inadequate decoupling of components,
but as a project grows, this trend will only continue; having to order everything our-
selves will only get more difficult over time.

We need to hand off ordering build file invocation to Ant itself. It can detect cir-
cular dependencies or build the targets in a valid sequence. We just have to create a
set of proxy targets, one for each child project, as shown in listing 9.3.

<target name="do-common">
 <ant dir="common" target="${target}"
 inheritAll="false"/>
</target>

Listing 9.3 Our proxy targets: one per build file, with all direct

predecessors stated
MASTER BUILDS: MANAGING LARGE PROJECTS 219

<target name="do-ant" depends="do-common">
 <ant dir="ant" target="${target}"
 inheritAll="false"/>
</target>

<target name="do-index" depends="do-ant">
 <ant dir="index" target="${target}"
 inheritAll="false"/>
</target>

<target name="do-common-test" depends="do-index,do-common">
 <ant dir="common" antfile="common-test.xml"
 target="${target}"
 inheritAll="false"/>
</target>

<target name="do-tools"
 depends="do-common,do-index,do-common-test">
 <ant dir="tools" target="${target}"
 inheritAll="false"/>
</target>

<target name="do-webapp"
 depends="do-common,do-index,do-common-test">
 <ant dir="webapp" target="${target}"
 inheritAll="false"/>
</target>

<target name="do-all" depends="do-tools,do-common-test,do-webapp"/>

The body of each of these targets is one of the individual task declarations of the uni-
fied master build target of listing 9.2. We have increased the line count, but also
increased flexibility. We can now define high-level master build targets that depend
upon some, but not all, of the subprojects. And we can easily add new subprojects by
adding new proxy targets and setting up the appropriate dependencies.

Running the master build

Having written the proxy targets, we need to write the entry points for the master
build. We have already introduced the noop target; the others are nearly identical. Of
course, the internal target we invoke (do-all) is new; we make this change to all
the entry points.

<target name="all"
 description="build everything">
 <antcall target="do-all">
 <param name="target" value="all"/>
 </antcall>
</target>

First, we test the noop target:

$ ant noop
Buildfile: build.xml
noop:
220 CHAPTER 9 USING ANT IN YOUR DEVELOPMENT PROJECTS

do-common:
noop:
 [echo] no-op in AntBook - Common
do-ant:
noop:
 [echo] no-op in AntBook - Custom Ant Tasks
do-index:
noop:
 [echo] no-op in AntBook - Index
do-common-test:
noop:
 [echo] no-op in AntBook - Common - Test
do-tools:
noop:
 [echo] no-op in Antbook - Tools
do-webapp:
noop:
 [echo] no-op in AntBook - Web App
do-all:
BUILD SUCCESSFUL

A quick glance at the project dependency graph shows that we have declared the
dependencies correctly, at least to the extent that the targets are executing in a valid
order.

The next test is more rigorous: we completely clean build the system:

$ ant clean all
... many lines of output omitted ...
BUILD SUCCESSFUL
Total time: 1 minute 36 seconds

The success of a clean build, including the execution of all our tests, means that the
build is seemingly working. Further tests on the deployed code are needed to verify
that the WAR file, when deployed, is complete and correct—a different problem.
What we do know is that we can now clean build our entire suite of projects in less
than two minutes.

9.5 MANAGING CHILD PROJECT BUILDS

We have just shown how to subdivide a project into a number of stand-alone child
projects, each with their own build files, and one master build file to integrate them all.

If there is a problem in this design, it is that we do not want to have to declare the
same properties and tasks in all the different child projects. There are ways to do this,
which we shall now explore.

9.5.1 How to control properties of child projects

One of the key features of master build files is that they can control their child projects
by setting their properties. Because of Ant’s property immutability rule, a child project
cannot override any property set by a master build file. This lets you write master build
files that control complex details of the child project, even child projects that were never
MANAGING CHILD PROJECT BUILDS 221

written to be called from a master build file. As an example, figure 9.3 shows a master
build file that sets the dist.dir property for two child projects. The outcome of this
operation will be that the two child projects will place all their final distribution files
into a single directory, rather than into their own directories.
In all our uses of the <ant> task in section 9.4, we carefully declared the attribute
inheritall to be false, without actually explaining what the attribute was or why
we set it. We actually introduced this attribute in section 7.8.1, in the <antcall>
target, when we were explaining property inheritance in that task. The <antcall>
task actually uses <ant> to do its work, so the property inheritance model for both is
identical.

Although the two tasks share the same implementation code, when creating a mas-
ter build file you often need to use them slightly differently. An instance of <ant-
call> calls a target graph inside your own build file with parameters—both
properties and references—which you define. The <ant> task can control a complete
build file for a project that you may not even have written. This different usage can
change how you pass parameters to the called file and target. Take, for example, the
problem of setting the release build flag for all our projects, all of which use the tech-
nique described in chapter 6 to set the <java> build flags to the release options when
release.build is set. In a master build, we want to be able to set that flag in one
place and have it propagate.

The <ant> task lets you do this, because any of the properties and references that
the <ant> task sets for the invoked project is, as usual, immutable. You can control
the settings of a child project by predefining any property or path before its own ini-
tialization code tries to define it. If the <ant> call defines the release.build prop-
erty, it will enable release builds; if it sets the distribution directory to a single location,
then that location becomes the destination directory for all distribution files.

Figure 9.3 A master build can set the properties for the child projects, even if those projects

try to override them. If the master build had accidentally used value instead of location, the

directory location would have been resolved in the client build files relative to their own

directory, which is not what we desire.

masterbuild.xml
in /project

<property name="dist.dir" location="dist">
<echo>build dir=${dist.dir}</echo>
<ant dir="child1" inheritAll="true"/>
<ant dir="child2" inheritAll="true"/>

build.xml
in /project/child1

<property name="dist.dir" location="dist">
<echo>build dir=${dist.dir}</echo>

build.xml
in /project/child2

<property name="dist.dir" location="dist">
<echo>build dir=${dist.dir}</echo>

dist.dir=/project/dist

dist.dir=/project/dist dist.dir=/project/dist
222 CHAPTER 9 USING ANT IN YOUR DEVELOPMENT PROJECTS

To use this feature, you need to know the rules by which properties are passed down:

• If inheritAll is true, all properties set in the master build file are passed to
the child projects.

• Any properties defined inside <ant> override those set in the master build.

• If inheritAll is false, only those properties defined inside the <ant> decla-
ration are passed down.

• Properties set on the command line are always passed down, and can never be
overridden by any declarations inside the <ant> call.

The final rule of the set means that you can configure the master build from the com-
mand line and have those changes propagate down to all the child builds:

ant -Drelease.build=true -Ddist.dir=/projects/CDimage/dist

Designing a project for easy overriding

If the child projects use properties to control all the details of their build options,
then their parent projects can tune parameters to ensure that all projects are consis-
tent. Controlling where the projects place their distribution packages is one common
control option; others are which tests to run, and which servers to deploy against. For
a project to be controllable, it needs to make extensive use of properties.

A good build file should already be using properties to define any string, attribute,
or file that is used in multiple places. For easy integration into a larger project, any
option that could be overridden should first be defined with a property and then
referred to, giving the master build an option to change the value. Of course, this
would be far too much effort to do up front: changing build files as needed is the stan-
dard approach to making build files overridable. When you do this, use properties of
the same name as sibling projects, as it makes configuring the master build file easier.
For example, if our common project used make.release.build as its release build
flag, and the webapp project used javac.release.mode instead, unifying the
projects would be much harder than our unified release.build property.

One important practice to make overriding work better is to use <property
location> to define file locations, rather than <property value>. In a single
build file, using the value attribute to define a file location works, because when
these properties are resolved to file locations, it will be in the same build file. When
you are passing properties around to other build files, using the location attribute
ensures that relative paths are resolved in the build file declaring the property, not in
the build file using the property.

9.5.2 Inheriting properties and references from a master build file

Like the <antcall> task, <ant> will pass to the target all currently defined proper-
ties, unless you tell it not to. In earlier (pre-1.4) versions of Ant, <ant> would always
pass down all current sets of properties. This inheritance rule was simple and straight-
MANAGING CHILD PROJECT BUILDS 223

forward, but it meant that subprojects needed to use unique names for every property
to avoid accidental definition by the parent project. If ever you do call a project with
<ant> without setting inheritall=false, then this is the behavior you will get.
Any definition you have made in the parent file, such as declaring which directory
build.dir will refer to, propagates to the child project. Because of Ant’s property
immutability rules, this will freeze the value of build.dir to that of the parent
directory, causing the subproject to place its output in a different location. If this is
what you intended, then you have discovered the secret to controlling child projects
from a master build file. If it is not, then you have introduced a defect in how your
master build works.

To control our compiler options, the master build file can set the appropriate prop-
erties and have them propagate down to the child projects:

<property name="release.build" value="true"/>
<property name="build.compiler" value="modern"/>

<target name="do-common">
 <ant dir="common" target="${target}"
 inheritAll="true"/>
</target>

<target name="do-ant" depends="do-common">
 <ant dir="ant" target="${target}"
 inheritAll="true"/>
</target>

The same technique works for references to paths in a project. A master build file can
define classpaths for use in executing and compiling Java programs, and if the
inheritRefs attribute is set to true, then these references propagate down the
execution chain.

WARNING The default value of the inheritRefs attribute in <ant> is false,
whereas the default value for inheritall is true. This is a historical
quirk related to backwards compatibility.

9.5.3 Declaring properties and references in <ant>

The <ant> task lets you declare properties that are passed down to a child build,
using the <property> and <reference> nested elements. If you have been using
<antcall>, this should seem familiar, although in that task the element to set prop-
erties is called <param>.

The <property> element of <ant> looks exactly the same as a normal <prop-
erty> declaration: it can set properties to a value, a location, a file, or a resource.
You can even use <property env="env"> to load the environment variables.
Loading properties in from a file is powerful, because a single file can then control
which properties are set and which are left unset. For example, we could modify our
targets to load a common file, the values of which would be set in all the child projects:
224 CHAPTER 9 USING ANT IN YOUR DEVELOPMENT PROJECTS

<target name="do-common">
 <ant dir="common" target="${target}"
 inheritAll="false">
 <property file="masterbuild.properties"/>
 </ant>
</target>

Let us assume that the file masterbuild.properties includes the following property
declarations:

release.build=true
build.compiler=modern

These properties would all trickle down to the subprojects, controlling their build
options. One of the problems with this approach is that it does not work for relative
file references. All properties loaded from a file are treated as simple values, rather
than relative file locations, which need to be immediately resolved. This limits the
value of this technique.

Setting references requires a declaration of the reference earlier in the build file; a
<reference> tag must then point to the reference:

<reference refid="main.classpath"/>

If you want to rename a reference, then you must supply the name of the reference
ID by which the path will be known in the destination:

<reference refid="main.classpath" torefid="compile.classpath"/>

The value of setting such references increases in complex projects, especially with
library Ant projects, which we shall cover in section 9.6.

9.5.4 Sharing properties via XML file fragments

Although we have demonstrated the different ways of passing information to child
projects, astute readers will have noticed from our master build example that we use
of none of these. We use a slightly different technique, which is much more powerful
but harder to use.

The problem is that we want to make each child project stand-alone, so that you
can call it without having to go via the master build file. Yet we do not want any dupli-
cate definitions of properties or the locations of the library files we use in our projects.
Because some of the projects depend on the work of other projects, we also need ref-
erences to the output files of all our projects–again, with no duplication.

How do we solve this? We use XML file fragments. XML supports the ability to
import fragments from other files as entities, inserting these fragments into the local
XML file wherever these entities appear. This is roughly equivalent to the #include
feature in C and C++, which inserts a named text file into the source code. The dif-
ference between XML and C or C++ is that the insertion is done in two phases: dec-
laration and then importation.
MANAGING CHILD PROJECT BUILDS 225

You first declare the fragment at the beginning of the file, after the <?xml?>
header and before the XML data itself:

<?xml version="1.0"?>
<!DOCTYPE project [
 <!ENTITY properties SYSTEM "file:../properties.xml">
]>
<project name="AntBook - Common" default="default" basedir=".">

This does not insert the file yet, merely makes it known to the XML parser using the
name properties. We will use this name when inserting the file into the text of the
build file. Observe that we had to give a URI to the file’s location: file:../prop-
erties.xml. Because the XML parser is importing these files, we cannot use Ant
properties here, or Ant’s ability to convert between MS-DOS and Unix style paths.
Unix-style forward slashes should work across platforms.

Having told the parser about the file, we can now insert it inside the build file sim-
ply by preceding the entity name with an ampersand (&) and following it with a semi-
colon (;). This is exactly the same syntax we use for inserting unusual characters into
the build file, such as angle brackets as > and <. Here, however, we are insert-
ing significantly more content:

<project name="AntBook - Common" default="default" basedir=".">

 &properties;

At parse time, before Ant gets to see the file, the XML parser inserts the file’s contents
into the build file whenever it encounters the entity reference. As with #include of C
and C++ code, the compiler is reasonably ignorant of the fact that the inclusion took
place: Ant sees everything from the included file as if it were in the main XML file.
This means that all file references inside the included file have to be either absolute
and hence not portable, or relative to the file into which they are being included.
Knowing this fact is essential to making inclusion work.
For our properties file, even though it is stored in the base directory of the application,
we assume that it is always loaded into a build file one level down, and so can refer up a
level with two dots (..) to get to the base directory. Listing 9.4 shows some of this
build file, to give you a flavor of it. It is primarily a list of file and directory locations.

We have not completely ruled out the option of including this file into a project
in a lower level directory. Careful property declaration enables a build file to define
the master project base directory, by defining masterbuild.dir before including
the build file fragment through the entity reference. We would interpret having to do
that as a symptom that the project was getting even more complex, and would take
steps to simplify the project structure, if possible.

Note that the shared property file lets users override subsequent definitions by
defining their values in a properties file to be loaded before any other. Three such files
are loaded: a per-application property file in the current directory, a per-user property
file in their home directory, and a property file stored in the masterbuild directory.
226 CHAPTER 9 USING ANT IN YOUR DEVELOPMENT PROJECTS

<property environment="env"/>
<property name="user.properties.file"
 location="${user.home}/.build.properties"/>
<property file="build.properties"/>
<property file="${user.properties.file}"/>

<property name="root.dir" location="${basedir}"/>
<property name="masterbuild.dir" location="${root.dir}/.."/>
<property file="${masterbuild.dir}/build.properties"/>
<property name="src.dir" location="${root.dir}/src"/>
<property name="build.dir" location="build"/>
<property name="build.classes.dir"
 location="${build.dir}/classes"/>
<property name="dist.dir" location="dist"/>
<property name="dist.bin.dir" location="${dist.dir}/bin"/>
<property name="doc.dir" location="doc"/>
<property name="javadoc.dir" location="${doc.dir}/javadoc"/>

<property name="lib.dir" location="${root.dir}/../lib"/>
<property name="antbook-ant.jar"
 location="${masterbuild.dir}/ant/dist/antbook-ant.jar"/>

<property name="antbook-common.jar"
 location="${masterbuild.dir}/common/dist/antbook-common.jar"/>

Together these enable a developer to customize the build, to store output in new loca-
tions, to compile with a different compiler, and to deploy using a different username
and password—the kind of thing that becomes ever more important as projects grow
and more people work on them.

9.5.5 Sharing targets with XML file fragments

Because XML inclusion pulls arbitrary text into the master build file, you can use it
to include any fragment of a build file. Classpath declarations are an obvious option,
as are <taskdef> declarations to import new Ant tasks into the build file (which we
will cover in chapter 10). You can even include common targets, provided the targets
are identical across all projects that use them.

We use the technique of sharing common targets across all build files by referenc-
ing a targets.xml entity in all our projects:

<?xml version="1.0"?>
<!DOCTYPE project [
 <!ENTITY properties SYSTEM "file:../properties.xml">
 <!ENTITY targets SYSTEM "file:../targets.xml">
]>

Listing 9.4 Some of the properties we load into every project in an

included XML fragment

Determines
the parent
directory

Locates a
directory
under the
parent

Locates a
file built by
one of the
projects

Gets the basedir
of the current
Ant project
MANAGING CHILD PROJECT BUILDS 227

The file targets.xml initially contains a single target, though more could be added later:

<target name="noop">
 <echo>no-op in ${ant.project.name}</echo>
</target>

This approach gives you simple maintenance of common targets: change the build
file, and all subprojects have their targets updated. These shared targets can still be
customized through careful property definitions. You can bypass some targets if the
if or unless conditions on the targets are not met, and other aspects of the target
can be altered through predefining different properties and paths. If you find that you
are using this approach, and starting to contemplate using <antcall> to invoke the
shared code, then you should instead opt for a more manageable solution.

9.6 CREATING REUSABLE LIBRARY BUILD FILES

A library build file is our unofficial term for a build file that is entirely self-contained,
and provides a small self-contained service in the build. The library file is invoked
using <ant>, with parameters defined to tell it what to do. The simplest way to view
these build files is as a subroutine, with the subroutine parameters supplied as proper-
ties and references.

As an example of a library build file, we are going to move our uses of the <jav-
adoc> task into a single library build file that the child projects can invoke. This is
a good choice because it has so many options; in a library file they can be configured
once for all projects.

Writing the library build file

First, we write the component build file and save it in our masterbuild directory. List-
ing 9.5 shows this file. It takes a number of parameters: four properties and one class-
path. Any undefined property has a default value given that is a valid value for this
project. Other library build files may want to test for essential properties and <fail>
if they are missing.

<?xml version="1.0"?>
 <project name="javadoc" default="javadoc"
 basedir="." >

 <target name="javadoc" description="make java docs" >
 <property name="javadoc.packages"
 value="org.*,com.*,net.*,edu.*" />
 <property name="javadoc.src.dir" location="src" />
 <property name="javadoc.dest.dir" location="docs/javadoc" />
 <property name="javadoc.title" value="ant book" />
 <mkdir dir="${javadoc.dest.dir}"/>
 <javadoc author="true"
 destdir="${javadoc.dest.dir}"

Listing 9.5 A self-contained build file to javadoc a directory
228 CHAPTER 9 USING ANT IN YOUR DEVELOPMENT PROJECTS

 packagenames="${javadoc.packages}"
 sourcepath="${javadoc.src.dir}"
 use="true"
 version="true"
 windowtitle="${javadoc.title}"
 private="true"
 >
 <classpath refid="javadoc.classpath"/>
 </javadoc>
 </target>
</project>

This file is a parameterized wrapper around the <javadoc> task, adding the cre-
ation of the destination directory as a convenience feature. With this file stored in the
master build directory, it will not work as is; there is no subdirectory called src con-
taining files to document. Another build file must invoke it with a different base
directory from the one in which it lives.

Invoking the component build file

We use <ant> to invoke the library build file, here from our child project that cre-
ates our Ant task:

<target name="javadocs" depends="compile"
 description="make the java docs" >
 <ant antfile="${masterbuild.dir}/javadoc.xml"
 dir="."
 inheritall="false">
 <property name="javadoc.title" value="index task" />
 <reference refid="compile.classpath"
 torefid="javadoc.classpath"/>
 </ant>
</target>

We only set one property, the title, and leave the packages, source, and destination un-
changed. So how does the javadoc build file know to run in the current subdirectory?
The dir attribute tells the <ant> task which directory for an invoked build file to
treat as its base. By naming the file with antfile, then setting dir to ".", we tell
the task to run the build file in the current directory. When it runs, it has no way of
determining its original location, other than by inspecting the property ant.file.
All relative file declarations will now be relative to the directory of the project that in-
voked the library project. This will cause our invoked target to create the javadoc doc-
umentation from the src and build directories of the current child project. When we
do so there will be some classpath complaints, however, as we haven’t explicitly in-
cluded the Ant libraries on the supplied classpath:

javadocs:
javadoc:
 [javadoc] Generating Javadoc
 [javadoc] Javadoc execution
 [javadoc] Loading source files for package org.example.antbook.ant.lucene...
CREATING REUSABLE LIBRARY BUILD FILES 229

 [javadoc] Constructing Javadoc information...
 [javadoc] javadoc: warning - Import not found:
 org.apache.tools.ant.BuildException - ignoring!
 [javadoc] javadoc: warning - Import not found:
 org.apache.tools.ant.DirectoryScanner - ignoring!
 [javadoc] javadoc: warning - Import not found:
 org.apache.tools.ant.Project - ignoring!
 [javadoc] javadoc: warning - Import not found:
 org.apache.tools.ant.Task - ignoring!
 [javadoc] javadoc: warning - Import not found:
 org.apache.tools.ant.types.FileSet - ignoring!
 [javadoc] javadoc: warning - Cannot find class
 org.apache.tools.ant.types.FileSet
 [javadoc] javadoc: warning - Cannot find class
 org.apache.tools.ant.BuildException
 [javadoc] Building tree for all the packages and classes...
 [javadoc] Building index for all the packages and classes...
 [javadoc] Building index for all classes...
 [javadoc] Generating /home/ant/app/ant/doc/javadoc/stylesheet.css...
 [javadoc] 7 warnings
BUILD SUCCESSFUL
Total time: 8 seconds

Be aware that the <ant> task has some quirky behavior regarding directory defini-
tion that only makes sense from a historical perspective. If you always set the dir
attribute, this will not be an issue. The quirks are rules about what the default direc-
tory is when the directory is not specified, and it varies upon the value of inherit-
all. Consult the task documentation if you are curious, then follow our example
and always specify the dir attribute.

Writing library files is a powerful technique in a single large build file, but it is
equally powerful across sequential projects. If one project’s build processes are factored
out into reusable library files, then the successor project can reuse the testing, auditing,
reporting, and deployment codes without having to do much cut-and-paste reuse.
You can also share them with other projects, adding functionality to Ant without forc-
ing developers to write new tasks.

9.7 LOOKING AHEAD: LARGE PROJECT SUPPORT EVOLUTION

We avoid talking much about the future of Ant in this book, because it is so hard to
predict. One thing is clear: as Ant-based projects get bigger, the tools and techniques
for scaling them will improve. One interesting question is, “Can you build indepen-
dent subprojects simultaneously?” Indeed you can, using the <parallel> task.
However, there are many thread-safety risks inherent in running multiple Ant builds
simultaneously. A forking version of <ant> could address this.

One proposed enhancement is a version of <ant> that could take a path or fileset,
and call all build files therein. This could be used in a master build file that would
automatically build all Ant projects placed underneath it. Although people have
posted implementations of this (the <antOn> task) to the Ant mailing lists, none has
230 CHAPTER 9 USING ANT IN YOUR DEVELOPMENT PROJECTS

made it into the official distribution. Writing a master build file as we have done, stat-
ing dependencies between subprojects, is more reliable and provides more information
to the build tool and to other developers. Yet for some projects, such as the Apache
Axis project, this proposed <anton> task is exactly what is needed to run a separate
build file for every test case, that being how many of their tests are implemented. Some
form of this task will emerge, although perhaps not in the main Ant distribution.

The requirements list for Ant2.0 explicitly includes the ability for a project to state
that it depends upon another project, and for a target to depend upon a target in
another build file. This should eliminate the need to use low-level XML mechanisms
for importing fragments of a build file. Instead, initialization targets will be able to
define properties, paths, and tasks that can be used by dependent targets in other files.
When a version of Ant supports this facility, it will be easier to integrate large projects,
but it will still require care. A single master build file managing the process for its chil-
dren is still a better tactic than binding together many peer-level projects through
explicit interdependencies.

Layering on top of Ant, even using the techniques we have discussed in this chapter
to share common build file pieces and control a complex project with a master build
file, still can get unwieldy. Fortunately, there are efforts under way to provide layers
on top of Ant to hide many of these complexities and to more abstractly and cleanly
define your build steps. At the time of writing this book, there are two such efforts in
development, both of which are in production use for several projects and maturing
rapidly. These two projects are:

Centipede—http://www.krysalis.org/centipede/

Maven—http://jakarta.apache.org/turbine/maven/

Both of these projects have a common goal to be a Java project management tool that
does much more than simply build a distributable. Project descriptors are used to define
a higher level view of your directory structure, library dependencies, and desired steps
such as unit testing, code metrics generation, cross-referenced views of source code,
change logs, and many other project artifacts. Maven and Centipede support automatic
downloading of library dependencies as part of the build process if they are not already
present. We encourage you to keep an eye on these efforts, as they are likely to form the
basis of future Java project best practices. Ant is the engine under the covers of both of
these tools, and for simple projects these tools can even hide the fact that Ant is there
altogether. For more complex build processes, Ant customization and expertise is still
needed to accomplish steps that fall outside their capabilities.

9.8 ANT PROJECT BEST PRACTICES

If good source is as readable as a book, a good build file should be as readable as a
booklet, including short, concise, and clear instructions on what the project creates
and how it goes about creating these deliverables. In this section, we cover two aspects
of managing Ant projects that become increasingly important as a project evolves.
ANT PROJECT BEST PRACTICES 231

Remember, small projects become large projects, so keep these points in mind when
you begin setting up a projects build process. Refactoring should also be applied to
build files, not just your Java source code.

In appendix D, we cover more general suggestions as to how to lay out a build file
to be readable. If you wish to diverge from these, then try to be consistent within all the
build files you create. We have derived these best practices from common uses, although
there is no single standard for how to name directories and targets or structure a build
file. Even in the Apache Jakarta projects, there is little consistency on what to name the
directory for distributable packages; both dist and target are used. We encourage
you to strive for greater consistency within your own team and organization.

Having a consistent layout across projects means that people can understand their
way around your code, so adding new people to a team is easier. It also makes it easier
to cut and paste targets and tasks between projects, which is a common practice when
starting up a new project. The best approach is for an organization to have a set of tem-
plate build files that can be used for different projects, or a collection of targets to bring
together to form a build file.

9.8.1 Managing libraries

A particularly tricky situation arises in the management of external library dependen-
cies. These dependencies are typically third-party products, such as many of the fine
Jakarta offerings. These dependencies may also be in-house components that are
built, packaged, and versioned for use in other projects. Regardless of the source of
the libraries, the issues are the same: Where should libraries exist within the software
configuration management (SGM) and project directory structure? How can differ-
ent projects use different library versions? How can an individual developer’s build
incorporate a different library than the production build of a project?

Whether or not you keep libraries in the SCM is a decision that we cannot make
for you. We do, however, recommend that little or no local configuration be required
to replicate a build, other than pulling the code from the repository to a clean machine.
We even store Ant itself in our SCM so that we know our builds will work in the future
even if a future version of Ant breaks them. We can simply run our builds with the
version that we’ve always used.

We discussed in chapter 8 how we deal with third-party libraries by using Ant
property mapping indirections. Whether you go to the extreme shown in those exam-
ples or use a simpler scheme with few mappings is up to you, but we do recommend
that a build be capable of running with a different version of a library easily if desired.
At the very least, having mappings like ${lucene.jar} to refer to the JAR location
allows a user to override that value, if desired.

9.8.2 Implementing processes

Because Ant can be used for automated builds, tests, and deployment, use it that way.
Invest the time in learning how to use the test frameworks, the deployment mecha-
232 CHAPTER 9 USING ANT IN YOUR DEVELOPMENT PROJECTS

nisms, and set up an automated smoke test. The time invested will be paid back in
the current project and those that follow. We recommend that you:

• Do a clean build at least once a day on every system. This stops cruft accruing
in the output directory.

• Set up an automated smoke test for nightly or even hourly builds. We cover
how to do that in chapter 16.

• Automate as much of the build, test, and deploy process as you can.

• Make a ghost copy of the disk image and restore it once a week, after setting up
any server with the appropriate system software for staging tests. This helps test
automated installation processes. You may not like this extra work, but opera-
tions will love you for it.

9.9 SUMMARY

Applying Ant to a project requires careful integration with the rest of the software
development and build processes. As it is only a build tool, and should not be dictat-
ing how to organize your software process, though it has certain preferences for the
build process itself.

We have outlined the steps that we recommend for starting a new project using
Ant, and for migrating an existing project to Ant. We advise learning Ant with a new
project until you are comfortable with the tool because migrating is a more difficult
process.

Large projects are a challenge in their own right. The core technique to cope with
large projects and their complex build processes is to subdivide the projects and have
a master build file in a parent directory that invokes the others using <ant>. We have
shown you our approach to doing this, with proxy targets in the master build file to
model dependencies in the subprojects. Coupled with a set of well-known build tar-
gets inside each build file, this prevents the master build file itself from becoming a
maintenance problem.

Another aspect of large projects that we have covered is managing properties in the
child projects. There are many ways to address this. Defining the properties in the
master build and passing them down is one, reading them in from shared property files
is another. A third approach, importing XML fragments as entities, is a powerful one,
but to be used carefully.

In a large project, applying best practices to build files themselves matters greatly.
These best practices boil down to writing build files to be readable by others and con-
sistent with other projects.

As seen with the Web Start example earlier in this chapter, there are Ant tasks out
there to help in practically every situation. We are next going to explore the different
types of Ant tasks, including more third-party tasks that can add great value to our
build process.
SUMMARY 233

C H A P T E R 1 0

Beyond Ant’s core tasks

10.1 Understanding types of tasks 235
10.2 Optional tasks in action 237
10.3 Using software configuration

management tasks 245
10.4 Using third-party tasks 247
10.5 Notable third-party tasks 248

10.6 The ant-contrib tasks 253
10.7 Sharing task definitions

among projects 258
10.8 Best practices 258
10.9 Summary 259
Ant is only as useful as its tasks. It comes with many necessary and useful tasks; you
can accomplish a great deal with an out-of-the-box Ant installation. You are, however,
very likely to encounter a need for more than the built-in functionality offered. At the
very least, you are likely to be integrating unit testing into your build process.

There are also a growing number of tasks freely available, yet separate from the Ant
distribution. The Ant development team is now intentionally keeping many third-
party and vendor-specific tasks from being incorporated into the core. This frees Ant’s
developers from maintenance headaches and pushes task development and mainte-
nance to the tool authors and vendors. This chapter explains the different types of Ant
tasks and provides examples of their use. We cover several very special Ant tasks that
increase the power of your build file and accomplish powerful results with little effort.
234

10.1 UNDERSTANDING TYPES OF TASKS

There are four primary types of Ant tasks:

• Core or built-in—Tasks that work out-of-the-box and are immediately available
for use with a properly configured Ant installation. Most of the tasks that were
covered in previous chapters are core tasks, such as <javac>, <jar>, and <copy>.

• Optional—Tasks that ship natively with Ant (in its optional.jar) but typically
require libraries or external programs that do not ship with Ant. A couple of
optional tasks—<junit> and <junitreport>—were covered previously.
The <junit> task requires the JUnit library and <junitreport> requires an
XSLT engine—neither of these components ships with Ant.

• Third-party—Tasks that were developed by others and which can be dropped into
an Ant installation.

• Custom—Tasks that you have written and compiled yourself.

These terms can cause some confusion, especially when discussing the difference
between core tasks and optional tasks. This chapter deals with optional and third-
party tasks only. Custom task development is covered in chapter 20. Core tasks are
covered throughout this book in all other chapters. We also provide solutions to the
few technical hitches that can occur when using optional and third-party tasks. For a
complete summary of all of Ant’s tasks, refer to the Ant Task Reference in the appen-
dix, and to the Ant online documentation.

10.1.1 So, what is an “optional” task?

In previous versions of Ant, the term “optional” task referred to those tasks not nor-
mally distributed with Ant; they were in an add-on library that users downloaded
separately. As of version 1.5, Ant ships with complete sets of core and optional tasks.
But there are still distinctions between the two task types. Ant’s optional tasks are
stored in different libraries and the online documentation divides tasks into core and
optional.

With current distributions, the distinction between core and optional tasks may
seem odd or unnecessary, but there are some remaining differences. A key one is that
optional tasks are generally viewed as less essential than the core tasks to the majority
of build files. Although <junit> is an optional task, we consider it to be a mandatory
feature in all build files. The other difference is that nearly all the optional tasks
depend upon external libraries or programs to work. Unlike core tasks, optional tasks
are not typically stand-alone.

 Thus to use nearly any optional task, you must download and install the extra
libraries or programs. These additional downloads have been the source of many sup-
port issues. The expectation by many users was that once the optional JAR was down-
loaded, everything would work. When it didn’t, many concluded there was a bug in
Ant. As a consequence of the many erroneous bugs reported, the error message
UNDERSTANDING TYPES OF TASKS 235

received when referencing an “optional” task is now very explicit in version 1.5. It boils
down to: don’t file a bug report, it isn’t a real defect. The message received when an
unknown task is encountered lists many possible causes, but probably the most com-
mon causes after simple spelling errors are a missing optional.jar or missing libraries
for the task.

10.1.2 Ant’s major optional tasks

Table 10.1 categorizes the majority of Ant’s optional tasks.

Many of these tasks require that dependencies be in the classpath of Ant’s JVM, and
this typically means that the dependencies should be in ANT_HOME/lib (JUnit and
Log4j for example) or in the system classpath. Any dependencies required for the
optional tasks are noted in the documentation.

Beyond what is covered in this chapter, several of Ant’s optional tasks are given spe-
cial attention elsewhere in this book. JUnit integration is covered in chapter 4 (“Test-
ing”). FTP and Telnet are covered in chapter 7 (“Deployment”). XmlValidate is
covered more extensively in chapter 13. Emailing file attachments is covered in chap-
ter 7. The Script task is covered in chapter 20. Javah is covered in chapter 18 (“C++
integration”). JSPC is covered in chapter 12. There are many additional optional tasks
that we do not cover in detail in this book because they are only useful in specific envi-
ronments and are not generally applicable to the majority of Java development situa-
tions; however, these tasks are covered in Ant’s documentation.

Many useful, and probably necessary, tasks are considered optional in the Ant doc-
umentation, even though you are unlikely to consider some of them optional! Tasks
such as <junit> and <xmlvalidate> are indispensable for build best practices.

Table 10.1 Ant’s optional tasks. Most of these tasks require installation of additional components.

Task Category Description of tasks

Source Code Management† ClearCase, Continuus, Perforce, PVCS, StarTeam,
Visual SourceSafe / SourceOffSite

EJB <ejbjar> and others.
Chapter 14 covers the EJB tasks.

Archiving / Distribution CAB, RPM

Compilers / Grammars / Language ANTLR, Depend, JavaCC, Javah, JSPC, iContract, NetRexxC, .NET

Utilities PropertyFile, Native2Ascii, ReplaceRegExp, Translate

Testing JUnit, JUnitReport

Networking Telnet, FTP, MimeMail

Miscellaneous Jlink, Script, Sound, XmlValidate

Metrics / Coverage Analysis JDepend, JProbe, Metamata

† CVS support is provided as built-in task.
236 CHAPTER 10 BEYOND ANT’S CORE TASKS

10.1.3 Why third-party tasks?

Because it is impractical and even illegal1 for Ant to ship all Ant tasks that exist, third-
party tasks are often a necessary addition to your build file. Having tasks maintained
closer to the vendor or application programming interface (API) on which they oper-
ate is best for both Ant and for the vendor or project being wrapped in a task. Why?
Because the Ant developers are already maintaining a framework for build process
automation as well as many core and optional tasks, and are not necessarily domain
experts on the vendor or API. The Ant web site contains a resource section with
pointers to many third-party tasks.

Third-party tasks offer interesting and useful capabilities such as code-style check-
ing and database object-relational mapping code generation. Although third-party
tasks are easily integrated into an Ant build file, they require some build file writer
effort that the core and optional tasks do not.

10.2 OPTIONAL TASKS IN ACTION

Even though we cover many of commonly needed optional tasks elsewhere (see sec-
tion 10.1.2 for pointers), we want to introduce you to several that are commonly
used to add powerful capabilities to build processes. We also toss in two fun ones to
lighten things up a bit. In this section, you learn to work with these optional tasks:

• <propertyfile>

• <depend>

• <javacc>

• <replaceregexp>

• <sound> and <splash>

Most of these tasks illustrate the optional nature of the tasks and require additional
components to be installed in order to function properly. For each task, we discuss
the specific requirements it has and how to configure your system to run it.

10.2.1 Manipulating property files

One of the easiest and most common methods of carrying around metadata such as
configuration information or localized text is via Java property files. Property files are
simply textual key/value pairs: less powerful than XML configuration files, but much
easier to read and write. The <propertyfile> task provides several powerful fea-
tures for creating and manipulating property files, such as incrementing numbers and
dates. Java provides easy access to property file data by using the java.util.
Properties API, which allows your production code to access property files gener-
ated during the build process.

1 Specifically the Apache Software Foundation software license is less stringent than the GNU General
Public License (GPL), so GPL licensed tasks can not be included with Ant, nor even tasks bound to
GPL or Lesser GPL libraries.
OPTIONAL TASKS IN ACTION 237

Capturing build information for application use

By using a combination of the <property> and <propertyfile> tasks we cap-
ture the build date, time, machine name, user, and operating system into a properties
file, which we later incorporate into our projects distributable. Listing 10.1 illustrates
the build file pieces used to build the dynamic properties file.

<property environment="env"/>
<property name="env.COMPUTERNAME" value="${env.HOSTNAME}"/>

<propertyfile comment="Build Information"
 file="${build.classes.dir}/build.properties">
 <entry key="build.date"
 type="date"
 pattern="EEEE MMM dd, yyyy"
 value="now"/>
 <entry key="build.time"
 type="date"
 pattern="kk:mm:ss"
 value="now"/>
 <entry key="build.host" value="${env.COMPUTERNAME}"/>
 <entry key="build.user.name" value="${user.name}"/>
 <entry key="build.os.name" value="${os.name}"/>
</propertyfile>

The <propertyfile> task, somewhat misleadingly, does not actually set any Ant
properties. It creates or updates a properties file. To load those properties as Ant prop-
erties you need to use <property file="..."/> afterwards, perhaps using its pre-
fix attribute to keep from clashing with already existing properties.

TIP: Here’s how to ensure getting the hostname (or computer name) across
many platforms:

 <property environment="env"/>
 <property name="env.COMPUTERNAME" value="${env.HOSTNAME}"/>

This works in both standard Windows and Linux environments and pro-
vides the machine name as ${env.COMPUTERNAME}. It works because
of the immutability of properties. Loading the environment variables on a
Linux machine would not pick up an env.COMPUTERNAME property,
and it will be set on the property assignment. On a Windows machine,
env.COMPUTERNAME would be set from the environment variables and
the following assignment would be ignored. If you’d rather have the prop-
erty named env.HOSTNAME, just switch the order of the two properties
on the second line.

Listing 10.1 Using <propertyfile> to capture build-time information
238 CHAPTER 10 BEYOND ANT’S CORE TASKS

Incrementing build number and setting expiration date

Capturing build time information is one thing you can do with <propertyfile>,
but it can do more. The <propertyfile> task can also be used to increment num-
bers and dates. Ant includes a built-in <buildnumber> task to accomplish the same
thing, only more concisely. In listing 10.2, we use both tasks to create/update a prop-
erties file at build-time, which not only stores the build number, but also an expiration
date that our software could use to restrict the life of a demo version, for example.

<property name="metadata.dir" location="metadata"/>

<property name="buildprops.file"
 location="${metadata.dir}/build.properties"/>
<property name="buildnum.file"
 location="${metadata.dir}/build.number"/>

<buildnumber file="${buildnum.file}"/>
<echo message="Build Number: ${build.number}"/>

<delete file="${buildprops.file}"/>
<propertyfile comment="Build Information"
 file="${buildprops.file}">

 <entry key="build.number" value="${build.number}"/>

 <entry key="expiration.date"
 type="date"
 operation="+"
 value="1"
 default="now"
 unit="month" />
</propertyfile>

The <entry> element of the <propertyfile> task has several attributes that
work in conjunction with one another. The type attribute allows for int, date, or
the default string. The operation attribute is either +, -, or the default of =.
Date types support a unit attribute and a special default of now. Refer to the doc-
umentation for more coverage of the <entry> attributes. Existing property files are
not completely overwritten by the <propertyfile> task, as <propertyfile> is
designed to edit them, leaving existing properties untouched unless modified explic-
itly with an <entry> item. Comments, however, get lost in the process.

10.2.2 Adding audio and visual feedback during a build

We cannot help but mention two interesting optional tasks, <sound> and
<splash>. The <sound> task is a fun addition to a build file and it could be useful
when running an involved build process. The <sound> task enables audible alerts

Listing 10.2 Build file segment showing how to increment build numbers

and perform a date operation

Increments and stores
into build.number

Writes build
number

Generates a date one
month from today
OPTIONAL TASKS IN ACTION 239

when a build completes; even different sounds, depending on build success or failure.
The <splash> task displays a graphic during the build, providing eye candy but also
the ability to personalize or brand a build.

“Ding, your build is done!”

Listing 10.3 demonstrates an example use of the <sound> task.

<project name="Sound" default="all">
 <property file="build.properties"/>
 <target name="init">
 <sound>
 <success source="${sound.dir}/success.wav" duration="500"/>
 <fail source="${sound.dir}/fail.wav" loops="2"/>
 </sound>
 </target>

 <target name="fail" depends="init">
 <fail/>
 </target>

 <target name="success" depends="init"/>

 <target name="all" depends="success"/>
</project>

A couple of bells and whistles about <sound> are the duration and loops
attributes. If source is a directory rather than a file, a file is randomly picked from
that directory. When the build completes, either the <success> or <fail> sound
is played based on the build status. Any sound file format that the Java Media Frame-
work recognizes will work with <sound>, such as WAV and AIFF formats. Java 1.3
or the JMF add-on is a <sound> dependency requirement.

A picture is worth a thousand words

The new Ant 1.5 <splash> task displays either the Ant logo or an image of your
choosing while the build is running. As the build runs, a progress bar across the bottom
moves along with every event, such as a tasks starting and finishing (build events are cov-
ered in chapter 21 in detail). Figure 10.1 shows an example of using a custom graphic.

Listing 10.3 Using the <sound> task to alert on build success or failure

Figure 10.1

Custom <splash> display, showing

the build progress along the bottom
240 CHAPTER 10 BEYOND ANT’S CORE TASKS

This task has potential for abuse, though, and it provides nothing functional to the
build. It would be wrong to incorporate it into automated build processes, which run
unattended. It is cute, though! This build file demonstrates its use:

<project name="splash" default="main">

 <target name="init">
 <splash imageurl="http://www.ehatchersolutions.com/logo.gif"
 showduration="5000"/>
 <sleep seconds="1"/>
 <sleep seconds="1"/>
 <sleep seconds="1"/>
 <sleep seconds="1"/>
 <sleep seconds="1"/>
 <sleep seconds="1"/>
 </target>

 <target name="main" depends="init"/>

</project>

The <sleep> tasks were added to demonstrate the progress bar moving as the build
progresses. Note that while the progress bar along the bottom progresses as the build
proceeds, it is not an indicator of how much work there is remaining.

10.2.3 Adding dependency checks

The <javac> dependency logic to ensure that out-of-date classes are recompiled
during incremental builds implements a rudimentary check that only passes .java files
to the compiler if the corresponding .class file is older or nonexistent. It does not
rebuild classes when the files that they depend upon change, such as a parent class or
an imported class. The <depend> task looks at the generated class files, extracts the
references to other classes from these files, and then deletes the class files if any of
their dependencies are newer. This clears out files for <javac> to rebuild. One fly in
the ointment is that because compile-time constants, such as primitive datatype val-
ues and string literals, are inlined at compile time, neither <javac> nor <depend>
can tell when a definition such as Constants.DEBUG_BUILD has changed from
true to false.

Projects that do not have a substantial number of .java files can get away with sim-
ply doing a clean build and recompiling their entire source to ensure all is in sync. In
situations where there is a large number of Java source files and the time to rebuild the
entire source tree is prohibitive, the <depend> task is a great benefit to ensure incre-
mental builds are as in sync as possible. Adding the dependency check to the build pro-
cess is fairly simple; we just paste it in to the compile target above the <javac> call,
as shown here:

<target name="compile" depends="init,release-settings">
 <depend srcdir="${src.dir}"
 destdir="${build.dir}/classes"
OPTIONAL TASKS IN ACTION 241

 cache="${build.dir}/dependencies"
 closure="true">
 <classpath>
 <pathelement location="${antbook-ant.jar}"/>
 <pathelement location="${antbook-common.jar}"/>
 </classpath>
 </depend>
 <javac destdir="${build.dir}/classes"
 debug="${build.debug}"
 includeAntRuntime="no"
 srcdir="src">
 <classpath refid="compile.classpath"/>
 </javac>
</target>

We inserted <depend> inside the compile target as it is only ever needed before the
<javac> call; there was little merit in providing a separate target. We considered writ-
ing a reusable target, either by pasting a new target into our shared targets.xml file, or
by writing a stand-alone library build file. The former is easier to integrate with com-
pile, just another dependency in the target’s list; the latter is more reusable. We
refrained from either action until we had integrated it into all the targets, to see how
much classpath variation there was, and so determine what parameters to support.

The two mandatory attributes of the <depend> task are srcdir, which points
to the Java source, and destdir, which points to the classes. The cache attribute
names a directory that is used to cache dependency information between runs. The
task looks inside the class files to determine which classes they depend on, and as this
information does not change when the source is unchanged, it can be safely cached
from run to run to speed up the process. Because it does speed up the process, we
highly recommend you always specify a cache directory. The final attribute we are
using is closure, which tells the task whether to delete .class files if an indirect
dependency has changed. The merits of this one are unclear: it may be safer to set
closure=true, but faster to leave it unset.

There is also a nested attribute to specify a classpath. This is not mandatory;
<depend> is not compiling the source and it does not need to know where all the pack-
ages the source depends upon are stored. Instead, the task uses any supplied classpath as
a list of classes that may also have changed, and so dictate a rebuild of the local source.
It looks inside JAR files to see the timestamps of the classes therein, deleting local .class
files if needed classes in the JAR have changed. For speed, we only list the JAR files that
our sibling projects create; a change in an external library such as ant.jar or lucene.jar is
not detected. We usually only rebuild those libraries from their CVS repositories once
a day, and we know to run a clean build of our own projects afterwards.

You can also include or exclude source files from the dependency checking by using
nested <includes> and <excludes> elements. We have never done this, because,
like <javac>, the task includes all Java files under the source directory automatically,
and we have always wanted to check the dependency of our entire source.
242 CHAPTER 10 BEYOND ANT’S CORE TASKS

Running the target adds one more line to the compilation target’s output; here stat-
ing that two files were deleted:

compile:
 [depend] Deleted 2 out of date files in 0 seconds
 [javac] Compiling 3 source files to C:\AntBook\app\webapp\build\classes

Because this task ensures that source code changes are picked up more reliably, we
always use this task in our projects. Sometimes the fact that it cannot detect depen-
dencies upon imported constants (static final data) catches us out, as their
changes do not propagate: remember to clean build every time you change a public
constant. A regular clean build is always a good idea.

10.2.4 Grammar parsing with JavaCC

The Lucene indexing and search engine that we’ve incorporated into our example
application allows for sophisticated search expressions such as these:

(foo OR bar) AND (baz OR boo)
title:ftp AND NOT content:telnet

Under the hood, Lucene’s API can perform searches by using a Query object, which
can be constructed either through the API directly (for example, a nested set of Bool-
eanQuery objects), or more simply using the QueryParser, which takes expressions
like those just shown and parses them into a Query object. The parsing of such
expressions into Java objects can be done by using a grammar compiler. There are two
grammar compilers with built-in Ant support: ANTLR and JavaCC. Because our
particular application uses Lucene and because Lucene takes advantage of JavaCC, we
feature it here.

JavaCC is a Java grammar compiler that compiles .jj files into .java source code.
The Lucene query parser, for example, is written using JavaCC, compiled into .java
files during Lucene’s build process, and then compiled using the standard <javac>
task. If you’re writing your own meta-language by using JavaCC, the Ant <javacc>
task is the quickest way to integrate the two-step sequence into your build process. The
<javacc> task is simply a wrapper around the JavaCC command-line compiler.

Listing 10.4 is a piece of Lucene’s own build file that uses the <javacc> task.

<target name="compile" depends="init,javacc_check" if="javacc.present">

 <!-- ... -->
 <javacc
 target="${src.dir}/org/apache/lucene/queryParser/QueryParser.jj"
 javacchome="${javacc.zip.dir}"
 outputdirectory="${build.src}/org/apache/lucene/queryParser"/>

 <javac
 srcdir="${src.dir}:${build.src}"
 includes="org/**/*.java"

Listing 10.4 Lucene’s own build, which uses Ant’s JavaCC task

Outputs to temporary directory

Compiles both
source trees
OPTIONAL TASKS IN ACTION 243

 destdir="${build.classes}"
 debug="${debug}">
 <classpath refid="classpath"/>
 </javac>
</target>

10.2.5 Regular expression replacement

If you’re coming from a Unix and a Make-based build, chances are you’ll be wonder-
ing where sed, awk, and Perl are hiding in Ant. The <replaceregexp> task is not
quite a full-fledged version of those handy tools, but it can be just what you need to
solve some of those tricky build process issues. Let’s demonstrate regular expression
replacement with an example: an application uses a file display.properties to define
sort.order as a comma-delimited list. The application uses this information to
provide default sorting of names displayed.

sort.order=lastName,firstName

Suppose certain customers want to deviate from this default and swap the order.
Rather than provide a separate properties file for each customer, we could use the
<replaceregexp> task to maintain a single file and note the exceptions (perhaps
in a customer-specific properties file loaded in Ant), as the following code illustrates:

<project name="Regexp" default="default">
 <property name="customer" value="normal"/>
 <property file="${customer}.properties"/>

 <target name="init">
 <delete dir="output"/>
 <mkdir dir="output"/>
 </target>

 <target name="default" depends="init" if="customer.different">
 <copy file="display.properties" todir="output"/>
 <replaceregexp file="output/display.properties"
 match="sort.order=(.*),(.*)"
 replace="sort.order=\2,\1"
 byline="true" />
 </target>

</project>

The <replaceregexp> shown matches a comma-delimited sort.order line and
replaces it with the two fields swapped. The <replaceregexp> task modifies files
in place. Notice that the source file was copied to a working directory prior to
replacement.

Although the main point is to demonstrate a use of <replaceregexp>, the
conditional flag was added to provide some insight into how Ant properties can be
used to make life easier, even given exceptions to rules. In this example, an
244 CHAPTER 10 BEYOND ANT’S CORE TASKS

acme.properties file could be provided with customer.different=true
and Ant run with ant -Dcustomer=acme. Alternatively, customer.different
could be enabled directly using ant -Dcustomer.different=yes.

10.3 USING SOFTWARE CONFIGURATION MANAGEMENT TASKS

SCM is the foundation to any successful software project. We expect that you are
using some form of SCM to look after your code, as any software professional should.
Ant happily works with most SCM systems, and can coexist with any of them. There
are a multitude of optional tasks that enable you to make calls to your SCM system
from inside Ant. These tasks let you check in and check out code, sometimes even to
add labels. The exact set of services available depends upon the particular SCM tool
in use: each tool has a unique set of corresponding Ant tasks.

At the time of writing, Ant supports these SCM tools: CVS, Perforce, ClearCase,
SourceSafe, SourceOffsite, StarTeam, Merant PVCS, and Continuus. Each has its
own tasks and its own set of operations. Table 10.2 lists the core set of corresponding
Ant tasks.

All the tasks need some external support to run. Except for StarTeam, all rely on a
native executable on the path, such as cvs, p4, and cleartool. The StarTeam
tasks use a Java library supplied by the vendor, which must be dropped into the
ANT_HOME\lib directory. All of the SCM tasks, except for the <cvs> task, are
optional tasks. Ironically, and perhaps understandably because of its popularity, the
<cvs> task is a built-in task, although it does require the CVS command-line execut-
able to be available. The rest of this section briefly touches on a few of these SCM
tasks, noting any issues that we are aware of.

10.3.1 CVS

During the development of this book, we used a CVS server as our repository for
source and the book’s chapters themselves. Our automated builds that were devel-
oped for the CruiseControl section of chapter 16 required that we update our build
machine from our SCM. The code to do this uses one <cvs> task, as shown here:

Table 10.2 Ant-supported SCM systems and the core actions supported by Ant’s tasks.

SCM System update check out check in label

CVS <cvs command=
"update">

<cvs command=
"checkout">

<cvs command=
"commit">

<cvs command=
"label">

ClearCase <ccupdate> <cccheckout> <cccheckin> N/A

Continuus N/A <ccmcheckout> <ccmcheckin> N/A

PVCS <pvcs> N/A N/A N/A

SourceSafe <vssget> <vsscheckout> <vsscheckin> <vsslabel>

SourceOffSite <sosget> <soscheckout> <soscheckin> <soslabel>

StarTeam N/A <stcheckout> <stcheckin> <stlabel>

Perforce <p4sync> <p4edit> <p4submit> <p4label>
USING SOFTWARE CONFIGURATION MANAGEMENT TASKS 245

<property name="root.dir" location="${env.TEMP}"/>
<property name="cvs.username" value="${user.name}"/>
<property name="cvs.host" value="localhost"/>
<property name="cvs.root"
 value=":pserver:${cvs.username}@${cvs.host}:/home/cvs/projects"/>
<property name="cvs.passfile" value="../.cvspass"/>
<property name="cvs.dir" location="${root.dir}"/>
<property name="cvs.package" value="AntBook/app"/>

<cvs cvsRoot="${cvs.root}"
 command="checkout"
 dest="${root.dir}"
 package="${cvs.package}"
 passfile="${cvs.passfile}"
 failonerror="yes" />

The important things to note are that we use a temporary directory for our continu-
ous builds (we use the environment’s TEMP directory) and that we set failoner-
ror to ensure that a <cvs> failure is fatal, which is not the default.

Generating change reports from a CVS repository

Ant 1.5 adds two nice core tasks that work with CVS repositories: <cvschangelog>
and <cvstagdiff>. The <cvschangelog> task generates an XML file contain-
ing all the changes that have occurred within a specified date range on CVS modules.
The <cvstagdiff> task generates an XML file containing the differences between
two CVS tags. Pleasantly, Ant ships with the Extensible Stylesheet Language (XSL)
files changelog.xsl and tagdiff.xsl, both in ANT_HOME/etc, which turn these XML
files into attractive hypertext markup language (HTML) reports. Refer to Ant’s docu-
mentation for more details on these tasks, but we leave you with an example of how
to generate a report from a CVS change log:

<cvschangelog destfile="changelog.xml"/>

<xslt in="changelog.xml"
 out="changelog.html"
 style="${ant.home}/etc/changelog.xsl">
 <param name="title" expression="AntBook ChangeLog"/>
 <param name="module" expression="AntBook"/>
</xslt>

Chapter 13 covers the <xslt> task in more detail.

10.3.2 ClearCase

Although you can check files out, the current tasks don’t follow the strict application
of the Rational process, in which you have to name a particular task or defect related
to the check out. Nor is there any method by which to label files from Ant, which is a
feature desperately needed for completely automated deployment.

We have encountered odd behavior when, after an “ant clean” deleted the build
and dist directories in a ClearCase file system, Ant could not build again until the sys-
tem was rebooted. If you encounter the same problem, try the same solution.
246 CHAPTER 10 BEYOND ANT’S CORE TASKS

10.4 USING THIRD-PARTY TASKS

Because of the increasing number of useful third-party tasks, it is very likely that you
will decide to use one or more of them in your build process. The types of tasks avail-
able vary widely from source code style checkers to application server deployment
tasks. Regardless of the task you want to use, the process for integrating it into an Ant
build file is all the same: simply declare the task(s) with <taskdef>.

This section discusses using the <taskdef> task in more detail.

10.4.1 Defining tasks with <taskdef>

Ant automatically knows which Java class implements each of the core and optional
tasks. But to use a new third-party task in a build file, you need to tell Ant about it.
This is what the <taskdef> task is used for. The <taskdef> task itself is a core
task. To define a task, you specify a name and a fully qualified Java class name. The
name is arbitrary, but unique within the build file, and is used as the XML element
name to invoke the task later in the build file.

To demonstrate how to declare a third-party task, we’ll use XDoclet, a task that
we cover in the next chapter. The following code shows how to declare the XDoclet
<document> task:

<taskdef name="document"
 classname="xdoclet.doc.DocumentDocletTask"
 classpath="${xdoclet.jar}"/>

The class xdoclet.doc.DocumentDocletTask exists in the JAR file referenced
by the ${xdoclet.jar} property. Our build file now has the capability to use the
<document> task in the same manner as any other task is used. Defining multiple
tasks can be accomplished simply with multiple <taskdef> tasks, but if multiple
related tasks are being used there is an alternative.

Defining multiple tasks, an alternative

Because task declarations are essentially name/value pairs, multiple tasks can be
defined in a single properties file and loaded either directly as a properties file, or as a
resource from a classpath. For example, to define two of the XDoclet tasks we could
use an xdoclet_tasks.properties file as shown here:

document=xdoclet.doc.DocumentDocletTask
xdoclet=xdoclet.DocletTask

Loading this properties file by using the file variant would define both tasks,
<document> and <xdoclet>, in one <taskdef>:

<taskdef file="xdoclet_tasks.properties"
 classpath="${xdoclet.jar}"/>

If the task definition properties file is in the classpath, then the resource variant
may be used:
USING THIRD-PARTY TASKS 247

<taskdef resource="taskdef.properties">
 <classpath refid="task.classpath"/>
</taskdef>

NOTE Using the resource variant is a nice feature that is demonstrated more fully
in the XDoclet chapter. It is the same mechanism that Ant uses. In Ant’s
ant.jar, there is a properties file named org/apache/tools/ant/taskdefs/de-
faults.properties with the task/class name pairs listed for all of Ant’s built-
in and optional tasks.

Unrelated tasks should be declared using individual <taskdef>’s because they each
have their own dependencies and classpaths. The XDoclet tasks, however, are all in
the same library and have the same dependency requirements. We encourage third-
party Ant task providers to embed a taskdef.properties file in the root folder of the
distributable JAR to enable users to more easily incorporate tasks into a build.

10.5 NOTABLE THIRD-PARTY TASKS

There are several third-party tasks that stand out and deserve coverage. Unfortunately,
we do not have the space to do justice to them all. Here are a few of our favorites.

10.5.1 Checkstyle

Do you catch yourself day-dreaming about a warm tropical island beach, gentle
breeze blowing, and your source code devoid of hard tabs? We do! Bringing up the
topic of coding standards is often followed by heated dead-end “discussions” on
where curly brackets should go. This is serious business, and seeing two senior devel-
opers duke it out over whether public member variables are allowed is not a pretty
sight. Because the authors take coding standards seriously2 and even more seriously
the desire to shift work to the build process and off of the people, our build is inte-
grated with a style-checking task.

Checkstyle is currently a SourceForge-hosted project, delivering a stand-alone com-
mand-line tool and an Ant task. It has the capability to check the following, and more:

• Unused and duplicate import statements

• Proper and preferred Javadoc tag usage

• License header in all modules

• Preferred placement of curly brackets

• Existence of tabs

• Line length maximum

• Naming conventions for classes, methods, and variables

• Java Language Specification recommended modifier ordering

2 Hey, we’re human, too, so be gentle on us if we inadvertently miss adhering to our own strict standards.
If we address issues reported by Checkstyle, however, we’ll catch most mistakes.
248 CHAPTER 10 BEYOND ANT’S CORE TASKS

Checkstyle’s default settings claim to adhere to Sun’s coding conventions (Sun 2000),
and if those defaults aren’t sufficient for your needs, its many configuration options
will likely get you to your in-house coding standards. Listing 10.5 shows our task for
this, which is implemented in a reusable library build file.

<?xml version="1.0"?>
<!DOCTYPE project [
 <!ENTITY properties SYSTEM "properties.xml">
]>
<project name="Checkstyle" default="main">

 <!-- Override typical lib.dir, which is by default relative to
 our subdirectory projects -->
 <property name="lib.dir" location="lib"/>

 <!-- Load in all standard app-wide properties -->
 &properties;

 <property name="project" value="ant"/>

 <property name="checkstyle.src.dir" location="${project}/src"/>
 <property name="output.dir" location="checkstyle/${project}"/>
 <property name="checkstyle-noframes.xsl"
 location="xdocs/stylesheets/checkstyle-noframes.xsl"/>

 <path id="checkstyle.classpath">
 <pathelement location="${checkstyle.jar}"/>
 </path>

 <taskdef resource="checkstyletask.properties"
 classpathref="checkstyle.classpath"/>

 <target name="init">
 <echo message="Checking style of ${project}"/>
 <mkdir dir="${output.dir}"/>
 </target>

 <target name="checkstyle" depends="init">
 <checkstyle failOnViolation="false"
 maxLineLen="67"
 cacheFile="${output.dir}/checkstyle.cache">
 <formatter type="plain"/>
 <formatter type="xml" toFile="${output.dir}/checkstyle.xml"/>
 <fileset dir="${checkstyle.src.dir}" includes="**/*.java"/>
 </checkstyle>

 <style basedir="${output.dir}" destdir="${output.dir}"
 includes="checkstyle.xml"
 style="${checkstyle-noframes.xsl}"/>
 </target>

 <target name="main" depends="checkstyle"/>
</project>

Listing 10.5 Checkstyle.xml: checking our coding style standards

Our project-wide
property settings

Default project to check,
but typically overridden

Don’t be too harsh
about violations!

Displays
interactively
and logs for

reporting
NOTABLE THIRD-PARTY TASKS 249

Like <junitreport> (covered in chapter 4) the <checkstyle> task has format-
ters to allow its output to be written to the console or log file, as well as to XML for-
mat for integrated reporting. We demonstrate the transformation for reporting in
chapter 13’s section on XSL and the <style> task (an alias for the <xslt> task).

The checkstyle.xml file lives in our project root directory, and because our direc-
tory naming conventions are consistent among all subprojects, it is easy to check any
project from the command-line from any subdirectory:

ant -find checkstyle.xml -Dproject=webapp

This command searches towards the root directory until it finds checkstyle.xml and
then checks the coding standards of our webapp project.

Installing Checkstyle

Obtain the latest Checkstyle release version from http://checkstyle.sourceforge.net
(we used version 2.1). The easiest install is simply to extract the “-all” JAR from the
distribution into your ANT_HOME/lib directory. In our case, the JAR name is
checkstyle-all-2.1.jar. Rather than putting the JAR into ANT_HOME/lib, we placed
the Checkstyle distribution into our global SCM-maintained lib directory and
mapped the checkstyle.jar property to the JAR location in our project-wide
properties.xml.

10.5.2 Torque–object-relational mapping

One of the best kept secrets from the Jakarta Project is Torque, a persistence layer
that provides object-relational mapping to relational databases. Previously Torque was
a component of the Turbine application server framework, but has been decoupled
for general-purpose use. If you don’t need the sophisticated features of Enterprise
JavaBeans, such as distributed transactions, Torque is likely to provide everything you
need in a persistence layer. Torque includes several third-party Ant tasks, which are
described in table 10.3.

Table 10.3 Torque’s Ant tasks

Task name Task description

TorqueCreateDatabase Generates simple scripts for creating databases on various platforms

TorqueDataDTDTask Generates data DTD from an XML Schema describing a database structure

TorqueDataDumpTask Dumps data from db into XML

TorqueDataSQLTask Generates SQL source from an XML data file

TorqueJDBCTransformTask Generates an XML Schema of an existing database from JDBC metadata

TorqueObjectModelTask Uses the Velocity template engine to generate schema-based
source code

TorqueSQLExecTask Inserts an SQL file into its designated database

TorqueSQLTask Generates SQL source from an XML Schema describing a database structure

TorqueSQLTransformTask Generates an XML Schema from an SQL schema

TorqueDocumentationTask Generates HTML or XML documentation for XML Schemas
250 CHAPTER 10 BEYOND ANT’S CORE TASKS

These tasks are illustrated in figure 10.2, demonstrating the numerous ways in which
Torque’s tasks can benefit a build process.

Even if your project is not using Torque’s persistence layer, its Ant tasks could still
be useful. The XML representation of a database schema and flexible ways of using
that representation to build a database or generate code from the XML Schema are
incredibly powerful build-time behaviors. Torque’s code-generation engine relies on
Velocity, another of Jakarta’s projects, for generating source code from template files.
When starting with Torque, the first question is: “What is the one definitive source
of my schema?” The idea is to get your schema into Torque’s schema XML format.
Although using the XML format as the definitive schema source is typical, SQL scripts
could be the root schema source, or even an existing database that can be accessed
using JDBC. Remember, pragmatic programmers keep a single unambiguous repre-
sentation of all metadata!

Torque in action

Our project takes advantage of Torque’s persistence and uses several of its Ant tasks.
Our web applications’ persistence only consists of a single table, USER. The table
columns represent username, password, and a full name. We modeled this table in
Torque’s XML Schema format as shown in listing 10.6.

XML
Schema

TorqueCreateDB + <sql>

DB

TorqueSQL

TorqueDocumentation

TorqueSQLExec

TorqueJDBCTransform

XML Data

TorqueDataSQL

TorqueDataDump
DTD

TorqueDataDTD

.java

TorqueObjectModel

TorqueSQLTransform
Documentation

(HTML) SQL

Figure 10.2 Torque’s Ant tasks. The schema can be generated from a database,

or the database generated from the schema. SQL scripts, data dump to XML, and

schema documentation are among Torque’s other build-time features.
NOTABLE THIRD-PARTY TASKS 251

<?xml version="1.0" encoding="ISO-8859-1" standalone="no" ?>
<!DOCTYPE database SYSTEM "http://jakarta.apache.org/turbine/dtd/data-
base.dtd">

<database name="default" package="org.example.antbook.model" defaultId-
Method="native" baseClass="BaseObject" basePeer="BasePeer">
 <table name="USER" javaName="User">
 <column name="USER_ID" javaName="UserId" primaryKey="true"
 required="true" type="INTEGER" />
 <column name="USERNAME" javaName="Username"
 required="true" type="VARCHAR" size="64"/>
 <column name="PASSWORD" javaName="Password" required="true"
 type="VARCHAR" size="64"/>
 <column name="FULLNAME" javaName="Fullname" required="true"
 type="VARCHAR" size="128"/>
 </table>
</database>

This single representation is responsible for generating several other pieces during the
stages of our build process:

1 Prior to compilation, we use the TorqueObjectModelTask (<torque-om> is
our mapping to it) to generate Java code representing our data as “base” and
“peer” objects, providing abstraction to hide the persistence mechanism. The
code is generated into a gensrc subdirectory of build.

2 Later in the build process SQL files are generated using the <torque-sql>
task. Again, the output goes to the build directory in an sql subdirectory.

3 A data document type definition (DTD) is generated for use in the next step
from a sample data XML file in order to ship our application with built-in data.
The <torque-datadtd> task takes care of this.

4 The generated DTD and a sample data XML file are used by <torque-
datasql> to generate Structured Query Language (SQL) commands for pop-
ulating the database with the data defined in the XML file.

5 Ant’s built-in <sql> task constructs a new database with the schema SQL gen-
erated in step 2.

6 The <sql> task is used again, this time to populate the database with sample data.

It is unlikely that most Torque-based projects need all of these steps. We have the
added steps for generating an embedded prepopulated sample database. These steps
can be optimized with clever use of <uptodate> to prevent regeneration of files that
will not change until the schema itself changes. We are using the lightweight Hyper-
sonicSQL database, which allows us to run a complete database within our web
application (no separate server process is needed). The Torque project is still working

Listing 10.6 Our data model, which uses the Torque database schema structure
252 CHAPTER 10 BEYOND ANT’S CORE TASKS

on a 3.0 release at the time of writing, so we used a development version. Because
some of the details may change, it is best for us not to show the specifics of Torque’s
Ant task syntax. The Torque distribution provides detailed documentation and exam-
ples, and the user community is helpful and responsive.

NOTE A great benefit of having a single source representation of schema metadata
surfaced while writing this chapter. The original table was named
SEARCH_USER during some experimentation. For example purposes, we
wanted it shortened to USER. Simply changing it in one place in antbook-
schema.xml was all it took, combined with a clean build, to ensure the old
generated code and SQL files were eradicated. Many database-driven
projects have serious domino effect nightmares if a table or column changes
name or type. Torque and Ant make such issues much less severe and more
easily managed.

Installing Torque

Because at the time of writing a new release or Torque was on the horizon, we
encourage you to check with the Jakarta web site to get the latest version and installa-
tion/usage instructions. There are a number of dependencies that the Torque tasks
require, and these currently ship with release versions of Torque.

10.6 THE ANT-CONTRIB TASKS

SourceForge hosts the ant-contrib (note the dash, a seemingly inactive project with-
out it also exists) project. This project contains several Ant tasks that have been
rejected for inclusion into the core Ant code base or that are being developed and
tested prior to submission to Ant. These tasks are well developed (two of Ant’s com-
mitters are actually members of this project) and maintained. Here are a few tasks
that exist in ant-contrib:

• C++ compiling and linking tasks—we discuss these tasks in more detail in
chapter 17.

• <propertycopy>—allows for property expansion to dereference properties
dynamically, similar to the trick shown in chapter 3.

• <osfamily>—sets a property to indicate the operating system family, such as
mac, windows, and unix. This is much simpler than using Ant’s <condi-
tion> task to accomplish the same effect.

• The controversial logic tasks: <if>, <switch>, <foreach>, and <try-
catch> tasks. Although these tasks may make your build seem more pleasant,
resist the temptation to program your build files in a procedural way. Use these
with caution and with knowledge of the alternatives.
THE ANT-CONTRIB TASKS 253

Installing the ant-contrib tasks

The ant-contrib project is available at http://sourceforge.net/projects/ant-contrib/. At
the time of writing, only the CPP tasks were available as a binary download, so be
prepared to build the others yourself by pulling the ant-contrib project to your local
system by using a CVS client and by using its own provided Ant build file to create a
JAR file to use within your own projects. The build incorporates a <taskdef>
usable properties file into its JAR, allowing all tasks to be defined with a single
<taskdef>:

<property name="ant-contrib.jar"
 location="lib/ant-contrib-0.1.jar"/>

<taskdef resource="net/sf/antcontrib/antcontrib.properties"
 classpath="${ant-contrib.jar}"/>

Copying properties

In section 3.10.1 we demonstrate an obscure way to dereference property values by
using Ant’s built-in capabilities. The ant-contrib <propertycopy> task makes
property dereferencing much cleaner and easier to understand. We have refactored
the example we presented earlier to use <propertycopy>:

<target name="propertycopy">
 <property name="X" value="Y"/>
 <property name="Y" value="Z"/>
 <propertycopy name="A" from="${X}"/>
 <echo message="A = ${A}"/>
</target>

The value of ${X} is “Y”. The from attribute of <propertycopy> refers to an Ant
property name, “Y” in this example. The value of the property Y is “Z”, so the output
is “A = Z”. This is a much nicer alternative than using the refid tricks.

Operating system family

Ant relieves us of many platform-specific issues, but there are settings that typically
need to vary across platforms. The ant-contrib <osfamily> task enables us to set an
Ant property with the value mac, windows, dos, or unix. By using this value, we
can load a platform-specific properties file, for example:

<target name="osfamily">
 <osfamily property="os.family" />
 <echo message="O/S family is ${os.family}"/>
 <property file="${os.family}.properties"/>
</target>

Executing this target on a Windows 2000 machine would load windows.properties.
Loading properties based on operating system family, or by hostname, enables build
files to adapt easily to their operating environment.
254 CHAPTER 10 BEYOND ANT’S CORE TASKS

Using if/then/else logic

A common frustration that folks new to Ant experience is that its declarative nature
can seem overly constraining. Performing if/then/else and switching logic using Ant’s
built-in capabilities is by design difficult. Ant’s XML “language” was not meant to be
a generalized scripting language. To the rescue come the logic tasks from ant-contrib
for those who simply must have explicit logic in a build process. Here is an example
of an <if>/<then>/<else> construct straight from the ant-contrib API documen-
tation:

<target name="if">
 <if>
 <equals arg1="${foo}" arg2="bar" />

 <then>
 <echo message="The value of property foo is bar" />
 </then>

 <else>
 <echo message="The value of property foo is not bar" />
 </else>
 </if>
</target>

A single condition, which could be anything that the <condition> task accepts,
including the <and> or <or> construct, is contained within the <if> tag. As
expected, if the condition is true the tasks within the <then> section are executed,
otherwise the ones within the <else> section execute.

Multiple value switching

Along the same vein as the <if> task, ant-contrib includes a <switch> task, which
enables a single value to control the execution branch:

<target name="switch">
 <switch value="${foo}">

 <case value="bar">
 <echo message="The value of property foo is bar" />
 </case>

 <case value="baz">
 <echo message="The value of property foo is baz" />
 </case>

 <default>
 <echo message="The value of property foo is not sensible" />
 </default>

 </switch>
</target>
THE ANT-CONTRIB TASKS 255

The <case> task container specifies the value that must equal the <switch> value
for the containing tasks to be executed. A <default> container is executed if the
value does not match any of the <case> values.

Catching task exceptions

A failing Ant task normally immediately stops the build with a BUILD FAILED
banner. If, for some reason, you want the build to continue when a task fails, use
the <trycatch> ant-contrib task. Mirroring Java’s exception handling facilities,
<trycatch> has nested <catch> and <finally> containers to allow tasks to exe-
cute in those two conditions. This example demonstrates its usage:

<target name="trycatch">
 <trycatch property="exception.message"
 reference="exception.ref">

 <try>
 <fail>Oops!</fail>
 </try>

 <catch>
 <echo>Caught</echo>
 </catch>

 <finally>
 <echo>Finally</echo>
 </finally>

 </trycatch>

 <echo>As property: ${exception.message}</echo>
 <property name="exception.value" refid="exception.ref" />
 <echo>From reference: ${exception.value}</echo>
</target>

Executing this target produces this output:

trycatch:
 [trycatch] Caught exception: Oops!
 [echo] Caught
 [echo] Finally
 [echo] As property: Oops!
 [echo] From reference: C:\AntBook\Sections\Applying\tasks\
 ant-contrib.xml:72: Oops!

BUILD SUCCESSFUL

Of note is that the build succeeded despite <fail> executing. Both the <catch>
and <finally> execute when a failure is encountered in the <try> block. If no
failure had occurred, only the <finally> block would have subsequently executed.
256 CHAPTER 10 BEYOND ANT’S CORE TASKS

Using explicit iteration

You may find yourself wishing there was a way to perform a set of Ant tasks for every
file in a fileset, or iterating over a list of values. With the ant-contrib <foreach>
task, such iteration is easily accomplished. In our example, we iterate over a set of
string values as well as a set of files.

<target name="for-each">
 <foreach list="1,2,3" target="loop" param="var"
 delimiter=",">
 <fileset dir="."/>
 </foreach>
</target>

<target name="loop">
 <echo message="var = ${var}"/>
</target>

The <foreach> task has two lists that it iterates, one specified using the list
attribute, followed by each file in the optional nested <fileset>. Typical usage
would not include the use of both list and <fileset> but using both is accept-
able as well. The target and param attributes are required. The target attribute
specifies an Ant target in the same build file that will be invoked for each iteration,
with the param-named property being set to the list item or file name.

In our example, the loop target will be executed repeatedly, with the var property
being set to 1 for the first iteration, then to 2 and to 3. After the list values complete,
the filenames in the fileset are provided as var values. The output is

for-each:

loop:
 [echo] var = 1

loop:
 [echo] var = 2

loop:
 [echo] var = 3

loop:
 [echo] var = C:\AntBook\Sections\Applying\tasks\ant-contrib.xml

loop:
 [echo] var = C:\AntBook\Sections\Applying\tasks\build\build.properties
.
.
.

The target is invoked for each iteration by using the underlying mechanism that the
<antcall> task uses, which means that the dependencies of the target are reevalu-
ated each iteration.
THE ANT-CONTRIB TASKS 257

10.7 SHARING TASK DEFINITIONS AMONG PROJECTS

In larger build environments in which many components, products, and build files
exist, centralizing common pieces used by builds is important. Using a central prop-
erties file is a good technique for defining the name/class pairs for all third-party or
custom tasks. Classpath issues make this more difficult because all dependencies of all
tasks defined need to be in a single classpath for <taskdef>.

Another technique is to use XML entity references, as demonstrated in chapter 9.
In our application build system, we created a taskdef.xml file containing:

<path id="xdoclet.classpath">
 <pathelement location="${xdoclet.jar}"/>
 <pathelement location="${log4j.jar}"/>
 <!-- javadoc is needed -->
 <pathelement path="${java.class.path}"/>
 <path refid="test.classpath"/>
</path>
<taskdef name="document"
 classname="xdoclet.doc.DocumentDocletTask"
 classpathref="xdoclet.classpath"/>
<taskdef name="xdoclet"
 classname="xdoclet.DocletTask"
 classpath="${xdoclet.jar}"/>

<path id="checkstyle.classpath">
 <pathelement location="${checkstyle.jar}"/>
</path>
<taskdef name="checkstyle"
 classname="com.puppycrawl.tools.checkstyle.CheckStyleTask"
 classpathref="checkstyle.classpath"/>

Each build file that will be using these tasks specifies the entity reference at the top of
its build.xml:

<!DOCTYPE project [
 <!ENTITY taskdef SYSTEM "file:../taskdef.xml">
]>

Our projects all live one directory below where the XML file resides, so a relative path
is used to point up a directory. Later in our build file, before any targets are defined,
the entity reference is used:

&taskdef;

Using entity references does have its drawback because the path from the build file to
the included file must be a fixed, although likely relative, path. If the build file is
moved, so must any relative-referenced entities.

10.8 BEST PRACTICES

We routinely use Ant’s optional tasks, as well as third-party and custom tasks.
We consider <junit> and <junitreport> mandatory tasks in a build process.
258 CHAPTER 10 BEYOND ANT’S CORE TASKS

All major projects we work on incorporate the <propertyfile> task to capture
build-time information.

Do not be put off by tasks that require you to download additional dependencies.
Typically, dropping JAR files into ANT_HOME/lib is all that it takes to get up and
running with the optional tasks that require an external library, such as <ftp>. How-
ever, we actually recommend keeping as much out of ANT_HOME/lib as possible.
Many tasks can be used by specifying their classpath in <taskdef>; unfortunately,
however, there are classloader issues that require some libraries to be in the system
classpath. Experiment with libraries outside of ANT_HOME/lib, because this allows
you to locate them in a more centralized directory structure minimizing installation
issues for users of your build files.

Ask your vendors for Ant support to make your build life easier. Vendors recognize
the value of working with Ant and many are already providing custom tasks, but make
it known to them if deployment or other integration is too difficult to automate with Ant.

Keep external task libraries and their dependencies under source code control.
Building your system should be as easy as pulling from the repository, perhaps making
a few documented configuration changes, and executing an Ant build.

When a need arises for a task that you feel does not exist within Ant’s core or
optional tasks, check with the Ant web site, which maintains a list of resources for
third-party tasks hosted elsewhere. If that fails to identify what you’re looking for,
inquire on the Ant-user list. Odds are that what you need can already be done in some
way. The Ant-user community is the resource we recommend after reading Ant’s doc-
umentation and consulting Ant’s resource links.

10.9 SUMMARY

Inevitably, you will need to add additional tasks to your build process. Ant provides
built-in (or core) tasks and also ships with optional tasks that typically require addi-
tional components in order to function properly. Vendors or authors of other open-
source software projects have developed third-party Ant tasks to provide benefits spe-
cific to their products. These tasks are easily integrated into an Ant build by using
<taskdef>. After reading this chapter, you should be comfortable with setting up
and using Ant’s optional tasks and integrating third-party tasks into a build file.

There are some very powerful Ant tasks in existence, many of which are not pro-
vided with Ant’s distribution. Torque and Checkstyle are just a couple of our favorites.
The next chapter is dedicated entirely to another very special set of Ant tasks: XDoclet.

Ant’s web site provides links to additional third-party tasks. If Ant doesn’t provide
what you need, check with the Ant web site or with the vendor of the product you
are automating around. If all else fails, check with the Ant user community email list
before reinventing the wheel by creating a custom task. Writing your own task can be
fairly easy, depending on its goal. We will show you how to write your own Ant task
in chapter 19.
SUMMARY 259

C H A P T E R 1 1

XDoclet

11.1 Installing XDoclet 261
11.2 To-do list generation 261
11.3 XDoclet architecture 262
11.4 Writing your own XDoclet template 265

11.5 Advanced XDoclet 273
11.6 The direction of XDoclet 275
11.7 XDoclet best practices 276
11.8 Summary 277
XDoclet is definitely in the running for one of the coolest and most powerful third-
party Ant tasks currently available. Technically, it is an extended Javadoc Doclet engine
that facilitates the use of custom at sign (@) Javadoc tags as metadata to dynamically
generate files at build time. The XDoclet developers like to refer to it as “attribute-
oriented programming.” It was initially named EJBDoclet and designed for generating
EJB artifacts such as deployment descriptors and stub code, but evolved into a more
generic tool. Its usefulness is quite generic already, but it has many vendor- and
product-specific built-in capabilities such as those listed in table 11.1.

Table 11.1 XDoclet vendor-specific capabilities

Vendor Capability

EJB Generates deployment descriptors and other artifacts from entity beans. Capabilities for
vendor-specific metadata exist for WebLogic, WebSphere, JBoss, Castor, Struts, and others.

Struts Action mappings and ActionForm bean definitions can be pulled from metadata to generate
struts-config.xml.

Web Provides web.xml generation pulling metadata for filters, listeners, and servlets.

Provides JSP Tag Library Descriptor (TLD) generation from Taglib classes.

Other Other vendors provide Apache SOAP, Castor, and JMX.
260

11.1 INSTALLING XDOCLET

XDoclet is freely available from http://xdoclet.sourceforge.net. Its installation is sim-
ply a matter of copying xdoclet.jar into ANT_HOME/lib. It also depends on Log4j
(a logging utility that is a member of the Jakarta family); placing either log4j.jar or
log4j-core.jar into ANT_HOME/lib is sufficient. We actually prefer to keep as many
dependencies out of ANT_HOME/lib as possible. In the case of XDoclet, it is possi-
ble; and in our examples in this chapter, you will see classpathref used on
<taskdef> to accomplish it. Please consult XDoclet’s documentation for updated
installation instructions, because the release following the version we used (1.1.2) will
change the dependencies and installation.

11.2 TO-DO LIST GENERATION

Before moving into the gory details of XDoclet’s structure as it relates to Ant build
files, we want to first show a simple use for it: the generation of hyperlinked HTML
to-do lists from source code comments.

It is common practice to add special comments in your code such as /*TODO:...
*/ or //FIXME. These notations enable code to be revisited later for cleanup or refac-
toring—you just search through the text for the comments. One of XDoclet’s capa-
bilities is generation of a Javadoc-like frame-based HTML report of all classes that
have a particular “@” tag. This can be used to mark up classes for later work, with a
tag named @fixme, @todo, or @revisit. The XDoclet tool comes with a task to
process a tag and generate documentation of all outstanding uses of the tag. The
@todo tag is special in that a future version of Javadoc will support this as a standard.
Until <javadoc> supports it directly, <xdoclet> can be used to generate the
report. An example of @todo usage in our sample application is in this class:

/**
 * A DocumentHandler implementation to delegate responsibility to
 * based on a files extension. Currently only .html and .txt
 * files are handled, other extensions ignored.
 *
 * @author Erik Hatcher
 * @created October 28, 2001
 * @todo Implement dynamic document type lookup
 */
public class FileExtensionDocumentHandler
 implements DocumentHandler {
 // implementation omitted
}

When running <javadoc> from JDK 1.4 over this source, it complains that you are
using a tag that they plan to support in future:

Custom tags that could override future standard tags: @todo. To avoid
potential overrides, use at least one period character (.) in custom tag names.
TO-DO LIST GENERATION 261

Ignore this message; as long as you use the @todo tag for its intended purpose, to
document code needing work, then the warning is irrelevant. Figure 11.1 shows a
generated to-do list report.

By using the <document> task, generating the to-do list is simple:

<taskdef name="document"
 classname="xdoclet.doc.DocumentDocletTask"
 classpathref="xdoclet.classpath"/>
<document sourcepath="${src.dir}"
 destdir="${build.dir}/todo"
 classpathref="xdoclet.classpath">
 <fileset dir="${src.dir}">
 <include name="**/*.java" />
 </fileset>
 <info header="To-do list"
 projectname="Custom Ant Task"
 tag="todo"/>
</document>

The tag being reported can be changed, and could easily be some other tag of your
choice, with “todo” being a generally useful usage of the <info> subtask. Interest-
ingly, if the projectname attribute is not specified, it defaults to the Ant
<project> name value, demonstrating that custom Ant tasks have access to con-
tainer context information.

A typical process with the @todo reports is to generate them nightly for everyone
to see. A technical team lead could run the to-do list reports manually to see what has
been done and what is left to do. Chapter 16 discusses these periodic and continuous
build processes.

11.3 XDOCLET ARCHITECTURE

Rather than delving into the implementation details of XDoclet, which date rapidly
in the open-source world, we cover how XDoclet works from a build file perspective.
XDoclet consists of several Ant tasks, each specific to a particular area, such as EJB or
web development needs. Each task allows a set of subtasks to be nested within to pro-
vide specific generation for the parent tasks context and share configuration.

Figure 11.1

To-do list generated

by XDoclet.
262 CHAPTER 11 XDOCLET

11.3.1 XDoclet’s Ant tasks

There are several Ant custom tasks built into the XDoclet distribution. Each of these
main tasks allow for specific subtasks nested as XML elements. Table 11.2 describes
each of XDoclet’s Ant tasks and subtasks.

Although the amount of information in table 11.2 is a bit overwhelming, it is quite
straightforward to incorporate the pieces you need. As an example, let’s revisit the to-
do list generation. From table 11.2, the <info> subtask is served by the Document-
DocletTask:

<taskdef name="document"
 classname="xdoclet.doc.DocumentDocletTask"
 classpathref="xdoclet.classpath"/>

Table 11.2 XDoclet’s tasks and their supported subtasks.

Name
Classname

(prefixed by xdoclet.)
Allowed subtasks Subtask Purpose

DocletTask DocletTask <template> Custom template
subtask.

<xmltemplate> Enhanced template
capabilities enabling
validation of XML
generation.

DocumentDocletTask doc.DocumentDocletTask <info> General tag HTML
reporting (see to-do
list generation in
section 11.2).

<documenttags> XDoclet uses XDoclet
to document itself!

EjbDocletTask ejb.EjbDocletTask Many (See chapter 14
for more details.)

Generation of many
EJB artifacts from
vendor-specific
deployment descrip-
tors to value objects.

JMXDocletTask jmx.JMXDocletTask <mbeaninterface>
<mlet>
<mx4jdescription>

WebDocletTask web.WebDocletTask <webxml>
<jbosswebxml>
<jrunwebxml>
<weblogicwebxml>

<jsptaglib> JSP Taglib descriptor
(TLD) generation.

<strutsconfig> Jakarta Struts configu-
ration file generation.

<webworkactiondoc>,
<webworkconfigproperties>
XDOCLET ARCHITECTURE 263

The <info> tag is nested under <document>. Another useful bit of XDoclet trivia
is that all of these tasks extend from DocletTask, which means that all attributes and
elements for DocletTask work within them all. For example, the <template> sub-
task can be nested within any of the other tasks, which can reduce some build file
complexity if you need custom template generation as well as, say, web.xml genera-
tion (in which case only WebDocletTask needs to be task-defined).

11.3.2 Templating

All artifacts generated from the built-in subtasks are defined in template files (embed-
ded in XDoclet’s JAR file). Currently these template files are a mixture of fixed text
and XDoclet template tags (future versions intend to support pluggable template
engines such as Velocity). This syntax mirrors that of JavaServer Pages (JSP) taglibs,
being XML-like tags. There are two classifications of the tags, block tags and content
tags. Again, similar to JSP taglibs, content tags generate output directly while the
block tags control the processing of their nested content. Block tags facilitate looping
and conditional template processing.

A content tag that outputs the fully qualified class name:

<XDtClass:fullClassName/>

A block tag to loop over all methods implemented in the current class (excluding
methods inherited from superclasses):

<XDtMethod:forAllMethods extent="concrete-type">
 ...
</XDtMethod:forAllMethods>

Tag namespaces

Each XDoclet template tag exists within a namespace to allow logical grouping of tag
responsibilities. There are quite a few namespaces provided with XDoclet’s distribu-
tion; here are a few:

• XDtClass—Tags for dealing with a Java class

• XDtMethod—Tags for dealing with methods within a class

• XDtMerge—Tag for pulling in external files to include or process and include
the results

• XDtConfig—Tags to allow configurable control over template processing

Unlike JSP taglibs, tags can be nested within another tag’s attributes, something that
takes a bit of getting used to for those of us entrenched in JSP taglib syntax (examples
of this are shown in listing 11.2). XDoclet comes with a plethora of tags covering
everything from looping over all methods of a class to merging in external files during
processing. There are many domain-specific tag features, particularly in the area of
Enterprise JavaBeans. Section 11.3 provides examples of custom template files and
their usage of a few of the template tags.
264 CHAPTER 11 XDOCLET

11.3.3 How XDoclet works

XDoclet internally contains a custom Javadoc doclet1 that collects the “model” of all
the classes it processes. This model contains all of the information that you typically
see in the HTML Javadoc pages such as

• Inheritance hierarchy

• Methods and their return types, parameters, exceptions

• Javadoc comments at the class, method, and field levels

• Javadoc tags including, of course, the extensible tags that contain domain-spe-
cific metadata for the associated class, method, or field

The model is then handed to each of the nested subtasks for processing. These sub-
tasks have the responsibility of controlling how those classes are processed. For exam-
ple, in the <info> subtask shown in section 11.1, a handful of HTML files are
created for the index, overview of classes, overview of packages, and then an HTML
file for each package and each class. The generalized <template> subtask (covered
in section 11.3) does far less work, by either handing the complete model to a single
template or by processing the specified template for each class individually.

11.4 WRITING YOUR OWN XDOCLET TEMPLATE

A major part of our sample application is the development of a custom Ant task to
build a Lucene index from an Ant fileset. As explained in section 10.4.1, custom tasks
require the use of <taskdef> in order to be recognized. The <taskdef> task, as
previously shown, enables tasks to be defined in a properties file. Our custom index-
ing task, as well as any other related custom Ant tasks that may be developed in the
future, should be easily incorporated into another build process. Our properties file,
named taskdef.properties, defines the task names and classes:

index=org.example.antbook.ant.lucene.IndexTask

Our build process embeds this properties file into the generated JAR. Defining the
tasks embedded in our component is accomplished simply:

<path id="task.classpath">
 <pathelement location="${antbook-ant.jar}"/>
 <pathelement location="${lucene.jar}"/>
 <pathelement location="${tidy.jar}"/>
</path>

<taskdef resource="taskdef.properties">
 <classpath refid="task.classpath"/>
</taskdef>

1 Currently, it keys off Ant’s own <javadoc> task, a fact that will be obsolete by the time this is pub-
lished. The related XJavadoc project is replacing this dependency on Sun’s javadoc tool and increases
XDoclet’s performance and capabilities dramatically.
WRITING YOUR OWN XDOCLET TEMPLATE 265

Only ${antbook-ant.jar}, a property with the full path to our tasks JAR file, is
needed for the <taskdef>, but Lucene and JTidy are used by the task itself when
invoked and so all dependencies used in the task should be included.

The properties file is generated dynamically from a template by using XDoclet.
Later, if we implement more Ant tasks in our project, it won’t be necessary to have
another, often overlooked, manual step to add the task to the properties file. The only
missing piece to generate the properties file is the task name. It is added to Index-
Task as a class-level Javadoc comment: @ant.task name="index":2

/**
 * Ant task to index files with Lucene
 *
 *@author Erik
 *@created October 27, 2001
 *@ant.task name="index"
 */
public class IndexTask extends Task {
 // ...
}

During our build, another target, taskdef, is added, as shown in listing 11.1.

<taskdef name="xdoclet"
 classname="xdoclet.DocletTask"
 classpathref="xdoclet.classpath"/>

 <target name="taskdef" depends="init" unless="taskdef.uptodate"
 <echo message="Building taskdef descriptors"/>
 <xdoclet sourcepath="${src.dir}"
 destdir="${build.classes.dir}"
 classpathref="xdoclet.classpath">
 <fileset dir="${src.dir}">
 <include name="**/*.java" />
 </fileset>
 <template templateFile="${taskdef.template}"
 destinationfile="${taskdef.properties}">
 <configParam name="date" value="${DSTAMP} @ ${TSTAMP}"/>
 </template>
 </xdoclet>
 </target>

2 Before the release of JDK 1.4, XDoclet used a colon as a separator on custom Javadoc tags. JDK 1.4’s
javadoc tool command-line tag option uses a colon as a separator character, and thus makes it impos-
sible to use the -tag switch with @tags containing a colon. XDoclet was modified to allow either a
colon or a dot.

Listing 11.6 Generation of a properties file based on extended Javadoc metadata

The unless
clause is covered

in section 11.7.1

The <template> subtask of XDoclet
powers the generation of our properties

file using the specified templateFile
266 CHAPTER 11 XDOCLET

The final piece to our properties file generation puzzle is the template. For our prop-
erties file, this template is used:

Created: <XDtConfig:configParameterValue paramName="date"/>
<XDtClass:forAllClasses>
 <XDtClass:ifHasClassTag tagName="ant.task" paramName="name">
<XDtClass:classTagValue tagName="ant.task"
 paramName="name"/>=<XDtClass:fullClassName/>
</XDtClass:ifHasClassTag>
</XDtClass:forAllClasses>

In plain English, this template is iterating over all classes (<XDtClass:
forAllClasses>), and processing the class if it has our custom ant.task
name="..." tag. For each class with our tag, it writes out the value of that tag, index
in our case, an equals sign, and then the full class name of the class being processed.
The <configParam> child element of <template> and the corresponding
<XDtConfig:configParameterValue> entry in the template file demonstrate
XDoclet’s ability to be customized from the Ant build itself by using the timestamp
properties created by previous <tstamp/> (in our init target).

This is a very simple example of XDoclet’s capabilities, yet it does provide our
project with a tangible benefit—a programmer only needs to be aware of the XDoclet
tags that need to be added to a class, method, or field. This metadata is only specified
once and is used to dynamically generate other artifacts that require it. The Pragmatic
Programmer (Hunt 2000) advocates this approach with these tips:

• DRY—Don’t Repeat Yourself: For example, in the EJB domain it is common to
duplicate metadata by manually creating several classes just for a single entity
bean. This is unnecessary duplication, which can be avoided with XDoclet.

• Program Close to the Problem Domain—Putting information directly with the
classes, fields, and methods by using domain-specific terms such as @ant.
task enables us to be clear about meaning.

• Write Code that Writes Code—Why write a properties file that mirrors the same
information that is already available in the code? Let the code itself define how
related artifacts are generated. In most common cases, if you’re using XDoclet,
you don’t even write code that writes code—you write a few extra Javadoc com-
ments that cause code to be written with the XDoclet engine.

XDoclet does come with a small price: the slight curve involved in learning the tem-
plate tags. The benefits are enormous, and the learning curve is time well spent.

11.4.1 Code generation

A project that one of the authors worked on had a situation in which there were value
objects that represented a selection filter for constraining search results. These value
objects were objects conforming to the JavaBean naming conventions and contained
simple datatypes such as String, Integer, Boolean, and Timestamp. Struts
WRITING YOUR OWN XDOCLET TEMPLATE 267

implemented the web presentation tier. Struts forms3 themselves adhere to the same
bean-naming conventions, but are more than just data placeholders because a reset
method is needed to initialize the values.4 In this project, literally hundreds of these
data classes existed, each requiring its own custom Struts ActionForm subclassSee
figure 11.2.

XDoclet came to the rescue in order to avoid the manual creation of all this code.
Having these classes autogenerated also reduced the maintenance headaches involved
when we renamed, added, or removed a field. A sample value object looks like:

package org.example.antbook.filters;

import java.sql.Timestamp;

public class PersonSearch {

 private boolean active;
 private String lastName;
 private Integer minimumAge;
 private Timestamp startDate;

 // ... getters/setters removed for brevity ...
}

Take note of the package name and data types used in PersonSearch. The corre-
sponding Struts ActionForm bean is generated as:

package org.example.antbook.view;

import javax.servlet.http.HttpServletRequest;
import org.apache.struts.action.ActionError;
import org.apache.struts.action.ActionErrors;
import org.apache.struts.action.ActionForm;

import org.apache.struts.action.ActionMapping;

public class PersonSearchForm extends ActionForm {

 private java.lang.String lastName;
 private java.lang.Integer minimumAge;
 private String startDate;
 private boolean active;

3 A typical Struts form is a JavaBean class that contains setters/getters for all the fields of an HTML form.

4 This is primarily because an unchecked check box in a web form does not get sent as part of the request.

XDoclet / Ant

Value
Objects

Struts
ActionForms

Figure 11.2

Using XDoclet for custom code generation
268 CHAPTER 11 XDOCLET

 void setLastName (java.lang.String lastName) {
 this.lastName = lastName;
 }

 java.lang.String getLastName () {
 return lastName;
 }

 void setMinimumAge (java.lang.Integer minimumAge) {
 this.minimumAge = minimumAge;
 }

 java.lang.Integer getMinimumAge () {
 return minimumAge;
 }

 void setStartDate (String startDate) {
 this.startDate = startDate;
 }

 String getStartDate () {
 return startDate;
 }

 void setActive (boolean active) {
 this.active = active;
 }

 boolean isActive () {
 return active;
 }

 public void reset(ActionMapping mapping, HttpServletRequest request) {
 setLastName("");
 setMinimumAge(null);
 setStartDate("");
 setActive(false);
 }
}

Again, take note of package name and datatypes comparing PersonSearch to
PersonSearchForm. The Timestamp datatype is represented simply as a String
on a Struts form (validation occurs elsewhere). Generating the Struts form bean using
XDoclet was accomplished with the template in listing 11.2 (XDoclet tags are in
boldface).

package <XDtPackage:packageOf><XDtClass:fullClassName/></XDtPackage:packageOf>;

import javax.servlet.http.HttpServletRequest;
import org.apache.struts.action.ActionError;
import org.apache.struts.action.ActionErrors;
import org.apache.struts.action.ActionForm;
import org.apache.struts.action.ActionMapping;

Listing 11.7 struts_form.template: a mildly sophisticated value object converter
WRITING YOUR OWN XDOCLET TEMPLATE 269

public class <XDtClass:className/>Form extends ActionForm {
<XDtMethod:forAllMethods extent="concrete-type">
 <XDtMethod:ifHasMethod name="<XDtMethod:setterMethod/>"
parameters="<XDtMethod:methodType/>">
 <XDtType:ifIsOfType value="return-type" type="java.sql.Timestamp"
extent="concrete-type">
 private String <XDtMethod:propertyName/>;
 </XDtType:ifIsOfType>
 <XDtType:ifIsNotOfType value="return-type" type="java.sql.Timestamp"
extent="concrete-type">
 private <XDtMethod:methodType/> <XDtMethod:propertyName/>;
 </XDtType:ifIsNotOfType>
 </XDtMethod:ifHasMethod>
</XDtMethod:forAllMethods>

<XDtMethod:forAllMethods extent="concrete-type">
 <XDtMethod:ifHasMethod name="<XDtMethod:setterMethod/>"
parameters="<XDtMethod:methodType/>">

 <XDtType:ifIsOfType value="return-type" type="java.sql.Timestamp"
extent="concrete-type">
 void <XDtMethod:setterMethod/> (String <XDtMethod:propertyName/>) {
 this.<XDtMethod:propertyName/> = <XDtMethod:propertyName/>;
 }

 String <XDtMethod:getterMethod/> () {
 return <XDtMethod:propertyName/>;
 }

 </XDtType:ifIsOfType>

 <XDtType:ifIsNotOfType value="return-type" type="java.sql.Timestamp"
extent="concrete-type">
 void <XDtMethod:setterMethod/> (<XDtMethod:methodType/>
<XDtMethod:propertyName/>) {
 this.<XDtMethod:propertyName/> = <XDtMethod:propertyName/>;
 }

 <XDtMethod:methodType/> <XDtMethod:getterMethod/> () {
 return <XDtMethod:propertyName/>;
 }

 </XDtType:ifIsNotOfType>
 </XDtMethod:ifHasMethod>
</XDtMethod:forAllMethods>

 public void reset(ActionMapping mapping, HttpServletRequest request) {
<XDtMethod:forAllMethods extent="concrete-type">
 <XDtMethod:ifHasMethod name="<XDtMethod:getterMethod/>"
parameters="<XDtMethod:methodType/>">
 <XDtType:ifIsOfType value="return-type" type="java.lang.String"
extent="concrete-type">
 <XDtMethod:setterMethod/>("");
 </XDtType:ifIsOfType>

Convert Timestamp
to String

If the current
method is a
setter...

 Create reset
method to

initialize all fields
270 CHAPTER 11 XDOCLET

 <XDtType:ifIsOfType value="return-type" type="java.lang.Number"
extent="hierarchy">
 <XDtMethod:setterMethod/>(null);
 </XDtType:ifIsOfType>
 <XDtType:ifIsOfType value="return-type" type="java.sql.Timestamp"
extent="concrete-type">
 <XDtMethod:setterMethod/>("");
 </XDtType:ifIsOfType>
 <XDtType:ifIsOfType value="return-type" type="java.lang.Boolean"
extent="concrete-type">
 <XDtMethod:setterMethod/>(Boolean.FALSE);
 </XDtType:ifIsOfType>
 <XDtType:ifIsOfType value="return-type" type="boolean"
extent="concrete-type">
 <XDtMethod:setterMethod/>(false);
 </XDtType:ifIsOfType>
 </XDtMethod:ifHasMethod>
</XDtMethod:forAllMethods>
 }
}

While the template shown in listing 11.2 may seem daunting at first glance, the
developer coding and maintenance time it saved far outweighed the learning curve of
the XDoclet tag capabilities. XDoclet template tags are well documented and many
samples exist to help get started. Our build file section to generate and compile is:

<target name="codegen" depends="init">
 <document sourcepath="${src.dir}"
 destdir="${gen.dir}"
 classpathref="xdoclet.classpath">
 <fileset dir="src">
 <include name="**/filters/*.java" unless="class.name"/>
 <include name="**/${class.name}.java" if="class.name"/>
 </fileset>
 <template templateFile="${template.file}"
 destinationfile="{0}Form.java">
 <packageSubstitution packages="filters" substituteWith="view"/>
 </template>
 </document>
</target>

<target name="compile" depends="codegen">
 <javac srcdir="${src.dir};${gen.dir}"
 destdir="${classes.dir}"
 debug="${javac.debug}"
 classpathref="compile.classpath"/>
</target>

The shortcut trick shown was also demonstrated in chapter 4 to enable individual test
cases to be run. In this case, an individual class can be processed with our build file by
running:

ant -Dclass.name=PersonSearch

Per-class
generation

Short-cut
trick
WRITING YOUR OWN XDOCLET TEMPLATE 271

NOTE Because our includes pattern is "**/${class.name}.java" it
will process all classes with the same name in our directory tree. The con-
venience of not having to specify the full package directory path outweighs
the rare event of processing more than one file. This technique allows us to
experiment with the template without having to wait for all of our source
code to be processed.

We do not want our Struts form to be in the same package as the value object. The
<packageSubstitution> subelement causes filters to be replaced with view in
our package name. The destinationfile attribute of <template> allows the
specification of per-class processing, substituting the source class package directory
structure for {0}. Appending "Form.java" allowed us to rename the class accord-
ing to our naming conventions.

Active and passive code generation

While there are certainly other solutions to the package problem, such as passing a
configuration parameter to the template or creating your own custom subtask (see
section 11.5.1), the <move> and <mapper> trick sufficed here. Depending on your
needs, you could use this type of technique for active or passive code generation.
Active code generation is an integral part of a build routine and the resultant code is
completely throwaway and can be regenerated as needed. Our example is an active
process, as our form bean code will only ever be code generated and not manually
edited. Passive generation is a one-time process to create starter code that is designed
for manual customization and should be incorporated into a source code repository
along with the rest of the codebase. Whenever possible, opt for active code generation
because this allows the metadata (in this case, the structure of the value object) to
change and to be accounted for automatically. Regenerating customized code, of
course, causes the loss of those customizations. However, subclassing actively gener-
ated code is a nice trick to achieve customization and dynamic generation.

Within Ant, active code generation is likely to be part of the main dependency
graph so that a clean build would execute the code generation prior to compilation.
Passive code generation should be implemented in a build file as a stand-alone target
(or set of targets perhaps) that could be run when desired but was outside of the main
build dependencies.

11.4.2 Per-class versus single-file generation

Our taskdef.properties XDoclet process only creates a single output file. Our Struts
code generator produces an output file for each class processed. We accomplish this
by specifying a {0} in the <template> destinationfile attribute. The {0} is
replaced by the full package directory path of each class being processed. For example,
specifying {0}.xml for destinationfile would generate a file destdir/org/
example/antbook/SomeClass.xml when processing org.example.antbook.
SomeClass, where destdir is the directory specified on the main XDoclet task
272 CHAPTER 11 XDOCLET

element. Just to clarify and to avoid possible confusion, the {0} substitution is an
XDoclet feature, and not related to Ant’s property substitution at all.

11.4.3 Filtering classes processed

There are several ways to filter the classes processed in order to accomplish fine
grained needs.

• Limit the <fileset> to only the desired Java classes using includes/excludes.

• In per-class mode (that is, using {0} in destinationfile), use the ofType,
extent, and havingClassTag attributes on the <template> subtask.

• In non-per-class mode, use the constraints on <XDtClass:forAllClasses>:
abstract, type, and extent. Also, the conditions such as <XDtClass:
ifHasTag>/<XDtClass:ifDoesntHaveTag> allow precise control.

The possible values of extent are concrete-type, superclass, and hierarchy. Using
extent="concrete-type" with a specified type restricts processing to only
classes of precisely that type, whereas specifying extent="hierarchy" allows pro-
cessing of all classes that extend, even indirectly, from the specified type.

You may wonder why we did not employ this kind of filtering when building our
taskdef.properties. Because of Ant’s flexible introspective handling of custom
tasks, tasks do not necessarily subclass from org.apache.tools.ant.Task. The
only required piece for a Java class to become an Ant task is a method with the signa-
ture void execute(). (See chapter 19 for information about writing custom Ant
tasks.) A greatly enhanced version of the XDoclet work to process Ant tasks is cur-
rently under way to autogenerate Ant’s own documentation and metadata from the
task source code.5 This enhanced version accomplishes much greater filtering capabil-
ities using custom built XDoclet subtasks and tag handlers.

Even though template-based generation is powerful all on its own, there are
instances where you need more specialized functionality. For example, the <info>
subtask generates many HTML files all based on the specified tag attribute. XDoclet’s
API is quite accessible and creating a subtask to accomplish sophisticated multifile
generation is a lot easier than having to hand code and deal with the maintenance
headaches that would inevitably follow from duplicated metadata being strewn
throughout a project’s files.

11.5 ADVANCED XDOCLET

For most purposes, the existing XDoclet capabilities are sufficient for your code or
metadata generation needs. However, like Ant itself, XDoclet is easily extensible in a
couple of ways. First, you can write a custom XDoclet subtask to control generation
processes such as creating output file names, locations, and multiple file output.

5 And, in fact, this work was used to build the task reference appendix in this book.
ADVANCED XDOCLET 273

Second, you can create your own XDoclet template tags that can encapsulate more
sophisticated logic than would be feasible or pleasant using the built-in template tags.
Custom subtasks can more finely control the filtering of classes processed. XDoclet’s
API is both beyond the scope of this book and subject to change beyond our control.
The next two sections give a generalized overview of these features.

11.5.1 Custom subtasks

A custom subtask is the controller of template processing. Using a custom subtask is
as simple as specifying the class name in a build file:

<document sourcepath="${src.root}"
 destdir="${gen.dir}"
 mergedir="${basedir}/src"
 classpathref="xdoclet.classpath">
 <fileset dir="${src.dir}">
 <include name="**/*.java" unless="class.name"/>
 <include name="**/${class.name}.java" if="class.name"/>
 </fileset>
 <template subTaskClassName="org.apache.tools.ant.xdoclet.AntSubTask"
 templateFile="${task.properties.template}"
 destinationfile="task_defaults.properties"/>
 <template subTaskClassName="org.apache.tools.ant.xdoclet.AntSubTask"
 templateFile="${xdoc.template}"
 destinationfile="{0}.xml"/>
</document>

This example was taken from the initial prototypes for generating Ant documenta-
tion directly from its own source code, as well as generating the task property map-
pings file (which Ant uses internally itself to define the built-in and optional tasks).
The AntSubTask contains the logic to filter processing to only actual Ant tasks, which
is not a trivial check! For example, abstract classes and classes without a void exe-
cute() method in their hierarchy are omitted. This type of filtering is not possible
using the default <template> subtask.

11.5.2 Creating a custom tag handler

Introspecting Ant’s source code to build its own documentation requires a fair bit of
sophisticated logic. This logic may have been possible using the standard XDoclet
tags, but it would have been extremely difficult to write and understand. Pushing the
handling of this logic into a custom XDoclet tag handler makes our properties file
template as simple as this:

<XDtTagDef:tagDef namespace="Ant"
 handler="org.apache.tools.ant.xdoclet.AntTagsHandler"/>
<XDtAnt:forAllTasks><XDtAnt:taskName/>=<XDtClass:fullClassName/>
</XDtAnt:forAllTasks>

The <XDtTagDef:tagDef> makes our custom tags available to the template. The
custom <XDtAnt:forAllTasks> block tag iterates over all classes that are them-
selves Ant tasks. The <XDtAnt:taskName/> content tag provides the Ant task name.
274 CHAPTER 11 XDOCLET

This is a similar, but enhanced, version of what was shown previously with our own
custom task properties file generation. An Ant task name, in Ant’s source code, does
not have to be specified with @ant.task name="..." because most of the class
names are also the same as the mapped task name, with only the exceptions explicitly
specified; this logic is encapsulated in the <XDtAnt:taskName/> tag, allowing it to
be hidden from the template.

11.6 THE DIRECTION OF XDOCLET

XDoclet is now a suite of interrelated projects. The projects consist of XJavadoc,
Middlegen, XDoclet GUI, and Reverse XDoclet. These are all in varying stages of
development, with XJavadoc currently the focus of the XDoclet development team.

XJavadoc is designed to be a replacement for Sun’s javadoc command-line tool to
increase performance, allow for tags to be inserted back into the source code through
its API, and allow tighter integration with the core XDoclet capabilities. One of the
major advantages XJavadoc will have over the current custom doclet, besides perfor-
mance increases, is that the actual source code of the classes being processed will be
available in the model. The possibilities of this are quite staggering! For example, it will
be possible to mutate a class, rather than generate a new class. XDoclet GUI uses this
technique.

Middlegen is a powerful tool that reads JDBC metadata information and code gen-
erates the starter pieces needed for EJB environments. The code generated contains
XDoclet tags enabling the generation of many other EJB artifacts. Some vendor-spe-
cific support is already provided, and more will certainly be added as this tool matures.
We explore the combination of Middlegen and XDoclet in chapter 14.

XDoclet GUI is a stand-alone extensible Javadoc @tag editor, which may lead to
IDE integration. It comes aware of current XDoclet tag capability, allowing for easy
editing of tags such as @ejb.bean. And, finally, the Reverse XDoclet project is still
on the drawing board, but its goals are to enable reading a deployment descriptor and
automatically inserting the appropriate tags into the source code. Such reverse engi-
neering of existing metadata will enable projects to rapidly switch EJB application
server vendors, for example.

11.6.1 XDoclet versus C#

C#, the language recently developed by Microsoft as part of its .NET offering, was
designed partly to address the shortcomings of Java. A major advance incorporated
into C#, and other .NET languages, is introspectable metadata. At compile time, the
metadata annotations on a class, method, or field are compiled into the generated
assembly, so that at run time a program can use reflection to examine this metadata.
In contrast, the metadata used by XDoclet is only accessible at compile time, when it
must be used to generate the configuration files that are read when the compiled code
is executed or deployed. The result is that you can use XDoclet to replicate much of the
metadata functionality of the .NET languages, but it requires more build-time effort.
THE DIRECTION OF XDOCLET 275

11.6.2 Looking into Java’s future: JSR 175 and 181

In response to the needs to embed metadata into source code, Sun, through its Java
Community Process, has created Java Specification Request (JSR) 175 to define lan-
guage enhancements to capture metadata at class, interface, method, and field levels
and to make it available to tools such as code generators and IDEs. Part of this JSR is
to define the delivery mechanisms so that metadata can be accessed at deploy and run
time. It is too early to tell how this JSR will affect the future of XDoclet and extensi-
ble @tags, but it is proof that XDoclet was ahead of its time and that it is a necessary
and powerful mechanism. In addition, JSR 181 defines a set of standard @tags for
web services that XDoclet promises to support.

11.7 XDOCLET BEST PRACTICES

Javadoc comments are certainly the right place for a lot of information, but it is not
appropriate for everything. For example, XDoclet has the capability to generate the
Struts struts-config.xml based on @struts.action and @struts.form tags. In
addition, a @struts.action-forward tag defines the local forwards. This could
be seen as a major time saver to developers, but also oversteps the boundaries of
Model-View-Controller in the Struts paradigm. In other words, a Struts Action
should not know or care about the actual path(s) used. The moral of this story is that
it is easy to get carried away with metadata. The point of a lot of common metadata,
especially in Enterprise JavaBeans, is to actually separate information from the source
code, such that the information bound at deployment time rather than build time.

Often metadata needs to be pulled together from multiple places, some residing in
@tags and some residing in external files. Chapter 12 demonstrates the use of merge
points in an XDoclet template to accomplish the building of the infamous web.xml.
This file contains servlet definitions that can be gathered from source code, but also
allows for merging in the definition of third-party servlets.

11.7.1 Dependency checking

While we are still waiting for XJavadoc to appear, we must make do with what we have.
With XDoclet’s current implicit reliance on Ant’s <javadoc> task (which wraps Sun’s
javadoc command-line utility), the processing speed leaves a bit to be desired. Churning
through Ant’s own codebase and generating XML files for each of its tasks and a couple
of properties files takes about 90 seconds. This is not the type of thing you would put
on your main development build dependency graph. Internally, XDoclet does its own
dependency checking, only regenerating files when needed, but it still goes through a
lengthy javadoc phase to gather the complete model before deciding whether or not to
regenerate files. There are a couple of solutions to this problem:

• Narrow the <fileset> processed by XDoclet to the smallest set of files necessary.

• Use <uptodate> to implement your own dependency checking and skip the
entire process if the generated artifacts are newer than the source code.
276 CHAPTER 11 XDOCLET

The dependency checking capabilities of XDoclet will no doubt improve dramatically
as it gains popularity and widespread use.

Using <uptodate>

In the build for our Ant task subproject, we can bypass the XDoclet step by checking
all source file timestamps against the generated taskdef.properties file. The "init"
target contains our timestamp check:

<uptodate property="taskdef.uptodate"
 targetfile="${build.classes.dir}/${taskdef.properties}">
 <srcfiles dir="${src.dir}" includes="**/*.java"/>
 <srcfiles dir="${template.dir}" includes="taskdef.template"/>
</uptodate>

Our "taskdef" target uses conditional target execution by specifying an unless clause:

<target name="taskdef" depends="init" unless="taskdef.uptodate">
 <!-- ... -->
</target>

The effect is that Ant only runs the XDoclet task when any file in the Java source is
newer than our properties file. In a large project, we may want to be more selective in
the patterns we pass to <uptodate>, so that Ant runs XDoclet only when relevant
packages in the project have changed. In the example, we could restrict XDoclet to
run only when files in the antbook.ant package were changed:

<srcfiles dir="${src.dir}" includes="**/antbook/ant/**.java"/>

11.8 SUMMARY

Why has XDoclet earned a complete chapter in a book on Ant? XDoclet is a powerful
build-time templating engine that provides access to Java code structure and metadata.
At the time of writing, XDoclet was intertwined with Ant and was not a stand-alone
utility. Even if it eventually becomes decoupled (and it should; tight code dependencies
are bad!) from Ant’s API, it will always be available as a set of Ant tasks. The primary use
of XDoclet is to generate from a single source of metadata the necessary artifacts that are
incorporated into a build distributable. Such uses include the generation of

• Property files

• Deployment descriptors

• Documentation

• Helper or adaptor Java code

• Other XML descriptor files

Being knowledgeable with XDoclet’s capabilities is guaranteed to be a positive influence
in your build process. Metadata should ideally only reside in a single source location
and should be used to generate artifacts if necessary. By eliminating metadata duplica-
tion and placing it close to the source, developers can focus on business logic develop-
ment rather than being bogged down with plumbing maintenance (Peltz 2000).
SUMMARY 277

C H A P T E R 1 2

Developing for the web

12.1 How are web applications

different? 279
12.2 Working with tag libraries 280
12.3 Compiling JSP pages 288
12.4 Customizing web applications 292

12.5 Generating static content 297
12.6 Testing web applications with

HttpUnit 299
12.7 Server-side testing with Cactus 310
12.8 Summary 315
Web applications are an essential part of most server-side Java development. Most
J2EE systems are likely to have a web application as part of the middle tier, and many
other applications bypass the EJB model to become a pure web application. We are
going to cover EJB development with Ant in chapter 14. Before then, we will look at
the processes associated with building web applications.

Many of the other chapters also cover aspects of web application development.
In section 6.7, we introduced the <war> task for WAR archive creation, while in sec-
tion 11.4.1 we showed how the XDoclet task could simplify web sites built with the
Struts framework. The Web is integral to so many server-side applications that almost
all Ant tasks find a role in building and deploying a single project.
278

12.1 HOW ARE WEB APPLICATIONS DIFFERENT?

How is a web application different from a stand-alone server application? One differ-
ence is that the programs you deploy are not stand-alone; a servlet container hosts
them. This container, be it a stand-alone servlet engine or a full J2EE server, needs to
know how to execute the web application. This requires a standard packaging mecha-
nism: the WAR file, which contains your code, dependent libraries, and metadata
critical for deployment. The metadata can be hand coded, or you can use Ant and its
tasks to create it for you.

Another key difference is that the code contained in web applications comes in dif-
ferent forms. As well as the basic servlet, there are JSP pages. Although you can embed
Java source straight into these pages within <% %> delimiters, displaying member vari-
ables and method results using <%= %> delimiters, doing so is dangerous. It leads you
down to a slippery slope of mixing the model and view, and generally increasing future
maintenance issues. If you have code in the JSP pages, it stays uncompiled until some-
one fetches the page: errors only show after deployment. Furthermore, people with no
Java skills need to edit the JSP pages; copywriters, graphic artists, and other web site
designers all create pages, and they should not be exposed to Java source. Together
these problems mean that the risk of scriptlet error is high, but it is not easy to find
the problems early on in the build/test/deploy process.

Tag libraries (taglibs) are a solution: Java classes that implement new markup tags,
letting you add functionality to web pages without any Java code going into the JSP
pages. In use, tags in tag libraries are very similar to Ant tasks, with the additional pre-
fixes to distinguish tags from different libraries:

<happy:happy verbose="true" fail="true"/>

In implementation, taglibs are portable across different containers, but they have their
own deployment descriptors, which are extra development effort. If you do not make
any special effort, then most of the validation of JSP pages and the XML metadata

Error or bug
in JSP page

Error in web.xml,
TLD or struts config

Bug in servlet

Java
source

Error in
java source

<javac>

TLD
descriptors

web.xml struts
config

<war>

deploy

fetch
JSP pages

test
servlets

JSP
source

Figure 12.1

A web application

development process
HOW ARE WEB APPLICATIONS DIFFERENT? 279

you have to write only takes place server side. For example, you have to deploy to a
server and then remember to retrieve changed JSP pages to see if the changes generate
Java source that compiles. This process may work as you begin a project, but as the
number of pages increases, it soon becomes unworkable. Figure 12.1 shows the typi-
cal development process of a web application.

In this manual process, there are too many files that developers create by hand—
files only validated during and after deployment. We need to automate the tests, run
them earlier in the process, and stop writing so many deployment descriptors. Our
new development process will look like figure 12.2:

12.2 WORKING WITH TAG LIBRARIES

Tag libraries are the safest way to add code to JSP pages. That does not mean they are
the easiest. Historically the creation of the XML taglib descriptor was one of those
manual chores that added extra work to the build process. Like most manual stages, it
is prone to error, and as it is not particularly complicated, it is an ideal target for auto-
mating. The tool for automating such a process is XDoclet. As we demonstrated in
chapter 11, XDoclet is capable of examining source files and building XML, text, or
source files based on tags used to mark up classes and source.

12.2.1 Creating a tag library

First, we need a tag to mark up; we will write a simple one to test system happiness
and return an error code if we think there is anything wrong. We could use this in our
build file, fetching the page and failing the build if it returns an error. That means we

JSP source

<webdoclet>

functional tests

java source

<javac>
Error in java source

<war>

web.xml

struts config

TLD
descriptors

Error in JSP page

Test failure

JSP compiledeploy

Figure 12.2

Our reworked build process
280 CHAPTER 12 DEVELOPING FOR THE WEB

have to catch the error, which implies that either the page generates an HTTP
response of 500 or greater, or we parse the text received and look for an error string,
maybe return XML text and have it parsed properly. We choose the simple route:
generate an error response. In fact, we choose an even simpler route: throw an excep-
tion and let the container generate an error response. This may not be too portable,
but we will address that when we encounter problems.

package org.example.antbook.web.taglibs;

import javax.servlet.ServletContext;
import javax.servlet.jsp.JspException;
import javax.servlet.jsp.tagext.TagSupport;
import java.io.IOException;

/**
 * @jsp.tag name="happy" body-content="empty" b
 */

public class HappyTag extends TagSupport {

 private boolean verbose=false;
 private boolean fail=false;

 /**
 * @jsp.attribute required="false"
 */
 public void setVerbose(boolean verbose) {
 this.verbose=verbose;
 }

 /**
 * @jsp.attribute required="false"
 */
 public void setFail(boolean fail) {
 this.fail=fail;
 }

 public int doStartTag() throws JspException {
 testServletVersion();
 testFailureBehavior();
 return SKIP_BODY;
 }

 public void testServletVersion() throws JspException { c
 ServletContext context = pageContext.getServletContext();
 int major = context.getMajorVersion();
 int minor = context.getMinorVersion();
 if (major < 2 || (major == 2 && minor < 3)) {
 String text= "Servlet version (" + major + "." + minor
 + ") too old; 2.3+ required";

Listing 12.1 A simple tag to test server state against our requirements
WORKING WITH TAG LIBRARIES 281

 throw new JspException(text);
 }
 log("version =" + major + "." + minor);
 }

 public void testFailureBehavior() throws JspException { d
 if(fail) {
 throw new JspException("Failure requested");
 }
 }

 public void log(String message) throws JspException {
 if (verbose) {
 try {
 pageContext.getOut().println(message);
 }
 catch (IOException e) {
 throw new JspException(e);
 }
 }
 }
}

Listing 12.1 shows our simple tag to make the test. The routine only contains one
realistic test, that of verifying that the servlet API supported by the container is ver-
sion 2.3 or later c. It also has a second test d that we can manually trigger; this lets
us test the error handling. This test depends upon the state of the fail member vari-
able, which can be set via an attribute in the tag. We have also written a log method,
which logs test information if the verbose Boolean is set, and which is an attribute
controllable in the tag.

In traditional tag library development, we would need to write the XML taglib
descriptor, listing the class name, its tag name, and tag information, such as the fact
that this tag supported two optional attributes, fail and verbose. Here we are not
doing traditional taglib development; we are using Ant and XDoclet. Our class-level
Javadoc comment has a new tag, @jsp.tag, that names the tag b. There is a dif-
ferent Javadoc tag for each of the attributes’ setter methods, declaring that the method
maps to an attribute of the tag, and that in each case these attributes are optional.

This is all the information we need in order to generate the tag library, which the
<webdoclet> task does for us. Like all the XDoclet tasks, this needs the external
XDoclet library, a manual task declaration, and the classpath configured correctly.
Our communal taskdefs.xml build file fragment addresses this initialization, so we just
add the creation of the tag library descriptor to the process of generating all our web
application descriptors, as shown in listing 12.2.
282 CHAPTER 12 DEVELOPING FOR THE WEB

<target name="make-webxml" depends="compile">
 <webdoclet sourcepath="${src.dir}"
 destdir="${build.webinf.dir}"
 mergedir="templates">
 <classpath>
 <path refid="xdoclet.classpath"/>
 <pathelement location="${antbook-common.jar}"/>
 </classpath>
 <fileset dir="${src.dir}">
 <include name="**/*.java" />
 </fileset>
 <deploymentdescriptor servletspec="2.3" validatexml="true">
 <welcomefile file="index.jsp"/>
 </deploymentdescriptor>
 <jsptaglib validatexml="true" destinationfile="antbook.tld"/> c
 </webdoclet>
</target>

This target contains one task declaration, <webdoclet>, which performs two ser-
vices for our web application. First, it creates the web.xml file from files in the tem-
plates directory that the mergedir attribute is set to, adding any extra declarations
we include inside the <deploymentdescriptor> element b. The latter tells
<webdoclet> to create a web.xml deployment descriptor for version 2.3 of the serv-
let specification, and to validate the XML against the appropriate DTD. We add a
declaration as a nested element, stating that files called index.jsp are to be served up
when browsing to directories. The task scans the javadoc comments looking for @web
tags, of which we have only one, declaring a servlet that the application server should
run on startup:

/**
 *@web:servlet name="init" load-on-startup="1"
 */
public class InitServlet extends HttpServlet {

 // initialization code here
}

The @web:servlet tag tells <webdoclet> to add a new servlet entry to the
web.xml file, with the load-on-startup option set. Other tags that you can insert into
the source let you declare filter classes (@web:filter), and many of the servlet con-
figuration options. We are not listing these; consult the XDoclet documentation for
their details. The reason we are not listing them is that we do not believe that the Java
source is the appropriate place for the configuration options of a web application.
Javadoc tags are appropriate for declaring what components you implement in the
source, but not how they should be used.

Listing 12.2 Our target to make the web deployment and tag library descriptors

b

WORKING WITH TAG LIBRARIES 283

Returning to listing 12.2, the second function of the task is to generate tag library
descriptors. With the single line c, the task generates the taglib antbook.tld at the
same time it generates the servlet information. Minimizing the number of sweeps over
the source is important for speed. By stating that the target depends upon the com-
pile target, we ensure that the source does at least compile before we invest the time
in running XDoclet. Adding an <uptodate> check will enable Ant to skip the entire
target if the generated files (web.xml and antbook.tld) are newer than the source.

When Ant executes the make-web target, the <webdoclet> task creates the file
antbook.tld in the build/web/WEB-INF directory:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE taglib
 PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.2//EN"
 "http://java.sun.com/dtd/web-jsptaglibrary_1_2.dtd">
<taglib>
 <tlib-version>1.0</tlib-version>
 <jsp-version>1.2</jsp-version>
 <short-name></short-name>
 <tag>
 <name>happy</name>
 <tag-class>org.example.antbook.web.taglibs.HappyTag</tag-class>
 <body-content>empty</body-content>
 <attribute>
 <name>fail</name>
 <required>false</required>
 </attribute>
 <attribute>
 <name>verbose</name>
 <required>false</required>
 </attribute>
 </tag>
</taglib>

Looking at this descriptor, the tag we have written is declared b, along with its fail
c and verbose d attributes—exactly what we wanted. We still need to get a refer-
ence to this descriptor into the application’s web.xml file, which we can do with
<webdoclet>. We mentioned in passing that in listing 12.2 we set the merge-
dir="templates" attribute, which tells the <webdoclet> task to merge XML
fragments, in separate files in this directory, into our web.xml file. These files are
called merge points.

There are many different merge points, clearly documented in XDoclet’s distribu-
tion. These include setting security roles, mappings for the request filters added in the
Servlet 2.3 API, EJB binding information, and even MIME-type bindings. All of these
files are optional; the task does not require any of them to generate the web.xml file,
but they are the way to customize web applications with <webdoclet>. We create
the merge file templates/taglibs.xml and fill it with the declaration of our taglib, bind-
ing the URI to its physical location in the file:

b

c

d

284 CHAPTER 12 DEVELOPING FOR THE WEB

 <taglib>
 <taglib-uri>/WEB-INF/antbook.tld</taglib-uri>
 <taglib-location>/WEB-INF/antbook.tld</taglib-location>
</taglib>

We then modify our <war> task to pull in WEB-INF/antbook.tld, and we are ready
to test the tag library. First, we create a JSP page, happy.jsp, which contains our test:

<%@ page contentType="text/plain" %>
<%@ taglib uri="/WEB-INF/antbook.tld" prefix="happy" %>
<happy:happy/>
We are happy

We have to build the web application and then deploy the file, which we do using the
Tomcat deployment targets of chapter 7. Browsing to the page http://localhost:8080/
antbook/happy.jsp we get the string “We are happy” a few lines down the page. This
shows that we can generate a tag that a JSP page will process and that the servlet ver-
sion test is succeeding: the container is of an acceptable version. A final test is to ver-
ify that the tag works correctly when unhappy, so we write the JSP page unhappy.jsp
to force a failure:

<%@ page contentType="text/plain" %>
<%@ taglib uri="/WEB-INF/antbook.tld" prefix="happy" %>
<happy:happy verbose="true" fail="true"/>
We are unhappy

When we fetch this page, we get a servlet 500 error reported, with an error trace
including the error string:

javax.servlet.jsp.JspException: Failure requested
 at org.example.antbook.web.taglibs.HappyTag.testFailureBehavior(HappyTag.java:78)
 at org.example.antbook.web.taglibs.HappyTag.doStartTag(HappyTag.java:49)
 at org.apache.jsp.unhappy$jsp._jspService(unhappy$jsp.java:69)
 at org.apache.jasper.runtime.HttpJspBase.service(HttpJspBase.java:107)
 at javax.servlet.http.HttpServlet.service(HttpServlet.java:853)

Just to make fully sure that the response code is being sent to the receiver, we telnet in
and retrieve the URL by hand:

GET /antbook/unhappy.jsp HTTP/1.0

The response is as we hoped. It is an HTTP error that the <get> task can pick up, as
the Java networking classes underlying its implementation will throw an exception
when they see a response in the 5XX region:

HTTP/1.1 500 Internal Server Error

The Ant task will be unable to retrieve the body of the response on a Java1.3 system,
but a manual visit to the web page will reveal the cause of failure. Overall, our tag
works as planned: it is silent when the server state meets its requirements. When the tag
detects an unacceptable condition, it raises an error whose text is intelligible to engi-
neers and an error code that is intelligible to Ant. These behaviors may be different
WORKING WITH TAG LIBRARIES 285

on different platforms: some application servers refuse to give a stack trace on failure,
for security reasons. Nor is a stack trace directly useful on a production system man-
aged by an operations group; they see “Java error” and call the software team up. As
we move the web application closer to production, we may want to consider writing
an error-handling JSP page that emails the stack-trace to operations via email, rather
than expose a system failure to normal users.

12.2.2 Integrating tag libraries

For many problems, there is no need to write a taglib: reusing an existing library is
much easier. As well as Struts, the Apache Jakarta project hosts a complete set of tag
libraries in its taglibs project (http://jakarta.apache.org/taglibs/).
Jakarta Taglibs is also hosting the reference implementation of the JSP Standard Tag
Library (JSTL), which is the official tag library under development with the Java
Community Process. Whenever any of these libraries is used, it needs to be included
in the WAR file, and in the file templates/taglibs.xml; <webdoclet> will then
include its declarations into the web application. To add Struts support, for example,
we paste the Struts declarations into this file, below the declaration of our own tag
library:

<taglib>
 <taglib-uri>/WEB-INF/antbook.tld</taglib-uri>
 <taglib-location>/WEB-INF/antbook.tld</taglib-location>
</taglib>

<taglib>
 <taglib-uri>/WEB-INF/struts-bean.tld</taglib-uri>
 <taglib-location>/WEB-INF/struts-bean.tld</taglib-location>
</taglib>

<taglib>
 <taglib-uri>/WEB-INF/struts-html.tld</taglib-uri>
 <taglib-location>/WEB-INF/struts-html.tld</taglib-location>
</taglib>

<taglib>
 <taglib-uri>/WEB-INF/struts-logic.tld</taglib-uri>
 <taglib-location>/WEB-INF/struts-logic.tld</taglib-location>
</taglib>

<taglib>
 <taglib-uri>/WEB-INF/struts_template.tld</taglib-uri>
 <taglib-location>/WEB-INF/struts-template.tld</taglib-location>
</taglib>

With these tag libraries pulled in to WEB-INF/lib as a set of JAR files, our target to
build the WAR file is getting more complex, as listing 12.3 demonstrates.
286 CHAPTER 12 DEVELOPING FOR THE WEB

<target name="make-war"
 depends="compile,make-webxml,index">
 <war destfile="${warfile}"
 compress="false"
 webxml="${build.webinf.dir}/web.xml">
 <classes dir="${build.classes.dir}"/>
 <webinf dir="${build.dir}" includes="index/**"/>
 <webinf dir="${struts.dir}/lib" includes="*.tld,*.dtd"/>
 <webinf dir="${build.webinf.dir}" includes="*.tld"/>
 <fileset dir="web"/>
 <lib dir="${antbook-common.dist.dir}" includes="antbook-common.jar"/>
 <lib dir="${struts.dist.dir}" includes="*.jar"/>
 <lib dir="${lucene.dist.dir}" includes="${lucene.jarname}"/>
 <lib dir="${log4j.dist.dir}" includes="log4j.jar"/>
 </war>
</target>

This target to create the WAR file now includes at least four dependent libraries: our
common classes, everything in the Struts distribution, the Lucene search engine, and
the Log4j logging package. The equivalent target to create the unexpanded WAR file,
for direct deployment to Tomcat, is getting even more complex—enough so to make
us reconsider using that tactic at all, even though it worked in chapter 6 as a preamble
to deployment. From now on, we may want to use the <war> task to create the WAR
file, then <unzip> to expand it before deploying. Although slower, it is easier:

<property name="war.expanded.dir"
 location="${build.dir}/war" />

<target name="unwar" depends="make-war">
 <unzip src="${warfile}" dest="${war.expanded.dir}"/>
</target>

This target expands the WAR file into a directory in the build tree. The <unzip>
task uses dependency checking, so after the first run it is quite fast.

12.2.3 Summary of taglib development with Ant

As we have explained, taglibs are the best way to provide functionality to a JSP page.
They are far better than scriptlets. It is a tricky process to get right, but Ant and
XDoclet can take most of the manual labor out of the process. The <webdoclet>
task supports more @jsp tags than we have covered. We are going to point you at the
XDoclet documentation to cover these, as it would take another book to do complete
justice to taglibs and XDoclet. We have shown you how to build the source and
extract the metadata, then insert the generated tag library descriptor into your WAR
file and its deployment descriptor, which are the roles of Ant in the process.

Listing 12.3 The target to create the WAR file
WORKING WITH TAG LIBRARIES 287

12.3 COMPILING JSP PAGES

Even if JSP pages only contain taglibs and HTML source, you still need to verify that
the taglibs are used correctly. If the pages contain some Java code, then you definitely
need to make sure it is all correct.

Normally the web application server compiles the pages; the validity of the page,
the taglib references, or any Java code are unknown until you have deployed. This
makes it easy to do some things: add new files to a live system, fix a deployed file, and
even decouple page development from the code side of a project. This can be conve-
nient, but is at odds with any rigorous web site development process, in which you
write pages under SCM control, test them on staging, and then deploy them to the
production site. In this process, run-time compilation introduces delays, as the JSP
files need to be translated into Java before being compiled down to bytecodes on every
server. What is worse, source code errors in the files do not show up until the pages
are deployed on a web server. This puts it at odds with the build-test-deploy sequence
we have been using up until now.

Dynamic JSP compilation also forces the Java Development Kit to be installed on
the server system, which can increase the security risk. If anyone were to gain write
access to directories in a server, then new JSP pages could be written and executed
under the identity of the web server. A locked-down Java web server makes this path
of attack harder by not supporting dynamic JSP compilation.

We can address this problem by compiling the JSP pages during the build. This
finds syntax errors early, and enables deployment to locked-down Java servers. There
has been an optional task to do this for Weblogic 4.5.1 for some time, but Ant 1.5
added a new factory-based task for compiling JSP pages, <jspc>. This task can sup-
port multiple back-end JSP compilers, and is very similar to the <javac> task in syn-
tax. The task translates from .jsp files to .java files: the actual compilation to bytecodes
needs a separate <javac> task. Both tasks are needed to fully test the pages.

One complication in the process of compiling JSP pages is that application servers
have the right to implement their own JSP-to-Java translation, so some vendors man-
date their translation engine over a common standard. A different translation engine
not only creates different code, it can even generate different class names for JSP pages
that do not have a legal valid class name (any keyword or something like 123-45.jsp).
You should never attempt to run any generated JSP servlet on a different platform
from that of the <jspc> compiler: it will not work. However, even if the generated
code does not work in the targeted application server, compiling down the JSP pages
will find errors in the code faster than any other mechanism.

The current Ant distribution only includes support for the Jasper JSP compiler of
Tomcat 4.x, which is the reference implementation of the JSP 1.2 specification, and
only generates Java code for the Servlet 2.3 standard. The Java code it generates will
not work on previous implementations, as the source will not even compile against the
288 CHAPTER 12 DEVELOPING FOR THE WEB

older libraries. We recommend Tomcat 4.1 version, as it fixes bugs found in the
Tomcat 4.0 release.

Extra support for different application servers is inevitable. Check with the online
documentation to see what the current support is. The latest unreleased version of
Ant, the one at the head of the CVS repository, may have even broader support.

12.3.1 Installing the <jspc> task

The <jspc> task is in the optional library, and it needs support libraries for the par-
ticular JSP compiler you intend to use. For Jasper, three support libraries listed are
required; these are listed in table 12.1.

These libraries do not need to live in the Ant library directory, as the task takes a
classpath that can point to these files. However, the task also needs an XML parser, so
you must either add crimson.jar into the same directory as the rest of the Jasper files,
or include a reference to the Ant run-time classpath with the element <pathele-
ment path="${java.class.path}"/> inside the <jspc> task’s classpath dec-
laration.

12.3.2 Using the <jspc> task

Listing 12.4 shows our target to compile the JSP pages in our project. Notice how we
are running the <jspc> task against the source in our web application, not the JSP
source pages in our web source directory. We will explain why in a moment.

<property name="build.jspc.java.dir"
 location="${build.dir}/jspc/java"/>

<property name="build.jspc.classes.dir"
 location="${build.dir}/jspc/classes"/>

<path id="jasper.classpath">
 <fileset dir="${jasper.dir}">
 <include name="**/*.jar"/>
 </fileset>
</path>

<target name="compile-jsp" depends="unwar">
 <mkdir dir="${build.jspc.classes.dir}" />
 <mkdir dir="${build.jspc.java.dir}" />

Table 12.1 Libraries needed for compiling JSP pages with Jasper

Library Location

servlet.jar Servlet 2.3 API

jasper-compiler.jar Tomcat 4.0 distributions

jasper-runtime.jar Tomcat 4.0 distributions

Listing 12.4 How to compile all JSP pages in a web application
COMPILING JSP PAGES 289

 <jspc
 srcdir="${war.expanded.dir}"
 destdir="${build.jspc.java.dir}"
 >
 <include name="**/*.jsp"/>
 <classpath refid="jasper.classpath"/>
 </jspc>
 <javac
 debug="${build.debug}"
 includeAntRuntime="false"
 srcdir="${build.jspc.java.dir}"
 destdir="${build.jspc.classes.dir}"
 >
 <classpath>
 <path
 location="${war.expanded.dir}/WEB-INF/classes"/>
 <fileset dir="${war.expanded.dir}/WEB-INF/lib">
 <include name="**/*.jar"/>
 </fileset>
 <path refid="jasper.classpath"/>
 </classpath>
 </javac>
</target>

This compile-jsp target compiles the JSP pages into a temporary directory using
<jspc>, then runs <javac> over the created files. When run, it will state how
many files it compiled down:

compile-jsp:
 [mkdir] Created dir: C:\AntBook\app\webapp\build\jspc\classes
 [mkdir] Created dir: C:\AntBook\app\webapp\build\jspc\java
 [jspc] Compiling 9 source files to C:\Ant-
Book\app\webapp\build\jspc\java
 [javac] Compiling 9 source files to C:\Ant-
Book\app\webapp\build\jspc\classes
BUILD SUCCESSFUL
Total time: 29 seconds

Having shown the task working, we should explain some of the details. As with
<javac>, the task takes a srcdir and a destdir attribute, both of which are
mandatory. We chose a new directory under build.dir to store the generated Java
files. The source directory is more interesting: we have to run the task against our
unzipped WAR file, rather than the original source. This is because the <jspc> task
needs to find a directory WEB-INF somewhere above the source files. It needs this
directory to determine the root of the web application, used for references in the JSP
pages, such as:

<%@ taglib uri="/WEB-INF/antbook.tld" prefix="happy" %>
<%@ include file="/html/sometext.html %>

Creates the Java files

Compiles the Java files
290 CHAPTER 12 DEVELOPING FOR THE WEB

It also uses the directory tree between this root and the JSP pages to determine where
to place the output files; files that the task creates in a matching directory tree under
the destination directory. Although we do have a WEB-INF directory under the
directory containing our JSP source files, it is incomplete: it does not contain the files
we have created using XDoclet. We don’t want to risk the source by copying gener-
ated files into the source tree, so we have to copy the source files into some appropri-
ately structured folders in the build directory tree. As the make-war and unwar
targets do exactly that, we just mark our new target’s dependencies appropriately and
point <jspc> at the expanded WAR file. If you are not dynamically generating
web.xml and TLD metadata, you do not need to do all this.

One advantage of running <jspc> against the expanded WAR file is that we can
follow this by running <javac> against the generated Java files, using the libraries
shipping in the WAR file. This verifies not only that the JSP pages are valid, but also
that only those libraries that we are distributing will be available for the JSP pages to
use. There is one complication: the generated pages also need to link against the Jasper
run time, and perhaps even the J2EE JAR file. These substitute for the libraries pro-
vided by the application server. For example, in listing 12.4, we have to include the
Jasper run time.

Having written this target, what do we do with it? Currently we think the best use
of the JSP compilation target is to validate the code prior to deploying to a web server.
We enforce this by modifying our dist target to depend on the JSP pages compiling
successfully:

<target name="dist" depends="make-war,compile-jsp"
 description="creat a distribution" />

With this addition, we know that it is almost impossible to deploy our project’s WAR
file if the JSP pages are incorrect. We say almost, because there are some flaws with
the <jspc> task that could cause problems. First, the dependency checking is not
smart enough to track changes files included into the JSP pages, or referenced taglib
descriptors. If a TLD is changed, the JSP pages may need a rebuild, but <jspc> will
not notice. Regular clean builds are the only solution. There are other issues too,
some of which need addressing inside Jasper, and then the fixes pulled back into Ant.
Using an up-to-date copy of Jasper is important, as is checking the online Ant docu-
mentation; maybe even the bug database (http://nagoya.apache.org/bugzilla/) for any
Ant bugs with the word JSPC in the title.

12.3.3 JSP compilation for deployment

Moving beyond compilation for testing, we come to compilation for deployment,
and for deployment to more secure servers. For this to be viable using the Jasper com-
piler with <jspc>, the target system must be running a compatible version of the
servlet engine, which currently means Tomcat 4.x. We are not convinced that the
combination of <jspc> and the Jasper libraries are mature or stable enough for pre-
compilation yet.
COMPILING JSP PAGES 291

For this reason, we are not including an example of this, leaving it as an exercise
for the reader instead. The generated class files need to be included into the class tree
of the web application, and the servlet declarations created. You can accomplish the
latter by setting the webinf attribute of the <jspc> task to the name of the file you
want. This file needs to go in web.xml, somehow, perhaps by using XDoclet.

Trying to automate this with the approach we use—creating the WAR file, unzip-
ping it, then building the JSP pages—leads to a recursive model. After creating this
transient WAR file, you need to create a new one containing the final web.xml and
the new classes. You could perhaps do this by building straight into the expanded
WAR file, overwriting its web.xml, then <jar> this up for deployment.

12.3.4 Other JSP compilation tasks

WebLogic has its own JSP compiler, <wljspc>, which predates the <jspc> by
many months. The documentation states that it has not been widely tested, and so it
should be used with caution.

Now that Ant 1.5 provides in <jspc> an extensible task for JSP compilation, we
would hope that the vendors of web application servers provide plug-in compilers for
this task, and if not these vendors, then people in the Ant community. The external
tasks page on the Ant web site (http://jakarta.apache.org/ant/external.html) will be a
good starting point.

12.4 CUSTOMIZING WEB APPLICATIONS

When you are deploying a web application to more than one physical server, you
need to change configuration data. Even worse, if you deploy on more than one type
of application server, you may need to change details like which libraries you include
in the archive file.

The most common action is probably that of dynamically altering a deployment
descriptor based upon current settings and the destination system. Indeed, a common
irritation with the WAR file format in a complex project is that you need to configure
the web.xml file for different target systems, which means you need to build a different
WAR file for each destination.

Ant can address that need, but it requires some help to do so.

12.4.1 Filterset-based customization

One tactic to customize the deployment descriptor file is to use <copy> with a filter.
Take the problem of conditionally enabling a servlet on different systems, such as the
Cactus test servlet, the details of which we will discuss in section 12.7. Cactus uses
two servlets to allow in-container unit testing of classes and EJB objects. The servlet
definitions need to be in the development web.xml files, but to enable them in pro-
duction is to create a potential security hole. By using XML comments, our build can
turn on the testing servlets by uncommenting pieces of web.xml.
292 CHAPTER 12 DEVELOPING FOR THE WEB

Listing 12.5 shows a section of our original web.xml.

<!-- Cactus configuration
Note: Do not place any XML comments in this Cactus configuration section (Ant's
filtered copy is used to activate this configuration when the test web
application is built)
-->
<!-- Begin Cactus Configuration @start.cactus.config@
 <servlet>
 <servlet-name>ServletRedirector</servlet-name>
 <servlet-class>
 org.apache.cactus.server.ServletTestRedirector
 </servlet-class>
 </servlet>

 <servlet>
 <servlet-name>JspRedirector</servlet-name>
 <jsp-file>/cactus/jspRedirector.jsp</jsp-file>
 </servlet>

 @end.cactus.config@ End Cactus Configuration -->

The <copy> task to enable the Cactus configuration replaces “@start.cactus.
config@” and “@end.cactus.config@” with ending and beginning XML com-
ment notation, respectively:

<copy todir="build/WEB-INF"

 file="web/WEB-INF/web.xml"
 overwrite="yes">
 <filterset>
 <filter token="start.cactus.config" value="-->" />
 <filter token="end.cactus.config" value="<!--" />
 </filterset>
</copy>

When this filtered copy is applied, it uncomments the servlet declarations:

<!-- Begin Cactus Configuration -->
 <servlet>
 <servlet-name>ServletRedirector</servlet-name>
 <servlet-class>
 org.apache.cactus.server.ServletTestRedirector
 </servlet-class>
 </servlet>

 <servlet>

 <servlet-name>JspRedirector</servlet-name>
 <jsp-file>/cactus/jspRedirector.jsp</jsp-file>
 </servlet>

Listing 12.5 Commenting out web.xml sections for filterset-based inclusion
CUSTOMIZING WEB APPLICATIONS 293

 <!-- End Cactus Configuration -->

There is, of course, another section in web.xml to define the servlet mappings; we
enable or disable both sections in the single-filtered <copy>.

To apply this in a build, we would place it inside a target that set the filter param-
eters based on a condition flag, such as the following:

<target name="copy-build-file">
 <condition property="start.tag" value="-->">
 <isset property="cactus.enabled"/>
 </condition>
 <property name="start.tag" value=""/>
 <condition property="end.tag" value="<!--">
 <isset property="cactus.enabled"/>
 </condition>
 <property name="end.tag" value=""/>

 <copy todir="build/WEB-INF"
 file="web/WEB-INF/web.xml"
 overwrite="yes">
 <filterset>
 <filter token="start.cactus.config"
 value="${start.tag}" />
 <filter token="end.cactus.config"
 value="${end.tag}" />
 </filterset>
 </copy>
</target>

When Ant calls this target, it only sets the start and end markers into the end and
start XML comments if the cactus.enabled property is set.

One weakness of this process is that we have to set the overwrite attribute of
the <copy> task to true, otherwise the commenting/uncommenting only takes place
if the destination file is missing. With the overwrite flag set, the copy and filter
always takes place, but this induced change will propagate along the rest of the build
and deploy, taking extra time when the conditional option does not change from build
to build.

Another weakness is that in a big project, the number of options to control gets
more complex, with conditional inclusion of other components alongside Cactus serv-
lets, and with target-specific configuration data. A simple filtered copy may not be
enough.

12.4.2 Customizing deployment descriptors with XDoclet

As we are using XDoclet to create the deployment descriptor, we may as well use it to
conditionally include or exclude fragments of our build file. We can do this by setting
configuration parameters to the task, then modifying the templates to include frag-
ments if these parameters are set. For our Cactus problem, we define a configuration
294 CHAPTER 12 DEVELOPING FOR THE WEB

parameter enable.cactus whose value is bound to that of the Ant property of the
same name:

<target name="make-webxml" depends="init">
 <webdoclet sourcepath="${src.dir}"
 destdir="${build.dir}"
 mergedir="templates" force="true">
 <configParam name="enable.cactus" value="${enable.cactus}"/>
 <classpath>
 <path refid="xdoclet.classpath"/>
 <pathelement location="${antbook-common.jar}"/>
 </classpath>
 <fileset dir="${src.dir}">
 <include name="**/*.java" />
 </fileset>
 <deploymentdescriptor servletspec="2.3" validatexml="true"/>
 </webdoclet>
</target>

We can now add conditional content into the template files that this task uses, specif-
ically templates/servlets.xml and templates/servlet-mappings.xml. When the <web-
doclet> task merges the different template files it interprets its own XML tags in
these files as it does so. Most of the tags are only of interest to anyone trying to write
a new source processing task on par with <webdoclet>. But there are two configu-
ration tags that are of interest, ifConfigParamEquals and ifConfigParam-
NotEquals, which can be used to conditionally include and exclude content based
on any conditional parameters we define inside a declaration of <webdoclet>. For
our problem, we modify the servlets.xml file to make some of the servlet declarations
dependent upon this parameter being equal to true:

<XDtConfig:ifConfigParamEquals paramName="enable.cactus" value="true">
 <servlet>
 <servlet-name>ServletRedirector</servlet-name>
 <servlet-class>
 org.apache.cactus.server.ServletTestRedirector
 </servlet-class>
 </servlet>

 <servlet>
 <servlet-name>JspRedirector</servlet-name>
 <jsp-file>/test/jspRedirector.jsp</jsp-file>
 </servlet>
</XDtConfig:ifConfigParamEquals>

If the Ant property is undefined, the configuration parameter will be set to the string
${enable.cactus}, which, as it does not match the string true, is evaluated to
be false by XDoclet; the content contained within the conditional element will not be
included. Note that we are literally comparing against the string true next, so be
careful not to use on or yes simply because other Ant tasks accept these true values
(here is room for a new XDoclet template tag—to evaluate the string as Ant does!). A
CUSTOMIZING WEB APPLICATIONS 295

similar modification to the template file servlet-mappings.xml applies the change to
the second half of the servlet deployment files:

<XDtConfig:ifConfigParamEquals
 paramName="enable.cactus" value="true">
 <servlet-mapping>
 <servlet-name>ServletRedirector</servlet-name>
 <url-pattern>/ServletRedirector/</url-pattern>
 </servlet-mapping>

 <servlet-mapping>
 <servlet-name>JspRedirector</servlet-name>
 <url-pattern>/JspRedirector/</url-pattern>
 </servlet-mapping>
</XDtConfig:ifConfigParamEquals>

When Ant executes the <webdoclet> task with the enable.cactus property set
to true, this will set the task’s configuration parameter to the same value, and the
task will include the two servlet declarations.

To use this technique across multiple servers, we recommend you apply techniques
that will be recognized by experienced users of C/C++ conditional inclusion with
#ifdef. One option is to make the inclusion conditional on a particular machine,
based on the value of a target server machine name:

<XDtConfig:ifConfigParamEquals
 paramName="server.name" value="ranier">
 <servlet-mapping>
 <servlet-name>ServletRedirector</servlet-name>
 <url-pattern>/ServletRedirector/</url-pattern>
 </servlet-mapping>

 <servlet-mapping>
 <servlet-name>JspRedirector</servlet-name>
 <url-pattern>/JspRedirector/</url-pattern>
 </servlet-mapping>
</XDtConfig:ifConfigParamEquals>

This is a valid approach for configuration options that are definitely per-system, such
as the URL of a database server, but for many options, such as these Cactus servlets, it
is the wrong approach. It gets overly complicated when more than one server needs to
have the same servlets included: you need to copy the same XML fragments into sep-
arate conditional statements.

Instead, you should tease out each attribute into its own property (cac-
tus.enabled, log4j.enabled, jndi.enabled), then have a configuration for
each system that enables or disables these properties as appropriate. A property file for
each server would be the ideal place to keep this configuration data; Ant could load
the appropriate file for a server before creating the deployment descriptor.
296 CHAPTER 12 DEVELOPING FOR THE WEB

12.4.3 Customizing libraries in the WAR file

Altering the web.xml deployment descriptor lets you target different systems as desti-
nations for your web application, but it is not enough. Different application servers
have different built-in libraries; web applications need to avoid creating conflicts with
these built-in libraries by omitting duplicate or incompatible versions. The XML
parser is the classic problem, but a simpler one is whether to include packages such as
the JavaMail API in mail.jar packages, which all J2EE servers include. WAR files built
for a pure web server such as Tomcat need to include those libraries. Versions built for
a full J2EE server should omit them.

We could generate the different WAR files with different declarations of the WAR
task, each including different libraries. Alternatively, we can write a reusable target that
takes a path or a reference to fileset, listing all the libraries to include, and invoke it
with <antcall>. Even better, we can take advantage of the if/unless attributes
on patternsets to allow for conditional inclusion or exclusion of files. We will postpone
this work until we get to deployment in chapter 18, and actually have to start worrying
about supporting different target systems.

12.5 GENERATING STATIC CONTENT

Static content often goes alongside dynamic content generated by JSP pages and serv-
lets. In a large system, developers often offload this content to front-end servers run-
ning something like the Apache web server, reducing the load on the application
server systems that need the CPU cycles for the dynamic content.

Ant can help with static content in two ways. First, it can create static content or
customize existing content. Second, it can deploy the content.

12.5.1 Generating new content

Ant can generate any content that you can create from Ant tasks, or by running Java
or native programs during the build. As a complex example, to create custom art-
work, you could somehow generate some SVG, the XML-based image description
language, then render it to an image with Batik, the SVG-rendering tool from
Apache’s XML project. Ant could invoke the renderer and include the generated
images into a WAR file.

A simpler example is to include the javadoc-generated API documentation in the
web application. We do this by running our usual javadocs target before we create
the WAR file, and including its output in the archive. First, we configure the java-
docs target to leave out the author tags and any private methods and member vari-
ables, as we do not want those details included in the public documentation:

<target name="javadocs" description="make the java docs" >
 <javadoc author="false"
 destdir="${javadoc.dir}"
 packagenames="org.example.antbook.*"
 sourcepath="src"
 use="true"
GENERATING STATIC CONTENT 297

 version="true"
 windowtitle="ant book webapp"
 package="true"
 >
 <classpath refid="compile.classpath"/>
 </javadoc>
</target>

Next, we modify the make-war target to depend on the generation of the Javadocs.
As the target is collecting too many dependencies, we decide to factor out the targets
to create documentation into their own subtarget:

<target name="make-web-docs"
 depends="index,javadocs"
 />

Two targets may not seem worth the effort, but we are planning on adding more in
the near future; having all documentation targets callable from one place makes it
easier to see what major stages the build really goes through. We next tweak the target
to create the WAR file to depend upon this interim target, and then include the gen-
erated content in the archive where we want it, which is under a directory called api:

<target name="make-war"
 depends="compile,make-webxml,make-web-docs">
 <war destfile="${warfile}"
 compress="false"
 webxml="${build.webinf.dir}/web.xml">
 <classes dir="${build.classes.dir}"/>
 <webinf dir="${build.dir}" includes="index/**"/>
 <webinf dir="${struts.dir}/lib" includes="*.tld,*.dtd"/>
 <webinf dir="${build.webinf.dir}" includes="antbook.tld"/>
 <fileset dir="web"/>
 <zipfileset dir="${javadoc.dir}" prefix="api" />
 <lib dir="${antbook-common.dist.dir}" includes="antbook-common.jar"/>
 <lib dir="${struts.dist.dir}" includes="*.jar"/>
 <lib dir="${lucene.dist.dir}" includes="${lucene.jarname}"/>
 <lib dir="${torque.dist.dir}" includes="*.jar"/>
 <lib dir="${log4j.dist.dir}" includes="log4j.jar"/>
 </war>
</target>

The net effect of these changes is that our classes’ API is now visible on the web appli-
cation, under the path antbook/api.

12.5.2 Creating new files

We want to put a build status file up on the web site, too, so we can browse straight
to a system and see what version is running there:

<target name="make-build-properties" depends="init" >
 <property name="buildprops.filename"
 value="build.properties"/>
 <property name="buildprops.path"
 location="${build.dir}/${buildprops.filename}"/>
298 CHAPTER 12 DEVELOPING FOR THE WEB

 <propertyfile comment="Build Information"
 file="${buildprops.path}">
 <entry key="build.date"
 type="date"
 pattern="EEEE MMM dd, yyyy"
 value="now"/>
 <entry key="build.time"
 type="date"
 pattern="kk:mm:ss"
 value="now"/>
 <entry key="build.timestamp"
 type="date"
 pattern="yyyy-MM-dd'T'HH:mm:ss"
 value="now"/>
 <entry key="build.user.name" value="${user.name}"/>
 <entry key="build.counter"
 operation="+" value="1" default="1" type="int"/>
 </propertyfile>
</target>

Running this creates a property file such as the following:

#Build Information
#Sat Mar 16 11:54:58 PST 2002
build.time=11\:54\:58
build.user.name=slo
build.date=Saturday Mar 16, 2002
build.timestamp=2002-03-16T11\:54\:58
build.counter=31

The build counter is a simple, self-incrementing number that gets lost whenever a
clean build is done; we should really pull in the SCM-managed build version counter
from chapter 10. It is, however, adequate for a manual or automated check that the
code being served matches that which we have just built.

12.5.3 Modifying existing files

Ant can also modify existing files before they are deployed, usually by inserting
strings into placeholder locations. Using <copy> with a filter is the standard tech-
nique; this is useful to replace filter tokens inside static HTML pages.

12.6 TESTING WEB APPLICATIONS WITH HTTPUNIT

How do you test a web application once you have deployed it? The answer is that you can
test the skin of a web site with HttpUnit (http://www.httpunit.org/), which is an exten-
sion of JUnit. We cannot do this test framework justice in a few paragraphs. For more
detail we would direct you to the online documentation or Hightower & Lesieki 2001.

HttpUnit extends JUnit by providing the code to have a conversation with a web
server as if your test case were a client web browser. It can start a session with a server,
fetch pages, fill in forms, and navigate around the site. Along the way, it can validate
web pages, looking at elements in the page such as the title, forms, and text. You can
TESTING WEB APPLICATIONS WITH HTTPUNIT 299

write code to follow links, letting you validate further pages off your starting page. If
you really know what you are doing, it will give you the actual DOM of a server
response for you to validate, which can be a complex process. Because it is actually test-
ing what the server is generating, it can perform functional testing of the complete sys-
tem. So the “unit” in the title is a bit of a misnomer, but it does emphasize its intended
use within JUnit test cases.

To use HttpUnit, the first step is to download the latest version from the httpu-
nit.org web site and unzip it somewhere. It contains the documentation and the two
files you need to run the tests httpunit.jar and jtidy.jar, the latter being the Java version
of Dave Raggett’s HTML parsing and tidying code.

12.6.1 Writing HttpUnit tests

To test your web pages you can write JUnit test case classes and methods, just as if
you were testing local classes. However, the code inside these methods does not create
and test local classes. Instead, it uses the HttpUnit classes to talk to a web server,
fetching and testing the pages these helper classes retrieve.

The first lines of code import the test libraries into our class, which we name
HttpUnitTest to be consistent with our existing test case naming policy:

package org.example.antbook.test;

import com.meterware.httpunit.*;
import junit.framework.TestCase;

public class HttpUnitTest extends TestCase {
 private String url;

 public HttpUnitTest(String name) {
 super(name);
 }

The class just declares itself a normal JUnit TestCase class; the HttpUnit classes do
not replace any existing aspects of the JUnit framework. Indeed, the classes work per-
fectly well outside the JUnit framework, which is convenient when you want to inter-
act with web sites from any Java code; the library lets you scrape pages and fill in
forms to your heart’s content. Our class declares one instance variable, the field url,
which we will use to point to the base of our application. This field needs to be
defined at run time, which we will do by defining a Java system property when we
invoke the JUnit tests.

Next, we write the setup method:

public void setUp() {
 url=System.getProperty("server.url");
 HttpUnitOptions.setExceptionsThrownOnErrorStatus(true);
 HttpUnitOptions.setMatchesIgnoreCase(true);
 HttpUnitOptions.setParserWarningsEnabled(true);
}

300 CHAPTER 12 DEVELOPING FOR THE WEB

This method starts by fetching the URL supplied as a parameter to the test. The
remaining lines set static options in the HttpUnit library, telling it to throw an
HttpException for any error response codes, to be case insensitive in its matches,
and to print out any parser warnings of dubious HTML.

We then add our first test case: a test case to fetch our index page, validate its title,
then follow a named link off this page to our happy.jsp test page:

public void testIndex() throws Exception {
 assertNotNull("server.url not set",url);
 WebConversation session = new WebConversation();
 WebRequest request = new GetMethodWebRequest(url);
 WebResponse response= session.getResponse(request);
 assertEquals("Ant Book",response.getTitle());
 WebLink linkToHappy=response.getLinkWithID("happy");
 WebRequest nextRequest=linkToHappy.getRequest();
 WebResponse happyStatus=session.getResponse(nextRequest);
 assertEquals("happy",happyStatus.getTitle());
}

The first line of the test verifies that our URL property was defined when running the
test case, and if not, we print a meaningful error message, rather than fail with a
NullPointerException. Next, the test case starts a new conversation with a
server—a session with its own state and cookies—and fetches our base URL. We
expect back an index file with the title “Ant Book”; if the title is different, then we fail
the test. This verifies that the server returns the file index.html when we fetch the
application’s directory. Our test index page initially looks like the following, although
it will be changed soon:

<html>
<head>
 <title>Ant Book</title>
</head>
<body>

 login
 search
 api
 happy test
 unhappy test

</body>
</html>

The test then looks inside the body of the response, and finds the link with the ID
happy. We could have used getLinkWith("happy test") instead, but this
would have been more vulnerable to changes in the skin of the web page. Having
found the link to the happy page, we fetch it. There is little need to examine the
result, as in the setUp method we told HttpUnit to throw an exception on any error
TESTING WEB APPLICATIONS WITH HTTPUNIT 301

response code sent back by the web server. We check the title anyway, to verify we
have fetched the correct file and that the link in the index page was correct.

We also want to verify that our unhappy.jsp page is working correctly, that it
returns a 500 error code when fetched. We use a separate test for this:

public void testUnhappy() throws Exception {
 assertNotNull("server.url not set",url);
 WebConversation session = new WebConversation();
 WebRequest request = new GetMethodWebRequest(url+"/unhappy.jsp");
 try {
 WebResponse response= session.getResponse(request);
 fail("should have raised an exception");
 } catch(HttpException e) {
 assertEquals("Expected Internal Server Error 500",
 500,
 e.getResponseCode());
 }
}

This test fetches the page and fails the test unless the attempt fails with a response
code of 500. A successful fetch or an error code of any other value (such as a 404 “not
found” response) constitutes a test failure.

Together these tests can verify that our taglib works, that our web application
deployed, and that our index page is as we intended it to be. This constitutes a good
start at functional testing of the server, although we still have to write tests that verify
the login process to protected pages, and to fill in the search form and get sensible
responses back. HttpUnit lets you write these tests through its methods to examine
tables and to examine and manipulate forms. All these are covered in the library’s
online documentation; we are going to focus on how to build and execute our tests
in Ant.

12.6.2 Compiling the tests

Being Java based, we have to compile the tests before we can run them. We save the
tests in a test source subdirectory, which keeps them out of the normal compile and
packaging targets. We add a simple <javac> in what is a new target in the web
application build file, compile-tests. This is a normal compilation target, a new
output directory (build/test/classes), and the following classpath:

 <path id="functional-test.compile.classpath">
 <pathelement location="${httpunit.jar}"/>
 <pathelement location="${junit.jar}"/>
 <pathelement location="${jtidy.jar}"/>
 </path>

Calling the compile target now creates the file HttpUnitTest.class in the appropriate
directory, so we are ready to run the tests as soon as the web application is deployed.
302 CHAPTER 12 DEVELOPING FOR THE WEB

12.6.3 Preparing to run HttpUnit tests from Ant

Before executing our tests from Ant, we need to find the right place in the build file
for them. The application must be deployed first, so they are dependent upon the
deployment tasks. Because the main webapp/build.xml file is getting a bit large, we
first pull out all the deployment routines we wrote in chapter 7 into a separate
deploy.xml build file, which we call from the main build file with <ant>. A deploy
target in build.xml hands off the deployment to the subsidiary file:

<target name="deploy" depends="dist">
 <ant dir="."
 antfile="deploy.xml"
 target="default"
 inheritall="false"/>
</target>

In the deploy.xml file, we create a default entry point that initially deploys to a local
Tomcat server:

<target name="default"
 depends="deploy-localhost-remotely"
 description="deploy to a local tomcat4 server"
 />

We verify that this refactoring works by doing a clean build and deploy, then looking
at the local deployment of the properties file we created earlier, which is accessible as
http://127.0.0.1:8080/antbook/build.properties. As all looks well,
we can proceed. When we start deploying to different application servers, this split-
ting up of deployment targets from the rest of the build becomes invaluable, but hav-
ing a reusable deployment library early on is cleaner.

12.6.4 Running the HttpUnit tests

We add the functional tests to the deployment file, to integrate them with the deploy-
ment process. To this end, we make the test case a target designed for <antcall>
invocation, a call that must pass in the server URL to provide an endpoint for the
tests. The functional test target is simply a <junit>/<junitreport> pair, with a
classpath set up to include the httpunit.jar and jtidy.jar files. It is dependent upon the
compile-tests target, which we also move into the deploy.xml build file along
with its classpath declaration. Notice how the <junit> task maps the Ant property
server.url into a system property of the JVM:

<path id="functional-test.classpath">
 <path refid="functional-test.compile.classpath"/>
 <pathelement location="${build.test.classes.dir}"/>
</path>

<target name="functional-tests"
 depends="compile-tests" >
 <mkdir dir="${test.data.dir}"/>
 <junit printsummary="false"
TESTING WEB APPLICATIONS WITH HTTPUNIT 303

 errorProperty="test.failed"
 failureProperty="test.failed"
 fork="true">
 <classpath
 refid="functional-test.classpath"/>
 <sysproperty key="server.url"
 value="${server.url}"/>
 <formatter type="xml"/>
 <formatter type="brief" usefile="false"/>
 <test name="${testcase}" if="testcase"/>
 <batchtest todir="${test.data.dir}" unless="testcase">
 <fileset dir="${src.dir}" includes="**/*Test.java"/>
 </batchtest>
 </junit>
 <junitreport todir="${test.data.dir}">
 <fileset dir="${test.data.dir}">
 <include name="TEST-*.xml"/>
 </fileset>
 <report format="frames" todir="${test.reports.dir}"/>
 </junitreport>
 <fail message="Functional tests failed"
 if="test.failed"/>
</target>

The target resembles all our declarations of the <junit> task we have in our build
files, because it is a perfectly normal JUnit test as far as Ant is concerned. The fact
that it is now testing the deployed code on a local or remote web server is almost
invisible to the build process.

12.6.5 Integrating the tests

We have the tests and we have the target to call them. All that remains is to pull this
into the build process, which we do by invoking the test target after performing the
deployment itself. We can accomplish this by adding this invocation to the deploy-
ment target we wrote in section 7.6:

<target name="deploy-remote-server"
 depends="build-remote-urls,remove-remote-app,ftp-warfile">
 <property name="target.port" value="8080"/>
 <property name="redist.url"
 value="file://${target.directory}" />
 <!-- install the new -->
 <property name="target.url.params"
 value="path=/${target.appname}&war=${redist.url}" />
 <get
 src="${target.manager.url}/install?${target.url.params}"
 dest="deploy-remote-install.txt"
 username="${target.username}"
 password="${target.password}"
 />
 <loadfile property="deploy.remote.result"
 srcFile="deploy-remote-install.txt"/>
 <echo>${deploy.remote.result}</echo>
304 CHAPTER 12 DEVELOPING FOR THE WEB

 <property name="server.url"
 value="http://${target.server}:${target.port}/${target.appname}"
 />
 <antcall target="functional-tests">
 <param name="server.url"
 value="http://127.0.0.1:8080/antbook"/>
 </antcall>
</target>

The four lines at the end of the target invoke our functional tests against the current
server. The property declaration immediately preceding the <antcall> derives the
server.url parameter from the values already passed to the target. We have to be
sure that the server port is defined, so we add one line at the top to set that to a
default value of 8080—the Tomcat default port—rather than the port 80 of a normal
web server.

What happens when we run the new deployment targets, from an ant deploy call
in the webapp directory? After building everything and uploading the changed files,
Ant now runs our functional tests happily against our local server:

functional-tests:

 [junit] Testsuite: org.example.antbook.test.HttpUnitTest
 [junit] Tests run: 2, Failures: 0, Errors: 0, Time elapsed: 3.645 sec

Our tests ran, and both passed. This is exactly what we want to hear. Against the test
server “eiger” (Running Linux and Tomcat 4.01 on Java1.4), we get a different result:

functional-tests:
 [junit] Testsuite: org.example.antbook.test.HttpUnitTest
 [junit] Tests run: 2, Failures: 0, Errors: 1, Time elapsed: 2.35 sec
 [junit]
 [junit] Testcase: testIndex(org.example.antbook.test.HttpUnitTest):
 Caused an ERROR
 [junit] Error on HTTP request: 500 Internal Error
 [http://eiger:8080/antbook/happy.jsp]
 [junit] com.meterware.httpunit.HttpInternalErrorException:
 Error on HTTP request: 500 Internal Error
 http://eiger:8080/antbook/happy.jsp]
 [junit] TEST org.example.antbook.test.HttpUnitTest FAILED
 [junit] at com.meterware.httpunit.WebClient.validateHeaders
 (WebClient.java:350)
 [junit] at com.meterware.httpunit.WebClient.updateClient
(WebClient.java:299)
 [junit] at com.meterware.httpunit.WebClient.getResponse
(WebClient.java:72)
 [junit] at org.example.antbook.test.HttpUnitTest.testIndex
(HttpUnitTest.java:57)

 This is not what we really wanted to see: something has gone wrong and somebody is
going to have to fix it. In this particular instance, something is wrong with Tomcat
itself, and we are going to have to look at its configuration.
TESTING WEB APPLICATIONS WITH HTTPUNIT 305

Tests like this are exactly the kind of result we want from a functional test calling
deployment status pages. We want to know immediately if there is any kind of con-
figuration problem preventing our application from running, and the taglibs we have
written, combined with the HttpUnit tests, are providing the information we need.
Integrating these tests with Ant simply ensures that the tests are run against the servers
as we deploy to them. There certainly won’t be any success emails being sent out after
this build.

12.6.6 Limitations of HttpUnit

Although HttpUnit strives to act like a normal browser, supporting cookies and redi-
rects, it does not interpret any JavaScript that comes with a page, or non-HTML con-
tent like applets. If you need to test such things, you must find an alternate solution,
or extend HttpUnit. No doubt, the HttpUnit team would gratefully accept such con-
tributions, as they would increase the power of the tool further. As it stands, complex
DHTML pages cannot be tested with the tool.

A further limitation is that it is somewhat inelegant to write Java code to test
HTML. Higher-level descriptions of pages should be usable for validating HTML, so
developers do not need to write code to test web pages written by the web page design-
ers. Still, using Java gives the tests power and flexibility, and enables them to integrate
well with Ant. If the final web pages are maintained by someone other than the devel-
oper, such as a graphic designer, it is important to write tests that are not bound too
closely to the content. Using ID attributes of labels, forms, and tables is a good tactic
in this situation.

Despite these limitations, being able to integrate functional tests of a web site with
the rest of the Ant-based build and deploy process is a tremendous boost to code qual-
ity, and even to developer productivity. If everything works, there is no need to browse
to individual web pages to verify it, and if it didn’t, you know where to start looking.

12.6.7 Canoo WebTest

Layered on top of HttpUnit and JUnit is an open-source product by Canoo called
WebTest. It provides an Ant task interface to writing web site validation tests. In
order to verify that our web application is generating the data that it should, we are
306 CHAPTER 12 DEVELOPING FOR THE WEB

going to write a few simple WebTest steps. The pages we will walk through are shown
in figures 12.3 through 12.5.

As mentioned in section 12.6.6, writing HttpUnit tests is a low-level exercise and
likely involves rework and recompilation when site navigation changes. WebTest pro-
vides a higher-level way to describe functional web tests. Listing 12.6 shows our build
file to test these three pages.

<!DOCTYPE project [
 <!ENTITY properties SYSTEM "file:../properties.xml">
]>
<project name="canoo" default="main">
 &properties;

 <taskdef name="testSpec"
 classname="com.canoo.webtest.ant.TestSpecificationTask">

Listing 12.6 WebTest example build file

Figure 12.3

Login page of our example

web application

Figure 12.4

The search page of our web

application. Note the pow-

erful Google-like expression

that is used for searching

Ant’s documentation.

Figure 12.5

The results page of

our web application
TESTING WEB APPLICATIONS WITH HTTPUNIT 307

 <classpath>
 <fileset dir="${webtest.dist.dir}"
 includes="*.jar"/>
 </classpath>
 </taskdef>

 <property name="output.dir" location="build/canoo"/>
 <property name="xsl.file"
 location="xdocs/stylesheets/canoo.xsl"/>

 <property name="app.context" value="antbook"/>
 <property name="app.port" value="8080"/>
 <property name="app.host" value="localhost"/>
 <property name="app.username" value="erik"/>
 <property name="app.password" value="hatcher"/>

 <property name="query" value="(http AND wait) -title:API"/>
 <property name="expected" value="WaitFor Task"/>

 <target name="init">
 <mkdir dir="${output.dir}"/>
 </target>

 <target name="clean">
 <delete dir="${output.dir}"/>
 </target>

 <target name="main">

 <testSpec name="test our site">
 <config host="${app.host}"
 port="${app.port}"
 protocol="http"
 basepath="${app.context}"
 summary="true"
 verbose="false"
 saveresponse="true"
 resultpath="${output.dir}"
 haltonerror="true"
 haltonfailure="true"/>
 <steps>
 <invoke stepid="go to login page" url="login.jsp"/>
 <setinputfield stepid="set user name"
 name="username"
 value="${app.username}" />
 <setinputfield stepid="set password"
 name="password"
 value="${app.password}" />
 <clickbutton stepid="login" name="submit"/>
 <setinputfield stepid="set query"
 name="query"
 value="${query}"/>
 <clickbutton stepid="search" name="submit"/>
 <verifytext stepid="${expected} found" text="${expected}"/>

Defines the
WebTest task

Defines default query
and expected result

Begins testing steps
308 CHAPTER 12 DEVELOPING FOR THE WEB

 </steps>
 </testSpec>

 <xslt basedir="${output.dir}"
 destdir="${output.dir}"
 includes="TestSummary*xml"
 extension=".html"
 style="${xsl.file}"
 />

 </target>
</project>

The <testSpec> task encapsulates a series of steps, and in our case the steps are:

1 Navigate to the login page.

2 Fill in the username and password fields, then submit the form.

3 Enter a query into the search form and submit it.

4 Verify that the results page includes the expected text.

Ant properties are used to represent our query (${query}) and a string expected
(${expected}) to be on the results page. We could easily rerun a test for a different
query and expected result, for example:

> ant -f canoo.xml
 -Dquery="+steve +anger" -Dexpected="Ant in Danger"1

Buildfile: canoo.xml

main:

BUILD FAILED
Failure: Test "test our site" failed at step "Ant in Danger found"
 with message
"Step "Ant in Danger found" (8/9): Text not found in page.
 Expected <Ant in Danger>"

Total time: 3 seconds

It is beyond the scope of this book to cover the Canoo’s WebTest task in more detail.
The WebTest distribution found at http://webtest.canoo.com contains robust docu-
mentation and examples. One of the very handy things that can be done with Web-
Test, thanks to Ant’s XML build file format, is to transform another XML file into a
complete WebTest build file or build file fragment. A friend of ours, David Eric
Pugh, has done this very thing by automating the construction of functional test cases
from a DBForms model into WebTest steps. DBForms2 is an open-source project to

1 The actual document is called “Ant in Anger.”
2 http://www.dbforms.org

Transforms
results into
HTML
TESTING WEB APPLICATIONS WITH HTTPUNIT 309

generate Model-View-Controller-style JSP pages from an XML descriptor (which can
be generated from database metadata).

The <xslt> task, a task we will cover in chapter 13, is used to turn the results writ-
ten from the <testSpec> task into an easily navigable HTML file. One of the great
benefits to WebTest is its capturing of the pages as it executes the steps. It saves each
page it encounters to a separate HTML file in the resultpath directory, allowing
you to see exactly what WebTest sees as it is executing. Then, with the <xslt> task,
Ant creates an index for all these pages for easy analysis.

12.7 SERVER-SIDE TESTING WITH CACTUS

Cactus is the Jakarta project’s J2EE container unit testing framework for unit testing
server-side code. It deals with the thorny issues of testing server-side code that is
dependent upon container-provided services, ranging from J2EE to SQL database
access. It deals with this in a way that is simpler to describe than to implement: by
running all the unit tests on the server.

For example, we have developed a utility method that returns a specific parameter
or attribute from an HttpServletRequest object. This is a useful utility for cases
where either the URL (or form POST) contains a parameter or it has been injected
into the request scope attributes during server-side forwards. There is no single
method to retrieve the parameter regardless of which of these two scopes it is in, so
we have to write one:

package org.example.antbook;

import javax.servlet.http.HttpServletRequest;

public class RequestUtil {
 public static final String getValue
 (HttpServletRequest request, String key) {
 String value = request.getParameter(key);
 if (value != null) {
 return value;
 }

 value = (String) request.getAttribute(key);
 if (value != null) {
 return value;
 }

 return null;
 }
}

Having written a class, we now need to test it. How can we test this class and its
getValue method with JUnit? There are two popular methods: Mock Objects and
Cactus. Mock Objects are emulations of objects such as the servlet API, which you
can then use inside normal <junit> tests to invoke code inside a mock server. They
310 CHAPTER 12 DEVELOPING FOR THE WEB

would be handled with <junit> as covered in chapter 4. We are not going to cover
Mock Objects, but rather refer you to http://www.mockobjects.com for further
exploration. Mock Objects are powerful in their own way. We are going to take a look
at Cactus, because its model for server-side unit tests is unique and tightly integrated
with Ant.

Our coverage of Cactus is intentionally brief. It is a fairly complex framework to
explain architecturally, and it has been documented beautifully by Vincent Massol at
the Cactus web site (http://jakarta.apache.org/cactus/), as well as in our good friends’
book, Java Tools for Extreme Programming (Hightower & Lesiecki 2001).

12.7.1 Cactus from Ant’s perspective

Let’s take a look at what makes Cactus tick from an Ant perspective. To run test cases
in a J2EE container, you first need a running container, of course. Yet, we do not
want the burden of manually having to deploy, start, and stop our application server.
Cactus does this for us with its <runservertests> Ant task. This task is part of
the Cactus distribution, and looks quite elegant in our build file. Listing 12.7 shows
the build file pieces used to run our Cactus unit tests. Our example was adapted easily
from the sample provided with the Cactus distribution with very few changes, mostly
in a build.properties file to configure the location of libraries needed for compilation
and deployment.
SERVER-SIDE TESTING WITH CACTUS 311

<target name="tests_tomcat_40"
 depends="prepare_tests_tomcat_40"
 if="tomcat.home.40">

 <runservertests testURL="http://localhost:${test.port}/test"
 startTarget="start_tomcat_40"
 stopTarget="stop_tomcat_40"
 testTarget="tests"/>

</target>

<target name="start_tomcat_40">

 <java classname="org.apache.catalina.startup.Bootstrap"
 fork="true">
 <jvmarg value="-Dcatalina.home=${tomcat.home.40}"/>
 <arg value="-config"/>
 <arg value="${out.tomcat40.full.dir}/conf/server.xml"/>
 <arg value="start"/>
 <classpath>
 <pathelement path="${java.class.path}"/>

 <fileset dir="${tomcat.home.40}">
 <include name="bin/bootstrap.jar"/>
 <include name="server/catalina.jar"/>
 </fileset>
 </classpath>
 </java>

</target>

<target name="stop_tomcat_40">

 <java classname="org.apache.catalina.startup.Bootstrap"
 fork="true">
 <jvmarg value="-Dcatalina.home=${tomcat.home.40}"/>
 <arg value="stop"/>
 <classpath>
 <pathelement path="${java.class.path}"/>

 <fileset dir="${tomcat.home.40}">
 <include name="bin/bootstrap.jar"/>
 <include name="server/catalina.jar"/>
 </fileset>
 </classpath>
 </java>

</target>

Listing 12.7 Part of a build file to run server-side tests with Cactus
312 CHAPTER 12 DEVELOPING FOR THE WEB

12.7.2 How Cactus works

Again, we’ll refer you to the Cactus documentation for more details about how it
works, but here is a brief description. You write test cases that extend from the Cactus
base test case classes: ServletTestCase, JspTestCase, or FilterTestCase.
Your test cases are compiled and deployed on an application server and also remain
on the client where Ant is running. The <runservertests> task is an interesting
beast: it accepts other Ant target names as parameters and uses those in a multi-
threaded way. First, the target specified by startTarget is executed in its own
thread to keep the process from blocking, followed by the testTarget and finally
the stopTarget. The startTarget for Tomcat, as shown in listing 12.7, starts
Tomcat from our freshly built deployment directory. A configuration file is built
dynamically using filtered <copy> tasks to customize the environment for our
desired settings.

The tests run using the standard <junit> techniques shown in chapter 4. There
is no distinction within Ant’s <junit> between a Cactus test case and any other
JUnit test case. Figure 12.6 shows what happens under the covers.

The client-side (from Ant) test case is executed through the <junit> framework.
On the client side, methods beginning with begin and end are invoked before and
after executing the actual test method on the server side. The proxy invokes the stan-
dard setUp and tearDown methods on the server side. The begin-prefixed
method is used for configuring the HTTP request parameters, such as cookies,
HTTP headers, and URLs to simulate. The end-prefixed method is more complex
in that it can have one of two different method signatures. There is a Cactus Web-
Response and an HttpUnit WebResponse class. This lets you use HttpUnit, as de-
scribed earlier in this chapter, to do sophisticated, test-generated, HTML results content
testing. If your test does not require HttpUnit testing, then simply use the Cactus
WebResponse class in the endXXX method signature. The beginXXX, endXXX,
setUp, and tearDown methods are all optional.

Web Container

beginXXX

endXXX

setUp
testXXX

tearDown

Server-side
classes

OurTest
Redirector

ProxyOurTest

Figure 12.6

Cactus unit tests run server-side,

using a proxy servlet to bind

them to the Ant-hosted tests.
SERVER-SIDE TESTING WITH CACTUS 313

12.7.3 And now our test case

To test our getValue method using Cactus, we create two test methods. One tests
that a parameter is obtained from the URL parameters. Another tests that, if a param-
eter exists in both request scope and part of the URL parameters, the URL parameter
overrides the one from request scope. Listing 12.8 shows our test case to exercise the
getValue method. The ServletTestCase provides access to the HttpServletRe-
quest object as the member variable request.

package org.example.antbook;

import org.apache.cactus.ServletTestCase;
import org.apache.cactus.WebRequest;

public class RequestUtilTest extends ServletTestCase
{

 public RequestUtilTest(String theName)
 {
 super(theName);
 }

 public void beginGetValueParam(WebRequest theRequest) {
 theRequest.setURL("localhost:8080", "/antbook",
 "/test/test.jsp", null, "param=url");
 }

 public void testGetValueParam() {
 request.setAttribute("param", "request");
 assertEquals("url",
 RequestUtil.getValue(request, "param"));
 }

 public void testGetValueAttribute() {
 request.setAttribute("param", "request");
 assertEquals("request",
 RequestUtil.getValue(request, "param"));
 }
}

One of the easily misunderstood facets of Cactus is that it does not actually make
a connection to the URL provided, as shown in the beginGetValueParam of list-
ing 12.8. The connection is made to one of the Cactus redirectors.

12.7.4 Cactus summary

Cactus is the premiere way to test server-side objects through a J2EE web container.
It takes care of all the hard work involved in starting and stopping application servers.
There are many application servers with Cactus support already provided, but it can be

Listing 12.8 Cactus test case

 Adds ?param=url
to URL

 Ensures value
is from URL

 Ensures request-scope value works
when no URL parameter is present
314 CHAPTER 12 DEVELOPING FOR THE WEB

easy to add new vendor support if your vendor is not one of them. All J2EE-compliant
application servers should work with Cactus tests. The trick is how to start, stop, and
deploy to them automatically from Ant. We tested using Tomcat 4 (a.k.a. Catalina),
which of course has excellent Cactus support. Much of Cactus is web related, and it
communicates to the server through a web container. Cactus also can be used to test
EJB container code, although that is a bit more difficult and beyond the scope for
this chapter.

We recommend that you separate Cactus tests and pure client-side tests in your
directory and package structure, or do so by naming conventions. This lets you run
tests in environments where the container is not accessible or configured, and having
the option to run only the client-side tests is nice. Consider also using Cactus tests as
part of a continuous integration process, such that your in-container tests are executed
with the latest integrated codebase on a periodic basis.

Cactus tests tag libraries, Struts actions, servlets, and any other server-side classes
that are accessible. As with pure client-side JUnit tests, there are techniques and base
classes that you can use to make testing of server-side APIs easier. For example, there
is a StrutsTestCase base class available that facilitates testing Struts actions by
asserting that you get an ActionForward that was expected.

12.8 SUMMARY

This chapter has explored some of the web application specific issues of Java develop-
ment, and shown how Ant can integrate with other open source tools to automate the
development and test process for web applications.

Writing JSP tag libraries is much easier with the XDoclet <webdoclet> task,
which can extract tag declaration data from the javadoc comments in the code. You
can also use this task for the conditional inclusion of content into the web.xml deploy-
ment descriptor, which is convenient when you need to distinguish between develop-
ment and release versions of your application, or configure multiple servers’ versions
differently.

To compile JSP pages before deployment, you can use the <jspc> task. This task
converts JSP pages into Java source files, which a normal <javac> task can compile.
Of the two uses for this task, validation and actual precompilation, we are most com-
fortable with the former. Feel free, however, to experiment with inclusion of the gen-
erated servlets into your application.

We have introduced HttpUnit for functional testing of web sites, and shown how
to use it from Ant, validating web applications the moment that deployment has com-
pleted. Together, the automated generation of deployment metadata, JSP precompi-
lation, and postdeployment testing can raise your Ant-based builds far beyond what
an IDE-based build process can accomplish. It may seem that we have turned a fairly
simple build process into a complex one, and certainly for the size of our example
application it does seem overkill. However, we now have a build process that can cope
SUMMARY 315

with a larger project: as new taglibs and JSP pages are added, all we need to do is add
new HttpUnit tests.

Finally, we have presented the Cactus in-container JUnit testing framework. It
takes the hard work out of the issues involved with automating the start, stop, and
deploy to J2EE application servers. Cactus is a great way to test code that relies on con-
tainer-managed classes like HttpServletRequest. Not only can testing your code
with Cactus ensure that it works, Cactus gives you regressions tests for when you need
to run on a new application server, or simply a new version of your current server.

For your own projects, we recommend that you gradually adopt these advanced
build process techniques as the need arises. The need for functional testing will prob-
ably arise first, but compiling JSP pages can make JSP page development a lot faster.
Tag libraries are always going to be tricky to write and test: the moment you write a
taglib you should adopt the XDoclet-based TLD generation process to save time and
effort. Cactus does take time to understand and work with, and you do need to invest
the effort in writing the tasks to start and stop your server. However, once you have
your Cactus test framework working, it soon becomes an integral part of servlet and
EJB testing. No other mechanism lets you run detailed unit tests upon the internal
components of your server-side application.
316 CHAPTER 12 DEVELOPING FOR THE WEB

C H A P T E R 1 3

Working with XML

13.1 Preamble: all about XML libraries 318
13.2 Validating XML 319
13.3 Transforming XML with XSLT 323
13.4 Generating an XML build log 327

13.5 Loading XML data into
Ant properties 331

13.6 Next steps in XML processing 332
13.7 Summary 332
XML is rapidly becoming a language that most Java projects have to work with in one
way or another. It hosts the configuration data for so much of Java, describing every-
thing from web applications to the downloadable files of a client-side program
deployed with Java Web Start. Nor can we forget Ant’s build file format itself. XML
can find many more places in a large project, which means that Ant needs to work
with it.

XML can act as a structured file format for programs to use as source of input or
configuration data: build files are an example of this use. XML can also be the output
format of an application; this output can be fed into another program that uses the
same format. XML can work as a marshalling format for data in a remote procedure
call; XML-RPC, SOAP and SOAP + Attachments are all examples of this. One pow-
erful use of XML is as a presentation-independent representation of documents; from
a single XML document, you can generate HTML, PDF, and bitmap representations
of the text. All these examples are not merely theoretical uses of XML; they are some
of the things you may wish to do with XML during a build process.

Ant provides the basic set of tasks to enable many of these actions in a build. First,
it can validate the XML, verifying that it is well formed and matches a DTD or other
schema. Second, it can transform XML, by using XSLT transformations or simple text
file filtering. The third way that Ant can work with XML is that a custom task can
317

take XML input and act on this and other files in the build process to perform some
operation. The <xdoclet> task, introduced in chapter 11, is an example of this use,
taking documents and a configuration in XML syntax to generate new output, usually
XML files themselves.

To keep the build process fast and reliable, we need to automate all these XML
operations. We are particularly fond of using Ant to validate deployment XML files
used by the program, because it is always better to find out something is broken as
early on as you can.

13.1 PREAMBLE: ALL ABOUT XML LIBRARIES

If you have not experienced “XML parser hell” then you are either very lucky or have
not worked much with XML. For those readers who are blissfully unaware of the
problem, here is a short recap. It may seem messy but the problem is related to the
rate of change of the specifications; Windows programmers will have experienced
similar MSXML version grief if they have worked in XML.

Java supports multiple XML parsers, lightweight ones such as Crimson, full-pow-
ered ones such as Xerces, and others provided by various vendors; these libraries all
implement the SAX event-based parser in the org.w3c.sax packages, and the World
Wide Web Consortium (W3C) XML Document Object Model (DOM) of an XML
file with the org.w3c.dom packages. To resolve the potential conflict of all these
multiple libraries all implementing the same classes, the JAXP API provides a factory
API through which caller programs ask for a DOM or SAX parser, stating the required
attributes of the parser, validating and namespace-aware being the key pair. All parsers
that the JAXP factory can find must be in the current or accessible parent classloader,
and not in a child classloader. Many problems with applications stem from the JAXP
libraries (often in a library such as jaxp.jar or xml-apis.jar) being in a different class-
loader from the implementation of the APIs which the program needs. Certainly, many
Ant installation support issues have this as their root cause. Other problems arise when
the parsers supplied by the factory are inadequate for the needs of the program; Crim-
son may be small and nimble, but Xerces is much more complete. Xerces is a 1.7MB
file, rather than the 200KB of Crimson, which is why it has been distributed less.

Alongside the XML parser API is the API transforming XML, TRaX. Xalan is the
Apache XSLT engine that implements the TRaX API. Xalan is the standard XSLT
engine used by Ant tasks; other implementations of TRaX may work, but they are not
so widely used.

To complicate the matter further, Java 1.4 includes its own built-in implementation
of the JAXP APIs. To an extent, this is good: you know what to expect when your pro-
gram finds it is running on Java 1.4. It just complicates the whole process of locating
XML parsers and XSLT engines; complications that programs like Ant have to address.

What this all boils down to is that a normal Ant 1.5 installation of Ant comes with
the Xerces XML parser, which can be used for parsing and validating XML. If you
318 CHAPTER 13 WORKING WITH XML

want to perform any XSLT transforms in Ant, you also need version 2 of Xalan;1 you
can download it from http://xml.apache.org/. Prior to Ant 1.5, Ant shipped with
Crimson and JAXP libraries. The xalan.jar library must go into ANT_HOME/lib.
Although some tasks, such as <xslt>, have classpath support that lets you point to
the location of the XSLT engine, the mysteries of classloaders mean that this may or
may not work; certainly the results will differ from system to system. Placing the librar-
ies in the Ant’s lib directory is the safest action.

13.2 VALIDATING XML

Raise your hand if you’ve ever deployed a Struts application only to later realize that
struts-config.xml had parse errors. (Both authors’ hands go up.) Okay, not everyone
develops Struts applications, but certainly most of us use XML files that are hand
edited. Configuration files for the application server, such as web.xml and ejb-jar.xml,
all need to be verified if you are not creating them with XDoclet (and even then
XDoclet can provide built-in validation of deployment descriptors it creates). If you
are using XML for the storage of structured configuration data inside your applica-
tion, there are often other XML files in the JAR. Prevalidating these configuration
files can avoid a problem that only surfaces when some machine needs to read in a
particular XML file. See figure 13.1.

One of Ant’s optional tasks can save time and headaches by validating XML at build
time rather than at deploy time. The <xmlvalidate> task is straightforward: give
it the name of an XML file and it will validate it, or give it a <fileset> and it will

1 At the time of writing it was being debated whether to include Xalan with the Ant 1.5 distribution.
It is likely that it will be included in the final release, so check before installing it yourself.

Error in
application
XML files

Error in
deployment
descriptors

deploy/
distribute

run code

<war>,
<jar>,
<ear>

Deployment
configuration

XML files

Application
configuration

XML files

Deployment
configuration

XML files

Application
configuration

XML files

<xmlvalidate>

deploy/
distribute

run code

<war>,
<jar>,
<ear>

Validation
failure

XML DTD

Figure 13.1

When XML files are validat-

ed: before and after adding

<xmlvalidate> to the

build. Errors show up earli-

er, which is what we want.
VALIDATING XML 319

validate many files in one pass. To validate our Struts configuration, we write a target
to run it against our struts-config.xml file:

<target name="validate-struts-config">
 <xmlvalidate warn="false" file="web/WEB-INF/struts-config.xml"/>
</target>

Our Struts config file begins with a declaration of the DTD, so as well as being able
to verify that the file is well formed, the task can validate it against the DTD:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE struts-config PUBLIC
 "-//Apache Software Foundation//DTD Struts Configuration 1.0//EN"
 "http://jakarta.apache.org/struts/dtds/struts-config_1_0.dtd">

<struts-config>
 ...etc.

When we run the task, it validates the file, but we get a warning message:

[xmlvalidate] Could not resolve
 (publicId:
 -//Apache Software Foundation//DTD Struts Configuration 1.0//EN,
 systemId:http://jakarta.apache.org/struts/dtds/struts-config_1_0.dtd)
 to a local entity
[xmlvalidate] 1 file(s) have been successfully validated.

This warning indicates that the task had to fetch the DTD from the remote web
server. Despite the warnings, it actually validated the XML file against the DTD and
guarantees that we are deploying a well-formed and valid XML document. Our target
is working, but only when the system running the build can reach the remote server;
run the build offline or behind a firewall and it fails with an error message:

 [xmlvalidate] C:/AntBook/app/webapp/web/WEB-INF/struts-config.xml:5:
 External entity not found:
 "http://jakarta.apache.org/struts/dtds/struts-config_1_0.dtd".
BUILD FAILED
C:\AntBook\app\webapp\build.xml:198: Could not validate document C:\Ant-
Book\app\webapp\web\WEB-INF\struts-config.xml

Obviously, this is not what we want. We shall have to fix that shortly. Note that if we
set the attribute lenient="true" of <xmlvalidate>, the task verifies that a file
is well formed, but not that it matches the DTD. This allows you to check the basic
structure of an XML file, even if you do not have the DTD on hand.

13.2.1 When a file isn’t validated

What happens if a file isn’t valid? As a test, we pulled out a handwritten web.xml file
from a shipping production service, one that avoided DTD resolution problems by
pasting the Servlet 2.2 DTD into the file itself. Although this application loaded hap-
pily on Tomcat 3.x and a production application server, our validate task was not so
forgiving:
320 CHAPTER 13 WORKING WITH XML

validate-xml:
[xmlvalidate] /projects/svg/WEB-INF/web.xml:216:
 Element "web-app" does not allow "servlet" here.
[xmlvalidate] /projects/svg/WEB-INF/web.xml:219:
 Element "servlet" does not allow "description" here.
[xmlvalidate] /projects/svg/WEB-INF/web.xml:224:
 Element "web-app" does not allow "servlet-mapping" here.
[xmlvalidate] /projects/svg/WEB-INF/web.xml:229:
 Element "web-app" does not allow "servlet" here.
[xmlvalidate] /projects/svg/WEB-INF/web.xml:232:
 Element "servlet" does not allow "description" here.
[xmlvalidate] /projects/svg/WEB-INF/web.xml:237:
 Element "web-app" does not allow "servlet-mapping" here.
[xmlvalidate] /projects/svg/WEB-INF/web.xml:242:
 Element "web-app" does not allow "servlet" here.
[xmlvalidate] /projects/svg/WEB-INF/web.xml:245:
 Element "servlet" does not allow "description" here.
[xmlvalidate] /projects/svg/WEB-INF/web.xml:250:
 Element "web-app" does not allow "servlet-mapping" here.
[xmlvalidate] /projects/svg/WEB-INF/web.xml:255:
 Element "web-app" does not allow "servlet" here.
[xmlvalidate] /projects/svg/WEB-INF/web.xml:258:
 Element "servlet" does not allow "description" here.
[xmlvalidate] /projects/svg/WEB-INF/web.xml:263:
 Element "web-app" does not allow "servlet-mapping" here.
BUILD FAILED
/projects/svg/build.xml:608:
 /projects/svg/WEB-INF/web.xml is not a valid XML document.

That is a lot of errors for a file that we thought was okay—it worked, after all. We could
just ignore these errors, but there is a risk that other application servers will be less for-
giving, so we should fix them. Having a test makes it easy to identify and fix the prob-
lems, which all turn out to be due to the incorrect ordering of declarations in the
web.xml file. After reordering them, the application now works on a Tomcat 4.x server,
which rigorously validates web application descriptors and rejects such invalid files.

This shows that XML validation not only lets you find XML errors earlier in the
development cycle, it also lets you find them when the run-time system, be it an appli-
cation server or your own code, does not validate XML documents rigorously. This
is a mirror of the “compile-and-test” philosophy for Java sources, applying it to XML
files as well as code.

13.2.2 Resolving XML DTDs

Standard XML files, such as struts-config.xml and web.xml, use standard DTDs that
point to HTTP-accessible resources. Because they also supply a publicId for the
DTD, we can resolve them against a local file. We do this by declaring the mapping
in the <dtd> nested element of the task. This element has two attributes, the pub-
licID of the DTD and the location of the local copy. Adding one of these to our
<xmlvalidate> means that it can validate files offline:
VALIDATING XML 321

<target name="validate-struts-config">
 <xmlvalidate warn="false" file="web/WEB-INF/struts-config.xml">
 <dtd publicId=
 "-//Apache Software Foundation//DTD Struts Configuration 1.0//EN"
 location=
 "${struts.dir}/lib/struts-config_1_0.dtd"/>
 </xmlvalidate>
</target>

Running this version results in a near-silent validation of the files:

validate-struts-config-standalone:
[xmlvalidate] 1 file(s) have been successfully validated.
BUILD SUCCESSFUL
Total time: 4 seconds

If you want to bulk validate a set of XML files, files that may be based on different
DTD files, all you have to do is list all the possible DTD IDs and locations inside the
<xmlvalidate> target. As an example, if we wanted to verify a web.xml file along-
side the Struts configuration file, we could do both in the same task:

<target name="validate-xml-files">
 <xmlvalidate warn="false">
 <fileset dir="web/WEB-INF" includes="struts-config.xml,web.xml"/>
 <dtd publicId=
 "-//Apache Software Foundation//DTD Struts Configuration 1.0//EN"
 location="${struts.dir}/lib/struts-config_1_0.dtd"/>
 <dtd publicId=
 "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 location="${j2ee.dir}/lib/web-app_2_3.dtd"/>
 </xmlvalidate>
</target>

The location attribute of the nested <dtd> elements can be a file, resource, or
URL. As both j2ee.jar and servlet.jar contains the web-app_2_2.dtd file as a resource,
we could have declared a reference to it by naming the resource as the location:

<dtd publicId=
 "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 location="javax.servlet.resources.web-app_2_3.dtd"/>

The <xmlvalidate> task provides classpath specification support so that j2ee.jar
could be referenced by using classpath="${j2ee.jar}", with the usual map-
ping of the j2ee.jar property to the location of the actual JAR file.

Validating XML should be part of the whole testing regimen. It is one more sanity
check that you can easily add to a build, ensuring that one less thing can go wrong at
run time.

13.2.3 Supporting alternative XML validation mechanisms

There are competing successors to XML DTDs that provide more powerful ways
to describe valid XML documents. These all use XML representations for easier
manipulation of the DTD-equivalent schema itself, and offer a richer specification
322 CHAPTER 13 WORKING WITH XML

language. The most well-known is XML Schema, but there is a lighter-weight alter-
native called RELAX NG. Ant can validate XML files against this schema language
using the third-party <jing> task, a task listed on the Ant web site.

We are not aware of any tasks that exist specifically to validate XML Schema-based
XML files. This would seem a useful feature for any web service work, so one may be
forthcoming in the Ant 1.6 timeframe. We may even have to write it ourselves.

13.3 TRANSFORMING XML WITH XSLT

XML is a great way to keep data separate from formatting. It is the ideal format for
documentation because it lets you transform it into display or print formats, such as
HTML and PDF. This can be done at run time, perhaps with a framework such as
Cocoon or XML-FO, in a very sophisticated use of XML in an application. A simpler
use is to convert the XML into the output format at build time, which is what we are
about to do.

With our application, we store the user documentation in XML format but want
it generated as JSP pages in the web application. JSP pages are desired rather than static
HTML files because we want to take advantage of some dynamic elements such as
using Struts templates to generate headers and footers.

Ant’s built-in <xslt> task performs XSL transformations. Transforming an entire
fileset of XML files with a single XSL stylesheet is easy. See figure 13.2.

Our actual source documents all have a simple structure, similar to the structure of
xdocs/about.xml:

<?xml version="1.0" encoding="UTF-8" ?>
<doc>
 <section title="About">
 This is the web application to provide an online
 searchable version of the Ant documentation
 </section>
</doc>

Failure
<xslt>

XML DTDXML files

XML files HTML files Text files

XSLT
transform

Figure 13.2

The <xslt> task transforms XML into

other file formats or into new XML files.
TRANSFORMING XML WITH XSLT 323

To turn this into a JSP file we have an XSLT file, xdocs/stylesheets/docs.xsl, which
looks quite complex because we have to escape out all the angle brackets around the
JSP tags we plan to insert:

<xsl:stylesheet
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:template="struts template"
 version="1.0">
<xsl:output method="text"/>
<xsl:template match="/">
<%@ taglib uri="/WEB-INF/struts-html.tld"
 prefix="html" %>
<%@ taglib uri="/WEB-INF/struts-template.tld"
 prefix="template" %>
<template:insert template='/WEB-INF/templates/wrapper.jsp'>
 <template:put name='title'
 direct='true'
 content='<xsl:value-of select="/doc/section/@title"/>'/>
 <template:put name='content'>
 <xsl:value-of select="/doc/section"/>
 </template:put>
</template:insert>
</xsl:template>
</xsl:stylesheet>

All this template does is add the taglib prefixes we want at the top of the document,
and then places the section text inside one of the Struts tags and the title of the sec-
tion into another tag. Because we only allow one section per document, we should
add a DTD and validate our files before transforming them. If we didn’t have the
JSP-specific <@ tags we could avoid having to escape the angle brackets; generating
XML format JSP pages might be cleaner.

To apply the stylesheet to all XML files in our xdocs directory, we use the <xslt>
task in a new target, webdocs:

<target name="webdocs" depends="init">
 <xslt basedir="xdocs" destdir="${build.dir}/webdocs"
 includes="*.xml"
 extension=".jsp"
 style="xdocs/stylesheets/doc.xsl"/>
</target>

The following code creates a JSP file for every XML file in the directory. The
about.xml file shown earlier is transformed into this JSP:

<%@ taglib uri="/WEB-INF/struts-html.tld"
 prefix="html" %>
<%@ taglib uri="/WEB-INF/struts-template.tld"
 prefix="template" %>
<template:insert template='/WEB-INF/templates/wrapper.jsp'>
 <template:put name='title'
 direct='true'
 content='About'/>
324 CHAPTER 13 WORKING WITH XML

 <template:put name='content'>

 This is the web application to provide an online
searchable version of the Ant documentation

 </template:put>
</template:insert>

By default, the <xslt> task generates files with the .html extension, which we over-
ride by setting the extension attribute to .jsp. The task is an implicit fileset task,
with basedir mapped to the standard fileset dir attribute; consequently, by setting
includes="*.xml", we select all XML files in the xdocs directory. These files are
transformed with doc.xsl, producing the JSP files in the directory ${build.dir}/
webdocs. The task is dependency aware about both the source files and the
stylesheet, so the task recreates the about.jsp file whenever about.xml or doc.xsl is
newer than the existing copy of the file.

We now need to pull these JSP pages into the WAR file. We do this by adding a
new <zipfileset> to the WAR file, by inserting the following line into our existing
<war> task, the task in listing 12.3:

<zipfileset dir="${build.dir}/webdocs" prefix="help"/>

This extra declaration includes the files, but what about our JSP verification process
introduced in chapter 12? It turns out that because we run <jspc> against the
unzipped copy of the WAR file, our generated JSP pages are automatically validated
by compiling them with Jasper. Together the tasks ensure that we can create valid JSP
pages from source data stored in XML files.

There are numerous other reasons to transform XML during build time. One use-
ful action is the postprocessing of the output of tasks and Java programs executed in
the build. This can be simply the generation of reports about tests or it could be the
extraction of content from a database and presentation in XML format. The <xslt>
task is the foundation for the postprocessing needed between data generation and the
presentation or deployment of the results.

13.3.1 Using the XMLCatalog datatype

Both the <xslt> and <xmlvalidate> tasks support local copies of DTD’s in Ant
1.5 with the <xmlcatalog> nested element. This lets you transform XML docu-
ments whose SYSTEM URIs and entity references aren’t resolvable. To demonstrate
this, we add a DTD for our documentation page:

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE doc PUBLIC
 "-//Antbook//DTD xdoc 1.0//EN"
 "nap:chemical+brothers"
 >
<doc>
 <section title="About">
 This is the web application to provide an on
TRANSFORMING XML WITH XSLT 325

 line searchable version of the Ant documentation
 </section>
</doc>

Because the nap: URI will not resolve in the absence of Napster and an appropriate
plug-in for the JRE, the URI is effectively unresolvable; our current <xslt> trans-
form fails:

[xslt] : Fatal Error! java.net.MalformedURLException: unknown protocol:
 nap Cause: java.net.MalformedURLException: unknown protocol: nap
[xslt] Failed to process C:\AntBook\app\webapp\xdocs\about.xml

BUILD FAILED

Just like <xmlvalidate>, the <xslt> task needs to find the DTDs of the files it
transforms, and fails if it cannot resolve any. First, we have to write the DTD itself,
which we create in xdocs/stylesheets/doc.dtd:

<!ELEMENT doc (section) >
<!ELEMENT section (#PCDATA)>
<!ATTLIST section title CDATA #IMPLIED>

Next, we add the DTD to the <xslt> task, adding an <xmlvalidate> as a precur-
sor. We are probably being overcautious, as <xslt> will reject invalid XML itself.

<target name="webdocs" depends="init">
 <xmlvalidate warn="false">
 <fileset dir="xdocs" includes="**/*.xml"/>
 <dtd publicID="-//Antbook//DTD xdoc 1.0//EN"
 location="xdocs/stylesheets/doc.dtd"/>
 </xmlvalidate>
 <xslt basedir="xdocs" destdir="${build.dir}/webdocs"
 includes="*.xml"
 extension=".jsp"
 style="xdocs/stylesheets/doc.xsl">
 <xmlcatalog>
 <dtd publicID="-//Antbook//DTD xdoc 1.0//EN"
 location="xdocs/stylesheets/doc.dtd"/>
 </xmlcatalog>
 </xslt>
</target>

The <xmlcatalog> datatype that <xslt> uses could be more powerful if someone
were to add support for loadable XML catalog files. You would then be able to refer
to a single catalog file that could be shared across multiple build files, and with other
development tools, such as a DTD aware IDE. Note that <xmlvalidate> also sup-
ports nested <xmlcatalog> elements, so we share a common catalog definition
among both tasks.

What you can do today is refer to XML catalogs by ID inside a file, even declaring
them outside any individual target, just as you can for a path or a patternset:
326 CHAPTER 13 WORKING WITH XML

<xmlcatalog id="xdocs.catalog">
 <dtd publicID="-//Antbook//DTD xdoc 1.0//EN"
 location="xdocs/stylesheets/doc.dtd"/>
</xmlcatalog>

<target name="webdocs" depends="init">
 <xmlvalidate warn="false">
 <fileset dir="xdocs" includes="**/*.xml"/>
 <xmlcatalog refid="xdocs.catalog"/>
 </xmlvalidate>
 <xslt basedir="xdocs" destdir="${build.dir}/webdocs"
 includes="*.xml"
 extension=".jsp"
 style="xdocs/stylesheets/doc.xsl">
 <xmlcatalog refid="xdocs.catalog"/>
 </xstl>
</target>

13.3.2 Generating PDF files from XML source

We stated in this chapter’s introduction that you could generate binary files such as
PDF documents from an XML source. You can use XSL:FO to accomplish this. We
do not cover this activity, except to point you toward Ted Neward’s excellent paper on
how to do this within Ant, X-Power (Neward 2001).

13.3.3 Styler–a third-party transformation task

Although Ant’s built-in <xslt> task is sufficient for most purposes, it lacks some
features of a LGPL-licensed project called Styler, which lets you build a pipeline of
XML transformations and work with alternate input sources, such as HTML or any
other format for which you can write a reader.

You can find Styler at http://www.langdale.com.au/styler/. We won’t cover the
<styler> task here, but will point out that its ability to chain together SAX event han-
dlers lets you use Ant to build an XML processing chain, which could find more uses
than merely build-time processing. If you need this kind of pipeline, you are into some
serious XML hacking, or need to do some HTML scraping as part of your build process.

As an aside, there is a working group under way at the W3C on a pipeline pro-
cessing model for XML, and one of the submissions has actually based its pipeline
workflow language on Ant!

13.4 GENERATING AN XML BUILD LOG

At the beginning of this chapter, we mentioned that applications could generate
XML output for other applications. One such application is Ant itself: you can make
it generate an XML format log instead of the normal text log. You can then transform
this log into readable HTML, or feed into some other application for postprocessing.
To create the XML version of the build log, you list the name of the XML logger class
after the -listener option (see figure 13.3):
GENERATING AN XML BUILD LOG 327

ant -listener org.apache.tools.ant.XmlLogger

This saves the log into a file called log.xml. Because it will overwrite any existing file,
make sure that you do not have a file called log.xml in the build directory. In addi-
tion, the file isn’t saved until the build completes: if for any reason the build exits
unexpectedly, perhaps when an unforked application calls System.exit, there is no
log file left behind.
When we run the web application build file with logging, we get a 350KB file. Why
is it so big? Let’s look at the first few lines:

<?xml version="1.0" encoding="UTF-8" ?>
<?xml-stylesheet type="text/xsl" href="log.xsl"?>
<build time="54 seconds">
 <message priority="debug"><![CDATA[
 Detected Java version: 1.3 in: c:\java\JDK\jre]]>
 </message>
 <message priority="debug"><![CDATA[
 Detected OS: Windows 2000]]>
 </message>
 <message priority="debug"><![CDATA[+User task: propertyfile
 org.apache.tools.ant.taskdefs.optional.PropertyFile]]>
</message>

The log contains all messages output, rather than those messages displayed at the out-
put level specified on the command line with -debug, -verbose, and -quiet, or
the default of information-level messages only. We explain why this happens in chap-
ter 20.

13.4.1 Stylesheets

At the top of the generated log file, is a reference to a log file, log.xsl. This file is in
ANT_HOME/etc; it transforms the log files into readable HTML. You need to copy
this into your destination directory, or tell the listener to use a different stylesheet by
setting the Ant property ant.XmlLogger.stylesheet.uri. You can use this
property to bind directly to the log.xsl file in the Ant directory by pointing the prop-
erty at it:

<property name="ant.XmlLogger.stylesheet.uri"
 location="${ant.home}/etc/log.xsl" />

XML logConsole output

XmlLoggerDefaultLogger

ant

Figure 13.3

Ant splits the output of the build

when the XML logger listens in.
328 CHAPTER 13 WORKING WITH XML

You can just as easily bind to a stylesheet on a web server:

<property name="ant.XmlLogger.stylesheet.uri"
 location="http://localhost/styles/log.xsl" />

This approach stops your having to copy XSL files around, but it does need a contin-
ually available server.

13.4.2 Output files

Similarly, to choose a different output file you can set the XmlLogger.file prop-
erty either on the command line or inside the file, such as this one in deploy.xml:

<property name="XmlLogger.file"
 location="deploy-log.xml" />

When doing this, take care not to overwrite the build file or other valuable XML
source file by accident. Saving the files in a separate directory is safer.

One option here is to configure Ant to copy the log file to a web server; so that users
get a full log of what happened; some web browsers will handle the XSLT transform
themselves:

<property name="log.dir"
 location="${env.CATALINA_HOME}/webapps/ROOT/log"/>
<property name="XmlLogger.file"
 location="${log.dir}/deploy-log.xml" />

Figure 13.4 shows what the generated HTML page looks like in a web browser that
can transform the XML itself. When the build fails, as it does in this figure, the sum-
mary message appears with a red background, for an at-a-glance status message.

Figure 13.4 The XML log of a failed build, saved to a local web server,

and then viewed from the browser, which is transforming the XML itself.
GENERATING AN XML BUILD LOG 329

13.4.3 Postprocessing the build log

If you create an XML log for a master build file, it will include all the trace information
of all the nested files. This soon becomes a lot of data; the XmlLogger class can also be
used as a build logger and will adhere to the verbosity level set, such as -quiet.

You could apply the log.xsl style sheet to the output to generate the HTML report
for direct viewing or placement on a web server. Ant can do this, but only from a build
separate from the one whose log we are trying to process; the log is not created until
the first build finishes.

Here is a helper build file that can create a log file from an input file; we keep this
in the directory app/tasklibs, but want to call it from the parent directory and have rel-
ative files right. We do that by setting the basedir attribute of the project to point
to the parent:

<?xml version="1.0"?>
 <project name="tohtml" default="default"
 basedir=".." >

 <target name="default"
 description="create html from an xml log" >
 <fail unless="in.filename">
 Property ${in.filename} is not defined
 </fail>
 <fail unless="out.filename">
 Property ${out.filename} is not defined
 </fail>
 <property name="in.path" location="${in.filename}"/>
 <property name="out.path" location="${out.filename}"/>
 <xslt out="${out.path}"
 in="${in.path}"
 style="${ant.home}/etc/log.xsl">
 </xslt>
 </target>
</project>

We invoke this from its parent directory, pointing it at files relative to this directory:

C:\AntBook\app>ant -f tasklib\create-html-log.xml
 -Din.filename=log\deploy-log.xml -Dout.filename=log\deploy.html

Because the project set its base directory to be .., all files are resolved relative to the
parent directory, rather than the one in which the build file itself lives. This is a con-
venience if you want to keep helper build files in a subdirectory, controlling directory
clutter. The output log indicates that the build file did locate the files we wanted:

Buildfile: tasklib\create-html-log.xml

default:
 [style] Processing C:\AntBook\app\log\deploy-log.xml to
 C:\AntBook\app\log\deploy.html
 [style] Loading stylesheet C:\Java\Apps\jakarta-ant\etc\log.xsl

BUILD SUCCESSFUL
330 CHAPTER 13 WORKING WITH XML

Converting the full XML log into a more succinct HTML file (here from 160KB to
7KB), lets people download the log over slow network connections or via email. The
<mail> task could easily mail the results to a mailing list. There is an easier way to
send a success or failure message, the MailLogger, which we will cover in chapter 20.
That approach, however, does not generate HTML files of the build log.

13.5 LOADING XML DATA INTO ANT PROPERTIES

We covered the <xmlproperty> task in chapter 3, but it deserves mention here as
well. If you have XML data files that contain values needed in your build process, the
<xmlproperty> task may be able to help. It has some notable issues, however: it
does not perform local DTD resolution and it only provides access to the first ele-
ment or attribute value if there are duplicate names. An example data file:

<?xml version="1.0" encoding="UTF-8" ?>
<data>
 <element attribute1="attribute1">element1</element>
 <element attribute2="attribute2">element2</element>
</data>

We load this data file in Ant:

<xmlproperty file="data.xml"
 keepRoot="false"
 collapseAttributes="true"
/>
<echo>
 Values

 element = ${element}
 element.attribute1 = ${element.attribute1}
 element.attribute2 = ${element.attribute2}
</echo>

This results in the following output:

[echo] Values
[echo] ------
[echo] element = element1
[echo] element.attribute1 = attribute1
[echo] element.attribute2 = attribute2

Despite the shortcomings, such as the second <element> value becoming inaccessi-
ble and the confusing way in which attribute1 and attribute2 are both accessible, this
task can be handy when you have well-known simple XML data and need access to a
piece of it during the build process.
LOADING XML DATA INTO ANT PROPERTIES 331

13.6 NEXT STEPS IN XML PROCESSING

A feature likely to be available in the very near future is JAXB support: the new pro-
cess for creating Java classes from an XML description, classes that at run time you
can bind to an XML document; all the parsing of the document and mapping of
XML data to class data will be handled for you. This will make handling of XML
documents whose structure you know at compile time much easier. Obviously, an
Ant task to create the classes is the way to integrate this with an Ant-based build pro-
cess. We would expect such a task to appear shortly after Sun finally releases JAXB.
There is also an open source project, Castor, (at exolab.org), that, among other
things, creates Java classes from an XSD schema. We use Castor in our projects, sim-
ply with a <java> call; it’s good, but needs an Ant task with dependency checking to
be great.

13.7 SUMMARY

Ant uses XML to describe the build, so it is a highly XML-centric build tool. It can
also process XML during the build. Validating XML is the obvious first step; the
<xmlvalidate> task enables you to ensure that your XML is well formed and
matches the DTD or XSD description of the file.

The <xslt> task enables you to transform XML during the build. This lets you
store content in XML form and then dynamically generate HTML, WML, or JSP
pages from it. The <xslt> task is a very powerful tool, but you first have to put in
the effort to learn XSL.

Ant itself can generate an XML version of its build log; this can be transformed
using XSL to produce a readable HTML file. Ant could then perform some follow-
on action, such as copying the file to a local web server, or emailing it to the develop-
ment team.
332 CHAPTER 13 WORKING WITH XML

C H A P T E R 1 4

Enterprise JavaBeans

14.1 EJB overview 333
14.2 A simple EJB build 335
14.3 Using Ant’s EJB tasks 336
14.4 Using <ejbjar> 337
14.5 Using XDoclet for EJB

development 340

14.6 Middlegen 345
14.7 Deploying to J2EE

application servers 348
14.8 A complete EJB example 349
14.9 Best practices in EJB projects 354
14.10 Summary 354
Building Enterprise JavaBeans applications is a complex Java development process.
The sheer volume of Java code needed for each entity bean forces the need for code
organization and management. Ant plays a crucial role in the building of EJB-based
projects by tackling the tough issues, allowing developers to concern themselves with
development rather than with building and deployment.

14.1 EJB OVERVIEW

Enterprise JavaBeans play a prominent role in the Java 2 Enterprise Edition (J2EE) suite
of specifications. The EJB specifications provide component-based distributed comput-
ing. The goal of J2EE is to allow component developers to focus on developing business
models and processes that leverage container-provided services such as distributed trans-
actions, declarative security, and persistence. The separation of roles, development,
assembly, deployment, and administration, is often touted as a primary benefit of EJB.

It is hard work to create a good bean model in EJB development, and handing off
the database binding of beans to the container can be a performance bottleneck;
implementing persistence yourself is extra work. Some of the premium enterprise
IDEs make EJB development easier, but it has still been mostly a manual task. In the
333

past, the effort and the cost of full J2EE servers have been barriers to adoption too,
but now you can get high-quality application servers such as JBoss1 and HP Applica-
tion Server for free.

Ant and XDoclet do make EJB development significantly easier, leaving only archi-
tectural issues to the developers.

14.1.1 The many types of Enterprise JavaBeans

In the EJB 2.0 specifications, there are three types of EJBs: entity beans, session
beans, and message-driven beans. An entity bean typically represents business model
data and can either take advantage of container-managed persistence (CMP) or pro-
vide its own persistence implementation (bean-managed persistence, BMP). Session
beans typically represent business processes such as workflow and control, and facili-
tate complex entity bean transactions. Session beans come in two flavors: stateful and
stateless. Stateful session beans may represent, for example, a single-user’s shopping
cart. A stateless session bean is useful for providing services that can be accomplished
without storing state between method invocations. Finally, message-driven beans
(MDBs) are new to the EJB 2.0 specification and exist to process asynchronous mes-
sages received from a Java Message Service (JMS).

The EJB 2.0 specification also has other interesting features such as container-man-
aged relationships (CMR) and local interfaces. Prior to the EJB 2.0 specification, all
EJB clients, regardless of location, were required to use remote interfaces. Now you
can use high-performance local interfaces, which avoid the overhead of remote
method invocation (RMI).

14.1.2 EJB JAR

The primary artifact of EJB development is the EJB JAR file. An EJB JAR file can
consist of one or more Enterprise JavaBeans and all of the .class files associated with
each EJB. Within the META-INF directory of an EJB JAR file is a deployment
descriptor named ejb-jar.xml, as well as any vendor-specific metadata. Figure 14.1
illustrates the typical components in an EJB application.

The developer creates the actual entity or session bean. The EJBHome interface and
the EJBObject remote interface for the EJB are also historically developer-created
modules, although XDoclet or other code generators do away with these tedious steps.

In the simplest possible EJB JAR, the contents are

• A single EJB

• A home interface

• A remote interface

• An XML deployment descriptor

1 JBoss (jboss.org) isn’t J2EE certified because it doesn't have access to the tests; HP Application Server (http:
//www.hpmiddleware.com) is J2EE certified, but you don’t get the source. Both seem good value for money.
334 CHAPTER 14 ENTERPRISE JAVABEANS

With the simplest possible EJB JAR file containing four pieces, the build process of a
large EJB project can get quite complex. Luckily, there are Ant-based tools to make
the job a bit easier.

14.1.3 Vendor-specific situations

The cause of many headaches when using EJB is the vendor-specific nature of
EJB deployment. Most application servers have their own specific additional deploy-
ment descriptors. Often vendor-specific processes, such as the generation of support
classes, need to occur. For example, IBM WebSphere requires several metadata files:
Schema.dbxmi, Map.mapxmi, ibm-ejb-jar-bnd.xmi, and ibm-ejb-jar-ext.xmi. Such
vendor-specific files are often generated from vendor supplied tools, or can be built
using XDoclet or other code-generation techniques.

14.2 A SIMPLE EJB BUILD

The most rudimentary way to build an EJB JAR file is to create all the necessary Java
code and a deployment descriptor yourself, compile the code, and then use the
<jar> task to bundle it all. If your project has only one or a small number of fixed
EJB JAR files, this is the best solution. It is simple, but it does not scale. Listing 14.1
provides an example.

<target name="compile" depends="init">
 <javac destdir="${build.classes.dir}"
 debug="${build.debug}"
 srcdir="${src.dir}">
 <classpath refid="compile.classpath"/>
 <include name="**/*.java"/>
 </javac>
</target>

Interfaces Skeletons

Container

Server

Client

Stubs

EJBObject

EJBHome

Figure 14.1

Typical EJB scenario with home

and remote interfaces accessed

from the client through RMI

Listing 14.1 Building an EJB JAR using <jar>
A SIMPLE EJB BUILD 335

<target name="jar" depends="compile">
 <jar destfile="${dist.dir}/${ejbjar.name}"
 basedir="${build.classes.dir}">
 <metainf dir="metadata" includes="ejb-jar.xml"/>
 </jar>
</target>

The code in listing 14.1 compiles all the Java source code and builds an EJB JAR file
with the metadata/ejb-jar.xml file built into the META-INF directory. The main dif-
ference in the code shown here and the <jar> usage shown in section 6.3.2 is the
inclusion of the deployment descriptor in the META-INF directory.

14.3 USING ANT’S EJB TASKS

Ant includes a handful of EJB-related tasks, most of which are vendor specific. The
vendor-specific tasks are now showing their age, though, and may not be applicable
to the latest versions of the application servers. Check the Ant documentation for the
specific version information.

WebLogic

WebLogic is the most well represented J2EE application server in terms of EJB tasks.
The tasks include:

• <wlrun> and <wlstop> to start and stop the WebLogic server. You can use
<wlrun> inside the <parallel> task in order to allow other tasks to execute
against the running server.

• <ddcreator> to create ejb-jar.xml deployment descriptors from text-based
descriptor files.

• <ejbc> to compile WebLogic-specific support classes including the RMI stubs
and skeletons. This task is for an older version of WebLogic; it is more likely
that the nested <weblogic> element of <ejbjar> would be used instead.

• <serverdeploy>, new in Ant 1.5, using a nested <weblogic> subelement,
to hot-deploy an EAR, WAR, or JAR to WebLogic servers.

iPlanet Application Server

There is an <iplanet-ejbc> task to build the EJB stubs and skeletons for the
iPlanet Application Server. The <ejbjar> task has a nested <iplanet> element
that you should probably use instead.

Borland Application Server

Specific to the Borland Application Server, but needed in a more general sense, is the
<blgenclient> task. It creates the client EJB JAR from the server EJB JAR file.
336 CHAPTER 14 ENTERPRISE JAVABEANS

14.4 USING <EJBJAR>

In projects where the use of EJB is more sophisticated than what the simple <jar>
capabilities can handle, use <ejbjar>. The <ejbjar> task provides two services. It
can introspect ejb-jar.xml-compliant files and build EJB JAR files with the classes
specified and their dependencies. It also provides vendor-specific deployment build
tools as nested elements inside the task.

The <ejbjar> task scans a directory structure for deployment descriptors and
uses the matched descriptors to build an EJB JAR for each deployment descriptor that
it processes. This allows it to generate any number of EJB JAR files in one sweep as
opposed to having to do them individually with their own <jar> tasks. Another great
advantage of <ejbjar> is that it pulls in dependencies for the classes named in the
deployment descriptors it processes. In particular, it automatically locates superclasses
and incorporates them into the resultant JAR. There are many bells and whistles to
the <ejbjar> task, but we only touch upon a few of them in the examples provided.
The documentation provided with the Ant distribution is the best source for detailed
information on the many attributes and options.

NOTE Ant 1.5’s <ejbjar> task supports EJB 2.0, including local interfaces and
message-driven beans. Ant 1.4.1 does not support these and ignores them
when processing ejb-jar.xml files.

Packaging a bean with <ejbjar>

Our application takes advantage of EJB by providing stateless session bean access to
our searching functionality. Very simply, our session bean code is:

package org.example.antbook.session;

import org.example.antbook.common.Document;
import org.example.antbook.common.SearchException;
import org.example.antbook.common.SearchUtil;

import javax.ejb.SessionBean;
import javax.ejb.SessionContext;

public class SearchSessionBean implements SessionBean {
 public void setSessionContext(SessionContext context) {
 }

 public void ejbCreate() {
 }

 public void ejbRemove() {
 }

 public void ejbActivate() {
 }

 public void ejbPassivate() {
 }
USING <EJBJAR> 337

 public Document[] search(String query) throws SearchException {
 return SearchUtil.findDocuments(query);
 }

 public void init(String indexDir) throws SearchException {
 SearchUtil.init(indexDir);
 }
}

Using our common library search functionality, our session bean merely acts as a
wrapper to this functionality, which can also be used directly from our stand-alone
command-line search tool and our web interface. The search and init2 methods
are direct pass-through methods to our SearchUtil capability. Our deployment
descriptor, shown in listing 14.2, is typical and contains references to the home,
remote, and entity beans.

<ejb-jar>

<description>
AntBook EJB
</description>
<enterprise-beans>
 <session>
 <description>
 Search Bean
 </description>
 <ejb-name>SearchSessionBean</ejb-name>
 <home>org.example.antbook.session.SearchSessionHome</home>
 <remote>org.example.antbook.session.SearchSessionRemote</remote>
 <ejb-class>org.example.antbook.session.SearchSessionBean</ejb-
class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
 </session>
</enterprise-beans>

<assembly-descriptor>
 <container-transaction>
 <method>
 <ejb-name>SearchSessionBean</ejb-name>
 <method-name>*</method-name>
 </method>
 <trans-attribute>Supports</trans-attribute>
 </container-transaction>
</assembly-descriptor>
</ejb-jar>

2 The init method would be better handled as JNDI lookup, but does have the advantage of allowing
the client to control the index being searched.

Listing 14.2 The EJB deployment descriptor for the enterprise application
338 CHAPTER 14 ENTERPRISE JAVABEANS

Building the EJB JAR file by using <ejbjar>:

<ejbjar srcdir="${build.classes.dir}"
 descriptordir="metadata"
 destdir="${dist.dir}"
 basejarname="${ejbjar.name}"
 genericjarsuffix="">
 <include name="ejb-jar.xml"/>
</ejbjar>

The basejarname and genericjarsuffix attributes, as well as several other
attributes unused in this example, provide control over the names of the generated
EJB JAR files. Because this example is only generating a single EJB JAR file (note that
it only includes a single ejb-jar.xml file), we want to control the name of the JAR pre-
cisely. Again, you should refer to Ant’s documentation for more details on JAR file
naming as it involves complexity beyond what we cover.

The srcdir attribute, somewhat confusingly, refers to the directory containing
the classes referred to by the deployment descriptor files, not to the actual source code.
The descriptordir is the base directory to use when scanning for deployment
descriptors. Deployment descriptors do not have to be named ejb-jar.xml; some devel-
opers name them to match the generated EJB JAR file. The task renames deployment
descriptor to ejb-jar.xml when embedded in the JAR file regardless of its original
name. The destdir attribute specifies where the generated JAR files should be writ-
ten. Depending on the options selected, the JAR files could be written into a directory
hierarchy mirroring the hierarchy of the deployment descriptors processed, which
gives you flexibility.

14.4.1 Vendor-specific <ejbjar> processing

Nested within the <ejbjar> task are vendor tags to tackle vendor-specific needs.
Table 14.1 shows the vendors and capabilities currently supported.

Table 14.1 The vendor-specific subtasks for <ejbjar>. Some vendors also supply their own ver-

sion of Ant with other extensions to the task.

Vendor Tag Capabilities

Borland Application
Server

<borland> Generates and compiles the stubs and skeletons, builds the
server JAR, and, optionally, the corresponding client JAR file.

iPlanet Application
Server

<iplanet> Builds the specific skeletons and stubs needed and incorpo-
rates any iPlanet-specific deployment descriptors.

JBoss <jboss> JBoss does not require any pregeneration or compilation of
stubs and skeletons, but there are JBoss-specific deploy-
ment descriptors that are incorporated: jboss.xml and
jaws.xml.

Java Open Applica-
tion Server (JOnAS)

<jonas> Generates the JOnAS stubs and skeletons and incorporates
its vendor-specific deployment descriptors.

continued on next page
USING <EJBJAR> 339

Although new vendors or users can easily create the necessary customizations to add
to the list of supported deployment tools, Ant’s current architecture does not provide
the capability to dynamically add subelements to <ejbjar>. Adding new ones
requires a change to the actual task code of <ejbjar>.

One consequence is that where some vendors provide their own extension ele-
ments, they do so by providing their own modified version of the Ant jar files, which
can cause no end of confusion. This restriction is unfortunate and needs to be ad-
dressed in a future version of Ant.

14.5 USING XDOCLET FOR EJB DEVELOPMENT

If you’ve ever felt the pain of dealing with the enormous amount of support code for
an EJB project you will likely find XDoclet’s EJB support invaluable. In chapter 11,
we explored XDoclet’s @todo and templating capabilities, but it really shines with EJB.

The goal of XDoclet’s EJB support is to enable developers to write Enterprise Java-
Beans without ever having to write a deployment descriptor or remote interface.
Instead, you just code the bean implementation, mark it up with a few custom Javadoc
tags, and have all the support structures generated for you.

Returning to our stateless session search bean, figure 14.2 demonstrates the use of
two simple @tags to generate of all the needed EJB support components. The class-
level @ejb.bean type="Stateless" marks the class as a stateless session bean,
rather than as stateful. Both methods that we want to expose to our remote clients get
flagged with an @ejb.interface-method tag.

Using an optional view-type attribute on the @ejb.interface allows the
method to be exposed as a remote or local (EJB 2.0) interface, or both, giving great
control over such details.

This example only demonstrates a session bean, but XDoclet also generates entity
bean-specific code such as primary key classes and data access objects. The utility meth-
ods generated consist of helper getHome methods to return the home interface from the
InitialContext. This Ant code generated all the files shown in figure 14.2:

WebLogic <weblogic> Invokes the WebLogic ejbc tool to build the WebLogic EJB
JAR. There are some issues with this process, so refer to
the Ant documentation for details.

WebSphere <websphere> Incorporates the WebSphere specific deployment descrip-
tors and can optionally invoke the WebSphere ejbdeploy
tool. This is probably the trickiest vendor <ejbjar> plug-in
to work with. Depending on the options used, it can require
that the IBM JDK be used, and configuration of the class-
path to locate all of the necessary WebSphere classes is
involved.

Table 14.1 The vendor-specific subtasks for <ejbjar>. Some vendors also supply their own ver-

sion of Ant with other extensions to the task. (continued)

Vendor Tag Capabilities
340 CHAPTER 14 ENTERPRISE JAVABEANS

<ejbdoclet
 sourcepath="src"
 destdir="${build.dir}"
 classpathref="xdoclet.classpath"
 excludedtags="@version,@author"
 ejbspec="1.1">

 <fileset dir="src">
 <include name="**/*Bean.java" />
 </fileset>

 <remoteinterface/>
 <homeinterface/>
 <utilobject/>
 <deploymentdescriptor destdir="${build.dir}/ejb/META-INF"/>
 <jboss/>
</ejbdoclet>

The ejbspec attribute tells XDoclet to do the right things code and deployment
descriptor generation-wise for the desired EJB specification (1.1 or 2.0). While
migrating from one container version to another is not likely to be headache-free,
XDoclet performs a lot of the work for you.

14.5.1 XDoclet subtasks

Because of the variability in deployment descriptors between various EJB containers as
well as the sheer volume of architectural options with EJB in general, XDoclet has many
configuration possibilities. The <ejbdoclet> usage shown in section 14.5 illustrates
the build-file writer’s control over what artifacts are generated. In that example, the gen-
eration includes remote interfaces, home interfaces, utility objects, standard EJB de-
ployment descriptor, and vendor-specific JBoss deployment descriptors.

ejb-jar.xml Vendor-
specific

metadata

Home interface
(local and remote)

Remote or
local interface

Lookup utility
methods

/**
 * @ejb:bean type="Stateless"
 */
public class SearchSessionBean implements SessionBean {

// ...

 /**
 * @ejb:interface-method
 */
 public Document[] search(String query) throws SearchException {
 return SearchUtil.findDocuments(query);
 }

 /**
 * @ejb:interface-method
 */
 public void init(String indexDir) throws SearchException {
 SearchUtil.init(indexDir);
 }

SearchSessionBean

Figure 14.2

The classes and XML files that <ejbdoclet>

can create from @ejb tags
USING XDOCLET FOR EJB DEVELOPMENT 341

Nested within the <ejbdoclet> Ant task are subtasks, the XDoclet term for
nested elements in its Ant tasks. Table 14.2 shows the available subtasks for the <ejb-
doclet> task. We cover vendor-specific subtasks in section 14.5.3.

The <template> (discussed in chapter 11) and <xmlTemplate> subtasks are also
valid subtasks for <ejbdoclet>, which allows custom XDoclet templating to occur
in the same sweep of the source code that EJB generation uses. Each subtask has its
own share of attributes, and there are standard attributes that all subtasks share. Each
subtask can override the destdir, mergedir, and templatefile for added con-
trol over output location and merge files, and to override the XDoclet template used.
There are many other options to the subtasks; consult the excellent XDoclet docu-
mentation for the details.

14.5.2 XDoclet’s @tags

The power of XDoclet comes from the metadata stored in the @tags. Another major
piece of information that is gathered from source code analyzed by XDoclet is the
class structure, specifically the inheritance hierarchy, interfaces implemented, and the
method names and signatures. XDoclet uses many EJB-specific @tags to define meta-
data and to control the generation process. From XDoclet’s documentation, here is a
typical example of a class-level entity bean Javadoc block:

/**
 * This is an account bean. It is an example of how to use the
 * EJBDoclet tags.
 *
 * @see Customer Accounts are owned by customers, and a customer can
 * have many accounts.

Table 14.2 <ejbdoclet> subtasks

Subtask Artifacts Generated

<dao> Abstract data access object interfaces

<dataobject> EJB data objects

<deploymentdescriptor> EJB standard-compliant deployment descriptor, ejb-jar.xml

<entitybmp> Entity bean BMP classes derived from the abstract entity bean classes

<entitycmp> Entity bean CMP classes derived from the abstract entity bean classes

<entitypk> Primary key classes

<homeinterface> Home interfaces

<localhomeinterface> Local (EJB 2.0) home interfaces

<localinterface> Local (EJB 2.0) interfaces

<remoteinterface> Remote interfaces

<session> Session bean classes derived from the abstract session bean classes

<utilobject> Utility objects for local/home interface lookups

<valueobject> Value object classes
342 CHAPTER 14 ENTERPRISE JAVABEANS

 *
 * @ejb.bean name="bank/Account"
 * type="CMP"
 * jndi-name="ejb/bank/Account"
 * primkey-field="id"
 * @ejb.finder signature="Collection findAll()"
 * unchecked="true"
 * @ejb.interface remote-class="test.interfaces.Account"
 */

14.5.3 Supporting different application servers with XDoclet

Even by using XDoclet’s automation, we cannot escape vendor-specific issues. Fortu-
nately, XDoclet handles this cleanly with vendor-specific @tags that can be inter-
spersed with the general XDoclet EJB tags. The result is a single bean class with all of
the needed tags to generate all the desired artifacts, perhaps with quite a lot of tags if
a project targets multiple application servers. Despite the possible mess of @tags, the
benefits are enormous: multivendor support with automatic code generation of all
the ugliness freeing you to work on business logic rather than fighting with the gory
details. See table 14.3.

14.5.4 Ant property substitution

An interesting and powerful feature of XDoclet is its Ant property substitution fea-
ture. XDoclet uses the same syntax that Ant uses for property expansion: ${ }. If an
Ant property exists for the name between the brackets, XDoclet replaces it with the
value of the Ant property.

Table 14.3 XDoclet’s vendor-specific subtasks for EJB development

Vendor Subtask Description

Apache SOAP <apachesoap> Generates Apache SOAP deployment descriptors from
EJB classes and non-EJB classes. Methods to expose
are tagged with @soap:method.

Bluestone (now HP
Application Server)

<bluestone> Produces HPAS-specific deployment descriptors.

Castor <castormapping> Creates a Castor mapping.xml file.

JBoss <jboss> Produces jaws.xml and jboss.xml.

JRun <jrun> Creates JRun-specific deployment descriptor.

MVCSoft <mvcsoft> Generates MVCSoft configuration file.

Orion <orion> Creates Orion-specific deployment descriptor.

Pramati <pramati> Generates Pramati-specific deployment descriptor.

Struts (from
Apache Jakarta)

<strutsform> Creates Struts form-bean source code from entity beans.

WebLogic <weblogic> Produces WebLogic-specific deployment descriptors.

WebSphere <websphere> Generates WebSphere-specific deployment descriptors
such as Schema.dbxmi.
USING XDOCLET FOR EJB DEVELOPMENT 343

To illustrate, we use the <strutsform> subtask. Tagging entity bean classes with
an @struts:form tag causes Struts ActionForm classes to be generated. One of the
optional parameters to @struts:form is an extends attribute specifying the base
class to extend for the generated Java code, defaulting to the Struts org.apache.
struts.action.ActionForm class. Our entity bean class consists of two XDoclet
tags at the class level:

package org.example.antbook.ejb;

import javax.ejb.CreateException;
import javax.ejb.EJBException;
import javax.ejb.EntityBean;
import javax.ejb.EntityContext;
import javax.ejb.FinderException;

/**
 * Sample entity bean
 *
 *@ejb.bean type="BMP"
 *@struts:form extends="${struts.base.class}"
 */
public class SomeEntityBean implements EntityBean {
 // . . .
}

We could have specified our base class directly or have had the default Struts base
class used by not specifying the extends attribute at all. By providing a bit of insula-
tion between our application and the Struts API, we allow ourselves the flexibility to
inject new functionality (perhaps form validation features). By using ${struts.
base.class}, our build can dynamically change the base class that gets used on the
generated code. Our <ejbdoclet> task now looks like this:

<property name="struts.base.class"

 value="org.apache.struts.action.ActionForm"/>
<ejbdoclet
 sourcepath="${java.src.dir};src"
 destdir="${java.src.dir}"
 excludedtags="@version,@author"
 ejbspec="2.0"
 classpathref="xdoclet.classpath">

 <packageSubstitution packages="ejb" substituteWith="interfaces"/>

 <fileset dir="${java.src.dir}">
 <include name="**/*Bean.java" />
 </fileset>

 <fileset dir="src" includes="**/*Bean.java"/>

 <!—- Several XDoclet subtasks omitted here -->
344 CHAPTER 14 ENTERPRISE JAVABEANS

 <strutsform>

 <packageSubstitution packages="ejb" substituteWith="struts"/>
 </strutsform>

</ejbdoclet>

By default, the standard Struts base class is used; however, if a different base class is
desired, the property struts.base.class can be overridden. This override could
occur at many levels, depending on your needs, but typically it would be from a
properties file (see Ant properties in chapter 3). You could even define a new base
class from the command-line:

ant -Dstruts.base.class=org.example.antbook.struts.BaseForm

Overriding a base class at build time is perhaps an extreme example of XDoclet’s Ant
property substitution, and use of a factory-like design pattern could certainly accom-
plish similar capabilities. The possibilities that open up with this feature are astound-
ing—code-generation with build-time control over switches and parameters.

Note the use of <packageSubstitution> nested in <ejbdoclet> and within
<strutsform>. By default, generated code gets placed in the same package as the orig-
inal source code being processed. Code can be relocated to more meaningful packages,
and their corresponding directories, by using <packageSubstitution>. For exam-
ple, our sample entity bean is in package org.example.antbook.ejb. All code,
except from <strutsform>, is generated into org.example.antbook.inter-
faces. The <strutsform>-generated code overrides the global package substitution
and its code generates into package org.example.antbook.struts.

14.6 MIDDLEGEN

Having <ejbdoclet> generate all the EJB support code and descriptors is great,
but the common practice of going from a database to the EJB models takes time. By
using XDoclet, we can save an enormous amount of effort by simply creating a single
Java file for each bean with the appropriate tags. Perhaps you already have an existing
database that you want to reverse engineer into entity beans. This is precisely the pur-
pose of a great tool called Middlegen, created by Aslak Hellesøy, who is also a mem-
ber of the XDoclet development team. See figure 14.3.

Figure 14.3

Middlegen user interface,

displaying a table relationship
MIDDLEGEN 345

To create entity beans from a database, we simply point Middlegen at our (SQL
Server) database.

<taskdef

 name="middlegen"
 classname="middlegen.MiddlegenTask"
 classpath="${middlegen.jar}"
/>

<middlegen
 gui="${gui}"
 destination="${java.src.dir}"
 driver="${db.driver}"
 databaseurl="${db.url}"
 username="${db.username}"
 password="${db.password}"
 schema="${db.schema}"
 catalog="${db.catalog}"
 package="org.example.antbook.ejb"
 interfacepackage="org.example.antbook.interfaces"
/>

The <middlegen> task works in two modes, based on the gui switch: classes may be
generated automatically or interactively (the latter through the user interface shown
in figure 14.3). Our database schema simply has two tables, Product and Order,
which are linked with a one-to-many relationship. The Middlegen task creates a sin-
gle-entity bean class for each table processed. The code contains the necessary @tags
to be further processed by XDoclet’s <ejbdoclet> task. Listing 14.3 shows a sam-
ple class generated for our Product table.

package org.example.antbook.ejb;

/**
 * @author Middlegen
 *
 * @ejb.bean
 * type="CMP"
 * cmp-version="2.x"
 * name="Product"
 * local-jndi-name="org.example.antbook.interfaces.ProductLocal"
 * view-type="local"
 *
 * @weblogic:table-name Product
 * @weblogic:data-source-name middlegen.database
 * @weblogic:persistence
 *
 * @jboss:table-name Product
 */
public abstract class ProductBean implements javax.ejb.EntityBean {

Listing 14.3 Example entity bean generated from Middlegen

Standard XDoclet container
managed persistence tags

Automatic
vendor-specific
support added
346 CHAPTER 14 ENTERPRISE JAVABEANS

 /**
 * Context set by container
 */
 private javax.ejb.EntityContext _entityContext;

 /**
 * Returns the productId
 *
 * @return the productId
 *
 * @ejb.persistent-field
 * @ejb.pk-field
 *
 * @weblogic:dbms-column ProductID
 *
 * @jboss:column-name ProductID
 */
 public abstract java.lang.Long getProductId();

 // ... some code removed for brevity ...

 /**
 * Returns a collection of local Orders
 *
 * @return a collection of local Orders
 *
 * @ejb.relation
 * name="product-order"
 * role-name="product-has-order"
 *
 * @weblogic:column-map
 * foreign-key-column="ProductID"
 * key-column="ProductID"
 * @jboss:relation
 * fk-constraint="true"
 * fk-column="ProductID"
 * related-pk-field="ProductID"
 */
 public abstract java.util.Collection getOrders();

 // ... some code removed for brevity ...

}

The next step is to have XDoclet process these generated files and build all of
the other necessary pieces, including vendor-specific deployment descriptors. In
section 14.8, a complete build incorporating Middlegen, XDoclet, compilation, and
building the EJB JAR and EAR files is shown.

Relationship with
Order table
MIDDLEGEN 347

Middlegen in practice

Middlegen is still in its infancy and has a few notable issues that may preclude out-of-
the-box use:

• It is geared to EJB 2.0, so it does not generate EJB 1.x-compliant code.

• At the time of writing, only WebLogic and JBoss vendor-specific tags are being
generated, although this will change quickly.

• We ran into issues with JDBC drivers and were unable to use Hypersonic SQL
and Microsoft Access.3 Middlegen was unable to determine the table relation-
ships with those databases. Some JDBC metadata calls that Middlegen uses are
unsupported by at least a few drivers. We finally got our example relationships
working against Microsoft SQL Server 2000.

Even if Middlegen does not work out of the box for a particular database or EJB con-
tainer vendor, the time invested in tweaking Middlegen’s freely available source code
or XDoclet entity bean template is likely to be well spent. The combination of Mid-
dlegen and XDoclet is a great benefit to EJB developers. There are many database
EJB reverse-engineering tools available, but the open-source and easily tweakable
nature of these two products make them very attractive. The community support
available is unlikely to be matched by any commercial product vendors. It’s quite
common for developers to write their own code generators, but it might just be time
to roll up your sleeves and contribute to efforts such as Middlegen instead!

To use Middlegen effectively, we recommend that you explore its capabilities grad-
ually, starting with a few tables in a simple database. If you send it up against a 30-
table database with lots of relations between the entries, you will be intimidated by the
amount of code that it generates. The generated code should be left alone, if at all pos-
sible; if you do change it, copy it away to safety first. You do not want an automated
tool stomping on your source.

14.7 DEPLOYING TO J2EE APPLICATION SERVERS

Before the release of version 1.5, Ant has had no specific support for EJB deploy-
ment. Although with a friendly JBoss server running locally, development deploy-
ment can be as simple as using <copy> to move an EJB JAR, WAR, or EAR to its
deploy directory. Production deployment is an entirely different situation, however;
we cover it in more detail in chapter 18. Ant 1.5 ships with a <serverdeploy> task
designed similarly to the <ejbjar> task in that it is a container for vendor-specific
subelements. At the time of writing, only two vendors have <serverdeploy> sup-
port: WebLogic and JOnAS. Deploying to a WebLogic server can be accomplished by
using the nested <weblogic> element:

3 We wanted a lightweight and easily distributable working example, thus our preference for using
Hypersonic SQL for our database examples.
348 CHAPTER 14 ENTERPRISE JAVABEANS

<serverdeploy action="deploy"

 serverUrl="t3://myserver:7001"
 classpath="${classpath}"
 username="${user.name}"
 password="${user.password}"
 source="${lib.dir}/ejb_myApp.ear">
 <weblogic application="myapp"
 component="ejb_foobar:myserver,productionserver"
 />
</serverdeploy>

We predict that other vendors will be supported in the near future.

14.8 A COMPLETE EJB EXAMPLE

While we have typically refrained
from long, boring code listings in this
book, it is important to show a com-
plete example of how all the pieces fit
together to build an EJB JAR by
using most of the techniques and
tasks discussed in this chapter.

Listing 14.4 demonstrates using
Ant to build a database from SQL,
reverse engineering it into entity
beans by using Middlegen, generating
many EJB artifacts from the Middle-
gen-generated entity beans and man-
ually built source code, compiling it
all, and then bundling it all into an
EJB JAR. Figure 14.4 shows this
graphically.

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE project [
 <!ENTITY properties SYSTEM "file:../../../app/properties.xml">
]>
<project name="EJB Examples" default="main" basedir=".">

 &properties;

 <property name="name" value="ejbexample"/>
 <property name="build.dir" location="build"/>
 <property name="src.dir" location="src"/>
 <property name="gen.src.dir"
 location="${build.dir}/src/java"/>
 <property name="java.classes.dir"

Listing 14.4 EJB JAR generation all the way from database metadata

Figure 14.4

Complete EJB

development

process, auto-

mated by Ant
A COMPLETE EJB EXAMPLE 349

 location="${build.dir}/classes"/>
 <property name="ejb.dd.dir"
 location="${java.classes.dir}/META-INF"/>
 <property name="standard-ejb.dir"
 location="${build.dir}/standard-ejb"/>
 <property name="ejb.jar.file"
 location="${standard-ejb.dir}/${name}-ejb.jar"/>

 <property name="sql.dir" location="sql"/>
 <property name="sql.create.file"
 location="${sql.dir}/create.sql"/>

 <property name="application.xml"
 location="metadata/application.xml"/>

 <property name="db.dir" location="${build.dir}/db"/>
 <property name="db.name" value="example"/>
 <property name="db.url" value="jdbc:hsqldb:${db.dir}/${db.name}"/>
 <property name="db.driver" value="org.hsqldb.jdbcDriver"/>
 <property name="db.username" value="sa"/>
 <property name="db.password" value=""/>

 <path id="compile.classpath">
 <pathelement location="${j2ee.jar}"/>
 <pathelement location="${struts.jar}"/>
 </path>

 <path id="xdoclet.classpath">
 <pathelement location="${log4j.jar}"/>
 <pathelement location="${xdoclet.jar}"/>
 <pathelement location="${j2ee.jar}"/>

 <!-- javadoc is needed -->
 <pathelement path="${java.class.path}"/>
 </path>

 <!-- == -->
 <!-- Default starting point -->
 <!-- == -->
 <target name="main" depends="ear"/>

 <!-- == -->
 <!-- Clean everything -->
 <!-- == -->
 <target name="clean" description="Clean all generated stuff">
 <delete dir="${build.dir}"/>
 <delete dir="${db.dir}"/>
 </target>

 <!-- == -->
 <!-- Create sample DB -->
 <!-- == -->
 <target name="build-db"
 description="Build sample database">
350 CHAPTER 14 ENTERPRISE JAVABEANS

 <mkdir dir="${db.dir}"/>
 <sql driver="${db.driver}"
 url="${db.url}"
 userid="${db.username}"
 password="${db.password}"
 print="true"
 autocommit="true"
 src="${sql.create.file}"
 onerror="continue">
 <classpath>
 <pathelement location="${hsqldb.jar}"/>
 </classpath>
 </sql>
 </target>

 <!-- == -->
 <!-- Run Middlegen -->
 <!-- == -->
 <target name="middlegen" depends="build-db"
 description="Run Middlegen">
 <mkdir dir="${gen.src.dir}"/>

 <taskdef name="middlegen"
 classname="middlegen.MiddlegenTask"
 classpath="${middlegen.jar};${xdoclet.jar};${hsqldb.jar}"
 />

 <middlegen gui="${gui}"
 destination="${gen.src.dir}"
 driver="${db.driver}"
 databaseurl="${db.url}"
 username="${db.username}"
 password="${db.password}"
 package="org.example.antbook.ejb"
 interfacepackage="org.example.antbook.interfaces"
 />
 </target>

 <!-- == -->
 <!-- Run XDoclet -->
 <!-- == -->
 <target name="xdoclet" depends="middlegen"
 description="Generate artifacts from EJBs">
 <mkdir dir="${ejb.dd.dir}"/>

 <taskdef name="ejbdoclet"
 classname="xdoclet.ejb.EjbDocletTask"
 classpath="${xdoclet.jar}"
 />

 <property name="struts.base.class"
 value="org.apache.struts.action.ActionForm"/>

Creates the
database from
SQL CREATE
TABLE script

Middlegen produces
XDoclet-configured
entity bean classes

for each table
A COMPLETE EJB EXAMPLE 351

 <ejbdoclet sourcepath="${gen.src.dir};${src.dir}"
 destdir="${gen.src.dir}"
 excludedtags="@version,@author"
 ejbspec="2.0"
 classpathref="xdoclet.classpath">

 <packageSubstitution packages="ejb"
 substituteWith="interfaces"/>

 <fileset dir="${gen.src.dir}">
 <include name="**/*Bean.java" />
 </fileset>

 <fileset dir="${src.dir}" includes="**/*Bean.java"/>

 <dataobject/>
 <valueobject/>
 <localinterface/>
 <utilobject/>
 <localhomeinterface/>
 <entitypk/>
 <entitycmp/>
 <homeinterface/>
 <remoteinterface/>
 <entitypk/>
 <strutsform>
 <packageSubstitution packages="ejb" substituteWith="struts"/>
 </strutsform>
 <deploymentdescriptor destdir="${ejb.dd.dir}"
 validatexml="true"
 />

 <jboss version="2.4"
 xmlencoding="UTF-8"
 destdir="${ejb.dd.dir}"
 />
 </ejbdoclet>
 </target>

 <!-- == -->
 <!-- Compile everything -->
 <!-- == -->
 <target name="compile" depends="xdoclet"
 description="Compile source code">
 <javac destdir="${java.classes.dir}"
 classpathref="compile.classpath">
 <src path="${gen.src.dir};${src.dir}"/>
 </javac>
 </target>

 <!-- == -->
 <!-- Build EJB JARs -->
 <!-- == -->
 <target name="ejb-jar" depends="compile"
 description="Make EJB JAR files">
 <mkdir dir="${standard-ejb.dir}"/>

XDoclet generates
EJB artifacts from

Middlegen and
our own code

Compiles both generated
and maintained code
352 CHAPTER 14 ENTERPRISE JAVABEANS

 <ejbjar srcdir="${java.classes.dir}"
 descriptordir="${ejb.dd.dir}"
 destdir="${standard-ejb.dir}"
 naming="ejb-name"
 genericjarsuffix="-ejb.jar">
 <include name="ejb-jar.xml"/>
 <dtd publicId="-//Sun Microsystems, Inc.//
DTD Enterprise JavaBeans 1.1//EN
location="${j2ee.dir}/${j2ee.subdir}/ejb-jar_1_1.dtd"/>
 </ejbjar>
 </target>

 <!-- == -->
 <!-- Build EAR -->
 <!-- == -->
 <target name="ear" depends="ejb-jar"
 description="Build EAR file">
 <mkdir dir="${dist.dir}"/>
 <ear destfile="${dist.dir}/${name}.ear"
 appxml="${application.xml}">
 <fileset dir="${standard-ejb.dir}"/>
 </ear>
 </target>

</project>

There are some things to note about listing 14.4:

• Keep the generated code separate from the code you write. We do this with
temporary directories built by Middlegen and XDoclet and referenced in
<ejbdoclet> and <javac>.

• Typically, Middlegen would not be an integral part of a build process because of
its time-consuming nature on large schemas and because a build process should
not generally require a database server to run. The Middlegen target could be
made conditional on a flag, or taken out of the main dependency graph. Per-
haps even the entity beans generated by Middlegen would be moved to the
source code repository and only updated when the schema changes.

• Ant properties are used for everything that could conceivably need to be over-
ridden, including the location for the EAR’s application.xml file using
${application.xml}.

• Until XDoclet’s dependency checking and speed improves, the xdoclet target
should be made conditional on an <uptodate> set flag to ensure it is only run
when needed.

Builds EJB JAR file
based on XDoclet-
generated deployment
descriptor

Packages EJB JAR
file into EAR
A COMPLETE EJB EXAMPLE 353

14.9 BEST PRACTICES IN EJB PROJECTS

When you start creating entity beans, you end up with many little bean classes. If
these classes are autogenerated with Middlegen, then you have directories full of
beans; follow it through with individual EJB JAR, and you have many JARs to deal
with. Tame this chaos by following these conventions:

• Keep interfaces/datatypes separate for easy reuse in client apps

• Use <ejbjar> to build unified JAR files

14.10 SUMMARY

Enterprise JavaBeans are a complex, yet powerful, addition to the J2EE suite. Ant has
what it takes to tackle the additional build chores associated with EJB projects. In the
simplest cases with hand-made (or generated using non-Ant-based tools) EJB code,
simple compilation and packaging into a JAR file is all that is needed. Larger projects,
which are more the norm for EJB use, need more capabilities. Ant, along with some
additional open-source tools, provides the features demanded in large-scale EJB
projects.

Ant’s provided <ejbjar> task builds a dynamic number of EJB JARs, in addition
to providing vendor-specific build capabilities for many application servers. It uses
standard EJB deployment descriptors. These deployment descriptors can be built any
number of ways from vendor supplied tools to handcrafting them in a text editor, but
XDoclet is our recommended automation tool for EJB code and deployment descrip-
tor generation.

Middlegen provides an XDoclet entity bean-generation process based on database
metadata. Reverse engineering a schema into entity beans in an Ant-automated way,
and employing the other EJB techniques in this chapter, can mean the difference
between a smooth-flowing project and one riddled with domino-effect manual main-
tenance problems. If you are using EJB, do yourself and your project a big favor: inves-
tigate these tools and evaluate them for use in your environment.
354 CHAPTER 14 ENTERPRISE JAVABEANS

C H A P T E R 1 5

Working with web services

15.1 What are web services and

what is SOAP? 356
15.2 Creating a SOAP client

application with Ant 357
15.3 Creating a SOAP service with

Axis and Ant 363
15.4 Adding web services to an

existing web application 367
15.5 Writing a client for our

SOAP service 371

15.6 What is interoperability, and
why is it a problem? 376

15.7 Building a C# client 376
15.8 The rigorous way to build a

web service 381
15.9 Reviewing web service

development 382
15.10 Calling Ant via SOAP 383
15.11 Summary 384
Web services are an emerging target of software development. Put simply, a web ser-
vice is a web or enterprise application that provides a way for other programs to call it
by using XML as the means of exchanging data. If you can build and deploy a web
application, you can build and deploy a web service.

If it’s all so easy, why do we have a whole chapter on web services? Because they
add new problems to the process: integration and interoperability. Client applications
need to be able to call your web service, including applications that are written in dif-
ferent languages or that use different web service toolkits. We need to extend our exist-
ing development process to integrate client-side and interoperability tests.

In this chapter, we extend the web application we wrote in chapter 12, adding a
SOAP interface to it. We use the Apache Axis library to provide our SOAP interface,
rather than the Sun version, because it comes from a sister project to Ant and because
we like it. After adding SOAP to our application, we build tests for it, first with a Java
client, and then with a C# client running on the .NET platform. As we said, integra-
tion and interoperability are the new challenges of a web service development process.
355

We do not delve deeply into the details of SOAP and web services; we encourage
you to read books on the subject (for example, Wesley 2002, and Graham 2001), as
well as the SOAP specifications hosted in the web services working group at the W3C
(http://www.w3.org/2002/ws/). We do explain the basic concepts behind web ser-
vices, however, and show how you can use Ant to build, test, and call a web service.

15.1 WHAT ARE WEB SERVICES AND WHAT IS SOAP?

Web services use XML as the language of communication to provide computing
functionality as a service over the Internet. Web services extend the web, so every ser-
vice exposes itself as one or more URLs, URLs that provide functionality in response
to POST or GET requests. The exact details of the communication are still evolving;
SOAP (Simple Object Access Protocol) and REST (Representational State Transfer)
are the current competing ideologies. REST is a conceptual model of how to expose
objects, properties, and methods as URLs (Fielding 2000); to implement a REST ser-
vice you export URLs for all the objects and attributes you wish callers to have access
to; callers send and receive data to and from the URLs in the format they prefer.
SOAP has more of a Remote Procedure Call (RPC) flavor. A single URL acts as an
endpoint; a SOAP endpoint can receive different requests/method calls in the posted
request, and return different XML responses for the different methods.

Central to SOAP is WSDL, the Web Services Description Language. This is
roughly the SOAP equivalent of an Interface Definition Language (IDL). SOAP 1.1
clients use it to examine a remote API, and that services use to define which API they
export, as shown in figure 15.1. Unlike the old RPC world, where writing an IDL file
was mandatory, in the new SOAP universe, you can write your classes and let the run
time generate the WSDL from it. Many web service practitioners consider this to be
a bad thing, as it makes interoperability with other SOAP implementations, and main-
tenance in general, that much harder. It is, therefore, a shame that WSDL is even
harder to work with than classic IDL.

SOAP 1.2, still under development, looks to be moving away from an RPC model, in
which the caller blocks till the response is received, to a more asynchronous model in
which SOAP messages are routed to a destination. Some of the low-level APIs used to
support XML messaging in Java can work with this model, specifically the JAXM API
for XML messaging.

Application server

Web Service

Endpoint

Endpoint

WSDL
description

XML
response

XML
request

?WSDL

Client
application

Figure 15.1

SOAP-based web services

offer service metadata in

their WSDL file and method

invocation with XML

requests and responses.
356 CHAPTER 15 WORKING WITH WEB SERVICES

15.1.1 The SOAP API

The Java API for XML-based RPC (JAX-RPC) is a higher level SOAP API. Both the
Apache and Sun toolkits implement JAX-RPC. This API comprises the javax.
xml.soap and javax.xml.rpc packages; the different libraries provide their own
implementations of these APIs. Apache Axis has its own API under org.apache.
axis. Although these APIs are powerful, they are also complex. Although we will use
these APIs and their implementation, we will avoid learning the APIs ourselves by
handing off the grunge work to Axis and associated tools.

15.1.2 Adding web services to Java

SOAP support in Java is still evolving; initially Sun neglected it—with Java every-
where, there was no need for web services. However, Sun has pulled enough of a
U-turn to embrace SOAP, with full support promised in J2EE 1.4. They also provide
the Java web services Developer Pack as a download from http://java.sun.com/
webservices/. This large download includes many well-known Apache components:
Tomcat, Xerces, Xalan, and even Ant. Other vendors provide their own toolkits for
supporting web services in Java.

We stick with the Apache Axis library, from the sibling project of Jakarta, because
it is nice to be able to step into the code to debug everything. We also know that if
there is anything we don’t like about the implementation we can get it fixed, even if
that means doing it ourselves. You can download Apache Axis from its home page,
http://xml.apache.org/axis/; we have used the beta-1, beta-2, and later CVS versions.
Like all open source projects, it is continually evolving, so some details may have
changed since we wrote this.

Both the Sun and Apache implementations have a moderately complex deployment
process: the Sun server library only works with a specially modified version of Tomcat,
whereas the Apache implementation prefers that you add your services to their example
web application, rather than write your own. We will be patching our existing web ser-
vice to support Axis, which involves some effort and some more testing.

15.2 CREATING A SOAP CLIENT APPLICATION WITH ANT

Before we build our own service, we will pick an existing web service and build a cli-
ent for it. This lets us explore the client-side experience and build process, before we
go deeper into web service development. All that we learn here will apply to our own
integration tests.

The Apache Axis library contains two programs for use at build time: WSDL2Java
and Java2WSDL. These programs create Java classes from a WSDL description and
vice versa. There are also two tasks—<java2wsdl> and <wsdl2java>—which are
Ant wrappers around the programs. Unfortunately, in the beta-2 release, these tasks
are not part of the binary distribution; they live in the test package, and you must build
them yourself. Because these tasks are not part of the official distribution, and because
CREATING A SOAP CLIENT APPLICATION WITH ANT 357

they are undocumented, we are not going to cover them. Instead, we will call the doc-
umented programs with the <java> task. Figure 15.2 shows the overall workflow of
our Ant build file.

15.2.1 Preparing our build file

The first step in our build process is to name the endpoint, the URL of the service
that we will call. We will use one of the services offered by xmethods (http://
xmethods.net), a service that provides a stock quote. First, we set a property to point
to the WSDL file of the service:

<property name="endpoint"
 value=
 "http://services.xmethods.net/soap/urn:xmethods-delayed-quotes.wsdl"
 />

We then define the directory locations to store the cached file, and to store any gener-
ated Java. As usual, we do not want to place generated source into our source tree,
because of the risk of accidental overwriting. We also need an init target to set up
the build.

 <property name="axis.dir"
 location="${lib.dir}/xml-axis" />
 <property name="xercesxalan.dir"
 location="${lib.dir}/xercesxalan" />

 <property name="build.dir" location="build"/>
 <property name="fetched.dir" location="${build.dir}/fetched"/>
 <property name="generated.dir" location="${build.dir}/generated"/>

Application server

Web service

Endpoint

<java>
WSDL2Java

<javac>

<java> client

XML
request

Java
proxy

Java
client

WSDL
file

XML
response

<get> WSDL
from server

WSDL
description

Figure 15.2

The build file to create and run a web

service client application. You only

write the client application that calls

the service via the proxy classes.
358 CHAPTER 15 WORKING WITH WEB SERVICES

 <target name="init">
 <mkdir dir="${fetched.dir}"/>
 <mkdir dir="${generated.dir}"/>
 <mkdir dir="${cached.dir}"/>
 <mkdir dir="${build.classes.dir}"/>
 <condition property="offline">
 <not>
 <http url="${endpoint}"/>
 </not>
 </condition>
</target>

Our init target probes for the endpoint being reachable, and sets a property if we
are offline. When offline, we will not be able to run the service, but we still want to
be able to compile the code against a cached copy of the WSDL file.

Retrieving the WSDL from the remote server

The remote server describes the SOAP API from a WSDL file, which it serves along-
side the SOAP endpoint. We fetch this WSDL file by using the <get> task:

<target name="fetch-wsdl" depends="init" unless="offline">
 <get src="${endpoint}" dest="${fetched.dir}/api.wsdl"/>
</target>

To run this target behind a firewall, you may need to set the Java proxy properties to get
to the remote endpoint; the <setproxy> task lets you do this inside your build file:

<setproxy proxyhost="web-proxy" proxyport="8080" />.

15.2.2 Creating the proxy classes

After retrieving the file, we can create Java proxy stubs from the WSDL-described
API. These classes allow us to talk to a SOAP service from our own code, without
having to refer to javax.xml.soap or org.apache.axis in our code. It also
adds compile time-type safety into our use of the SOAP service—the generated
classes talk to the SOAP API, so we don’t have to. To create the stubs, we first set up
the Axis classpath, then write a target to create the Java classes from the WSDL we
have just fetched.

<path id="axis.classpath">
 <fileset dir="${axis.dist.dir}">
 <include name="**/*.jar"/>
 </fileset>
 <fileset dir="${xercesxalan.dist.dir}">
 <include name="*.jar"/>
 </fileset>
</path>

<target name="import-wsdl" depends="fetch-wsdl">
 <java
 classname="org.apache.axis.wsdl.WSDL2Java"
CREATING A SOAP CLIENT APPLICATION WITH ANT 359

 fork="true"
 failonerror="true"
 classpathref="axis.classpath"
 >
 <arg file="${fetched.dir}/api.wsdl"/>
 <arg value="--output"/>
 <arg file="${generated.dir}"/>
 <arg value="--verbose"/>
 <arg value="--package"/>
 <arg value="soapapi"/>
 </java>
</target>

This target runs the org.apache.axis.wsdl.WSDL2Java program to convert the WSDL
interface description into Java source. We do this with <java>, taking care to set up
the classpath to include all the files in the Axis lib directory. We also had to add an XML
parser to the classpath, so we include Xerces in the path. The alternative approach is to
add the Ant classpath to the <java> call, but we prefer to keep things self-contained.
We also run the class in a new JVM, so that if the program returns an error by calling
System.exit(), we get an exit code instead of the sudden death of Ant.

The parameters to the task tell WSDL2Java to create classes from the downloaded
WSDL file, into the package soapapi, into the directory build/generated. The result
of the build, with many long lines wrapped to make them readable is:

import-wsdl:
 [java] Parsing XML file:
 build/fetched/api.wsdl
 [java] Generating portType interface:
 build/generated/soapapi/StockQuoteService.java
 [java] Generating client-side stub:
 build/generated/soapapi/StockQuoteServiceSoapBindingStub.java
 [java] Generating service class:
 build/generated/soapapi/StockQuoteServiceService.java
 [java] Generating service class:
 build/generated/soapapi/StockQuoteServiceServiceLocator.java
 [java] Generating fault class:
 build/generated/soapapi/Exception.java

BUILD SUCCESSFUL

The program generated Java proxy classes for the endpoint. Let’s look at them to see
how we can use them.

What WSDL2Java creates

The target creates five Java classes that implement the client-side proxy to this service,
and one interface listing the methods offered by the remote service:

/**
 * StockQuoteService.java
 *
360 CHAPTER 15 WORKING WITH WEB SERVICES

 * This file was auto-generated from WSDL
 * by the Apache Axis Wsdl2java emitter.
 */

package soapapi;

public interface StockQuoteService extends java.rmi.Remote {
 public float getQuote(java.lang.String symbol) throws
 java.rmi.RemoteException, soapapi.Exception;
}

The program also creates a proxy class that implements this interface and redirects it
to a remote endpoint, and a locator class that finds the endpoint at run time and
binds to it.

15.2.3 Using the SOAP proxy classes

To use these generated classes, simply create a Java file that imports and invokes
them:

import soapapi.*;

public class SoapClient {

 public static void main(String args[]) throws java.lang.Exception {
 StockQuoteServiceServiceLocator locator;
 locator=new StockQuoteServiceServiceLocator();
 StockQuoteService service;
 service= locator.getStockQuoteService();
 for(int i=0;i<args.length;i++) {
 float quotation=service.getQuote(args[i]);
 System.out.println(args[i]+"="+quotation);
 }
 }
}

This service first creates a locator instance to locate the endpoint. In this example, it
always returns the same endpoint, but it is conceivable that a locator could use a Uni-
versal Description, Discovery, and Integration (UDDI) registry or other directory ser-
vice to locate a service implementation dynamically.

After creating the locator we bind to the service by asking the locator for a binding;
it returns an implementation of the remote interface—the stub class that WSDL2Java
created. With this binding, we can make remote calls, here asking for the stock price of
every argument supplied to the main method, that being the classic simple web service.

15.2.4 Compiling the SOAP client

Before we can run that method, we have to compile the source:

<target name="compile" depends="import-wsdl">
 <javac
 srcdir="src;${generated.dir}"
 destdir="${build.classes.dir}"
CREATING A SOAP CLIENT APPLICATION WITH ANT 361

 classpathref="axis.classpath"
 debuglevel="lines,vars,source"
 debug="true"
 includeAntRuntime="false"
 />
</target>

We supply a path to the source directory to include both our source and the gener-
ated files. One irritation of the current SOAP import process is that the Java files are
always regenerated, which means they always need recompilation. This makes the
build longer than it need be. Unless WSDL2Java adds dependency checking, you
should use something similar to <uptodate> to bypass the import-wsdl target
when it is not needed. There is an extra complication here; you need to use a <files-
match> test inside a <condition> to verify that the file you just fetched with
<get> hasn’t changed. We omit all this because it is so complex.

15.2.5 Running the SOAP service

With compilation complete, there is one more target to write:

<target name="run" depends="compile" unless="offline">
 <java
 classname="SoapClient"
 fork="true"
 failonerror="true"
 >
 <arg value="SUNW"/>
 <arg value="MSFT"/>
 <classpath>
 <path refid="axis.classpath"/>
 <pathelement location="${build.classes.dir}"/>
 </classpath>
 </java>
</target>

This target runs the stock quote client, fetching the stock price of Sun and Microsoft,
producing a result that we cannot interpret as good news for either of them, at least
during May 2002:

run:
 [java] SUNW=6.67
 [java] MSFT=52.12

If we were ambitious, we could save the output of the run to a properties file, and then
load the output as Ant properties and somehow act on them.1

1 Having applications output their results in the properties file format makes it very easy to integrate
their results into Ant or, indeed, into any other Java application. We have used this trick for Win32/
Java communications. XML is more powerful, but harder to work with.
362 CHAPTER 15 WORKING WITH WEB SERVICES

15.2.6 Reviewing SOAP client creation

As we have shown, Ant can create a build file that goes from a remote WSDL descrip-
tion to Java code and then it can compile and run this code to make remote SOAP
RPC calls.

More SOAP services could provide extra functionality for the build, such as return-
ing information from a remote database, information that could populate a file used
in the build or one of the build’s redistributables.

Alternative implementations to the Apache Axis SOAP libraries have different pro-
cesses for creating stub code from WSDL services. We have not looked at the process
for using alternate implementations in any detail, but they should be amenable to a
similar build process. If multiple Java SOAP implementations do become popular, we
may eventually see Ant adding a task to import WSDL that supports different imple-
mentations, just as <javac> supports many Java compilers.

15.3 CREATING A SOAP SERVICE WITH AXIS AND ANT

Apache Axis enables you to develop SOAP services in three ways: the simple way, the
rigorous way, and the hard way. The simple method is to save your Java files with the
.jws extension and then save them under the Axis web application; when you fetch
these files in a web browser Axis compiles them and exports them as web services.
The rigorous method is to write the WSDL for services, create the bindings and web
service deployment descriptors, copy these to the Axis servlet, and register these
deployment descriptors with the servlet.

The hard way is to retrofit an existing application with SOAP support and then
use either of the previous two approaches. It is a lot easier to develop under Axis than
it is to add SOAP to an existing web application.

Installing Axis on a web server

Axis is a web application. It is redistributed in the expanded form, rather than as a
WAR file. To install it, you copy everything under webapp/axis to the directory
webapp/axis in Tomcat. Because many versions of Tomcat 4 do not allow libraries in
WEB-APP/lib to implement java.* or javax.* packages, you also need to copy
jaxrpc.jar and saa.jar to CATALINA_HOME/common/lib. Make sure you have the
right lib directory—CATALINA_HOME/server/lib and CATALINA_ HOME/lib are
the wrong places. If you are trying to install Axis on other application servers and you
are using Java1.4, then you may need to configure the server so that the system prop-
erty java.endorsed.dirs includes the directory containing the jaxrpc.jar file.

If these URLs load, you know that you have a successful installation, assuming that
your copy of Tomcat is running on port 8080:

http://localhost:8080/axis/servlet/AxisServlet
http://localhost:8080/axis/StockQuoteService.jws?wsdl
CREATING A SOAP SERVICE WITH AXIS AND ANT 363

The first of these verifies that all the libraries are in place and all is well; the second
forces the Axis servlet to compile the sample web service and run it. The service is, of
course, a version of the infamous stock option service. If either URL is unreachable,
you may not be running Tomcat on that port; alter the URL to point to your server.
If you receive the 500 error code (internal server error), it is probably because the
libraries are not in the right place. Failing that, check the installation guide in the
Axis documents and FAQ at the Axis web site for more advice.

15.3.1 The simple way to build a web service

Now that Axis is in place and working, let us write our simple web service, which will
export the indexed search as a web service, enabling calling applications to send a
search term and then get the result back as a list of URLs. We will also tack in a man-
agement call to tell us the last search string submitted.

The easiest way to write a web service in Axis is to implement the service API as a
Java class, save it with the extension .jws, and copy it into the Axis web application
anywhere outside the WEB-INF directory. We could do that, but it is too reminiscent
of the JSP problem: if the server compiles the code, bugs only show up after deploy-
ment. Given that .jws files are really .java files, why can’t we compile them in advance,
just to make sure they work? We can, and that’s what we are going to do.

There are two ways to do this. We could work with the .jws files and then copy
them to files with a .java extension to test compile them. However, if we do that and
we find a bug, clicking on the error string in the IDE will bring up the copied file,
not the .jws original. Java IDEs don’t know that .jws files are really Java source, so we
would lose out on the method completion, refactoring, and reformatting that we
expect from a modern IDE. Clearly, the second approach—save as .java files and copy
to .jws during deployment—is the only sensible one. Of course, we have to differen-
tiate the service files from normal Java files, which we do by keeping them out of the
src directory tree, placing them into a directory called soap instead. In our build pro-
cess, we have to give these files a .jws extension before copying them to a web server
or into a WAR file. Figure 15.3 shows the build process.

copy to jws<javac>

deploy

Java
source

<war>

Figure 15.3

Our simple web service build process.

The <javac> step is only there to

validate files before deployment.
364 CHAPTER 15 WORKING WITH WEB SERVICES

This is what our simple service looks like, with a stub implementation of our
search call:

public class SearchService {

 private static String lastSearch="";
 private static final String[] emptyArray=new String[0];

 public String[] search(String keywords) {
 setLastSearch(keywords);
 return emptyArray;
 }

 public String getLastSearchTerm() {
 return lastSearch;
 }

 private void setLastSearch(String keywords) {
 lastSearch=keywords;
 }
}

The methods in bold are our service methods: one for end users, the search method that
always returns the same empty string array, and the other a management call to see what
is going on. A real system should split the management API into a separate endpoint, so
that access could be restricted, but we aren’t going to worry about that here.

To compile this code in Java, we have a short build file; it is so short, we include
it in its entirety as listing 15.1

<?xml version="1.0"?>
 <project name="soapserver" default="default"
 basedir="." >

 <property name="endpoint"
 value="http://localhost:8080/axis/SearchService.jws"/>

 <property environment="env"/>
 <property name="build.dir" location="build"/>
 <property name="build.classes.dir" location="build/classes"/>

 <target name="default" depends="test"
 description="create a web service" >
 </target>

 <target name="init">
 <mkdir dir="${build.classes.dir}"/>
 <fail unless="env.CATALINA_HOME">Tomcat not found</fail>
 </target>

 <target name="clean">
 <delete dir="${build.dir}"/>
 </target>

Listing 15.1 A build file to add a web service to an existing Axis installation
CREATING A SOAP SERVICE WITH AXIS AND ANT 365

 <target name="compile" depends="init"> b
 <javac
 srcdir="soap"
 destdir="${build.classes.dir}"
 debuglevel="lines,vars,source"
 debug="true"
 includeAntRuntime="false"
 >
 </javac>
 </target>

 <target name="deploy" depends="compile">
 <copy c
 todir="${env.CATALINA_HOME}/webapps/axis/">
 <fileset dir="soap" includes="**/*.java"/>
 <mapper type="glob" from="*.java" to="*.jws"/>
 </copy>
 </target>

 <target name="test" depends="deploy">
 <waitfor timeoutproperty="deployment.failed" d
 maxwait="30"
 maxwaitunit="second">
 <http url="${endpoint}?wsdl" />
 </waitfor>
 <fail if="deployment.failed"
 message="application not found at ${verify.url}" />
 <echo>service is live on ${endpoint}</echo>
 </target>
</project>

The first few targets are the traditional init, clean, and compile targets; the only
difference is the source directory for the compiler is now "soap" b. We do not
need to add any of the Axis libraries to the classpath, because we do not reference
them. All we need to do is declare public methods in our class and they become
methods in a SOAP web service. We do have to be careful about our choice of
datatypes if we want real interoperability; by restricting ourselves to integers, strings,
and arrays of simple datatypes, we are confident that other SOAP implementations
can call us.

The actual deployment task is a simple copy c of all the Java files under the web
directory into the CATALINA_HOME/webapps/axis/ directory tree. If we were
deploying remotely, we would use FTP instead. That’s it. No configuration files; no
need to restart the server. If only all deployments were so simple.

Simple deployment or not, we need to verify that the deployment worked. Our
test target tries to retrieve the WSDL description of the service for 30 seconds d;
if it is successful, it reports that the service is live and the build succeeds.
366 CHAPTER 15 WORKING WITH WEB SERVICES

15.4 ADDING WEB SERVICES TO AN EXISTING WEB APPLICATION

Now that we have shown the basics of web services and how to configure Tomcat to
work with Axis, it is time to retrofit a SOAP endpoint to our existing web applica-
tion. To do this we have add the appropriate libraries to the WEB-INF/lib directory,
and then configure Axis to work. We need to make some changes to the web.xml
configuration file to achieve that, but there we can use XDoclet.

15.4.1 Configuring the web application

Recall that in section 12.3.2, we configured the template files used by <webdoclet>
to include servlets conditionally. We now need to add the Axis configuration details to
the same template files. The first step is to extract the settings from the Axis/WEB-INF/
web.xml file, so we open it in an editor and find the <servlet> and <servlet-
mapping> tags. The servlet settings we insert into the servlets.xml file that <web-
doclet> uses to build our web application’s web.xml file is as follows:

<servlet>
 <servlet-name>AxisServlet</servlet-name>
 <display-name>Apache-Axis Servlet</display-name>
 <servlet-class>
 org.apache.axis.transport.http.AxisServlet
 </servlet-class>
</servlet>

<servlet>
 <servlet-name>AdminServlet</servlet-name>
 <display-name>Axis Admin Servlet</display-name>
 <servlet-class>
 org.apache.axis.transport.http.AdminServlet
 </servlet-class>
 <load-on-startup>100</load-on-startup>
</servlet>

The servlet mappings file sets up the bindings of these servlets to URL patterns
beneath the server, one for the Axis admin servlet, the others providing the SOAP
endpoints for the service clients. We find the values further down the Axis web.xml
file and paste them into our templates/servlet-mappings.xml file:

<servlet-mapping>
 <servlet-name>AxisServlet</servlet-name>
 <url-pattern>*.jws</url-pattern>
</servlet-mapping>

<servlet-mapping>
 <servlet-name>AxisServlet</servlet-name>
 <url-pattern>/servlet/AxisServlet</url-pattern>
</servlet-mapping>

<servlet-mapping>
 <servlet-name>AxisServlet</servlet-name>
ADDING WEB SERVICES TO AN EXISTING WEB APPLICATION 367

 <url-pattern>/services/*</url-pattern>
</servlet-mapping>

<servlet-mapping>
 <servlet-name>AdminServlet</servlet-name>
 <url-pattern>/servlet/AdminServlet</url-pattern>
</servlet-mapping>

The configuration data you need to paste may well vary from the beta-2 release, the
latest version at the time of writing, and the final version, so follow the process we
have described to get the most up-to-date settings.

15.4.2 Adding the libraries

The servlet configuration is not enough—we need to add the Axis libraries. We do
this by bringing all the JAR files from the xml-axis/lib directory into our WAR file.
Rather than do this naively, we first filter out any files that we don’t need, such as
log4j-core.jar and crimson.jar. We move these into a subdirectory called not_to_server.
This lets us use the pattern lib/**/*.jar to pull in all the Axis jar files needed client
side, while lib/*.jar works as the server-side pattern.

15.4.3 Including SOAP services in the build

Everything is ready; it is time to extend our web application with the SOAP entry
point. We do this with three property declarations and one new target:

<property name="soap.src.dir"
 location="soap"/>

<property name="soap.classes.dir"
 location="${build.dir}/soap/classes"/>

<property name="soap.jws.dir"
 location="${build.dir}/soap/jws"/>

<target name="make-soap-api"
 depends="init">
 <mkdir dir="${soap.classes.dir}"/>
 <javac
 srcdir="${soap.src.dir}"
 destdir="${soap.classes.dir}"
 includeAntRuntime="false"
 >
 <classpath>
 <path refid="compile.classpath"/>
 <pathelement location="${build.classes.dir}"/>
 </classpath>
 </javac>
 <copy todir="${soap.jws.dir}">
 <fileset dir="${soap.src.dir}"
 includes="**/*.java"/>
 <mapper type="glob" from="*.java" to="*.jws"/>
368 CHAPTER 15 WORKING WITH WEB SERVICES

 </copy>
</target>

This target compiles the service source using the full classpath of the project, includ-
ing any Java files we have compiled. If that succeeds, it copies the Java files into a stag-
ing directory, renaming the files in the process. We then need to add two lines to our
existing <war> task declaration, in the target make-war, and declare that this target
depends upon our new make-soap-api target. The result is that the Axis libraries
and our SOAP endpoint are now in our web application.

15.4.4 Testing the server for needed classes

We need to make sure the changes we have made to build process works, which
means writing tests. Ant already runs the HttpUnit tests we wrote in chapter 12
immediately after deployment. We now need to add a test to fetch our endpoint’s WSDL
description to verify that Axis is working.

Because Axis configuration and deployment is more complex—needing someone
to deploy the jax-rpc.jar outside the WAR file—this test is inadequate. If something
goes wrong with the configuration, then the test will fail, but it won’t provide clues as
to a solution. It may provide an error trace starting with a ClassNotFoundException,
but those errors mean nothing to the operations people who often install and config-
ure production web servers. To avoid them calling in the engineering staff (us!) to
diagnose the problem, we have to write tests with simpler diagnostics.

Our solution is to extend our JSP <happy> tag with a classMustExist attribute,
which if set, triggers an attempt to instantiate the class with Class.forName() and
throws a JSP exception if that attempt failed for any reason. Then we add a new
attribute, errorText, which, if set, overrides the text of the JspException thrown
when a test fails and provides more useful error messages. We had to do a bit of refac-
toring to do this cleanly. The result of these changes is that we can write a test file,
happyaxis.jsp, containing tests for classes found in the different Axis libraries:

<%@ taglib uri="/WEB-INF/antbook.tld" prefix="happy" %>
<html><head><title>happy</title></head>
<body>
<happy:happy
 classMustExist="javax.xml.soap.SOAPMessage"
 errorText="saaj needs to be installed correctly"/>
<happy:happy
 classMustExist="javax.xml.rpc.Service"
 errorText="jax-rpc needs to be installed correctly"/>
<happy:happy
 classMustExist="org.apache.axis.transport.http.AxisServlet"
 errorText="axis.jar not found"/>
<p>Axis libraries are present</p>
</body>
</html>
ADDING WEB SERVICES TO AN EXISTING WEB APPLICATION 369

This is a server-side mirror of the technique of using <available> and <fail> in a
build file to validate build-time requirements; now we can test for classes existing on the
server. This is a useful technique for any project with a complex deployment process.

15.4.5 Implementing the SOAP endpoint

With Axis integrated into our web application, and the deployment tests written, all
that remains is to generate client side JUnit tests, write the real client application, and
to bind the SOAP endpoint to our search code. We are going to tackle these in reverse
order, implementing the API first. Writing the basic code to implement the searching
from the SOAP endpoint turns out to be easy, although we are only returning the
local path to the documents, not a network accessible URL.

public String[] search(String keywords) {
 try {
 setLastSearch(keywords);
 String[] results;
 Document[] docs = SearchUtil.findDocuments(keywords);
 results=new String[docs.length];
 for (int i=0; i < docs.length; i++) {
 results[i]=docs[i].getField("path");
 }
 return results;
 }
 catch (SearchException e) {
 return emptyAarray;
 }
}

Some more work needs to done to return the documents—perhaps a new method
that returns the files as MIME attachments or a JSP page that serves it up in response
to a GET. We could also turn any local exceptions into AxisFault exceptions; Axis will
send these back over the network to the caller. We can evolve these features over time.

15.4.6 Deploying our web service

How do we deploy this web service? We already do this, because all we are doing is add-
ing new libraries, files, and configuration data to our existing web application. The com-
mand ant deploy in our webapp directory is all we need to update our application.

After deploying, there are two web pages that we can fetch to test. First is our happy page:

http://localhost:8080/antbook/happyaxis.jsp

This should return the message “Axis libraries are present.” We have added this page
to our list of pages to fetch using HttpUnit, so our deployment target triggers an
automatic probe of this page. The next page we fetch is the Axis-generated WSDL
file for the service:

http://localhost:8080/antbook/SearchService.jws?wsdl
370 CHAPTER 15 WORKING WITH WEB SERVICES

If the result of this fetch is an XML file, then everything is working. Axis has com-
piled the file and generated a WSDL description from its methods. Again, we modify
our HttpUnit test to fetch this file during deployment, so that we automatically verify
that Axis is working and that our SOAP endpoint is present whenever we deploy.

15.5 WRITING A CLIENT FOR OUR SOAP SERVICE

As usual, we want some unit tests, too, but this time we don’t need to write them—
we are going to make WSDL2Java do the work. The Axis utility will even generate
JUnit test cases, one for each method, simply by setting the --testcase option. We
do all this in a build file that is separate from the server and in a separate directory.
We need nothing of the server other than its endpoint and the WSDL we can get
from it. We will make Ant create the proxy classes and basic JUnit tests for us, and
then we will write and execute the real tests and Java client. Figure 15.4 shows the
process we will be implementing.

15.5.1 Importing the WSDL

To import the WSDL from our service, we just reuse our <get> target from 15.2.1.
This time we bypass all the connectivity tests, because we are binding to a local server:

<property name="endpoint"
 value="http://localhost:8080/antbook/SearchService.jws?wsdl" />

<target name="fetch-wsdl" depends="init">
 <get src="${endpoint}" dest="${local.wsdl}"/>
</target>

Application server

Web service

Endpoint

+hand editing

<java>
WSDL2Java

<javac>

XML
request

Java
proxy

Java
client

WSDL
file

XML
response

<get> WSDL
from server

WSDL
description

<java> client<junit> tests

Junit
test cases

Figure 15.4

We will test our service with client

side JUnit tests and a Java application.

We have to write the Java client and

flesh out the generated JUnit tests.
WRITING A CLIENT FOR OUR SOAP SERVICE 371

<target name="import-wsdl" depends="fetch-wsdl">
 <java
 classname="org.apache.axis.wsdl.WSDL2Java"
 fork="true"
 failonerror="true"
 classpathref="axis.classpath"
 >
 <arg file="${local.wsdl}"/>
 <arg value="--output"/>
 <arg file="${generated.dir}"/>
 <arg value="--verbose"/>
 <arg value="--package"/>
 <arg value="soapapi"/>
 <arg value="--testCase"/>
 </java>
</target>

When we run the import-wsdl target, the WSDLToJava program creates the fol-
lowing files in the directory named in ${generated.dir}/soapapi:

SearchService.java
SearchServiceService.java
SearchServiceServiceLocator.java
SearchServiceServiceTestCase.java
SearchServiceSoapBindingStub.java

These classes comprise the locator and proxy for the web service, as we saw in
section 15.2, and a new class containing an automatically generated JUnit test case.
We can use this generated test case as the framework for our test.

15.5.2 Implementing the tests

The generated JUnit test cases only test a call to the endpoint’s methods with some
parameters. For example, the test generated for the search method sends an empty
string as the search term and does nothing with the return value:

package soapapi;

public class SearchServiceServiceTestCase extends junit.framework.TestCase
{

 public SearchServiceServiceTestCase(String name) {
 super(name);
 }

 public void test1SearchServiceSearch() {
 soapapi.SearchService binding;
 try {
 binding = new soapapi.SearchServiceServiceLocator().
 getSearchService();
 }
 catch (javax.xml.rpc.ServiceException jre) {
 throw new junit.framework.
 AssertionFailedError("JAX-RPC ServiceException caught: " + jre);
 }
372 CHAPTER 15 WORKING WITH WEB SERVICES

 assertTrue("binding is null", binding != null);

 try {
 java.lang.String[] value = null;
 value = binding.search(new java.lang.String());
 }
 catch (java.rmi.RemoteException re) {
 throw new junit.framework.
 AssertionFailedError("Remote Exception caught: " + re);
 }
 }

Notice that this is a ready-to-compile JUnit test case; it subclasses junit.frame-
work.TestCase and provides a valid constructor. Even without writing another
line of code, we can test basic operation of our SOAP endpoint, and we can edit the
test cases to test the service properly. There are three things that we must do to create
real test cases. First, we must copy the generated file into our source tree, where it will
not be overwritten, and move it outside the soapapi package, so that if we compile
our source, and the generated directories, then no source file overwrites the other
.class file. Next, we edit the test methods to send valid data to the SOAP service, and
check for valid data coming back. For the test case above, we send a real search term
and require a nonempty array back:

try {
 java.lang.String[] value = null;
 value = binding.search("test");
 assertTrue("should have got an array back",
 value!=null && value.length>0);
}
catch (java.rmi.RemoteException re) {
 throw new junit.framework.
 AssertionFailedError("Remote Exception caught: " + re);
}

For the test of the getLastSearchTerm method, we search on a string and then ver-
ify that the service returns this string if we immediately call getLastSearchTerm.
Doing so introduces a small race condition on a laden system, but we ignore it:

public void test2SearchServiceGetLastSearchTerm() {
 soapapi.SearchService binding;
 try {
 binding = new soapapi.SearchServiceServiceLocator()
 .getSearchService();
 }
 catch (javax.xml.rpc.ServiceException jre) {
 throw new junit.framework.
 AssertionFailedError("JAX-RPC ServiceException caught: "
 + jre);
 }
 assertTrue("binding is null", binding != null);
WRITING A CLIENT FOR OUR SOAP SERVICE 373

 try {
 java.lang.String value = null;
 String searchTerm="test2";
 binding.search(searchTerm);
 value = binding.getLastSearchTerm();
 assertEquals(searchTerm,value);
 }
 catch (java.rmi.RemoteException re) {
 throw new junit.framework.
 AssertionFailedError("Remote Exception caught: " + re);
 }
}

To run the tests we have to compile the tests and proxy classes, now with a classpath
containing Axis, Xerces, and JUnit, then use <junit>, to call the tests. We configure the
task to search for **/*TestCase.java, rather than the usual **/*Test.java,
and do this over the source and generated directories:

<target name="test" depends="compile"
 description="Execute unit tests">
 <junit printsummary="yes"
 errorProperty="test.failed"
 failureProperty="test.failed"
 fork="true">
 <classpath>
 <path refid="axis.classpath"/>
 <pathelement location="${build.classes.dir}"/>
 </classpath>
 <batchtest>
 <fileset dir="${client.src.dir}"
 includes="**/*TestCase.java"/>
 </batchtest>
 </junit>
</target>

The first time we ran these tests it failed in test2SearchServiceGetLast
SearchTerm—we weren’t getting back the last term we searched for. It turned out
that Axis was creating a new object instance for each request, but we had expected a
servlet style reentrant invocation. Until we made the lastSearchTerm field in our
SearchService class static, it was being reset every invocation, causing the test
to fail. This is, of course, exactly what functional tests are for: to validate your
assumptions.2

2 The web service deployment descriptor can enable sessions, but it also has to be set up on the client
side. With JWS drop-in services, you do not get the option to specify this.
374 CHAPTER 15 WORKING WITH WEB SERVICES

15.5.3 Writing the Java client

After the tests pass, we can write the real Java client:

import soapapi.*;

public class SearchClient {

 public static void main(String args[]) throws Exception {

 SearchServiceServiceLocator locator;
 locator=new SearchServiceServiceLocator();
 soapapi.SearchService service=locator.getSearchService();

 String lastTerm=service.getLastSearchTerm();
 System.out.println("last search = "+lastTerm);

 String[] results=service.search(args[0]);
 for(int i=0;i<results.length;i++) {
 System.out.println(results[i]);
 }
 }
}

This client has three stages.

b It finds and binds to the service.

c It retrieves and displays the previous search term, for curiosity .

d It sends the first argument of our application to the web service as a search term, and
prints the results.

We have to run the program, of course, so let’s write a target to invoke it with <java>:

<target name="run" depends="test">
 <java
 classname="SearchClient"
 fork="true"
 failonerror="true"
 >
 <arg value="deployment"/>
 <classpath>
 <path refid="axis.classpath"/>
 <pathelement location="${build.classes.dir}"/>
 </classpath>
 </java>
</target>

What happens when we run this? Well, we run the search and get a list of Ant docu-
ments that contain the word “deployment”:

[java] last search = deployment
[java] /home/ant/docs/manual/OptionalTasks/ejb.html
[java] /home/ant/docs/manual/OptionalTasks/serverdeploy.html
 ...
[java] /home/ant/docs/manual/Integration/VAJAntTool.html

b

c

d

WRITING A CLIENT FOR OUR SOAP SERVICE 375

This means we have completed our example web service, from integration with our
application all the way to our client, including both configuration checks to probe for
Axis, and client-side functional tests to verify that the service does what we expect.
We are now very close to being able to declare the service ready for production. One
missing item is the extra server-side functionality to retrieve the indexed files; we will
leave this until version 2.0. What we do have to do for version 1.0 is verify that our
service is interoperable.

15.6 WHAT IS INTEROPERABILITY, AND WHY IS IT A PROBLEM?

Interoperability, or interop, as it is often called, is an ongoing issue with SOAP. The
developers of SOAP toolkits, the SOAPBuilders, all work on interoperability tests to
verify that foundational datatypes such as strings, integers, Booleans, arrays, and
base64 encoded binary data can all be exchanged between clients and servers.

This is all very well, but it is not enough; complex types are not yet standardized.
Consider the HashTable class: Java implements java.util.HashTable and
.NET has its own implementation in System.Collections.HashTable. You
can return one of these from a service you implement in your language of choice:

public HashTable getEmptyHashTable() {
 return new HashTable();
}

A client written to use the same toolkit as the service will be able to invoke this SOAP
method and get a hashtable back. A client written in another toolkit, or in a different
language, will not be able to handle this. If we were writing our server API by coding
a WSDL file first and then by writing entry points that implemented this WSDL, we
would probably notice that there is no easy way to describe a hashtable; conse-
quently, we would define a clean name-value pair schema to represent it. Because we
are developing web services the lazy way, by writing the methods and letting the run
time do the WSDL generation, we do suffer from the hashtable problem. There is no
warning at build time that the datatypes we are using in our service are not usable by
other SOAP libraries, which means that we may only find out that we have an interop
problem some time after we have deployed our service. We need to rectify this.

15.7 BUILDING A C# CLIENT

To detect interoperability problems early, we need to create a client with a different
SOAP toolkit and then verify that it can call our service.

Although we could use the Sun web services toolkit, we chose, instead, to make life
seemingly more complex by creating a C# client. It is a little known fact that there is
a task in Ant to compile C# programs, the <csc> task, and that Ant 1.5 added the
<wsdltodotnet> task to go alongside <csc>, purely to make C#-based interoper-
ability testing inside Ant possible and easy. Because these tasks call down to programs
376 CHAPTER 15 WORKING WITH WEB SERVICES

in the .NET framework SDK, they only work on a Windows PC with the SDK
installed. You do not need the commercial Visual Studio.Net, just the downloadable
SDK. The jEdit editor has a C# mode for editing, and we will build with Ant. The
Ant .NET tasks have not been tested with either the Rotor public source version of
.NET for FreeBSD or with the Ximian team’s Mono implementation.

Building a .NET client for our service is nearly identical to building a Java version:
we run a program to generate the stub classes, add an entry point class, build them,
and then run the program with our chosen arguments. See figure 15.5.

15.7.1 Probing for the classes

Because we are only supporting the Windows implementation of .NET, we can only
build the .NET client on Windows, and then only those versions with the .NET
SDK installed and on the PATH. How do we restrict this? With a few moderately
complex conditions:

<target name="probe_for_dotnet_apps" >
 <condition property="wsdl.found">
 <or>
 <available file="wsdl" filepath="${env.PATH}" />
 <available file="wsdl.exe" filepath="${env.PATH}" />
 <available file="wsdl.exe" filepath="${env.Path}" />
 </or>
 </condition>
 <echo> wsdl.found=${wsdl.found}</echo>
 <condition property="csc.found">
 <or>

Application server

Web service

Endpoint

<wsdltodotnet>

<csc>

<exec> client

XML
request

C#
proxy

C#
client

WSDL
file

XML
response

<get> WSDL
from server

WSDL
description

Figure 15.5

The stages of building and running a

C# client match that of the Java client,

except that we cannot generate unit

tests automatically. We still implement

the web service in Java.
BUILDING A C# CLIENT 377

 <available file="csc" filepath="${env.PATH}" />
 <available file="csc.exe" filepath="${env.PATH}" />
 <available file="csc.exe" filepath="${env.Path}" />
 </or>
 </condition>
 <echo> csc.found=${csc.found}</echo>
 <condition property="dotnetapps.found">
 <and>
 <isset property="csc.found"/>
 <isset property="wsdl.found"/>
 </and>
 </condition>
 <echo> dotnetapps.found=${dotnetapps.found}</echo>
</target>

These conditions ultimately set the dotnetapps.found property if we can find the
programs wsdl and csc on the PATH; we don’t tie ourselves to Windows explicitly, so
if new platforms add the programs, we will try and use them.

15.7.2 Importing the WSDL in C#

The first step in creating the client is to generate C# source from the WSDL. We use
the <wsdltodotnet> task to do this, feeding it the file we downloaded in
section 15.5.2 in the fetch-wsdl target:

<property name="out.csc" location="${generated.net.dir}/soapapi.cs"/>

<target name="import-dotnet" depends="probe_for_dotnet_apps,fetch-wsdl"
 if="dotnetapps.found">
 <wsdltodotnet destFile="${out.csc}"
 srcFile="${local.wsdl}"
 />
</target>

This target creates a single file that contains the web service proxy class. Here is a
fragment of the file:

[System.Web.Services.WebServiceBindingAttribute(
 Name="SearchServiceSoapBinding",
 Namespace="http://localhost:8080/antbook/SearchService.jws")]

public class SearchServiceService :
 System.Web.Services.Protocols.SoapHttpClientProtocol {

...

 /// <remarks/>
 [System.Web.Services.Protocols.SoapRpcMethodAttribute("",
 RequestNamespace="http://localhost:8080/antbook/SearchService.jws",
 ResponseNamespace="http://localhost:8080/antbook/SearchService.jws")]

 [return: System.Xml.Serialization.SoapElementAttribute("return")]

 public string getLastSearchTerm() {
378 CHAPTER 15 WORKING WITH WEB SERVICES

 object[] results = this.Invoke("getLastSearchTerm", new object[0]);
 return ((string)(results[0]));
 }
...
}

We don’t need to understand the details of this code, any more than we need to
understand the proxy code that Axis generates. Note, however, that all the declara-
tions in front of class and methods are attributes; these are like XDoclet tags except
that you are really declaring constructors for objects that get serialized into the binary
files. At run time, you can introspect the code to see what attributes are associated
with the program, the class, the methods, or member variables. In our code, the web
service support code in the .NET framework uses our declarations to bind properly
to our service at run time.

15.7.3 Writing the C# client class

We can now write our C# client:

using System;

public class DotNetSearchClient {

 public static void Main(String[] args) {

 SearchServiceService service=new SearchServiceService();

 String lastTerm=service.getLastSearchTerm();
 Console.WriteLine("last search = "+lastTerm);

 String[] results=service.search(args[0]);
 for(int i=0;i<results.Length;i++) {
 Console.WriteLine(results[i]);
 }
 }
}

By comparing this to the Java client in section 15.5.3, you will see that there is almost
no difference between the Java and the C# client; indeed, we used cut-and-paste to
create the C# client.

15.7.4 Building the C# client

Let’s compile this code by using the <csc> task:

<property name="out.app" location="${build.net.dir}/netclient.exe"/>

<target name="build-dotnet" depends="import-dotnet"
 if="dotnetapps.found">
 <copy toDir="${generated.net.dir}">
 <fileset dir="${src.net.dir}" includes="**/*.cs" />
 </copy>
BUILDING A C# CLIENT 379

 <csc
 srcDir="${generated.net.dir}"
 destFile="${out.app}"
 targetType="exe"
 >
 </csc>
</target>

The <csc> task will compile all C# files in and below the srcDir directory, just as
the <javac> task compiles Java source. Unlike <javac>, the output is not a direc-
tory tree full of object files. The task creates the executable, library, or DLL straight
from the source files. The task does check dependencies, and rebuilds the target file if
any of the input files have changed.

One little irritant of the task is that you can only specify one source directory. This
prevents us from building our handwritten source together with the generated source.
To fix this, we have to copy our handwritten source to the generated directory ,
before running the build. A consequence of this is that when we click on any error line
in an Ant hosting IDE, the IDE brings up the duplicate file, the one being compiled,
not the master copy. We have to be very careful which file we are editing. We
may enhance this task to support multiple source directories; as usual, check the
documentation.

15.7.5 Running the C# client

With the code compiled, it is time to run it, this time with <exec>:

<target name="dotnet" depends="build-dotnet" if="dotnetapps.found">
 <exec
 executable="${out.app}"
 failonerror="true"
 >
 <arg value="deployment"/>
 </exec>
</target>

What is the result of this? Well, we get nearly the same results as before—because we
are running against a local server on a Windows system, the file paths we get back are
all Windows based:

[exec] last search = deployment
[exec] C:\jakarta-ant\docs\manual\OptionalTasks\ejb.html
[exec] C:\jakarta-ant\docs\manual\OptionalTasks\serverdeploy.html
 ...
[exec] C:\jakarta-ant\docs\manual\Integration\VAJAntTool.html

This is exactly what we wanted—to call our Java web service from a C# client. Now
that we have this dual-language client import-and-build process working, we can
keep using it as we extend the classes.
380 CHAPTER 15 WORKING WITH WEB SERVICES

15.7.6 Review of the C# client build process

As you can see, it is not that much more complicated to build a C# program in Ant
than it is to build a Java application: the fact that Ant is the ubiquitous Java build tool
does not mean that it can only build Java programs, that is merely what it is best at.
In chapter 17, we will go one step farther and build native C++ code.

The reason we are compiling C# code here is not because we have a big C# project,
but because we need to verify that our Java-based web service is interoperable with the
other SOAP implementations. The process for doing so is the same for all target lan-
guages: import the WSDL, write an entry point or other test case, and run them. Were
we writing our web service in another language such as C# or Perl, we would be able
to use our build file to create an Axis/Java client to test the service, complete with gen-
erated JUnit test cases.

Often the act of running the WSDL importers is a good initial test of interopera-
bility, extending the entry point even better. It’s a pity that the Microsoft toolkit
doesn’t generate NUnit tests for us to use alongside the JUnit tests; we have to do these
by hand. If we did start developing a complex .NET client, we might find ourselves
taking a closer look at NAnt, a .NET version of Ant, found at SourceForge (http://
nant.sourceforge.net), and maybe <exec>, the NAnt build from our Ant task. Alter-
natively, we might write an <nunit> task for Ant.

Finally, we need to state that the hashtable problem is a fundamental problem with
web services: it is too easy to write a web service whose methods can only be called by
clients that use the same language and toolkit implementation as the service. This
belies the whole notion of using XML-based web services as a way to communicate
across languages. Something needs to be done to address this.

15.8 THE RIGOROUS WAY TO BUILD A WEB SERVICE

The most rigorous approach to building a web service is to create a WSDL specifica-
tion of the interface, and perhaps an XSD description of all the datatypes. SOAP has
its own syntax for declaring simple datatypes, but because XSD is more standardized,
we encourage you to follow the XSD path.

The other aspect of rigorous service development is to implement the service in a
Java file, and not as a JWS page, which lets you bypass the copy-based renaming of
Java source to JWS pages. The Java files just live in the same source tree as the rest of
the web application, and are validated by the build-time <javac> compile of the
main source tree.

We don’t go into detail on this more rigorous server-side development process. We
could probably write a whole new book on how to build, test, and deploy web services
with Ant, and get into much more detail into how SOAP and Axis work. What we
can do is provide some directions for you to follow, if you want to explore this prob-
lem. One of the best starting points is actually the test server classes you can find in
the Axis CVS tree; these are the most up-to-date examples of service generation.
THE RIGOROUS WAY TO BUILD A WEB SERVICE 381

3

To turn a Java class into a SOAP endpoint, you need to provide a Web Service
Deployment Descriptor (WSDD) that tells the Axis run time what the attributes of
the service are. In the descriptor, you must name the service and the class that imple-
ments it, and which class methods are to be accessible via SOAP. You can also register
handlers for SOAP headers. These are the SOAP equivalent of headers in an HTTP
request: little fragments of information that the SOAP endpoint or other server-side
code can use to implement features such as security and sessions. You could use HTTP
headers instead, but the SOAP header model integrates better with an XML-based
communication system, and works when you use alternative transports such as email.3

If you want to do complex SOAP handling, a deployment descriptor file is mandatory;
this means that you must use Java and not JWS files to implement your service.

After deploying your application, you have to register your WSDD files with the
Axis administration servlet. Unless you change this server to be accessible remotely,
you need to run code server side to register each deployment descriptor, and you need
to make a list of all the WSDD files to register. You can call the administration pro-
gram from a build file via <java>, so registering local builds is easy.

 Based on our past examples of generating XML descriptor files from Java source,
readers no doubt expect a new XDoclet task at that point. Unfortunately, we can’t pro-
vide one because XDoclet does not support Axis at the time of writing. We expect this
to be fixed eventually; the XDoclet team has promised us that they will be writing tags
for the Sun toolkit, so a matching Axis set makes sense.

When you are being fully rigorous, you write the XSD and then the WSDL files
before you implement your service class. Writing these files can be problematic; the
CapeClear editor (http://www.capeclear.com/) is the best there is for this purpose.
After writing the WSDL file, call WSDL2Java with the -server attribute, and the
program generates the server-side stubs for your service You can take these generated
classes and implement your web service behind them.

15.9 REVIEWING WEB SERVICE DEVELOPMENT

We have just set up an advanced build process to add SOAP support to our applica-
tion. Adding the Axis libraries and configuration settings to our existing web applica-
tion was relatively simple, but it forced us to add new deployment tests for missing
classes, implemented through our existing <happy> JSP page. With the libraries and
configuration all working, we can create web services simply by saving Java source
files with a .jws extension in the main web application directory.

Writing the service is half the problem; testing it, the remainder. The Axis client-
side utilities come into play here, creating Java proxy classes from our services’ WSDL
description. The WSDL2Java class can even generate basic JUnit test cases, which can
act as a foundation for hand-coded unit tests.

3 There is still one good reason for using cookies: hardware load balancers can direct requests to specific
servers based on cookie values.
82 CHAPTER 15 WORKING WITH WEB SERVICES

Web services are an area of heated development. Axis will evolve, Sun is coming
out with its own web service package, and, inevitably, Ant will acquire wrapper tasks
to simplify the stages of the build using Apache, Sun, and other toolkits.

Ultimately, web services are distributed applications scaled up. If you are writing
one, you are writing an application to work across the Internet, interoperating with
systems written in other languages, communicating over a protocol (HTTP) that is
chosen because it can get through firewalls, not because it is the best protocol for such
things (it isn’t). This is a major undertaking. Ant alone is not adequate. What Ant
gives you is the means to build, deploy, and test your code, including automated gen-
eration of client-side stub classes and test cases. It is not a silver bullet. It is, however,
along with JUnit, an essential tool for this kind of project.

15.10 CALLING ANT VIA SOAP

If calling SOAP services from a build file lets your program use remote services from
the build file, what is a good service to use? How about Ant itself?

Rant, Remote Ant, is a project under way at SourceForge (http://sourceforge.net/
projects/remoteant/). This project contains a web application that gives you remote
Ant access via a SOAP interface. You can submit a request from a remote system, nam-
ing a build file and a target in the file to execute. The servlet executes the build, return-
ing success or failure information.

This is a nice model for implementing a distributed build process, in which dif-
ferent machines in a cluster take on different parts of a big build. It could also be useful
for a build process in which a single central machine was the reference build system;
developers could use Rant to trigger a new build on this system from their own
machine. If the build process is sufficiently complex, especially if it integrates with
native compilers or a local database, a centralized build does start to make sense, even
if a replicable build environment were preferable. To trigger a remote build you simply
invoke it via an Ant task:

<taskdef name="rant"
 classname="com.einnovation.rant.RantTaskDef">
 <classpath>
 <fileset dir="lib">
 <include name="*.jar"/>
 </fileset>
 </classpath>
</taskdef>

<property name="endpoint"
 value="http://127.0.0.1:8080/rant/servlet/rpcrouter" />
<property name="target.file" location="../soap/soap.xml" />

<target name="default" >
 <rant buildFile="${target.file}"
 soapURL="${endpoint}"
 target="default"/>
</target>

Declares the task

Calls the
remote build
CALLING ANT VIA SOAP 383

That SOAP is the marshaling layer is irrelevant, except that it lets you trigger remote
Ant builds from any language that has a compatible SOAP library: Perl, Python,
maybe even the Microsoft.NET framework.

You should not place the Rant service up on a generally accessible web server.
Allowing any caller to invoke any Ant file in the system is a significant security issue.
Even worse, if the server supported anonymous FTP, a malicious person could upload
the build file before referring to it.

Neither of the authors uses this tool in any serious manner, but we like the idea.
If we did use it, we would change the API so that you could only select from a limited
number of build files, which would significantly lessen the security implications. The
other major issue that needs fixing in the current release, version 0.1, is that the service
does not return the output of the remote build. All you get now is a success message
or the failure exception; it needs to return the log as XML for postprocessing. There
is also the issue that Rant uses the original Apache SOAP product, not Axis; Axis has
better interoperability.

To use Rant, you need to install its web application on your server. After the appli-
cation server expands the application, you may need to update rant/WEB-INF/lib
with later Ant versions, and any libraries you need for optional tasks. This is because
it contains its own version of Ant in the web application’s lib directory.

Because the Rant tool is still in its infancy, we would expect it to address issues such
as these in future versions. It could become an essential and useful part of every com-
plex build process, replacing those deployment processes in which the client build file
uses the <telnet> task to connect to a remote server and run Ant remotely.

15.11 SUMMARY

We explored some aspects of integrating with SOAP-based web services. We demon-
strated how to fetch a WSDL description of a web service, and how to use Axis to
generate local proxy classes that you can integrate with your own source to create a
working web service client. As web services become more common and the SOAP
implementations more stable, an increasing number of people will use Ant to build
web service servers or clients. What we covered here is a foundation.

The easy way to add a web service to your existing web application is to give a Java
file the .jws extension and place it in the web application alongside HTML or JSP
pages. Axis, if you have installed and configured it correctly, will compile the file and
export it as a SOAP endpoint.

After exposing the endpoint, comes the other half of the problem: the client
side. We covered how to build Java and C# clients in Ant, both of which follow a
similar process. You fetch the WSDL description of the service, generate proxy
classes, and then compile and run these classes against hand-coded client applications.
Because interoperability is such an issue with SOAP, you need to continually import
and build client applications in as many languages and frameworks as you can manage.
384 CHAPTER 15 WORKING WITH WEB SERVICES

If you only build clients in the same language and SOAP toolkit as that of the server,
you may not discover that your service suffers from the hashtable problem until the
service goes live, which is never a good time to find out that you have a fundamental
design problem.

If you are working in the web services area, you should read some of our other
work, which will give you more insight into how to design, develop, and deploy these
systems (Loughran 2002-1, Loughran 2002-2). Working with web services can be fun,
but there are many challenges to address. Ant can certainly make the process more
tractable.
SUMMARY 385

C H A P T E R 1 6

Continuous integration

16.1 Scheduling Ant builds with

the operating system 387
16.2 CruiseControl 388
16.3 Anthill 397

16.4 Gump 401
16.5 Comparison of continuous

integration tools 405
16.6 Summary 406
Now that your interactive builds are working for you locally, it’s time to automate! In
single-developer environments, such automation may be overkill, but more than
likely, you are part of a team (whose members may be across the hall or around the
world). To keep control (and your sanity!) of larger-scale development efforts, an
integration build and routine deployment is needed.

Ant gets us most of the way there for continuous integration. Builds can be easily
scheduled and automated with Ant by using operating system job-scheduling capabil-
ities, but it’s still not enough. Here are some features that our builds accomplish by
using the techniques and tools in this chapter:

• Automated routine builds

• Build logs captured

• Application deployment to test server

• In-container test suite run

• Direct reporting of failures to the developer(s) causing them

• Build numbering

• Web-based reporting
386

After you have created a complete set of tests, wouldn’t it be good to run them every
night against a fresh build of the source? And if you can do that, wouldn’t it be even
nicer to run the task two or three times a day? How about whenever somebody checks
in some new source?

We also want our builds and tests to report failures; not to just broadcast build fail-
ures, but to notify the actual developer that broke the build. We also want logging of
build results, tagging of build numbers, and a web-based history of what has and what
hasn’t worked.

16.1 SCHEDULING ANT BUILDS WITH THE OPERATING SYSTEM

The most basic way to automate Ant builds is to use your operating system’s features
to schedule builds on a periodic basis. On Windows NT-based systems, including
Windows XP, the Task Scheduler service can be used to schedule a routine job. The
AT command queues a job that the service executes at the specified intervals. On
Unix-flavored systems, the queuing of a cron job is comparable to scheduling a job.
We’ll only demonstrate Windows and Unix automation, but you can do the same
thing on other platforms by writing a small shell script to fetch your source and run
your Ant build files.

16.1.1 The Windows way

Our Windows build.bat command file is quite short:

set OLDCP=%CLASSPATH%
set CLASSPATH=
cd \AntBook\app
cvs update -P -R -d
call %ANT_HOME%\bin\ant.bat clean all
set CLASSPATH=%OLDCP%

This batch file simply updates the local SCM sandbox and executes our build. It’s
best to craft your build files so that no system-specified classpath is needed; that is
why we temporarily unset CLASSPATH in our batch file. We do rely on CVS being
in the execution PATH, and the user having logged in once with cvs login, so that
the password is retained for later commands. To schedule the file using AT, we issue
the following command-line:

C:\>at 01:00 /every:M,T,W,Th,F,S,Su "c:\jobs\build.bat"
Added a new job with job ID = 1

C:\>at
Status ID Day Time Command Line

 1 Each M T W Th F S Su 1:00 AM c:\jobs\build.bat

Executing at with no parameters displays the jobs scheduled. This example schedules
our builds to run at 1 a.m. every day of the week.
SCHEDULING ANT BUILDS WITH THE OPERATING SYSTEM 387

16.1.2 The Unix version

First, we create a shell script such as this one:

cd ~/Projects/Antbook/app
cvs update -P -R -d
ant clean all

Then we modify our crontab file (using crontab -e) to schedule the build:

run at 00:30 every day 30 0 * * * $HOME/Projects/AntBook/app/rebuild.sh

Our build will now run every night, with email delivered whether or not it works.
This is good, but it is not frequent enough and we don’t want to be bothered when
the build worked. To get this to work, we set ANT_HOME in the system profile file
/etc/profile, and added ANT_HOME/bin to the path; assigning ANT_HOME in
the shell script and hard coding the path would avoid this.

16.1.3 Making use of scripting

Taking advantage of your operating system’s scheduling capabilities is a quick way to
automate builds, but does require writing a shell, batch, or Perl wrapper script. Unless
you’ve built SCM project code fetching into your build file or wrapper script, simply
automating a build does not accomplish a lot. There are several ways to improve these
types of scheduled builds to be more robust:

Put your SCM system’s update commands in your wrapper script, or within a sep-
arate target of your build file that uses Ant’s SCM tasks (see section 10.3).

• Add a MailLogger to the Ant invocation so that failed and/or successful
builds send email alerts (see chapter 20 for details on MailLogger).

• Have build logs and JUnit test results from <junitreport> published to an
intranet-accessible directory. This can be accomplished with property overrides
from the command line used to invoke Ant (see section 3.12.6) during auto-
mated builds and use of the -logger command-line switch. We showed how
to do this in section 13.6, including how to save the files to a web server.

Great benefits come with a simple wrapper scripts and SCM integration. If you are in
need of quick automation, this is the way to go. Perhaps even this level of automation
will suffice for your needs, but read further to evaluate other tools available that add
many more features to continuous integration builds.

16.2 CRUISECONTROL

CruiseControl is an automated build support tool from Martin Fowler and colleagues
at ThoughtWorks. It continually rebuilds and retests your system after changes are
detected in your codebase. It is an open source project hosted under SourceForge at
http://cruisecontrol.sourceforge.net/. Although it is a powerful tool, it can be tricky
to get working as of the 1.2.1a release available at the time of writing.
388 CHAPTER 16 CONTINUOUS INTEGRATION

16.2.1 How it works

CruiseControl consists of two pieces: a stand-alone Java application that runs the
builds and a web application that reports build status. Figure 16.1 shows the Cruise-
Control architecture. The command-line Java application drives the builds. It sits in
an infinite loop, cycling over a project’s build. When it wakes up for a new cycle, it
runs one of two special targets in your build file. Mostly, it runs a master build target,
which does an incremental update from the SCM. Periodically, after a specified num-
ber of incremental build attempts, it runs a clean build target.

16.2.2 It’s all about the cruise—getting the build runner working

The CruiseControl distribution includes enough information to get it running, but it
requires some trial and error to get it started the first time. We describe the steps we
used to get it running on our project, but be sure to check the documentation, espe-
cially if you are using a newer version.

Standard steps to get CruiseControl into the build

• Download and install the CruiseControl distribution (we used version 1.2.1a).

• Based on your scheme for managing third-party tasks, place the cruisecon-
trol.jar appropriately—or simply leave it in the install directory.

• Add these new targets to your project build file: modificationset, master-
build, and cleanbuild. These targets can be copied from one of the exam-
ple build files that are provided with the CruiseControl installation. There are
samples for several different SCM systems—pick the appropriate one for your
environment.

With our project, we created a CruiseControl-specific build file called cruisecon-
trol.xml. This file contains the CruiseControl needed targets, and a build target to
<ant> to our main build. This is a nice way to keep your main build file separate
and distinct from how the continuous integration process works on your project.
Listing 16.1, which we’ll get to in a moment, shows our cruisecontrol.xml.

Source code
repository

Cruise Control runner

Project build file
with CruiseControl

hooks added

Cruise Control
web app presents

build status

Build
results

Figure 16.1

CruiseControl architecture. The web

reporting interface is separate from the

main build process, and your own build

file controls the repository fetches.
CRUISECONTROL 389

The flow is straightforward. The CruiseControl runner application sits in a loop
for a specified number of seconds, and when it’s time the process kicks off the appro-
priate build target, either cleanbuild or masterbuild. Running a clean build
every so often ensures that no previously generated build artifacts are interfering with
the build results. The numbers in figure 16.2 represent the ordering of multiple
dependencies on the cleanbuild and masterbuild targets.

ModificationSet

The heart of CruiseControl’s capabilities is the modification set. The modification-
set target in our build file executes the CruiseControl-provided Ant task <modifi-
cationset>. Nested within <modificationset> are nested elements providing
your specific repository information. The <modificationset> task queries the
repository for modifications since the last build, using the log command internally, for
example, for a CVS repository. CruiseControl provides a lastBuildAttemptTime
property that you must provide to <modificationset>. If no changes are found in
the repository since that last build attempt, the <modificationset> task fails,
which, in turn, causes the build to fail. This failure is a normal and routine condition
only noticeable when watching the runner application console output.

The <modificationset> task collects information in an XML file. If changes
are detected since the last build attempt, the build continues. After a build has com-
pleted, successfully or otherwise, the XML-generated build log file, modification set
results, and any other XML files specified in the CruiseControl configuration that are
generated by your build, are collected into a single log XML file.

checkoutcruisecontrol.xml

modificationset buildclean

Clean
build
due?

Yes No

Build loop
delay timer

masterbuild

cleanbuild

1 21

2

Figure 16.2

CruiseControl interactions with your build file.

Primarily the masterbuild target is invoked, but

periodically a clean build is done to ensure no

leftovers interfere.
390 CHAPTER 16 CONTINUOUS INTEGRATION

Our build file

Listing 16.1 comprises our complete CruiseControl build file. Let’s take a closer look
at the details.

<project name="AntBook - CruiseControl" default="masterbuild" basedir=".">

 <property file="cruisecontrol.properties"
 prefix="cruisecontrol"/>
 <property name="test.data.dir"
 location="${cruisecontrol.logDir}/testresults"/>

 <property environment="env"/>
 <!-- On Windows env.TEMP will already be set,
 so set it for Linux-->
 <property name="env.TEMP" location="/tmp"/>

 <!-- The next few lines of loading property files is copied from
 build.xml - perhaps entity reference include is warranted -->
 <property name="user.properties.file"
 location="${user.home}/.build.properties"/>

 <!-- Load the application specific settings -->
 <property file="build.properties"/>

 <!-- Load user specific settings -->
 <property file="${user.properties.file}"/>

 <property name="root.dir" location="${env.TEMP}"/>

 <!-- CVS Info -->
 <property name="cvs.username" value="${user.name}"/>
 <property name="cvs.host" value="localhost"/>
 <property name="cvs.root"
 value=":pserver:${cvs.username}@${cvs.host}:/home/cvs/projects"/>
 <property name="cvs.passfile" value="../.cvspass"/>
 <property name="cvs.dir" location="${root.dir}"/>
 <property name="cvs.package" value="AntBook/app"/>

 <target name="init">
 <mkdir dir="${root.dir}"/>
 <echoproperties/>
 </target>

 <target name="clean">
 <echo>Cleaning build directory</echo>
 <delete dir="${root.dir}/AntBook/app"/>
 </target>

 <target name="modificationset"
 depends="init"
 description="Check modifications since last build">
 <taskdef name="modificationset"
 classname="net.sourceforge.cruisecontrol.ModificationSet"

Listing 16.1 cruisecontrol.xml

Gets access
to our CC
configuration

Defines our
repository

settings
CRUISECONTROL 391

 classpath="lib/cruisecontrol/cruisecontrol.jar"
 />

 <!-- set the CruiseControl timestamp when it is not defined -->
 <tstamp>
 <format property="lastBuildAttemptTime"
 pattern="yyyy-MM-dd HH:mm:ss"
 offset="-24" unit="hour"
 />
 </tstamp>

 <echo>
 Checking for modifications since ${lastBuildAttemptTime}
 </echo>

 <modificationset lastbuild="${lastBuildAttemptTime}"
 quietperiod="60"
 dateformat="yyyy-MMM-dd HH:mm:ss">
 <cvselement cvsroot="${cvs.root}"
 localworkingcopy="${root.dir}/${cvs.package}"
 />
 </modificationset>
 </target>

 <target name="checkout" depends="init">
 <cvs cvsRoot="${cvs.root}"
 dest="${root.dir}"
 package="${cvs.package}"
 passfile="${cvs.passfile}"
 failOnError="yes"
 />
 </target>

 <target name="build" depends="checkout">
 <ant dir="${root.dir}/${cvs.package}"
 inheritAll="false">
 <!-- accumulate test results into a global location -->
 <property name="test.data.dir" location="${test.data.dir}"/>

 <!-- force any properties we set here to propogate down -->
 <property name="inheritAll" value="true"/>
 </ant>
 </target>

 <target name="masterbuild"
 depends="modificationset,build"
 description="CruiseControl master build"
 />

 <target name="cleanbuild"
 depends="clean,masterbuild"
 description="CruiseControl clean build"
 />

</project>

Allows use outside
CC’s runner

Checks for
repository
changes

Gets latest from
repository

Executes our build

CruiseControl hook

CruiseControl hook
392 CHAPTER 16 CONTINUOUS INTEGRATION

After you have configured the build file, either with the CruiseControl targets added
to your project build file or through a separate build file as we did, you need to con-
figure the properties CruiseControl uses while running. The distribution provides a
well-documented starter cruisecontrol.properties, and very little needs to
be changed. We copied this file into our project’s main directory. Some of the proper-
ties we tweaked are:

antfile = cruisecontrol.xml
auxlogfiles = modificationset.file, test.data.dir
mailhost = <our mail server>

There are several other properties to control the master and clean build target names,
the cycle interval between clean builds, time interval between build cycles, the URL
to the build servlet, email mapping file, several other email notification options, and a
custom build-label incrementer.

The auxlogfiles property deserves some mention. It is a comma-separated list
of Ant property names that represent either files or directories. The modification-
set.file is the default value, and we added test.data.dir. As covered in chap-
ter 4, our <junit> and <junitreport> tasks save files to this directory. When a
build completes, the build log, modification set data, and XML files specified by aux-
logfiles (or if the property is a directory, XML files in that directory) are put into a sin-
gle XML file. The log files are then accessible to the reporting web application.

TIP By ensuring that Ant property names are used for build output, it becomes
very easy to interface with external systems such as CruiseControl—the
properties are simply overridden when run with CruiseControl to allow
output to be collected where CruiseControl desires.

Starting the CruiseControl runner

The CruiseControl distribution provides .bat and .sh startup scripts. Working on a
Windows machine, we used cruiseControl.bat as a basis, renaming it cc.bat. We cop-
ied this file into our application directory and modified it to match our environment.
CruiseControl 1.2.1a is built on Ant 1.4, but we are using Ant 1.5 so it required
adjustments to the classpath used. We recommend that you try the standard Cruise-
Control scripts, but expect that there will be issues that require fine tuning. Starting
CruiseControl for the first time requires some one-time initialization parameters.
Running cc.bat without these parameters generates the details to help decipher what
to do next:

[masterbuild] ***** Starting automated build process *****

Reading build information from : c:\AntBook\app\buildcycleinfo
Cannot read build information.
Usage:

Starts a continuous integration loop
CRUISECONTROL 393

java MasterBuild [options]
where options are:
 -lastbuild timestamp where timestamp is in yyyyMMddHHmmss format.
 note HH is the 24 hour clock.
 -label label where label is in x.y format, y being an integer.
 x can be any string.
 -properties file where file is the masterbuild properties file,
 and is available in the classpath

Our first run started with this command:

cc.bat -lastbuild 20020101010101 -label 1.1.1

Running CruiseControl subsequently picks up from where it left off and the parame-
ters are not needed. The -properties parameter defaults to cruisecontrol.proper-
ties if not specified. Typical output generated from the build runner application is:

[masterbuild] ***** Starting automated build process *****

Reading build information from : c:\AntBook\app\buildcycleinfo
[masterbuild] ***** Starting Build Cycle
[masterbuild] ***** Label: 1.1.1
[masterbuild] ***** Last Good Build: 20020101010101
[masterbuild]

[masterbuild] Opening build file: cruisecontrol.xml
[masterbuild] Using clean target: cleanbuild

clean:
 [echo] Cleaning build directory

init:
[echoproperties] #Ant properties
.
.
.

modificationset:
 [echo]
 Checking for modifications since 20020404110915

[CVSElement] Executing: cvs -d :pserver:erik@localhost:/home/cvs/projects
 -q log -N "-d>2002-04-04 16:09:15 GMT" C:/temp/AntBook/app

BUILD FAILED
C:\AntBook\app\cruisecontrol.xml:68: No Build Necessary

Total time: 14 seconds
[masterbuild]

[masterbuild] ***** Ending Build Cycle, sleeping 30.0 seconds until next
 build.

[masterbuild] ***** Label: 1.1.1
[masterbuild] ***** Last Good Build: 20020101010101
[masterbuild]
394 CHAPTER 16 CONTINUOUS INTEGRATION

16.2.3 Build log reporting

The reporting piece of CruiseControl is a web application. It presents a slick interface to
navigate the build logs. A WAR file is provided with the CruiseControl distribution.

Configuring the web application

The WAR file provided deploys easily in a web container such as Tomcat. Here are
the steps we followed:

• Install the WAR file into the web application deployment directory. Start the
web application, which should expand the WAR file into actual physical files.

• Edit WEB-INF/web.xml to point to where you keep the CruiseControl logs.
Restart the web server to ensure these changes are in effect.

• Test the installation by pointing to /buildservlet/cruise.jsp on the
web server.

Unless you have run an initial build with CruiseControl already, the first thing you
should see is an error about missing files—unless the CruiseControl maintainers have
made the JSP page more helpful in its reporting:

java.lang.NullPointerException
 at java.io.File.(File.java:180)
 at org.apache.jsp.cruisejspInitData
 .getLastBuildLogFilename(cruise$jsp.java:49)

After you have generated some build results, the CruiseControl web interface should
be similar to figure 16.3.

The CruiseControl interface is generated by a combination of JSP and XML/XSLT.
The left side of figure 16.3 is generated within cruise.jsp, while the details of a
specific build are transformed by using XSLT from the consolidated XML file gener-
ated for each build. The stylesheet used can be customized to suit your needs.

Figure 16.3

CruiseControl web interface

presents attractive build

summary reports.
CRUISECONTROL 395

16.2.4 Email notifications and build labeling

When a build fails, CruiseControl can send emails directly to the user(s) who last
committed files to the repository. Because there is not necessarily a direct mapping
between repository user names and email addresses, mapping capability is provided.
Email address aliasing capabilities exist to enable you to specify that build failure
notifications are sent to, for example, “developers.”

After a successful build, the build label is incremented. The default incrementer
simply adds one to the last number of the last label. A custom build-label incrementer
may be used and is configured in cruisecontrol.properties; this allows CruiseControl
to work with your preferred build-labeling scheme rather than forcing you to use its
default scheme. Consult the CruiseControl documentation for details of incrementing
a build-label incrementer.

16.2.5 CruiseControl summary

CruiseControl is, at this time, the Cadillac of Java continuous integration tools. It
provides a nice addition to a project’s toolset. Its configuration is tricky and, even
though fairly well documented, difficult to get running. Once you’ve got it config-
ured and running, the results are well worth the effort. We certainly expect that
future releases will be much more user friendly and far less difficult to install and run.

Using CruiseControl can force you into better Ant habits by ensuring that you are
defining properties for output files, thus allowing overridability.

Another issue is to decide what really defines a clean build. In our case, we cleared
the entire project directory structure and refetched everything from our SCM, but it
is just as reasonable to simply remove build artifacts leaving repository maintained files
in place.

16.2.6 Tips and tricks

• CruiseControl recommends that you use Jikes instead of javac because it is
faster and leaks less memory.

• Likewise, if you do use the javac compiler or another big Java program, set
fork="true".

• Get a mobile phone with SMS messaging and set up an email alias, and then
you can get paged when things go wrong—and when they start working again.

16.2.7 Pros and cons to CruiseControl

During our integration efforts with CruiseControl we noted several pros and cons to
it. Here are the things we felt were problems and some suggestions for improvement:

• Requires web.xml webapp configuration. This would be problematic for web
containers that do not expand WAR files into physical files. You will have to
replace the web.xml inside the WAR file manually in such situations. The con-
figuration really should be done via a web interface.
396 CHAPTER 16 CONTINUOUS INTEGRATION

• Requires a somewhat involved modification to your build file and requires an
understanding of Ant’s optional SCM tasks for your particular repository. Perhaps
in the future, the CruiseControl engine itself could deal with the SCM and not
require build file modifications. In all fairness, CruiseControl ships with examples
for many repositories that can be cut and pasted into your project.

• The auxlogfiles feature does not recursively process XML files. This would have
been useful in our situation, where we are running a build of many subprojects
from a single master build. Although we could handle this situation by having a
separate Ant output property for each subproject, or by making sure all file names
generated are unique, it would require some effort to handle these ourselves.

• Version labeling is not integrated with the SCM. The labels assigned to success-
ful builds by CruiseControl is merely an identifier on the log files. We could
implement such labeling as part of our build process ourselves, because Cruise-
Control provides the label as an Ant property label.

• Multiple projects would require multiple runners configured, and you would
likely want separate web applications for each.

Things we really liked about CruiseControl include:

• Once it is set up and starts running it’s very reliable.

• Reporting is well done, attractive, and easily customizable. The ability to incor-
porate any XML file into the results provides great extensibility.

• Version label incrementing can be customized.

• Direct emailing to the developer(s) that broke the build.

• Highly configurable email settings, even with group aliases.

The best thing about CruiseControl is that once it is working, it works very well. It
provides an automated build and test system that harangues developers when they
break something, while management gets a web view that keeps them happy. Because
it can run tests from a build file, the more JUnit, HttpUnit, Cactus, or other Ant-
hosted tests you write, the more testing you can do on a system. And, of course, the
more testing you do, the better your product becomes.

16.3 ANTHILL

Anthill is a freely available continuous integration tool created by Urbancode (http://
www.urbancode.com). Anthill integrates with your SCM system (currently only a
CVS adapter is provided) and runs scheduled automated builds through an installed
web application. Not only are build results made available through the web interface,
but project build artifacts can also be made available. These artifacts typically include
Javadoc API documentation, and source and binary distributions. The Anthill distri-
bution also includes Java2HTML,1 which produces hyperlinked and color-coded
ANTHILL 397

views of the latest versions of your project source code. Anthill’s purpose is more than
just for ensuring that integration builds work, it is also designed to be a build artifact
publishing service.

16.3.1 Getting Anthill working

Installing and running Anthill is straightforward and well documented. Here are the
steps we followed to get it installed, configured, and running against our project.

Installing Anthill

Anthill consists primarily of a single web application; its binary distribution contains
a WAR file that easily deploys in your favorite J2EE-compatible web container. Here
are the steps we used to install Anthill:

1 Download the latest Anthill binary release build from http://www.urban-
code.com.

2 Extract the downloaded archive into an installation directory (c:\tools\anthill in
our case).

3 Create a publish directory under the installation directory. (This will likely not
be necessary in future versions, but is a bug we encountered.)

4 Copy anthill.war from the installed dist directory into our web application
server deployment directory.

5 Start the web application server.

6 Navigate to root of the Anthill web application with a web browser: http://
localhost:8080/anthill/ (trailing slash was mandatory in the version we used,
but this should be fixed in future versions).

7 Create an anthill.version file in your project’s root directory. This is simply a
text file that initially contains the version number you’d like your project to start
with. A value of 1.1.1 is a reasonable start. This file needs to be committed to
your source code repository.

Getting Anthill to work with Ant 1.5

Anthill comes with Ant 1.3 and Ant 1.4, but our builds require features found only
in Ant 1.5. We copied our Ant 1.5 installation into an ant1.5 directory under our
installation’s lib directory, and in the Anthill Properties settings of the web adminis-
tration, we set anthill.ant.home to lib/ant1.5. It was that easy!

After the web application is up, the configuration screen displays, as shown in fig-
ure 16.4.
This is a one-time configuration that persists its value in a .anthill.properties file in
the user.home directory (the user the webapp is running as, that is). To verify that Ant-

1 Available separately at http://www.java2html.com/
398 CHAPTER 16 CONTINUOUS INTEGRATION

hill is working correctly, we installed their example application in our CVS repository
and configured it appropriately by using the web-based project configuration.

16.3.2 How Anthill works

Anthill maintains project and scheduling configuration information in its own instal-
lation directory. The web application performs configuration administration, build
running, and an interface to generated results. Anthill takes care of the SCM reposi-
tory communication itself before running a build. If new files are present, a build
runs. Figure 16.5 illustrates Anthill’s architecture.

Not only does Anthill operate on your project’s main build file, it also requires an
additional build file that is invoked after the build is successful. This second build file
is for publishing build artifacts. Comments within Anthill’s web administration indi-
cate that this additional build file will not be needed in the future and that publishing
of build artifacts will be delegated to the main build file instead.

Each Anthill-configured project is associated with a schedule. You define a sched-
ule simply as an interval (in minutes). Specifying an interval of zero keeps the builds
from running automatically—a stoppedSchedule comes configured by default. You
can also run builds manually through the web interface by clicking the Build hyperlink
on the main page.

After a successful build, the version stored in the version file (anthill.version in our
case) is incremented and the repository is tagged with this value. Anthill provides the

Figure 16.4

Anthill is configurable

from a web form.

Anthill web app

Project
build file

Project release
build file

Anthill installation
which contains global and

project configuration

Source code
repository

Figure 16.5 Anthill architecture. The Anthill application controls re-

pository access, and the main build file does not need to be modified.
ANTHILL 399

capability to lock this file in the repository to ensure that there are no race conditions
on it, but in our environment, locking did not function properly, so we disabled it
(which, fortunately, was a setting in the Anthill configuration). See figure 16.6.

16.3.3 Anthill summary

Anthill is very nicely done, and despite its relatively recent appearance, it works very
well and requires little effort to install and configure. There is room for improvement,
however. We offer our cons:

• The secondary publish build file seems unnecessary and confusing. We would
prefer that Anthill have project-level configuration to specify Ant properties ref-
erencing files and directories of build artifacts to be published.

• Much improvement is needed to the build status presentation. We would like to
see a summary page for each project with its build outcome, results of unit tests,
and links to other build artifacts such as documentation and distributions.

Here is what we liked about Anthill:

• Very straightforward installation and configuration

• Multiple project support

• The scheduler handles multiple projects within a single instance of the Anthill
web application.

• Unobtrusive to our build file.

• Anthill takes care of SCM fetching outside of our build file, which made config-
uration much simpler but also currently limits Anthill to CVS repositories.
Having the secondary publish build file violates this unobtrusiveness a bit, so
we hope that a better solution is on the horizon.

• Customizable version-labeling scheme.

Figure 16.6

Anthill’s main screen allows

easy manually forced builds

and project configuration.
400 CHAPTER 16 CONTINUOUS INTEGRATION

• Automatic repository tagging of version.

• Capability to manually start a build regardless of its schedule.

16.4 GUMP

Builds are like a box of chocolates. Gump has repeatedly proven that “you never
know what you’re going to get” when running continuous integration builds of the
world’s most popular open-source projects many times per day. At the time of writ-
ing, Gump still lives in a very small corner of Jakarta’s CVS repository. There are no
binary distributions of it, and it is used primarily to build Jakarta projects and other
key open-source dependencies. Its usefulness is not limited to open-source projects,
and you customize it to work as a local continuous integration build tool.

Gump not only provides the Java open-source world with continuous integration
feedback, it also produces interproject cross-reference information, up-to-date pub-
lished Javadocs, and JAR files of the projects it builds. Gump’s most recent success was
building all the projects against JDK 1.4 before its final release to alert project devel-
opment teams of incompatibilities.

16.4.1 Installing and running Gump

Gump’s installation is perfect for those of us who love to roll up our sleeves and dig
under the covers of the tools we use. It’s not going to be as pleasant for those who
want a simple installation and to be up and running quickly. The documentation
available at the Gump web site is much more thorough than we provide, and it is
continually improving. We recommend consulting the most current online docu-
mentation for installation instructions, but we will now provide an overview of the
steps we followed to give you a preview. Here are the installation steps we used to set
up our own Gump process for the AntBook project:

1 Use a CVS client to login and checkout the jakarta-alexandria module to the
machine that will be running the Gump process. From the command-line, this is:

 cvs -d :pserver:anoncvs@cvs.apache.org:/home/cvspublic login
 password: anoncvs

 cvs -d :pserver:anoncvs@cvs.apache.org:/home/cvspublic
 checkout jakarta-alexandria

2 Learn the details of Gump’s configuration by reading the documentation at
http://jakarta.apache.org/gump. The configuration files live in the jakarta-alex-
andria/proposal/gump directory and below.

3 Configure a workspace XML file in the main Gump directory. It should be
named hostname.xml, where hostname is the name of the machine. The
workspace file is the one place where platform-specific and absolute path infor-
mation is configured.
GUMP 401

4 From this point forward, configuration is dependent upon your workspace set-
tings. We cover more details of our configuration in the next section.

5 Once configuration is complete, the fun begins.

Our workspace configuration is as follows:

<?xml version="1.0" ?>
<workspace basedir="c:\temp\gump" pkgdir="C:\tools\gump" version="0.3">

 <property name="build.sysclasspath" value="first"/>

 <profile href="profile/erik.xml"/>

 <project name="ant" home="c:\AntBook\jakarta-ant-1.5">
 <jar name="lib/ant.jar"/>
 <jar name="lib/optional.jar"/>
 <jar name="lib/junit.jar"/>
 <jar name="lib/log4j.jar"/>
 </project>

</workspace>

This workspace definition tells the builds to set the special build.sysclasspath2

property so that system classpath comes before all paths used internal to a build. The
profile definition defines projects we want to build, and the <project> element
defines where our Ant installation resides. We could have gone even further and had
our project depend on the build of Ant itself, but we opted to simply point Gump to
an already built version of Ant.

Our profile, erik.xml, defines what projects we want to build and which repos-
itories are available:

<profile name="erik">
 <module href="project/antbook.xml"/>
 <module href="project/xdoclet.xml"/>

 <repository href="repository/eiger.xml"/>
 <repository href="repository/sourceforge.xml"/>
</profile>

We build our project and the XDoclet project. If we wanted to, we could even pull
down Ant itself, then perhaps Tomcat and Apache Axis. Sure, the build would get
slower, but we would know the moment any of these tools broke our code, and we
could then either fix our code or raise the issue with whoever changed the code we
depend upon.

This shows one of the interesting ways that using open source tools can change
your perspective. Instead of being a consumer of finished products, your project can

2 We do not cover build.sysclasspath in this book. It is rarely needed for Ant users. Ant’s documentation
provides details on its purpose and possible values.
402 CHAPTER 16 CONTINUOUS INTEGRATION

stand on the shoulders of the daily builds of all the tools you depend upon. That may
seem a bit bleeding edge, and sometimes it is, but another way to look at it is as con-
tinuous integration raised up a notch. You are no longer integrating your code against
older versions of libraries; you are building on a daily basis against the latest code
developed. This may seem unduly hazardous, but open-source developers tend to put
all bug fixes at the head of the CVS tree, and prefer bug reports from the nightly build,
too. Bug reports with old versions are less welcome, because someone has to determine
whether the problem has already gone away.

Generating the scripts

From a command prompt at the main Gump directory, execute either gen.bat or
gen.sh, depending on the platform you’re using. This script uses the workspace con-
figuration file and any other needed configuration files to build scripts specific to
your platform and settings. These scripts are built to the basedir specified in the
workspace definition.

Updating and building

The generation process creates an update.bat/.sh file and a build.bat/.sh file. First exe-
cute the update script, which updates the local copy of the project from the reposi-
tory. Next, execute the build script to build all projects in their dependency order.

Automating these steps is simply a matter of wrapping them in a recurring job.
See section 16.1 for additional details on scheduling a job on your platform.

16.4.2 How Gump works

Gump does a fantastic job at modeling complex build processes. It separates the con-
cepts of project, module, repository, profile, and workspace into individual XML
configuration files, allowing them to be reused easily. Table 16.1 defines these con-
cepts further.

Table 16.1 Gump’s configuration files

Gump terminology Definition

project Represents a buildable project or an installable package such as a fixed
external library. The project definition names the JARs that it exports, which
are available to dependent projects.

module A collection of projects stored in a single repository.

repository Defines the CVS information needed to access repositories such as
SourceForge, Jakarta, or your own CVS server.

profile Defines a collection of projects and repositories.

workspace Global controlling configuration. Defines which projects are built, directly or
via profile definitions. Platform-specific and path information is kept here.
GUMP 403

Figure 16.7 illustrates Gump output for a typical run, this particular one using
JDK 1.4. It demonstrates that not only does Gump show build failures, it also shows
whether a project cannot be built because a prerequisite failed, which is noted by a
different status. Build failures can trigger email nags, but you need to install Perl to
use this feature.

16.4.3 Summary of Gump

We are intentionally being short on details with Gump because we feel the online
documentation of Gump is superb. In addition, the details are in continual flux and
whatever we can say here will probably be out of date shortly. Gump has stood the
test of time by being a workhorse of the open-source Java world. Gump does have
some negatives, however:

• Currently, Gump supports only CVS.

• Configuration, execution, and automation are not for the faint of heart. In ad-
dition, a solid understanding of Gump’s architecture and configurations are
needed to really get rolling with it.

• The non-Java aspects of Gump are likely to scare off many developers. There are
shell scripts that automate the generation of other shell scripts. Perl is used for
failure email notification, but not it is not a required component to run Gump.

Negatives aside, Gump has capabilities that are not present in other continuous inte-
gration tools and likely gets much more of a workout than any other similar tool. Its
outstanding features are:

• Interproject dependencies. A typical project has dependencies on other libraries.
Having those other libraries built from the latest (HEAD in CVS terminology)
codebase prior to your projects build can provide early warning of API changes
or assurances that all is well.

Figure 16.7

How the failure of one

open-source project to

build breaks everything

else. Here Xalan is broken,

which stops Ant from

building, so nothing else

will be built either.
404 CHAPTER 16 CONTINUOUS INTEGRATION

• Very well done output and user interface. All projects are hyperlinked to their
dependencies’ builds. The CVS update log is one click away. Project cross-refer-
ences are extremely helpful in visualizing a complex set of interconnected projects.

16.5 COMPARISON OF CONTINUOUS INTEGRATION TOOLS

The main deciding feature in choosing a continuous integration tool is likely to be
SCM support. If you are not using CVS then you have two options: script your SCM
integration into a shell script that you automate with your operating system’s schedul-
ing capabilities or use CruiseControl. Both Anthill and Gump could be adapted to
other SCM systems if desired, but would require you to put forth a low-level effort to
implement it yourself unless it has been implemented since we reviewed them. See
table 16.2.

Table 16.2 Feature comparison of continuous integration tools

Feature CruiseControl Anthill Gump

Setup/configuration
difficulty

Moderately difficult. Easy. Difficult

Requires modifica-
tions to project build
files

Yes. No. No.

Multiple project
dependencies

No. No. Yes.

SCM Support CVS, VSS, ClearCase,
MKS, Perforce, PVCS,
StarTeam, and file
system.

CVS only. CVS only.

Controls SCM itself No (you have to code
this into your build file
manually).

Yes. Yes.

Process to support
multiple project builds

Set up another instance
of the runner application
and configure each
project's build file with
the CruiseControl hooks.

Add another project
definition through the
web interface.

Add another project
to your profile or work-
space configuration and
regenerate/rerun the
scripts.

Version labeling Default and custom
labeling are available.
SCM is not tagged.

Default and custom
labeling are available.
SCM is tagged
automatically after
successful builds.

Builds are timestamped;
no other labeling
support is provided.
SCM is not tagged.
COMPARISON OF CONTINUOUS INTEGRATION TOOLS 405

16.6 SUMMARY

Continuous integration is a necessary step in taming the complexities we continue to
introduce into our software development lives. Projects are more complex, time scales
are shorter, teams are becoming distributed, making communication more difficult,
and many other forces are acting against our ability to maintain tight control over our
process. We covered four ways to implement a continuous integration process into
your development environment that can really help keep a handle on growing com-
plexities.

If you are using a CVS repository, you have all these options to explore, but with
any other repository your options are either to implement your own custom auto-
mated build process or to use CruiseControl. We would be doing a disservice to each
of these fine tools to recommend one over the others, as they each have pros and cons.
Nevertheless, here is a quick set of good points of each:

• Custom shell scripting build automation—Quick and easy, and of course highly
customizable!

• CruiseControl—Excellent reporting and default support for reporting unit test
results.

• Anthill—Easy installation and full control through the web application.

• Gump—The only game in town if you need interproject dependencies and
cross-reference reporting.

Installation and configuration of all of these continuous integration tools require a bit
of effort, but in the end, it is effort well spent. Regardless of the tool you use, having
automated builds with failure email notification is a wonderful thing. We can make
one unequivocal recommendation: use continuous integration in your projects!
406 CHAPTER 16 CONTINUOUS INTEGRATION

C H A P T E R 1 7

Developing native code

17.1 The challenge of native code 407
17.2 Using existing build tools 408
17.3 Introducing the <cc> task 410
17.4 Building a JNI library in Ant 412

17.5 Going cross-platform 422
17.6 Looking at <cc> in more detail 425
17.7 Distributing native libraries 429
17.8 Summary 430
We want to take a quick detour into how to include native code generation into an
Ant project. Readers who never have to do this can skip this chapter entirely, return-
ing only when something alters their plans. This chapter will show you how to use
Ant to build native code applications and libraries as and when the need arises.

17.1 THE CHALLENGE OF NATIVE CODE

In a Java software project of any significant complexity, you eventually encounter
native code. It may be a native library to access some OS feature not directly sup-
ported by Java, which you must bridge to using the Java Native Interface (JNI). It
may be a CORBA component bridging to existing code. It may even be a COM
object. Alternatively, you may have to write a stand-alone native executable. The
build process needs to cover these parts of the project, which means you need to com-
pile native code from Ant.

We don’t want to add native code into our ongoing application for the sake of it,
so we have chosen an example problem that we can use in the application, but whose
use is not mandatory. We want to bridge to some native code that extracts and returns
the Pentium CPU clock timer: this will give us performance data on our Java code
down to individual CPU clock cycles. This code will only work on x86 processors, but
407

it is operating-system independent. This makes it somewhat of a special case: we can
explore native code build techniques without having any platform-specific OS calls to
worry about.

This lets us explore how to build native code in Ant, and integrate it into a Java
project, without going into the deep details of using JNI to bridge Java and native
code. For that, we will refer you to Sun’s documentation (Sun 2002, Liang 1999).

17.2 USING EXISTING BUILD TOOLS

Ant may be the best build tool for Java programs to date, but it is weak for C or C++
development. Makefiles and IDEs have long been the standard tools used to compile
and link native code. Yet these tools retain the fundamental reasons for Ant’s exist-
ence: they are not portable and can be hard to use. The tools are also invariably weak
in other areas where Ant is strong: deployment and integration with the Java compiler
and JUnit based testing. The historical solution for building native code has been to
suffer the portability and maintenance hit and delegate the native code portion of the
build to an IDE or makefile.

17.2.1 Delegating to an IDE

Before we cover how we want you to build your native code with Ant, let’s look at
what the core compilation target would be if we handed it off to an IDE. This would
let us delegate all the complex stages of the build process to the native tool chain,
which makes it easier to work with very large native projects, such as COM or CORBA
integration exercises.

 For example, if we wanted to use Microsoft Visual Studio 6 for the build, we could
use <exec> to hand off the C++ stages to a local copy of the IDE, relying on
msdev.exe being on the executable path:

<target name="msdev" depends="headers">
 <exec
 executable="msdev.exe"
 failonerror="true" >
 <arg file="CpuInfo.dsw" />
 <arg value="/MAKE"/>
 <arg value=""CpuInfo - Release""/>
 </exec>
</target>

This works, but threatens the whole stability and portability of the build file. A new
version of the IDE may force you to rework the entire target. Indeed, to support
Microsoft Visual Studio.Net, the <exec> command needs a major rewrite:

<target name="devenv" depends="headers">
 <exec
 executable="devenv.exe"
 failonerror="true" >
 <arg file="CpuInfo.sln" />
408 CHAPTER 17 DEVELOPING NATIVE CODE

 <arg value="/build"/>
 <arg value="Release"/>
 </exec>
</target>

With this new version of the IDE, you need devenv.exe on the executable path. As
this is not the default, you need to manually configure the systems, or, alternatively,
specify the path to the IDE in a property stored in a per-user properties file, and alter
the executable attribute of <exec> appropriately.

Handing off to the IDE means you have to chase version issues to keep your build
files current. Equally problematic is ensuring this build works on other systems, even
with the same OS. IDE-based builds are usually barely portable; they invariably con-
tain too many hardcoded paths and dependencies to work across systems. The only
way to stay in control is to lock down the systems so they all look alike, be they an
NFS-based workstation cluster or PCs with a standard disk image. In a large project,
or over time, this eventually breaks, leaving you with a build that does not work.

17.2.2 Using Make

If we don’t believe the IDE is the approach you should take, is Make any better?
Despite everything that we do not like about Make, it can at least give you a build

process you can share among colleagues. You can also integrate it with any of the auto-
mated continuous integration processes we covered in chapter 16. To run Make, call
it using <exec>:

<target name="make" depends="headers">
 <exec
 executable="make"
 failonerror="true" >
 <arg value="-f"/>
 <arg file="CpuInfo" />
 <arg value="release"/>
 </exec>
</target>

As with all <exec> based invocations of programs, we have to make sure that we set
the failonerror attribute to true. Its default value is false, which stops Ant from
picking up any failure in the makefile to compile our source.

We do not actually want to use Make, if we can at all avoid it. Its dependency spec-
ification process is tricky, and it really requires a broad suite of GNU or Unix com-
mands to work properly. For cross-platform portability, having the GNU tool chain
is not enough, you may need to use autoconf to configure your makefile for the plat-
form. Overall then, adding Make support makes your build significantly more com-
plex. Ant was created precisely because Make did not work well for cross-platform
development.

Here is a little secret: you can compile and link C and C++ source using Ant tasks
especially written for the purpose.
USING EXISTING BUILD TOOLS 409

17.3 INTRODUCING THE <CC> TASK

Ant does not have C and C++ compilation and linking tasks in the Ant 1.5 distribu-
tion, but it may well have them in future versions. The task being groomed for inclu-
sion currently lives in the Ant-Contrib project on SourceForge (http://sf.net/projects/
ant-contrib/). This project hosts some Ant tasks that aren’t yet (or may never be) part
of the official Ant distribution, some of which we introduced in chapter 10. In partic-
ular, the team’s logic tasks, <foreach> and <switch>, are too procedural to go
into the Ant codebase, yet they are the reference implementation to which Ant users
are directed if they really need them.

The native code development task offered by the SourceForge project is <cc>.
With it, you can write a single build file that compiles the C++ code for multiple plat-
forms, and link it down to an appropriate executable for the platform. The task is pow-
erful, and much more than a simple wrapper around a compiler. Indeed, some of the
features that the associated data types offer, such as an inheritance model, are inter-
esting examples of how the whole of Ant could evolve in the future. Even the depen-
dency checking tasks, which parses source files to find the header files they depend
upon, are more advanced than the dependency checking in <java>.

17.3.1 Installing the tasks

First, check your online documentation to see if the task is bundled with your copy of
Ant, as we ultimately expect it to be. If not, download the cpp-tasks archive from the
project’s home on SourceForge. We are using version 1.0a, so it may have changed
somewhat since the time of writing.

The task comes in the cpp-tasks.jar file; you must add this to your project’s lib directory
then declare the <cc> task in your project, along with its four supporting data types:

<path id="cc.classpath">
 <pathelement location="lib/cpptasks.jar"/>
</path>

<taskdef resource="cpptasks.tasks"
 classpathref="cc.classpath"
 loaderRef="cctasks"/>
<typedef resource="cpptasks.types"
 classpathref="cc.classpath"
 loaderRef="cctasks"/>

If the tasks become part of Ant, these declarations will not be needed in your build files,
but until that time declaring the tasks is important. The <typedef> definition lets
you define the task’s datatypes outside of a <cc>, which can be useful in a complex
build. For everything to work, the datatypes and the tasks must all be loaded in the
same classloader; otherwise, the <cc> task cannot resolve references to the datatypes.
We have to tell Ant to use the same classloader, which we do with the two loader-
Ref="cctasks" attributes, one each for the <typedef> and the <taskdef> dec-
larations. All tasks and types declared with the same string in the loaderRef attribute
share the same classpath.
410 CHAPTER 17 DEVELOPING NATIVE CODE

17.3.2 Adding a compiler

These tasks also need a compiler to perform the actual work. All the compilers listed
in table 17.1 are supported, and no doubt some more will be in later releases. If the
compiler you need is missing, you can write your own adapter class in Java and plug it
in to the framework

Whichever compiler you use, it has to be installed and working from the command
line. That means that the compiler command is on the path, and any other settings
(such as INCLUDE and LIB environment variables) are correctly configured.

17.3.3 A quick introduction to the <cc> task

The core feature of this task is that it acts as a wrapper for all the stages of building
native C and C++ programs on multiple platforms. In particular it accomplishes the
following:

• Compiles C and C++ source in files with any of the suffixes .c, .cc, .cxx, .cpp,
or .c++.

• Creates intermediate object files, executables, shared libraries, and static libraries.

• Can build files simply by specifying a fileset such as src/**/*.cpp.

• Parses files to determine dependencies.

• Supports multiple platforms and tool chains.

Table 17.1 Supported compilers. Notice that resource, IDL, and Fortran compilers are in

there alongside the C/C++ ones. The gcc compiler is the default on all platforms.

Compiler Description

aCC HP aCC compiler and linker

bcc Borland C++ (Windows only; free from borland.com)

brc Borland resource compiler for Windows

CC Sun Forte C++ compiler

df Compaq Fortran compiler

gcc GNU C++ compiler and linker

icl Intel 32- bit compiler for Windows

icc Intel 32- bit compiler for Linux

ecl Intel 64- bit compiler for Windows

ecc Intel 64- bit compiler for Linux

midl Microsoft IDL compiler

msvc Microsoft C++ compiler

msrc Microsoft RC resource compiler

os390 Compiler and linker for IBM mainframes

xlC IBM Visual Age compiler for AIX
INTRODUCING THE <CC> TASK 411

The task tries hard to bring the <javac> experience to the C and C++ world. It
comes close to this with its automatic inclusion of all the source files in a directory
tree, and its dependency checking. This avoids your having to replicate the makefile
practice of listing naming dependencies, yet still gives you fast compilation.

The other feature of the task is cross-platform support. It does as well as it can here,
given how radically different the build process is for different platforms and different
tools. They have tried hard to stop things from getting too ugly, but it is still compli-
cated. One of the hardest parts of this portability problem is that you do need to code
and test your build on all platforms you intend to support. Furthermore, if you are
using any but the most basic compiler options, you need to work out the specific
options for every compiler and linker you intend to support.

This makes the <cc> task more complicated to use than most other Ant tasks.
However, it is attempting to describe the entire native code build process for multiple
platforms and tools in a single nested task:

<cc debug="false"
 link="executable"
 outfile="dist/application"
 objdir="build/objects"
 multithreaded="true"
 exceptions="true" >
 <compiler name="msvc" if="use-msvc"/>
 <compiler name="gcc" if="use-gcc"/>
 <fileset dir="src/cpp" includes="*.cpp"/>
 <linker name="msvc" if="use-msvc"/>
 <linker name="gcc" if="use-gcc"/>
 <syslibset libs="kernel32,user32"/>
</cc>

This single task declaration will build an application with the GNU and Microsoft
tool suites, enabling multithreading and exceptions in the code, and producing a
release build (debug="false"). That is quite an impressive achievement for 15
lines of XML.

We will return to the details if this task after exploring how we can use it in our
JNI project.

17.4 BUILDING A JNI LIBRARY IN ANT

Java calls out to native libraries through JNI. This is a complex and powerful mecha-
nism, so complex that whole books are needed to cover the subject adequately, and
there are projects in the SourceForge Java foundry devoted to making it easier (specif-
ically, JNI++). We do not want to get into these details, merely explore how to build
and test JNI code inside Ant.
412 CHAPTER 17 DEVELOPING NATIVE CODE

17.4.1 Steps to building a JNI library

The JNI core concept is that Java methods declared with the prefix native are
bound to native libraries, libraries that are then dynamically loaded by the Java run-
time. On Windows the native libraries are Dynamic Link Libraries (DLL), while on
Unix shared libraries (.so) provide the same functionality. Other platforms have their
own equivalents.

To write a new JNI library, take the following steps:

1 Write a Java class with native methods.

2 Compile the Java source into bytecodes.

3 Create a C++ header from the compiled classes with the javah tool.

4 Incorporate this header in a C++ project that creates a dynamic or shared library
as its output.

5 Write the C++ code to perform the actual functionality needed.

6 Compile the code, pulling in the JNI header files from the JDK.

7 Link to library files in the JDK as needed to resolve external references.

Figure 17.1 is a graphic representation of the build
process that we will implement in Ant.

Executing the native code requires a few more
steps. The native library must be in the path of
the Java run time. If the library is not in the path,
the run time throws the error java.lang.
UnsatisfiedLinkError, which should be
familiar to most JNI developers. Indeed, getting
the native library somewhere appropriate is often
one of the foundational problems of any JNI
project. Products like Java Web Start are taking
steps at addressing this, but there is still much
room for improvement.

When developing JNI libraries in a team,
another minor problem is importing the JNI
header files and libraries. These are all in the
JDK, so unless all team members install their
JDK in the same place, you cannot place hard-
coded references to these files. You must use the
JAVA_HOME environment variable as the base
location of these files, and take into account
OS-specific directory names.

Java Stub
Class

C++ source

native
binary

Javac

Javah

CPP
compile
and link

Stub
bytecodes

C++ header

JDK headers
and libraries

Figure 17.1

The core JNI build process combines

Java and C++ build processes.
BUILDING A JNI LIBRARY IN ANT 413

17.4.2 Writing the Java stub

Writing the Java code to export the native method calls is the easiest step:

package org.example.antbook.cpu;

public class CpuInfo {

 native long getCpuClock();

 static {
 System.loadLibrary("CpuInfo");
 }
}

This CpuInfo class currently exports one method, getCpuClock, containing a
static initializer that loads the shared library by name.

Compiling this class is no different from a normal build.

<target name="compile" depends="init" >
 <javac srcdir="src" includes="**/*.java"
 destdir="${classes.dir}"/>
</target>

After running this task, we have a stub Java .class file, from which we can create the
header file

Creating the C++ header

The C++ header file is from the class, through the task <javah>, which is a wrapper
around the javah tool from the JDK. Although an optional task, it needs no external
libraries other than those in the JDK:

<target name="headers" depends="compile">
 <javah destdir="${generated.dir}"
 force="yes"
 classpath="${classes.dir}">
 <class name="org.example.antbook.cpu.CpuInfo"/>
 </javah>
</target>

The task takes a classpath containing the stub class to work from, the name of the class,
and an output directory, generating a header file in that directory named org_
tasklibs_CpuInfo.h. The javah program derives the name from the package and
class declarations. The <javah> task does no dependency checking on the Java source,
so it does not know when to generate a file. The force="true" attribute tells the task
to always create header files, even if the destination exists. This is inefficient: the task
always creates the header file, so the C++ compiler will always rebuild the library, even if
nothing has changed. Unless and until the <javah> task gets dependency checking,
you need to keep it off the main build or use an <uptodate> call to make the header
generation target conditional on the destination file being out of date. Here we take the
pain of recompilation, because our project is so small.
414 CHAPTER 17 DEVELOPING NATIVE CODE

17.4.3 Writing the C++ class

The next step of the JNI development process is to write the C++ code. The Win32
version of this library is short and terse, relying on the inline assembler of Visual C++
to compile the code; the compiler understands the Pentium instruction rdtsc to
read the timestamp counter, which is the core of our function. We implement this
function in the file org_example_antbook_cpu_CpuInfo.cpp:

#include "org_example_antbook_cpu_CpuInfo.h"
JNIEXPORT jlong JNICALL
 Java_org_example_antbook_cpu_CpuInfo_getCpuClock
 (JNIEnv *,
 jobject) {
 __int64 timestamp;
 __int64 *pTimestamp=×tamp;
 _asm rdtsc;
 _asm mov ecx,pTimestamp
 _asm mov [ecx],eax;
 _asm mov [ecx+4],edx;
 return timestamp;
}

The rdtsc instruction stores the CPU clock tick count into two of the processor’s
32-bit registers; we move each half of the result into a separate half of a variable that
becomes the jlong result. This is the native mapping of Java’s long integer. On
Windows this maps to the nonstandard __int64 datatype; we use this type explicitly
to make clear what we are working with. We are planning to completely rewrite the
function when we move to Linux, so there is no need to be portable at this stage.

To create the function prototype, we copied the declaration of the function from
the header file, adding a reference to that file at the start of our C++ file source. This
header file pulls in the JDK’s header file jni.h, which declares all the Java datatypes and
methods. This means that your C++ source files do not need to include any of the JDK
files themselves, only those header files providing access to other libraries, such as the
OS API itself.

Dealing with header files

The compiler needs access to all the included header files, the linker to any associated
libraries. If you want to use an IDE to compile the source, you need to point the IDE
at your JDK, which is very brittle and unlikely to work on different systems. Better to
copy the files over into your source tree, either by hand or by using an Ant task:

<target name="includes">
 <copy todir="${build.dir}/imported/jni">
 <fileset dir="${env.JAVA_HOME}/include" includes="**/*.h" />
 </copy>
</target>

We do not need to do this with <cc>; instead we will point the task at the files in
JDK using its <include> element. We will eventually have to deal with the fact that
BUILDING A JNI LIBRARY IN ANT 415

there is always a platform-specific subdirectory under JAVA_HOME/include that we
need to pull in, such as include/win32 and include/linux.

17.4.4 Compiling the C++ source

Everything is ready for us to declare the <cc> task to build the C++ file. We do this
in a target that depends upon the headers

<target name="cc-windows" depends="headers" >
 <cc debug="${build.debug}"
 link="shared"
 outfile="${dist.filename.nosuffix}"
 objdir="${obj.dir}"
 multithreaded="true"
 exceptions="true" >
 <compiler name="msvc" />
 <fileset dir="src/cpp/windows"/>
 <includepath location="${generated.dir}" />
 <sysincludepath location="${env.JAVA_HOME}/include" />
 <sysincludepath location="${env.JAVA_HOME}/include/win32" />
 <linker name="msvc" >
 <syslibset libs="kernel32,user32"/>
 </linker>
 </cc>
</target>

This is a complicated task declaration, so let’s look at it in pieces. The task declaration
covers the two tasks required by a C or C++ program: compilation and linking. Each
of these has its own elements inside the task to control the specifics of that stage.

The opening tag

The opening tag of the task provides details about what we want to generate. All the
attributes in the <cc> tag itself are cross-platform. For example, setting the debug
attribute tells the compiler to generate debug information, and the linker to include it
at link time. Every class written to support a specific compiler or linker will generate
the appropriate options for that tool, but users of the task do not need to worry about
such details, merely select the options:

<cc debug="${build.debug}"
 link="shared"
 outfile="CpuInfo"
 objdir="${obj.dir}"
 multithreaded="true"
 exceptions="true" >

The link attribute tells the task how to link the object files, to create library files or
executables. Table 17.2 lists the possibilities. One interesting feature of the task is that
you do not need to specify the full name of the library or executable file you want to
generate, merely the basename; the task itself will determine the final name. For
our shared library, we say outfile="CpuInfo"; it will become CpuInfo.dll on
416 CHAPTER 17 DEVELOPING NATIVE CODE

Windows and CpuInfo.so on Unix. There are similar rules for the other output
options; when generating library files it even adds a prefix to the start of the file name
to indicate it is a library.

One mild inconvenience of the task as it stands is that there is no way to determine
the name of the file that the task generates; you have to reinstate the rules yourself in
a series of <condition> tests. If the task lets you name a property that would be set
to the final file name, life would be easier.

The objdir parameter tells the task where intermediate object files should go; the
final two options, multithread and exceptions, specify more options for the
compiler and linker.

Configuring the compiler

Inside the task declaration, the first five nested elements are instructions to the
compiler:

<compiler name="msvc" />
<fileset dir="src/cpp/windows" includes="**/*.cpp"/>
<includepath location="${generated.dir}" />
<sysincludepath location="${env.JAVA_HOME}/include" />
<sysincludepath location="${env.JAVA_HOME}/include/win32" />

First comes the selection of the compiler itself; the default is always GNU gcc. We
will cover compiler declaration and configuration more in section 17.5. The next ele-
ment is a fileset declaration pulling in our source files. We have created Windows and
Unix subdirectories under the source, to keep everything separate. In a complex
project, you may have common source as well as platform- and compiler-specific
files, making fileset inclusion more complex. Conditional patternsets are the key to
managing this.

The compiler also needs to know the location of include files in external directo-
ries. We use the <includepath> and <sysincludepath> elements to describe
this. We list the javah-generated header file in an <includepath> element, and the
Java JNI header files in two <sysincludepath> elements. We don’t need to refer
to Visual Studio’s own header files, provided the INCLUDE environment variable is
configured correctly.

Table 17.2 The different types of output the <cc> task can generate

Link type Meaning

Shared Shared library, .so or .dll

Application Executable; has .exe ending on Windows

Static Static library, .a or .lib extension; Unix adds lib prefix

None No linking
BUILDING A JNI LIBRARY IN ANT 417

Header files listed in the <sysincludepath> directory are not included in the
dependency checks; they are assumed to never change. We do want dependency
checking on the generated header file, which is why we point to that directory using
<includepath>.

Configuring a linker

After compilation comes linking, which we specify with the linker element:

<linker name="msvc" >
 <syslibset libs="kernel32,user32"/>
</linker>

We do not specify the path to the library files here; the LINK tool must extract this
from the LIB environment variable. We do have to specify which libraries we want to
include, above and beyond the C or C++ run time. You can declare a library set inside
the <cc> task, or inside the linker declaration itself. Once you add multiple condi-
tional linkers to a <cc> task, declaring libraries inside the different linker declara-
tions soon becomes the preferred option.

There are many linker options, such as setting a base address for the library, or
enabling incremental linking, but we do not need any of those. The task documenta-
tion has complete details; we will look at some of the options when we customize a
linker in section 17.6.4.

Running the compiler

With everything declared, we are ready to run the compiler. Let’s see the output:

compile:
 [javac] Compiling 1 source file to
 C:\AntBook\Sections\Applying\cpp\build\classes
headers:
 [javah] ClassArgument.name=
 org.example.antbook.cpu.CpuInfo
cc-windows:
 [cc] 1 total files to be compiled.
 [cc] org_example_antbook_cpu_CpuInfo.cpp
 [cc] Creating library CpuInfo.lib and object CpuInfo.exp

The compile target compiles the Java source down to the .class file that the head-
ers target uses to generate a native header file. This provides the foundation for the
cc-Windows target, which then creates the DLL file. Clearly, its output messages
could do with some improvement; a check at the output directory reveals that
CpuInfo.dll has been created, even though this was not stated in the log. The logging
messages will apparently be improved; all we see today are those of the compiler.

We now have our native library; let’s try using it.
418 CHAPTER 17 DEVELOPING NATIVE CODE

17.4.5 Deploying and testing the library

We are now at the testing and local deployment stage. We can test using JUnit, as
usual, with a bit of planning.

Designing the test

The first test should be that the library loads and the method returns. A second test
can verify that the clock count increases each call. With some knowledge of expected
round-trip times it would be possible to verify that the round-trip time is in a sensible
range; this could be added for a regression test in the future, but is vulnerable to
changes in Java run time behavior. A third test can call the target repeatedly to deter-
mine the overhead of the call itself after the JIT has optimized everything. This num-
ber can be subtracted from any real performance measurements to give accurate
measurements.

package org.example.antbook.cpu;
import junit.framework.*;

public class CpuInfoTest extends TestCase {

 private CpuInfo clock;

 public CpuInfoTest(String name) {
 super(name);
 }

 public void setUp() {
 clock=new CpuInfo();
 }

 public void testClockCallReturns() {
 long time1=clock.getCpuClock();
 }

 public void testClockCodeWorks() {
 long time1=clock.getCpuClock();
 long time2=clock.getCpuClock();
 long diff=time2-time1;
 System.out.println("Invocation time="+diff+" cycles");
 assertTrue(diff>0);
 }

 public void testJitOptimization() {
 int iterations=10000;
 long diff=spin(iterations);
 diff=spin(iterations);
 assertTrue(diff>0);
 int average=(int)(((float)diff)/iterations);
 System.out.println("Total time=" + diff+" cycles");
 System.out.println("Invocation time="+average+" cycles");
 }

BUILDING A JNI LIBRARY IN ANT 419

 public long spin(int iterations) {
 long time1=clock.getCpuClock();
 long time2=0;
 for(int i=0;i<iterations;i++) {
 time2=clock.getCpuClock();
 }
 long diff=time2-time1;
 return diff;
 }

}

To calculate the average round-trip time after any JIT hotspot optimizations have
taken place, we have to preheat everything, stressing the loop enough to trigger the
optimizations. We do this by implementing the iterative loop in its own method,
spin, and calling this twice, only logging the iteration time of the second loop.

Deploying the library

Before the test stands a chance of succeeding, the native library needs to be deployed
to somewhere Java will pick it up. A reliable location appears to be the bin subdirec-
tory of the JDK, at least on our test systems. We make no guarantee that the same
directory will work on other systems; it may depend upon JRE settings.

<property name ="deploy.dir"
 location="${env.JAVA_HOME}/bin" />

<target name="deploy" depends="cc-windows">
 <copy
 file="${dist.dir}/${libname}"
 todir="${deploy.dir}" />
 <echo message="deployed to ${deploy.dir}" />
</target>

Running this target copies the file if it has changed, which it currently does every
time we run the build, because <javah> regenerates the header files every run, and
<cc> parses the source to determine header file dependencies.

deploy:
 [copy] Copying 1 file to C:\java\JDK\bin
 [echo] deployed to C:\java\JDK\bin

This deployment target will not work if the destination DLL exists and is in use, which
happens if any running JVM has loaded it. The copy will fail, breaking the build.

The test target

We can invoke the test with <junit>, as we have done many times before. Here we
configure <junit> to continue after any failure, using a conditional <fail> to stop
the build if any test was unsuccessful. This lets us run every test, even if the predeces-
sors fail.
420 CHAPTER 17 DEVELOPING NATIVE CODE

<target name="test" depends="deploy">
 <junit printsummary="withOutAndErr"
 failureproperty="tests.failed"
 fork="yes">
 <classpath>
 <pathelement location="${classes.dir}" />
 <pathelement path="${dist.dir}" />
 <pathelement path="${java.class.path}" />
 </classpath>
 <formatter type="plain" usefile="false"/>
 <test name="org.example.antbook.cpu.CpuInfoTest" />
 </junit>
 <fail if="tests.failed">Tests failed</fail>
</target>

If the test succeeds then the tail of the output of the executing ant test will be a
trace similar to the following, showing the round-trip time from Java to a native
library.

test:
 [junit] Testsuite: org.example.antbook.cpu.CpuInfoTest
 [junit] Tests run: 3, Failures: 0, Errors: 0,
 Time elapsed: 0.371 sec
 [junit] ------------- Standard Output ---------------
 [junit] Invocation time=761 cycles
 [junit] Total time=1514496 cycles
 [junit] Invocation time=151 cycles
 [junit] ------------- ---------------- ---------------
 [junit]
 [junit] Testcase: testClockCallReturns took 0.221 sec
 [junit] Testcase: testClockCodeWorks took 0 sec
 [junit] Testcase: testJitOptimization took 0.02 sec
BUILD SUCCESSFUL

What does this tell us? Well, it shows that the library is loading (testClockCall-
Returns), and that repeated calls increment the counter (testClockCode-
Works), so the assembler code is working. We can also see that the first test took
0.221 seconds, which must be the time to load the Java classes and the DLL; this is
the overhead of loading a library. The second test takes 761 cycles, on a par with the
600-cycle, round-trip time for a Windows NT Ring Zero API call from a Win32
application.

The round-trip time after optimization drops to 151 cycles, which is a more
acceptable number.1 We can now consider using this library to time the execution of
routines in our application.

1 Test specifics: Java1.4 on Windows XP on a PII/333 laptop, in battery mode, in midflight between Los
Angeles and Portland, Oregon. Your results may vary.
BUILDING A JNI LIBRARY IN ANT 421

Improving library lookup

The least elegant part of this build and test process is the need to place native libraries
onto the path of the run time. Java 1.2 added a new property, java.library.
path, to specify the search path for native libraries. Let’s try setting this property in
our JUnit test and see if it works. Here is the new target:

<target name="test" depends="cc-windows">
 <junit printsummary="withOutAndErr"
 failureproperty="tests.failed"
 fork="yes">
 <sysproperty key="java.library.path"
 value="${dist.dir}"/>
 <classpath>
 <pathelement location="${classes.dir}" />
 <pathelement path="${dist.dir}" />
 <pathelement path="${java.class.path}" />
 </classpath>
 <formatter type="plain" usefile="false"/>
 <test name="org.example.antbook.cpu.CpuInfoTest" />
 </junit>
 <fail if="tests.failed">Tests failed</fail>
</target>

Notice how we have removed the deploy target from our dependency list; we no
longer need it, nor do we need to remove a library from our JRE as part of the clean
target. We should find supporting other operating systems easier too, as we no longer
need to worry about the OS-specific name of the shared library that <cc> is going to
generate.

What happens when we clean up the previous build and run this target? It all works
as planned, provided the fork attribute is set to true. Set it to false and the run time
does not pick up the property setting, so the library is not loaded: all the tests fail.
Remember when using <java> to run Java programs with native libraries, always fork
the JVM.

17.5 GOING CROSS-PLATFORM

Now that we know Ant can build and test a native library, we have to ask: how does it
support a Unix build as well as a Windows library? We want to rebuild our code for
Linux/x86, using the GNU tools: gcc and ar, to build our library. We have waited
until we have the build process working on one platform before addressing a second.

All the Java code is going to work cross-platform, so all the build and test stages
related to the Java source should work without changes. That leaves two areas: the C++
source and the targets to compile it.

17.5.1 Migrating the C++ source

Although the same machine code to measure the clock will work independently of
the operating system, describing that machine code in a C++ source file depends
422 CHAPTER 17 DEVELOPING NATIVE CODE

upon the compiler. To get started, we first comment out all the assembler and create a
stub implementation that returns zero every call. Once we have the build and test
process working, we will port the assembly code.

17.5.2 Extending the build file

The <cc> task lets you state the compilation settings for multiple compilers, with
different conditional <compiler> and <linker> elements. Theoretically, we
could extend our existing <cc> task declaration to support Linux by adding the
appropriate tool declarations, and then make the choice of Windows and Linux tools
conditional on if-windows and if-linux properties. We choose not to take this
path for two reasons. First, we would have to extend this conditional inclusion even
to source and <sysincludepath> references, which would make for a very com-
plex target. Second, we don’t want to break a target that works on one platform.
Instead, we will copy the contents of the existing cc-windows target to a new one,
cc-linux, which we will configure to support the GNU tools on Linux.

The core customization is simply to select the GNU compiler and linker, then pull
the Linux version of the JNI headers into our compile. We also make the target con-
ditional upon the OS being Linux, by setting a property when Ant processes the build
file on Linux on an x86 family CPU, and then retrofitting a Windows-specific test to
the original target:

<condition property="is-linux">
 <os name="linux" arch="x86" />
</condition>
<condition property="is-windows">
 <os family="windows"/>
</condition>

<target name="cc-linux" depends="headers" if="is-linux">
 <cc debug="${build.debug}"
 link="shared"
 outfile="${dist.filename.nosuffix}"
 objdir="${obj.dir}"
 multithreaded="true"
 exceptions="true" >
 <compiler name="gcc"/>
 <fileset dir="src/cpp/linux" includes="**/*.cpp" />
 <includepath location="${generated.dir}" />
 <sysincludepath location="${env.JAVA_HOME}/include" />
 <sysincludepath location="${env.JAVA_HOME}/include/linux"/>
 <linker name="gcc" />
 </cc>
</target>

We have to add a high-level target, cc, which depends on both of the conditional
compilation targets; only one of which will ever run on a single platform’s build.

<target name="cc" depends="cc-windows,cc-linux"/>
GOING CROSS-PLATFORM 423

We then alter the existing dependent targets of cc-windows, such as test, to
depend upon the cc target, so that they will run the appropriate compiler target for
their platform.

17.5.3 Testing the migration

As we have not yet migrated the assembly language, we don’t expect all the tests to
work, but the first test, that a call to the method returns, should already work. Let’s
run the build and see:

cc-linux:
 [cc] Starting dependency analysis for 1 files.
 [cc] Parsing build/generated/org_example_antbook_cpu_CpuInfo.h
 [cc] 0 files are up to date.
 [cc] 1 files to be recompiled from dependency analysis.
 [cc] 1 total files to be compiled.test:
 [junit] Running org.example.antbook.cpu.CpuInfoTest
 [junit] Tests run: 3, Failures: 2, Errors: 0, Time elapsed: 0.129 sec
 [junit] Testcase: testClockCallReturns took 0.023 sec
 [junit] Testcase: testClockCodeWorks took 0.017 sec
 [junit] FAILED

This fragment of the build file shows first that the cc-linux target was called to
build the files, and then that our first test did pass, but the second two failed. We now
have a build process that can create JNI headers from Java files, compile C++ classes
to implement the methods on two different platforms, and then test them. Actually
implementing the native code on the second platform is the one remaining task.

17.5.4 Porting the code

The final bit of work is to port the timer code, or, to be precise, find the appropriate
code fragment with Google, then customize it:

JNIEXPORT jlong JNICALL
 Java_org_example_antbook_cpu_CpuInfo_getCpuClock
 (JNIEnv *,
 jobject) {
 long long int timestamp;
 asm volatile (".byte 0x0f, 0x31" : "=A" (timestamp));
 return timestamp;
}

Now, we can run the build and see what the results are:

test:
 [junit] Running org.example.antbook.cpu.CpuInfoTest
 [junit] Tests run: 3, Failures: 0, Errors: 0, Time elapsed: 0.091 sec
 [junit] Testsuite: org.example.antbook.cpu.CpuInfoTest
 [junit] Tests run: 3, Failures: 0, Errors: 0, Time elapsed: 0.091 sec
 [junit] ------------- Standard Output ---------------
 [junit] Invocation time=594 cycles
 [junit] Total time=1469967 cycles
 [junit] Invocation time=146 cycles
424 CHAPTER 17 DEVELOPING NATIVE CODE

 [junit] ------------- ---------------- ---------------
 [junit]
 [junit] Testcase: testClockCallReturns took 0.023 sec
 [junit] Testcase: testClockCodeWorks took 0.003 sec
 [junit] Testcase: testJitOptimization took 0.023 sec
BUILD SUCCESSFUL

These are the timings on a system identical to the Windows box, still with Java 1.4,
but this time running Redhat 7.1 Linux. Notice that the optimized round-trip time
takes nearly exactly the same time as the Windows system.

We believe that the Linux version of the C++ code should work on any x86
platform that supports gcc, from Windows to Solaris Intel Edition. If we had set out
to work only with gcc, it would have been easier for us to migrate the code as there
would be one version of the C++ source, and only one <cc> task needed. We would
have had to make the <sysincludespath> references to includes/windows,
includes/linux, and includes/solaris conditional, but that is all we would
need to do to rebuild our JNI library on each platform we support.

This makes using gcc across the board a very attractive option for JNI development
with Ant, even for developers with a copy of the Microsoft tools and debugger, the lat-
ter being the main compelling reason to stick with the Microsoft product.

17.6 LOOKING AT <CC> IN MORE DETAIL

We promised earlier that we would return to the <cc> task after showing it in use. It is
time to look at some of the features we did not use. Before we do so, we want to repeat
an important caveat: none of this is stable; all of it may change. Indeed, one reason we
kept our example so simple was to increase its stability. That said, there are some inter-
esting features in the <cc> task, and while some of the required and optional attributes
may change, the core features will be present in some form or other.

17.6.1 Defining preprocessor macros

Once you have native code building, a possible immediate requirement is to define
preprocessor macros. You can use the <defineset> datatype to do this. The sim-
plest way to do this is to declare your definitions inside the compiler task:

<target name="cc-linux" depends="headers" if="is-linux">
 <cc debug="${build.debug}"
 link="shared"
 outfile="${dist.filename.nosuffix}"
 objdir="${obj.dir}"
 multithreaded="true"
 exceptions="true" >
 <compiler name="gcc"/>
 <fileset dir="src/cpp/linux" includes="**/*.cpp"/>
 <defineset defines="DEBUG"/>
 <includepath location="${generated.dir}" />
 <sysincludepath location="${env.JAVA_HOME}/include" />
 <sysincludepath location="${env.JAVA_HOME}/include/linux"/>
LOOKING AT <CC> IN MORE DETAIL 425

 <linker name="gcc" />
 </cc>
</target>

We do not want to do this, because we want to share the definitions among different
tasks. Instead, we create a <defineset> in our init target:

<condition property="build.debug.istrue">
 <istrue value="${build.debug}" />
</condition>
<defineset id="build.defines">
 <define name="DEBUG" if="build.debug.istrue" />
 <define name="RELEASE" unless="build.debug.istrue" />
</defineset>

This datatype has an ID, so we can refer to it later. Its two definitions are conditional
on the build.debug property; if the property is true then DEBUG is defined; if it
is not true then RELEASE is defined. Because the condition in the <define> tag is
based on whether or not a property is defined, and because when we do a release
build we set build.debug to false, we need to create a new property that is only
defined when build.debug is true. Hence we place the <condition> test imme-
diately before we declare our definesets. We can now refer to these preprocessor defi-
nitions in both our compiler targets, simply by referring to them in the task:

<target name="cc-linux" depends="headers" if="is-linux">
 <cc debug="${build.debug}"
 link="shared"
 outfile="${dist.filename.nosuffix}"
 objdir="${obj.dir}"
 multithreaded="true"
 exceptions="true" >
 <compiler name="gcc"/>
 <fileset dir="src/cpp/linux"/>
 <defineset refid="build.defines"/>
 <includepath location="${generated.dir}" />
 <sysincludepath location="${env.JAVA_HOME}/include" />
 <sysincludepath location="${env.JAVA_HOME}/include/linux"/>
 <linker name="gcc" />
 </cc>
</target>

17.6.2 Linking to libraries with <libset>

To link against libraries other than the compiler’s default set, you need to name them
using the <libset> datatype, which you can declare inside the <cc> task, or inside
the linker element.

<cc
 outfile="build/app"
 multithreaded="true"
 exceptions="true" >
 <compiler name="gcc"/>
 <fileset dir="src"/>
426 CHAPTER 17 DEVELOPING NATIVE CODE

 <linker name="gcc" />
 <libset libs="cclib/tools,cclib/services">
</cc>

You do not need to give the libraries the platform-specific extension; it uses the
appropriate one, such as .a and .so for Unix, and .lib for Windows libraries. Different
implementations may have different ways of accessing system libraries: the Microsoft
linker relies on the LIB environment variable; the gcc linker searches for well-known
library locations such as /usr/lib.

If you want to share libraries between targets, you can do it by declaring them as
a datatype with an ID.

<libset id="common.libset" libs="cclib/tools,cclib/services" />

 To use the libraries in a compilation, you just refer to the <libset> by ID:

<cc
 outfile="build/app"
 multithreaded="true"
 exceptions="true"
 >
 <compiler name="gcc"/>
 <fileset dir="src"/>
 <linker name="gcc" />
 <libset refid="common.libset">
</cc>

As well as declaring libraries in a <libset> to keep a large native application’s build
under control, you might find it useful to keep common <libset> declarations in
an XML file fragment, which we introduced in section 9.5.4. You could group differ-
ent libraries into different sets—corba, com, mozilla, for examples—and then
reuse them in projects as needed.

17.6.3 Configuring compilers and linkers

There is one final area of customization in a native language project, and that is
changing the settings on compilers and linkers. The <compiler> and <linker>
elements of the <cc> target not only let you do this, they are stand-alone datatypes,
enabling you to declare the common linker and compiler for your entire project, and
using it where appropriate. The value of this grows with the size and complexity of
your project.

Configuring compilers

Inside the compiler element, whether it is inside a <cc> task or a stand-alone
datatype declaration, you can nest the <defineset> element that we introduced in
section 17.5.1. Here, for example, is a declaration for a compiler configuration
derived from msvc, with extra options for items such as warnings and code genera-
tion for the Pentium Pro and a conditional definition of a preprocessor macro in
debug builds.
LOOKING AT <CC> IN MORE DETAIL 427

<compiler id="studio" name="msvc">
 <compilerarg value="/G6"/>
 <compilerarg value="/W3"/>
 <compilerarg value="/Ze"/>
 <compilerarg value="/Zc:forScope"
 if="msvc.version.is.devenv"/>
 <defineset>
 <define name="_CRTDBG_MAP_ALLOC"
 if="build.debug.istrue"/>
 </defineset>
</compiler>

To use this declaration, we just reference it inside the <cc> task:

<compiler refid="studio" />

You can also extend an existing configuration, which is an interesting idea:

<compiler id="studio2" extends="studio">
 <compilerarg value="/Gm"/>
 <compilerarg value="/ZI"/>
</compiler>

This extended definition retains all the previous customization and adds more argu-
ments. A likely use would be to define separate debug and release compilers, each
with a different set of optimization and compilation flags.

When you use a configured compiler inside a <cc> task, all the compiler settings
you add in the task also apply. This means that you can configure your core compiler
settings, then in different <cc> tasks, add different options to this base configuration.

One fact worth knowing is that the <cc> task caches the arguments that went into
building the output files, the compiler arguments for each object file, and the linker
arguments for the linked file. When you change the compiler or linker arguments, the
task notices and rebuilds the affected files. There is therefore no need to run the clean
target whenever you change your settings, though we still think it is a good idea.

17.6.4 Customizing linkers

Linkers, and indeed any of the <cc> task’s processors, can be configured similarly to
compilers. Nested arguments and tags can change behavior, and you can give linkers
an ID for later reference. In addition, you can extend a linker definition from a previ-
ous one. As an example, let’s configure a linker that restricts our Windows DLL to a
minimum version of Windows, and sets the base address of the library:

<linker id="nt4linker" name="msvc"
 base="201333515">
 <linkerarg value="/version:4.0" />
 <syslibset libs="kernel32,user32"/>
</linker>

Again, you can reference a linker inside the <cc> task:

<linker refid="nt4linker" />
428 CHAPTER 17 DEVELOPING NATIVE CODE

As with customizable compilers, if you want to configure linkers you must be doing
some complex native code. One of the example build files that comes with the task is
designed to build the C++ version of Xerces, showing that you can build a very com-
plex C++ project in a single build file.

17.7 DISTRIBUTING NATIVE LIBRARIES

Remember how we had to set the java.library.path property to the directory
containing our JNI library before running the JVM?

If you are distributing code you need to do the same in any <java> calls that run
JNI programs, or any shell scripts that start the programs. When trying to integrate
native libraries with a web application, you need either to modify the application
server’s own startup properties or get the library into the execution path. An Ant-based
install script could copy the library into place, just as our deploy target did. However
you do it, you should shut down the application server first, to ensure that Ant can
overwrite any existing version of library, and that the application server will reload the
new library.

For client-side code, applets cannot download native libraries for security reasons.
Java Web Start does let end users download and run native libraries, and is smart
enough to download the appropriate libraries for the client platform.

Java Web Start

A good way to redistribute native libraries with Java applications is to use Java Web
Start. This is because it will download whatever native libraries a signed Web Start
application declares that it needs.

There is no built-in support for Java Web Start in Ant, but this is corrected by the
Venus Application Publisher Vamp product family (http://www.vamphq.com).
Along with their publisher toolset comes a couple of Ant tasks for Web Start code
delivery. One of these tasks, <vampwar>, builds a WAR file containing a web appli-
cation comprised of the application you wish to distribute and the servlet you need
to enable Web Start clients to download your application using the JNLP wire pro-
tocol. The task will even sign the downloadable JAR files if you provide it with the
right information.

This means that the task can take your code and other resources, and generate a
ready-to-go web application to deliver to end users. You just need to get that web
application to the server, which is the classic deployment problem for Ant to solve.

You are still going to have to learn about Java Web Start and JNLP from the SDK
documentation, and invest time getting your JNLP descriptors right, but the mun-
dane steps of altering your web application to support JNLP and then setting up all
the build process steps to package up your application are handled for you by the
Vamp tasks.
DISTRIBUTING NATIVE LIBRARIES 429

17.8 SUMMARY

Writing native code to integrate with Java is a complex process, especially once you go
cross-platform. You could drop down to an IDE or Make, but these bring with them
all their inherent problems inherent in these tools, problems that Ant fixed for pure
Java code some time ago. If you resort to external build tools for the native code sec-
tions, you make your build more complex and less portable than it needs to be.

The <cc> task, available as a download from http://sf.net/projects/ant-contrib, is
the key to compiling native code in Ant. In one single declaration, you can compile
and link a directory tree full of C or C++ source, creating your application library. It
may seem complex, with the <compiler> and <linker> elements to configure the
stages of the build, and the <libset>, <defineset>, and <includespath> ele-
ments to provide input to the stages. Consider, however, what you get in return. You
get to replace one or more makefiles with one or two targets in your build file. You
stop having to worry about header file dependencies, and you get to integrate your
C++ code with your Java build, test, and deploy process.

The <cc> task is being used to build libraries or programs as part of a larger Java
project, and for large, stand-alone native applications. As the task matures, more peo-
ple may use Ant as a build tool for pure C++ programs because it makes sense. You
can write portable build files that use the <cc> task with all of Ant’s packaging and
deployment facilities; build files that are easy to maintain. Who knows, the era of the
makefile may be drawing to a close.

You don’t need to wait for that to happen to use the <cc> task. We have shown
how to use it for JNI code generation, with an admittedly simple native library. Yet
our build file will scale with new code; all you need to do to add new native classes is
write the Java stub, the C++ implementation, and the JUnit tests, and then add the
stub class to the <javah> class list. Ant build files work with C++ scale just as well
as they do for Java projects.
430 CHAPTER 17 DEVELOPING NATIVE CODE

C H A P T E R 1 8

Production deployment

18.1 The challenge of different

application servers 432
18.2 Working with operations 437
18.3 Addressing the deployment

challenge with Ant 440
18.4 Introducing Ant’s deployment

power tools 442

18.5 Building a production
deployment process 446

18.6 Deploying to specific
application servers 456

18.7 Verifying deployment 459
18.8 Best practices 462
18.9 Summary 463
We introduced Ant’s deployment tasks in chapter 7. We have covered web applica-
tions, EJB applications, web services, and even native libraries, and it is time to look
again at the deployment problem. This time we will address the challenge of deploy-
ing an enterprise or web application to a production application server rather than a
local development box.

What differentiates a production system deployment from a development one?
Here are some of the attributes of a production system that you may encounter:

• An operations team manages the system, rather than the developers themselves.

• Different application servers may host the application.

• The servers may be remote and deployment harder because of security systems
in place.

• The deployment process needs to be more robust, with a rollback mechanism.

• The content deployed is more complex: static content as well as a web/EJB
application.

• You may need to deploy to a cluster of multiple servers, with a rolling update to
try to keep the system live throughout the process.
431

Ant can address most of the technical problems one way or another. The hardest is
probably that of a live update of a server cluster. That needs coordination with load
balancing routers or with server-specific tools to automate the process, though even
here Ant can assist. That leaves the fact that someone else manages the system.

We are going to look at production-side deployment, first by examining what
problems supporting different application servers adds to the build process, then by
introducing some of the advanced deployment tasks that Ant offers. We will then
design and demonstrate a build process for deploying to multiple servers of different
types. After looking at some server-specific deployment techniques, we will finish with
a test to validate the deployment process itself.

18.1 THE CHALLENGE OF DIFFERENT APPLICATION SERVERS

If you can avoid having to target different application servers, do so, because they all
have their differences, both major and minor. If you cannot avoid it, it is best to find
out early and start preparing. Here are some of the problems you may encounter.

18.1.1 Fundamentally different underlying behaviors

The application servers may support the same API, but have slightly different implicit
behaviors. This is a consequence of the different implementations of the servlet and
J2EE specifications.

As an example, on Tomcat 3.2, HttpRequest.getCookies returns an array of
cookies of zero length when there are no cookies; Tomcat 4.0 returns a null pointer
instead. This means that although this code works on Tomcat 3.2, on Tomcat 4.0 it
throws a NullPointerException:

public Cookie getAuthCookie(HttpServletRequest request) {
 Cookie authCookie = null;
 Cookie[] cookies = request.getCookies();
 for (int i = 0; i < cookies.length; i++) {
 if (cookies[i].getName().equals("auth")) {
 return cookies[i];
 }
 }
 return null;
}

The problem is that some implementations of the servlet API return an empty array
when there are no cookies, others return null. The specification says null is cor-
rect, but the erroneous behavior of the two systems on which we developed lulled us
into writing incorrect code, shown here in bold. The fix is quite simple; we add a
check for a null:

public Cookie getAuthCookie(HttpServletRequest request) {
 Cookie authCookie = null;
 Cookie[] cookies = request.getCookies();
 int limit = (cookies!=null) ? cookies.length : 0;
432 CHAPTER 18 PRODUCTION DEPLOYMENT

 for (int i = 0; i < limit; i++) {
 if (cookies[i].getName().equals("auth")) {
 return cookies[i];
 }
 }
 return null;
}

This kind of defect can live anywhere in your system; anywhere it holds an assump-
tion about the behavior of the underlying implementation. This can be hard to track
down. We found and fixed this particular bug by redeploying a version of the pro-
gram with full debug information included; once we found that the errant line con-
tained the cookies.length test, we could infer what the problem was.

The only way to find these problems is through extensive tests; HttpUnit and
Cactus are your friends. The role of Ant is executing these functional tests on every
target system and presenting the reports cleanly.

18.1.2 Different Java run-time behavior

Is the target system running the same JVM version as the staging systems? With the
same version of the JVM: client or server? What threading mechanism is it using?
How is its memory and garbage collector configured?

Any difference in the underlying JRE is going to affect your code somehow, be it
performance, synchronization, or memory usage. You should, of course, be using the
same JVM in development as production. Operations staff, as do developers, some-
times take the initiative to upgrade or downgrade JVM for reasons of their own, which
makes synchronizing JVM versions and configurations harder to control than one
might think.

We could add a new test that validates properties to our <happy> JSP tag, which
would let us name a property and its required value. Then, we could write JSPs to
assert what our system properties must be:

<happy:happy property="java.version" value="1.3.1_02"/>
<happy:happy property="java.vm.name" value="Java HotSpot(TM) Server VM"/>

The problem here is that a change between Java version 1.3.1_02 and version 1.4
might happen some time after deployment, and it may be an improvement. Either
you update the JSP to support the new version and not the old one, or you enhance
the tests to support a list of valid numbers, maybe substring matches. Maintenance
like this after deployment is unwelcome; if you design forward-looking rules, you
may find that they don’t actually work six months after the go-live date when some-
one updates the system. It is much better to leave such versioning details to people
rather than hardcoded tests.

What we can do is write a JSP to list all properties, though of course a security man-
ager may intercept that; an alternate approach would be a JSP that takes a property
name as an argument and returns the value as a response. You can then query settings
THE CHALLENGE OF DIFFERENT APPLICATION SERVERS 433

in a browser to diagnose problems, or use HttpUnit tests to fetch the values, parse
them, and verify that the server is what you expected.

We make do with a JSP to list the properties, neglecting security manager issues
until we encounter them. We should password protect this file and all other admin-
istrative pages, of course.

<%@ page language="java" %>
<%@ page session="false" %>
<%@ page import="java.util.Enumeration" %>
<%@ page import="java.util.Properties" %>
<html><body><table>
<%
 Properties props=System.getProperties();
 for (Enumeration e = props.propertyNames(); e.hasMoreElements();) {
 String key=(String)e.nextElement();
 String value=props.getProperty(key);
 %>
 <tr><td><%=key%></td><td><%=value%></td></tr>
 <%
 }
%>
</table></body></html>

This page is purely for human diagnostics; we do not run any automated tests against
it. We also want to tack in some version tests.

Asserting which libraries must be included in the system

Since section 15.4.4, our <happy> JSP tag has offered a way of asserting that a
named class must exist. This lets you dictate the minimum version of Java supported,
such as with a statement that Java 1.4 or later is required:

<happy:happy classMustExist="java.lang.CharSequence"
 errorText="We need Java 1.4 or later"/>

This technique is an effective way of setting an absolute barrier against old versions of
Java. This assertion technique is useful when you have many external libraries that
you depend upon; a single JSP can probe for all of them, providing a single file you
can retrieve to verify that the libraries are all present and available. You could fetch
this file by hand; we point you at <get>, HttpUnit, and Canoo WebTest as the auto-
mated choices.

18.1.3 Coping with different API implementations

A server may give you its own implementations of the JAXP APIs, or other elements
of the J2EE library, or other standard packages such as the Java management API,
JMX. If you redistribute your own versions things may break; if you rely on the sup-
plied version you need to retest everything. As an example, many complex applica-
tions depend upon Xerces being present; if your application server supplies some-
thing different, things might break.
434 CHAPTER 18 PRODUCTION DEPLOYMENT

Usually experimentation and experience help you determine what works and what
doesn’t. We went back to our HappyTag.java tag for configuration and added a test
for the XML parser, one that extracts the parser name and verifies that it found the
string we passed as parser name. See listing 18.1.

private String parserName = null;

/**
 *@jsp:attribute required="false"
 */
public void setParserName(String parserName) {
 this.parserName = parserName;
}

public void testParserName() throws JspException {
 if(parserName!=null) {
 String parser=getParserName();
 if(parser.indexOf(parserName) == -1) {
 throw new JspException("Parser "+parserName
 +" was not found; we are using "
 +parser);
 }
 }
}

public String getParserName() throws JspException {
 try {
 SAXParserFactory saxParserFactory =
 SAXParserFactory.newInstance();
 SAXParser saxParser = saxParserFactory.newSAXParser();
 String saxParserName = saxParser.getClass().getName();
 return saxParserName;
 } catch (Exception e) {
 throw new JspException(e);
 }
}

With the addition of a call to testParserName() in our class’s doStartTag()
method, we can then have a test in a file such as

<happy:happy parserName="crimson"/>

When this page is loaded, either everything is happy, or we see an error such as

javax.servlet.jsp.JspException: Parser crimson was not found;
 we are using org.apache.xerces.jaxp.SAXParserImpl

Throwing an error in this situation is a bit extreme as almost everything that works
with Crimson should work with Xerces. However, the opposite is not true: there are

Listing 18.1 Additions to HappyTag.java to verify parsers
THE CHALLENGE OF DIFFERENT APPLICATION SERVERS 435

many things that work with Xerces, but not Crimson. We can enforce our need for
Xerces by stating this in the happiness test:

<happy:happy parserName="xerces"/>

There is no point running this test every 15 minutes on a live server, but when you
bring up a new system or run regression tests after an update, you should run through
all these tests; the HttpUnit tests should fetch the happy.jsp health page after every
deployment.

These tests are somewhat brittle against improvements in the underlying system;
we don’t know that a SAX implementation bound via JNI to the Expat XML parser
won’t work; we just haven’t tested it yet. However, we take the view that the choice
of implementations of XML parsers, web service APIs, and the like is so important we
need to make sure that the run time provides the versions we want.

18.1.4 Vendor-specific libraries

Sometimes you need access to vendor-supplied libraries. For a cross-platform applica-
tion, you need to call vendor-specific classes using reflection, or simply by having
wrapper classes that provide access; your application must then load the appropriate
wrapper class at run time. Ant provides no help in this process, unless you want selec-
tive inclusion of source files at compile time. What you can do with Ant is explicitly
differentiate between those libraries you depend upon at build time, and those you
include in the WAR file.

18.1.5 Deployment descriptors

The deployment descriptors for each platform often need tuning. We showed how to
generate custom web.xml files in section 12.4. The mechanics of customizing deploy-
ment descriptors are relatively straightforward with XDoclet, though determining
what needs tuning is hard.

Targeting different application servers with EJBs is complicated, because you need
to generate the server-specific deployment descriptors. Here you can use the different
<ejbdoclet> subtasks, and the different <ejbjar> nested tasks to create the spe-
cific EJB JAR files for your target system.

18.1.6 Server-specific deployment processes

The actual deployment mechanism for each platform can vary wildly. Ant can address
this, and you can always deploy by hand until you are ready to write the Ant support.
Although this can be labor intensive, it is actually one of the least dangerous differ-
ences between servers, and much less worrisome than subtle run-time variations.

18.1.7 Server-specific management

The operational aspects of the server—security, performance, load balancing options,
and the management interface—are usually significantly different. There is little Ant
can do in this area. When the Java Community Process working group on server
436 CHAPTER 18 PRODUCTION DEPLOYMENT

management has finished, we may have a standard API for managing and working
with application servers. Ant could then add some tasks to issue calls to the servers,
calls that work against multiple platforms. Do not hold your breath for these tasks;
we will all have to muddle along for some time.

18.2 WORKING WITH OPERATIONS

In a production environment, people other than the developers look after the system.
This is good. They understand about security and system management, and they can
answer the pager at three in the morning. We developers have to build a system that
meets their needs; one that is secure, manageable, and doesn’t usually generate sup-
port calls late at night. We also have to look after our own interests: we do not want
the first action of operations to be “wake up the developers.”

How do you design, build, and deploy a system to work with operations? The key
is to treat operations problems as just another part of the big software development
process, with use cases, tests, and defect tracking; all under SCM.

18.2.1 Operations use cases

The tasks that operations need to perform on the system— back up and restore the
database, track down why one user cannot log in, identify the IP address of a heavy
user—are all use cases that your server needs to support, one way or another. Work
with operations to find out what they want to do, and support it, either directly in
the application, or in accompanying software and documentation.

18.2.2 Operations tests

Where there are use cases, there are tests. Once you know what operations wants to
do, you can write semiautomated tests, and then run them. Regression tests on con-
figuration are a particular area of interest: imagine if a configuration failure causes the
clock on a network drive to be eight hours out, confusing the housekeeping routine
into deleting files the moment the server creates them. It’s easy enough to fix the
problem on a single system, but why not write a test routine that you run server-side
first? A routine to verify that the remote system’s clock is within an acceptable range.

We have actually been writing such tests as we go along, especially in chapters 12
and 13. All of our server-side happiness tests, implemented in our JSP <happy> tag
and JSPs and tested through HttpUnit, are in fact regression tests for configuration
issues we have encountered.

With Ant we can build, deploy, and run these regression tests every time we build
and deploy our service. This does not mean that the tests are easy to write; a web ser-
vice we were working on had some tests that took whole days to write and validate.
Yet just as the benefit of unit tests grows over time, the value of having tests to validate
the server configuration and operations’ use cases grows over the operational lifespan
of the service. As a successful service should run for much longer than its development
time takes, these tests do pay for themselves.
WORKING WITH OPERATIONS 437

18.2.3 Operations defect tracking

If you have use cases and regression tests, you need to round everything off with
defect tracking. A web server running Scarab (from tigris.org) or bugzilla (http://
www.mozilla.org/projects/bugzilla/) should suffice.

For the defect tracking database to be useful, all the symptoms of the problems
must be noted, such as “throughput a quarter of that expected,” along with the cause,
“accidental use of CAT-3 LAN cable,” and the fix, “replaced with new CAT-5 cable.”
This is all obvious stuff. What is essential is that you do not wait until the system is
in staging before you start creating this database: the defect tracking should begin the
moment you first start bringing up the first version of the application on your local
server. The developers, through building and deploying a service many times a day,
gain more early experience in the issues than anyone else does. This knowledge needs
to be stored in the defect tracking system unless they want to carry the pager every
weekend.

18.2.4 Integrating operations with the build process

The obvious implication of the previous ideas is that the operations team needs to be
involved early. You cannot build a system and then just hand it off for delivery. There
is no room for the waterfall model in modern software development processes, and
we must prevent the final stage of the project, deployment, from taking on the look
and feel of the waterfall. We all know the waterfall doesn’t work. It isn’t flexible or
responsive, which is why modern processes abhor it. Yet, as figure 18.1 shows, it is
still there.

What can we do? We can bring operations in from the beginning. Have them support
your local developer servers, rather than just the staging and deployment systems.
Then whenever you make a new build, you can deploy it through their processes.

Deploy

Test

Design

Build

Deploy

Test

Design

Build

Figure 18.1

The waterfall process, on the left, we

all know is broken. But look how an

iterative development cycle can revert

to a waterfall at the final stage.
438 CHAPTER 18 PRODUCTION DEPLOYMENT

Anyone who has worked with operations organizations will immediately know that
the notion of fully automated deployment from the developer’s own systems will not
fly. Some operations teams believe that deployment consists of developers giving them
a “gold disk” of the server software on CD, which operations manually install and test
on staging servers before the final deployment. Some teams won’t give developers
access to the system for security reasons, even though they don’t audit code line by
line, or JAR files class by class. Clearly, our proposal for a tightly integrated process
will not immediately mesh with such groups, but we don’t see that the classic waterfall
deployment process is adequate, especially for web services. The problem with web ser-
vices, in particular, is that you need access to the production server with a debugger
to solve integration problems. The waterfall model of handing off, staging, and finally
deploying to the live site does not address such integration problems, and isn’t respon-
sive or flexible enough.

Integrating deployment

What do we propose? As we said: involve operations from the outset. They manage
your development servers and get used to dealing with all the problems of the system.
They can also get used to dealing with system updates taking place on an hourly basis
by letting Ant and automated build tools take a central role in the deployment pro-
cess. See figure 18.2.

Moving operations-managed deployment into the core development cycle won’t be
easy. Developers will have to work with operations earlier than normal; operations
will have to deploy raw code and help support development tasks such as debugging,
rebuilding clean systems, and just having more boxes to manage. These reasons are
exactly why you need to do it: these are the problems that the teams need to solve
together, automating all of the build, test, and deploy processes, then working
together to address the manageability and scalability of the system. Try it; it might
just work.

Design

Build Deploy

Test

Figure 18.2

Integrating deployment into the development cycle.

Operations must still own the deployment system;

they need to work with the software early on, just

as the developers need to work with operations.
WORKING WITH OPERATIONS 439

18.3 ADDRESSING THE DEPLOYMENT CHALLENGE WITH ANT

Ant cannot directly address source level or operations issues, but it can produce dif-
ferent WAR and EAR files for each targeted platform, and then deploy to them. It
can also execute functional tests after deployment to validate that the system does
behave as expected. It can also be the core of any continuous integration process,
automating the build and deployment of the software.

18.3.1 Have a single source tree

The first tactic is to have a unified source tree, compiling all your code for all possible
target systems in one single <javac> statement. With a unified source tree, you can
build all the core server files together, and then create a single JAR of these classes.
Ant can incorporate this JAR file into different WAR or EAR files, one for each target
platform or system. These custom archive files can contain custom libraries and
deployment descriptors.

18.3.2 Have a unified target for creating the archive files

As well as a single source tree, we want to have single targets to create the web.xml
and WAR/EAR files. Ideally, we would like to have a single archive file we could
reuse, but that is unrealistic because of the differences in library files and web.xml
configurations that different target systems will need.

To enable single targets with different configurations, we use property files and set
all the different options for a build, as shown in figure 18.3.

Figure 18.3

Creating custom WAR files from a single source

file, using server-specific properties to control-

ling the <webdoclet> and <war> tasks

production.warstaging.wardebug.war

Java
Source

class files

<war>

<webdoclet>

web.xml

Server
properties

files

Conditional
library
filesets

<javac>
440 CHAPTER 18 PRODUCTION DEPLOYMENT

With a properties file for each target loaded in at the beginning of the run, we can
create different WAR files for each target. Each of these has its own name, to avoid
confusion.

The alternate tactic is to have separate build file targets for each target platform,
with their own custom invocations of <webdoclet>, <war>, <ejbjar>, and other
tasks. This gives you the most flexibility, and if you are only targeting two different
systems, the cut-and-paste coding is manageable. However, you have two targets to
maintain, and because you are no longer using the same build targets for deployment
as production, you may not notice that you are failing to keep the targets in sync until
you go live. Single targets with property-file based customization are more robust.

18.3.3 Run Ant server-side to deploy

How are we going to use Ant to deploy to different systems, even through firewalls
and with an operations team in charge of the process? We are going to run it server-
side. First, we need to list the actions we have to perform, by hand and with Ant, to
prepare for this.

1 Create subdirectories under dist/ for each destination system.

2 Build the WAR files into the subdirectories.

3 Implement a separate deployment build file for each server type. These build
files are designed to deploy to a local server, using environment variables and a
properties file to customize the deployment to the specific platform.

4 Copy deployment build files and shell scripts into the dist subdirectories.

If we do all this, we will have separate localhost deployment packages for each tar-
get platform. We can run these locally, to deploy to our development system, run
them on the staging systems, or run them on the deployment servers and update
them in situ.

The Ant files run on the server can get quite complex; one project of ours had a
deployment build file that not only deployed the WAR file, it also copied the existing
one out of the way into a history directory, giving it the current date and time. This
created a log of when updates had taken place, and permitted a rapid rollback if the
update broke something. Other uses of Ant during server-side installation include
<sql> tasks to manipulate the database and <chmod> tasks to set file permissions.
You can effectively move the final stage of your build process to the destination system.

The remote servers do, of course, need Ant installed. If you are making your own
builds of Ant, you need to keep the servers up to date with your build and all depen-
dent libraries. You may want to set up a deployment process to keep Ant up to date
across the servers, unless you are sticking with a standard version of Ant.
ADDRESSING THE DEPLOYMENT CHALLENGE WITH ANT 441

18.3.4 Automate the upload and deployment process

Now that we have per-system deployment packages, they can be uploaded via FTP or
SSH, emailed to the destination,1 burned onto CD-ROM and handed off to opera-
tions, or pushed up via WebDAV. It doesn’t matter how they get there, only that the
right target gets to the right server, and that you run the install script under an
account with the appropriate permissions.

For our continuous integration process to work, this upload and deploy has to be
fully automated, both from your desktop and from your automated build service, be
it CruiseControl or Cron.

18.4 INTRODUCING ANT’S DEPLOYMENT POWER TOOLS

Production deployment problems are so complex and different that you will usually
need to build your deployment targets using a string of tasks. We are about to run
through the tasks you may need. These are the Ant equivalent to power tools: in the
hands of an Ant professional, they can solve problems in a snap.

18.4.1 The <copy> task

It seems somewhat ironic that one of Ant’s core deployment tasks is also one we have
been using for a long time: <copy>. If you are deploying to a network server whose
file system you can access, you can just copy the files with a simple <copy> com-
mand. It is obvious that this works against local NFS or CIFS shares, but on some
development platforms you can use copy to deploy to a WebDAV server. On Win-
dows XP, for example, you can just mount the remote server

net use z: https://remoteserver.example.org/ password

Linux has similar capabilities with the davfs file system under development on Source-
Forge (http://dav.sourceforge.net/), and MacOS X supports DAV out of the box. Web-
DAV is nice as it runs through firewalls, talks straight to web servers, and, with digest
authentication, always keeps your password safe. With HTTPS deployment, your doc-
uments are also kept private. One day Ant will support WebDAV out of the box, prob-
ably using the Jakarta Slide code, and then we can wave goodbye to <ftp>.

When deploying with <copy>, consider setting overwrite="true". This
forces Ant to copy the files you are installing over any that exist already, even if they
are newer at their destination. If this flag is unset you cannot use Ant to roll back dis-
tributions, and some deployment actions (CD-based installation) can fail in obscure
circumstances. Setting this flag does, of course, force Ant to overwrite any files that
were updated on the server. If you are implementing persistence by saving data to files
under your web application, you are already playing a dangerous game; <copy>

1 Email isn’t as daft as you think; we once had Ant email to a free email account on myrealbox.com, then
pull the file down using the service’s web-based UI, the latter through the Windows terminal services
remote access system. Ugly and insecure, but it worked in a pinch.
442 CHAPTER 18 PRODUCTION DEPLOYMENT

just triggers the crisis. Here you should control the copy with overwrite=
"${force}", for case-by-case control of overwriting.

18.4.2 The <serverdeploy> task

A recent addition to the Ant armory of deployment tasks is <serverdeploy>. This
task is a container for different server-specific deployment elements. The ultimate
aim of this task is to grow to be the one-stop-shop for deployment; it is designed so
that different providers can write deployment elements for use inside the task.

In Ant 1.5, the task only deploys to two severs, WebLogic and JOnAS(from http:/
/www.objectweb.org/jonas/).

18.4.3 Remote control with <telnet>

The <telnet> task lets you connect to a remote host and issue a sequence of com-
mands. With an insecure login and no channel encryption, production servers rarely
accept inbound calls on telnet from anywhere but the local system. Most develop-
ment servers, on the other hand, are malleable to <telnet> control. Table 18.1 lists
the task’s attributes. Just like the <ftp> task, you need optional.jar and netcompo-
nents.jar in Ant’s lib directory.

You must supply the server name; for a normal login, you should supply userid and
password. If you don’t supply these then you must implement the entire login pro-
cess inside the task declaration. The timeout attribute has a default timeout of zero,
which is interpreted as no timeout. We recommend always supplying a timeout, even
one of a few minutes, to ensure that server-side problems do not lock up the build
indefinitely. A timeout occurring will, of course, break the build.

With this task, it is easy to connect to a server:

<telnet server="${deploy.server}"
 userid="guest" password="secret"
 timeout="30" >

NOTE If you cannot connect to a Windows NT server, you need to disable
NTLM telnet authentication on the server; without this <telnet> can
not authenticate the user.

Table 18.1 Most attributes of <telnet>. You should set the first three unless you want to
connect using a different port and hence protocol, in which case you should omit the userid
and password. The timeout attribute is a safety net that you should always use.

Attribute Meaning

server Remote hostname or address

userid Username for login

password Login password

port Port to connect to, if not port 23

timeout Timeout for commands

initialCR Flag to trigger sending a carriage return before waiting for the login prompt
INTRODUCING ANT’S DEPLOYMENT POWER TOOLS 443

Once the connection is open, you need to make use of it, which you do by using
nested <read> and <write> elements. Each <read> statement declares a string
that the task waits to receive before it continues. Usually the read command waits for
the prompt of the remote shell, be it >, #, or some different and perhaps longer string.
The longer the string, the less likely it is that executed commands will accidentally
print it. The following are examples of valid reads, all examples of different prompts
that we have encountered. The final prompt is an escaped angle bracket (/>), com-
mon to many servers:

<read string="%"/>
<read timeout="30">/home/root%</read>
<read string="$"/>
<read string=">"/>

The <write> element is the mirror image of <read>: its text goes down the wire to
be interpreted by the shell or program at the far end. By default, the command string
is echoed to the Ant log; there is an echo attribute you can set to false to prevent this.
The following example <write> statements are representative of commands you
may want to send to a server:

<write string="rm /home/web/webapps/oldapp.war" />
<write string="rm -f ${server.webappdir}/${projectname}.war" />
<write >cd %JAVA_HOME%</write>
<write >cd $JAVA_HOME</write>

<write >ps -ef | grep java > javapps.txt </write>
<write echo="false">${admin.password}</write>

In these examples, we use Ant properties and environment variables on the remote
system. Environment variables can be used to great advantage during deployment, as
the remote site itself can be preconfigured with information about where to deploy
things. Apart from property expansion, Ant performs no transformations to the com-
mand string: file paths must be in the appropriate format for the target server. There
is a nice task called <pathconvert> that can turn a path into a property in the
appropriate form for both Unix and Windows; you may find this convenient in pre-
paring data for this task.

To use the <telnet> task, as we stated before, <read> and <write> statements
need to be interlaced, with commands being issued after responses are received.
Listing 18.2 shows this.

<target name="shutdown-remote-server">
 <property name="deploy.server" value="eiger" />
 <property name="deploy.server.prompt"
 value="bash-2.04$$" />

 <telnet server="${deploy.server}"
 userid="tomcat" password="********"

Listing 18.2 Shutting down a remote server with telnet
444 CHAPTER 18 PRODUCTION DEPLOYMENT

 timeout="30" >
 <read string="${deploy.server.prompt}"/>
 <write string="cd $CATALINA_HOME/bin" />
 <read string="${deploy.server.prompt}"/>
 <write>./shutdown.sh</write>
 <read string="${deploy.server.prompt}"/>
 </telnet>
</target>

After connecting to the server, we wait for the login prompt then change to the
server’s bin directory, where we call the shutdown script. With properties defined for
the server and the prompt, this telnet target is nearly ready for factoring out into its
own library build file. We could then use <ant> to call it from multiple build files,
or against multiple servers.

Notice how we close the telnet session with a <read> of the command prompt,
to keep the connection open until the final command has completed. This is vital.
Without this <read>, the server at the far end may not completely execute the final
command sent.

When we run this target against our remote server, the output will, if all is suc-
cessful, look something like the following:

shutdown-remote-server:
 [telnet]
Red Hat Linux release 7.1 (Seawolf)
Kernel 2.4.2-2 on an i686
login:
 [telnet] tomcat
 [telnet] Password:
 [telnet]
bash-2.04$
 [telnet] cd $CATALINA_HOME/bin
 [telnet] cd $CATALINA_HOME/bin
bash-2.04$
 [telnet] ./shutdown.sh
 [telnet] ./shutdown.sh
Using CLASSPATH:
 /opt/Java/Apps/jakarta-tomcat-4.0.1/bin/bootstrap.jar:
 /usr/java/j2sdk1.4.0/lib/tools.jar
Using CATALINA_BASE: /opt/Java/Apps/jakarta-tomcat-4.0.1
Using CATALINA_HOME: /opt/Java/Apps/jakarta-tomcat-4.0.1
Using JAVA_HOME: /usr/java/j2sdk1.4.0
bash-2.04$

BUILD SUCCESSFUL
Total time: 8 seconds

One of the inconveniences of this approach is that you have to spell out in detail each
command, often in a platform- and shell-specific manner, and list the responses you
expect. The other is that you cannot deal well with any failure of a command in the
INTRODUCING ANT’S DEPLOYMENT POWER TOOLS 445

chain. It is best to write a shell script or batch file to run on the remote machine, FTP
it over, then run it.

NOTE Before Ant 1.5, the <telnet> task did not expand properties in nested
text inside <read> and <write>, but did in their string attributes.
If you want to write a build file that uses properties inside <telnet> con-
sistently, use attributes instead of nested text:

 <read string="$$"/>
 <write string="nohup ${command}&"/>

This was one of those tough “should we fix this behavior and maybe break
things” problems; the change only stayed in because we made some other
fixes to system behavior to keep more things working (i.e., Ant stopped si-
lently removing single dollar signs from strings). The consensus was that
stopping this odd behavior was so important that the risk to some build
files could be tolerated, but it was not at all clear-cut.

We are going to use the <telnet> task to execute the deployment build files we
have uploaded to the remote servers. This gives Ant absolute control of the build
without us having to write and test complex <telnet> sequences.

18.5 BUILDING A PRODUCTION DEPLOYMENT PROCESS

Enough talking, let’s sit down and write the build file, using the tools we have intro-
duced in section 18.4 and the process we described in section 18.3.

18.5.1 The plan

Here is our simple plan to support remote deployment to multiple servers:

1 Move deployment out to a new build file, remotedeploy.xml.

2 Use a configuration file for each application server type to indicate at build time
which libraries are needed.

3 Use a configuration file for each target system to provide information about the
system: server type, upload account, password and directory, and whether the
system is a debug or release server.

4 Have a separate install-time build file for each application server type; a build
file that is run on the target system.

5 Have a system-specific configuration file containing install-time configuration
data—the ultimate deployment directory—and an application server username
and password if needed.

6 Have the main build file create a WAR file for a particular server, upload it to
the destination, then use <telnet> to run the appropriate installation file.

One of the interesting tricks here is that we will dynamically determine the hostname
in the build file. On the remote server, this lets us pick the appropriate properties file
446 CHAPTER 18 PRODUCTION DEPLOYMENT

for the machine. On the local build server, we can do the same thing to pick up the
name of our build time configuration file. This lets us keep all the deployment details
for individual developers under CVS, if the security is adequate.

18.5.2 The directory structure

First, we create a new directory tree under webapp to house all the configuration files.
We need one configuration file per server type and two per target server, one at build
time and one to be uploaded and used during the installation process. The uploaded
configuration files should not contain system usernames and passwords, for security
reasons, though they may need app server account details. See figure 18.4.

18.5.3 The configuration files

If this looks complicated, don’t panic. You need one configuration file and one instal-
lation build file per server type, and two configuration files per target system. If you
are using the same application server everywhere, then you don’t need many server-
type specific files, just those per-system configuration files and a pair of common
configuration files to minimize duplication. We are going to start by targeting
Tomcat 4.0 on different systems, addressing other server types when the need arises.

18.5.4 The build files

The complete build files are too large to place in their entirety in this chapter. We shall
just cover the core pieces of the process, and state the gist of what we have omitted.

18.5.5 The remote build.xml build file

A centerpiece of this process is a build file that developers or operations will run on
the remote server. This file determines the identity of the target system, loads the
appropriate configuration file, determines the type of application server in use, and
calls the appropriate build file for that server.

ranier.properties

common.properties

nordwand.properties

eiger.properties

servertypessystems remote

tomcat4.1.properties

bluestone8.1.properties

tomcat4.0.properties

jboss3.0.properties

tomcat4.0.xml
tomcat4.1.xml

jboss3.0.xml

bluestone8.1.xml

install-eiger.properties

install-ranier.properties

install-nordwand.properties

common.properties

build.xml

deploy.xmldeploy

Figure 18.4

The configuration file layout.

The systems and servertypes

directories are used at build time;

the remote directory contains the

files uploaded and executed on

the remote system.
BUILDING A PRODUCTION DEPLOYMENT PROCESS 447

Identifying the local host

We identify the local host by looking at the standard environment variables:

<property environment="env"/>
<property name="env.HOSTNAME" value="${env.COMPUTERNAME}"/>
<property name="hostname" value="${env.HOSTNAME}"/>

This extracts the hostname from both the Windows NT and the Unix environment
variables. Apparently, it does not work on Mac OS X; non-Unix platforms are an
unknown. We have a <hostname> task in the pipeline that will work across all plat-
forms, but it came in too late for Ant 1.5.

Loading in the system-specific details

With the hostname, we can load in hostname-specific properties

<property name="config.file"
 location="install-${hostname}.properties"/>
<property file="${config.file}" />
<property file="common.properties" />

These steps read in the configuration file type for the local system, such as this one:

target.servertype=tomcat4.0
target.username=admin
target.password=password
target.port=8080

Ant then loads the common properties file, containing the definitions you do not
want to duplicate:

target.appname=antbook
target.warfile=${target.appname}.war

Handing off to the specific build files

With the name of our application server, Ant can choose the appropriate build file for
the install:

<property name="build.file"
 location="${target.servertype}.xml"/>

Running this is a matter of an <ant> call:

<target name="install" depends="init">
 <ant antfile="${build.file}"
 inheritall="false"/>
</target>

The full build file contains validation tests in the init target, for a more robust
build. In particular, the target verifies that all the configuration files were present, and
that target.servertype is defined.
448 CHAPTER 18 PRODUCTION DEPLOYMENT

18.5.6 Writing the build file for installing to a server

For our Tomcat 4.0 deployment, we have taken the code from section 7.7, somewhat
simplified as we know we are always deploying to the local host. We do want to be
rigorous in deployment, however, copying the files in under the CATALINA_
HOME/webapps directory, so that when the server restarts our application restarts
with it.

Reusing the same tricks of section 18.5.5 to load application-specific content, we
set up some properties to point to the destination directories and files:

<property name="target.deploy.directory"
 location="${env.CATALINA_HOME}/webapps"/>
<property name="webapp.expanded.dir"
 location="${target.deploy.directory}/${target.appname}" />
<property name="webapp.copied.file"
 location="${target.deploy.directory}/${target.appname}.war" />

We copy the unexpanded WAR file for server restart, and then expand it for the
installation onto the running server.

Unloading the current installation

We will omit the unload target, which issues a <get> against

http://localhost:8080/manager/remove?path=/${target.appname}

We have demonstrated this in section 7.7. Obviously, we can override the port; most
production servers run at port 80.

One option to consider here is to actually shut down the application server entirely.
This guarantees that any spawned threads are destroyed, and all memory is released.
If you do this then you do not need to register the application with Tomcat after
deployment, you need to restart Tomcat which is a harder task.

Cleaning up the installation

For production, we always clean out the previous set of files; after unloading the
application from Tomcat, we wait a few seconds then delete the WAR file in its
expanded and unexpanded state.

<target name="clean" depends="unload"
 description="clean up: unload app and delete all files">
 <sleep seconds="${target.sleep.seconds}" />
 <delete file="${webapp.copied.file}" />
 <delete dir="${webapp.expanded.dir}" />
</target>

Some servers do not always unload all libraries, especially for JAR files containing
javax packages. We could set the failonerror flag to false to keep going, but
we may encounter problems at unzip time. If this is a common issue, you will need to
shut down the web server every deployment.
BUILDING A PRODUCTION DEPLOYMENT PROCESS 449

Copying the files

After cleanup, we copy in the new files:

<target name="install-files" depends="clean">
 <copy file="${target.warfile}"
 tofile="${webapp.copied.file}"/>
 <unzip src="${webapp.copied.file}"
 dest="${webapp.expanded.dir}"/>
</target>

This leaves us ready to run the application through a server restart or via a manage-
ment URL call. The paranoid will restart the server, but we will go for the hot-
update.

Loading the application

Again, a manager URL call will start the program; a <get> against

http://localhost:8080/manager/install?path=/${target.appname}
 &war=file://${webapp.expanded.dir}

That’s it. It takes a few seconds longer than usual, with the delete, the copy, and the
expansion, but it still only takes 15-20 seconds, all in.

18.5.7 Uploading to the remote server

We need to get our local installation and configuration files to the remote server. FTP
is the path we shall choose, for now. We do all this in our top-level deploy.xml file, a
file that resides in the webapp directory and presides over deployment.

Configuring the upload

First Ant must determine which files are needed at the far end. We don’t want to send
any more files than are needed, to prevent confusion and maintain security. If we
build different WAR files for different targets, it is critical that nobody installs them
on the wrong machine; stripping out the other build and configuration files helps
achieve this.

Although we repeat the same hostname trick of section 18.5.5, we expect the
system to usually be called with a remote hostname defined, such as from the
command line:

ant -Dhostname=eiger

The build file loads in the property files for the hostname and makes a list of which
files are needed.

<property name="config.file"
 location="${systems.dir}/${hostname}.properties"/>
<property file="${config.file}" />
<property file="${systems.dir}/common.properties" />
<property name="servertype.file"
450 CHAPTER 18 PRODUCTION DEPLOYMENT

 location="${servertypes.dir}/${target.servertype}.properties"/>
<property file="${servertype.file}" />
<property name="redeploy.dir" location="dist/redeploy" />
<property name="remote.config.file"
 location="${remote.dir}/install-${hostname}.properties"/>
<property name="remote.build.file"
 location="${remote.dir}/${target.servertype}.xml"/>

The configuration files at build time contain more information than those we
upload. In particular, they can contain passwords to the server:

target.server=eiger
login.userid=tomcat4
login.password=topsecret
ftp.remotedir=/home/tomcat4/install
telnet.cd.directory=${ftp.remotedir}
target.servertype=tomcat4.0
target.server.debug=false
target.isUnix=true

We derive some other values from these properties; the aim is to allow target systems to
define them in their configuration files if necessary, such as with different FTP and tel-
net login accounts, or with different servers and ports for SSH-tunneled connections:

<property name="ftp.server" value="${target.server}"/>
<property name="ftp.port" value="21"/>
<property name="telnet.server" value="${target.server}"/>
<property name="telnet.port" value="23"/>
<property name="ftp.userid" value="${login.userid}"/>
<property name="ftp.password" value="${login.password}"/>
<property name="telnet.userid" value="${login.userid}"/>
<property name="telnet.password" value="${login.password}"/>

The build files also read in the application server-specific configuration files. These
state what features are in the server:

server.isj2ee=false
server.jsp.version=2.3
server.j2ee.version=0
server.xerces.needed=false

These settings can be used to control WAR file generation, either in conditional
<patternset> includes of JAR files, or in the <webdoclet> task. We don’t need
to do this, yet, but the option is important. Obviously, these configuration files are
reusable across many projects.

Building a directory of upload files

Based on the configuration details, Ant knows which files to upload, so it copies them
to a new redeployment directory, combining the configuration files with the WAR
file itself.
BUILDING A PRODUCTION DEPLOYMENT PROCESS 451

<target name="build-deployment-package" depends="init">
 <copy todir="${redeploy.dir}" file="${warfile}"/>
 <copy todir="${redeploy.dir}" file="${remote.config.file}"/>
 <copy todir="${redeploy.dir}" file="${remote.build.file}"/>
 <copy todir="${redeploy.dir}" file="${remote.dir}/build.xml"/>
 <copy todir="${redeploy.dir}"
 file="${remote.dir}/common.properties"/>
</target>

A local deployment can run straight from this directory; this is the simplest way to
test the process. Indeed, a quick test for ${hostname} equaling ${env.HOST-
NAME} lets the build file deploy this way on a local system:

<target name="install-local"
 depends="build-deployment-package"
 if="is.localhost">
 <ant dir="${redeploy.dir}" inheritall="false"/>
</target>

Uploading the files

We will rely on the trusty <ftp> task for deployment, called three times in a row.

<target name="upload" depends="build-deployment-package"
 unless="is.localhost" >

 <echo>connecting to ${target.server}
 as ${ftp.userid} into ${ftp.remotedir}
 </echo>

 <ftp server="${ftp.server}" port="${ftp.port}"
 action="mkdir"
 remotedir="${ftp.remotedir}"
 userid="${ftp.userid}"
 password="${ftp.password}"
 verbose="true" passive="true"
 ignoreNoncriticalErrors="true"
 />

 <ftp server="${ftp.server}" port="${ftp.port}"
 remotedir="${ftp.remotedir}"
 userid="${ftp.userid}" password="${ftp.password}"
 depends="true" verbose="true" passive="true"
 binary="true"
 ignoreNoncriticalErrors="true"
 >
 <fileset dir="${redeploy.dir}">
 <include name="**/*.war"/>
 </fileset>
 </ftp>

 <ftp server="${ftp.server}" port="${ftp.port}"
 remotedir="${ftp.remotedir}"
 userid="${ftp.userid}" password="${ftp.password}"

b

c

452 CHAPTER 18 PRODUCTION DEPLOYMENT

 depends="true" verbose="true" passive="true"
 binary="false"
 ignoreNoncriticalErrors="true"
 >
 <fileset dir="${redeploy.dir}">
 <include name="**/*.xml"/>
 <include name="**/*.properties"/>
 </fileset>
 </ftp>
</target>

The first <ftp> call b creates the destination directory. The second uploads the
WAR file c. The third one is special d; it uploads the XML and properties files in
text mode, so that <telnet> can convert the line endings to those appropriate for
the destination. This is not critical for the files we are currently uploading. If we
added text or shell scripts, it would matter a lot.

Preparing to run the remote build

With the files on the remote server, it is time to run the build remotely. This is where
<telnet> makes an appearance.

Before calling <telnet> we need to address the different-servers-different-
prompts problem, by defining the initial prompt for the different target platforms we
support, and the different commands needed to reset the prompt to something under
our control. If we leave them as is, with a $ or a > as the prompt, Ant may mistake
program output as the prompt.

<target name="unix-prompts" if="target.isUnix">
 <property name="telnet.prompt.command"
 value="export PS1=${telnet.prompt}"/>
 <property name="telnet.initial.prompt" value="$"/>
</target>

<target name="windows-prompts" unless="target.isUnix">
 <property name="telnet.prompt.command"
 value="PROMPT ${telnet.prompt}"/>
 <property name="telnet.initial.prompt" value=">"/>
</target>

If we were to support many more platforms, we would factor these settings out into
platform-specific settings files, each loaded in dynamically based on a target.
platform property.

Now, let us deploy.

Calling Ant remotely

<target name="install-remote"
 depends="upload,unix-prompts,windows-prompts"
 unless="is.localhost">

d

BUILDING A PRODUCTION DEPLOYMENT PROCESS 453

 <telnet server="${telnet.server}" port="${telnet.port}"
 userid="${telnet.userid}" password="${telnet.password}"
 timeout="${telnet.timeout}" >
 <read string="${telnet.initial.prompt}"/>

 <write>${telnet.prompt.command}</write>
 <read string="${telnet.prompt}"/>

 <write>cd ${telnet.cd.directory}</write>
 <read string="${telnet.prompt}"/>

 <write>ant</write>
 <read string="${telnet.prompt}"/>
 </telnet>
</target>

This target connects to a remote server, using a supplied username and password. We
have a timeout, which must be at least as long as the maximum possible time to run
the build file remotely; we choose 300 seconds for safety. Then we issue three com-
mands down the wire

For this to work, Ant must already be installed, and on the path of the account run-
ning the build. If the build fails, the local build file does not notice; it is only at test
time that trouble is detected. This is why the Rant tool introduced in section 15.10
looks so promising; if it can add security and better reporting, then it will be a great
way to run a remote build, not least because SOAP goes through firewalls.

18.5.8 The remote deployment in action

When you actually run the build, the most surprising thing is how ordinary it is. Get-
ting passwords right on remote systems configured with Java, Tomcat, and Ant are
chores, but the build itself flies along nicely. We show a fragment of the full build in
listing 18.3, omitting the preceding FTP upload, and the functional tests that follow.

install-remote:
 [telnet] Red Hat Linux release 7.1 (Seawolf)
 [telnet] Kernel 2.4.2-2 on an i686
 [telnet] login:
 [telnet] tomcat4
 [telnet] Password:
 [telnet]
 [telnet] [tomcat4@eiger tomcat4]$
 [telnet] export PS1=[done]
 [telnet] [done]
 [telnet] cd /home/tomcat4/install
 [telnet] [done]
 [telnet] ant
 [telnet] Buildfile: build.xml
 [telnet] init:
 [telnet] install:

Set the prompt to a more
complex one, such as [done]

Change to the directory where
the files were uploaded

Call Ant

Listing 18.3 Ant running Ant remotely, via <telnet>
454 CHAPTER 18 PRODUCTION DEPLOYMENT

 [telnet] init:
 [telnet] unload:
 [telnet] [get] Getting:
 http://127.0.0.1:8080/manager/remove?path=/antbook
 [telnet] [echo] OK - Removed application at context path /antbook
 [telnet] clean:
 [telnet] [delete] Deleting: /home/tomcat4/tomcat4.0/webapps/antbook.war
 [telnet] [delete] Deleting directory
 /home/tomcat4/tomcat4.0/webapps/antbook
 [telnet] install-files:
 [telnet] [copy] Copying 1 file to /home/tomcat4/tomcat4.0/webapps
 [telnet] [unzip] Expanding:
 /home/tomcat4/tomcat4.0/webapps/antbook.war into
 /home/tomcat4/tomcat4.0/webapps/antbook
 [telnet] deploy:
 [telnet] [get] Getting:
 http://127.0.0.1:8080/manager/install?path=/antbook
 &war=file:///home/tomcat4/tomcat4.0/webapps/antbook
 [telnet] [echo] OK - Installed application at context path /antbook
 [telnet] default:
 [telnet] BUILD SUCCESSFUL
 [telnet] Total time: 35 seconds
 [telnet] [done]

The log shows that Ant has successfully logged in to the remote server, and then run
the remote Ant build that it just uploaded. This build file does exactly what it does
on a local system: install Ant to the local Tomcat server.

If the remote build failed, the local build continues, oblivious to the fact. We could
modify the <telnet> task so that it waits for the BUILD SUCCESSFUL string, timing
out after a few minutes if it receives a BUILD FAILED message. Instead, we just rely
on the functional tests, and a new test we will write in section 18.8.

18.5.9 Reviewing the deployment process

This process seems a bit complex, given that we have demonstrated nothing more
than deployment to the same two systems we were deploying to in chapter 7. How-
ever, look at what we have gained: scalability, flexibility, and some more security.

• Scalability—To add a new server: add two configuration files, one local and one
remote; you don’t need to touch the build file itself. Developers can easily add their
systems to the project without storing passwords in the SCM system, and one sin-
gle trusted and secured server can keep the details on production systems safe.

• Flexibility—We can now support many different server types. Each one needs
its own installation build file, with a default target to install the web application
based on the configuration file for the local host, but all the details are left to it.
These files can be reused across projects, or they can be customized to perform
extra tasks, such as configuring the application server itself.
BUILDING A PRODUCTION DEPLOYMENT PROCESS 455

• Security—Perfect security is a distant ideal; if you have a password in a com-
puter, you have a security risk. Our deployment process is amenable to working
on secured systems where server controls keep the Tomcat management applica-
tion inaccessible to all but local callers. It will also work through SSH tunnels,
using the passive="true" option on <ftp> and the option to customize
ports and servers for <ftp> and <telnet>.

We have also gained the ability to work with those operations groups that want to
control the process. They can keep the configuration files for their servers on their
system, and run the code. We can even deploy via email or CD: just <mail> the de-
ployment files to operations with a please install message, or <copy> the files to a
CD-ROM that you can physically hand to them. No matter how the files get to the
server, running ant at the command prompt will get the application installed.

This is a powerful build process. We have not delved into generating custom WAR
files in this task, but the steps are obvious: use the properties in the per-target and per-
server configuration files to control <webdoclet> and <war>. You do need to run
a clean build on the system when switching targets. Rather than remembering to do
this every time, save the target server’s name to a properties file in the dist directory.
Next build, load, and compare this to the current target. When the server names are
different, your build file should trigger a cleanup.

Now that we have put our deployment process in place, we will take a brief look
at the deployment processes of some different application servers.

18.6 DEPLOYING TO SPECIFIC APPLICATION SERVERS

There are so many different application servers, each with its own deployment steps,
that we could probably dedicate multiple chapters to the subject. Instead we are going
to look at some of the servers that have special <ant> tasks, and then discuss how to
work with the others.

18.6.1 Tomcat 4.0 and 4.1

Tomcat 4.0 and 4.1 share the same deployment process; Ant issues HTTP GET
requests to the management servlet. Tomcat 4.1 makes this process slightly easier, but
if you have a process that deploys to Tomcat 4.0, it should still work with the later
version.

Deploying to Tomcat 4.0

We have already shown how to deploy to Tomcat 4.0. The management servlet is a
security risk: anyone can pick up the base-64 coded authentication string and control
the web server.

This is a big issue; the <get> task does not support digest authentication so you
cannot safely deploy to a production system with it. Anyone could listen to the deploy-
ment requests and then issue their own.
456 CHAPTER 18 PRODUCTION DEPLOYMENT

You must secure the servlet with an IP address valve, which restricts access to a
given IP address. For maximum security, configure the valve to permit management
requests from the local server, with this fragment in server.xml:

<Context path="/manager" docBase="manager"
 debug="0" privileged="true">
 <Valve
 className="org.apache.catalina.valves.RemoteAddrValve"
 allow="127.0.0.1" />
</Context>

The deployment process introduced in section 18.5 works perfectly well with systems
so configured.

Deploying to Tomcat 4.1

At the time of writing, Tomcat 4.1 is still only in an Alpha release phase. It contains
some features that make it very appealing as a development target: a JMX manage-
ment API, a reworked management applet designed for integration with build tools,
and its own Ant task to install and remove applications:

<install url="http://${target.server}:${target.port}/manager"
 username="${target.username}"
 password="${target.password}"
 path="${target.appname}"
 war="file://${webapp.path}"/>

Alongside the <install> task, there are others such as the <reload> and
<remove> tasks to reload and remove web applications, and a <list> task to list all
loaded applications. The tasks hand off the requests to the reworked version of the
manager applet. They seem pretty much a drop-in replacement for the Tomcat 4.0
deployment targets we have been using, although they need a failonerror flag so
that we can tell <remove> to not break the build if the application is missing. If we
wanted to use it now, we would have to use an <http> test in a <condition> task
to probe for the application running before unloading it.

 Under the hood, these tasks are simply issuing HTTP GET requests against the
same URLs we constructed in chapter 7; they might also work against Tomcat 4.0.
As with our <get> requests, the password goes over the wire in base64 encoding, so
it is not at all secure.

We like the idea of these tasks, but have not yet sat down to see how well they work
over time. The manual claims that the tasks only work against the local host, but that
is really a server-side configuration issue, and the current alpha releases of Tomcat 4.1
still permit remote management. For secure production deployment, you must con-
figure the server for local management only, as with Tomcat 4.0. To find out more
about these tasks, consult the Tomcat documentation (Tomcat 2002).
DEPLOYING TO SPECIFIC APPLICATION SERVERS 457

18.6.2 BEA WebLogic

There is a <weblogic> element inside <serverdeploy>. This requires the
weblogic.jar file on the classpath; you can use the classpath attribute to do this.

<serverdeploy
 action="deploy"
 source="${webapp.path}">
 <weblogic
 application="${target.appname}"
 component="webapp:${target.server}"
 server="t3://${target.server}:7001"
 username="${target.username}"
 password="${target.password}"
 classpath="${env.WEBLOGIC_HOME}/lib/weblogic.jar"
 />
</serverdeploy>

WebLogic 7.0 comes with its own copy of Ant. We recommend that you rename its
version of ant.bat and ant.sh, so that you do not accidentally use that version. It is
very confusing when there is more than one version of the Ant shell script/batch file
on your path, as you may accidentally use an older version of Ant, and may not be
adding optional libraries to the appropriate directory.

18.6.3 HP Bluestone application server

This application server ships with its own deployment task; something we should
expect from all application servers in the future.

The <hpas-deploy> task uploads a WAR or EAR file to a running instance of
the HP-AS application server, authorizing the request using the account and password
supplied as attributes. We think it uses a custom wire protocol talking to the
JMX server.

<taskdef name="hpas-deploy"
 classname="com.hp.mwlabs.tools.pacman.ant.HPASDeploy" />
</target>

<target name="deploy" depends="init"
 description="Deploy to HP-AS server">

 <hpas-deploy
 host="${target.server}"
 uri="${target.appname}"
 port="2000"
 username="${target.username}"
 password="${target.password}"
 jarfile="${webapp.path}">
 </hpas-deploy>
</target>

You can also specify a set of files to upload as a <fileset> inside the task; when you
do this you can no longer specify the deployment path; the tool uses the name of each
file in the fileset instead. Single file deployment is clearly more flexible.
458 CHAPTER 18 PRODUCTION DEPLOYMENT

The development team’s choice to provide an Ant task for deployment, rather than
a GUI tool, is a welcome sign of how Ant has become the standard build tool for
projects, and it demonstrates how developers of commercial products can serve their
users by supporting Ant explicitly. Of course, it would be nice to have source access,
so we could write a nested element that lets us specify a deployment URI for each ele-
ment uploaded. It would also be nice to see vendors plugging into the <serverde-
ploy> task.

There is currently one major flaw with this task—it does not work from a normal
Ant execution environment, only the vendor’s RadPak Ant GUI tool. We don’t know
why this is the case, but it stops you deploying via this task from any automated build
and deploy process.

18.6.4 Other servers

There are many more application servers, each with its own deployment process, but
without explicit Ant support. We leave deploying to these servers as an exercise to the
reader. The process for creating a build file to deploy to each server is usually the
same: look at its documentation and sample deployment scripts, then replicate the
steps in Ant. URL-based manager applications succumb to <get> requests; helper
programs can be called with <java> and <exec>, and any server that supports hot
deployment is amenable to <copy> calls.

The batch files are often the most informative source of information, as they show
the classpaths and parameters needed to call their Java-based programs. You can
replace each such script file with a single <java> call in your application.

All in all, we estimate that it can take a day or two to get a working build file to
deploy to a new server type, but once written it can be reused again and again. Perhaps
the Apache Ant project should put together a repository of deployment targets for the
usual suspects of application servers.

18.7 VERIFYING DEPLOYMENT

“Trust, but verify.”

The Russian proverb that Reagan quoted when dealing with the Warsaw Pact in trea-
ties on Strategic Armaments also applies to the deployment problem. Even though
the individual components of a production deployment process are there to help you,
together they can be an implacable obstacle.

We already have the HttpUnit tests to verify that the system works; we wrote those
in section 12.6. These make sure that our application is working. There is just one
remaining question: how can you be sure that deployment worked?

We may not be able to tell from the functional tests whether the version of the
WAR file we just built was the one we just built, or whether an older version is still
running. This is rare, but we have encountered it when getting deployment working,
and again when a system was misconfigured.
VERIFYING DEPLOYMENT 459

What are we to do? The answer is actually very simple. For every build, we will cre-
ate a timestamp file that gets included in the web application. Ant can then compare
the local timestamp with the copy served up by the just deployed application, and fail
the build if they are different.

18.7.1 Creating the timestamp file

First, we give the file a name and a place.

<property name="timestamp.filename"
 value="timestamp.txt"/>

<property name="timestamp.path"
 location="${build.dir}/${timestamp.filename}"/>

The file will be served from the web site by the same name, such as

 http://127.0.0.1:8080/antbook/timestamp.txt

If after deployment the remote and local files have different contents, then deployment
has failed. We need to put a timestamp in the file, of course, which we do by getting the
current date and time into a property, then saving this to a file with <echo>.

<target name="make-timestamp" depends="init" >
 <tstamp>
 <format property="buildtime"
 pattern="yyyy-MM-dd'T'HH:mm:ss" />
 </tstamp>
 <echo file="${timestamp.path}"
 message="build.timestamp=${buildtime}" />
</target>

We could use <propertyfile> for similar effect, but we prefer the terse one-line
timestamp for easier-to-read error messages.

18.7.2 Adding the timestamp file to the application

To include this file in the application, we add another fileset to the <war> task and a
new dependency to the target:

<target name="make-war"
 depends="compile,make-webxml,make-web-docs,make-timestamp,make-soap-api">
 <war destfile="${warfile}"
 compress="false"
 update="true"
 webxml="${build.webinf.dir}/web.xml">
 <classes dir="${build.classes.dir}"/>
 <webinf dir="${build.dir}" includes="index/**"/>
 <webinf dir="${struts.dir}/lib" includes="*.tld,*.dtd"/>
 <webinf dir="${build.webinf.dir}" includes="antbook.tld"/>
 <fileset dir="${build.dir}" includes="${timestamp.filename}"/>
 <fileset dir="web"/>
 ...
 </war>
</target>
460 CHAPTER 18 PRODUCTION DEPLOYMENT

We could check that this file is there by hand, but we want Ant to do the work. This
is what the target in listing 18.4 is for, a target that Ant executes after the <telnet>-
based remote deployment has returned.

<target name="verify-uptodate"
 depends="install" >
 <property name="verify.url"
 value="${test.url}/${timestamp.filename}" />
 <property name="verify.local.path"
 location="${dist.dir}/deployed-on-${target.server}.txt"
 />
 <waitfor timeoutproperty="deployment.failed"
 maxwait="30"
 maxwaitunit="second">
 <http url="${verify.url}" />
 </waitfor>

 <fail if="deployment.failed">
 timestamp page not found at ${verify.url}"
 </fail>

 <get src="${verify.url}"
 dest="${verify.local.path}" />

 <condition property="verify.uptodate.successful">
 <filesmatch
 file1="${timestamp.path}"
 file2="${verify.local.path}"
 />
 </condition>

 <loadfile property="verify.expected"
 srcFile="${timestamp.path}" />
 <loadfile property="verify.found"
 srcFile="${verify.local.path}" />

 <fail unless="verify.uptodate.successful">
 file match failed;
 expected [${verify.expected}]
 found [${verify.found}]
</target>

This target has three phases. After creating the URL to the remote timestamp, it uses
<waitfor> b to spin until the file is present. This is to give the server time to
reload the application.

If the file is present, then a <get> task retrieves it and saves it to a local file c.
This is followed by a <condition> test to compare the two files, our original time-
stamp, and this newly downloaded version d. If they are not equal, then the target

Listing 18.4 A target to fetch the timestamp and verify that it matches

our local copy

b

c

d

VERIFYING DEPLOYMENT 461

fails the build, with a helpful error message stating the difference between what we
expected and what we got.

18.7.3 Testing the timestamp

In a normal successful build, the output of the target is something to be ignored:

verify-uptodate:
 [get] Getting: http://eiger:8080/antbook/timestamp.txt

It is only when something has gone wrong that the target contains any message of
importance:

verify-uptodate:
 [get] Getting: http://eiger:8080/antbook/timestamp.txt

BUILD FAILED
C:\AntBook\app\webapp\newdeploy.xml:273:
 file match failed;
 expected [build.timestamp=2002-04-26T00:42:42]
 found [build.timestamp=2002-05-26T00:42:42]

That is all there is to it. Some new properties, two new targets, and some other
minor changes to the build file have self-validated your deployment process: Ant ver-
ifies that the deployment went through, then the HttpUnit, Cactus, or Canoo tests
verify that the program actually works. Together, they ensure that the production ser-
vice is ready to go live.

18.8 BEST PRACTICES

When it comes to production deployment, the two core practices are be rigorous and
work with operations. By rigorous we mean: design build files that do not take short-
cuts or make too many assumptions about systems such as where applications are
installed. In addition, include many tests.

Since chapter 12 in this book, we have been intermittently writing functional tests
for the program and happiness tests for the system configuration. The happiness test,
our taglib to probe for needed classes and other important configuration data, is one
of our secret weapons for successful production deployment. If your functional tests
fail, it could be the fault of your program or the system. If the configuration tests fail,
it is the fault of the system. The more easily trouble can be located, the more easily it
can be fixed. In addition, configuration problems don’t merit waking the development
team up at 3 a.m.—in theory, anyway. In practice, it is going to happen. The purpose
of the tests then becomes to give you 15 minutes more sleep before they call you.

The other key purpose for tests is to verify that the program works on different appli-
cation servers. We have explored some of the problems here, but there is no core way
to address them other than to use the same application server everywhere. Sun is devel-
oping validation tools to help here, but there are so many other subtleties of deploying
to and operating a different application server that it probably is not enough.
462 CHAPTER 18 PRODUCTION DEPLOYMENT

Ant helps by providing the unified deployment and testing system. Even so, keep-
ing the number of application servers to an absolute minimum—one—is very helpful.

The other area of focus is working with operations. From its perspective, the ideal
server is one that works so well, they forget where it is located or how to log in to it.
It just works. It is far beyond the scope of this book to address the techniques needed
to achieve such a goal. We have introduced our thoughts on a process that may move
toward that goal: that of treating operations needs as use cases, and the problems it
encounters as defects to be logged, tracked, tested, and fixed.

18.9 SUMMARY

We have explored the challenges of deploying to production servers, the subtle differ-
ences you may encounter, and the complications of working with operations-man-
aged systems.

We have shown how to create a deployment process driven by per-system and per-
application server configuration files that can deploy to different systems and appli-
cation servers. This deployment process uses an install-time build file for each appli-
cation server type; this file deploys the application onto the local system. The main
build file has to decide which install and configuration files to upload, and then uses
<ftp> or a similar tool to get them onto the machine. For automated deployment,
Ant can make a <telnet> call and run the remote task from the local system. You
can also install the software by running Ant on the server by hand, which permits alter-
native upload processes such as email and CD-ROM delivery.

Ant’s task suite for deployment is still growing, and we are optimistic for the future,
but today deployment is usually a matter of putting together a sequence of <copy>,
<get>, and <java> calls.

We finished the chapter with a look at how to verify that deployment worked.
When you are writing your deployment build files, we strongly encourage you to use
this technique from the outset, as it is easy to do, and the price of having a broken
deployment process is high.

This chapter marks the end of our exploration of how to apply Ant to advanced
development projects. Our next section goes one level deeper, looking at how to
extend and customize Ant through writing new tasks, or changing existing ones. This
is not hard to do, and gives you the power to address problems in Ant that would oth-
erwise seem impossible.
SUMMARY 463

464 CHAPTER 18 PRODUCTION DEPLOYMENT

3
P A R T
Extending Ant

If you are pushing the limits of Ant’s built-in capabilities, chapters 19 and 20 are
for you. We first cover writing custom Ant tasks and the essentials of Ant’s API.
Then, we explore scripting inside Ant build files and, finally, creating your own build
listeners, loggers, filter readers, mappers, and selectors. This section enables you to
extend Ant to meet the specific needs of your projects.

C H A P T E R 1 9

Writing Ant tasks

19.1 What exactly is an Ant task? 468
19.2 Ant API primer 470
19.3 How tasks get data 474
19.4 Creating a basic Ant Task subclass 483
19.5 Operating on a fileset 485
19.6 Error handling 486
19.7 Testing Ant tasks 487
19.8 Executing external programs 487

19.9 Executing a Java program
within a task 490

19.10 Supporting arbitrarily named
elements and attributes 493

19.11 Building a task library 495
19.12 Supporting multiple

versions of Ant 497
19.13 Summary 497
You know that you are a serious Ant user when you start wanting to extend it through
code. Although it seems an expert use of the tool, there is no need to feel intimidated.
The word expert can bring into peoples’ minds visions of experts-only ski runs: steep
and narrow descents where any failure results in life-threatening injuries. Ant is not
like that. Extending it is an advanced use of the tool, but it is simple and painless.

There comes a time in everyone’s complex project where it suddenly becomes clear
that Ant does not do everything you need to control the entire build. It may be that
something minor is missing, such as being able to sleep for thirty seconds during
installation or testing. It may be that something major is missing, like having no way
to deploy EJB packages to the target application server. It may even be that a common
Ant task does not work quite right. This happens to everyone and there is always a
solution. Ant was designed to be extendible through Java classes, and it only takes a
small amount of Java coding to write a new Ant task. If the problem lies in the actual
Ant source itself, then the fact that an entire Ant source tree is a download away comes
into play. If Ant does not work right, then it can be fixed.
467

Adding a new Java class requires Java development experience, and the tools to
compile the source and make a JAR file from the generated bytecodes. This is exactly
the same development skill that anyone using Ant for Java development has, and as
for the tools needed—Ant and the Java SDK are all that is required.

People overcoming their projects’ build problems wrote all the Ant tasks that come
with Ant today. The time and effort those developers invested have benefited not only
themselves, but all other Ant users. The same benefits apply to new tasks written, and
extensions to existing classes. If the libraries are reused in one project or organization,
the cost of development is soon covered; if they are shared with the rest of the Ant
community, then not only do others benefit from the development, but also they can
share the maintenance effort among themselves.

19.1 WHAT EXACTLY IS AN ANT TASK?

The definition of what makes a Java class into an Ant task is quite simple: it must
have an execute() method. Yes, it really is that simple! Ant’s core engine has a rela-
tively sophisticated introspection mechanism to allow a lot of freedom in how tasks
plug into it.

19.1.1 The world’s simplest Ant task

Here is an example of one of the simplest Ant tasks imaginable:

package org.example.antbook.tasks;

public class SimpleTask {

 public void execute() {
 System.out.println(">>>> SimpleTask <<<<");
 }

}

Notice that our class extends from no base class (except java.lang.Object im-
plicitly, of course) and only has a single method: execute. The execute method
must be public and take no arguments, and the class must be capable of instantiation
(i.e., the class cannot be abstract) with a no-argument constructor. Those are effec-
tively the only rules that you must follow to turn a Java class into an Ant task. The
execute method may have a return value, but it is ignored and a warning is gener-
ated when the task is defined. The execute method may throw exceptions, and
doing so will cause the build to fail appropriately.

NOTE Writing to System.out or System.err during task execution is allowed,
but Ant captures the output and logs it to the appropriate logging level. The
MSG_INFO level is used for System.out, and MSG_ERR is used for Sys-
tem.err. See section 19.2.1 for more information on logging. Running Ant
with the -quiet option will not show System.out output, which may sur-
prise you at first. We recommend, however, that you extend org.apache.
tools.ant.Task and use the logging methods provided.
468 CHAPTER 19 WRITING ANT TASKS

19.1.2 Compiling and using a task in the same build

The build file shown in listing 19.1 outputs

simpletask:
[simpletask] >>>> SimpleTask <<<<

The trick is using <taskdef> before executing our task, but after compiling it.
When integrating third-party tasks into a build file, you can specify the <taskdef>
outside a target so that tasks are defined globally to that build file. The <taskdef>
task, of course, requires that the class file(s) of the tasks being declared exists within
its visible classpath. In order to use a task that is being compiled as part of the same
build process, the <taskdef> has to occur after the compilation. We accomplish
this by simply defining the task in the same target where we use it.

<?xml version="1.0" ?>
<project name="tasks" default="main">

 <property name="build.dir" location="build"/>

 <target name="init">
 <mkdir dir="${build.dir}"/>
 </target>

 <target name="compile" depends="init">
 <javac srcdir="src" destdir="${build.dir}"/>
 </target>

 <target name="simpletask" depends="compile">
 <taskdef name="simpletask"
 classname="org.example.antbook.tasks.SimpleTask"
 classpath="${build.dir}"
 />

 <simpletask/>
 </target>

 <target name="clean">
 <delete dir="${build.dir}"/>
 </target>

 <target name="main" depends="simpletask"/>

</project>

19.1.3 Task lifecycle

How Ant maps from XML task declarations to Java classes is a miracle of informal data
binding. We will soon show you how attributes and elements are mapped to Java meth-
ods, but before that comes the task lifecycle. There are different stages in the processing
of a build file, and the objects that implement tasks are used throughout the stages.

Listing 19.1 The build file to compile and execute a task all in the same build

Compiles it

Defines it

Uses it
WHAT EXACTLY IS AN ANT TASK? 469

Here is the lifecycle of Ant tasks. The build begins with Ant loading and parsing the
build file.

1 As Ant parses the build file, it creates an instance of the appropriate subclass of
Task for every declaration of a task in the file, using its empty constructor.

2 Ant then informs the task about its containing project, target, and some other
minor details, such as which line of the build file contains it.

3 Ant calls the init()method of the Task class. Most tasks do not override this.

4 Ant proceeds to execute the targets in the order it determines is appropriate,
conceivably not executing all of them, depending upon whether conditional
targets have their conditions met.

5 The tasks inside a target are executed one by one, For each task, Ant configures
it with the attribute and element values in the build file, then calls its exe-
cute() method

This does not quite explain how a class that does not extend org.apache.tools.
ant.Task works. The answer is that there is a TaskAdapter in Ant’s API that does
extend from Task, and contains an instance of the Object, and invokes its exe-
cute method. The TaskAdapter is used internally to Ant for tasks that do not
extend from Task.

19.2 ANT API PRIMER

Before delving into task development any further, it helps to have an understanding
of some of Ant’s API. You do not need to understand all of the classes and structures
that make up the Ant codebase, but several key classes that are used in the majority of
Ant tasks are worth noting. This is an intentionally brief and focused view of Ant’s
API. In practice, these are the classes and methods that you will work with most fre-
quently. Ant ships with complete Javadoc references and is well documented. With
Ant’s source code being open, it is easy to learn Ant task development tricks by look-
ing at the source code for tasks that are most like the functionality you need. Each
subsection that follows represents a single Ant class, with the important methods of
the class noted.

19.2.1 Task

The org.apache.tools.ant.Task abstract class is the typical base class for Ant
tasks. It is the main unit of work during an Ant build. Classes that extend from Task
should at a minimum implement the execute method. The Task class provides
access to the Project object using the project-protected member variable.
Use the log methods to output to the Ant process—this is much preferable over
System.out.println. The init and execute methods are designed to be over-
ridden. The log methods are designed to be called.
470 CHAPTER 19 WRITING ANT TASKS

• public void init() throws BuildException
The init method is called when a task is encountered during the parsing phase
of the build file. This is rarely overridden in practice, since any preliminary con-
figuration could be done in the execute method instead.

• public void execute() throws BuildException
Here is where it all happens! The execute method is the heart of a task. If something
goes awry, simply throw an org.apache.tools.ant.BuildException.

• log(String msg, int msgLevel) and log(String msg)
The log methods are helpers to call the Project log methods. There are five
logging levels, listed in descending priority:

• MSG_ERR

• MSG_WARN

• MSG_INFO

• MSG_VERBOSE

• MSG_DEBUG
A BuildLogger, discussed in chapter 20, is capable of filtering the output
based on the logging level selected. The command-line switches -debug.(all lev-
els), -verbose (MSG_VERBOSE and up), and -quiet (MSG_WARN and
up) affect the output generated by the default logger. Note that MSG_ERR and
MSG_WARN are always output, even in -quiet mode. The overloaded log
method without the msgLevel parameter logs at the MSG_INFO level.

• public Project getProject()
This method allows a task access to project-wide information so it can do things
like set new properties or access the values of existing ones. See the Project
class description for more details.

19.2.2 Project

• String getProperty (String name)
The getProperty method returns the value of an Ant property, or null if it is
not defined. Because Ant automatically expands properties in attributes before
handing the value to the task, this method is rarely needed in tasks.

• void setNewProperty (String name, String value)
Call this method to assign a value to a property. Keep in mind that Ant proper-
ties are immutable and this method ensures that the immutability rules are
obeyed, so the property will not be changed if it already exists.

• void setProperty (String name, String value)
This is the predecessor to setNewProperty from Ant 1.4 and before. It lets
the caller override properties, though a warning is printed whenever you do
this. If you are writing a task to work with older versions of Ant, you must use
this method to set properties.
ANT API PRIMER 471

• String replaceProperties(String value)
Properties are automatically expanded in XML attributes before your task
receives the data, but this method is useful when receiving element text that is
not automatically expanded.

• java.io.File getBaseDir()
This method returns the project’s base directory. This is useful for resolving rel-
ative paths, although in practice it is rarely needed because of Ant’s automatic
file and path expansion feature.

• String getName()
The getName method returns the project’s name, as specified in the name
attribute of the <project> element.

• java.io.File resolveFile(String filename)
This method returns a File object with an absolute path to the file name specified.
If the file name is relative, it is resolved relative to the project’s base directory.

19.2.3 Path

• String toString()
Path overrides the default Object.toString method to provide the full
path as a completely resolved and platform-specific path.

• static String[] translatePath(Project project, String path)
This utility method provides an array of path elements from a single path con-
taining elements separated by colon (:) or semicolon (;) separators.

• int size()
Returns the number of path elements within the Path instance.

• String[] list()
Returns an array of path elements from the Path instance.

19.2.4 FileSet

• DirectoryScanner getDirectoryScanner(Project project)
To process files from a fileset object, first call this method to get a Directory-
Scanner object. The DirectoryScanner API is then used to iterate over
the files. See section 19.5 for an example.

• java.io.File getDir(Project project)
Returns the base directory specified for this FileSet instance.

19.2.5 DirectoryScanner

• String[] getIncludedFiles()
This method returns all file names that are included, taking into account the
includes/excludes patterns. The file names returned are relative to the root
directory specified. See section 19.5 for an example.
472 CHAPTER 19 WRITING ANT TASKS

19.2.6 EnumeratedAttribute

By requiring that an attribute be one of a list of possible values, Ant makes it easy to
take care of simple validation issues. For example, the <echo> task has an optional
level attribute that can only be set to the values error, warning, info, verbose,
or debug. This constraint is accomplished using an EnumeratedAttribute sub-
class. A subclass must implement the getValues method, and the getValue
method is used to retrieve the value set from the build file.

• abstract String[] getValues()
Implemented by subclasses, returns the set of allowed values.

• String getValue()
Returns the value set, which is guaranteed to be one of the values returned by
getValues.

• int getIndex()
If the position of the value within the list returned by getValues is needed,
this method supplies it.

19.2.7 FileUtils

• static FileUtils newFileUtils()
Most of FileUtils methods are instance methods, as a placeholder for possible
future cross-platform customization. Use this method to return a FileUtils
instance.

• copyFile (many overloaded signatures)
Using these methods to copy files takes care of several minor details, including
optionally filtering token substitution and creating parent directories.

• java.io.File createTempFile(String prefix, String suffix,
File parentDir)
This is a handy method to return a currently nonexistent temporary file name.
Contrary to the method name, it does not actually create a file, only ensures
that the name it generates is not an existing file.

• java.io.File normalize(String path)
This utility method cleans up an absolute file or directory path, ensuring that it is
a valid absolute path on the current platform. It will make the drive letter upper-
case, if there is one, remove redundant slashes, and resolve . and .. references.

• java.io.File resolveFile(java.io.File file, String filename)
Resolves and normalizes a file path relative to another file if the filename is
not already an absolute path.

• void setFileLastModified(File file, long time)
This is a reflection-based wrapper around File.setLastModified, a wrap-
per that handles Java 1.1 by silently doing nothing. Use this method to alter the
timestamp of a file.
ANT API PRIMER 473

19.3 HOW TASKS GET DATA

As you’ve seen throughout this book, tasks are specified in a build file as XML ele-
ments that contain attributes, subelements, and even body text. Ant provides a very
elegant and easy way for tasks to obtain this information in rich, domain-specific
ways. For example, the <javac> task accepts a debug attribute to turn on or off the
debug flag during compilation. The values on, yes, or true all turn the debug flag
on, yet the <javac> task internally does not have to deal with string comparisons. It
simply gets a boolean value: true or false. While the intricacies involved in
describing how this works may at first seem complex, please bear with us, as under-
standing how this works can mean the difference between letting Ant do the hard
work for you or reinventing the wheel and coding something unnecessarily.

During build file execution, Ant creates instances of the tasks used and hands it the
attribute and subelement information. Using Java introspection, Ant looks for spe-
cially named methods and invokes them with the data from the build file. During this
data population stage, an Ant task is not treated specially. Each element in a build file
corresponds to an object, some of which are tasks, others are datatypes, and there are also
objects that correspond to targets as well as the project. Figure 19.1 illustrates an Ant
build file section and its corresponding task. We detail this task later in section 19.8.

19.3.1 Setting attributes

An XML attribute simply consists of a name and a textual value. Simple, right? Well,
not so fast—there is much more to it than passing the string value to your task
instance. In the simplest case, you have a task using an attribute:

<sometask value="some value"/>

And the task has a setValue method:

private String value;
public void setValue (String value) {
 this.value = value;
}

This is similar to JavaBeans-style naming conventions, where a property corresponds
to a setter method with the prefix set.

<run flag="false">

 <fileset dir="src"/>

</run>

public class RunTask extends Task {

 public void setFlag(boolean flag)

 public void addFileset(FileSet fileset)

}

public class FileSet ... {

 public void setDir(File dir)

}

Figure 19.1 Illustration of Ant’s introspection mechanisms mapping task attributes, sub-

elements, and their attributes to corresponding methods. Ant will automatically instantiate in-

stances of objects corresponding to nested elements when the add-prefixed methods are used.
474 CHAPTER 19 WRITING ANT TASKS

NOTE Before Ant calls a setter method for an attribute, property references are ex-
panded. Tasks receive only the expanded values for attributes. We discuss
this further in section 19.4.1.

A String parameter is the most straightforward attribute type since its value corre-
sponds directly, including property value substitution, to the text for the attribute in
the build file. A String type is only the first of many types that can be used, though.

Ant’s introspection mechanism does its best to determine the proper setter meth-
ods to call, but in the case where a setter method name is overloaded, a non-String set-
ter takes precedence over a String parameter setter. If there are multiple non-String
setters for a single attribute name, the one that is located first is JVM dependent. We,
of course, recommend that you do not overload setter methods.

True/False settings

Many times a task simply needs to have a true/false, on/off, or yes/no type of toggle.
By having your setter parameter take a boolean (or java.lang.Boolean), your
task will get true (or Boolean.TRUE) if the value is yes, on, or true, and false
(or Boolean.FALSE) otherwise.

private boolean toggle = false;

public void setToggle(boolean toggle) {
 this.toggle = toggle;
}

The task use in the build file is

<setter toggle="on"/>

Because of implicit attribute expansion, our task doesn’t know the difference when
the build file writer specifies

<property name="toggle.state" value="on"/>
<setter toggle="${toggle.state}"/>

The setToggle method is invoked with true in both cases—provided, of course,
that the toggle.state property has not been set earlier to a value that evaluates to
false.

Accepting numbers

Attribute introspection provides facilities for all the Java primitives and wrapper
types. Most of the primitives and corresponding wrapper classes are for numeric data.
The numeric types are

• byte / java.lang.Byte
• short / java.lang.Short
• int / java.lang.Integer
• long / java.lang.Long
HOW TASKS GET DATA 475

• float / java.lang.Float
• double / java.lang.Double

Setter methods accepting any of these types can be declared, and, if the value of the
attribute can be converted to the desired type, all will be well. If an error occurs con-
verting the text to the appropriate numeric type, a NumberFormatException will
be thrown, halting the build.

A single character

While a single character is not likely to be a commonly used attribute type, Ant
allows you to have a setter that takes a char or java.lang.Character type. The
character provided to your setter is the first character of the attribute value, ignoring
any additional characters.

File or directory attribute

It is extremely common for a task to need a file or directory passed to it as an
attribute. Ant provides built-in support for file or directory attributes by implement-
ing a setter with a java.io.File parameter. The benefit of using a File parame-
ter as opposed to a String parameter is that the path is resolved to an absolute path
when a relative path is specified in the build file. If the path specified in the build file
is not already an absolute path, it is resolved relative to the project’s base directory.

Here is an example of using the File attribute type. Our task desires a destination
directory, which is specified as a relative path:

<mytask destdir="output"/>

Our task implements a setDestDir method:

private File destDir;
public void setDestDir(File destDir) {
 this.destDir = destDir;
}

(Notice that case does not matter.)
Our execute method verifies that we are dealing with an existing directory:

if (!destDir.isDirectory()) {
 throw new BuildException(destDir + " is not a valid directory");
}

Path

Tasks that need to operate on paths, such as a classpath, may use a setter with an
org.apache.tools.ant.types.Path parameter. The benefit to allowing Ant
to give you a Path object, rather than simply a delimited String, is in Ant’s cross-
platform capabilities. The build file can specify a path using semicolons or colons
to separate path elements and back or forward slashes to separate directories, and
476 CHAPTER 19 WRITING ANT TASKS

conversion to the current platform’s delimiters is automatic. Relative paths, from the
project’s base directory, may also be specified within the attribute value. Ant deals
with the unpleasant issues of path and directory separators, giving your task a rich
data structure that encapsulates it all. To support a path attribute in your task,
implement a setPath method:

private Path path;
public void setPath(Path path) {
 this.path = path;
 log("path = " + path);
}

And in the build file, perhaps a path is set in this manner:

 <property environment="env"/>
 <setter path="${env.TEMP}:build/output"/>

Note that the path is specified in a Unix style with a colon path separator and a for-
ward slash as a directory separator. But running this on a Windows platform yields
this result:

[setter] path = C:\temp;C:\AntBook\Sections\Extending\tasks\build\output

Ant has automatically adjusted the path to suit our current platform regardless of the
path style used in the build file. Also, notice that the relative path build/output
has been set to the absolute path for us automatically.

Enumerated attribute

Ant does a lot to ease writing tasks, and the EnumeratedAttribute class is a
prime example. If you only allow the value of an attribute to be from a fixed set of
possible values, using Ant’s EnumeratedAttribute type can save some validation
coding time. Listing 19.2 shows a task with a version attribute that only allows the
values 2.2 or 2.3.

package org.example.antbook.tasks;

import org.apache.tools.ant.Task;
import org.apache.tools.ant.types.EnumeratedAttribute;

public class EnumTask extends Task {

 private String version = "2.3";

 public void setVersion(ServletVersion ver) {
 version = ver.getValue();
 }

 public void execute() {
 log("Servlet version = " + version);
 }

Listing 19.2 Using EnumeratedAttribute to restrict an attribute value

Sets default value

Retrieves value from our
EnumeratedAttribute
subclass
HOW TASKS GET DATA 477

 public static class ServletVersion
 extends EnumeratedAttribute {
 public String[] getValues() {
 return new String[] {"2.2", "2.3"};
 }
 }

}

EnumeratedAttribute is an abstract class with getValues being an abstract
method that you must implement. The standard practice is to use a nested class
unless there are other tasks that need to share the same enumerated values, in which
case you can create a stand-alone class to be reused by other classes. Use getValue
to retrieve the String value set by the build file, which Ant guarantees to be one of
the allowed values. You can also retrieve the int index of the specified value using
getIndex.

Class

If your task has dynamic swappable implementations as part of its functionality using
Class.forName, using a java.lang.Class setter ensures that the class exists or
the build fails. This variant is only marginally useful because it will only search for
classes within Ant’s operating classpath, whereas tasks typically should be flexible
enough to allow the build file to specify its own classpath. This reduces your build’s
dependency on its operating environment. We cover how to write tasks that operate
on user-defined classpaths in section 19.9.1. We recommend that you use a String
type for attributes that specify a classname, and use Class.forName to retrieve
classes from the task’s classpath specified with <taskdef>, or use AntClass-
Loader.loadClass to get classes from a different classpath.

User-defined types

Last, but not least, for attribute setter types is the capability for you to define your
own type. Any class type that has a public String constructor is allowed, and this is
actually the same mechanism the numeric datatypes use, since all the wrapper classes
have constructors that take a single String parameter.

This flexibility is a pleasant addition to writing tasks, allowing you to deal with
richer objects in your task than simple strings. Inspired by a request by one of the
developers of the <cc> task who asked that Ant support hexadecimal numbers
natively, we decided to add our own support for it by defining a Hex type1 shown in
listing 19.3.

1 A variant of this was added to Ant’s codebase as org.apache.tools.ant.types.FlexInteger.
It allows octal, hexadecimal, or decimal numbers to be used in Ant attributes.

Defines the allowable
values in an inner class
478 CHAPTER 19 WRITING ANT TASKS

package org.example.antbook.tasks;

public class Hex {
 private Integer value;

 public Hex(String hex) {
 value = Integer.decode(hex);
 }

 public int intValue() {
 return value.intValue();
 }

 public String toString() {
 return "0x" + Integer.toHexString(value.intValue());
 }
}

The important thing to note about the Hex class is that it has a String-argument
constructor. When Ant populates an object from its attributes and encounters a setter
with an argument type that it does not recognize natively, it attempts to instantiate
that object with a String constructor using the value of the attribute. The setter
within our task is simply:

private Hex hex;
public void setHex(Hex hex) {
 this.hex = hex;
}

Our task’s execute method demonstrates that we have an instance of the Hex class by
logging the hexadecimal value and the integer value.

public void execute() {
 if (hex != null) {
 log(hex + " = " + hex.intValue());
 }
}

Our build file specifies a hexadecimal number:

<setter hex="0x1A"/>

The output from the task is

[setter] 0x1a = 26

Our Hex class is perhaps a bit misnamed, as it actually will accept any legitimately
specified decimal, octal, or hexadecimal formatted value and decode it properly. It
does, however, effectively demonstrate that it is easy to support attributes using what-
ever types are most appropriate for your custom task.

Listing 19.3 Defining our own type to use as an Ant attribute type
HOW TASKS GET DATA 479

Datatype references

Reusable datatypes is one of Ant’s greatest strengths. Datatypes used as nested ele-
ments implicitly support reuse without any additional coding efforts, but if your task
needs to accept an id of a previously defined datatype as attribute, use the org.
apache.tools.ant.types.Reference type. This is really a special case of the
String-arg constructor capabilities. To accept a path datatype as a reference for a
classpathref attribute, implement setClasspathRef:

public void setClasspathRef(Reference r) {
 createClasspath().setRefid(r);
}

This example is shown in more detail in listing 19.6.

19.3.2 Supporting nested elements

Throughout this book, you have seen the use of many of Ant’s tasks that use nested
elements to provide rich and hierarchically structured data to the enclosing task. For
example, a typical <javac> looks like this with a nested <classpath> element:

<javac destdir="${build.classes.dir}"
 debug="${build.debug}"
 srcdir="${src.dir}">
 <classpath refid="compile.classpath"/>
</javac>

While the actual code to support nested elements is quite straightforward, there is a
sophisticated mechanism within Ant to facilitate it. Like attributes, Ant looks for spe-
cially named methods in your task to invoke when it encounters nested elements.
There are three distinct subelement scenarios that Ant handles using specially named
methods. These scenarios and methods are listed in table 19.1.

For example, a task to support nested file sets would typically have an addFileset
method:

package org.example.antbook.tasks;

import java.util.Vector;

import org.apache.tools.ant.Task;
import org.apache.tools.ant.types.FileSet;

Table 19.1 Methods used for subelement handling

Scenario Method

Ant can construct the object using a no-arg
constructor, and prepopulation is not needed.

public void addElementName(ObjectType obj)

Ant can construct the object using a no-arg
constructor, but prepopulation is needed.

public void addConfiguredElementName(ObjectType obj)

Your task needs to construct the object. public ObjectType createElementName()
480 CHAPTER 19 WRITING ANT TASKS

public class NestedTask extends Task {

 private Vector filesets = new Vector();

 public void addFileset(FileSet fileset) {
 filesets.add(fileset);
 }

 public void execute() {
 log("# filesets = " + filesets.size());
 }

}

The addition of this single method allows our task to support the full range of possi-
bilities of the FileSet datatype (see chapter 3). We could use our task in this manner:

<taskdef name="nested"
 classname="org.example.antbook.tasks.NestedTask"
 classpath="${build.dir}"
/>

<fileset dir="src" excludes="**/*.java" id="non.java.files"/>

<nested>
 <fileset dir="images">
 <include name="**/*.gif"/>
 </fileset>
 <fileset refid="non.java.files"/>
</nested>

Deciding which method to implement for nested elements

We strongly recommend that you use the addXXX or addConfiguredXXX meth-
ods for nested task elements. The primary reason for preferring this method over
createXXX is to allow polymorphism of types. For example, a custom extension to
FileSet could be used by refid on tasks that use the add-prefixed methods accept-
ing a FileSet.

The addConfigured-prefixed method is useful if your task needs a fully popu-
lated object immediately, rather than waiting for the execute method, but in prac-
tice it is rarely needed. Use the create-prefixed method in situations where your task
needs to construct the object itself, perhaps because it does not have a no-argument
constructor, or because additional steps are needed beyond what the add-prefixed
methods provide.

19.3.3 Supporting datatypes

As far as a task implementation goes, there is no difference between tasks that support
nested datatypes and nested custom classes. Ant’s introspection mechanism handles
them both identically, with the added benefit that datatypes support reusability using
HOW TASKS GET DATA 481

id/refid attributes. Nested datatypes implicitly support references using refid, so
your task code does not need to explicitly add this support. We do not cover writing
custom datatypes in this book, as it’s not commonly done even when writing custom
tasks. Refer to Ant’s source code for examples on writing custom datatypes.

Note that if you are trying to import references to a custom datatype, your task and
datatype must be loaded by the same classloader. This happens automatically if you
place the JAR files into Ant’s lib directory. If you are specifying a classloader in the
<taskdef> and <datatype> declarations, then you must set the loaderref
attribute to the same classloader reference in all your declarations.

19.3.4 Allowing free-form body text

For some tasks, the constraints of XML attribute and element structure is too rigid. It
could be prohibitive to require users of your task to work around the character-escap-
ing issues required within attribute values. For example, to use the <echo> task to
display “6 < 9” using the message attribute requires entity reference use.

This is illegal XML:

<echo message="6 < 9"/>

It produces the following output:

>ant echo-example
Buildfile: build.xml

BUILD FAILED
build.xml:81: Use "<" for "<" in attribute values.

Modifying the build file to use entity references, <echo> now works as expected, but
is not as easily read by humans:

<echo message="6 < 9"/>

Indeed this would be a major headache if we had to entity-reference encode, for
example, a block of SQL commands. Fortunately, this is easily overcome by allowing
tasks access to the element text. Adding an addText method to your task instructs
Ant to allow elements to contain textual body either directly or inside a CDATA sec-
tion (see appendix B for more details on CDATA and XML syntax). The <echo>
task supports body text, and our example is better specified using CDATA instead:

<echo><![CDATA[
 6 < 9
]]></echo>

In this case CDATA is needed because the < character is still illegal in element body
text unless inside a CDATA section. It is important to note that Ant properties are
not expanded automatically before calling addText. We demonstrate the use of
addText in section 19.4.2 as well as how to have properties expanded if desired.
482 CHAPTER 19 WRITING ANT TASKS

19.4 CREATING A BASIC ANT TASK SUBCLASS

Our tasks from now on will extend from org.apache.tools.ant.Task. The pri-
mary reason for subclassing from Task is to gain access to Ant’s internal APIs. The
Task class provides the following:

• Access to the containing target

• Access to the current project

• Logging facilities

A class that does not extend from Task can still gain access to the project instance and
logging facilities through that instance by implementing a setProject method:

public void setProject (org.apache.tools.ant.Project project)

This makes extending from Task unnecessary for all practical purposes. The best rea-
son not to do so would be to avoid a dependency on Ant from your class, as well as to
keep your own inheritance hierarchy. But if you are going to have a setProject
method, you’ve already created an Ant dependency. As for the argument of keeping
your own inheritance hierarchy, we recommend encapsulating your other Java classes
inside a Task subclass; this acts as a wrapper and allows you to change the inner work-
ings of your encapsulated code and keep the task and build file interface unchanged.

19.4.1 Adding an attribute to a task

In keeping with our recommendations, here is a basic Ant task that extends from
Task. It also demonstrates an optional attribute:

package org.example.antbook.tasks;

import org.apache.tools.ant.Task;

public class MessageTask extends Task {

 private String message = "";

 public void setMessage(String message) {
 this.message = message;
 }

 public void execute() {
 log(message);
 }

}

Use it in a build file like this:

<target name="messagetask" depends="compile">
 <taskdef name="message"
 classname="org.example.antbook.tasks.MessageTask"
CREATING A BASIC ANT TASK SUBCLASS 483

 classpath="${build.dir}"
 />

 <property name="the.message" value="blue scooter"/>
 <message message="${the.message}"/>
</target>

With the following results:

messagetask:
 [message] blue scooter

This task is a bare-bones task similar to <echo> and does nothing but log (at the
MSG_INFO level) the value assigned to the message attribute. It is an example of
using Ant’s attribute introspection and population, and demonstrates the use of log-
ging through the Task.log method. An important fact to note is that Ant handles
property expansion in XML attributes automatically for you, as you can see, since our
task got the value of the.message property rather than the text “${the.message}”.

19.4.2 Handling element text

Element text is handed to its containing object, typically the task itself, or possibly a
nested element, using the addText method. Of note is that the text is provided as is,
and no property references are expanded. Here is a simple example of a variant of the
original MessageTask to take the message text as the element data rather than from
an attribute:

package org.example.antbook.tasks;

import org.apache.tools.ant.Task;

public class MessageTask2 extends Task {

 private String message = "";

 public void addText(String message) {
 this.message = message;
 }

 public void execute() {
 log(message);
 }

}

Our build file fragment using this task is:

 <property name="another.message" value="light up ahead"/>
 <message2>${another.message}</message2>

It generates this output:

[message2] ${another.message}

Special method to
accept element text
484 CHAPTER 19 WRITING ANT TASKS

Having the unaltered body text provided to the task is beneficial for data that may
contain such strings that appear like property references, but if you need those refer-
ences resolved, it’s a simple matter of adding a call to a Project method. Our exe-
cute method now becomes:

public void execute() {
 log(getProject().replaceProperties(message));
}

The results now have the property references resolved:

[message2] light up ahead

19.5 OPERATING ON A FILESET

Ant’s datatypes make writing tasks that deal with many of the typical Java build
domain objects such as paths and filesets much simpler. If you are writing a task to
process files in a single directory tree and would like your task to act as an implicit
fileset, the base class org.apache.tools.ant.taskdefs.MatchingTask can
save a lot of work. Listing 19.4 shows a task to process a set of files.

package org.example.antbook.tasks;

import java.io.File;
import org.apache.tools.ant.BuildException;
import org.apache.tools.ant.DirectoryScanner;
import org.apache.tools.ant.Task;
import org.apache.tools.ant.Project;
import org.apache.tools.ant.taskdefs.MatchingTask;

public class FileProcTask extends MatchingTask {

 private File dir;

 public void setDir (File dir) {
 this.dir = dir;
 }

 public void execute() throws BuildException {
 if (dir == null) {
 throw new BuildException("dir must be specified");
 }

 log("dir = " + dir, Project.MSG_DEBUG);

 DirectoryScanner ds = getDirectoryScanner(dir);
 String[] files = ds.getIncludedFiles();

 for (int i = 0; i < files.length; i++) {
 log("file: " + files[i]);

Listing 19.4 A task to act upon an implicit fileset
OPERATING ON A FILESET 485

 }

 dir = null;
 }

}

Using MatchingTask provides some nice freebies that mirror the <fileset>
datatype:

• includes/excludes attributes

• defaultexcludes attribute

• <include>/<exclude> / <includesfile> / <excludesfile> elements

• <patternset> element

The one piece that you must provide in your own code is the directory to use with
the implicit fileset. In our example we implemented a setDir method and required
that a dir attribute be specified by throwing a BuildException in execute if it
was not specified. The MatchingTask base class provides a getDirectoryScan-
ner(File baseDir) method to get a DirectoryScanner instance, taking into
account all the specified inclusion and exclusion rules.

Although many Ant tasks are derived from MatchingTask, the current trend is
away from this task; explicit filesets have proven to be more flexible. If you are writing
your own task, the ease of using MatchingTask as a base class still makes it appealing.
Tasks that extend from MatchingTask should only deal with a single implicit fileset.
Tasks that need to support multiple nested filesets should extend from Task instead.

19.6 ERROR HANDLING

It is up to you, as a task developer, to decide how to handle abnormal conditions that
may occur during the configuration or execution of your task. Ant will catch excep-
tions that are thrown from the task methods it invokes and make the build fail at that
point. Throw Ant’s org.apache.tools.ant.BuildException, which is a
RuntimeException subclass, when you wish a build to fail for any reason.

You may want the failure of a build to be user-specified, in which case a simple pat-
tern to follow is adding a failonerror attribute similar to many of Ant’s core tasks
like <java>. Here is a simple Task class allowing the build file to control if a build
failure occurs or not:

package org.example.antbook.tasks;

import org.apache.tools.ant.Task;
import org.apache.tools.ant.BuildException;

public class ConditionalFailTask extends Task {
 private boolean failOnError = true;
486 CHAPTER 19 WRITING ANT TASKS

 public void setFailOnError(boolean failOnError) {
 this.failOnError = failOnError;
 }

 public void execute() throws BuildException {
 if (failOnError) {
 throw new BuildException("oops!");
 }
 log("success");
 }
}

We recommend that failure on error be set by default, forcing a build file writer to
explicitly turn off build failure if desired. This is consistent with the design of most
built-in Ant tasks, although unfortunately, there are some exceptions.

19.7 TESTING ANT TASKS

The Ant codebase contains not only the source code to Ant’s core and optional tasks,
but also a growing number of JUnit test cases that help to verify that coding changes
do not break expected functionality. Presently the Ant binary distribution does not
ship with the base test case class or the testing infrastructure, but it is freely available
through Ant’s CVS repository.

Since our recommended design of Ant tasks is to wrap existing functionality inside
an Ant task façade, it is easier and more straightforward to write unit tests against the
underlying API being wrapped. However, you may desire to unit test sufficiently
sophisticated Ant tasks. The best source of this information is to access Ant’s CVS
repository and use the org.apache.tools.ant.BuildFileTest base class.
Ant’s own build file has the <junit> task to execute the test cases. Test cases can be
written to assert that certain messages are logged, properties have expected values, or
that a BuildException is thrown when expected.

19.8 EXECUTING EXTERNAL PROGRAMS

A common reason to write an Ant task is to wrap native programs and allow their
functionality to support more sophisticated capabilities such as iterating over filesets
and doing dependency checking. Before resorting to writing a custom task to wrap an
executable program that you would need to invoke during the build process, investi-
gate the built-in <apply> task to see if it can accomplish your needs.

After you determine that a custom task is really needed because <apply> or
<exec> is not sufficient, it is time to dig into Ant’s API a bit deeper. It is not easy
to successfully support launching another program from Ant in a cross-platform man-
ner, and a lot of hard work has gone into Ant’s facilities to handle these issues.
Listing 19.5 demonstrates a task to execute myprog once for each file specified by
nested <fileset> elements.
EXECUTING EXTERNAL PROGRAMS 487

package org.example.antbook.tasks;

import java.io.File;
import java.io.IOException;
import java.util.Enumeration;
import java.util.Vector;

import org.apache.tools.ant.BuildException;
import org.apache.tools.ant.DirectoryScanner;
import org.apache.tools.ant.Project;
import org.apache.tools.ant.Task;
import org.apache.tools.ant.taskdefs.Execute;
import org.apache.tools.ant.taskdefs.LogStreamHandler;
import org.apache.tools.ant.types.Commandline;
import org.apache.tools.ant.types.FileSet;

public class RunTask extends Task {

 private Vector filesets = new Vector();
 private boolean flag = true;

 public void addFileset(FileSet fileset) {
 filesets.add(fileset);
 }

 public void setFlag(boolean flag) {
 this.flag = flag;
 }

 public void execute() {

 int fileCount = 0;
 int successCount = 0;
 Enumeration enum = filesets.elements();
 while (enum.hasMoreElements()) {
 FileSet fileset = (FileSet) enum.nextElement();

 DirectoryScanner ds =
 fileset.getDirectoryScanner(getProject());
 String[] files = ds.getIncludedFiles();

 for (int i = 0; i < files.length; i++) {
 fileCount++;
 File f = new File(fileset.getDir(getProject()), files[i]);
 if (process(f)) {
 successCount++;
 }
 }
 }

Listing 19.5 Executing a native program from within a task

Allows nested filesets

Supports boolean
flag attribute

Gets list of file
names from a fileset

Gets absolute
file name
488 CHAPTER 19 WRITING ANT TASKS

 log(successCount + " out of " +
 fileCount + " files processed successfully");
 }

 protected boolean process(File file) {
 Commandline cmdline = new Commandline();
 cmdline.setExecutable("myprog");
 if (flag) {
 cmdline.createArgument().setValue("-flag");
 }
 cmdline.createArgument().setValue(file.toString());

 LogStreamHandler streamHandler =
 new LogStreamHandler(this, Project.MSG_INFO,
 Project.MSG_WARN);
 Execute runner = new Execute(streamHandler, null);
 runner.setAntRun(project);
 runner.setCommandline(cmdline.getCommandline());

 int retVal = 0;
 try {
 retVal = runner.execute();
 }
 catch (IOException e) {
 log(e.getMessage(), Project.MSG_DEBUG);
 return false;
 }

 return true;
 }

}

The RunTask class is utilizing several classes provided by Ant. Let’s explain what is
going on in a bit more detail. RunTask collects an arbitrary number of filesets using
the addFileset method. The execute method iterates over each fileset, and for
each fileset it uses a DirectoryScanner to get the list of included files. The values
in the String[] returned by getIncludedFiles are not full paths—each value
is the relative path from the fileset’s root directory. We construct a File object using
the fileset’s root directory as the parent, which gets us the absolute file name.

Within our process method, we use Ant’s Commandline object to construct the
full command line to our custom executable "myprog", with a conditional switch
enabled or disabled using the flag attribute. Ant’s Execute class takes care of many
ugly process-invoking issues, ensuring that various JDKs and platforms are supported,
which each have their own idiosyncrasies in how external processes are invoked.
Launcher scripts are utilized when appropriate, which are included in the
ANT_HOME/bin directory: antRun.bat, antRun, and antRun.pl.

Constructs the
command-line

Configures the
Execute object

Executes it
EXECUTING EXTERNAL PROGRAMS 489

19.8.1 Dealing with process output

The LogStreamHandler that is provided to our Execute instance is used to
direct standard output and error to the desired Ant logging levels. Had our task
required capturing the output of the executed process, we could have used a Pump-
StreamHandler and provided our own output streams. We do not provide an
example of capturing output internal to a task. Please consult Ant’s source code for
tasks that do.

19.8.2 Summary of native execution

Ant makes launching native executables and scripts from a build file much easier with
its many APIs already designed to do the hard work. Make sure that <apply> and
<exec> are insufficient for your needs before writing a custom Ant task to wrap
native execution. Had we not needed the conditional flag attribute in our contrived
RunTask example, we could have used <apply>.

19.9 EXECUTING A JAVA PROGRAM WITHIN A TASK

Executing a Java program could be done in the same manner as a native program,
which would occur in a new JVM and incur startup overhead. Alternatively, a Java
program can be invoked within Ant’s own JVM, greatly increasing performance. The
<java> task uses both methods, depending on the value of the fork attribute. The
primary reason for wrapping Java execution is because you do not control the source
code to the program you are wrapping. If you control the source code, you would be
better off writing a task to wrap the API directly rather than running main (or an
executable JAR).

If the <java> task is insufficient for your needs and you want to build a wrapper
task to execute a Java program, there are two good methods for doing so. The first
method is to create a Task extension and encapsulate the <java> task, controlling
it directly. The second is to create an extension of the <java> task, enabling you to
inherit all of its built-in capabilities to allow the build file writer to control the class-
path, forking, environment, and other parameters.

Both methods allow you to quickly get the functionality to execute Java programs,
but we recommend encapsulation, allowing you to expose as much or as little of the
<java> capability that you want. Either way, you will work with org.apache.
tools.ant.taskdefs.Java, the class to which the <java> task maps.

19.9.1 Example task to execute a forked Java program

As an example, we are going to pretend that we do not have the source code to our
search engine command-line tool program. (See listing 5.1 for the source code similar
to this program.) We are given a tool that takes a command line:

java org.example.antbook.tasks.Searcher index query

Here index is the directory path to a Lucene index, and query is our search query.
490 CHAPTER 19 WRITING ANT TASKS

We want a task wrapper to this functionality instead of using the <java> task.
Invoking it with <java> is accomplish in this manner:

<java classname="org.example.antbook.tasks.Searcher"
 fork="true"
 classpathref="task.classpath">
 <arg file="${index.dir}"/>
 <arg value="${query}"/>
</java>

There is actually a good reason to wrap Searcher in a custom task instead of using
<java>. If the correct number of command-line arguments is not provided, the pro-
gram performs a System.exit(-1). Therefore, if a user inadvertently omits the
parameters, Ant will actually die immediately without even a BUILD FAILED message
if the process is not forked. While setting fork="true" keeps Ant alive and well even
when the parameters are not correct, it is risky because it requires a build file writer to
know all of this. Wouldn’t it be better if the build file looked like the following?

<searcher classpathref="task.classpath"
 index="${index.dir}"
 query="${query}"
/>

We think so! The risk is removed because internal to the <searcher> task, the fork-
ing mode is always enabled. In addition, there are benefits to allowing better readabil-
ity and coupling between the actual program being run and the Ant task. Specifically,
the attributes index and query can be specified in any order to indicate explicitly
what they mean, and the user doesn’t have to remember the class name.

The secret to accomplishing this easily is in reusing Ant’s <java> capabilities.
Listing 19.6 shows how to do this.

package org.example.antbook.tasks;

import java.io.File;

import org.apache.tools.ant.BuildException;
import org.apache.tools.ant.Task;
import org.apache.tools.ant.taskdefs.Java;
import org.apache.tools.ant.types.Path;
import org.apache.tools.ant.types.Reference;

public class SearcherTask extends Task {

 private Path classpath;
 private File indexDir;
 private String query;

 public void setClasspath(Path classpath) {
 this.classpath = classpath;
 }

Listing 19.6 Executing a Java program from within an Ant task

Supports
classpath
attribute
EXECUTING A JAVA PROGRAM WITHIN A TASK 491

 public void setClasspathRef(Reference ref) {
 createClasspath().setRefid(ref);
 }

 public Path createClasspath() {
 if (classpath == null) {
 classpath = new Path(this.getProject());
 }
 return classpath.createPath();
 }

 public void setIndex(File indexDir) {
 this.indexDir = indexDir;
 }

 public void setQuery(String query) {
 this.query = query;
 }

 public void execute() throws BuildException {
 Java javaTask = (Java) getProject().createTask("java");
 javaTask.setTaskName(getTaskName());

 javaTask.setClassname("org.example.antbook.tasks.Searcher");

 javaTask.setClasspath(classpath);

 javaTask.createArg().setFile(indexDir);
 javaTask.createArg().setValue(query);

 javaTask.setFork(true);
 if (javaTask.executeJava() != 0) {
 throw new BuildException("error");
 }
 }
}

We call setTaskName with our current task name, from getTaskName(), so the
output is prefixed with our custom task name instead of [java]. In this case, output
from Searcher will be prefixed by [searcher].

The SearcherTask shown in listing 19.6 demonstrates several key techniques
useful for wrapping a Java program within a task façade. Most importantly it provides
flexibility in how the classpath is specified, allowing either a classpath or class-
pathref attribute, or nested <classpath> elements. Each of these required work
in our task code, but the effort was minimal thanks to Ant’s API. The main trick
employed in SearcherTask is the use of the <java> task internally. While this
does have a hackish feel to it, it’s the easiest way to deal with the complexities of fork-
ing, classpath, command-line parameters, and JVM parameters. From the knowledge
you’ve gained in this chapter about how Ant populates tasks with data, you are
equipped with the know-how to see how this is working. We simply call the setters
and other special methods, such as the create/add-prefixed methods, just as Ant
would do if we used <java> literally in a build file.

Supports
classpathref
attribute

Supports nested
classpath
elements

Reuses the
<java> task

internally
492 CHAPTER 19 WRITING ANT TASKS

19.10 SUPPORTING ARBITRARILY NAMED ELEMENTS
AND ATTRIBUTES

Before Ant 1.5, tasks could not dynamically add new attributes or elements at run
time. As an example of this, you cannot add new <condition> tests, or other ele-
ments, inside <ejbjar> without changing Ant’s source. Any task that needed to be
dynamically extensible had to do so in an ugly manner. For example, a task that
needed to support user-defined parameters would typically be specified like this in a
build file:

<paramtask>
 <param name="username" value="erik"/>
 <param name="hostname" value="localhost"/>
</paramtask>

It would be written in Java code in this manner:

package org.example.antbook.tasks;

import org.apache.tools.ant.Task;

import java.util.Vector;
import java.util.Iterator;

public class ParamTask extends Task {
 private Vector params = new Vector();

 public Param createParam() {
 Param p = new Param();
 params.add(p);
 return p;
 }

 public void execute() {
 Iterator iter = params.iterator();
 while (iter.hasNext()) {
 Param p = (Param) iter.next();
 log(p.getName() + " = " + p.getValue());
 }
 }

 public static class Param {
 private String name;
 private String value;

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }
SUPPORTING ARBITRARILY NAMED ELEMENTS AND ATTRIBUTES 493

 public String getValue() {
 return value;
 }

 public void setValue(String value) {
 this.value = value;
 }
 }
}

It is nicer to have user-defined parameters specified as attributes to our task, rather
than the clunkier <param> subelements.

 <dynatask username="erik" hostname="localhost"/>

Ant 1.5 added a dynamic configuration mechanism to let you do just that. The
changes haven’t trickled into Ant’s own tasks, yet, but you can use it in your own
code. With the DynamicConfigurator interface, your task can support new
attributes and elements. See listing 19.7.

package org.example.antbook.tasks;

import org.apache.tools.ant.BuildException;
import org.apache.tools.ant.DynamicConfigurator;
import org.apache.tools.ant.Task;

import java.util.Enumeration;
import java.util.Properties;

public class DynaTask extends Task implements DynamicConfigurator {
 private Properties params = new Properties();

 public void setDynamicAttribute(String name, String value)
 throws BuildException {
 params.setProperty(name, value);
 }

 public Object createDynamicElement(String name)
 throws BuildException {
 throw new
 BuildException("Element " + name + " is not supported");
 }

 public void execute() {
 Enumeration enum = params.keys();
 while (enum.hasMoreElements()) {
 String name = (String) enum.nextElement();
 log(name + " = " + params.get(name));
 }
 }
}

Listing 19.7 DynamicConfigurator allows tasks to dynamically support new

attributes and elements

Accepts
dynamic
attribute

Rejects dynamic
elements
494 CHAPTER 19 WRITING ANT TASKS

The DynaTask shown in listing 19.7 implements the two methods from the Dy-
namicConfigurator interface, setDynamicAttribute and createDynamic-
Element. In this example, we only support dynamic attributes by throwing a
BuildException from createDynamicElement. Ant’s introspection mecha-
nism has special handling for classes which implement the DynamicConfigura-
tor interface and hands attribute names and values to setDynamicAttribute
and element names to createDynamicElement.

The example DynaTask does not support arbitrarily named elements, but it easily
could use a factory-style design pattern, using the element name to look up and in-
stantiate a class instance to return. Ant populates the object returned from create-
DynamicElement in the same manner as all other Ant elements, even supporting
nested DynamicConfigurator objects.

The DynamicConfigurator capability was added to Ant just before the Ant 1.5
feature cutoff so, unfortunately, there are no tasks within Ant 1.5 that use this capability.
In the future, container tasks such as <ejbjar> and <serverdeploy> will likely
take advantage of this dynamic capability to allow more flexible and configurable vender
extensibility without requiring the modification of core Ant tasks. XDoclet is taking
advantage of DynamicConfigurator in this manner, so that it dynamically consults
descriptors for implementation details on the supported subtasks.

19.11 BUILDING A TASK LIBRARY

Building a library of reusable tasks makes using your tasks much easier for build file
writers. To consolidate tasks into a library is as simple as building a JAR of them. We
recommend that you also include a properties file in your library, which allows quick
mapping of build file task names to the actual implementation Java class names. We
demonstrated this technique in chapter 11 using XDoclet to build the properties file
dynamically from @ant.task tags in the Javadoc comments of each tag. The result is
a JAR containing a properties file. Several tasks presented in this chapter are mapped
using this properties file:

simpletask=org.example.antbook.tasks.SimpleTask
message=org.example.antbook.tasks.MessageTask
message2=org.example.antbook.tasks.MessageTask2
enum=org.example.antbook.tasks.EnumTask
fileproc=org.example.antbook.tasks.FileProcTask
nested=org.example.antbook.tasks.NestedTask
run=org.example.antbook.tasks.RunTask

For this example, we did not use XDoclet, although we prefer to use it in order to
save double-maintenance when new tasks get added. Our jar target is simply:

<target name="jar" depends="compile">
 <copy file="${meta.dir}/taskdef.properties"
 todir="${build.dir}"/>
BUILDING A TASK LIBRARY 495

 <jar destfile="${dist.dir}/tasks.jar"
 basedir="${build.dir}"/>
</target>

A build file can utilize our task library easily without having to know the class names
of each task. Listing 19.8 shows an example of using the library of tasks just built.

<?xml version="1.0" ?>
<project name="library" default="main">

 <property name="tasks.jar" location="dist/tasks.jar"/>
 <taskdef resource="taskdef.properties" classpath="${tasks.jar}"/>

 <target name="usetasks">
 <simpletask/>

 <property name="the.message" value="blue scooter"/>
 <message message="${the.message}"/>

 <property name="another.message" value="light up ahead"/>
 <message2>${another.message}</message2>

 <enum version="2.3"/>

 <fileproc dir="${basedir}">
 <include name="**/*.java"/>
 </fileproc>

 <nested>
 <fileset dir="images">
 <include name="**/*.gif"/>
 </fileset>
 <fileset refid="non.java.files"/>
 </nested>

 <run flag="off">
 <fileset dir="." excludes="**/*.class"/>
 </run>
 </target>

 <target name="main" depends="usetasks"/>
</project>

Note that only one <taskdef> is used, but all the tasks within taskdef.properties are
defined and several are used in the usetasks target.

Listing 19.8 Using a task library in a build file

Defines all tasks
contained within
the task library
496 CHAPTER 19 WRITING ANT TASKS

19.12 SUPPORTING MULTIPLE VERSIONS OF ANT

Tasks written for previous versions of Ant should work fine in future versions of Ant
1.x (and possibly Ant 2.0), but the converse is not necessarily true. Ant’s API evolves,
and newer features, of course, are not supported in earlier versions. Ant developers
work very hard to keep newer versions as backwards-compatible as possible, such that
build files and tasks written for previous versions will still work when upgrading to a
newer version of Ant.

In order to write tasks that will work with, say, Ant 1.4.1 and Ant 1.5, you must
avoid all newer API capabilities such as Project.setNewProperty and Dynam-
icConfigurator. The best way to ensure compatibility is to compile your tasks
with the oldest version of Ant you wish to support, and of course, test your tasks on
each version to ensure all is well.

19.13 SUMMARY

The key to writing a task in Ant as efficiently as possible is to understand the infra-
structure that Ant provides to tasks. Datatypes can be used easily in tasks with very
little code or effort, and nested datatypes implicitly support references without your
task being aware of it. We have not provided an in-depth API reference to Ant. Ant
ships with a complete Javadoc set and Ant’s own source code is readily available. We
encourage you to consult these indispensable references when you begin writing your
own tasks. Simply coding by example, cutting and pasting relevant pieces from Ant’s
own tasks that are similar to what you need to accomplish, is the quickest method to
writing sophisticated tasks. With the information in this chapter, which you cannot
easily glean from reading source code, you now have an understanding of how Ant
provides data to tasks. Java introspection and method naming conventions are the
secret. A lot of complex details are buried under the hood of these mechanisms,
allowing you to write tasks at a much higher, domain-specific level.
SUMMARY 497

C H A P T E R 2 0

Extending Ant further

20.1 Scripting within Ant 499
20.2 Listeners and loggers 502
20.3 Developing a custom mapper 514
20.4 Creating custom selectors 515
20.5 Implementing a custom filter 517
20.6 Summary 520
Ant’s extensibility does not end with custom Java tasks. Ant allows for extensibility
and customization in several more ways:

• Scripting ad-hoc tasks using many popular scripting languages with the
<script> task

• Monitoring or logging of the build process with custom build listeners and loggers

• Custom <mapper> implementations

• Powerful fileset filtering with specialized selectors

• Filters to transform text streams

Regardless of whether or not you use these features, it is useful to know that these exist
in case you encounter them in a build you inherit or come across a situation that
could benefit from them.
498

20.1 SCRIPTING WITHIN ANT

The <script> task supports multiple script language commands to invoke tasks
and manipulate other Ant objects. The script can be written in JavaScript (Mozilla’s
Rhino implementation, to be precise), or a number of other languages. It is therefore
a simple way to extend Ant from inside a build file, without having to distribute extra
libraries or even add another source file to the project.

The basis of the <script> task is the Bean Scripting Framework from IBM: their
bsf.jar needs to be downloaded and dropped into ANT_HOME/lib. The URL for this
file is listed in the library dependencies section of the Ant documentation. The frame-
work is a foundational package to bridge arbitrary scripting languages to Java appli-
cations; you also need to provide the implementation of the scripting language you
wish to use. The Mozilla Rhino version of JavaScript is a popular choice, but Python
is another possibility, as are others. Again, the URLs to these libraries are listed in the
Ant documentation.

The example problem chosen to demonstrate the value of the script task is that of
assigning a random number to a property. This number can then be used as a param-
eter to another task, as shown in listing 20.1.

<project name="script_example" default="test-random">
 <description>
 Use a script task to generate a random number, then
 print it
 </description>

 <target name="random">
 <script language="javascript"><![CDATA[
 //NB: an unqualified Math is the JavaScript object
 var r=java.lang.Math.random();
 var num = Math.round(r*10);
 project.setNewProperty("random", num);
 self.log("Generated random number " + num, project.MSG_DEBUG);
]]>
 </script>
 </target>

 <target name="test-random" depends="random">
 <echo>Random number is ${random}</echo>
 </target>

</project>

Running the test-random target should print out the value of the ${random},
which will be between zero and ten, inclusive.

Listing 20.1 Using <script> to generate a random number and assign it to an

Ant property
SCRIPTING WITHIN ANT 499

random:

test-random:
 [echo] Random number is 2

BUILD SUCCESSFUL

20.1.1 Implicit objects provided to <script>

The <script> task provides two fixed-name implicit objects to the script context:
project and self. The project object is a reference to the actual org.apache.
tools.ant.Project instance, which is handy for setting and accessing properties
through the Project object API (see chapter 19 for more details). The self object is a
reference to the org.apache.tools.ant.taskdefs.optional.Script instance,
which is a subclass of org.apache.tools.ant.Task. The self reference is use-
ful for logging messages, using either of the log methods that Task provides. In list-
ing 20.1, we used both project and self, calling project.setNewProperty
to assign a property and self.log to generate a message at the debugging level.

Project references

Along with self and project, the <script> task provides Ant properties, tar-
gets, and references to the scripting context. Properties and targets are provided by
their name, and references by their id or name. References include datatypes, tasks,
and the project itself. It can be a bit confusing to work with these references, and
there is one important caveat to note: the implicit objects whose names do not repre-
sent a valid Java identifier are ignored and not placed into the scripting context. Here
is an example demonstrating the various implicit objects that are accessible to the
scripting context:

<?xml version="1.0" ?>
<project name="script_context" default="main">

 <property name="legalName" value="accessible"/>
 <property name="illegal name" value="inaccessible?"/>

 <target name="main">
 <script language="javascript"><![CDATA[
 self.log("legalName = " + legalName);
 self.log("illegal name = " + project.getProperty("illegal name"));
 self.log("test = " + test);
 self.log("echo_task = " + echo_task);
 self.log("script_context = " + script_context);
 self.log("project = " + project);

 echo_task.setMessage("invoked via <script>");
 echo_task.execute();
]]>
 </script>
 </target>
500 CHAPTER 20 EXTENDING ANT FURTHER

 <target name="test">
 <echo id="echo_task"/>
 </target>

</project>

The output is:

main:
 [script] legalName = accessible
 [script] illegal name = inaccessible?
 [script] test = test
 [script] echo_task = org.apache.tools.ant.taskdefs.Echo@7a8a02
 [script] script_context = org.apache.tools.ant.Project@7ebe1
 [script] project = org.apache.tools.ant.Project@7ebe1
 [echo] invoked via <script>

The legalName property is directly accessible, but because illegal name con-
tains a space, it is only accessible through project.getProperty. The test ref-
erence displays “test” because the Target object has a toString method that
returns the target name. The script_context reference is provided because of the
name attribute on <project>, but it is preferable to access the project reference
through project (which you can see is equivalent). An interesting facet to the
<script> task is the ability to script the actual invocation of other targets, as shown
by the invocation of the echo_task task. You can use <script> to configure a
task before it runs—but remember that any attributes set in the task have priority, be-
cause they are set just before the task executes.

20.1.2 Scripting summary

The scripting framework is very powerful. Any Java class can be used by giving its full
package name, and objects in the build file can be referred to by using the names or
id values assigned to them. Usually, it is rare to see any task declaration in an Ant file
given an id, but to access tasks within <script> code, an id is needed.

We could cover the <script> task in more detail, providing many examples of
its use. However, we prefer to encourage readers to write full Java tasks instead, as cov-
ered in chapter 19. For all the power the <script> task offers, it does not keep a
build file simple, and it limits the reuse opportunities of the code. Too much use of
the task often indicates that someone is trying to turn a build file into a make file, or
that it is time to refactor the script into an Ant task.

The counter argument is that <script> code gives you power without writing and
distributing Java libraries, and is faster to write. If a project does use script tasks, then
the best way to stay in control is to pull the scripts out into individual files and then use
the <script file="random.js"> option to refer to the file directly. This lets you
keep the scripts separate from the build; and they may be reused more easily. The other
issue is that the scripting framework is uninformative when things do not work. For ex-
ample, casting with (int) to convert the floating point random number to an integer
caused the error undefined: identifier is a reserved word (<ANT>; line 3)
SCRIPTING WITHIN ANT 501

when executing the script. JavaScript, or ECMAScript to give its official name, is not
Java, yet it is close enough to mislead.

Besides the Ant documentation, a useful online resource for the <script> task
lives at http://www.sitepen.com/ant/javascript.html.

20.2 LISTENERS AND LOGGERS

Ant provides capability to monitor its progress during exe-
cution. There are two tightly related concepts used for this
monitoring: listeners and loggers. In order to develop cus-
tom listeners and loggers, it is worthwhile to understand
the underlying architecture used by Ant. Let’s first take a
look at the UML for the BuildListener and Build-
Logger interfaces, shown in figure 20.1.

Attached BuildListeners are notified of seven
events during the build lifecycle. The events are: build
started/finished, target started/finished, task started/fin-
ished, and logging of messages. Any number of build lis-
teners can be attached to a Project, and Ant internally
attaches some of its own to notify itself of events, particu-
larly the build finished event, for cleanup purposes. Each
of the events is handed a BuildEvent object. This
BuildEvent encapsulates either a String message, a ref-
erence to the Project, a Target, or a Task depending on the event being triggered.
Table 20.1 lists the available BuildEvent information for each BuildListener
method. It also provides access to an exception if one was thrown. For messages
logged, a priority is also provided, which could be used to filter output.

To use a listener, you must specify it on the command line using the -listener
command-line switch. To use the listener, we will write in section 20.2.1, for example,
the command line is

ant -listener org.apache.tools.ant.listener.CommonsLoggingListener

Table 20.1 BuildEvent contents

BuildListener method BuildEvent contents

buildStarted and
buildFinished

Project via getProject() and exception via getException()

targetStarted and
targetFinished

Target via getTarget() and exception via getException().
Project object also accessible.

taskStarted and
taskFinished

Task via getTask() and exception via getException().
Project and target objects also accessible.

messageLogged Message via getMessage() and priority of message via getPriority().
Depending on where the message is logged in the build process,
getTask, getTarget, or getProject will also available for use.

BuildListener

+buildStarted
+buildFinished
+targetStarted
+targetFinished
+taskStarted
+taskFinished
+messageLogged

BuildLogger

+setEmacsMode
+setErrorPrintStream
+setOutputPrintStream
+setMessageOutputLevel

Figure 20.1 UML diagram

of Ant’s BuildListener and

BuildLogger interfaces
502 CHAPTER 20 EXTENDING ANT FURTHER

The BuildLogger interface builds upon its parent BuildListener by adding
access to the output and error print streams. Two other additional methods that the
BuildLogger interface extends beyond BuildListener allow for setting emacs
mode and the message output level. The DefaultLogger uses the emacs mode to
provide output formatted for IDE integration, as the emacs representation of error
locations in files is something most IDEs can parse. The message output level is used
by DefaultLogger to filter the output based on the logging level.

An Ant project can only have one associated BuildLogger. Because the logger
has access to the error and output print streams, only one attached logger makes sense.
The command line allows specification of a BuildLogger via the -logger switch.
Using -emacs enables emacs mode. The -quiet, -verbose, and -debug switches
specify the logging level. The default output level used is informational, which is
between the quiet and verbose options with respect to the output generated. The
BuildLogger is attached internally as a listener to the project, so that it receives the
events exactly like any attached listeners.

NOTE There is some console output from Ant that occurs prior to the involve-
ment of the logger or listeners that cannot be captured by using them. If an
error occurs outside the scope of the project (e.g., a missing build.xml), this
output will only be available in the console or log file.

20.2.1 Writing a custom listener

The example listener we demonstrate here was written by Erik during the develop-
ment of this book, contributed to the Ant codebase, and is already available in the
Ant distribution. This custom listener is a wrapper for the Jakarta Commons Logging
API, which itself is a façade over several popular logging APIs, including Log4j,
LogKit, and Java 1.4’s logging facility. The documentation, source, and binaries
of this library are available at http://jakarta.apache.org/commons/logging.html. List-
ing 20.2 shows our implementation of a BuildListener that hands off build
events to this logging façade.

package org.apache.tools.ant.listener;

import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogConfigurationException;
import org.apache.commons.logging.LogFactory;
import org.apache.tools.ant.BuildEvent;
import org.apache.tools.ant.BuildListener;
import org.apache.tools.ant.Project;
import org.apache.tools.ant.Target;
import org.apache.tools.ant.Task;

/**
 * Jakarta Commons Logging listener.

Listing 20.2 CommonsLoggingListener, allowing custom logging through a

number of logging APIs
LISTENERS AND LOGGERS 503

 * Note: do not use the SimpleLog as your logger implementation as it
 * causes an infinite loop since it writes to System.err, which Ant traps
 * and reroutes to the logger/listener layer.
 *
 * @author Erik Hatcher
 * @since Ant 1.5
 */
public class CommonsLoggingListener implements BuildListener {

 private boolean initialized = false;

 private LogFactory logFactory;

 public CommonsLoggingListener() {
 try {
 logFactory = LogFactory.getFactory();
 } catch (LogConfigurationException e) {
 e.printStackTrace(System.err);
 return;
 }

 initialized = true;
 }

 public void buildStarted(BuildEvent event) {
 if (initialized) {
 Log log = logFactory.getInstance(Project.class);
 log.info("Build started.");
 }
 }

 public void buildFinished(BuildEvent event) {
 if (initialized) {
 Log log = logFactory.getInstance(Project.class);
 if (event.getException() == null) {
 log.info("Build finished.");
 } else {
 log.error("Build finished with error.", event.getExcep-
tion());
 }
 }
 }

 public void targetStarted(BuildEvent event) {
 if (initialized) {
 Log log = logFactory.getInstance(Target.class);
 log.info("Target \"" + event.getTarget().getName() +
 "\" started.");
 }
 }

 public void targetFinished(BuildEvent event) {
 if (initialized) {
 String targetName = event.getTarget().getName();
504 CHAPTER 20 EXTENDING ANT FURTHER

 Log log = logFactory.getInstance(Target.class);
 if (event.getException() == null) {
 log.info("Target \"" + targetName + "\" finished.");
 } else {
 log.error("Target \"" + targetName
 + "\" finished with error.", event.getException());
 }
 }
 }

 public void taskStarted(BuildEvent event) {
 if (initialized) {
 Task task = event.getTask();
 Log log = logFactory.getInstance(task.getClass().getName());
 log.info("Task \"" + task.getTaskName() + "\" started.");
 }
 }

 public void taskFinished(BuildEvent event) {
 if (initialized) {
 Task task = event.getTask();
 Log log = logFactory.getInstance(task.getClass().getName());
 if (event.getException() == null) {
 log.info("Task \"" + task.getTaskName() + "\" finished.");
 } else {
 log.error("Task \"" + task.getTaskName()
 + "\" finished with error.", event.getException());
 }
 }
 }

 public void messageLogged(BuildEvent event) {
 if (initialized) {
 Object categoryObject = event.getTask();
 if (categoryObject == null) {
 categoryObject = event.getTarget();
 if (categoryObject == null) {
 categoryObject = event.getProject();
 }
 }

 Log log = logFactory.getInstance(
 categoryObject.getClass().getName());
 switch (event.getPriority()) {
 case Project.MSG_ERR:
 log.error(event.getMessage());
 break;
 case Project.MSG_WARN:
 log.warn(event.getMessage());
 break;
 case Project.MSG_INFO:
 log.info(event.getMessage());
 break;
 case Project.MSG_VERBOSE:
LISTENERS AND LOGGERS 505

 log.debug(event.getMessage());
 break;
 case Project.MSG_DEBUG:
 log.debug(event.getMessage());
 break;
 default:
 log.error(event.getMessage());
 break;
 }
 }
 }
}

It is beyond the scope of this book to cover the Jakarta Commons Logging API,
although its use is quite simple. Every event has to be logged in a category; here we use
the class name. As noted in the class comments, you must not use a logging imple-
mentation that writes to System.out or System.err because of the infinite loop
possibility. Ant traps System.out and System.err calls and forwards them on to
attached listeners through the messageLogged method.

20.2.2 Using Log4j logging capabilities

Ant includes both a Log4jListener and a CommonsLoggingListener. The
Log4jListener was developed before the Commons Logging API existed, both of
which can output to Log4j. The CommonsLoggingListener is recommended in
environments that need to be flexible in which logging API is used, although an addi-
tional dependency is required beyond the Log4j dependency: commons-logging.jar.
We demonstrate Log4j capabilities using the CommonsLoggingListener, al-
though this would work just as well using the Log4jListener.

When an event is logged from an application, it is logged to a specific category. Cat-
egories are hierarchical, based on a dotted textual representation. Ant’s Commons-
LoggingListener class uses as the category name the fully qualified class name of
the context provided by the BuildEvent. Each event is logged to a priority level of
DEBUG, WARN, INFO, ERROR, or FATAL (note: FATAL is not used by the Com-
monsLoggingListener, but the other priority levels are). Log4j initializes itself
from a log4j.properties file (or using ANT_OPTS=-Dlog4j.configura-
tion=<filename>). The Log4j configuration properties file could reside wherever
most appropriate, but by default, it is picked up from the current directory. Common-
sLoggingListener fires every event, including debugging information, through
Log4j1 which in turn allows configuration control over what events are logged, where
they are logged, and what format is used.

1 Consult the Jakarta Commons Logging API for configuration details. Log4j is the default logging im-
plementation if Log4j is found in the classpath.
506 CHAPTER 20 EXTENDING ANT FURTHER

The CommonsLoggingListener is useful in a continuous integration process.
In an environment where builds are running every time code is checked into the source
code repository, it is important to be able to filter the log information so that you are
alerted only when something goes wrong rather than being inundated by routine suc-
cessful build notifications. It is also important to keep detailed logs for reference when
tracking down a problem. However, it’s not important to keep too much historical
information, as it’s not useful for very long. Integrating Ant with Log4j gives us these
powerful capabilities with minimal configuration. Here is the log4j.properties
file that accomplishes these goals:

log4j.rootCategory=INFO,file
log4j.category.org.apache.tools.ant.Project=INFO,file,mail

log4j.appender.file=org.apache.log4j.RollingFileAppender
log4j.appender.file.layout=org.apache.log4j.TTCCLayout
log4j.appender.file.file=build.log
log4j.appender.file.maxBackupIndex=3
log4j.appender.file.maxFileSize=100KB

log4j.appender.mail=org.apache.log4j.net.SMTPAppender
log4j.appender.mail.layout=org.apache.log4j.HTMLLayout
log4j.appender.mail.Threshold=ERROR
log4j.appender.mail.SMTPHost=localhost
log4j.appender.mail.bufferSize=1
log4j.appender.mail.to=erik@example.org
log4j.appender.mail.from=erik@example.org
log4j.appender.mail.subject=Build Failure!

Let’s look at an example of using the CommonsLoggingListener with the config-
uration in the example, and both commons-logging.jar and log4j.jar in Ant’s lib
directory. Here is a trivial build.xml file that causes a build failure:

<project default="fail">
 <target name="fail">
 <fail message="Example build failure"/>
 </target>
</project>

The command line is:

ant -listener org.apache.tools.ant.listener.CommonsLoggingListener

The console outputs this:

Buildfile: build.xml

fail:

BUILD FAILED
C:\AntBook\Sections\Extending\listeners\build.xml:3: Example build failure

Total time: 1 second

Configures
mail appender

Configures
file appender

Configures
categories
LISTENERS AND LOGGERS 507

Also, during the execution, build.log is created or appended to, with output like this:

[main] INFO org.apache.tools.ant.Project - Build started.
[main] INFO org.apache.tools.ant.Project - Build started.
[main] INFO org.apache.tools.ant.Target - Target "fail" started.
[main] INFO org.apache.tools.ant.taskdefs.Exit - Task "fail" started.
[main] ERROR org.apache.tools.ant.taskdefs.Exit - Task "fail" finished with error.
C:\AntBook\Sections\Extending\listeners\build.xml:3: Example build failure
 at org.apache.tools.ant.taskdefs.Exit.execute(Exit.java:90)
 at org.apache.tools.ant.Task.perform(Task.java:317)
 at org.apache.tools.ant.Target.execute(Target.java:309)
 at org.apache.tools.ant.Target.performTasks(Target.java:334)
 at org.apache.tools.ant.Project.executeTarget(Project.java:1216)
 at org.apache.tools.ant.Project.executeTargets(Project.java:1160)
 at org.apache.tools.ant.Main.runBuild(Main.java:605)
 at org.apache.tools.ant.Main.start(Main.java:195)
 at org.apache.tools.ant.Main.main(Main.java:234)
[main] ERROR org.apache.tools.ant.Target - Target "fail" finished with error.
C:\AntBook\Sections\Extending\listeners\build.xml:3: Example build failure
 at org.apache.tools.ant.taskdefs.Exit.execute(Exit.java:90)
 at org.apache.tools.ant.Task.perform(Task.java:317)
 at org.apache.tools.ant.Target.execute(Target.java:309)
 at org.apache.tools.ant.Target.performTasks(Target.java:334)
 at org.apache.tools.ant.Project.executeTarget(Project.java:1216)
 at org.apache.tools.ant.Project.executeTargets(Project.java:1160)
 at org.apache.tools.ant.Main.runBuild(Main.java:605)
 at org.apache.tools.ant.Main.start(Main.java:195)
 at org.apache.tools.ant.Main.main(Main.java:234)
[main] ERROR org.apache.tools.ant.Project - Build finished with error.
C:\AntBook\Sections\Extending\listeners\build.xml:3: Example build failure
 at org.apache.tools.ant.taskdefs.Exit.execute(Exit.java:90)
 at org.apache.tools.ant.Task.perform(Task.java:317)
 at org.apache.tools.ant.Target.execute(Target.java:309)
 at org.apache.tools.ant.Target.performTasks(Target.java:334)
 at org.apache.tools.ant.Project.executeTarget(Project.java:1216)
 at org.apache.tools.ant.Project.executeTargets(Project.java:1160)
 at org.apache.tools.ant.Main.runBuild(Main.java:605)
 at org.apache.tools.ant.Main.start(Main.java:195)
 at org.apache.tools.ant.Main.main(Main.java:234)
[main] ERROR org.apache.tools.ant.Project - Build finished with error.
C:\AntBook\Sections\Extending\listeners\build.xml:3: Example build failure
 at org.apache.tools.ant.taskdefs.Exit.execute(Exit.java:90)
 at org.apache.tools.ant.Task.perform(Task.java:317)
 at org.apache.tools.ant.Target.execute(Target.java:309)
 at org.apache.tools.ant.Target.performTasks(Target.java:334)
 at org.apache.tools.ant.Project.executeTarget(Project.java:1216)
 at org.apache.tools.ant.Project.executeTargets(Project.java:1160)
 at org.apache.tools.ant.Main.runBuild(Main.java:605)
 at org.apache.tools.ant.Main.start(Main.java:195)
 at org.apache.tools.ant.Main.main(Main.java:234)

The output above was generated by the TTCCAppender,2 which displays the name
of the thread ([main]), the event priority (INFO, ERROR, etc.), and the event message,

2 TTCC is short for time, thread, category, and context.
508 CHAPTER 20 EXTENDING ANT FURTHER

including the stack trace of any exceptions logged. The failure exception is generated
three times because it is logged as a Task failure, a Target failure, and finally a
Project failure. This could be filtered further with additional configuration in
log4j.properties. When build.log reaches the specified limit of 100KB in size, backup
files are generated (backup.log.1, backup.log.2, and so on) with a maximum
number of three backup files.

Because we only want a single email sent for each build failure, the configuration
has a special entry for the org.apache.tools.ant.Project category. This entry
overrides any parent category configuration, so it is necessary to specify both the file
and mail appenders, as we still want informational project messages logged to the
build.log file. We then set the mail appender, log threshold to ERROR, to ignore
any events with lower priority. During the run of the example build, a single HTML-
formatted email detailing the error is sent, as shown in figure 20.2.

The Log4j package provides extremely flexible logging capabilities by configuring
itself from a properties file at run time. Output can be turned off, filtered by priority,
formatted, and logged to any number of appenders, including automatically rotating
log files, a TCP/IP socket, JDBC, or even SMTP. Given the flexibility and extensibil-
ity of Log4j, most event-based logging needs can be accomplished using either
Log4jListener or CommonsLoggingListener. JDK 1.4’s logging API can be
invoked by configuring the CommonsLoggingListener appropriately as well;
consult the Jakarta Commons Logging documentation for details.

20.2.3 Writing a custom logger

A custom BuildLogger is simply a BuildListener with four additional
required methods, as shown in figure 20.1. During the development of this chapter,
we took the opportunity to provide a frequently requested capability: sending an
email of the complete build log.

One of the most commonly desired features of a build process is having the build re-
sults sent via email. Using Log4j’s SMTPAppender will not quite work because it is de-
signed to email every event logged individually (or buffer a specified number of events
to email less frequently, but buffering did not seem to flush when a build finished). This
section will demonstrate the development of the MailLogger class. Ant’s built-in De-

Figure 20.2

Log4j SMTP appender email

using the HTMLLayout
LISTENERS AND LOGGERS 509

n-

e

faultLogger allows subclasses to receive the output generated by overriding the log
method. By subclassing DefaultLogger, the MailLogger will be capable of gener-
ating console output, and buffering that same output for the body of an email. Listing
20.3 showcases our MailLogger code, which is now part of the Ant distribution.

package org.apache.tools.ant.listener;

import org.apache.tools.ant.BuildEvent;
import org.apache.tools.ant.DefaultLogger;
import org.apache.tools.ant.Project;
import org.apache.tools.ant.util.StringUtils;
import org.apache.tools.mail.MailMessage;

import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintStream;
import java.util.Enumeration;
import java.util.Hashtable;
import java.util.Properties;
import java.util.StringTokenizer;

// Code comments omitted for brevity
public class MailLogger extends DefaultLogger {
 private StringBuffer buffer = new StringBuffer();

 public void buildFinished(BuildEvent event) {
 super.buildFinished(event);

 Project project = event.getProject();
 Hashtable properties = project.getProperties();

 Properties fileProperties = new Properties();
 String filename = (String)
 properties.get("MailLogger.properties.file");
 if (filename != null) {
 InputStream is = null;
 try {
 is = new FileInputStream(filename);
 fileProperties.load(is);
 } catch (IOException ioe) {
 // ignore because properties file is not required
 } finally {
 if (is != null) {
 try {
 is.close();
 } catch (IOException e) {
 }
 }
 }

Listing 20.3 MailLogger—an example of creating a custom BuildLogger by

subclassing from Ant’s DefaultLogger

Confusing package
name, we know!

Overrides buildFinished,
calls parent first

Allows for co
figuration via
properties fil
510 CHAPTER 20 EXTENDING ANT FURTHER

 }

 for (Enumeration e = fileProperties.keys();
 e.hasMoreElements();) {
 String key = (String) e.nextElement();
 String value = fileProperties.getProperty(key);
 properties.put(key, project.replaceProperties(value));
 }

 boolean success = (event.getException() == null);
 String prefix = success ? "success" : "failure";

 try {
 boolean notify = Project.toBoolean(getValue(properties,
 prefix + ".notify", "on"));

 if (!notify) {
 return;
 }

 String mailhost = getValue(properties, "mailhost",
 "localhost");
 String from = getValue(properties, "from", null);

 String toList = getValue(properties, prefix + ".to",
 null);
 String subject = getValue(properties,
 prefix + ".subject",
 (success) ? "Build Success" : "Build Failure");

 sendMail(mailhost, from, toList, subject,
 buffer.toString());
 } catch (Exception e) {
 System.out.println("MailLogger failed to send e-mail!");
 e.printStackTrace(System.err);
 }
 }

 protected void log(String message) {
 buffer.append(message).append(StringUtils.LINE_SEP);
 }

 private String getValue(Hashtable properties, String name,
 String defaultValue) throws Exception {
 String propertyName = "MailLogger." + name;
 String value = (String) properties.get(propertyName);

 if (value == null) {
 value = defaultValue;
 }

 if (value == null) {

Should we
send email?

Substitutes
Ant properties

 Overrides
DefaultLogger.log,

capture messages
LISTENERS AND LOGGERS 511

 throw new Exception("Missing required parameter: " +
 propertyName);
 }

 return value;
 }

 private void sendMail (String mailhost, String from,
 String toList, String subject,
 String message) throws IOException {
 MailMessage mailMessage = new MailMessage(mailhost);

 mailMessage.from(from);

 StringTokenizer t = new StringTokenizer(toList, ", ", false);
 while (t.hasMoreTokens()) {
 mailMessage.to(t.nextToken());
 }

 mailMessage.setSubject(subject);

 PrintStream ps = mailMessage.getPrintStream();
 ps.println(message);

 mailMessage.sendAndClose();
 }
}

It is important to note that the buildFinished method initially delegates to
DefaultLogger’s implementation of buildFinished. This is necessary so that
the final output is generated to the console or log file before sending the email. There
are several configurable parameters that are needed to create a robust email logger:
from email address, to email address(es), and subject. Beyond those parameters, we
will allow the ability to enable/disable failure and success messages separately, have
different email address lists for failure and success emails, as well as have different
subjects based on the success or failure of a build.

Parameters are configurable through a properties file and through Ant properties,
with Ant properties taking precedence and overriding those specified in the properties
file. This order of precedence allows common settings to be used across multiple
projects, but also allows settings to be controlled on a per-project or per-user basis. We
can use the special project property MailLogger.properties.file (Ant calls
this one of its magic properties) to define the location of the configuration file, then
load it and overlay the project properties. The success status of a build is based on
whether the BuildEvent contains an exception or not.

Uses Ant’s
built-in mailer
512 CHAPTER 20 EXTENDING ANT FURTHER

20.2.4 Using the MailLogger

To use the MailLogger, which, again, is already part of Ant since version 1.5, we
must provide the necessary configuration parameters. We recommend using an external
properties file. This allows multiple projects to share the settings, which can be overrid-
den on a per-project basis simply by overriding the properties using <property> or
any other property setting technique. Our maillogger.properties file contains:

MailLogger.from = erik@example.org
MailLogger.failure.to = erik@example.org
MailLogger.mailhost = localhost
MailLogger.success.to = erik@example.org
MailLogger.success.subject = ${ant.project.name} - Build success
MailLogger.failure.subject = FAILURE - ${ant.project.name}
MailLogger.success.notify = off

Notice how we use Ant properties within this configuration file. We use the built-in
${ant.project.name} property to insert the project name into the subject of the
emails sent, allowing us to easily identify which project is being reported at a quick
glance. Our example build file to demonstrate the MailLogger is:

<project name="MailLogger example" default="test">

 <target name="test">
 <echo message="hello out there"/>
 </target>

 <target name="fail"><fail/></target>
</project>

From the command line, we specify the configuration file and invoke the fail target:

> ant -f buildmail.xml
 -logger org.apache.tools.ant.listener.MailLogger
 -DMailLogger.properties.file=maillogger.properties
 fail
Buildfile: buildmail.xml

fail:

BUILD FAILED
C:\AntBook\Sections\Extending\listeners\buildmail.xml:7: No message

Total time: 1 second

Because we have MailLogger.success.notify set to off, we only receive
build failure emails. Setting ANT_ARGS with the appropriate -logger and -DMail-
Logger.properties.file settings allows us to invoke Ant simply as ant -f
buildmail.xml fail. See appendix A for details on using ANT_ARGS.
LISTENERS AND LOGGERS 513

20.3 DEVELOPING A CUSTOM MAPPER

Several Ant tasks support the <mapper> datatype, allowing file names to be mapped to
one or more corresponding files. Section 3.10 discusses the built-in mappers in detail.
In almost all cases, the provided mappers are sufficient, but you may find a need to
write a custom one. In fact, we found such a need during the writing of this book, and
we will use it as an example. We wanted to speed up our builds that incorporated unit
tests, but the <junit> task simply reruns all tests each time it is encountered. By using
<uptodate> to compare timestamps on the unit test results with the actual Java
source files, we are able to bypass testing if they have already been run. The problem
encountered was that the Java source files are in a directory structure based on package
names, while the unit test results are written to a flat directory structure with the dotted
package name used in the XML file name. Section 4.8 provides more details on this
short-circuiting technique. We developed the package mapper to solve this problem
(which is now part of Ant, as of version 1.5), shown in listing 20.4.

public class PackageNameMapper extends GlobPatternMapper {
 /**
 * Returns the part of the given string that matches the * in the
 * "from" pattern replacing file separators with dots
 *
 *@param name Source filename
 *@return Replaced variable part
 */
 protected String extractVariablePart(String name) {
 String var = name.substring(prefixLength,
 name.length() - postfixLength);
 return var.replace(File.separatorChar, '.');
 }
}

A custom mapper must implement the org.apache.tools.ant.util.FileName-
Mapper interface, which glob mapper class does. We subclass the GlobPattern-
Mapper to inherit the asterisk (*) pattern-matching capability. By overriding its
extractVariablePart method, all that was needed was to replace file separators
with dots.

The FileNameMapper interface’s primary method has this signature:

String[] mapFileName(String sourceFileName)

In our case, the GlobPatternMapper implements this, but you may wish to
implement FileNameMapper directly, providing an array of files that translate from
the source file name. To use a custom mapper in a build file, simply specify a class-
name and optionally a classpath, classpathref, or a nested <classpath>
element to the <mapper>:

Listing 20.4 The package mapper implementation
514 CHAPTER 20 EXTENDING ANT FURTHER

<uptodate property="is.uptodate">
 <srcfiles dir="${some.dir}"/>
 <mapper classname="org.example.antbook.MyCustomMapper"
 classpathref="mapper.classpath"
 from="*Test.java" to="${test.data.dir}/TEST-*Test.xml"/>
</uptodate>

Because our example mapper is now part of the Ant distribution, you can simply refer
to it by name:

<uptodate property="is.uptodate">
 <srcfiles dir="${some.dir}"/>
 <mapper type="package"
 from="*Test.java" to="${test.data.dir}/TEST-*Test.xml"/>
</uptodate>

20.4 CREATING CUSTOM SELECTORS

One of Ant’s strengths is its ability to represent domain-specific needs at a high level,
such as that provided by filesets, which represent a collection of files rooted from a
base directory. Patternsets provide the ability to include or exclude files based on file
name patterns, and the built-in selectors provide even more selection capability, such
as selecting only files that contain a certain string or were modified after a certain
date. Section 3.6 covers the built-in selectors in more detail. Our goal here is to write
a custom selector that implements something new: selecting files that are read-only.

Our ReadOnlySelector code is quite short and sweet, as shown in listing 20.5.

package org.example.antbook;

import org.apache.tools.ant.BuildException;
import org.apache.tools.ant.types.selectors.BaseExtendSelector;

import java.io.File;

public class ReadOnlySelector extends BaseExtendSelector {
 public boolean isSelected(File basedir, String filename, File file)
 throws BuildException {
 return (!file.canWrite());
 }
}

Because Ant’s documentation already provides extensive coverage of writing custom
selectors, we will not cover it in detail here. The main things to do are extending
BaseExtendSelector and implementing the isSelected method. Custom
selectors can also take parameters using nested <param> tags. For example, we could
have written our selector to be a generic file attribute selector and allow a nested
<param name="attribute" value="readonly"/> (or value="writable").
Again, the Ant documentation covers this in detail, so we refer you there.

Listing 20.5 ReadOnlySelector includes only files that are not writable
CREATING CUSTOM SELECTORS 515

20.4.1 Using a custom selector in a build

The build file in listing 20.6 compiles and tests our custom selector.

<project name="selectors" default="main">

 <property name="build.dir" location="build"/>
 <property name="temp.dir" location="${build.dir}/temp"/>
 <property name="src.dir" location="src"/>
 <property name="data.dir" location="data"/>

 <target name="init">
 <mkdir dir="${build.dir}"/>

 <condition property="is.windows">
 <os family="windows"/>
 </condition>
 </target>

 <target name="clean">
 <delete dir="${build.dir}"/>
 </target>

 <target name="compile" depends="init">
 <javac srcdir="${src.dir}" destdir="${build.dir}"/>
 </target>

 <target name="setup-test-init">
 <delete dir="${temp.dir}"/>
 <mkdir dir="${temp.dir}"/>

 <delete dir="${data.dir}"/>
 <mkdir dir="${data.dir}"/>

 <echo file="${data.dir}/writable.dat">writable</echo>
 <echo file="${data.dir}/nonwritable.dat">nonwritable</echo>
 </target>

 <target name="setup-test-windows" if="is.windows">
 <exec executable="cmd.exe">
 <arg line="/c attrib +R"/>
 <arg file="${data.dir}/nonwritable.dat"/>
 </exec>
 <exec executable="cmd.exe">
 <arg line="/c attrib -R"/>
 <arg file="${data.dir}/writable.dat"/>
 </exec>
 </target>

 <target name="setup-test"
 depends="setup-test-init,setup-test-windows">
 <chmod file="${data.dir}/nonwritable.dat" perm="u-r"/>
 <chmod file="${data.dir}/writable.dat" perm="u+r"/>
 </target>

Listing 20.6 Using a custom selector, and demonstrating cross-platform testing

of file attribute settings

Sets a flag for
Windows platforms

Creates two
test files

Sets the attributes
on Windows
platforms

Sets the attributes
on non-Windows
platforms
516 CHAPTER 20 EXTENDING ANT FURTHER

 <target name="test" depends="compile,setup-test">

 <selector id="selector">
 <custom classname="org.example.antbook.ReadOnlySelector"
 classpath="${build.dir}"/>
 </selector>

 <copy todir="${temp.dir}">
 <fileset dir="${data.dir}">
 <selector refid="selector"/>
 </fileset>
 </copy>

 <available file="${temp.dir}/writable.dat"
 property="test.failed"/>
 <fail if="test.failed">
 Failed! Writable file copied!
 </fail>
 <echo>Test passed</echo>
 </target>

 <target name="main" depends="test"/>

</project>

This build file is overly elaborate to demonstrate how we were able to test our custom
read-only file selector. It creates two files and sets one as writable, and one as nonwrit-
able using attrib on Windows platforms through <exec>. The <chmod> task is
executed on all platforms, but does nothing on Windows platforms because the
chmod tool is not natively supported. We then construct a fileset which encompasses
both files, but uses our custom selector to only pick read-only files. An <avail-
able> check, followed by a conditional <fail> ensures that we have not copied the
writable file.

Using the <not> selector container, the logic could be reversed to copy only writ-
able files instead. This eliminates the need for us to write two selectors or parameterize
this selector to be more generic.

20.5 IMPLEMENTING A CUSTOM FILTER

In section 3.9, we covered the FilterChain and its nested FilterReaders, which can be
used in a few of Ant’s tasks. You are not limited to just the built-in FilterReaders, and
can write your own if you have a need that is not fulfilled by the handful of built-in
ones. The problem we will solve with an example FilterReader is the use of a proper-
ties file to customize an XML file for deployment. First, our templated XML data file:

<root>
 <description>${description}</description>
</root>

Defines
reusable
selector

Uses custom defined selector
to copy read-only file
IMPLEMENTING A CUSTOM FILTER 517

We are going to use an <expandproperties> FilterReader in a <copy> to replace
${description}. We are going to read the description property from a properties
file, which might contain characters that are illegal in an XML file. Our server.prop-
erties file contains:

description=<some description>

If literally “<some description>” was substituted into ${description} in the
XML file, the resultant file would be invalid. Angle brackets are special characters in
XML files, and must be escaped in most cases (see appendix B for more on special
characters in XML). The <loadproperties> task is similar to <property>,
except that it allows for a nested <filterchain>. There is no built-in FilterReader
to do the proper escaping, so we will write one, and use it in this manner:

<loadproperties srcfile="${data.dir}/server.properties">
 <filterchain>
 <filterreader classname="org.example.antbook.EscapeFilter"
 classpath="${build.dir}"
 />
 </filterchain>
</loadproperties>

<echo>description=${description}</echo>

<copy tofile="${build.dir}/server.xml"
 file="${data.dir}/template.xml"
 overwrite="true">
 <filterchain>
 <expandproperties/>
 </filterchain>
</copy>

<xmlvalidate file="${build.dir}/server.xml" lenient="true"/>

This build file piece is in a target that depends on the compilation target, so that
EscapeFilter can be used in the same build file in which it is compiled. The out-
put produced is:

 [echo] description=<some description>
 [copy] Copying 1 file to C:\AntBook\Sections\Extending\filters\build
[xmlvalidate] 1 file(s) have been successfully validated.

The description property loaded is different than the value from the properties file.
The angle brackets have been replaced with their corresponding XML entity refer-
ences. Had we omitted the <filterchain> within <loadproperties>, the
XML validation would have failed.
518 CHAPTER 20 EXTENDING ANT FURTHER

20.5.1 Coding a custom filter reader

Listing 20.7 shows our relatively straightforward EscapeFilter implementation.

package org.example.antbook;

import org.apache.tools.ant.filters.BaseFilterReader;
import org.apache.tools.ant.filters.ChainableReader;

import java.io.Reader;
import java.io.IOException;

public class EscapeFilter extends BaseFilterReader
 implements ChainableReader {

 private String queuedData = null;

 public EscapeFilter(final Reader in) {
 super(in);
 }

 public Reader chain(Reader rdr) {
 EscapeFilter newFilter = new EscapeFilter(rdr);
 newFilter.setProject(getProject());
 return newFilter;
 }

 public int read() throws IOException {
 if (queuedData != null && queuedData.length() == 0) {
 queuedData = null;
 }

 int ch = -1;
 if (queuedData != null) {
 ch = queuedData.charAt(0);
 queuedData = queuedData.substring(1);
 if (queuedData.length() == 0) {
 queuedData = null;
 }
 } else {
 ch = in.read();
 if (ch == -1) {
 return ch;
 }
 queuedData = getEscapeString(ch);
 if (queuedData != null) {
 return read();
 }
 }
 return ch;
 }

 private String getEscapeString(int ch) {
 String output = null;

Listing 20.7 EscapeFilter—a custom filter reader implementation

Allows
ourselves
to chain

Pulls one
character at
a time from
the queue

End of data

Starts reading from the queue
IMPLEMENTING A CUSTOM FILTER 519

 switch (ch) {
 case '<' : output = "<"; break;
 case '>' : output = ">"; break;
 case '"' : output = """; break;
 case '\'' : output = "'"; break;
 }

 if (output != null) {
 return output;
 }

 if (ch < 32 || ch > 127) {
 return "&#x" + Integer.toHexString(ch) + ";";
 }

 return null;
 }

}

FilterReaders use the standard java.io.Reader, which is implicitly available as the
in member variable from the parent class BaseFilterReader. If we had wanted
our class to be configurable through the build file, we would have had to extend from
BaseParamFilterReader instead. The chain method comes from the Chain-
ableReader interface, and allows our FilterReader to be linked to a successive Fil-
terReader, passing the modified stream through to it.

The read method can be a bit complicated, and care must be taken to return -1
when in.read() returns it, otherwise an infinite loop can occur as we experienced
in our first iteration of EscapeFilter. The read method is initially called from the
Ant framework, but we also call it internally when escaped strings are queued. Each
call of read returns only a single character (as an int), so buffering is necessary when
text is added, as is the case in EscapeFilter.

We found that writing a FilterReader was a bit trickier than other Ant customiza-
tions, but was well worth the effort. Had we not had custom filter reader capability
in this situation, we probably would have opted to change our business process by
mandating that data be already encoded for XML inclusion within the properties file.
However, we may want to use that same data outside of XML for other purposes and
the situation would have gotten more complex. Luckily, filter readers saved the day
by allowing us to have the data cleanly in the properties file, and escape the characters
when needed.

20.6 SUMMARY

This chapter has covered several odds and ends with respect to Ant extensibility.
While these techniques are not normally needed in the majority of builds, they are
each quite powerful and handy when the situations arise for their use.

Scripting using any of the Bean Scripting Framework supported languages allows
ad-hoc task writing within an Ant build file, without the need to write, compile, and
520 CHAPTER 20 EXTENDING ANT FURTHER

package custom Java tasks. It is not nearly as powerful or robust as using custom Java
tasks, and there are several reasons why using <script> is not preferred. Writing
script tasks can be a useful prototyping method before converting to Java tasks, or can
automate controlling other tasks and targets in bizarre and fun ways.

Build listeners and loggers are the key to IDE and external integration with Ant,
and custom-writing them is easy. Ant comes with several listeners and loggers already,
which are detailed in Ant’s documentation. Familiarize yourself with these before
embarking on custom development. Pay particular attention to the Log4j and Jakarta
Commons Logging listeners, which are highly configurable and will meet most cus-
tom listening needs already.

Developing custom mappers and selectors provides extensibility in how Ant pro-
cesses sets of files. Mappers are used to translate one file name to other file names, and
a custom one can provide just the trick you need at times. Selectors nest within filesets,
allowing sophisticated filtering of files within a directory tree. Writing a custom selec-
tor can add enormous capabilities to file selection, such as the read-only file selector
we developed here.

FilterReaders allow for powerful data transformations, and chaining FilterReaders
together accomplishes something similar to piping commands from one to another in
Unix shell scripting. Developing a custom FilterReader is one of Ant’s more complex
customizations, but still within reach of skilled Java programmers. Our simple Es-
capeFilter enabled our build process to deal with issues straightforwardly rather
than forcing us to change our business process or spend valuable time designing and
implementing a more complex solution.

The most important point we can leave you with is: familiarize yourself with all of
Ant’s out-of-the-box capabilities before beginning customizations. Very likely, you
will find that Ant can already handle your needs. Consult the provided Ant documen-
tation, our book, and online resources such as the ant-user email list, where you will
find a helpful and often quick-responding crew of Ant users around the world—
including ourselves.
SUMMARY 521

A P P E N D I X A

Installation

A.1 Before you begin 523
A.2 The steps to install Ant 524
A.3 Setting up Ant on Windows 524

A.4 Setting up Ant on Unix 525
A.5 Installation configuration 527
A.6 Installation troubleshooting 527
If there is one area where Ant could be improved, it is installation. It is still a fairly
manual installation process, and a few things can go wrong. Here is a summary of
how to install Ant, and also a troubleshooting guide in case something goes awry.

A.1 BEFORE YOU BEGIN

Before installing Ant, it is worthwhile verifying that a full Java Development Kit or
J2SE Software Development Kit, normally abbreviated to JDK for historical reasons,
is installed on the target system. Type javac at a command prompt; if a usage mes-
sage does not appear, then either a JDK needs to be installed or the path is not set up
correctly. Sun distributes its versions of this for Windows, Linux, and Solaris prod-
ucts under http://java.sun.com/j2se/—you need the appropriate Java 2 Standard Edi-
tion Software Development Kit for your system. Other vendors such as IBM, Apple,
HP, and Novell provide versions for their systems from their own web sites.

IMPORTANT Installing the Java SDK on a path without spaces in it, such as c:\java\ jdk,
instead of a path such as c:\Program Files\Java is highly recommended, as
sometimes spaces confuse Ant and other programs.

After installing the SDK, Ant requires the environment variable JAVA_HOME be
set to the directory into which the SDK was installed. It is also usual to append
523

JAVA_HOME\bin to the PATH environment variable, so that you can run the
SDK’s programs from the command line. Some Ant tasks depend upon this, since
they rely on these very same programs.

The standard test for the Java SDK being installed is that typing javac from a
command line should bring up a usage message, not an error about the command
being unknown.

A.2 THE STEPS TO INSTALL ANT

The core stages of the Ant installation process are the same regardless of the platform:

1 Download Ant.

2 Unzip or expand it into your chosen destination.

3 Add it to the path for command line invocation.

4 Set up some environment variables to point to the JDK and usually Ant.

5 Add any optional libraries to Ant that you desire or need. This can be done later.

The exact details vary from platform to platform, and as Ant works to varying degrees
on everything from Linux mainframes to Netware servers, it is not possible to cover
all the possible platforms you may want to install Ant onto; instead we will cover only
the most common Windows and Unix platforms.

Ant distributions come as source or binary distributions. Binary distributions
should work out of the box, whereas source editions need to be built using the Ant
bootstrap scripts. It is probably safest to hold off getting the source editions until and
unless you want to get into extending Ant in Java, at which time grabbing the latest
build from the CVS server is the best way to get an up-to-date copy.

When downloading a binary version, get either the latest release build, or a beta
release of the version about to be released. Nightly builds are incomplete and built pri-
marily as a test, rather than for public distribution.

A.3 SETTING UP ANT ON WINDOWS

Download the zipped Ant binary file from the Apache web server to your local disk.
Then unzip it to where you want the files to live, making sure that the unzip tool pre-
serves directory structure. There is always an unzip tool built into the JDK: type jar
xvf jakarta-ant-X.X-bin.zip to unzip the file. Let’s assume you unzipped it
to c:\java\apps\ant. This new directory you have created and installed Ant into is
called ant home.

You should add the bin subdirectory of ant home to the path, so it can be called
from the command line. You should also set the ANT_HOME environment variable to
point to the ant home directory. The batch file that starts Ant can usually just assume
that ANT_HOME is one directory up from where the batch file lives, but sometimes it
is nice to know for sure.
524 APPENDIX A INSTALLATION

Windows 9x

To install successfully on Windows 9x, you must use a path with short (8.3) file names rather
than long ones. This is a quirk of batch file execution, which the Ant team cannot fix.

The environment variable declarations, PATH and ANT_HOME, need to be placed
into autoexec.bat; they will not be picked up until the system is rebooted. Do not
include the final backslash in the directory name.

SET PATH=%PATH%;c:\java\apps\ant
SET ANT_HOME=c:\java\apps\ant

After rebooting, test the environment by typing ant -version at the command
line. The printed version number must match that of the version you have just down-
loaded; anything else means there is still a problem.

Windows NT/2000/XP

The environment variable declarations need to be placed somewhere in the registry,
which is normally done in the system section of the control panel applet, in the
Advanced tab pane, under Environment Variables.... This dialog is somewhat
cramped and noticeably less usable than a text file, but such is progress. After closing
the dialog box, any new console windows or applications started should pick up the
altered settings. If that does not happen, verify the settings (type SET at the com-
mand prompt), or try logging out and in again.

To test the settings, type ant -version at a newly opened console. The printed
version number must match that of the version you have just downloaded; anything
else means there is still a problem.

A.4 SETTING UP ANT ON UNIX

The first step is to download and install a recent JDK, making note of the location
where you installed it, which should be assigned to the JAVA_HOME environment vari-
able. This is usually a subdirectory of /usr/java or /opt/java. You should add the bin sub-
directory of the JDK to the PATH environment variable, if it is not done for you.

The second step is to download a recent Ant build from the Jakarta web site. This
is intermittently available in RPM format for Linux systems and other Unix systems
that handle that format. Alternatively, pull down the tarred and gzipped file. Because
tar knows about file permissions, it is the best way to install onto Unix if the RPM
format is not suitable. The tar files will not untar properly using the official version
that comes with Solaris and MacOS, as they do not handle long file names properly.
Use the GNU version of the tar tool instead. Zip files can always be unzipped with
the JDK even if unzip does nothing: use jar xvf file.zip, but afterwards you may
need to set the execute bit on files in the bin directory. You may even encounter prob-
lems with line endings in some of the scripts being in MS-DOS format with extra car-
riage returns rather than the line-feed-only format of Unix.
SETTING UP ANT ON UNIX 525

 As with Windows, try not to install Ant in a directory with spaces in it. The scripts
should all cope with it, but if they don’t, it will be up to you to fix them.

Here is the log of a Linux install into the subdirectory of a user: installation for the
entire team would need to be done as root and with an editing of system profile files.
This is important if you are planning to have an automated build process later on;
whatever account the automated build runs under it needs to have a copy of Ant.

[Apps]$ pwd
/home/slo/Java/Apps
[Apps]$ ls
jakarta-ant-1.5-bin.tar.gz
[Apps]$ ls
jakarta-ant-1.5-bin.tar.gz
[Apps]$ tar xzf jakarta-ant-1.5-bin.tar.gz
[Apps]$ ls
jakarta-ant-1.5 jakarta-ant-1.5-bin.tar
[Apps]$ cd jakarta-ant-1.5/bin
[bin]$./ant -version
Apache Ant version 1.5Beta3 compiled on June 22 2002
[bin]$

The third step is to add the environment variable(s) needed to get it to work.
To set the Bash environment, add this to the profile file that is usually .profile

or .bash_profile. System administrators setting these up for an entire system should
modify /etc/profile instead, which can be convenient unless different users plan to use
different Ant versions. The settings for the profile file should look something like:

export JAVA_HOME= (wherever the JDK is installed)
export ANT_HOME= (wherever Ant is installed)
export PATH=$PATH:$ANT_HOME/bin:$JAVA_HOME/bin

The environment settings for tcsh have a different syntax but the same behavior, and
go into the equivalent file: .cshrc or .tcshrc.

setenv JAVA_HOME= (wherever the JDK is installed)
setenv ANT_HOME= (wherever Ant is installed)
setenv PATH=$PATH\:$ANT_HOME/bin\:$JAVA_HOME/bin

There is a place where Ant options (such as ANT_OPTS) can be set in Unix, the .antrc
file in the user’s home directory, which is read in by the Ant shell script. Other mech-
anisms for starting Ant under Unix, such as the Perl on Python scripts, do not read
this file.

After logging off and on again, test the environment by typing ant -version in
a shell: a version message that matches the version you have just downloaded indicates
that all is well.
526 APPENDIX A INSTALLATION

A.5 INSTALLATION CONFIGURATION

There are two useful environment variables that the Ant wrapper scripts use when
invoking Ant: ANT_OPTS and ANT_ARGS. Neither of these is typically set by users,
but each can provide value for certain situations.

A.5.1 ANT_OPTS

The ANT_OPTS environment variable provides options to the JVM executing Ant,
such as system properties and memory configuration. During the development of this
book, the index we built was over 20MB in size and crashed the Ant JVM. We solved
this by setting ANT_OPTS to increase the Java initial heap size. On Windows this is

SET ANT_OPTS=-Xmx500M

A.5.2 ANT_ARGS

In a similar fashion to ANT_OPTS, the ANT_ARGS environment variable is passed to
Ant’s main process as command-line arguments, in addition to the arguments that
you specify on the command line. This could be useful, for example, if you always
want to use Ant’s NoBannerLogger to remove the output from empty targets.

SET ANT_ARGS=-logger org.apache.tools.ant.NoBannerLogger

A.6 INSTALLATION TROUBLESHOOTING

Getting started with Ant is difficult: you do not know exactly what to expect, and there
are a few complex steps to go through. The error messages do not make sense, and if
you file a bug report on the issue tracking web site, a WORKSFORME response is rea-
sonably likely. This is where you discover that a consequence of free, open source soft-
ware is that nobody staffs the support lines but you and people like you.

Because Ant does work fine on most systems, any installation that does not work is
almost always due to some configuration issue with the local machine. Something is miss-
ing, something is misconfigured, or some other piece of software is interfering with Ant.

Just before this book went to press, a -diagnostics command-line switch was
added to display diagnostic information about an Ant installation, such as Ant’s ant.jar
and optional.jar version numbers, whether all tasks defined are actually present in the
JAR files, system properties, and ANT_HOME/lib JAR information. This output
may help to determine the caues of any installation or configuration problems.

Problem: Java not installed/configured

If Java is missing, then Ant does not work.

Test: Run java from the command line; if this is not a known command then
either Java is not installed or the path is wrong.

Fix: Install the JDK; set up JAVA_HOME to point to the install location.
INSTALLATION TROUBLESHOOTING 527

Problem: JDK not installed/configured

Ant needs to find the JDK so that it can use classes in tools.jar, such as the Java com-
piler. Without this, some Ant tasks will fail with class not found exceptions.
The environment variable JAVA_HOME is used to find the JDK—if it is not set, Ant
will warn you on startup with an error message:

Warning: JAVA_HOME environment variable is not set.

This may just be a warning, but it is a warning that some tasks will not work prop-
erly. More insidiously, if JAVA_HOME is wrong, Ant will not notice until some tasks
fail, usually <javac> and <javadoc>.

Problem: Ant not on the path

Ant is started by a platform-dependent batch file or shell script, or by a portable
script in a language such as Perl or Python. If the path does not include Ant’s bin
directory, these scripts are not found and so Ant cannot start.

Problem: Another version of Ant is on the path

Because there are few restrictions on Ant redistribution, and because it is so popular,
other Java products sometimes include a version of Ant. Tomcat has done this in the
past. Having a separate version of Ant on the path is problematic for a number of rea-
sons. First, it may be an older version of Ant. Second, the installation may be incom-
plete; dependent libraries or even dependent batch files, such as lcp.bat, which
ant.bat uses, may be missing.

Test 1: Run javac from the command line; if this is not a known command then
either Java is not installed or the path is wrong.

Test 2: Use set or setenv to verify that the environment variable JAVA_HOME exists.
Verify that the file tools.jar can be found in the subdirectory JAVA_HOME /lib.

Fix: Install the JDK; set up JAVA_HOME to point to the install location.

Test: Run ant -version from the command line: a version number and build
time should appear. If the command interpreter complains that ant is un-
known, then the path is wrong. If the error is that the Java command is un-
known, then the problem is actually with the Java installation, covered earlier.

Fix: Modify the environment path variable to include the Ant scripts, log out,
reboot or otherwise reload the environment to have the change applied.

Test: One trick is to have a build file that contains a target with the string <echo
message="${ant.home}"/> to see the Ant home directory. Another is
to search for all copies of ant.bat, ant.jar or just plain ant in the file
system, which can highlight potential problems.

Fix: Remove or rename other copies, or reorder your path to place the version
you want first.
528 APPENDIX A INSTALLATION

Problem: Ant fails with an error about a missing task or library

This can mean that a library containing needed task definitions is missing. Unless
your build file uses nonstandard extension libraries, the most common reason for
missing many task definitions is that the optional.jar file has not been loaded
and added to the ANT_HOME/lib directory.

Problem: Ant still fails with an error about a missing task or library

The error message can also mean that a task depends on one or more external JAR
files that it cannot find.

Problem: The ANT_HOME directory points to the wrong place

You should not actually need to set the ANT_HOME environment variable: most Ant
launcher scripts will just assume that it is one directory up from where they are, then
perhaps call other batch files, such as ANT_HOME/bin/lcp.bat, to set up the class-
path. If ANT_HOME is set, but set to the wrong location, much confusion can arise. A
warning about lcp.bat being missing is one obvious sign when calling ant.bat; another
is failure to find ant.jar, with a Java error about the class org.apache.tools.
ant.Main not being found.

Problem: Incompatible Java libraries on the classpath

If you set up the CLASSPATH environment variable with a list of commonly needed
JAR files, there is a risk that versions of common libraries, xmlParserAPIs.jar and
xerces.jar in particular, clash with the versions Ant needs. If this is a problem (it is
very rare), then XML parsing is the most likely part of the Ant build to fail.

Test: Look in the ANT_HOME/lib directory for the optional JAR file.

Fix: Download this file from the jakarta.apache.org web site, and drop it into the
directory.

Test: Determine which task failed by looking at the error text, then use the Ant
manual to see what dependencies the task has. Next, check to see if the JAR
file is on the system, either in the CLASSPATH environment variable or in
the ANT_HOME/lib directory.

Fix: Download any needed JARs; place them in the ANT_HOME/lib directory.

Test: Look at the value of ANT_HOME and verify it is correct.

Fix: Either set the variable to the correct location, or omit it.

Test: Look at the value of CLASSPATH and verify it is empty or does not contain
any XML parsers.

Fix: Either clear the environment variable completely or pull out the XML parser
libraries.
INSTALLATION TROUBLESHOOTING 529

Problem: Java extension libraries conflicting with Ant

Java 1.2 and later supports extension libraries—JAR files placed into JAVA_HOME\
jre\lib\ext are loaded by the run time—using a different classloader than normal. This
can cause problems if any code in the extension libraries (such as jaxp.jar) tries to
locate classes loaded under a different classloader.

Problem: Sealing violation when running Ant

This exception happens when a library has been marked as sealed but another library
implements classes in one of the packages of the sealed library. This exception means
there is an XML parser conflict, perhaps from an older version on the classpath or
extension library, perhaps from some other library that contains a sealed copy of the
JAXP API. The underlying cause will be one of the two problems above: extension
library conflicts or classpath incompatibilities.

Problem: Calling Ant generates a Java usage message

If the Java invocation string that the Ant launcher scripts is somehow corrupt, then
the java program will not be able to parse it, so it will print a message beginning
Usage: java [-options] class [args...].

This is usually caused by one of the environment variables, JAVA_HOME,
ANT_HOME, ANT_OPTS, or CLASSPATH being invalid.

Problem: Illegal Java options in the ANT_OPTS variable

The environment variable ANT_OPTS provides a means to pass options into Ant,
such as a permanent definition of some properties, or the memory parameters for
Java. The variable must contain only options the local JVM recognizes. Any invalid
parameter will generate an error message such as the following (where ANT_OPTS was
set to –3):

Unrecognized option: -3
Could not create the Java virtual machine.

Test: Look in JRE/lib/ext directory for any JAR files that have crept in as exten-
sion libraries, and are confusing Ant.

Fix: Move the XML parser libraries to a different directory.

Fix: The message should identify which libraries have sealing problems. Use this
to identify the conflict, and fix it, usually by removing one of the libraries.
You can unseal a JAR file by editing its manifest, but this only fixes a symp-
tom of the conflict, not the underlying problem.

Test: Examine the environment variables to see if there are any obvious errors.

Fix: Fix any obvious errors. Otherwise, unset each variable in turn until Ant
works; this will identify the erroneous variable.
530 APPENDIX A INSTALLATION

If the variable contains a string that is mistaken for the name of the Java class to run
as the main class, then a different error appears:

Exception in thread "main" java.lang.NoClassDefFoundError: error-string

If the cause still cannot be found, a useful next step is to edit the Ant invocation
scripts to provide more debugging information. In the case of the Windows batch
file, commenting out the first line (@echo off) gives a detailed trace of the file. The
Perl script has a debug flag that can be set to get some debug information from the
Ant invocation route.

Test: Examine ANT_OPTS and verify that the variable is unset or contains valid
JVM options.

Fix: Correct or clear the variable.
INSTALLATION TROUBLESHOOTING 531

A P P E N D I X B

XML primer as it
applies to Ant
Because Ant uses XML as the means of describing what to build, creating Ant build
files by hand forces you to understand a bit about XML. XML can get very complex,
once you get into the details of parsing, XML namespaces, schemas, Java support
issues, and indeed the whole politics of XML implementations. Very little of that is
relevant to Ant, so here is a brief description of basic XML, which is sufficient for
writing build files.

XML provides a way of representing structured data that is intelligible to both
humans and programs. It is not the easiest of representations for either party, but it
lets humans create structured files that machines can understand. Since it looks like
HTML, it is not too hard to read or write once you have learned it.

An XML document should begin with an XML prolog, which indicates the version
and optionally the character set of the XML file—here the string <?xml ver-
sion="1.0"?>. XML (and therefore Ant) supports different character sets, includ-
ing Unicode documents in the UTF-8 encoding, which can be useful in international
applications.

 Applications can validate XML documents against another document describing
what is valid inside it: a Document Type Description (DTD) or an XML Schema.
There is no DTD for Ant, because it can add support for new XML elements during
the execution of a build. It is, however, possible to generate or download a somewhat
inaccurate DTD to describe Ant build files for use in XML editors.
532

After the prolog comes the XML content. This must consist of a single XML root
element, which can contain zero or more elements nested inside. Each XML element
is delimited with the angle bracket characters (< >) and must be the name of the ele-
ment. A closing tag of the same element name must close it. An example element
inside an Ant build file to print a string could be a reference to the echo task, which
outputs a message:

<echo></echo>

This would only actually print an empty string, because it contains no child elements
or other description of a message to print. XML tags support attributes, which are
named string assignments in the opening tag of an element. For example, the echo
task supports the message attribute, printing the result:

<echo message="hello world"></echo>

Ant often uses attributes to control stages in a build process, and it makes extensive
use of nested elements. At its simplest, these are text nodes, such as in the <echo>
task, which accept child text elements as an alternate means of stating which message
to display:

<echo>hello world</echo>

Note that <echo> allows a message to be specified as an attribute or as an embedded
text element.

Sometimes, the child elements are complex XML declarations of their own:

<target name="compile">
 <javac srcdir="." destdir="." />
</target>

In this example, one XML element <target> contains another element, <javac>;
each element has one or more attributes. The child element, <javac>, has no body,
so needs to be closed with a </javac> tag. We have cheated by ending the opening
tag with the text />. This tells the XML parser that the tag element is closed with no
child elements at all. It is a common shortcut used in Ant files, as it reduces the
amount of typing. It is a bit deceptive at first as the closing /may not catch the eye,
but the XML parser certainly catches its presence or absence and reminds you if it has
been omitted.

XML cannot contain binary data directly; it has to be encoded using techniques
like base-64 encoding. This is never an issue in Ant build files. A more common prob-
lem is that certain characters, specifically > and < cannot be used except when marking
the beginning or ending of tags. Instead they need to be escaped using the strings >
and < respectively. This should be familiar to anyone who has written a lot of low-
level HTML content. When assigning values to attributes, you may need to escape sin-
gle or double quotation marks; there are escape sequences for these two characters,
although this tends to be less of an issue in Ant files. Any Unicode character can also
XML PRIMER AS IT APPLIES TO ANT 533

be described in XML by providing its numeric value in a very similar manner:
and both refer to the ASCII space character, decimal value 32, hexadeci-
mal value 0x20 This trick can be sporadically useful in dealing with minor interna-
tionalization issues. When needed, a line such as

<echo message="'<$>&"" />

would be translated to an output such as:

[echo] '<$>&"

Escaping characters is most common in XML attributes, such as setting the pass-
words to remote FTP or HTTP servers. Table B.1 lists the most common symbols
that you must escape in an Ant file.

Because escaping characters can become very messy and inconvenient, XML provides
a mechanism for allowing unescaped text within a CDATA section. In Ant’s build
files, CDATA sections typically appear around script blocks or SQL commands.
CDATA sections begin with <![CDATA[and end with]]>. The ending sequence of
a CDATA section is the only set of characters that requires escaping internally. A
CDATA example is:

<echo><![CDATA[
 hello world
]]>
</echo>

Unless stated otherwise, XML parsers assume that the character set of input files is
not that of the locale of the local system, but instead Unicode in the UTF-8 encod-
ing. The ASCII characters, which are zero to 127, are represented as-is in UTF-8
files, so this subtle file format detail will not show up. However, the moment you add
any high bit characters, such as £ or ü, the parser breaks. To avoid having the Ant
parse stage failing with an error about illegal characters the moment you add a string
like münchen to the file, you must set the encoding of the XML file in the declara-
tion, and use the same encoding in your text editor. For example, to use the ISO
Latin-1 encoding, you set the first line of the build file to

<?xml version='1.0' encoding="iso-8859-1" ?>

Table B.1 How to escape common characters so that the XML parser or Ant can use them

Symbol Ant XML representation

< <

> >

" "

' '

newline; \n

A Unicode character, such as ß (hex value 00df) ß
534 APPENDIX B XML PRIMER AS IT APPLIES TO ANT

This will tell the parser that the encoding is ISO Latin-1 and that the ISO Latin-1
characters from 128 to 255 are valid. Alternatively, save the build files in UTF8
encoding, if your text editor permits that.

XML permits comments inside the delimiters <!-- and -->. This is very impor-
tant in an Ant build file, because documentation of the stages in the build process is
so critical. A good build file contains well laid out XML declarations as well as com-
ments that describe what is happening. It is also useful for commenting out sections
during development, although here the fact that XML does not permit comments
inside the angle brackets of an element tag makes it hard to comment out some parts
of a build, as shown in the following code fragment:

<target name="compile">
 <!-- compile some code -->
 <javac srcdir="."
 <!--
 optimize="true"
 -->
 />
</target>

The normal workaround in this situation is to cut and paste the comment block out-
side the element tag, which is inelegant and makes it harder to re-enable the attribute
later, as you need to remember where it came from. Better still, by using Ant’s prop-
erty concept, you can control task attributes without having to resort to commenting
them in and out.

A good XML editor reduces the chances for errors and simplifies navigation around
the file, although by restructuring the layout of the file, the final aesthetics and read-
ability of the text may be reduced. A good application for creating Ant files without
the need to view or edit XML directly can improve productivity, which is why some
of the latest generation of Ant-based build tools are valuable. However, XML is the
underlying language, and being able to manually edit a build file will remain useful.
Even if you somehow manage never to edit the file by hand, tracking down errors or
comparing versions of build files in some file difference (or comparison) tool will often
use the raw XML text. Also, raw XML makes a great format for people to share parts
of a build process, by cutting and pasting steps between your own projects, picking
up useful examples from other people’s build files, or just making sense of the exam-
ples in this book. Even as Ant becomes easier to use, XML will probably remain the
power-user representation of an Ant build process.

This is a legal comment

This is illegal, as it
is inside an XML tag
XML PRIMER AS IT APPLIES TO ANT 535

A P P E N D I X C

IDE integration

C.1 Using Ant in an IDE 536
C.2 Some Ant-aware IDEs 537
C.3 Making the most of a combined

IDE/Ant build process 543
Many developers like their IDEs but need Ant for the full build. These developers
should consider using an Ant-aware IDE.

C.1 USING ANT IN AN IDE

Historically, Java IDEs have always been weak in one way or another. Usually the text
editors have been inadequate, the debuggers weak, and the package and deployment
support limited. They have also been somewhat sluggish and memory hungry if writ-
ten purely in Java, or restricted to a single platform (usually Windows). Fortunately,
the performance of today’s entry-level computers is now more than enough for these
tools, and the cost of memory is so low that memory is rarely an issue, leaving only
debugging, text editing, and build support as problems.

Using Ant from inside IDEs addresses the build process and benefits both the tools
and the users. The tools avoid having to implement Ant’s functionality; they can
merely invoke it and process the results. Users benefit by having the best of both
worlds: a graphical editing and debugging tool integrated with a cross-platform and
a readily automated build process. The declarative nature of Ant is actually intended
to simplify this process; it is possible for development environments to parse the data
and present it in ways that make the build file easier to view, edit, and use. Most Ant-
aware editors present the build file as a list of targets or tree of targets and tasks, a view
that you can use for editing or executing the build file.
536

Putting an IDE in control of the build file can make it easier to manipulate, but
it does tend to make the actual XML harder to read. IDEs may remove any indenta-
tions inserted to make the file readable, and can reorder the attributes inside an XML
element start tag. As a case in point, all Ant developers declare targets with the name
coming before the dependencies or the description:

<target name="all"
 description="does everything"
 depends="init, build, package, email" />

The tools that edit build files for you have a tendency to reorder the attributes, usu-
ally into alphabetical order:

<target depends="init, build, package, email"
description="does everything" name="all" />

Working with the file after such a tool has edited it is much, much harder. Maybe we
need an <xmltidy> task to tidy up XML files based on a specification; this could
make build files readable again, among other things.

Another issue with Ant integration is the version. There is always a lag between an
Ant version being released and support for it in other tools arriving: the more complex
the container product the longer the lag. The best tools for developers who keep up-
to-date with Ant builds are those that remain loosely coupled to Ant, executing any
version preinstalled on the local system. If you are learning Ant, however, a tool that
makes build files easy to view, edit, and use is good, especially if it hides XML details.

C.2 SOME ANT-AWARE IDES

In this section we have listed the IDEs with Ant integration with which we are suffi-
ciently familiar to determine the strengths and weaknesses of the Ant integration. We
do not cover which editor is best at other tasks, such as editing and debugging,
although these are clearly important. Be aware that these tools are continually evolv-
ing. The Jakarta-Ant web site is the most up-to-date list of Ant integration resources,
and should be the first place to look for more information.

There is no one IDE with Ant integration that we can point to and say this is the
tool you need. Maybe everyone should just stick to their favorite editor and debugger
and get the appropriate Ant plug-in for it. After doing so, find out where the lib direc-
tory of the IDE is, and add all dependent JAR files the tasks you use need, such as Net-
Components.jar for the <ftp> task. Updating Ant itself is not so easy: sometimes it
has been modified to work with the IDE; other times more than ant.jar itself needs
to be adjusted, as the parser used to display the file contains its own model of what
tasks, elements, and attributes are valid.
SOME ANT-AWARE IDES 537

jEdit

jEdit editor, from http://jedit.org/, is currently one of our favorite Java and Ant text
editors. Its AntFarm plug-in lists all the targets on a build file that you have added to
it; selecting a target runs it. Status and error messages appear in the console window;
clicking on an error will highlight the file containing an error in Java source or the
build file itself.

To generate Ant files the tool comes with an excellent XML editor mode that auto-
completes many tags and lets you expand and collapse targets for easier navigation.
Figure C.1 shows the results of a build, with the build file displayed in Ant mode,
which adds highlighting of many of the Ant keywords to the XML view. The jEdit
editor does not attempt to rearrange the XML at all, letting you write a build file in a
readable form. You do however have to write most of that build file yourself; apart
from a few dialogs, which fill out the basic options for tasks such as <javac>.

Figure C.1 jEdit executing a build file with AntFarm; the build file is in the main window with

some of the targets collapsed for easier navigation; the targets of the file are listed in the pane

to the left. We have encountered an error on this run; the line on the build file where this

happened is underlined and a ToolTip has popped up the message.
538 APPENDIX C IDE INTEGRATION

The final nice feature of jEdit for Ant-based development is that although it ships
with a built-in version of Ant, you can select any other installation of Ant on the com-
mand line through a dialog box, which is ideal when you are extending or editing Ant
itself. Unfortunately, not all changes to Ant are handled so well; some changes to well-
known tasks, such as new <condition> tests, need a new version of the AntFarm
plug-in, which can be inconvenient. Changes to attributes and the addition of new
tasks do not cause this problem. Because of Ant version issues, we actually use some
jEdit macros to run Ant targets via the command console, saving files before executing
the build. With different macros calling different targets, for example, build, test, and
deploy, and keystroke bindings for each target, we can do fast Ant-based development
within the IDE without the AntFarm plug-in.

The tool is a great text editor, and compared to the other Java tools it is positively
svelte, showing that you can do fast GUI applications in Java if you try hard enough.
It is therefore well worth installing and experimenting with, even if you choose to stick
to other IDEs.

Figure C.2 IntelliJ IDEA, running the same build file and displaying errors. The pane of Ant

targets is on the right; these targets are also listed under the build menu for easy access by

mouse or keyboard shortcut.
SOME ANT-AWARE IDES 539

IntelliJ IDEA

This commercial IDE is a very powerful Java source editor that also can debug programs,
run JUnit tests, and generally get your code working. From a text-editing standpoint, its
method completion, pop-up Javadocs, and refactoring can be great for productivity.

It supports Ant right out of the box; figure C.2 shows it having run into an error
executing a target. Our build file required the Ant nightly build; to get IDEA to exe-
cute it, we just dropped new versions of ant.jar, optional.jar, into its lib directory. One
of our other build files failed because the property ant.home was not being defined;
that is one of those gotchas in IDE-hosted build files that can hurt you. We fixed it
in an ugly way with a line in our build file:

<property name="ant.home" value="${env.ANT_HOME}" />

We still could not run our deployment tasks due to library dependencies. This exem-
plifies the problem with tight IDE integration: you end up having to debug the inte-
gration more than your build process itself, and sometimes you are constrained by the
IDE as to which tasks you can run.1 You can download and purchase the IDE from
http://intellij.com.

Sun NetBeans/Forte

The NetBeans project is Sun’s open source Java development platform; the Forte
product is a commercial derivative. NetBeans’ Ant support is pretty good; their devel-
opers regularly file Ant bug reports and patches, and this shows in the quality of the
integration. Not only can you navigate and execute Ant targets from the build file
pane, you can insert new tasks, bring up the Ant documentation, and fill in task and
target options using property windows. They also keep reasonably up-to-date with
Ant versions, a benefit of their frequent release cycle. See figure C.3.

Because this IDE lets you create targets through menus and dialog boxes, it is a
great way to learn Ant and to integrate Ant with IDE-based development.

Do not attempt to update Ant on NetBeans by dragging, dropping, and renaming
files, as it only stops things from working. You can download release and development
versions of NetBeans from http://www.netbeans.org.

1 On a more positive note, someone has recently (January 2002) posted an Ant task which creates an
IDEA project as part of the build; this lets someone roll out changes to a project to all team members,
reducing the maintenance overhead of IDE-based development.
540 APPENDIX C IDE INTEGRATION

IBM Eclipse

The IBM-backed Eclipse project, at http://eclipse.org/, is an alternative to NetBeans;
it is a general-purpose development framework targeting Java and C++ development,
the latter primarily on Linux. See figure C.4.

Eclipse’s Ant integration is through a view called Ant Console. Getting Ant up and
running in Eclipse required a visit to the Eclipse FAQ page to find out that tools.jar
needed to be added to the Ant classpath. The Ant Console shows each output level
as a custom chosen color, and the verbosity level is configurable through the Prefer-
ences. Right-clicking on a build.xml file displays the Run Ant… menu item. Choosing
this displays a dialog allowing you to pick which targets to run and to provide any
additional arguments such as property overrides. You may consult the Eclipse web site
for information on upgrading its Ant version, however, it’s also possible to get infor-
mation through the Ant page in Preferences. We look forward to promised improve-
ment in Eclipse’s Ant integration in Eclipse 2.0, as it’s a nice development environment;
but we were unsatisfied with its current Ant features, such as no way to double-click
from a compile error directly to the corresponding line of source code.

Figure C.3 NetBeans not running a task because of Ant1.4.1 and Java1.4 incompatiblities, but

highlighting the error line quite nicely. The pane on the left shows the build file and provides

navigation and task creation; the property dialogs let you fill in the values.
SOME ANT-AWARE IDES 541

Other tools

We have not listed other tools here because the options are continually changing, and
many are not so different from the others. The Ant web site provides up-to-date
pointers to IDEs that support Ant, including emacs. Borland/Inprise supports Ant
and JUnit in its premium JBuilder Enterprise Edition; for everyone else there is a
JBuilder add-on listed on the Ant web site.

What is notable is the emergence of pure Ant execution tools, which provide GUIs
for editing and executing a build file. There is an Ant child project, Antidote, which
started doing this; work on this may have restarted after a long sabbatical. The HP
RadPak is a deployment tool designed to create and deploy WAR and EAR applica-
tions to the J2EE server. Among other things it lets you edit XML files and construct
build files through dialogs, and it comes with an officially supported task to deploy
to the servers. It currently lags a bit regarding Ant versions, there is no way to update
it, and it ruins your build file’s readability, but otherwise it is slick. Although we prefer
to run from the IDE or the command line, the tool can be useful in the hands of non-
developers: operations and management.

Figure C.4 Eclipse running a simple example project including a compile error. Unfortunately the Ant

Console does not directly link to source code and is a passive, display-only view of the build results.
542 APPENDIX C IDE INTEGRATION

C.3 MAKING THE MOST OF A COMBINED IDE/ANT
BUILD PROCESS

The best way to use Ant from an IDE consists of recognizing and using the best fea-
tures of each product. IDEs are great at debugging and editing text; Ant is good at
building, testing, and deploying. Where IDEs are weak is in multideveloper support:
each developer has to configure his IDE projects to work on his own system, and
changes in the build do not propagate well. So why try and unify the IDE environ-
ments? Ant can be all the commonality of the build process developers need. Here are
our recommended tactics to combine IDEs and Ant in a team project:

• Let developers choose their favorite IDEs. The boost to productivity and
morale here can outweigh most compatibility issues.

• Have everyone install a common IDE, such as jEdit, NetBeans, or even emacs.
This ensures everyone on the team has a common working environment on the
occasions they need to work on each other’s machines. If pair-programming
techniques are being used this is invaluable, although key binding standardiza-
tion soon becomes an issue.

• Integrate tests into the build process, so they are run every build and deploy
cycle. Tests and deployment are key reasons for developers to use Ant over the
IDE’s own compiler.

• Use a team build file to build the code. Any customizations should be in per-
user properties, not private build files.

• Have standard target names across projects (a general Ant best practice).

• Have developers set up keystroke shortcuts to run the standardized targets: test,
deploy, clean.

Some developers may miss the total integration of a pure IDE build; adding unit tests
and deployment to the Ant build, surpassing what the IDE build could do, could
help bring them on board. Offering them not only the choice of which IDE to use,
but also the funding to buy a commercial product, could also help with motivation.
MAKING THE MOST OF A COMBINED IDE/ANT BUILD PROCESS 543

A P P E N D I X D

The elements of Ant style

D.1 General principles 544
D.2 Environment conventions 545
D.3 Formatting conventions 546
D.4 Naming conventions 548
D.5 Documentation conventions 552
D.6 Programming conventions 553
D.1 GENERAL PRINCIPLES

1. Let Ant be Ant
Don’t try to make Ant into Make. (Submitted by Rich Steele, eTrack Solutions, Inc.)
Ant is not a scripting language. It is a mostly declarative description of steps. The declar-
ative nature of Ant can be a source of confusion for new users, especially if a scripting
language is expected.

2. Design for componentization.
A small project becomes a large project over time; splitting up a single build into
child projects with their own builds will eventually happen. You can make this pro-
cess easier by designing the build file properly from the beginning, being sure to:

• Use <property location> to assign locations to properties, rather than val-
ues. Not only does this stand out, it ensures that the properties are bound to an
absolute location, even when they are passed to a different project.

• Always define output directories using Ant properties. This lets master build
files define a single output tree for all child projects.
544

3. Design for maintenance.
Will your build file be readable when you get back to it six months after the project is
finished? Will it execute on a clean machine? Follow these points:

• Document the build process. XML may be a file format that is both human
readable and machine readable, but it is not the most easily read format for
either party. A text file covering the build and deploy process will be appreciated
by your successors. Of critical importance is the list of which programs and
libraries are needed for the build; without it, running the build will be a trial-
and-error process.

• Use comments liberally.

• Avoid dependencies on programs and JAR files outside the source tree: keep
everything you can under source code control for later re-creation of develop-
ment environments. That includes Ant itself, especially if you have changed it
in any way.

• Keep deployment usernames and passwords out of build files. Passwords should
change over time, and security is always an issue. Keep them in property files
out of source code control. If a password is required for a build process, the user
can be alerted to it being missing by using <fail message="Provide
user.password" unless="user.password"/>

• Never neglect false positive test case failures. Even if you know that
testWorstCase always fails, four months later someone else might have the
maintenance task and waste ages trying to find out why the build is reporting
errors. At best, fix them; otherwise exclude them from the test suite.

D.2 ENVIRONMENT CONVENTIONS

The items in this section assume that you are launching Ant through the wrapper
scripts, such as the provided ant.bat, ant.sh, runant.pl, or runant.py.

4. Run without a CLASSPATH.
There is no need to manually set your system CLASSPATH environment variable.
When running through the Ant wrapper scripts, the libraries in ANT_HOME/lib
are automatically placed into the system CLASSPATH before invoking Ant.

5. Place commonly used Ant library dependencies in Ant’s lib directory.
In some cases it is required that libraries be in the system classpath. JUnit’s library is
one of them, when using the <junit> task.

6. Use ANT_OPTS to control Ant’s virtual machine settings.
Some tasks may require more memory, which you can set in the ANT_OPTS environ-
ment variable, using the appropriate mechanism for your platform:

set ANT_OPTS=-Xmx500M
export ANT_OPTS=-Xmx500M
ENVIRONMENT CONVENTIONS 545

7. Use ANT_ARGS to set fixed command-line switches.
You may always want to use the –emacs and the NoBannerLogger:

set ANT_ARGS=-emacs –logger org.apache.tools.ant.NoBannerLogger
export ANT_ARGS=-emacs –logger org.apache.tools.ant.NoBannerLogger

Other settings that may be useful in ANT_ARGS are:

–Dbuild.compiler=jikes
-listener org.apache.tools.ant.tools.listener.Log4jListener
–propertyfile my.properties.

D.3 FORMATTING CONVENTIONS

Readability and maintainability are the prevailing rationales for most of these items.

NOTE Some IDE and XML editors have an annoying habit of reformatting
build.xml automatically—use these with caution if you care about the aes-
thetics of your build file.

If your build file will be manually edited and readability is desired, craft it your way;
and if a tool attempts to spoil it, complain to the vendor and avoid using it.

8. Provide the <?xml…?> directive.
Include the encoding if there are characters outside the ASCII range:

<?xml version="1.0" encoding="iso-8859-1"?>

9. Use consistent indentation.
Keep <project> at the very left edge, along with the <?xml ... ?> tag. Two or
four spaces is typical, no hard tabs. Keep closing elements aligned with opening ele-
ments, as in <target> here:

<?xml version="1.0">
<project>
..<target name="init">
....<mkdir dir="${build.dir}"/>
..</target>
</project>

10. One-line elements are acceptable.
This typically only applies to elements that combine their start and finish tags into one.

<echo message="hello"/>

One line also works for short begin and end pairs.

<echo>build.dir = ${build.dir}</echo>

11. Break up long lines.
Follow conventions similar to Java coding. Lines typically should not be longer than
80 characters, although other considerations may lower this limit. Break lines when
they become longer than the limit, or when readability would be increased by break-
ing them. These guidelines assist in breaking long lines.
546 APPENDIX D THE ELEMENTS OF ANT STYLE

Place the first attribute of an XML element on the same line as the start element
tag, and place subsequent attributes on new lines indented to the same level as the first
attribute.

<javac destdir="${build.classes.dir}"
 debug="${build.debug}"
 includeAntRuntime="yes"
 srcdir="${src.dir}"
/>

If an attribute value still pushes past the established line length limit, consider split-
ting the value into multiple properties and concatenating their values.

Close self-contained elements on a new line, as shown here, with the /> characters
aligned vertically with the opening <. This helps you visually notice the entire block
as a unit.

12. White space is your friend.
Include blank lines between logical groupings. Examples include between logical sets
of property definitions, targets, and groupings of tasks within a target.

13. Define tasks, datatypes, and properties before targets.
Some tasks are allowed outside targets: <taskdef>, <typedef>, and <prop-
erty>. All datatype declarations are also allowed outside of targets. When possible,
place task, datatype, and property definitions before the first target as child elements
of <project>.

<?xml version="1.0" ?>
<project name="library" default="main">

 <property name="tasks.jar" location="dist/tasks.jar"/>
 <taskdef resource="taskdef.properties" classpath="${tasks.jar}"/>

 <path id="the.path" includes="${tasks.jar}"/>

 <target name="usetasks">
 <sometask refid="the.path"/>
 </target>

</project>

Some exceptions apply, such as compiling and using a custom task in the same build
—this requires the <taskdef> to be inside a target dependent upon compilation.

14. Order attributes logically and consistently.
Define targets with name first so that it is easy to spot visually.

<target name="deploy" depends="package" if="deploy.server">
 <!-- ... -->
</target>

For commonly used tasks, such as <javac>, establish a preferred ordering of
attributes and be consistent across projects:
FORMATTING CONVENTIONS 547

<javac srcdir="${src.dir}"
 destdir="${build.classes.dir}"
 classpathref="compile.classpath"
 debug="${build.debug}"
 includeAntRuntime="yes"
/>

Use XML entity references to include common fragments.

<?xml version="1.0"?>
<!DOCTYPE project [
 <!ENTITY properties SYSTEM "file:../properties.xml">
]>
<project name="Sub-project" default="main">

 &properties;

</project>

D.4 NAMING CONVENTIONS

D.4.1 General

15. Use a common naming scheme among targets, datatypes, and properties.
Combine meaningful names, such as install, docs, and webapp, with meaning-
ful types, such as docs.patternset, webapp.name, and webapp.classpath.

D.4.2 Targets

16. Use consistent target names.
Standard target names keep a build file understandable over time and by new devel-
opers. In a project with separate subprojects, each with its own build file, it is impor-
tant to keep the names consistent between projects, not just for the benefit of
programmers but for any master build mechanism.

Well-known Ant targets provide a “walk up and use” experience. Table D.1 details
several commonly used targets and their purposes.

Table D.1 These targets are common to many builds. Always avoid changing the behavior of a

well-known target name. You do not need to implement all of these in a single project.

Target Name Function

all Build and test everything; create a distribution, optionally install.

clean Delete all generated files and directories.

deploy Deploy the code, usually to a remote server.

dist Produce the distributables.

distclean Clean up the distribution files only.

docs Generate all documentation.

init Initialize the build: create directories, call <tstamp> and other common actions.

continued on next page
548 APPENDIX D THE ELEMENTS OF ANT STYLE

Never override a well-known target name with a different behavior, as the build file
will then behave unexpectedly to new users. For example, the docs task should not
install the system as a side effect, as that is not what is expected.

17. Separate words in target names with a hyphen.
For example, use install-lite instead of installLite, install_lite, or
install lite.

18. Use consistent default target names across projects.
A standard default project target name allows for easy invocation from the command line.

<project name="elements" default="default">

 <target name="clean">
 <!-- ... -->
 </target>

 <target name="default" depends="..."/>

</project>

The targets main and default make good standard default target names, although
this is an area of personal preference. Whatever you choose, be consistent across all
projects. To invoke a default clean build, run ant clean default.

D.4.3 Properties

19. Use standard suffixes for directory and library properties.
Use .dir for directory paths and .jar for JAR file references.

20. Prefix compilation properties with build.
The reason is somewhat historical, as build.compiler is Ant’s magic property to
control which compiler is used. In keeping with this special property, build.debug
should be used to control the debug flag of <javac>. Likewise, other <javac>
parameters that you wish to control dynamically should use the build. prefix.

install Perform a local installation.

javadocs Generate the Javadoc pages.

printerdocs Generate printable documents.

test Run the unit tests.

uninstall Remove a local installation.

Table D.1 These targets are common to many builds. Always avoid changing the behavior of a

well-known target name. You do not need to implement all of these in a single project. (continued)

Target Name Function
NAMING CONVENTIONS 549

21. State the role of the property first, then the type of property.
For example, a property representing whether or no tests need to be run is repre-
sented as tests.uptodate.

22. Separate words with a dot (.) character in property names.

23. Use lowercase property names.
Environment variables are an exception.

24. Load environment variables with env. prefix.

<property env="env"/>

The case of the properties loaded will be dependent upon the environment variables,
but they are typically uppercase: env.COMPUTERNAME, for example, is the computer
name on a Windows platform.

25. Use properties to name and locate JAR libraries.
Using indirection keeps a build file decoupled from the location and version of third-
party libraries.

build.xml:

<property name=”lib.dir” location=”../somewhere/libs”/>
<property file=”${lib.dir}/lib.properties”/>

...
<classpath id=”compile.classpath”
 path=”${oro.jar}:${xalan.jar}”
/>

lib.properties:

xalan.jar=${lib.dir}/java/jakarta-xalan2/xalan.jar
oro.jar=${lib.dir}/java/jakarta-oro/jakarta-oro-2.0.6.jar

(Submitted by Stephane Bailliez, stephane.bailliez@haht.com.)

There are several ways to accomplish this indirection to varying degrees of flexibility
and complexity. The important point is that a build file should not be hardcoded
with library version information.

D.4.4 Datatypes

26. Use property name formatting conventions for datatype IDs.
In other words, lowercase datatype IDs and separate words with the dot (.) character.

27. Standardize datatype suffixes.
Paths that represent classpaths end with .classpath, like compile.classpath.
End patternset ISDs with .patternset (or simply .pattern, but be consistent).
Filesets end with .files.
550 APPENDIX D THE ELEMENTS OF ANT STYLE

D.4.5 Directory structure

28. Standardize directory structures.
A consistent organization of all projects’ directory structures makes it easier for build
file reuse, either by cut-and-paste editing, or within library build files. It also makes it
easier for experienced Ant users to work with your project.

A good directory structure is an important aspect of managing any software devel-
opment project. In relation to Ant, a well thought out directory structure can accom-
plish something simply and elegantly, rather than struggling with tangled logic and
unnecessarily complex fileset definitions. Table D.2 lists directory names commonly
found in Ant projects.

The actual naming and placement of directories are somewhat controversial, as many
different projects have their own historical preference. All good layouts, however,
tend to have these features:

• Source files are cleanly split from generated files; Java class files are never gener-
ated into the same directory as the source. This makes it much easier to clean a
project of all generated content, and reduces the risk of any accidental destruc-
tion of source files.

• Java files are laid out in package hierarchy, with subdirectories such as com and
org, which contain vendor and project names beneath them. This is critical for
Ant’s Java file dependency checking, and it also helps you to manage very large
projects.

• Library files used are kept with the project. This avoids implicit dependencies
on files from elsewhere that have been stuck onto the classpath somehow.

• Distribution files are separate from intermediate files. This lets you clean up the
intermediate files while keeping the redistributable output.

Table D.2 Common directory names. The build and dist directories should contain nothing in

them that Ant cannot build, so clean can clean up just by deleting them.

Directory Contents

build Temporary staging area for classes and more

dist Distribution directory

docs Documentation files stored in their presentation formats

etc Sample files

lib Project dependencies, typically third-party .jar files

src Root directory of Java source code, package directory structure below

src/xdocs Documentation in XML format, to be transformed into presentation format
during the build process

src/META-INF Metadata for the JAR file

web Root directory of web content (.html, .jpg, .JSP)

web/WEB-INF Web deployment information, such as web.xml
NAMING CONVENTIONS 551

D.5 DOCUMENTATION CONVENTIONS

29. Define a project <description>.
This is visible in the build file, but is also displayed when the –projecthelp switch
is used.

<project name="elements" default="default">
 <description>The Elements of Ant Style project</description>

 <target name="default"
 description="Public target"
 />

</project>

Running ant –projecthelp shows the description:

Buildfile: build.xml
The Elements of Ant Style project
Main targets:

 default Public target

Default target: default

30. Use comments liberally.
Be succinct and do not repeat what is already obvious from the build file elements.
There is no need to say <!-- compile the code --> followed by <javac>.

Here is an example of a block comment to separate sections visibly.

<!-- === -->
<!-- Datatype declarations -->
<!-- === -->
<path id="compile.classpath">
 <pathelement location="${lucene.jar}"/>
 <pathelement location="${jtidy.jar}"/>
</path>

31. Define a usage target.
If mostly new users use your build file, having the default target display some usage
information will help them get started.

<project name="MyProject" default="usage" basedir="..">
 <target name="usage">
 <echo message=" Execute 'ant -projecthelp' for build file help."/>
 <echo message=" Execute 'ant -help' for Ant help."/>
 </target>

(Submitted by Bobby Woolf, woolf@acm.org.)

You may, alternatively, want your default target to perform the primary build of the
project but still have a usage target that can be invoked if needed.
552 APPENDIX D THE ELEMENTS OF ANT STYLE

32. Use alias target names to provide intuitive entry points.
For example, you may want to have a usage target but users would also type ant
help and expect assistance. An alias is simply an empty target that depends on a
nonempty target.

<target name="help" depends="usage"/>

33. Include an all target that builds it all.
This may not be your default target though. This target should at least create all arti-
facts including documentation and distributable, but probably would not be respon-
sible for installation.

34. Give primary targets a description.
Targets with a description appear as Main targets in the –projecthelp output.
The description should be succinct and provide information beyond what the actual
target name implies.

<target name="gen-ejb"
 description="Generate EJB code from @tags"
 depends="init">
 <!-- ... -->
</target>

Higher level build process documentation or diagrams can be generated from a build
file using XSL transformations or other techniques. (Submitted by Greg Cosmo
Haun, GHaun@cenquest.com.) This is a rationale for keeping descriptions short.
Use XML comments for more detailed information if necessary.

D.6 PROGRAMMING CONVENTIONS

D.6.1 General

35. Copy resources from source path to classpath.
Metadata resources are often kept alongside source code, or in parallel directory trees,
to allow for customer customization or test data, for example. These files are typically
property files or XML files, such as resource bundles used for localization.

Tests may assume these files are available on the classpath. Copying these resource
files to the directory where source files are compiled allows them to be picked up auto-
matically during packaging and testing.

<copy todir="${test.classes.dir}">
 <fileset dir="${test.src.dir}" includes="**/*.properties"/>
</copy>
PROGRAMMING CONVENTIONS 553

D.6.2 Targets

36. Clean up after yourself.
Make sure that all artifacts generated during a build are removed with a clean tar-
get. You may also want a cleandist target such that the clean target only removes
the temporary build files but leaves the final distributable, and cleandist removes
everything including the generated distributable.

D.6.3 Properties

37. Use properties to name anything that could need overriding by the user or a parent
project.

Every output directory deserves a unique property name, suffixed by .dir. Other
items that make good candidates for properties are: configuration files, template files
used for code generation, distributable file names, application names, user names,
and passwords.

38. Use location for directory and file references.
This results in the full absolute path being resolved and used for the property value,
rather than just the string (likely relative path) value.

<property name="build.dir" location="build "/>

39. Handle creation and deletion of property-referenced directories individually.
Do not assume that hierarchically named properties refer to hierarchically structured
directories.

<project name="DirectoryExample" default="init">
 <property name="build.dir" location="build"/>
 <property name="build.classes.dir" location="${build.dir}/classes"/>

 <target name="init">
 <mkdir dir="${build.dir}"/>
 <mkdir dir="${build.classes.dir}"/>
 </target>

 <target name="clean">
 <delete dir="${build.dir}"/>
 <delete dir="${build.classes.dir}"/>
 </target>
</project>

The <mkdir> task will make multiple levels of directories if they do not exist, so if
only <mkdir dir="${build.classes.dir}"/> was used in the init target,
both the build and build/classes directories would be created. However, because prop-
erties are designed to be overridden you cannot assume that build.classes.dir
is physically under build.dir. A master build file may have forced the project to
build into a different set of directories.
554 APPENDIX D THE ELEMENTS OF ANT STYLE

40. Understand and utilize property rules.
Properties are immutable. This fact alone can be the source of frustration for those
seeking to implement variables, or the source of great flexibility when used properly.
A property sticks with its first value set, and all future attempts to change it are
ignored.

Load properties in the desired order of precedence. The needs of the project, devel-
opment team, and organization dictate the specific order required. Loading user-spe-
cific properties is a convention all projects should follow. The following code is an
example of typical property ordering:

<!-- Load environment variables -->
<property environment="env"/>

<property name="user.properties.file"
 location="${user.home}/.build.properties"
/>

<!-- Load the project specific settings -->
<property file="build.properties"/>

<!-- Load user specific settings -->
<property file="${user.properties.file}"/>

This fragment loads all environment variables as Ant properties first. The user-spe-
cific properties file is mapped to an Ant property so that its location can itself be over-
ridden, but it is not loaded until after the project-specific properties are loaded. This
allows a project to have more control over its settings than a user’s preference, if it is
needed.

41. Base hierarchically named directory properties from the parent directory property.
Don’t do this:

<property name="build.dir" location="build"/>
<property name="build.classes" location="build/classes"/>

Do this instead:

<property name="build.dir" location="build"/>
<property name="build.classes" location="${build.dir}/classes"/>

The difference becomes apparent when a user or master build wants to override
build.dir. In the first example, only build.dir is relocated to the overridden direc-
tory, but build.classes will remain under the base directory. In the second exam-
ple, overriding build.dir has the desired effect of moving all child directories too.

42. Achieve conditional logic with <property>.
New users to Ant often overlook this technique when searching for ways to achieve
conditional logic.
PROGRAMMING CONVENTIONS 555

Defaulting the build.number property to zero if it is not set in a properties file
takes advantage of property immutability.

<property file="build.properties"/>
<property name="build.number" value="0"/>

If build.number is loaded from build.properties, the second <property> task is
essentially ignored.

Setting properties differently depending on the server only requires a single build
file line.

<property file="${server.name}.properties"/>

The server.name property could be set at the command line, set from the envi-
ronment (with some indirection from <property name="server.name"
value="${env.COMPUTERNAME}"/>), or from a previously loaded properties
file.

43. Use prefix to uniquely identify similar property names.
Because of property immutability and name clash possibilities, the <property> task
allows prefixing all loaded properties.

To load two server configuration files with unique prefixes, use prefix.

<property file="server1.properties" prefix="server1"/>
<property file="server2.properties" prefix="server2"/>

Both files may have a server.name property, but they will be accessible as
server1.server.name and server2.server.name Ant properties.

D.6.4 Datatypes

44. Define reusable paths.
This eases build file maintenance. Adding a new dependency to the compile class-
path, in this example, automatically includes it in the test classpath.

<path id="compile.classpath">
 <pathelement location="${lucene.jar}"/>
 <pathelement location="${jtidy.jar}"/>
</path>

<path id="test.classpath">
 <path refid="compile.classpath"/>
 <pathelement location="${junit.jar}"/>
 <pathelement location="${build.classes.dir}"/>
 <pathelement location="${test.classes.dir}"/>
</path>
556 APPENDIX D THE ELEMENTS OF ANT STYLE

D.6.5 Classpath

This section deals with classpath issues within your build file.

45. Use explicit classpaths wherever possible.
Although some libraries must be in ANT_HOME/lib, keep the ones that are not
needed there in a separate location, and refer to them with Ant properties to allow for
overriding. Avoid, if possible, using filesets to pull *.jar into a path declaration, as
this makes the build file break if conflicting JAR files are added later.

<path id="task.classpath">
 <pathelement location="${build.dir}"/>
 <pathelement location="${antbook-common.jar}"/>
 <pathelement location="${lucene.jar}"/>
</path>

<java classname="org.example.antbook.tasks.Searcher"
 fork="true"
 classpathref="task.classpath">
 <arg file="${index.dir}"/>
 <arg value="${query}"/>
</java>

46. Turn off includeAntRuntime on <javac>.
By default, includeAntRuntime is true. There is no need for it to be in the class-
path unless you are building custom Ant tasks. Even then, it is not necessary because
you can include ${ant.home}/lib/ant.jar in the classpath manually.

47. Use the refid <property> variant for string representation of a path.
This can be useful for debugging purposes, or especially handy when invoking Java
programs with <apply>.

This example invokes JavaNCSS on a set of source files, producing an XML output file.

<path id="ncss.classpath">
 <fileset dir="${ncss.lib.dir}" includes="**/*.jar" />
</path>

<target name="ncss" depends="compile">
 <property name="cp" refid="ncss.classpath" />
 <apply executable="java"
 parallel="true"
 dir="${src.dir}"
 output="${build.dir}/${ant.project.name}-ncss.xml">
 <arg line="-cp %classpath%;${cp}" />
 <arg value="javancss.Main" />
 <arg line="-package -xml" />
 <fileset dir="${src.dir}" includes="**/*.java" />
 </apply>

(Submitted by Paul Holser, Paul_Holser@Landsafe.Com.)
PROGRAMMING CONVENTIONS 557

D.6.6 Testing

48. Write tests first!
While not directly related to Ant, we find this step important enough to say whenever
we can. Corollary: if you can’t do them first, at least do them second.

49. Standardize test case names.
Name test cases *Test.java. In the <junit> task use <fileset dir=
"${test.dir}" includes="**/*Test.class"/>. The only files named *Test.
java are test cases that can be run with JUnit. Name helper classes something else.

Another useful convention is to name base, typically abstract, test cases
*TestCase.

50. Provide visual and XML test results.
Use <formatter type="brief" usefile="false"/> and <formatter type=
"xml"/>. The brief formatter, without using a file, allows for immediate visual
inspection of a build indicating what caused the failure. The XML formatter allows
for reporting using <junitreport>.

51. Incorporate the single test case trick.
The nested <test> and <batchtest> elements of <junit> allow for if/un-
less conditions. This facilitates a single test case to be run when desired, or all tests
by default.

<junit printsummary="no"
 errorProperty="test.failed"
 failureProperty="test.failed"
 fork="${junit.fork}">
 <classpath refid="test.classpath"/>

 <test name="${testcase}" if="testcase"/>
 <batchtest todir="${test.data.dir}" unless="testcase">
 <fileset dir="${test.classes.dir}"
 includes="**/*Test.class"
 />
 </batchtest>
</junit>

During development, a single test case can be isolated and run from the command
line:

ant –Dtestcase=org.example.antbook.TroublesomeTest

52. Fail builds when tests fail.
By default, the <junit> task does not halt a build when failures occur. If no report-
ing is desired, enable haltonfailure and haltonerror. However, reporting of
test cases is often desired. To accomplish reporting of test failures and failing the
build together, borrow this example:
558 APPENDIX D THE ELEMENTS OF ANT STYLE

<junit printsummary="no"
 errorProperty="test.failed"
 failureProperty="test.failed"
 fork="${junit.fork}">
 <!-- ... -->
</junit>

<junitreport todir="${test.data.dir}">
 <fileset dir="${test.data.dir}">
 <include name="TEST-*.xml"/>
 </fileset>
 <report format="frames" todir="${test.reports.dir}"/>
</junitreport>

<fail if="test.failed">
 Unit tests failed. Check log or reports for details
</fail>

When tests fail, the property test.failed is set, yet processing continues.
The conditional <fail> stops the build after Ant has generated the reports.

53. Code test cases that need data to adapt.
Place test data files alongside test cases, copy the files to the test classpath during the
build, and access them using Class.getResource. Read test configuration infor-
mation from system properties, and set them from Ant. Both of these techniques are
illustrated in this example.

<copy todir="${test.classes.dir}">
 <fileset dir="${test.src.dir}" excludes="**/*.java"/>
</copy>
<junit printsummary="no"
 errorProperty="test.failed"
 failureProperty="test.failed"
 fork="${junit.fork}">
 <classpath refid="test.classpath"/>
 <sysproperty key="docs.dir" value="${test.classes.dir}"/>
 <!-- ... -->
</junit>

System.getProperty is used to retrieve the value of docs.dir. Our tests can be
controlled easily and values adjusted through Ant properties.

D.6.7 Cross-platform issues

54. Launch even native scripts in a cross-platform manner.
Disabling the vmlauncher setting of <exec> executes through Ant’s launcher
scripts in ANT_HOME/bin.

<exec executable="script" vmlauncher="false" />

This will launch script on Unix and script.bat on Windows OSs.
PROGRAMMING CONVENTIONS 559

This assumes the Unix script version does not have a suffix and the Windows ver-
sion has a supported suffix as defined in the PATHEXT environment variable. This
works because setting the vmlauncher attribute to false causes the command to be
executed through cmd.exe on Windows NT/2000/XP, antRun.bat on Windows 9x,
and antRun on Unix. Otherwise, with JVMs 1.3 and above, the command is executed
directly, bypassing any shell or command interpreter. (Submitted by Bill Burton,
billb@progress.com.)

D.6.8 Debugging

55. Log important information at the appropriate level.
The <echo> task has an optional level attribute. Use it to provide information at ver-
bose and debug levels.

<echo level="verbose">Seen with -verbose</echo>
<echo level="debug">Seen with –debug</echo>

Adding diagnostic output at the debug level can help troubleshoot errant property
values, yet the output will not be seen during normal builds. Run ant –debug to see
such output.

56. Add a debug target.
Adding a debug target with no dependencies with an <echoproperties> can
shed light on possible misconfiguration.

<target name="debug">
 <echoproperties/>
</target>

Because properties can be defined inside targets, simply running ant debug will not
necessarily display them all. Running two targets from a single command line execu-
tion will, since properties retain their values across target invocations. For example, if
the init target sets properties, running ant init debug will display the properties
set by init.

57. Increase Ant’s verbosity level.
By default, messages displayed to the console during Ant builds are only a fraction of
the messages generated by the Ant engine and tasks. To see all logged output, use the
–debug switch:

ant –debug

The –debug switch generates an enormous amount of output. A good compromise
is the –verbose switch, which outputs more than the default informational level of
output, but less than the debugging output.
560 APPENDIX D THE ELEMENTS OF ANT STYLE

A P P E N D I X E

Ant task reference
Ant’s distribution ships with extensive documentation in HTML format, including
details for every task. Why then, do we include a task reference in this book? We felt
readers would benefit from a quick reference they could consult while reading the
book, or flip through while away from their computers, or as a quick reference to the
valid attributes and elements of a task.

We didn’t want to rewrite the documentation, as it would have taken a lot of effort
for little real benefit. At the same time, we didn’t want to include the current docu-
mentation as it is too detailed for a quick reference, yet not guaranteed to be accurate.
Because Ant’s current task documentation is decoupled from the source of the tasks,
it is out of sync with the tasks in some places.

To address these needs, we created an automated process to analyze Ant’s source
code and extract task details directly. This process used XDoclet’s custom capabilities,
allowing generation of an XML file for each task. These XML files contain informa-
tion such as task description and all supported attribute and element names, types, and
descriptions.1 We expect the future releases of Ant to adopt this process, improving
the online documentation accordingly.

1 The XDoclet work included a custom subtask, tag handler, and template. The process was simple from
that point forward. The XML files were merged using <concat> and transformed into HTML using
<xslt>. The code for this autogeneration exists within Ant’s source code repository.
561

Here then is a quick guide to all the tasks, automatically generated
from the source itself. It lists all tasks in Ant 1.5 and their nested elements
and attributes. We have omitted any examples, or any details, on the
nested elements. For these we refer you to the online documentation,
and, of course, the many chapters in our book.

E.1 REFERENCE CONVENTIONS

Tasks are listed in the following format:

<task-name> Brief description of task.

Attributes are listed first, alphabetically, followed by subelements, which
are also listed alphabetically. Subelements have angle brackets (< >)
around them.

All attributes have a type provided. Element types are only provided
for common datatypes. Consult Ant’s documentation for specific infor-
mation on elements when a type is not noted. Boolean attributes are con-
sidered true when their values equal on, yes, or true. Any other value
is considered false. Path attributes accept platform-independent paths,
using either colon (:) or semi-colon (;) as separators and either forward
(/) or back slashes (\) as directory separators.

Several tasks are based on a parent MatchingTask. MatchingTasks
support a number of additional attributes and subelements, and are
denoted by an asterisk (*).

E.2 COMMON TASK ATTRIBUTES

All tasks support three common attributes.

attribute Attribute description. [Attribute type]

<subelement> Subelement description. [Element type]

id A unique task instance identifier, which can, for example, be used to
refer to the task from <script>. [String]

taskname An alias for the task; useful for logging purposes, as this name is
provided instead. [String]

description A field useful for commenting purposes, although it is not used or
displayed by Ant. [String]
562 APPENDIX E ANT TASK REFERENCE

E.2.1 * MatchingTask

Tasks denoted with the asterisk (*) also support the follow attributes and
subelements. These tasks operate on an implicit fileset, and typically
have an attribute representing the base directory of the fileset.

casesensitive Case sensitivity of the file system. [Boolean]

defaultexcludes If false, turns off the default exclusions. [Boolean]

excludes Comma- or space-separated list of patterns of files that must
be excluded. [String]

excludesfile The name of a file; each line of this file is taken to be an exclude
pattern. [File]

followsymlinks Indicates whether symbolic links should be followed. [Boolean]

includes Comma- or space-separated list of patterns of files to include.
[String]

includesfile The name of a file; each line of this file is taken to be an include
pattern. [File]

<and> Selects files that are selected by all of the selectors it contains.
[Selector]

<contains> Limits the files selected to only those that contain a specific
string. [Selector]

<custom> Adds a custom selector. [Selector]

<date> Selects files based on last modification timestamp. [Selector]

<depend> Selects files whose last modified date is later than another file.
[Selector]

<depth> Selects files based on how many directory levels deep they are
in relation to the base directory. [Selector]

<exclude> Adds a single pattern to the excludes list.

<excludesfile> Adds patterns contained in a file to the excludes list.

<filename> Functions similarly to the <include> and <exclude>
elements. [Selector]

<include> Adds a single pattern to the includes list.

<includesfile> Adds patterns contained in a file to the includes list.

<majority> Selects files provided that a majority of the contained selectors
also select it. [Selector]

<none> Selects files that are not selected by any of the selectors it
contains. [Selector]

<not> Reverses the meaning of the single selector it contains. [Selector]

<or> Selects files that are selected by any one of the elements it
contains. [Selector]

<patternset> Adds a patternset. [Patternset]

<present> Selects files that have an equivalent file in another directory tree.
[Selector]

<selector> Adds selector through a reference. [Selector]

<size> Limits files selected by size. [Selector]
COMMON TASK ATTRIBUTES 563

E.3 ANT’S TASKS

<ant> Builds a subproject.

<antcall> Calls another target in the same project.

<antlr> Invokes the ANTLR Translator generator on a grammar file.

antfile The build file to use. [String]

dir The directory to use as a base directory for the new Ant
project. [File]

inheritall If true, pass all properties to the new Ant project; default
true. [Boolean]

inheritrefs If true, pass all references to the new Ant project; default
false. [Boolean]

output File name to write the output to. [String]

target The target of the new Ant project to execute. [String]

<property> Property to pass to the new project. [See <property>]

<reference> Reference element identifying a data type to carry over
to the new project.

inheritall If true, pass all properties to the new Ant project; default
true. [Boolean]

inheritrefs If true, pass all references to the new Ant project; default
false. [Boolean]

target Target to execute, required. [String]

<param> Property to pass to the invoked target. [See <property>]

<reference> Reference element identifying a data type to carry over to
the invoked target.

debug Enables ParseView debugging. [Boolean]

diagnostic Flag to emit diagnostic text. [Boolean]

dir The working directory of the process. [File]

glib Sets an optional super grammar file. [String]

html If true, emits HTML. [Boolean]

outputdirectory The directory to write the generated files to. [File]

target The grammar file to process. [File]

trace If true, enables all tracing. [Boolean]

tracelexer If true, enables lexer tracing. [Boolean]

traceparser If true, enables parser tracing. [Boolean]

tracetreewalker Flag to allow the user to enable tree-walker tracing. [Boolean]

<classpath> Adds a classpath to be set because a directory might be given
for ANTLR debug. [Path]

<jvmarg> Adds a new JVM argument.
564 APPENDIX E ANT TASK REFERENCE

<antstructure> Creates a partial DTD for Ant from the currently known tasks.

<apply> Executes a given command, supplying a set of files as arguments.

<available> Sets the given property if the requested resource is available at run time.

output The output file. [File]

append Sets whether output should be appended or an existing
file overwritten. [Boolean]

dest The directory where target files are to be placed. [File]

dir The working directory of the process. [File]

executable The command to execute. [String]

failifexecutionfails Stop the build if program cannot be started. [Boolean]

failonerror Fail if the command exits with a non-zero return code.
[Boolean]

newenvironment Do not propagate old environment when new environment
variables are specified. [Boolean]

os List of operating systems on which the command may be
executed. [String]

output File the output of the process is redirected to. [File]

outputproperty Property name whose value should be set to the output of
the process. [String]

parallel If true, run the command only once, appending all files as
arguments. [Boolean]

relative Sets whether the file names should be passed on the
command line as absolute or relative pathnames. [Boolean]

resultproperty The name of a property in which the return code of the
command should be stored. [String]

skipemptyfilesets If no source files have been found or are newer than their
corresponding target files, do not run the command.
[Boolean]

type Type of file to operate on. [file, dir, both]

vmlauncher If true, launch new process with VM, otherwise use the
OS’s shell. [Boolean]

<arg> Adds a command-line argument.

<env> Adds an environment variable to the launched process.

<fileset> Source files to operate upon. [Fileset]

<mapper> Adds mapping of source files to target files. [Mapper]

<srcfile> Marker that indicates where the name of the source file
should be put on the command line.

<targetfile> Marker that indicates where the name of the target file
should be put on the command line.

classname Classname of a class which must be available to set the
given property. [String]

classpath Classpath to be used when searching for classes and
resources. [Path]

classpathref Classpath by reference. [Reference]
ANT’S TASKS 565

<basename> Sets a property to the base name of a specified file, optionally minus a suffix.

<blgenclient> Generates a Borland Application Server 4.5 client JAR using as input the
EJB JAR file.

<buildnumber> Reads, increments, and writes a build number in a file.

<bunzip2> Expands a file that has been compressed with the BZIP2 algorithm.

file File which must be present in the file system to set the
given property. [File]

filepath Path to use when looking for a file. [Path]

ignoresystemclasses Sets whether the search for classes should ignore the run-
time classes and just use the given classpath. [Boolean]

property Name of the property that will be set if the particular
resource is available. [String]

resource Name of a Java resource which is required to set the
property. [String]

type Sets what type of file is required. [file, dir]

value Value given to the property if the desired resource is
available. [String]

<classpath> Classpath to be used when searching for classes and
resources. [Path]

<filepath> Path to search for file resources. [Path]

file File or directory to get base name from. [File]

property Property to set base name to. [String]

suffix Optional suffix to remove from base name. [String]

classpath Path to use for classpath. [Path]

classpathref Reference to existing path, to use as a classpath.
[Reference]

clientjar Client JAR file name. [File]

debug If true, turn on the debug mode for each of the Borland
tools launched. [Boolean]

ejbjar EJB JAR file. [File]

mode Command launching mode: java or fork. [String]

version No description. [Integer]

<classpath> Adds path to the classpath. [Path]

file The file in which the build number is stored. [File]

dest The destination file or directory; optional. [File]

src The file to expand; required. [File]
566 APPENDIX E ANT TASK REFERENCE

<bzip2> Compresses a file with the BZIP2 algorithm.

<cab>* Creates a CAB archive.

<cccheckin> Checks in files with ClearCase.

<cccheckout> Checks out files in ClearCase.

src The file to compress; required. [File]

zipfile The required destination file. [File]

basedir Base directory to look in for files to CAB. [File]

cabfile The name/location of where to create the .cab file. [File]

compress If true, compress the files; otherwise only store them. [Boolean]

options Sets additional cabarc options that are not supported directly.
[String]

verbose If true, display cabarc output. [Boolean]

<fileset> Adds a set of files to archive. [Fileset]

cleartooldir Directory where the cleartool executable is located. [String]

comment Comment string. [String]

commentfile Specifies a file containing a comment. [String]

identical If true, allows the file to be checked in even if it is identical to
the original. [Boolean]

keepcopy If true, keeps a copy of the file with a .keep extension. [Boolean]

nowarn If true, suppresses warning messages. [Boolean]

preservetime If true, preserves the modification time. [Boolean]

viewpath Path to the item in a ClearCase view to operate on. [String]

branch Specifies a branch to check out the file to. [String]

cleartooldir Directory where the cleartool executable is located. [String]

comment Comment string. [String]

commentfile Specifies a file containing a comment. [String]

nodata If true, checks out the file but does not create an editable
file containing its data. [Boolean]

nowarn If true, suppresses warning messages. [Boolean]

out Creates a writable file under a different file name. [String]

reserved If true, checks out the file as reserved. [Boolean]

version If true, allows checkout of a version other than the latest.
[Boolean]

viewpath Path to the item in a ClearCase view to operate on. [String]
ANT’S TASKS 567

<ccmcheckin> Performs a Continuus checkin command.

<ccmcheckintask> Performs a Continuus checkin default task command.

<ccmcheckout> Performs a Continuus checkout command.

<ccmcreatetask> Creates new Continuus <ccm> task and sets it as the default.

<ccmreconfigure> Reconfigures a Continuus project, optionally recursively.

<ccuncheckout> Performs a ClearCase Uncheckout command.

ccmdir Directory where the ccm executable is located. [String]

comment Specifies a comment. [String]

file Path to the file that the command will operate on. [File]

task Specifies the task number used to check in the file
(may use default). [String]

ccmdir Directory where the ccm executable is located. [String]

comment Specifies a comment. [String]

file Path to the file that the command will operate on. [File]

task Specifies the task number used to check in the file
(may use default). [String]

ccmdir Directory where the ccm executable is located. [String]

comment Specifies a comment. [String]

file Path to the file that the command will operate on. [File]

task Specifies the task number used to check out the file
(may use default). [String]

ccmdir Directory where the ccm executable is located. [String]

comment Specifies a comment. [String]

platform Specifies the target platform. [String]

release Specifies the ccm release. [String]

resolver Specifies the resolver. [String]

subsystem Specifies the subsystem. [String]

task Specifies the task number used (may use default). [String]

ccmdir Directory where the ccm executable is located. [String]

ccmproject ccm project on which the operation is applied. [String]

recurse If true, recurse on subproject (default false). [Boolean]

verbose If true, do a verbose reconfigure operation (default false).
[Boolean]

cleartooldir Directory where the cleartool executable is located. [String]

keepcopy If true, keep a copy of the file with a .keep extension. [Boolean]

viewpath Path to the item in a ClearCase view to operate on. [String]
568 APPENDIX E ANT TASK REFERENCE

<ccupdate> Performs a ClearCase Update command.

<checksum>* Creates or verifies file checksums.

<chmod> Chmod equivalent for Unix-like environments. Some of the attributes
are an artifact of the task’s implementation as a subclass of <exec>.

cleartooldir Directory where the cleartool executable is located. [String]

currenttime If true, modification time should be written as the current time.
[Boolean]

graphical If true, displays a graphical dialog during the update. [Boolean]

log Log file where cleartool records the status of the
command. [String]

overwrite If true, overwrites hijacked files. [Boolean]

preservetime If true, modification time should be preserved from the VOB
time. [Boolean]

rename If true, hijacked files are renamed with a .keep extension.
[Boolean]

viewpath Path to the item in a ClearCase view to operate on. [String]

algorithm Specifies the algorithm to be used to compute the
checksum. [String]

file File for which the checksum is to be calculated. [File]

fileext File extension that is be to used to create or identify
destination file. [String]

forceoverwrite Indicates whether to overwrite existing file, irrespective of
whether it is newer than the source file. [Boolean]

property Property to hold the generated checksum. [String]

provider MessageDigest algorithm provider to be used to calculate
the checksum. [String]

readbuffersize The size of the read buffer to use. [Integer]

verifyproperty Verify property. [String]

<fileset> Files to generate checksums for. [Fileset]

append Indicates whether output should be appended to or
overwrite an existing file. [Boolean]

defaultexcludes Sets whether default exclusions should be used. [Boolean]

dest The directory where target files are to be placed. [File]

dir The directory that holds the files whose permissions must
be changed. [File]

excludes Set of exclude patterns. [String]

executable The command to execute. [String]

failifexecutionfails Stops the build if program cannot be started. [Boolean]

failonerror Fail if the command exits with a nonzero return code.
[Boolean]

file The file or single directory for which the permissions must
be changed. [File]

includes Set of include patterns. [String]
ANT’S TASKS 569

<concat> Concatenates a series of files into a single file. This task supports nested
text, which is appended to the end if specified.

<condition> Task to conditionally set a property.

newenvironment Do not propagate old environment when new
environment variables are specified. [Boolean]

os List of operating systems on which the command
may be executed. [String]

output File the output of the process is redirected to. [File]

outputproperty Property name whose value should be set to the output
of the process. [String]

parallel If true, runs the command only once, appending all files
as arguments. [Boolean]

perm The new permissions. [String]

relative Indicates whether the file names should be passed on the
command line as absolute or relative pathnames.
[Boolean]

resultproperty The name of a property in which the return code of the
command should be stored. [String]

skipemptyfilesets If no source files have been found or are newer than
their corresponding target files, do not run the command.
[Boolean]

type Type of file to operate on [file, dir, both].

vmlauncher If true, launches new process with VM, otherwise uses
the OS’s shell. [Boolean]

<arg> Adds a command-line argument.

<env> Adds an environment variable to the launched process.

<exclude> Adds a name entry on the exclude list.

<fileset> Source files to operate upon. [Fileset]

<include> Adds a name entry on the include list.

<mapper> Adds mapping of source files to target files. [Mapper]

<patternset> Adds a set of patterns. [Patternset]

<srcfile> Indicates where the name of the source file should be put
on the command line.

<targetfile> Indicates where the name of the target file should be put
on the command line.

append Behavior when the destination file exists. [Boolean]

destfile Destination file, or uses the console if not specified. [File]

encoding Encoding for the input files, used when displaying the data
via the console. [String]

<filelist> List of files to concatenate. [Filelist]

<fileset> Set of files to concatenate. [Fileset]

property The name of the property to set. [String]

value The value for the property to set, if condition evaluates to true.
[String]
570 APPENDIX E ANT TASK REFERENCE

<copy> Copies a file or directory to a new file or directory.

<csc>* Compiles C# source into executables or modules.

<and> True if all nested conditions evaluate to true.

<available> Identical to the <available> task.

<checksum> Identical to the <checksum> task.

<contains> Tests whether one string contains another.

<equals> Tests whether two strings are equal.

<filesmatch> Tests that two files match, byte for byte.

<http> Checks for a valid response from a web server of a
specified URL.

<isfalse> Tests whether a string value is not <istrue>.

<isset> Tests whether a property has been set.

<istrue> Tests whether a string evaluates to true, on, or yes.

<not> Negates results of single nested condition.

<or> True if one nested condition is true.

<os> Tests whether the current operating system is of a given type.

<socket> Checks for the existence of a TCP/IP listener at the specified
host and port.

<uptodate> Identical to the <uptodate> task.

encoding Character encoding. [String]

failonerror If false, notes errors to the output but keeps going.
[Boolean]

file Single source file to copy. [File]

filtering If true, enables filtering. [Boolean]

flatten When copying directory trees, the files can be flattened
into a single directory. [Boolean]

includeemptydirs Used to copy empty directories. [Boolean]

overwrite Overwrites any existing destination file(s). [Boolean]

preservelastmodified Gives the copied files the same last modified time as the
original files. [Boolean]

todir Destination directory. [File]

tofile Destination file. [File]

verbose Used to force listing of all names of copied files. [Boolean]

<fileset> Adds a set of files to copy. [Fileset]

<filterchain> Adds a FilterChain. [FilterChain]

<filterset> Adds a filterset. [Filterset]

<mapper> Defines the mapper to map source to destination files.
[Mapper]

additionalmodulesSemicolon-separated list of modules to refer to. [String]

debug Debug flag on or off. [Boolean]

definitions Semicolon-separated list of defined constants. [String]

destdir Destination directory of files to be compiled. [File]
ANT’S TASKS 571

<cvs> Performs operations on a CVS repository.

destfile Name of exe/library to create. [File]

docfile File for generated XML documentation. [File]

extraoptions Any extra options that are not explicitly supported by this task.
[String]

failonerror If true, fails on compilation errors. [Boolean]

filealign File alignment. [Integer]

fullpaths If true, prints the full path of files on errors. [Boolean]

includedefault-
references

If true, automatically includes the common .NET assemblies,
and tells the compiler to link in mscore.dll. [Boolean]

incremental Incremental compilation flag on or off. [Boolean]

mainclass Name of main class for executables. [String]

noconfig Do not read in the compiler settings files csc.rsp. [Boolean]

optimize If true, enables optimization flag. [Boolean]

outputfile Output file. [File]

referencefiles Path of references to include. [Path]

references Semicolon-separated list of DLLs to refer to. [String]

srcdir Source directory of the files to be compiled. [File]

targettype Type of target. [String]

unsafe If true, enables the unsafe keyword. [Boolean]

utf8output If true, requires all compiler output to be in UTF8 format.
[Boolean]

warnlevel Level of warning currently between 1 and 4 with 4 being
the strictest. [Integer]

win32icon File name of icon to include. [File]

win32res File name of a Win32 resource (.RES) file to include. [File]

append Indicates whether to append output when redirecting to a file.
[Boolean]

command The CVS command to execute. [String]

compression If true, this is the same as compressionlevel="3".
[Boolean]

compressionlevel If set to a value 1–9 it adds -zN to the cvs command line, else
it disables compression. [Integer]

cvsroot The CVSROOT variable. [String]

cvsrsh The CVS_RSH variable. [String]

date Use the most recent revision, no later than the given date.
[String]

dest The directory where the checked-out files should be placed.
[File]

error The file to direct standard error from the command. [File]

failonerror Stop the build process if the command exits with a return code
other than 0. [Boolean]

noexec If true, report only and do not change any files. [Boolean]

output The file to direct standard output from the command. [File]

package The package/module to operate upon. [String]
572 APPENDIX E ANT TASK REFERENCE

<cvschangelog> Examines the output of CVS log data and groups related changes together.

<cvspass> Adds a new entry to a CVS password file.

<cvstagdiff> Examines the output of cvs diff between two tags.

passfile Password file to read passwords from. [File]

port Port used by CVS to communicate with the server. [Integer]

quiet If true, suppress informational messages. [Boolean]

tag The tag of the package/module to operate upon. [String]

<commandline> Adds direct command line to execute.

daysinpast Number of days worth of log entries to process. [Integer]

destfile Output file for the log. [File]

dir Base directory for CVS. [File]

end Date at which the changelog should stop. [Date]

start Date at which the changelog should start. [Date]

usersfile Lookup list of user names & addresses. [File]

<fileset> Adds a set of files about which cvs logs will be generated. [Fileset]

<user> Adds a user to list changelog knows about.

cvsroot The CVS repository to add an entry for. [String]

passfile Password file to add the entry to. [File]

password Password to be added to the password file. [String]

compression If true, this is the same as compressionlevel="3".
[Boolean]

compressionlevel If set to a value 1–9, it adds -zN to the cvs command line,
else it disables compression. [Integer]

cvsroot The CVSROOT variable. [String]

cvsrsh The CVS_RSH variable. [String]

destfile Output file for the diff. [File]

enddate End date. [String]

endtag End tag. [String]

failonerror Stop the build process if the command exits with a return code
other than 0. [Boolean]

package The package/module to analyze. [String]

passfile Password file to read passwords from. [File]

port Port used by CVS to communicate with the server. [Integer]

quiet If true, suppress informational messages. [Boolean]

startdate Start date. [String]

starttag Start tag. [String]
ANT’S TASKS 573

<ddcreator>* Builds a serialized deployment descriptor given a text file description of
the descriptor in the format supported by WebLogic.

<delete>* Deletes a file or directory, or set of files defined by a fileset.

<depend>* Generates a dependency file for a given set of classes.

classpath Classpath to be used for this compilation. [String]

descriptors Directory from where the text descriptions of the
deployment descriptors are to be read. [String]

dest Directory into which the serialized deployment
descriptors are written. [String]

defaultexcludes Sets whether default exclusions should be used. [Boolean]

dir Directory from which files are to be deleted. [File]

excludes Set of exclude patterns. [String]

excludesfile Name of the file containing the excludes patterns. [File]

failonerror If false, notes errors but continues. [Boolean]

file Name of a single file to be removed. [File]

includeemptydirs If true, deletes empty directories. [Boolean]

includes Set of include patterns. [String]

includesfile Name of the file containing the include patterns. [File]

quiet If true, and the file does not exist, does not display a
diagnostic message or modify the exit status to reflect an
error. [Boolean]

verbose If true, lists all names of deleted files. [Boolean]

<exclude> Adds a name entry on the exclude list.

<excludesfile> Adds a name entry on the exclude files list.

<fileset> Adds a set of files to be deleted. [Fileset]

<include> Adds a name entry on the include list.

<includesfile> Adds a name entry on the include files list.

<patternset> Adds a set of patterns. [Patternset]

cache Dependency cache file. [File]

classpath Classpath to be used for this dependency check. [Path]

classpathref Adds a reference to a classpath defined elsewhere.
[Reference]

closure If true, transitive dependencies are followed until the closure
of the dependency set if reached. [Boolean]

destdir Destination directory where the compiled Java files exist.
[Path]

dump If true, the dependency information will be written to the
debug level log. [Boolean]

srcdir Directories path to find the Java source files. [Path]

<classpath> Adds a classpath to be used for this dependency check. [Path]
574 APPENDIX E ANT TASK REFERENCE

<dependset>* Examines and removes out-of-date target files.

<dirname> Determines the directory name of the specified file.

<ear>* Creates an EAR archive.

<echo> Writes a message to the Ant logging facilities. A message may be supplied
as nested text to this task.

<srcfilelist> Adds a list of source files. [Filelist]

<srcfileset> Adds a set of source files. [Fileset]

<targetfilelist> Adds a list of target files. [Filelist]

<targetfileset> Adds a set of target files. [Fileset]

file Path to take the dirname of. [File]

property The name of the property to set. [String]

appxml File to incorporate as application.xml. [File]

basedir Directory from which to archive files; optional. [File]

compress Indicates whether to compress the files or only store them;
optional, default=true;. [Boolean]

destfile The file to create; required. [File]

duplicate Sets behavior for when a duplicate file is about to be added.
[add, preserve, fail]

encoding Encoding to use for file names, defaults to the platform’s
default encoding. [String]

filesonly If true, emulates Sun’s JAR utility by not adding parent
directories; optional, defaults to false. [Boolean]

index Indicates whether to create an index list for classes. [Boolean]

manifest The manifest file to use. [File]

update If true, updates an existing file, otherwise overwrites any
existing one; optional, defaults to false. [Boolean]

whenempty Behavior of the task when no files match.
[fail, skip, create]

<archives> Adds zipfileset. [ZipFileset]

<fileset> Adds a set of files. [Fileset]

<manifest> Allows the manifest for the archive file to be provided inline in
the build file rather than in an external file.

<metainf> Adds a zipfileset to include in the META-INF directory.
[ZipFileset]

<zipfileset> Adds a set of files that can be read from an archive and given
a prefix/fullpath. [ZipFileset]

<zipgroupfileset> Adds a group of Zip files. [Fileset]

append If true, append to existing file. [Boolean]

file File to write to. [File]

level Logging level. [error, warning, info, verbose, debug]

message Message to write. [String]
ANT’S TASKS 575

<echoproperties> Displays all the current properties in the build.

<ejbc>* Builds EJB support classes using WebLogic’s ejbc tool from a directory
containing a set of deployment descriptors.

<ejbjar>* Provides automated EJB JAR file creation.

destfile File to store the property output. [File]

failonerror If true, the task will fail if an error occurs while writing the
properties file, otherwise errors are just logged. [Boolean]

prefix If the prefix is set, then only properties that start with this
prefix string will be recorded. [String]

classpath Classpath to be used for this compilation. [String]

descriptors Directory from where the serialized deployment descriptors
are to be read. [String]

dest Directory into which the support classes, RMI stubs, etc.
are to be written. [String]

keepgenerated If true, ejbc will keep the intermediate Java files used to
build the class files. [String]

manifest Name of the generated manifest file. [String]

src Directory containing the source code for the home interface,
remote interface, and public key class definitions. [String]

basejarname Base name of the EJB JAR that is to be created if it is not to
be determined from the name of the deployment descriptor
files. [String]

basenameterminator The string that terminates the base name. [String]

classpath Classpath to use when resolving classes for inclusion in the
JAR. [Path]

dependency Analyzer to use when adding in dependencies to the JAR.
[String]

descriptordir Descriptor directory. [File]

destdir Destination directory. [File]

flatdestdir Controls whether the destination JARs are written out in the
destination directory with the same hierarchical structure from
which the deployment descriptors have been read. [Boolean]

genericjarsuffix Suffix for the generated JAR file. [String]

manifest Manifest file to use in the JAR. [File]

naming Naming scheme used to determine the name of the
generated JARs from the deployment descriptor. [ejb-name,
directory, descriptor, basejarname]

srcdir Source directory, which is the directory that contains the
classes that will be added to the EJB JAR. [File]

<borland> Adds a deployment tool for Borland server.

<classpath> Adds to the classpath used to locate the super classes and
interfaces of the classes that will make up the EJB JAR. [Path]

<dtd> Creates a DTD location record.

<iplanet> Adds a deployment tool for iPlanet Application Server.
576 APPENDIX E ANT TASK REFERENCE

<exec> Executes a given command if the OS platform is appropriate.

<fail> Exits the active build, giving an additional message if available. The mes-
sage may be specified as nested text, or with the message attribute.

<filter> Sets a token filter that is used by the file copy tasks to do token substitution.

<jboss> Adds a deployment tool for JBoss server.

<jonas> Adds a deployment tool for JOnAS server.

<support> Adds a fileset for support elements. [Fileset]

<weblogic> Adds a deployment tool for WebLogic server.

<weblogictoplink> Adds a deployment tool for WebLogic when using the
Toplink Object-Relational mapping.

<websphere> Adds a deployment tool for Websphere 4.0 server.

append Sets whether output should be appended to or overwrite an
existing file. [Boolean]

dir The working directory of the process. [File]

executable The command to execute. [String]

failifexecution-
fails

Stop the build if program cannot be found or started;
default true. [Boolean]

failonerror Fail if the command exits with a nonzero return code.
[Boolean]

newenvironment Do not propagate old environment when new environment
variables are specified. [Boolean]

os List of operating systems on which the command may be
executed. [String]

output File the output of the process is redirected to. [File]

outputproperty Property name whose value should be set to the output
of the process. [String]

resultproperty The name of a property in which the return code of the
command should be stored. [String]

vmlauncher If true, launch new process with VM, otherwise use the OS’s
shell. [Boolean]

<arg> Adds a command-line argument.

<env> Adds an environment variable to the launched process.

if Only fail if a property of the given name exists in the current
project. [String]

message A message giving further information on why the build exited.
[String]

unless Only fail if a property of the given name does not exist in the
current project. [String]

filtersfile The file from which the filters must be read. [File]

token The token string without @ delimiters. [String]

value The string that should replace the token during filtered copies.
[String]
ANT’S TASKS 577

<fixcrlf>* Converts text source files to local OS formatting conventions, as well as
repair text files damaged by misconfigured or misguided editors or file
transfer programs.

<ftp> Uploads or downloads files using FTP.

destdir Destination where the fixed files should be placed. [File]

encoding Specifies the encoding Ant expects the files to be in.
Defaults to the platform’s default encoding. [String]

eof Specifies how DOS EOF (control-z) characters are to be
handled. [add, asis, remove]

eol Specifies how EndOfLine characters are to be handled.
[asis, cr, lf, crlf]

javafiles Sets to true if modifying Java source files. [Boolean]

srcdir Source dir to find the source text files. [File]

tab Specifies how tab characters are to be handled.
[add, asis, remove]

tablength Specifies tab length in characters. [Integer]

action FTP action to be taken. [send, put, recv, get, del,
delete, list, mkdir, chmod]

binary If true, uses binary mode, otherwise text mode; default is
true. [Boolean]

chmod File permission mode (Unix only) for files sent to the server.
[String]

depends Sets to true to transmit only files that are new or changed
from their remote counterparts. [Boolean]

ignorenon-
criticalerrors

If true, skip errors on directory creation. [Boolean]

listing The output file for the list action. [File]

newer A synonym for depends. [Boolean]

passive Specifies whether to use passive mode. [Boolean]

password Login password for the given user ID. [String]

port FTP port used by the remote server. [Integer]

remotedir Remote directory where files will be placed. [String]

separator Remote file separator character. [String]

server FTP server to send files to. [String]

skipfailed-
transfers

If true, enables unsuccessful file put, deletes, and gets
operations to be skipped with a warning and transfers the
remainder of the files. [Boolean]

umask Default mask for file creation on a Unix server. [String]

userid Login user ID to use on the specified server. [String]

verbose Set to true to receive notification about each file as it is
transferred. [Boolean]

<fileset> A set of files to upload or download. [Fileset]
578 APPENDIX E ANT TASK REFERENCE

<genkey> Generates a key in a keystore.

<get> Gets a particular file from a URL source, usually a web server.

<gunzip> Expands a file that has been compressed with the GZIP algorithm.

<gzip> Compresses a file with the GZIP algorithm.

<icontract>* Instruments Java classes with iContract DBC preprocessor.

alias The alias to add under. [String]

dname The distinguished name for entity. [String]

keyalg The method to use when generating name-value pair. [String]

keypass Password for private key (if different than storepass). [String]

keysize Indicates the size of key generated. [String]

keystore Keystore location. [String]

sigalg The algorithm to use in signing. [String]

storepass Password for Keystore integrity. [String]

storetype Keystore type. [String]

validity Indicates how many days certificate is valid. [String]

verbose If true, enables verbose output when signing. [Boolean]

<dname> Distinguished name list.

dest Where to copy the source file. [File]

ignoreerrors If true, log errors but do not treat as fatal. [Boolean]

password Password for basic authentication. [String]

src URL to get. [URL]

username Username for basic authentication. [String]

usetimestamp If true, conditionally download a file based on the
timestamp of the local copy. [Boolean]

verbose If true, show verbose progress information. [Boolean]

dest The destination file or directory; optional. [File]

src The file to expand; required. [File]

src The file to compress; required. [File]

zipfile The required destination file. [File]

builddir Build directory for instrumented classes. [File]

classdir Class directory (uninstrumented classes). [File]

classpath Classpath to be used for invocation of iContract. [Path]

classpathref Adds a reference to a classpath defined elsewhere. [Reference]

controlfile Control file to pass to iContract. [File]

failthrowable Throwable (Exception) to be thrown on assertion violation. [String]

instrumentdir Instrumentation directory. [File]

invariant Turns on/off invariant instrumentation. [Boolean]
ANT’S TASKS 579

<ilasm>* Assembles .NET Intermediate Language files.

<input> Reads an input line from the console. The message can also be specified
using nested text.

<iplanet-ejbc> Compiles EJB stubs and skeletons for the iPlanet Application Server.

post Turns on/off postcondition instrumentation. [Boolean]

pre Turns on/off precondition instrumentation. [Boolean]

quiet Tells iContract to be quiet. [Boolean]

repbuilddir Build directory for instrumented classes. [File]

repositorydir Build directory for repository classes. [File]

srcdir Source directory. [File]

targets Name of the file where targets will be written. [File]

updateicontrol If true, updates iControl properties file. [Boolean]

verbosity Verbosity level of iContract. [String]

<classpath> Classpath. [Path]

debug Debug flag on or off. [Boolean]

extraoptions Any extra options that are not explicitly supported by this task.
[String]

failonerror If true, fails if ilasm tool fails. [Boolean]

keyfile The name of a file containing a private key. [File]

listing If true, produces a listing; default is false. [Boolean]

outputfile Output file. [File]

resourcefile Name of resource file to include. [File]

srcdir Source directory containing the files to be compiled. [File]

targettype Type of target, either exe or library. [String]

verbose If true, enables verbose ilasm output. [Boolean]

addproperty Defines the name of a property to be created from input. [String]

message Message that gets displayed to the user during the build run. [String]

validargs Defines valid input parameters as comma-separated strings. [String]

classpath Classpath to be used when compiling the EJB stubs and
skeletons. [Path]

debug If true, debugging output will be generated when ejbc is
executed. [Boolean]

dest Destination directory where the EJB source classes must exist
and where the stubs and skeletons will be written. [File]

ejbdescriptor Location of the standard XML EJB descriptor. [File]

iasdescriptor Location of the iAS-specific XML EJB descriptor. [File]

iashome May be used to specify the “home” directory for this iAS
installation. [File]

keepgenerated If true, the Java source files generated by ejbc will be saved.
[Boolean]

<classpath> Adds to the classpath used when compiling the EJB stubs and
skeletons. [Path]
580 APPENDIX E ANT TASK REFERENCE

<jar>* Creates a JAR archive.

<jarlib-available> Checks whether an extension is present in a fileset or an extension set.

<jarlib-display> Displays the Optional Package and Package Specification
information contained within the specified JARs.

basedir Directory from which to archive files; optional. [File]

compress Sets whether to compress the files or only store them;
optional, default is true. [Boolean]

destfile The file to create; required. [File]

duplicate Sets behavior for when a duplicate file is about to be added.
[add, preserve, fail]

encoding Encoding to use for file names, defaults to the platform’s
default encoding. [String]

filesonly If true, emulates Sun’s JAR utility by not adding parent
directories; optional, defaults to false. [Boolean]

index Sets whether to create an index list for classes. [Boolean]

manifest The manifest file to use. [File]

update If true, updates an existing file, otherwise overwrites any
existing one; optional, defaults to false. [Boolean]

whenempty Sets behavior of the task when no files match.
[fail, skip, create]

<fileset> Adds a set of files. [Fileset]

<manifest> Allows the manifest for the archive file to be provided inline
in the build file rather than in an external file.

<metainf> Adds a zipfileset to include in the META-INF directory.
[ZipFileset]

<zipfileset> Adds a set of files that can be read from an archive and
be given a prefix/full path. [ZipFileset]

<zipgroup-
fileset>

Adds a group of Zip files. [Fileset]

file The JAR library to check. [File]

property The name of property to set if extensions are available. [String]

<extension> Extension to look for.

<extensionset> Adds a set of extensions to search in.

file The JAR library to display information for. [File]

<fileset> Adds a set of files about which library data will be
displayed. [Fileset]
ANT’S TASKS 581

<jarlib-manifest> Generates a manifest that declares all the dependencies.

<jarlib-resolve> Tries to locate a JAR to satisfy an extension and place the location of the
JAR into a property.

<java> Launcher for Java applications.

destfile The location where generated manifest is placed. [File]

<attribute> Adds an attribute that is to be put in main section of manifest.

<depends> Adds a set of extensions that this library requires.

<extension> Adds an extension that this library implements.

<options> Adds a set of extensions that this library optionally requires.

checkextension If true, libraries returned by nested resolvers should be checked
to see if they supply an extension. [Boolean]

failonerror If true, failure to locate library should fail build. [Boolean]

property The name of the property in which the location of library is stored.
[String]

<ant> Adds Ant resolver to run an Ant build file to generate a library.

<extension> Specifies extension to look for.

<location> Adds location resolver to look for a library in a location relative to
project directory.

<url> Adds a URL resolver to download a library from a URL to a local
file.

append If true, append output to existing file. [Boolean]

classname Java class to execute. [String]

classpath Classpath to be used when running the Java class. [Path]

classpathref Classpath to use, by reference. [Reference]

dir The working directory of the process. [File]

failonerror If true, then fail if the command exits with a return code other
than 0. [Boolean]

fork If true, execute in a new VM. [Boolean]

jar The location of the JAR file to execute. [File]

jvm Command used to start the VM (only if not forking). [String]

jvmargs Command-line arguments for the JVM. [String]

jvmversion JVM version. [String]

maxmemory Corresponds to -mx or -Xmx, depending on VM version. [String]

newenvironment If true, use a completely new environment. [Boolean]

output File the output of the process is redirected to. [File]

timeout Timeout in milliseconds after which the process will be killed.
[Long]

<arg> Adds a command-line argument.

<classpath> Adds a path to the classpath. [Path]

<env> Adds an environment variable.

<jvmarg> Adds a JVM argument.

<sysproperty> Adds a system property.
582 APPENDIX E ANT TASK REFERENCE

<javac>* Compiles Java source files.

bootclasspath Bootclasspath that will be used to compile the classes
against. [Path]

bootclasspathref Adds a reference to a classpath defined elsewhere.
[Reference]

classpath Classpath to be used for this compilation. [Path]

classpathref Adds a reference to a classpath defined elsewhere.
[Reference]

compiler Chooses the implementation for this particular task.
[String]

debug Indicates whether source should be compiled with debug
information; defaults to off. [Boolean]

debuglevel Keyword list to be appended to the -g command-line
switch. [String]

depend Enables dependencytracking for compilers that support
this (jikes and classic). [Boolean]

deprecation Indicates whether source should be compiled with
deprecation information; defaults to off. [Boolean]

destdir Destination directory into which the Java source files
should be compiled. [File]

encoding Java source file encoding name. [String]

executable The name of the javac executable. [String]

extdirs Extension directories that will be used during the
compilation. [Path]

failonerror Indicates whether the build will continue even if there
are compilation errors; defaults to true. [Boolean]

fork If true, forks the javac compiler. [Boolean]

includeantruntime If true, includes Ant’s own classpath in the classpath.
[Boolean]

includejavaruntime If true, includes the Java run-time libraries in the classpath.
[Boolean]

listfiles If true, lists the source files being handed off to the
compiler. [Boolean]

memoryinitialsize The initial size of the memory for the underlying VM if
javac is run externally; ignored otherwise. [String]

memorymaximumsize The maximum size of the memory for the underlying VM
if javac is run externally; ignored otherwise. [String]

nowarn If true, enables the -nowarn option. [Boolean]

optimize If true, compiles with optimization enabled. [Boolean]

source Value of the -source command-line switch; will be
ignored by all implementations except modern and jikes.
[String]

sourcepath Source path to be used for this compilation. [Path]

sourcepathref Adds a reference to a source path defined elsewhere.
[Reference]

srcdir Source directories to find the source Java files. [Path]

target Target VM that the classes will be compiled for. [String]

verbose If true, asks the compiler for verbose output. [Boolean]
ANT’S TASKS 583

<javacc> Invokes the JavaCC compiler on a grammar file.

<javadoc> Generates Javadoc documentation for a collection of source code.

<bootclasspath> Adds a path to the bootclass path. [Path]

<classpath> Adds a path to the classpath. [Path]

<compilerarg> Adds an implementation-specific command-line argument.

<extdirs> Adds a path to extdirs. [Path]

<sourcepath> Adds a path to source path. [Path]

<src> Adds a path for source compilation. [Path]

buildparser BUILD_PARSER grammar option. [Boolean]

buildtokenmanager BUILD_TOKEN_MANAGER grammar option. [Boolean]

cachetokens CACHE_TOKENS grammar option. [Boolean]

choiceambiguitycheck CHOICE_AMBIGUITY_CHECK grammar option. [Integer]

commontokenaction COMMON_TOKEN_ACTION grammar option. [Boolean]

debuglookahead DEBUG_LOOKAHEAD grammar option. [Boolean]

debugparser DEBUG_PARSER grammar option. [Boolean]

debugtokenmanager DEBUG_TOKEN_MANAGER grammar option. [Boolean]

errorreporting ERROR_REPORTING grammar option. [Boolean]

forcelacheck FORCE_LA_CHECK grammar option. [Boolean]

ignorecase IGNORE_CASE grammar option. [Boolean]

javacchome The directory containing the JavaCC distribution. [File]

javaunicodeescape JAVA_UNICODE_ESCAPE grammar option. [Boolean]

lookahead LOOKAHEAD grammar option. [Integer]

optimizetokenmanager OPTIMIZE_TOKEN_MANAGER grammar option. [Boolean]

otherambiguitycheck OTHER_AMBIGUITY_CHECK grammar option. [Integer]

outputdirectory The directory to write the generated files to. [File]

sanitycheck SANITY_CHECK grammar option. [Boolean]

static STATIC grammar option. [Boolean]

target The grammar file to process. [File]

unicodeinput UNICODE_INPUT grammar option. [Boolean]

usercharstream USER_CHAR_STREAM grammar option. [Boolean]

usertokenmanager USER_TOKEN_MANAGER grammar option. [Boolean]

access Scope to be processed. [protected, public,
package, private]

additionalparam Sets an additional parameter on the command line. [String]

author Includes the author tag in the generated documentation.
[Boolean]

bootclasspath Boot classpath to use. [Path]

bootclasspathref Adds a reference to a classpath defined elsewhere.
[Reference]

bottom Text to be placed at the bottom of each output file. [String]
584 APPENDIX E ANT TASK REFERENCE

charset Charset for cross-platform viewing of generated
documentation. [String]

classpath Classpath to be used for this javadoc run. [Path]

classpathref Adds a reference to a classpath defined elsewhere.
[Reference]

defaultexcludes Sets whether default exclusions should be used. [Boolean]

destdir Specifies directory where the Javadoc output will be
generated. [File]

docencoding Specifies output file encoding name. [String]

doclet Specifies class that starts the doclet used in generating
the documentation. [String]

docletpath Specifies classpath used to find the doclet class. [Path]

docletpathref Specifies classpath used to find the doclet class by
reference. [Reference]

doctitle Specifies title of the generated overview page. [String]

encoding Specifies encoding name of the source files. [String]

excludepackagenames Specifies list of packages to be excluded. [String]

extdirs Specifies location of the extensions directories. [Path]

failonerror Specifies the build process to fail if javadoc fails (as
indicated by a nonzero return code). [Boolean]

footer Places footer text at the bottom of each output file. [String]

group Groups specified packages together in overview page.
[String]

header Places header text at the top of each output file. [String]

helpfile Specifies the HTML help file to use. [File]

link Creates links to javadoc output at the given URL. [String]

linkoffline Links to docs at url using package list at url2—
separates the URLs by using a space character. [String]

locale Locale to use in documentation generation. [String]

maxmemory Maximum memory to be used by the javadoc process.
[String]

nodeprecated If true, do not include @deprecated information.
[Boolean]

nodeprecatedlist If true, do not generate deprecated list. [Boolean]

nohelp If true, do not generate help link. [Boolean]

noindex If true, do not generate index. [Boolean]

nonavbar If true, do not generate navigation bar. [Boolean]

notree If true, do not generate class hierarchy. [Boolean]

old Indicates whether Javadoc should produce old style
(JDK 1.1) documentation. [Boolean]

overview Specifies the file containing the overview to be included
in the generated documentation. [File]

package Indicates whether only package, protected, and public
classes and members are to be included in the scope
processed. [Boolean]

packagelist The name of a file containing the packages to process.
[String]

packagenames Package names to be processed. [String]
ANT’S TASKS 585

private Indicates whether all classes and members are to be
included in the scope processed. [Boolean]

protected Indicates whether only protected and public classes and
members are to be included in the scope processed.
[Boolean]

public Indicates whether only public classes and members are
to be included in the scope processed. [Boolean]

serialwarn If true, generates warning about @serial tag. [Boolean]

source Enables the -source switch; will be ignored if javadoc is
not the 1.4 version or a different doclet than the standard
doclet is used. [String]

sourcefiles List of source files to process. [String]

sourcepath Specifies where to find source file. [Path]

sourcepathref Adds a reference to a classpath defined elsewhere.
[Reference]

splitindex Generates a split index. [Boolean]

stylesheetfile Specifies the CSS stylesheet file to use. [File]

use Generates the use page for each package. [Boolean]

useexternalfile Works around command-line length limit by using an
external file for the sourcefiles. [Boolean]

verbose Runs javadoc in verbose mode. [Boolean]

version Includes the version tag in the generated documentation.
[Boolean]

windowtitle Title to be placed in the HTML <title> tag of the
generated documentation. [String]

<bootclasspath> Creates a path to be configured with the boot classpath.
[Path]

<bottom> Text to be placed at the bottom of each output file.

<classpath> Creates a path to be configured with the classpath
to use. [Path]

<doclet> Creates a doclet to be used in the documentation
generation.

<doctitle> Adds a document title to use for the overview page.

<excludepackage> Adds a package to be excluded from the javadoc run.

<fileset> Adds a fileset. [Fileset]

<footer> Footer text to be placed at the bottom of each output file.

<group> Separates packages on the overview page into whatever
groups you specify, one group per table.

<header> Header text to be placed at the top of each output file.

<link> Creates link to javadoc output at the given URL.

<package> Adds a single package to be processed.

<packageset> Adds a packageset. [Dirset]

<source> Adds a single source file.

<sourcepath> Creates a path to be configured with the locations of
the source files. [Path]

<tag> Creates and adds a -tag argument.

<taglet> Adds a taglet.
586 APPENDIX E ANT TASK REFERENCE

<javah> Generates JNI header files using javah.

<jdepend> Runs JDepend tests.

<jjtree> Runs the JJTree preprocessor for the JavaCC compiler compiler.

bootclasspath Location of bootstrap class files. [Path]

bootclasspathref Adds a reference to a classpath defined elsewhere. [Reference]

class The fully qualified name of the class (or classes, separated by
commas). [String]

classpath The classpath to use. [Path]

classpathref Adds a reference to a classpath defined elsewhere. [Reference]

destdir Destination directory into which the Java source files should be
compiled. [File]

force If true, output files should always be written (JDK1.2 only).
[Boolean]

old If true, specifies that old JDK1.0-style header files should be
generated. [Boolean]

outputfile Concatenates the resulting header or source files for all the
classes listed into this file. [File]

stubs If true, generates C declarations from the Java object file
(used with old). [Boolean]

verbose If true, causes javah to print a message concerning the
status of the generated files. [Boolean]

<bootclasspath> Adds path to bootstrap class files. [Path]

<class> Adds class to process.

<classpath> Path to use for classpath. [Path]

classpath Classpath to be used for this compilation. [Path]

classpathref Adds a reference to a classpath defined elsewhere. [Reference]

dir The directory to invoke the VM in. [File]

fork If true, forks into a new JVM. [Boolean]

format The format to write the output in. [xml, text]

haltonerror Sets whether to halt on failure. [Boolean]

jvm The command used to invoke a forked Java Virtual Machine.
[String]

outputfile The output file name. [File]

<classpath> Adds a path to the classpath. [Path]

<sourcespath> Adds a path to source code to analyze. [Path]

buildnodefiles BUILD_NODE_FILES grammar option. [Boolean]

javacchome The directory containing the JavaCC distribution. [File]

multi MULTI grammar option. [Boolean]

nodedefaultvoid NODE_DEFAULT_VOID grammar option. [Boolean]

nodefactory NODE_FACTORY grammar option. [Boolean]

nodepackage NODE_PACKAGE grammar option. [String]
ANT’S TASKS 587

<jpcoverage> Runs Sitraka JProbe Coverage analyzer.

<jpcovmerge> Runs the snapshot merge utility for JProbe Coverage.

nodeprefix NODE_PREFIX grammar option. [String]

nodescopehook NODE_SCOPE_HOOK grammar option. [Boolean]

nodeusesparser NODE_USES_PARSER grammar option. [Boolean]

outputdirectory The directory to write the generated file to. [File]

static STATIC grammar option. [Boolean]

target The jjtree grammar file to process. [File]

visitor VISITOR grammar option. [Boolean]

visitorexception VISITOR_EXCEPTION grammar option. [String]

applet If true, runs an applet. [Boolean]

classname Classname to run as stand-alone or runner for filesets. [String]

exitprompt Toggles display of the console prompt: always, error, never.
[String]

finalsnapshot Type of snapshot to send at program termination: none,
coverage, all. [String]

home The directory where JProbe is installed. [File]

javaexe Path to the java executable. [File]

recordfromstart If you want to start analyzing as soon as the program begins,
use all. If not, select none. [coverage, none, all]

seedname Seed name for snapshot file. [String]

snapshotdir The path to the directory where snapshot files are stored. [File]

tracknatives If true, tracks native methods. [Boolean]

vm Indicates which virtual machine to run. [java2, jdk118, jdk117]

warnlevel Sets warning level (0-3, where 0 is the least amount of warnings).
[Integer]

workingdir The physical path to the working directory for the VM. [File]

<arg> Adds a command argument.

<classpath> Classpath to run the files. [Path]

<fileset> The classnames to execute. [Fileset]

<filters> Defines class/method filters based on pattern matching.

<jvmarg> Adds a JVM argument.

<socket> Defines a host and port to connect to if you want to do
remote viewing.

<triggers> Defines events to use for interacting with the collection of
data performed during coverage.

home The directory where JProbe is installed. [File]

tofile Output snapshot file. [File]

verbose If true, perform the merge in verbose mode giving details
about the snapshot processing. [Boolean]

<fileset> Adds a fileset containing the snapshots to include. [Fileset]
588 APPENDIX E ANT TASK REFERENCE

<jpcovreport> Runs the JProbe Coverage 3.0 snapshot merge utility.

<jspc>* Runs a JSP compiler.

<junit> Runs JUnit tests.

format Format of the report. [html, text, xml]

home The directory where JProbe is installed. [File]

includesource If true, include text of the source code lines. [Boolean]

percent A numeric value for the threshold for printing methods. [Integer]

snapshot The name of the snapshot file that is the source to the report.
[File]

tofile The name of the generated output file. [File]

type The type of report to be generated. [executive, summary,
detailed, verydetailed]

<reference> Adds a set of classes whose coverage information will be
checked against.

<sourcepath> Adds a path to source files. [Path]

classpath Classpath to be used for this compilation. [Path]

classpathref Adds a reference to a classpath defined elsewhere. [Reference]

compiler Class name of a JSP compiler adapter. [String]

destdir Destination directory into which the JSP source files should be
compiled. [File]

failonerror Specifies the build to halt if compilation fails (default is true).
[Boolean]

ieplugin Java Plug-in CLASSID for Internet Explorer. [String]

mapped If true, generates separate write() calls for each HTML line in the
JSP. [Boolean]

package Name of the package the compiled JSP files should be in. [String]

srcdir Path for source JSP files. [Path]

uribase The URI context of relative URI references in the JSP pages. [File]

uriroot The root directory that URI files should be resolved against. [File]

verbose Verbose level of the compiler. [Integer]

webinc Output file name for the fraction of web.xml that lists servlets. [File]

webxml File name for web.xml. [File]

<classpath> Adds a path to the classpath. [Path]

<webapp> Adds a single webapp.

dir The directory to invoke the VM in. [File]

errorproperty Property to set to true if there is a error in a test. [String]

failureproperty Property to set to true if there is a failure in a test. [String]

filtertrace If true, smartly filter the stack frames of JUnit errors and failures
before reporting them. [Boolean]

fork If true, JVM should be forked for each test. [Boolean]

haltonerror If true, stop the build process when there is an error in a test.
[Boolean]
ANT’S TASKS 589

<junitreport> Aggregates all <junit> XML formatter test suite data under a specific
directory and transforms the results via XSLT.

<loadfile> Loads a whole text file into a single property.

<loadproperties> Loads a file’s contents as Ant properties.

haltonfailure If true, stop the build process if a test fails (errors are considered
failures as well). [Boolean]

includeant-
runtime

If true, include ant.jar, optional.jar, and junit.jar in the forked VM.
[Boolean]

jvm The command used to invoke the Java Virtual Machine, default is
java. [String]

maxmemory Maximum memory to be used by all forked JVMs. [String]

newenvironment If true, use a new environment when forked. [Boolean]

printsummary If true, print one-line statistics for each test, or withOutAndErr
to also show standard output and error. [true, yes, false, no,
on, off, withOutAndErr]

showoutput If true, send any output generated by tests to Ant’s
logging system as well as to the formatters. [Boolean]

timeout Timeout value (in milliseconds). [Integer]

<batchtest> Adds a set of tests based on pattern matching.

<classpath> Adds path to classpath used for tests. [Path]

<env> Adds an environment variable; used when forking.

<formatter> Add a new formatter to all tests of this task.

<jvmarg> Adds a JVM argument; ignored if not forking.

<sysproperty> Adds a system property that tests can access.

<test> Adds a new single testcase.

todir Destination directory where the results should be written. [File]

tofile Name of the aggregated results file. [String]

<fileset> Adds a new fileset containing the XML results to aggregate. [Fileset]

<report> Generates a report based on the document created by the merge.

encoding Encoding to use for input, defaults to the platform’s
default encoding. [String]

failonerror If true, fail on load error. [Boolean]

property Property name to save to. [String]

srcfile File to load. [File]

<filterchain> Adds the FilterChain element. [FilterChain]

srcfile File to load. [File]

<filterchain> Adds a FilterChain. [FilterChain]
590 APPENDIX E ANT TASK REFERENCE

<mail> A task to send SMTP email.

<manifest> Creates a manifest file for inclusion in a JAR.

<maudit> Invokes the Metamata Audit/Webgain Quality Analyzer on a set of
Java files.

bcclist Adds bcc address elements. [String]

cclist Adds cc address elements. [String]

encoding Allows the build writer to choose the preferred encoding
method. [auto, mime, uu, plain]

failonerror Indicates whether BuildExceptions should be passed back
to the core. [Boolean]

files Adds a list of files to be attached. [String]

from Shorthand to set the from address element. [String]

includefilenames Sets Includefilenames attribute. [Boolean]

mailhost Host. [String]

mailport Mail server port. [Integer]

message Shorthand method to set the message. [String]

messagefile Shorthand method to set the message from a file. [File]

messagemimetype Shorthand method to set type of the text message, text/plain by
default, but text/html or text/xml is quite feasible. [String]

subject Subject line of the email. [String]

tolist Adds to address elements. [String]

<bcc> Adds bcc address element.

<cc> Adds cc address element.

<fileset> Adds a set of files (nested fileset attribute). [Fileset]

<from> Adds a from address element.

<message> Adds a message element.

<to> Adds a to address element.

file The name of the manifest file to create/update. [File]

mode Update policy; default is replace. [update, replace]

<attribute> Adds an attribute to the manifest’s main section.

<section> Adds a section to the manifest.

fix Automatically fixes certain errors (those marked as fixable
in the manual); optional, default false. [Boolean]

list Creates listing file for each audited file; optional, default false.
[Boolean]

maxmemory Maximum memory for the JVM; optional. [String]

metamatahome The home directory containing the Metamata distribution;
required. [File]

tofile The XML file to which the Audit result should be written to;
required. [File]

unused Finds declarations unused in search paths; optional, default
false. [Boolean]

<classpath> Classpath (also source path unless one explicitly set). [Path]
ANT’S TASKS 591

<mimemail> See <mail>.

<mkdir> Creates a given directory.

<mmetrics> Computes the metrics of a set of Java files and writes the results to an
XML file.

<move> Moves a file or directory to a new file or directory.

<fileset> The Java files or directory to audit. [Fileset]

<jvmarg> Additional optional parameters to pass to the JVM.

<rulespath> Classpath for additional audit rules; these must be placed before
metamata.jar. [Path]

<searchpath> Search path to use for unused global declarations; required
when unused is set. [Path]

<sourcepath> Source path. [Path]

dir The directory to create; required. [File]

granularity Granularity of the audit. [compilation-units, files,
methods, types, packages]

maxmemory Maximum memory for the JVM; optional. [String]

metamatahome The home directory containing the Metamata distribution;
required. [File]

tofile Output XML file. [File]

<classpath> Classpath (also source path unless one explicitly set). [Path]

<fileset> The Java files or directory to audit. [Fileset]

<jvmarg> Additional optional parameters to pass to the JVM.

<path> New path (directory) to measure metrics from. [Path]

<sourcepath> Source path. [Path]

encoding Character encoding. [String]

failonerror If false, notes errors to the output but keeps going. [Boolean]

file Single source file to copy. [File]

filtering If true, enables filtering. [Boolean]

flatten When copying directory trees, the files can be flattened into a
single directory. [Boolean]

includeemptydirs Used to copy empty directories. [Boolean]

overwrite Overwrites any existing destination files. [Boolean]

preservelast-
modified

Gives the copied files the same last modified time as the
original files. [Boolean]

todir Destination directory. [File]

tofile Destination file. [File]

verbose Used to force listing of all names of copied files. [Boolean]

<fileset> Adds a set of files to copy. [Fileset]

<filterchain> Adds a FilterChain. [FilterChain]

<filterset> Adds a filterset. [Filterset]

<mapper> Defines the mapper to map source to destination files. [Mapper]
592 APPENDIX E ANT TASK REFERENCE

<mparse> Invokes the Metamata MParse compiler compiler on a grammar file.

<native2ascii>* Converts files from native encodings to ASCII.

<netrexxc>* Compiles NetRexx source files.

cleanup Remove the intermediate Sun JavaCC file; optional, default
false. [Boolean]

debugparser Set parser debug mode; optional, default false. [Boolean]

debugscanner Set scanner debug mode; optional, default false. [Boolean]

maxmemory Maximum memory for the JVM; optional. [String]

metamatahome The home directory containing the Metamata distribution;
required. [File]

target The .jj file to process; required. [File]

verbose Set verbose mode; optional, default false. [Boolean]

<classpath> Creates a classpath entry. [Path]

<jvmarg> Additional optional parameters to pass to the JVM.

<sourcepath> Creates a source path entry. [Path]

dest Destination directory to place converted files into. [File]

encoding Encoding to translate to/from. [String]

ext Extension which converted files should have. [String]

reverse Flag the conversion to run in the reverse sense, that is
ASCII-to-native encoding. [Boolean]

src Source directory in which to find files to convert. [File]

<mapper> Defines the FileNameMapper to use (nested mapper
element). [Mapper]

binary Sets whether literals are treated as binary, rather than NetRexx
types. [Boolean]

classpath Classpath used for NetRexx compilation. [String]

comments Sets whether comments are passed through to the generated
Java source. [Boolean]

compact Sets whether error messages come out in compact or verbose
format. [Boolean]

compile Sets whether the NetRexx compiler should compile the
generated Java code. [Boolean]

console Sets whether messages should be displayed. [Boolean]

crossref Sets whether variable cross-references are generated.
[Boolean]

decimal Sets whether decimal arithmetic should be used for the
NetRexx code. [Boolean]

destdir Destination directory into which the NetRexx source files
should be copied and then compiled. [File]

diag Sets whether diagnostic information about the compile is
generated. [Boolean]

explicit Sets whether variables must be declared explicitly before use.
[Boolean]
ANT’S TASKS 593

format Sets whether the generated Java code is formatted nicely or
left to match NetRexx line numbers for call stack debugging.
[Boolean]

java Sets whether the generated Java code is produced. [Boolean]

keep Sets whether the generated Java source file should be kept
after compilation. [Boolean]

logo Sets whether the compiler text logo is displayed when
compiling. [Boolean]

replace Sets whether the generated .Java file should be replaced
when compiling. [Boolean]

savelog Sets whether the compiler messages will be written to
NetRexxC.log as well as to the console. [Boolean]

sourcedir Tells the NetRexx compiler to store the class files in the same
directory as the source files. [Boolean]

srcdir Source dir to find the source Java files. [File]

strictargs Tells the NetRexx compiler that method calls always need
parentheses, even if no arguments are needed. [Boolean]

strictassign Tells the NetRexx compile that assignments must match
exactly on type. [Boolean]

strictcase Specifies whether the NetRexx compiler should be case
sensitive. [Boolean]

strictimport Sets whether classes need to be imported explicitly using an
import statement. [Boolean]

strictprops Sets whether local properties need to be qualified explicitly
using this. [Boolean]

strictsignal Sets whether the compiler should force catching of exceptions
by explicitly named types. [Boolean]

suppress-
deprecation

Sets whether we should filter out any deprecation-messages
of the compiler output. [Boolean]

suppressexcep-
tionnotsignalled

Sets whether the task should suppress the FooException is
in SIGNALS list but is not signalled within the method, which is
sometimes rather useless. [Boolean]

suppressmethod-
argumentnotused

Sets whether the task should suppress the “Method
argument is not used” in strictargs-Mode, which cannot be
suppressed by the compiler itself. [Boolean]

suppressprivate-
propertynotused

Sets whether the task should suppress the “Private property is
defined but not used” in strictargs-Mode, which can be quite
annoying while developing. [Boolean]

suppressvariable-
notused

Sets whether the task should suppress the “Variable is set but
not used” in strictargs-Mode. [Boolean]

symbols Sets whether debug symbols should be generated into the
class file. [Boolean]

time Asks the NetRexx compiler to print compilation times to the
console. [Boolean]

trace Turns on or off tracing, and directs the resultant output.
[trace, trace1, trace2, notrace]

utf8 Tells the NetRexx compiler that the source is in UTF8.
[Boolean]

verbose Sets whether lots of warnings and error messages should be
generated. [verbose, verbose0, verbose1, verbose2,
verbose3, verbose4, verbose5, noverbose]
594 APPENDIX E ANT TASK REFERENCE

<p4add> Adds specified files to a Perforce server.

<p4change> Requests a new changelist from the Perforce server.

<p4counter> Obtains or sets the value of a Perforce counter.

changelist If specified, the open files are associated with the specified
pending changelist number; otherwise the open files are
associated with the default changelist. [Integer]

client Specifies the p4 client spec to use; optional, defaults to the
current user. [String]

cmdopts Sets extra command options; only used on some of the
Perforce tasks. [String]

commandlength Positive integer specifying the maximum length of the
command line when calling Perforce to add the files. [Integer]

failonerror Sets whether to stop the build or keep going if an error is
returned from the p4 command; default is true. [Boolean]

port Specifies the p4d server and port to connect to; optional, default
perforce:1666. [String]

user Specifies the p4 username; optional, defaults to the current
user. [String]

view Specifies the client, branch, or label view to operate upon;
optional default //.... [String]

<fileset> Files to add. [Fileset]

client The p4 client spec to use; optional, defaults to the current user.
[String]

cmdopts Set extra command options; only used on some of the Perforce
tasks. [String]

description Description for ChangeList;optional. [String]

failonerror Sets whether to stop the build (true, default) or keep going if an
error is returned from the p4 command. [Boolean]

port The p4d server and port to connect to; optional, default
perforce:1666. [String]

user The p4 username; optional, defaults to the current user. [String]

view The client, branch, or label view to operate upon; optional
default //.... [String]

client The p4 client spec to use; optional, defaults to the current user.
[String]

cmdopts Set extra command options; only used on some of the Perforce
tasks. [String]

failonerror Sets whether to stop the build (true, default) or keep going if an
error is returned from the p4 command. [Boolean]

name The name of the counter; required. [String]

port The p4d server and port to connect to; optional, default
perforce:1666. [String]

property A property to be set with the value of the counter. [String]

user The p4 username; optional, defaults to the current user. [String]
ANT’S TASKS 595

<p4delete> Checkout Perforce-managed files for deletion.

<p4edit> Open Perforce-managed files for editing.

<p4have> Lists Perforce-managed files currently on the client.

value The new value for the counter; optional. [Integer]

view The client, branch, or label view to operate upon; optional default
//.... [String]

change An existing changelist number for the deletion; optional but
strongly recommended. [String]

client The p4 client spec to use; optional, defaults to the current user.
[String]

cmdopts Set extra command options. [String]

failonerror Sets whether to stop the build (true, default) or keep going if
an error is returned from the p4 command. [Boolean]

port The p4d server and port to connect to; optional, default
perforce:1666. [String]

user The p4 username; optional, defaults to the current user. [String]

view The client, branch or label view to operate upon; optional default
//.... [String]

change An existing changelist number to assign files to; optional but
strongly recommended. [String]

client The p4 client spec to use; optional, defaults to the current user.
[String]

cmdopts Set extra command options; only used on some of the Perforce
tasks. [String]

failonerror Sets whether to stop the build (true, default) or keep going
if an error is returned from the p4 command. [Boolean]

port The p4d server and port to connect to; optional, default
perforce:1666. [String]

user The p4 username; optional, defaults to the current user. [String]

view The client, branch, or label view to operate upon; optional
default //.... [String]

client The p4 client spec to use; optional, defaults to the current user.
[String]

cmdopts Set extra command options; only used on some of the Perforce
tasks. [String]

failonerror Sets whether to stop the build (true, default) or keep going
if an error is returned from the p4 command. [Boolean]

port The p4d server and port to connect to; optional, default
perforce:1666. [String]

user The p4 username; optional, defaults to the current user. [String]

view The client, branch, or label view to operate upon;
optional, default //.... [String]
596 APPENDIX E ANT TASK REFERENCE

<p4label> Creates a new Perforce label and sets contents to reflect current client file
revisions.

<p4reopen> Reopens Perforce-managed files.

<p4revert> Reverts Perforce open files or files in a changelist

client The p4 client spec to use; optional, defaults to the current user.
[String]

cmdopts Set extra command options; only used on some of the Perforce
tasks. [String]

desc Label description; optional. [String]

failonerror Sets whether to stop the build (true, default) or keep going
if an error is returned from the p4 command. [Boolean]

lock When set to locked, Perforce will lock the label once created;
optional. [String]

name The name of the label; optional, default AntLabel. [String]

port The p4d server and port to connect to; optional, default
perforce:1666. [String]

user The p4 username; optional, defaults to the current user. [String]

view The client, branch, or label view to operate upon;
optional, default //.... [String]

client The p4 client spec to use; optional, defaults to the current user.
[String]

cmdopts Set extra command options; only used on some of the Perforce tasks.
[String]

failonerror Sets whether to stop the build (true, default) or keep going if an error
is returned from the p4 command. [Boolean]

port The p4d server and port to connect to; optional, default
perforce:1666. [String]

tochange The changelist to move files to; required. [String]

user The p4 username; optional, defaults to the current user. [String]

view The client, branch, or label view to operate upon;
optional default //.... [String]

change The changelist to revert; optional. [String]

client The p4 client spec to use; optional, defaults to the current user.
[String]

cmdopts Set extra command options; only used on some of the Perforce
tasks. [String]

failonerror Sets whether to stop the build (true, default) or keep going
if an error is returned from the p4 command. [Boolean]

port The p4d server and port to connect to; optional, default
perforce:1666. [String]

revertonly-
unchanged

Flag to revert only unchanged files (p4 revert -a); optional,
default false. [Boolean]

user The p4 username; optional, defaults to the current user. [String]

view The client, branch, or label view to operate upon;
optional default //.... [String]
ANT’S TASKS 597

<p4submit> Submits a numbered changelist to Perforce.

<p4sync> Synchronizes client space to a Perforce depot view.

<parallel> Executes the contained tasks in separate threads, continuing once all are
completed. Any Ant task can be nested inside this task.

<patch> Patches a file by applying a diff file to it; requires patch to be on the
execution path.

change The changelist number to submit; required. [String]

client The p4 client spec to use; optional, defaults to the current user. [String]

cmdopts Set extra command options; only used on some of the
Perforce tasks. [String]

failonerror Sets whether to stop the build (true, default) or keep going if an
error is returned from the p4 command. [Boolean]

port The p4d server and port to connect to; optional, default
perforce:1666. [String]

user The p4 username; optional, defaults to the current user. [String]

view The client, branch, or label view to operate upon; optional default //
.... [String]

client The p4 client spec to use; optional, defaults to the current user.
[String]

cmdopts Set extra command options; only used on some of the Perforce
tasks. [String]

failonerror Sets whether to stop the build (true, default) or keep going if an
error is returned from the p4 command. [Boolean]

force Force a refresh of files, if this attribute is set; false by default. [String]

label Label to sync client to; optional. [String]

port The p4d server and port to connect to; optional, default
perforce:1666. [String]

user The p4 username; optional, defaults to the current user. [String]

view The client, branch, or label view to operate upon; optional default //
.... [String]

backups Flag to create backups; optional, default=false. [Boolean]

dir The directory to run the patch command in, defaults to the
project’s base directory. [File]

ignorewhitespace Flag to ignore white space differences; default=false. [Boolean]

originalfile The file to patch; optional if it can be inferred from the
diff file. [File]

patchfile The file containing the diff output; required. [File]

quiet Work silently unless an error occurs; optional, default=false.
[Boolean]

reverse Assume patch was created with old and new files swapped;
optional, default=false. [Boolean]

strip Strip the smallest prefix containing this many leading slashes
from file names. [Integer]
598 APPENDIX E ANT TASK REFERENCE

<pathconvert> Converts path and classpath information to a specific target OS format.

<property> Sets a property by name, or set of properties (from file or resource) in
the project.

<propertyfile> Modifies settings in a property file.

<pvcs> Extracts the latest edition of the source code from a PVCS repository.

dirsep Default directory separator string; defaults to current JVM. [String]

pathsep Default path separator string; defaults to current JVM. [String]

property The property into which the converted path will be placed. [String]

refid Adds a reference to a Path, FileSet, DirSet, or FileList defined
elsewhere. [Reference]

setonempty If false, don’t set the new property if the result is the empty string;
default true. [Boolean]

targetos Sets target platform; required unless pathsep or dirsep are
specified. [windows, unix, netware, os/2]

<map> Creates a nested MAP element.

<path> Creates a nested PATH element. [Path]

classpath The classpath to use when looking up a resource. [Path]

environment The prefix to use when retrieving environment variables. [String]

file The file name of a property file to load. [File]

location Property to the absolute file name of the given file. [File]

name Name of the property to set. [String]

prefix Prefix to apply to properties loaded using file or resource.
[String]

refid Reference to an Ant datatype declared elsewhere. [Reference]

resource The resource name of a property file to load. [String]

value Value of the property. [String]

<classpath> The classpath to use when looking up a resource. [Path]

comment Optional header comment for the file. [String]

file Location of the property file to be edited; required. [File]

<entry> Specifies a property and how to modify it.

filenameformat The format of the folder names; optional. [String]

force Specifies the value of the force argument; optional. [String]

ignorereturncode If set to true the return value from executing the PVCS
commands are ignored; optional, default false. [Boolean]

label Only files marked with this label are extracted; optional. [String]

linestart What a valid return value from PVCS looks like when it
describes a file. [String]

promotiongroup Specifies the name of the promotiongroup argument.
[String]
ANT’S TASKS 599

<record> Adds a listener to the current build process that records the output to a file.

<replace>* Replaces all occurrences of one or more string tokens with given values
in the indicated files.

pvcsbin Specifies the location of the PVCS bin directory; optional if
on the PATH. [String]

pvcsproject The project within the PVCS repository to extract files from;
optional, default "/". [String]

repository The network name of the PVCS repository; required. [String]

updateonly If true, files are fetched only if newer than existing local files;
optional, default false. [Boolean]

workspace Workspace to use; optional. [String]

<pvcsproject> Specifies a project within the PVCS repository to extract files
from.

action Action for the associated recorder entry. [start, stop]

append Sets whether the logger should append to a previous file.
[Boolean]

emacsmode No description. [Boolean]

loglevel Level to which this recorder entry should log to.
[error, warn, info, verbose, debug]

name Name of the file to log to, and the name of the recorder entry.
[String]

dir The base directory to use when replacing a token in multiple
files; required if file is not defined. [File]

encoding File encoding to use on the files read and written by the task;
optional, defaults to default JVM encoding. [String]

file Source file; required unless dir is set. [File]

propertyfile The name of a property file from which properties specified
using nested <replacefilter> elements are drawn; Required
only if property attribute of <replacefilter> is used. [File]

replacefilterfileName of a property file containing filters; optional. [File]

summary Indicates whether a summary of the replace operation should be
produced, detailing how many token occurrences and files were
processed; optional, default is false. [Boolean]

token String token to replace; required unless a nested replace-
token element or the replacefilterfile attribute is
used. [String]

value String value to use as token replacement; optional, default is the
empty string “ ”. [String]

<replacefilter> Adds a replacement filter.

<replacetoken> The token to filter as the text of a nested element.

<replacevalue> The string to replace the token as the text of a nested element.
600 APPENDIX E ANT TASK REFERENCE

<replaceregexp> Performs regular expression string replacements in a text file.

<rmic>* Runs the rmic compiler against classes.

byline Process the file(s) one line at a time, executing the replacement
on one line at a time. [String]

file File for which the regular expression should be replaced;
required unless a nested fileset is supplied. [File]

flags The flags to use when matching the regular expression. [String]

match The regular expression pattern to match in the files; required
if no nested <regexp> is used. [String]

replace The substitution pattern to place in the files in place of the
regular expression. [String]

<fileset> Lists files to apply the replacement to. [Fileset]

<regexp> A regular expression.

<substitution> A substitution pattern.

base Location to store the compiled files; required. [File]

classname The class to run rmic against; optional. [String]

classpath Classpath to be used for this compilation. [Path]

classpathref Adds a path to the classpath by reference. [Reference]

compiler Compiler implementation to use; optional, defaults to the
value of the build.rmic property, or failing that, default
compiler for the current VM. [String]

debug Generates debug info (passes -g to rmic); optional, defaults
to false. [Boolean]

extdirs Extension directories that will be used during the
compilation; optional. [Path]

filtering Indicates whether token filtering should take place; optional,
default=false. [Boolean]

idl Indicates that IDL output should be generated. [Boolean]

idlopts Passes additional arguments for idl compile. [String]

iiop Indicates that IIOP-compatible stubs should be generated;
optional, defaults to false if not set. [Boolean]

iiopopts Sets additional arguments for IIOP. [String]

includeantruntime Sets whether to include the Ant run-time libraries;
optional defaults to true. [Boolean]

includejavaruntime Task’s classpath. [Boolean]

sourcebase Optional directory to save generated source files to. [File]

stubversion Specifies the JDK version for the generated stub code.
[String]

verify Flag to enable verification, so that the classes found by the
directory match are checked to see if they implement
java.rmi.Remote. [Boolean]

<classpath> Adds a path to the classpath. [Path]

<compilerarg> Adds an implementation-specific command-line argument.

<extdirs> Adds path to the extension directories path. [Path]
ANT’S TASKS 601

<rpm> Invokes the rpm tool to build a Linux installation file.

<script> Executes a script. The script can be nested as text, or an external file ref-
erenced using src.

<sequential> Container task to execute all nested tasks sequentially. This is useful
when nested within <parallel>.

<serverdeploy> Controls hot deployment tools for J2EE servers.

<setproxy> Sets Java’s web proxy properties, so that tasks and code run in the same
JVM can have through-the-firewall access to remote web sites, and re-
mote ftp sites.

cleanbuilddir Flag (optional, default=false) to remove the generated files in
the BUILD directory. [Boolean]

command What command to issue to the rpm tool; optional. [String]

error Optional file to save stderr to. [File]

output Optional file to save stdout to. [File]

removesource Flag (optional, default=false) to remove the sources after the
build. [Boolean]

removespec Flag (optional, default=false) to remove the spec file from
SPECS. [Boolean]

specfile The name of the spec File to use; required. [String]

topdir The directory which will have the expected subdirectories,
SPECS, SOURCES, BUILD, SRPMS ; optional. [File]

language Defines the language (required). [String]

src Load the script from an external file; optional. [String]

action The action to be performed, usually deploy; required. [String]

source The file name of the component to be deployed; optional
depending upon the tool and the action. [File]

<generic> Creates a generic deployment tool.

<jonas> Creates a JOnAS deployment tool, for deployment to JOnAS
servers.

<weblogic> Creates a WebLogic deployment tool, for deployment to
WebLogic servers.

nonproxyhosts A list of hosts to bypass the proxy on. [String]

proxyhost The HTTP/ftp proxy host. [String]

proxyport The HTTP/ftp proxy port number; default is 80. [Integer]

socksproxyhost The name of a Socks server. [String]

socksproxyport ProxyPort for socks connections. [Integer]
602 APPENDIX E ANT TASK REFERENCE

<signjar> Signs JAR or Zip files with the javasign command-line tool.

<sleep> Sleep, or pause, for a period of time.

<soscheckin> Commits and unlocks files in Visual SourceSafe via a SourceOffSite server.

alias The alias to sign under; required. [String]

internalsf Flag to include the .SF file inside the signature; optional; default
false. [Boolean]

jar The JAR file to sign; required. [File]

keypass Password for private key (if different than storepass); optional.
[String]

keystore Keystore location; required. [File]

lazy Flag to control whether the presence of a signature file means a
JAR is signed; optional, default false. [Boolean]

sectionsonly Flag to compute hash of entire manifest; optional, default false.
[Boolean]

sigfile Name of .SF/.DSA file; optional. [File]

signedjar Name of signed JAR file; optional. [File]

storepass Password for Keystore integrity; required. [String]

storetype Keystore type; optional. [String]

verbose Enable verbose output when signing ; optional: default false.
[Boolean]

<fileset> Adds a set of files to sign. [Fileset]

failonerror Flag controlling whether to break the build on an error. [Boolean]

hours Hours to add to the sleep time. [Integer]

milliseconds Milliseconds to add to the sleep time. [Integer]

minutes Minutes to add to the sleep time. [Integer]

seconds Seconds to add to the sleep time. [Integer]

comment Comment to apply to all files being labeled; optional, only valid in
SOSLabel. [String]

file File name to act upon; optional. [String]

label Labeled version to operate on in SourceSafe. [String]

localpath Override the working directory and get to the specified path;
optional. [Path]

nocache Flag to disable the cache when set; optional, needed if
SOSHOME is set as an environment variable. [Boolean]

nocompress Flag that disables compression when set; optional. [Boolean]

password SourceSafe password; optional. [String]

projectpath SourceSafe project path without the $ prefix; required. [String]

recursive Flag to recursively apply the action (not valid on all SOS tasks);
optional, default false. [Boolean]

soscmd Directory where soscmd is located; optional, soscmd must be on
the path if omitted. [String]

soshome The path to the SourceOffSite home directory. [String]
ANT’S TASKS 603

<soscheckout> Retrieves and locks files in Visual SourceSafe via a SourceOffSite server.

<sosget> Retrieves a read-only copy of the specified project or file from Visual
SourceSafe via a SourceOffSite server.

sosserverpath Address and port of SourceOffSite Server. [String]

username SourceSafe username; required. [String]

verbose Enable verbose output; optional, default false. [Boolean]

version A version number to get—only works with the SOSGet on a file;
optional. [String]

vssserverpath Path to the location of the ss.ini file; required. [String]

comment Comment to apply to all files being labelled; optional, only valid in
SOSLabel. [String]

file File name to act upon; optional. [String]

label Labeled version to operate on in SourceSafe. [String]

localpath Override the working directory and get to the specified path;
optional. [Path]

nocache Flag to disable the cache when set; optional needed if SOSHOME is
set as an environment variable. [Boolean]

nocompress Flag that disables compression when set; optional. [Boolean]

password SourceSafe password; optional. [String]

projectpath SourceSafe project path without the $ prefix; required. [String]

recursive Flag to recursively apply the action (not valid on all SOS tasks);
optional, default false. [Boolean]

soscmd Directory where soscmd is located; optional, soscmd must be on
the path if omitted. [String]

soshome The path to the SourceOffSite home directory. [String]

sosserverpath Address and port of SourceOffSite Server, e.g. [String]

username SourceSafe username; required. [String]

verbose Enable verbose output; optional, default false. [Boolean]

version A version number to get—only works with the SOSGet on a file;
optional. [String]

vssserverpath Path to the location of the ss.ini file; required. [String]

comment Comment to apply to all files being labelled; optional, only valid in
SOSLabel. [String]

file File name to act upon; optional. [String]

label Labeled version to operate on in SourceSafe. [String]

localpath Override the working directory and get to the specified path;
optional. [Path]

nocache Flag to disable the cache when set; optional, needed if SOSHOME is
set as an environment variable. [Boolean]

nocompress Flag that disables compression when set; optional. [Boolean]

password SourceSafe password; optional. [String]

projectpath SourceSafe project path without the $ prefix; required. [String]
604 APPENDIX E ANT TASK REFERENCE

<soslabel> Labels Visual SourceSafe files via a SourceOffSite server.

<sound> Plays a sound file at the end of the build, according to whether the build
failed or succeeded.

recursive Flag to recursively apply the action (not valid on all SOS tasks);
optional, default false. [Boolean]

soscmd Directory where soscmd is located; optional, soscmd must be on
the path if omitted. [String]

soshome The path to the SourceOffSite home directory. [String]

sosserverpath Address and port of SourceOffSite Server, e.g. [String]

username SourceSafe username; required. [String]

verbose Enable verbose output; optional, default false. [Boolean]

version A version number to get—only works with the SOSGet on a file;
optional. [String]

vssserverpath Path to the location of the ss.ini file; required. [String]

comment Comment to apply to all files being labelled; optional, only valid in
SOSLabel. [String]

file File name to act upon; optional. [String]

label Labeled version to operate on in SourceSafe. [String]

localpath Override the working directory and get to the specified path;
optional. [Path]

nocache Flag to disable the cache when set; optional, needed if
SOSHOME is set as an environment variable. [Boolean]

nocompress Flag that disables compression when set; optional, default.
[Boolean]

password SourceSafe password; optional. [String]

projectpath SourceSafe project path without the $ prefix; required. [String]

recursive Flag to recursively apply the action (not valid on all SOS tasks);
optional, default false. [Boolean]

soscmd Directory where soscmd is located; optional, soscmd must be
on the path if omitted. [String]

soshome The path to the SourceOffSite home directory. [String]

sosserverpath Address and port of SourceOffSite Server, e.g. [String]

username SourceSafe username; required. [String]

verbose Enable verbose output; optional, default false. [Boolean]

version A version number to get—only works with the SOSGet on a file;
optional. [String]

vssserverpath Path to the location of the ss.ini file; required. [String]

<fail> Adds a sound when the build fails.

<success> Adds a sound when the build succeeds.
ANT’S TASKS 605

<splash> Creates a splash screen.

<sql> Executes a series of SQL statements on a database using JDBC. SQL
commands, may optionally be nested as text data.

imageurl A URL pointing to an image to display; optional, default
antlogo.gif from the classpath. [String]

password Proxy password; required if user is set. [String]

port Proxy port; optional, default 80. [String]

proxy Name of proxy; optional. [String]

showduration How long to show the splash screen in milliseconds, optional;
default 5000 ms. [Integer]

user Proxy user; optional, default=none. [String]

append Sets whether output should be appended to or overwrite an
existing file. [Boolean]

autocommit Auto commit flag for database connection; optional, default
false. [Boolean]

caching Caching loaders/driver. [Boolean]

classpath Classpath for loading the driver. [Path]

classpathref Classpath for loading the driver using the classpath reference.
[Reference]

delimiter Delimiter that separates SQL statements; optional, default
";". [String]

delimitertype Delimiter type: normal or row (default normal). [normal, row]

driver Class name of the JDBC driver; required. [String]

encoding File encoding to use on the SQL files read in. [String]

onerror Action to perform when statement fails; default is abort.
[continue, stop, abort]

output Output file; optional, defaults to the Ant log. [File]

password Password; required. [String]

print Print result sets from the statements; optional, default false.
[Boolean]

rdbms Execute task only if the lowercase product name of the DB
matches this. [String]

showheaders Print headers for result sets from the statements; optional,
default true. [Boolean]

src Name of the SQL file to be run. [File]

url Database connection URL; required. [String]

userid User name for the connection; required. [String]

version Version string, execute task only if rdbms version matches;
optional. [String]

<classpath> Adds a path to the classpath for loading the driver. [Path]

<fileset> Adds a set of files (nested fileset attribute). [Fileset]

<transaction> Adds an SQL transaction to execute.
606 APPENDIX E ANT TASK REFERENCE

<stcheckin> Checks files into a StarTeam project.

<stcheckout> Checks out files from a StarTeam project.

adduncontrolled If true, any files or folders NOT in StarTeam will be added to the
repository. [Boolean]

comment Optional checkin comment to be saved with the file. [String]

createfolders Value of createFolders. [Boolean]

excludes Declare files to exclude. [String]

forced Flag to force actions regardless of the status that StarTeam
is maintaining for the file; optional, default false. [Boolean]

includes Declare files to include. [String]

password Password to be used for login; required. [String]

projectname Name of the StarTeam project to be acted on; required if url is
not set. [String]

recursive Flag to set to include files in subfolders in the operation;
optional, default true. [Boolean]

rootlocalfolder Local folder that will be the root of the tree to which files are
checked out; optional. [String]

rootstarteam-
folder

Root of the subtree in the StarTeam repository from which to
work; optional. [String]

servername Name of StarTeamServer; required if url is not set. [String]

serverport Port number of the StarTeam connection; required if url is not
set. [String]

unlocked Set to do an unlocked checkout; optional, default is false; If true,
file will be unlocked so that other users may change it. [Boolean]

url Server name, server port, project name and project folder in one
shot; optional, but the server connection must be specified
somehow. [String]

username Name of the StarTeam user, needed for the connection. [String]

viewname Name of the StarTeam view to be acted on; required if url
is not set. [String]

create-
workingdirs

Flag (defaults to true) to create all directories that are in the
Starteam repository even if they are empty. [Boolean]

delete-
uncontrolled

Should all local files not in StarTeam be deleted? Optional,
defaults to true. [Boolean]

excludes Declare files to exclude. [String]

forced Flag to force actions regardless of the status that StarTeam is
maintaining for the file; optional, default false. [Boolean]

includes Declare files to include. [String]

label Label StarTeam is to use for checkout; defaults to the most
recent file. [String]

locked Set to do a locked checkout; optional default is false. [Boolean]

password Password to be used for login; required. [String]

projectname Name of the StarTeam project to be acted on; required if url is
not set. [String]

recursive Flag to set to include files in subfolders in the operation;
optional, default true. [Boolean]
ANT’S TASKS 607

<stlabel> Creates a view label in StarTeam at the specified view.

<stlist> Produces a listing of the contents of the StarTeam repository at the spec-
ified view and StarTeamFolder.

rootlocalfolder Local folder that will be the root of the tree to which files are
checked out; optional. [String]

rootstarteam-
folder

Root of the subtree in the StarTeam repository from which to
work; optional. [String]

servername Name of StarTeamServer; required if url is not set. [String]

serverport Port number of the StarTeam connection; required if url is not
set. [String]

unlocked Set to do an unlocked checkout. [Boolean]

url Server name, server port, project name, and project folder
in one shot; optional, but the server connection must be
specified somehow. [String]

username Name of the StarTeam user, needed for the connection. [String]

viewname Name of the StarTeam view to be acted on; required if url
is not set. [String]

description Optional description of the label to be stored in the StarTeam
project. [String]

label The name to be given to the label; required. [String]

lastbuild The timestamp of the build that will be stored with the label;
required. [String]

password Password to be used for login; required. [String]

projectname Name of the StarTeam project to be acted on; required if url
is not set. [String]

servername Name of StarTeamServer; required if url is not set. [String]

serverport Port number of the StarTeam connection; required if url is not
set. [String]

url Server name, server port, project name and project folder in one
shot; optional, but the server connection must be specified
somehow. [String]

username Name of the StarTeam user, needed for the connection. [String]

viewname Name of the StarTeam view to be acted on; required if url is not
set. [String]

excludes Declare files to exclude. [String]

forced Flag to force actions regardless of the status that StarTeam is
maintaining for the file; optional, default false. [Boolean]

includes Declare files to include. [String]

label List files, dates, and statuses as of this label; optional. [String]

password Password to be used for login; required. [String]

projectname Name of the StarTeam project to be acted on; required if url
is not set. [String]

recursive Flag to set to include files in subfolders in the operation;
optional, default true. [Boolean]
608 APPENDIX E ANT TASK REFERENCE

<style> See <xslt>.

<stylebook> Executes the Apache Stylebook documentation generator.

rootlocalfolder Local folder that will be the root of the tree to which files are
checked out; optional. [String]

rootstarteam-
folder

Root of the subtree in the StarTeam repository from which to
work; optional. [String]

servername Name of StarTeamServer; required if url is not set. [String]

serverport Port number of the StarTeam connection; required if url is not
set. [String]

url Server name, server port, project name, and project folder in
one shot; optional, but the server connection must be specified
somehow. [String]

username Name of the StarTeam user, needed for the connection. [String]

viewname Name of the StarTeam view to be acted on; required if url is
not set. [String]

append If true, append output to existing file. [Boolean]

book The book xml file that the documentation generation starts
from; required. [File]

classname Java class to execute. [String]

classpath Classpath to be used when running the Java class. [Path]

classpathref Classpath to use, by reference. [Reference]

dir The working directory of the process. [File]

failonerror If true, then fail if the command exits with a returncode other
than 0. [Boolean]

fork If true, execute in a new VM. [Boolean]

jar The location of the JAR file to execute. [File]

jvm Command used to start the VM (only if not forking). [String]

jvmargs Command-line arguments for the JVM. [String]

jvmversion JVM version. [String]

loaderconfig A loader configuration to send to stylebook; optional. [String]

maxmemory Corresponds to -mx or -Xmx depending on VM version. [String]

newenvironment If true, use a completely new environment. [Boolean]

output File the output of the process is redirected to. [File]

skindirectory The directory that contains the stylebook skin; required. [File]

targetdirectory The destination directory where the documentation is
generated; required. [File]

timeout Timeout in milliseconds after which the process will be killed.
[Long]

<arg> Adds a command-line argument.

<classpath> Adds a path to the classpath. [Path]

<env> Adds an environment variable.

<jvmarg> Adds a JVM argument.

<sysproperty> Adds a system property.
ANT’S TASKS 609

<tar>* Creates a tar archive.

<taskdef> Adds a task definition to the current project, such that this new task can
be used in the current project.

<telnet> Task to automate a telnet session or other TCP connection to a server.

<tempfile> This task sets a property to the name of a temporary file.

basedir This is the base directory to look in for things to tar. [File]

compression Set compression method. [none, gzip, bzip2]

destfile Set is the name/location of where to create the tar file. [File]

longfile Set how to handle long files, those with a path>100 chars.
[warn, fail, truncate, gnu, omit]

<tarfileset> Adds a new fileset with the option to specify permissions.

classname The full class name of the object being defined. [String]

classpath Classpath to be used when searching for component being
defined. [Path]

classpathref Reference to a classpath to use when loading the files.
[Reference]

file Name of the property file to load Ant name/classname pairs
from. [File]

loaderref Use the reference to locate the loader. [Reference]

name Name of the property resource to load Ant name/classname
pairs from. [String]

resource Name of the property resource to load Ant name/classname
pairs from. [String]

<classpath> Creates the classpath to be used when searching for
component being defined. [Path]

initialcr Send a carriage return after connecting; optional, defaults to false.
[Boolean]

password The login password to use; required if userid is set. [String]

port TCP port to connect to; default is 23. [Integer]

server Hostname or address of the remote server. [String]

timeout Default timeout in seconds to wait for a response, zero means
forever (the default). [Integer]

userid The login ID to use on the server; required if password is set.
[String]

<read> A string to wait for from the server.

<write> Adds text to send to the server.

destdir Destination directory. [File]

prefix Optional prefix string. [String]

property The property you wish to assign the temporary file to. [String]

suffix Suffix string for the temp file (optional). [String]
610 APPENDIX E ANT TASK REFERENCE

<touch> Touches a file and/or fileset(s); corresponds to the Unix touch command.

<translate>* Translates text embedded in files using Resource Bundle files.

<tstamp> Sets properties to the current time, or offsets from the current time.

<typedef> Adds a data type definition to the current project.

datetime The new modification time of the file in the format MM/DD/
YYYY HH:MM AM or PM; optional, default=now. [String]

file Single source file to touch. [File]

millis The new modification time of the file in milliseconds since
midnight Jan 1, 1970. [Long]

<fileset> Adds a set of files to touch. [Fileset]

bundle Sets family name of resource bundle; required. [String]

bundlecountry Sets locale-specific country of resource bundle; optional.
[String]

bundleencoding Sets Resource Bundle file encoding scheme; optional. [String]

bundlelanguage Sets locale-specific language of resource bundle; optional.
[String]

bundlevariant Sets locale-specific variant of resource bundle; optional. [String]

destencoding Sets destination file encoding scheme; optional. [String]

endtoken Sets ending token to identify keys; required. [String]

forceoverwrite Sets whether to overwrite existing file irrespective of whether it
is newer than the source file as well as the resource bundle file.
[Boolean]

srcencoding Sets source file encoding scheme; optional, defaults to
encoding of local system. [String]

starttoken Sets starting token to identify keys; required. [String]

todir Sets destination directory; required. [File]

<fileset> Adds a set of files to translate as a nested fileset element.
[Fileset]

prefix Prefix for the properties. [String]

<format> Creates a custom format with the current prefix.

classname The full class name of the object being defined. [String]

classpath Classpath to be used when searching for component being
defined. [Path]

classpathref Reference to a classpath to use when loading the files. [Reference]

file Name of the property file to load Ant name/classname
pairs from. [File]

loaderref Use the reference to locate the loader. [Reference]

name Name of the property file to load Ant name/classname
pairs from. [String]

resource Name of the property resource to load Ant name/classname
pairs from. [String]

<classpath> Creates the classpath to be used when searching for
component being defined. [Path]
ANT’S TASKS 611

<unjar> See <unzip>.

<untar> Untars a file.

<unwar> See <unzip>.

<unzip> Unzip a file.

<uptodate> Sets the given property if the specified target has a timestamp greater
than all of the source files.

<vajexport> Exports packages from the Visual Age for Java workspace.

compression Set decompression algorithm to use; default=none.
[none, gzip, bzip2]

dest Destination directory. [File]

overwrite If true, overwrite files in dest, even if they are newer
than the corresponding entries in the archive. [Boolean]

src Path to tar file. [File]

<fileset> Adds a fileset. [Fileset]

<patternset> Adds a patternset. [Patternset]

dest Destination directory. [File]

overwrite Should the task overwrite files in dest, even if they are newer
than the corresponding entries in the archive? [Boolean]

src Path to Zip file. [File]

<fileset> Adds a fileset. [Fileset]

<patternset> Adds a patternset. [Patternset]

property The property to set if the target file is more up-to-date than
(each of) the source file(s). [String]

srcfile The file that must be older than the target file if the property
is to be set. [File]

targetfile The file which must be more up-to-date than (each of) the
source file(s) if the property is to be set. [File]

value The value to set the named property to if the target file is more
up-to-date than (each of) the source files. [String]

<mapper> Defines source to target mapping. [Mapper]

<srcfiles> Adds fileset to the source files. [Fileset]

defaultexcludes Sets whether default exclusions should be used; default true.
[Boolean]

destdir Destination directory into which the selected items should be
exported; required. [File]

excludes Set of exclude patterns. [String]

exportclasses Optional flag to export the class files; default false. [Boolean]

exportdebuginfo Optional flag to export the debug info; default false. [Boolean]

exportresources Optional flag to export the resource file; default true. [Boolean]
612 APPENDIX E ANT TASK REFERENCE

<vajimport> Imports source, class files, and resources to the Visual Age for Java work-
space.

<vajload> Loads specific project versions into the Visual Age for Java workspace.

<vssadd> Adds files to a Microsoft Visual SourceSafe repository.

<vsscheckin> Checks in files to a Microsoft Visual SourceSafe repository.

exportsources Optional flag to export the Java files; default true. [Boolean]

includes Set of include patterns. [String]

overwrite If true, files will be overwritten during export. [Boolean]

remote Name and port of a remote tool server. [String]

<exclude> Adds a name entry on the exclude list.

<include> Adds a name entry on the include list.

defaultexcludes Sets whether default exclusions should be used. [Boolean]

importclasses Flag to import .class files; optional, default false. [Boolean]

importresources Imports resource files (anything that doesn’t end in .class
or .java); optional, default true. [Boolean]

importsources Imports .java files; optional, default true. [Boolean]

project The VisualAge for Java Project name to import into. [String]

remote Name and port of a remote tool server [String]

<fileset> Adds a set of files (nested fileset attribute). [Fileset]

remote Name and port of a remote tool server, optional. [String]

<vajproject> Adds a project description entry on the project list.

autoresponse What to respond with (sets the -I option). [String]

comment Comment to apply; optional. [String]

localpath Local path. [Path]

login The login to use when accessing VSS, formatted as
username, password; optional. [String]

recursive Sets behavior to recursive or nonrecursive. [Boolean]

serverpath Directory where srssafe.ini resides; optional. [String]

ssdir Directory where ss.exe resides; optional. [String]

vsspath SourceSafe path that specifies the project/file(s) you wish
to perform the action on; required. [String]

writable Leave added files writable? Default: false. [Boolean]

autoresponse What to respond with (sets the -I option). [String]

comment Comment to apply; optional. [String]

localpath Local path. [Path]

login The login to use when accessing VSS, formatted as
username,password; optional. [String]

recursive Flag to tell the task to recurse down the tree; optional,
default false. [Boolean]
ANT’S TASKS 613

<vsscheckout> Checks out files from a Microsoft Visual SourceSafe repository.

<vsscp> Performs CP (Change Project) commands on a Microsoft Visual Source-
Safe repository.

<vsscreate> Creates a new project in a Microsoft Visual SourceSafe repository.

serverpath Directory where srssafe.ini resides; optional. [String]

ssdir Directory where ss.exe resides; optional. [String]

vsspath SourceSafe path that specifies the project/file(s) you wish
to perform the action on; required. [String]

writable Leave checked in files writable? Default: false. [Boolean]

autoresponse What to respond with (sets the -I option). [String]

date Date to get. [String]

label Label to get. [String]

localpath Local path. [Path]

login The login to use when accessing VSS, formatted as
username,password; optional. [String]

recursive Flag to tell the task to recurse down the tree; optional,
default false. [Boolean]

serverpath Directory where srssafe.ini resides; optional. [String]

ssdir Directory where ss.exe resides; optional. [String]

version Version to get; optional. [String]

vsspath SourceSafe path which specifies the project/files you wish
to perform the action on; required. [String]

autoresponse What to respond with (sets the -I option). [String]

login The login to use when accessing VSS, formatted as
username,password; optional. [String]

serverpath Directory where srssafe.ini resides; optional. [String]

ssdir Directory where ss.exe resides; optional. [String]

vsspath SourceSafe path that specifies the project/files you wish
to perform the action on; required. [String]

autoresponse What to respond with (sets the -I option). [String]

comment Comment to apply in SourceSafe. [String]

failonerror Sets whether task should fail if there is an error creating
the project; optional, default true. [Boolean]

login The login to use when accessing VSS, formatted as
username,password; optional. [String]

quiet Sets/clears quiet mode; optional, default false. [Boolean]

serverpath Directory where srssafe.ini resides; optional. [String]

ssdir Directory where ss.exe resides; optional. [String]

vsspath SourceSafe path that specifies the project/files you wish
to perform the action on; required. [String]
614 APPENDIX E ANT TASK REFERENCE

<vssget> Gets files from a Microsoft Visual SourceSafe repository.

<vsshistory> Gets a change history from a Microsoft Visual SourceSafe repository.

<vsslabel> Labels files in a Microsoft Visual SourceSafe repository.

autoresponse What to respond with (sets the -I option). [String]

date Date to get; optional. [String]

label Label to get; optional. [String]

localpath Overrides the working directory to get to the specified path;
optional. [Path]

login The login to use when accessing VSS, formatted as
username,password; optional. [String]

quiet Flag to suppress output when true; false by default. [Boolean]

recursive Flag to tell the task to recurse down the tree; optional,
default false. [Boolean]

serverpath Directory where srssafe.ini resides; optional. [String]

ssdir Directory where ss.exe resides; optional. [String]

version Version number to get; optional. [String]

vsspath SourceSafe path that specifies the project/files you wish to
perform the action on; required. [String]

writable Makes fetched files writable; optional, default false. [Boolean]

dateformat Format of dates in fromdate and todate; optional. [String]

fromdate Start date for the comparison of two versions; optional. [String]

fromlabel Start label; optional. [String]

login The login to use when accessing VSS, formatted as
username,password; optional. [String]

numdays Number of days for comparison; optional. [Integer]

output Output file name for the history; optional. [File]

recursive Flag to tell the task to recurse down the tree; optional,
default false. [Boolean]

serverpath Directory where srssafe.ini resides; optional. [String]

ssdir Directory where ss.exe resides; optional. [String]

style Specify the output style; optional. [brief, codediff,
nofile, default]

todate End date for the comparison of two versions; optional. [String]

tolabel End label; optional. [String]

user Name the user whose changes we would like to see;
optional. [String]

vsspath SourceSafe path that specifies the project/files you wish to
perform the action on; required. [String]

autoresponse What to respond with (sets the -I option). [String]

comment The comment to use for this label; optional. [String]

label Label to apply; required. [String]

login The login to use when accessing VSS, formatted as
username,password; optional. [String]
ANT’S TASKS 615

<waitfor> Waits for a nested condition to become valid.

<war>* An extension of <jar> to create a WAR archive.

serverpath Directory where srssafe.ini resides; optional. [String]

ssdir Directory where ss.exe resides; optional. [String]

version Name of an existing file or project version to label; optional.
[String]

vsspath SourceSafe path that specifies the project/files you wish to
perform the action on; required. [String]

checkevery Time between each check. [Long]

checkeveryunit Check every time unit. [millisecond, second, minute,
hour, day, week]

maxwait Maximum length of time to wait. [Long]

maxwaitunit Max wait time unit. [millisecond, second, minute, hour,
day, week]

timeoutproperty Name of the property to set after a timeout. [String]

<and> True if all nested conditions evaluate to true.

<available> Identical to the <available> task.

<checksum> Identical to the <checksum> task.

<contains> Tests whether one string contains another.

<equals> Tests whether two strings are equal.

<filesmatch> Tests that two files match, byte for byte.

<http> Checks for a valid response from a web server of a specified
URL.

<isfalse> Tests whether a string value is not <istrue>.

<isset> Tests whether a property has been set.

<istrue> Tests whether a string evaluates to “true”, “on”, or “yes”.

<not> Negates results of single nested condition.

<or> True if one nested condition is true.

<os> Tests whether the current operating system is of a given type.

<socket> Checks for the existence of a TCP/IP listener at the specified
host and port.

<uptodate> Identical to the <uptodate> task.

basedir Directory from which to archive files; optional. [File]

compress Sets whether to compress the files or only store them; optional,
default=true;. [Boolean]

destfile The file to create; required. [File]

duplicate Sets behavior for when a duplicate file is about to be added.
[add, preserve, fail]

encoding Encoding to use for file names, defaults to the platform’s default
encoding. [String]

filesonly If true, emulates Sun’s JAR utility by not adding parent
directories; optional, defaults to false. [Boolean]

index Sets whether to create an index list for classes. [Boolean]
616 APPENDIX E ANT TASK REFERENCE

<wljspc>* Precompiles JSPs using WebLogic’s JSP compiler (weblogic.jspc).

<wlrun> Starts a WebLogic server.

manifest The manifest file to use. [File]

update If true, updates an existing file, otherwise overwrites any
existing one; optional, defaults to false. [Boolean]

webxml Deployment descriptor to use (WEB-INF/web.xml);
required unless update is true. [File]

whenempty Sets behavior of the task when no files match.
[fail, skip, create]

<classes> Adds files under WEB-INF/classes. [ZipFileset]

<fileset> Adds a set of files. [Fileset]

<lib> Adds files under WEB-INF/lib/. [ZipFileset]

<manifest> Allows the manifest for the archive file to be provided
inline in the build file rather than in an external file.

<metainf> Adds a zipfileset to include in the META-INF directory.
[ZipFileset]

<webinf> Files to add under WEB-INF. [ZipFileset]

<zipfileset> Adds a set of files that can be read from an archive and be given
a prefix/fullpath. [ZipFileset]

<zipgroup-
fileset>

Adds a group of Zip files. [Fileset]

classpath Classpath to be used for this compilation. [Path]

dest Directory containing the source JSPs. [File]

package Package under which the compiled classes go. [String]

src Directory containing the source JSPs. [File]

<classpath> Adds a path to the classpath. [Path]

args Additional argument string passed to the WebLogic instance;
optional. [String]

beahome The location of the BEA Home; implicitly selects WebLogic 6.0;
optional. [File]

classpath The classpath to be used with the Java Virtual Machine that
runs the WebLogic Server; required. [Path]

domain Domain to run in; required for WL6.0. [String]

home The location where WebLogic lives. [File]

jvmargs Additional arguments to pass to the WebLogic JVM. [String]

name The name of the WebLogic server within the WebLogic home
that is to be run. [String]

password Management password of the server; optional and only
applicable to WL6.0. [String]

pkpassword Private key password so the server can decrypt the SSL private
key file; optional and only applicable to WL6.0. [String]

policy The name of the security policy file within the WebLogic home
directory that is to be used. [String]

properties The name of the server’s properties file within the WebLogic
home directory used to control the WebLogic instance;
required for WL4.5.1. [String]
ANT’S TASKS 617

<wlstop> Shuts down a WebLogic server.

<wsdltodotnet> Converts a WSDL file or URL resource into a .NET language.

<xmlproperty> Loads property values from a valid XML file, generating the property
names from the file’s element and attribute names.

username Management username to run the server; optional and only
applicable to WL6.0. [String]

weblogicmain-
class

Name of the main class for WebLogic; optional. [String]

wlclasspath WebLogic classpath used by the WebLogic server; optional,
and only applicable to WL4.5.1. The WebLogic classpath is
used by WebLogic to support dynamic class loading. [Path]

<classpath> Adds the classpath for the user classes. [Path]

<wlclasspath> Gets the classpath to the WebLogic classpaths. [Path]

beahome The location of the BEA Home; implicitly selects WebLogic 6.0
shutdown; optional. [File]

classpath The classpath to be used with the Java Virtual Machine that runs
the WebLogic Shutdown command;. [Path]

delay Delay (in seconds) before shutting down the server; optional. [String]

password The password for the account specified in the user parameter;
required. [String]

url URL to which the WebLogic server is listening for T3 connections;
required. [String]

user The username of the account that will be used to shut down the
server; required. [String]

<classpath> The classpath to be used with the Java Virtual Machine that runs
the WebLogic Shutdown command. [Path]

destfile Name of the file to generate. [File]

extraoptions Any extra WSDL.EXE options that aren’t explicitly supported by
the Ant wrapper task; optional. [String]

failonerror Should failure halt the build? Optional, default=true. [Boolean]

language Language; default is CS, generating C# source. [CS, JS, or VB]

namespace Namespace to place the source in. [String]

server Flag to enable server-side code generation; optional,
default=false. [Boolean]

srcfile The local WSDL file to parse; either url or srcfile
is required. [File]

url URL to fetch. [String]

collapseat-
tributes

Flag to treat attributes as nested elements; optional,
default false. [Boolean]

file The XML file to parse; required. [File]

keeproot Flag to include the XML root tag as a first value in the
property name; optional, default is true. [Boolean]

prefix The prefix to prepend to each property. [String]

validate Flag to validate the XML file; optional, default false. [Boolean]
618 APPENDIX E ANT TASK REFERENCE

<xmlvalidate> Checks whether XML files are valid (or only well formed).

<xslt>* Processes a set of XML documents via XSLT.

classname Specify the class name of the SAX parser to be used. [String]

classpath Specify the classpath to be searched to load the parser
(optional). [Path]

classpathref Where to find the parser class; optional. [Reference]

failonerror Specify how parser errors are to be handled; optional, default is
true. [Boolean]

file Specify the file to be checked; optional. [File]

lenient Specify whether the parser should be validating. [Boolean]

warn Specify how parser error are to be handled. [Boolean]

<classpath> No description. [Path]

<dtd> Creates a DTD location record; optional.

<fileset> Specifies a set of files to be checked. [Fileset]

<xmlcatalog> Adds an XMLCatalog as a nested element; optional.
[XMLCatalog]

basedir Base directory; optional, default is the project’s basedir. [File]

classpath Optional classpath to the XSL processor. [Path]

classpathref Reference to an optional classpath to the XSL processor.
[Reference]

destdir Destination directory into which the XSL result files should be
copied to; required, unless in and out are specified. [File]

extension Desired file extension to be used for the target; optional, default
is html. [String]

force Sets whether to check dependencies, or always generate;
optional, default is false. [Boolean]

in Specifies a single XML document to be styled. [File]

out Specifies the output name for the styled result from the
in attribute; required if in is set. [File]

processor Name of the XSL processor to use; optional, default is trax.
[String]

scanincluded-
directories

Sets whether to style all files in the included directories as well;
optional, default is true. [Boolean]

style Name of the stylesheet to use—given either relative to the
project’s basedir or as an absolute path; required. [String]

<classpath> Optional classpath to the XSL processor. [Path]

<outputproperty> Specifies how you wish the result tree to be output.

<param> Creates an instance of an XSL parameter.

<xmlcatalog> Adds the catalog to our internal catalog. [XMLCatalog]
ANT’S TASKS 619

<zip>* Creates a Zip file.

basedir Directory from which to archive files; optional. [File]

compress Sets whether to compress the files or only store them; optional,
default=true;. [Boolean]

destfile The file to create; required. [File]

duplicate Sets behavior for when a duplicate file is about to be added.
[add, preserve, fail]

encoding Encoding to use for file names, defaults to the platform’s default
encoding. [String]

filesonly If true, emulates Sun’s JAR utility by not adding parent
directories; optional, defaults to false. [Boolean]

update If true, updates an existing file, otherwise overwrites
any existing one; optional, defaults to false. [Boolean]

whenempty Sets behavior of the task when no files match.
[fail, skip, create]

<fileset> Adds a set of files. [Fileset]

<zipfileset> Adds a set of files that can be read from an archive and be given
a prefix/fullpath. [ZipFileset]

<zipgroup-
fileset>

Adds a group of Zip files. [Fileset]
620 APPENDIX E ANT TASK REFERENCE

621

resources

All URLs listed here were valid at the time of publishing. No doubt some of these
change over time. Some of the least stable URLs have been listed by providing the
URL of their home server, from where a search may find the document.

WORKS CITED

In print

Beck, Kent. Extreme Programming Explained: Embrace Change. Addison-Wesley Longman, 1999.

Bloch, Joshua. Effective Java Programming Language Guide. Addison-Wesley, 2001.
A thorough treatise on Java programming idioms.

Fowler, Martin, et al. Refactoring: Improving the Design of Existing Code. Addison-Wesley, 1999.

Gamma, Erich et al. Design Patterns. Addison-Wesley, 1995. The Gang of Four book.

Graham, Steve, ed., et al. BuildingWeb Services with Java: Making Sense of XML, SOAP, WSDL,
and UDDI. Sams, 2001.

Hightower, Richard, and Nicholas Lesiecki. Java Tools for Extreme Programming: Mastering
Open Source Tools, including Ant, JUnit, and Cactus. John Wiley & Sons, 2001.
An excellent introduction to the tools used by Java developers. Erik contributed a case
study on HttpUnit.

Hunt, Andrew, and David Thomas. The Pragmatic Programmer: From Journeyman to Master.
Addison-Wesley, 2000.
A must-read for all developers.

Jeffries, Ron, et al. Extreme Programming Installed. Addison-Wesley, 2000.

Krutchen, Philippe. The Rational Unified Process: An Introduction, 2nd ed. Addison-Wesley, 1999.

Roman, Ed, et al. Mastering Enterprise JavaBeans, 2nd ed. John Wiley & Sons, 2002.

Wesley, Ajamu A. Programming Web Services with Java. Manning Publications, 2002.

Vermeulen, Al, ed., et al. The Elements of Java Style. Cambridge University Press, 2000.

622 RESOURCES

Online

Almaer, Dion. Using XDoclet: Developing EJBs with Just the Bean Class. 2002.
http://www.onjava.com/pub/a/onjava/2002/01/30/xdoclet.html

Ambler, Scott. The Enterprise Unified Process. Integrating deployment with the iterative devel-
opment stage. 2001.
http://www.ronin-intl.com/publications/unifiedProcess.htm

AntFAQ. Frequently Asked Questions about Ants. 2000.
http://www.antcolony.org/FAQ2.htm

Bray, Tim. The Annotated XML Specification. 1998.
If you have to read the XML specification, this is the version to read.
http://www.xml.com/axml/testaxml.htm

Dorigo. 2000
http://iridia.ulb.ac.be/~mdorigo/ACO/RealAnts.html.

Fielding, Roy Thomas. Architectural Styles and the Design of Network-based Software Architectures.
Ph.D. Dissertation, University of California, 2000.
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

Fowler, Martin and Matthew Foemmel. Continuous Integration. 2000.
http://www.martinfowler.com/articles/continuousIntegration.html

Free Software Foundation. GNU Make Manual.
http://www.gnu.org/manual/make/index.html

Hatcher, Erik. Automating the build and test process. 2001.
http://www.ibm.com/developerworks/java/library/j-junitmail/

Koeritz, Chris. Clam. 2001.
http://www.gruntose.com/build/clam/manual/clam_root.html

Liang, Sheng. The Java Native Interface Programmer’s Guide and Specification. 1999.
http://java.sun.com/docs/books/jni/

Loughran, Steve. Ant in Anger: Using Ant in a Production Environment. Apache. 2000.
http://jakarta.apache.org/ant/ant_in_anger.html

Loughran, Steve. When Web Services Go Bad,. Web Services Developer’s Conference. 2002 (1).
http://www.iseran.com/Steve/papers.html

Loughran, Steve. Making Web Services that Work. To be published as an HP Laboratories
Technical Report. 2002 (2).
http://www.iseran.com/Steve/papers.html

Neward, Ted. Understanding Class.forName (). 2000.
This explains why extension libraries confuse programs.
http://www.develop.com/

Neward, Ted. (2001) X-Power: Use XML to Write Papers.
http://www.javageeks.com/Papers/PapersXSLFO/

RESOURCES 623

Sun. Code Conventions for the Java Programming Language. 2000.
http://java.sun.com/docs/codeconv/

Sun. Java Native Interface. 2002.
http://java.sun.com/j2se/1.4/docs/guide/jni/

Sun. Endorsed Standards Override Mechanism. 2002.
http://java.sun.com/j2se/1.4/docs/guide/standards/

Sitepen. Using JavaScript with Ant. 2002.
http://www.sitepen.com/ant/javascript.html

Tomcat. Tomcat Manager How-To. 2002.
http://jakarta.apache.org/tomcat/tomcat-4.1-doc/manager-howto.html

ADDITIONAL RESOURCES

In print

Brand, Stewart. How Buildings Learn: What Happens After They’re Built. Viking Penguin, 1994.
In an indirect way, this is the best guide ever to designing applications that last.

Eckel, Bruce. Thinking in Java. Prentice Hall PTR, 2000.
Online copy: http://www.mindview.net/Books.

McConnell, Steve C. Rapid Development: Taming Wild Software Schedules. Microsoft Press, 1996.
The most readable of all the modern software development books.

Shirazi, Jack. Java Performance Tuning. O’Reilly & Associates, 2000.
How to make your Java applications go farther, and equally important, insight into how
the various JVMs work.

Tremper, Bruce Staying Alive in Avalanche Terrain. Mountaineers Books, 2001.
Software projects, Alpine mountaineering: it’s all about risk management.

Online

(ECMA-262) ECMAScript Reference, Standard ECMA-262. The JavaScript specification.
http://www.ecma.ch/; search for it by name on that site.

Peltz, Chris. 10 Best Practices for J2EE Development. 2000.
http://www.hpmiddleware.com/newsletters/webservicesnews/features/

Raymond, Erik. The Jargon File. 1981.
The definitive repository of hacker and developer terminology. If you don’t read this,
you will never be able to talk about cargo cult programming or waving a dead chicken
over the source code, among other things.
http://www.tuxedo.org/~esr/jargon/

624 RESOURCES

More online resources

Ant-contrib http://sourceforge.net/projects/ant-contrib/

AntHill http://urbancode.com/
Apache Ant http://jakarta.apache.org/ant/

Apache Axis http://xml.apache.org/axis/

Apache Cactus http://jakarta.apache.org/cactus/
Apache Tomcat Web Server http://jakarta.apache.org/tomcat/

Canoo WebTest http://webtest.canoo.com/

Checkstyle http://checkstyle.sourceforge.net/
Cruise Control http://cruisecontrol.sourceforge.net/

DBForms http://www.dbforms.org/

Dbunit Database Testing Framework http://dbunit.sourceforge.net/
Gump http://jakarta.apache.org/gump/

Jakarta Tomcat http://jakarta.apache.org/tomcat/

JBoss Application Server http://jboss.org/
JOnAS Application Server http://www.objectweb.org/jonas/

JUnit http://junit.org/

Rant http://sourceforge.net/projects/remoteant/

XDoclet http://xdoclet.sourceforge.net/

index
Symbols
${...}

definition 51
@tags 342

for EJB development with
XDoclet 340

in XDoclet 276

A
addConfiguredXXX 480
addText() 482
addXXX 480
Amber 13
Ant

API 470–473
beyond Java development 21
command line 36–39
command-line options 41
committer 14
concepts 5–7
history 14
how it works underneath 474
installation configuration 527
installing 523
migrating to 209–212
procedures using 182
running remotely via Telnet 453
using for deployment 441
what is 3–5
why use 10–14

<ant> task 213–221, 564
controlling properties 221
used with CruiseControl 392

Ant Console
in Eclipse 541

Ant task
attribute setting 474

backward compatibility 497
character setter 476
developing 467–497
enumerated attribute 477
error handling 486
executing Java main() 490
File setter 476
nested elements 480
numeric attributes 475
Path setter 476
simple example 468
String constructor

extensibility 478
supporting arbitrary attributes and

elements 493
supporting datatype

references 480
supporting text and CDATA 482
testing custom 487
using custom in same build 469
what is 468
wrapping command-line

tool 487–490
ANT_ARGS 527
ANT_HOME 524
ANT_OPTS 527

to set Log4j configuration 506
<antcall> task 182–186, 564
AntClassLoader 478
ant-contrib project 253–257

<cc> task, See <cc> task
Sourceforge project

<propertycopy> 81
Anthill 397–401

installation 398
Antidote 542
<antlr> task 564

<antstructure> task 565
Apache SOAP 343
<apply> task 130, 565

and custom task development 487
<arg> element

passing file paths 40
attrib

executing with <exec> 516
attribute-oriented programming 260
attributes

setting in custom task 474
automating

with operating system 387
<available> task 70–72, 565

checking for class existence 70
checking for file existence 71
checking for resource

availability 72
probing for executables 377
testing custom selector 517
within <condition> 72

Axis
creating proxy classes with

WSDL2Java 360
creating simple web service 364
installing Axis on a web server 363
the many ways to implement a web

service 363
registering Web Service

Deployment Descriptors 382
tools for converting between Java

and WSDL 357
using the WSDL2Java generated

proxy classes 361
Web Service Deployment

Descriptor 382
See also web services 355
625

B

BaseExtendSelector 515
BaseFilterReader 519
<basename> task 566
BaseParamFilterReader 520
Bash

configuring Ant installation 526
BEA

WebLogic, See WebLogic
Bean Scripting Framework

See BSF
<blgenclient> task 336, 566
Bluestone

See HP-AS
Boolean

attribute setters 475
Boolean attributes 50
Borland Application Server 336

and <ejbjar> 339
BSF 499–502
Bugzilla 438
build

failure 27
logging in XML 327
notification, using <sound> 240

build file 5–6
best practices 231–233
design for componentization 544
design for maintenance 545
example 7
examples 189
includes 189
libraries 228
philosophy 200
simple example 24
specifying which to run 42

build log
HTML view 329

Build numbering
See <buildnumber> task

build process 3
JUnit integration 95
and operations 438
what is 4

build tools
Amber 13
Cons 13
Jam 13
Make 11

BuildEvent
list 502

BuildException 487
-buildfile 41
buildFinished event 502

building EAR
See <ear>

BuildListener interface 502
BuildLogger

for log() method calls 471
BuildLogger interface 502
<buildnumber> task 239, 566
buildStarted event 502
built-in task

definition 235
<bunzip2> task 566
<bzip2> task 567

C

C#
compiling, See <csc> task
metadata 275
running a C# program with

<exec> 380
C/C++

compilation using 410
<cab> task 567
Cactus 310–315

how it works 313
test case example 314

Canoo WebTest
See WebTest

Castor 332, 343
Catalina

See Tomcat
<cc> task 410–412

installing 410
supported compilers 411

<cccheckin> task 245, 567
<cccheckout> task 245, 567–568
<ccmcheckout> task 245
<ccmreconfigure> task 568
<ccuncheckout> task 568
<ccupdate> task 245, 569
CDATA 534

withing custom Ant tasks 482
Centipede 231
ChainableReader 519
Checkstyle 248–250

installing 250
<checkstyle> task 249
Checksum

using <condition> 73
<checksum> task 569
<chmod> task 145, 569

testing custom selector 516
class

forName() 478
loading in custom task 478

ClassFileset 66
<classpath>

within <javac> 51
ClearCase 246

tasks 245
code generation

active vs. passive 272
with XDoclet 267

<ccmcheckin> task 245
command line 488

logging options 41
See –logger and -logfile

monitoring build process
See -listener

running multiple targets 36, 38
selecting build file options

See -buildfile
setting properties

See -D and -propertyfile
setting properties from 74

CommonsLoggingListener 503
<concat>

Filelist 65
<concat> task 570
<condition> 72–73
<condition> task 570

determining OS family 516
probing for web service

availability 358
using <filesmatch> for deployment

verification 461
conditional build failure 78
conditional logic

using <condition>, See <condition>
using ant-contrib tasks 255

Cons build system 13
console input 172
Continuous integration

tools comparison 405
continuous integration 386–406
Continuus

tasks 245
<copy>

FilterChain 59
overwrite attribute 58

<copy> task 136–137, 571
<filterset> example 293
deployment 442–443
filtering 299
overwrite attribute 294
overwrite attribute for

deployment 443
preservelastmodified attribute 137
replacing tokens 299
timestamp checking 137
626 INDEX

copying files 136–137
Core task

definition 235
createDynamicElement() 494
createTempFile() 473
createXXX 480
cross-platform

detection using 254
directory and path separators 52

CruiseControl 388–397
architecture 389
logging 395
ModificationSet

See <modificationset> task
notifications 396
using 245

<csc> task 571
compiling C# code 379

Custom task
ant.jar in classpath 51
definition 235

CVS
change log 246
tasks 245

<cvs> task 572
<cvschangelog> task 246, 573
<cvspass> task 573
<cvstagdiff> task 246, 573

D
-D 41
database

manipulation with Torque 250
O/R mapping with Torque 250

datatype
best practices 82–83
ClassFileset 66
element naming conventions 57
Filelist 65
overview 48
references 79
Selectors 56
supporting in custom tasks 481

Datestamp
generating 58

DBForms 309
<ddcreator> task 336, 574
-debug 41
default excludes 53
DefaultLogger 503
defect tracking 438
<delete> task 135–136, 574

warning 136
deleting files. See <delete>
<depend> task 241–243, 574

dependencies
graph 7

dependency checking
beyond <javac>

See <depend> task
using 72

<dependset> task 575
Filelist 65

deployment 163–187
best practices 462–463
configuration files 447
descriptors 436
HTTP URL based 459
integration 439
issues 432–437
to local Tomcat 174
planning 446
precompiled JSP 291
production 431–463
remote upload 450
solving problems 171
supporting different

servers 456–459
task requirements 164
tasks 164
testing 187, 437
vendor-specific libraries 436
verification with timestamps 460
via email 173

directory structure 31
DirectoryScanner 488
<dirname> task 575
Dirset 65
<dirset> 65
documentation

generation 139–145
DTD resolution 321
DynamicConfigurator 493–495

E
<ear> task 575

<zipfileset> 65
build file example 353

EAR files
deployment issues 440

<echo> task 575
as example of CDATA 482

<echoproperties> task 576
Eclipse 541
EJB 333–354

Ant tasks 336
deployment 348–349
deployment descriptor

example 338
JAR 334–335

JAR building with 335
overview 333
See also Enterprise JavaBeans

EJB development
Ant best practices 354
build example 349
deployment descriptor

generation 340
reverse-engineering database 345
supporting multiple vendors/

versions 343
using XDoclet 340–345

<ejbc> task 576
<ejbdoclet> task 341
<ejbjar> task 337–340, 576

<borland> element 339
<iplanet> element 336, 339
<jboss> element 339
<jonas> element 339
<weblogic> element 336, 339
<websphere> element 339
basejarname attribute 339
build file example 353
compared to <jar> task 337
deployment issues 441
descriptordir attribute 339
genericjarsuffix attribute 339
lack of DynamicConfigurator

support 495
srcdir attribute 339
vendor-specific handling 339

-emacs 41–42
emacs 542

mode 503
email

sending attachments 170
sending, See <mail> task

Enterprise JavaBeansSee EJB
entity reference 189
EnumeratedAttribute 477

API 473
environment variables

accessing as properties 69
error handling

in custom tasks 486
errors

common mistakes 27
<exec> task 124, 130, 577

best practices 132
executing attrib on Windows 516
executing shell commands 127
to launch Make 409
for native code compilation 408
probing for program existence 129
setting environment variables 126
INDEX 627

<exec> task (continued)
timeout attribute 127
error handling 126

execute() 468
definition 471

executing programs
best practices 132
limitations 132
native programs 124
processing output 131

extending Ant
writing custom tasks

See Ant tasks, developing
Extensible Markup Language See

XML 331
external programs

executing within Ant 111, 133
eXtreme Programming 16

and unit testing 86

F
–f 41
<fail> task 577

if/unless 78
Filelist 65
files

moving, copying,
deleting 135–139

setting permissions 145
FileSet 488

API 472
in custom task 481
supporting in custom task 485

<fileset>
defaultexcludes attribute 53

fileset 52–54
default excludes 53
resolution 54
selectors 56
See also <fileset>

FileUtils
API 473

<filter> 59
<filter> task 577
<filterchain> 60
FilterChain 59, 517
filtering

See <filterset>
token substitution 138

FilterReaders 59
writing custom 517–520

<filterset>
used to customize web.xml 293

filterset 58

-find 41
-find switch

example 250
<fixcrlf> task 143, 578
Flatten mapper 62
fleset

examples 53
<foreach> task 257
Forte 540
FTP

deployment 442
distribution 171
probing server availability 166
Windows FTP server 166

<ftp> task 166, 578
deployment 452
uploading 171

G
<genkey> task 152, 579
<get> task 170, 579

deployment verification 461
retrieving WSDL from a SOAP

server 359
used for Tomcat deployment 456

getBaseDir() 472
getIncludedFiles() 472
getName() 472
getProperty() 471
Glob mappers 63
GlobPatternMapper 514
Gump 401–405
<gunzip> task 579
<gzip> task 579

H
-help 41
Hexadecimal numbers

as Ant task attributes 478
HP Application Server

See HP-AS
HP-AS 333

deployment 458
<hpas-deploy> task 458
HttpUnit 299–310

running from Ant 303
and WebTest 306

I
<icontract> task 579
IDE 10, 19

debugging integration 42
integration with Ant 536–543
migrating to Ant 211

IDEA 540
Identity mapper 61
<if> task 255
<ilasm> task 580
includeAntRuntime 51
init() 470–471
<input> task 172, 580
-inputhandler 41
<install> task

for Tomcat 4.1 deployment 457
installing Ant 523–531
Integrated Development

Environment
See IDE

IntelliJ IDEA 540
interactive input 172
Internet

retrieving files from 170
introspection

for task population 469, 474
<iplanet-ejbc> task 336
iPlanet Application Server 336

and <ejbjar> 339
<iplanet-ejbc> task 580

J
Jakarta

Commons Logging API 503
Slide 442
Gump, See Gump

Jam 13
<jar> task 148–154, 581

in EJB development 335
<zipfileset> 65

JAR building
See <jar>

JAR files
adding metadata 152
signing 152
testing 149

<jarlib-available> task 581
<jarlib-display> task 581
<jarlib-manifest> task 582
<jarlib-resolve> task 582
Jasper 288
Java

class constants access in Ant 60
dependency checking

See <depend> task
executing

See <java>
executing from within Ant 112,

124
See <java> task
628 INDEX

Java (continued)
executing main() 113
executing programs inside Ant 39
installing SDK 523
metadata specifications 276
package names 32

<java> task 113, 124, 582
<arg> element 115
arguments 40
classpath 114–115
classpathref attribute 115
command-line arguments 115
controlling environment

variables 118
executable JARs 120
executing third-party

programs 121
failonerror attribute 119
forking the JVM 117
JVM parameters 118
probing for class existence 123
running a SOAP client 362
setting system properties 116
timeout attribute 124
used for deployment 459
used in custom task

development 490
Java 1.4

logging using
CommonsLogging–Listener
503

Java Native Interface
building with Ant 412–430

Java programs
wrapped in custom Ant task 490

<javac>
always recompiles 33
attributes 49
deployment issues 440
srcdir 51

<javac> task 583
javac

comparison to <javac> 49
command-line switches 49
See <javac>

JavaCC 243
<javacc> task 243, 584
Javadoc 261

including in distributable 297
See <javadoc> task

<javadoc> task 142, 584
including API docs in WAR 297
using <javadoc> task 142–143
and JDK 1.4 261

<javah> task 587

JavaScript
within Ant

See <script> task
JAXB 332
JBoss 333, 343

and <ejbjar> 339
support in Middlegen 348

JBuilder 542
<jdepend> task 587
jEdit 538
Jikes 49

with CruiseControl 396
<jjtree> task 587
JMS, Java Messaging Service

and Message-Driven Beans 334
JOnAS

and <ejbjar> 339
and <serverdeploy> 348, 443

<jpcoverage> task 588
<jpcovmerge> task 588
<jpcovreport> task 589
JRun 343
JSP

building dynamically from
XML 324

compilation 288–292
compilation with Jasper 288

JSP tag libraries
See Tag libraries

<jspc> task 288, 589
example 289
installing dependencies 289
and WEB-INF 290

JUnit
accessing external resources 93
Ant best practices 109
applying 92–94
architecture 87–91
asserts 88
capturing results in XML 98
compiling test cases 96
extensions 91
installation 91
lifecycle 90
reporting 100–105

See also <junitreport> task
running multiple tests 99
setting system properties 303
test case 88
test runners 88
testing databases 105
testing J2EE in-container code

See Cactus
TestSuite 90
UML diagram 87

and WebTest 306
what is it 85
See also <junit> task

<junit>
capturing results 97
custom results formatter 100
directory structure 94
failures 97
passing configuration information

into 104
result formatters 98
short-circuiting 105
viewing System.out/.err 99
XML formatter 98
and properties 96

<junit> task 94–97, 589
<batchtest> 99
<formatter> 97
conditional test cases 103
errorProperty attribute 102
forking JVM 104
haltonfailure attribute 97
initializing environment 103
issues 108
printsummary attribute 98

JUnitPerf 91
<junitreport> task 100–105, 590

customizing output 102
HTML results 101
running after test failures 102
system requirements 101

JVM
deployment version 433

L

library dependencies
directory structure 196
handling 196–200
installing new version 198
property mappings 197
user overrides 199

line endings
adjusting for platforms 143

-listener 41
using

CommonsLoggingListener 502,
507

listeners 502–513
writing custom 503

<loadfile> task 590
deployment verification 461
FilterChain 59

<loadproperties>
FilterChain 59
INDEX 629

<loadproperties> task 590
log() methods 471
Log4j

and Commons Logging API 503
listener configuration 507
logging build events 506–509

Log4jListener 506
-logfile 41
-logger 41

with MailLogger 513
loggers 502–513

writing custom 509–513
logging levels 471
LogKit

and Commons Logging API 503
LogStreamHandler 488
Lucene 18

using 243

M

MacOS X
and WebDAV 442
localhost issue 448

magic properties
in MailLogger 512

<mail> task 169–170, 591
attributes 169

mail
sending build failure

notification 509
sending complete build log 509

MailLogger 388, 510
Make 11

comparison to Ant 12
computed variable name 81
executing from Ant 409
file dependency counterpart in Ant

See <apply>
migrating to Ant 211
related tools 13

makefile
 See Make

<manifest> task 591
manifests

creating for 150
mappers 61–64

flatten 62
glob 63
identity 61
merge 62
package 64
regexp 63
writing custom 514–515
See <mapper>

MatchingTask 563
<maudit> task 591
Maven 231
Merge mapper 62
messageLogged event 502
Metadata 275
META-INF

in EJB development 336
Microsoft

Visual SourceSafe
See SourceSafe

Microsoft .NET 21
Microsoft Windows

See Windows
Middlegen 19, 345–348

build file example 351
build integration 353

migration to Ant
steps 210

<mimemail> task 592
<mkdir> task 33, 592
<mmetrics> task 592
Mock Objects 91, 310
<modificationset> task

example 392
<move> task 137, 592

FilterChain 59
moving files 137
Mozilla Rhino 499
<mparse> task 593
MSG_DEBUG 471
MSG_ERR 471
MSG_INFO 471
MSG_VERBOSE 471
MSG_WARN 471
MVCSoft 343

N
NAnt

building .NET applications 381
Native programs

wrapped in custom Ant task 487
<native2ascii> task 593
.NET

See also Microsoft .NET
building web service client 376
building with NAnt 381
metadata 275
testing with NUnit 381

NetBeans 540
<netrexxc> task 593
Neward, Ted 21, 327
NoBannerLogger 527
NUnit

testing .NET code 381

O

optional tasks 235–237
Orion 343
<osfamily> task 254

P
<p4add> task 595
<p4change> task 595
<p4counter> task 595
<p4delete> task 596
<p4edit> task 245, 596
<p4have> task 596
<p4label> task 245, 597
<p4reopen> task 597
<p4revert> task 597
<p4submit> task 245, 598
<p4sync> task 245, 598
Package mapper 64
PackageNameMapper 514
packaging 134–162

adding data files 141
install scripts 143
process diagram 135
testing 161

<parallel> task 336, 598
<patch> task 598
path 51–52

API 472
cross-platform handling 52
datatype definition 51
string representation 80
See also <path>

<pathconvert> task 599
Filelist 65

<pathelement> 51
<patternset>

conditional deployment 451
if/unless 78

patternset 54–56
conditional 297
conditional patterns 78
nesting using references 81

pausing the build
See <sleep>

PDF
generation from XML 327

Perforce
tasks 245

Platform-specific
setting property

See <condition>
Pramati 343
production deployment

See deployment
630 INDEX

<project> 25
<description> element 45

project 6
API 471
directory structure 31
example 7
sharing common properties 225

project management 205–233
designing a build process 206–209
directory structure 551
generating to-do lists from

source code 192
implementing processes 232
library management 232
managing subprojects 221–228
master builds 212

-projecthelp 41, 44
properties 66–79

<ant> task 221
best practices 82–83
built-in 66
copying 253
creating property files

See <propertyfile> task
dereferencing 80, 253
<equals> task 72
expansion in attribute setters 475
expansion in attributes 483
expansion in <telnet> 446
immutability exceptions 69
immutability of 69
inheriting 223
<isfalse> 72
<isset> 72
<istrue> 72
loading environment variables 69
loading from properties file 68
loading from XML file 76
magic

See magic properties
manually expanding in

element text 485
override design 223
overriding 68, 74
overriding with <ant> 224
overview 48
prefixing names using

<property> 68
relative paths 68
setting

See <property>
setting to file paths 69
setting value 67
sharing across projects 225

sharing across sub-projects 194
substituting with XDoclet 343
undefined value 71

<property> 67–70, 599
environment variant 69
file variant 68
location variant 69
value variant 67

<propertycopy> task 81, 254
-propertyfile 41
<propertyfile> task 237–239, 599

<entry> element 239
example in web development 298

propertyfile 9
PVCS

task 245
<pvcs> task 245, 599
Python

scripting within Ant
See <script> task

Q

-quiet 41

R

RadPak
See HP-AS

Rant
remotely invoking Ant 383

<rant> task
for executing Ant as a web

service 383
Rational Unified Process 17
ReadOnlySelector 515
<record> task 600
Refactoring 86
References 79–82

inheriting 223
refid attribute 79
Regexp mapper 63
regular expressions

mapper 63
replacing

See <replaceregexp> task
<replace> task 600
replaceProperties() 472
<replaceregexp> task 244–245, 601
replacing tokens

See <copy> task, filtering
resolveFile() 472–473
Rhino

for scripting 499
<rmic> task 601

RPM
installing Ant 525

<rpm> task 602
Ruby, Sam 15
<runservertests> task 311

S
Scarab 438
scheduling

See automating
SCM

ClearCase 245
Continuus 245
CVS, See <cvs> task
Perforce 245
PVCS 245
scheduling 388
SourceOffSite 245
SourceSafe 245
StarTeam 245
tasks 245

<script> task 499–502, 602
generating random number 499
implicit objects 500

scripting within Ant
See <script> task

SDK
installing 523

selectors 56
read-only files 515
writing custom 515–517

self
in 500

<sequential> task 602
server

management 436
shutdown with <telnet> 444

<serverdeploy> task 348, 443, 602
<weblogic> element 336
lack of DynamicConfigurator

support 495
setDynamicAttribute() 494
setNewProperty

used in <script> task 500
setNewProperty() 471
setProject() 483
<setproxy> task 602

using before retrieving a WSDL
file 359

setters
for Ant task population 474

<signjar> task 153, 603
<sleep> task 168, 603

during deployment 449
INDEX 631

SMTP
to send build failure

notifications 509
SMTPAppender

Log4j to send build failure
email 507

SOAP. See web services
Software Configuration Management

See SCM
<soscheckin> task 245, 603
<soscheckout> task 245, 604
<sosget> task 245, 604
<soslabel> task 245, 605
<sound> task 239–241, 605
SourceOffSite, tasks 245
SourceSafe, tasks 245
<splash> task 239–241, 606
SQL

executing with Torque 250
<sql> task 252, 606

creating database 351
SSH, deployment 442
StarTeam, tasks 245
<stcheckin> task 245, 607
<stcheckout> task 245, 607
<stlabel> task 245, 608
<stlist> task 608
Struts 18, 343

code generation using
XDoclet 268

generation using XDoclet 260
library management 198
validating struts-config.xml 319

<style> task 609
See <xslt>
See <xslt> task

<stylebook> task 609
Styler 327
stylesheets

transforming XML build log 328
<switch> task 255

T
Tag libraries 279

creating 280
TLD generation 282

Taglibs. See Tag libraries
<tar> task 158, 610

attributes 159
tar files 158–160

setting file permissions 158
<target> 26

description attribute 44
if/unless 77

targetFinished event 502
targets

conditional 77
default 25
definition 6
dependencies 6, 35
deployment issues 440
determining from deliverables 206
listing 44
naming conventions 216, 548
sharing across build files 227

targetStarted event 502
Task

API 470
built-in or core 235
custom 235
defining. See <taskdef> task
defining using a properties file 247
definition 6, 26
development

See Ant tasks, developing
introspection

mechanism 474–482
lifecycle 469–470
optional 235

See also optional tasks
project reference 471
sharing definitions 258
subclass 483–485
third-party 235
types of 235

Task library, building 495–496
TaskAdapter 470
<taskdef> task 247–248, 610

custom task classapth 478
custom task development 469
defining custom task library 496
definitions generated by

XDoclet 265
taskFinished event 502
taskStarted event 502
<telnet> task 610

attributes 443
deployment 453–455
remote deployment 443–446
running Ant remotely 453
server prompts 453
timeout attribute 443
to shutdown server 444

<tempfile> task 610
testing

custom Ant tasks 487
in-container

See Cactus

planning 207
using JUnit 85–110
web applications with

HttpUnit 300
with main() 86

<testSpec> task 309
third-party task 235, 237
ThoughtWorks

CruiseControl 388
Timestamp 75

generating 58
generating in build 299
ISO 8601 75

To-do list
generation with XDoclet 261

Tomcat
4.0 deployment 456
4.1 deployment 457
deployment 456
installing application 450
management interface 175
remote deployment 181
securing management

requests 457
unloading application 449

Torque 19, 250–253
<touch> task 611
<translate> task 611
translatePath() 472
troubleshooting 527–531

Ant not found 528
ANT_HOME 529
ANT_OPTS 530
CLASSPATH 529
JAVA_HOME 528
JDK not installed 527
missing task 529
multiple Ant versions 528
sealing violation 530
stack overflow 527

<trycatch> task 256
<tstamp> task 58, 75–76, 611

generating deployment
timestamp 460

<typedef> task 611

U
Unix

installing Ant 525–526
line endings 144
scheduling 388

<unjar> task 612
<untar> task 612
<unwar> task 612
632 INDEX

<unzip> task 612
expanding WAR files 287

<uptodate> task 612
example 193
for JUnit tests 106
used with XDoclet 277
using package mapper 106
within <condition> 72

<uptodate> 72

V
<vajexport> task 612
<vajimport> task 613
<vajload> task 613
-verbose 41
verbosity

controlling 42
-version 24, 41
VSS

See Microsoft Visual SourceSafe
<vssadd> task 613
<vsscheckin> task 245, 613
<vsscheckout> task 245, 614
<vsscp> task 614
<vsscreate> task 614
<vssget> task 245, 615
<vsshistory> task 615
<vsslabel> task 245, 615

W
<waitfor> task 167, 616

attributes 167
deployment verification 461

<war> task 161, 616
adding library dependencies 286
deployment issues 441
integrating tag libraries 286
<zipfileset> nested 298

WAR files 160–161
creating custom 440
expanding 287
structure 160

<war> task
<zipfileset> 65

WAR, building
See <war>

web development 278–316
conditionally enabling servlets 293
customizing deployed libraries 297
customizing deployment

descriptors 292
customizing with XDoclet 294
generating static content 297–299
process 279–280

testing in-container
See Cactus

testing with HttpUnit 300
web services

adding to existing web
application 367

Adding web services to Java 357
Axis 357
calling a SOAP service from

Ant 362
creating a SOAP client

application 357
creating a SOAP client in C# 376
creating a SOAP service with Axis

and Ant 363
creating SOAP proxy classes 359
creating with Axis 364
interoperability 376
introducing SOAP 356
invoking Ant as 383
reviewing SOAP client

creation 363
running a C# client

application 380
Sun’s Java Web Services

Developer Pack 357
Working with 355
WSDL—Web Service Description

Language 356
See also Axis

web testing
using WebTest 306

web.xml
tag library definitions 284
validating 319
See also web development

WebDAV
deployment 442

<webdoclet> task
conditional deployment 451
deployment issues 441
including Axis servlets 367

WebLogic
compiling JSP 292
deployment using 458
and <ejbjar> 340
EJB tasks 336
and <serverdeploy> 348, 443
support in Middlegen 348
XDoclet subtask 343

WebSphere
and <ejbjar> 340
XDoclet subtask 343

WebTest 306

Windows
installing Ant 524–525
line endings 144
scheduling 387

Windows NT
Telnet issues 443

Windows XP
mounting WebDAV folder 442

<wljspc> task 292, 617
<wlrun> task 336, 617
<wlstop> task 336, 618
workflow engine 21
<wsdltodotnet> task

importing WSDL into C# 378
618

X
XDoclet 19, 260–277

architecture 262–265
best practices 276
building task library 495
custom code generation 267
custom tag handler 274
custom templates 265
customizing web.xml 294
dependency checking 276
EJB build file example 351
in EJB development 340–345
EJB subtasks 341
filtering classes processed 273
future direction 275
how it works 265
installing 261
merge points 284
per-class generation 272
property substitution 343
and tag libraries 280
tasks 263
templates 264
to-do list generation 192
using Middlegen to start 345

XML
accessing as Ant properties 331
build log 327
CDATA section 534
comments 535
DTD resolution 321–322
encoding 534
entity references 534

in custom tasks 482
manipulation in Ant 317–332
parser issues 318
primer 532–535
resolving entities and DTDs 325
INDEX 633

XML (continued)
transformations, See <xslt>
validation, See <xmlvalidate>

XML entity reference 189, 225
sharing task definitions 258

XML Schema 250, 323, 532
XMLCatalog 325–327
XmlLogger 327

output file 329
<xmlproperty> task 76, 331, 618
<xmlvalidate> task 319–321, 619
XP, See eXtreme Programming
X-Power 327

XSD, See XML Schema
XSL-FO 21, 327
<xslt> task 323–327, 619

and Canoo WebTest 310
transforming CVS

change logs 246
XSLT, See <xslt> task

Z

<zip> task 620
<zipfileset> element 154
merging another Zip file 65

Zip files 154–158
best practices 157
creating binary distribution 154
merging 157
source distribution 156

Zip, See <zip> task
<zipfileset> 65, 325

example in <war> 298
within <zip> 154

<zipgroupfileset> 157
634 INDEX

/*
 * The Apache Software License, Version 1.1
 *
 * Copyright (c) 2001-2002 The Apache Software Foundation.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer
 * in the documentation and/or other materials provided with the
 * distribution.
 *
 * 3. The end-user documentation included with the redistribution,
 * if any, must include the following acknowlegement:
 * "This product includes software developed by the
 * Apache Software Foundation (http://www.apache.org/)."
 * Alternately, this acknowlegement may appear in the software itself,
 * if and wherever such third-party acknowlegements normally appear.
 *
 * 4. The names "The Jakarta Project", "Ant", and "Apache Software
 * Foundation" must not be used to endorse or promote products
 * derived from this software without prior written permission.
 * For written permission, please contact apache@apache.org.
 *
 * 5. Products derived from this software may not be called "Apache"
 * nor may "Apache" appear in their names without prior written
 * permission of the Apache Group.
 *
 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 * ==
 *
 * This software consists of voluntary contributions made by
 * many individuals on behalf of the Apache Software Foundation.
 * For more information on the Apache Software Foundation, please
 * see <http://www.apache.org/>.
 */

More Java titles from Manning

For ordering information visit www.manning.com

JMX in Action JSTL in Action

BENJAMIN G. SULLINS AND
MARK B. WHIPPLE

ISBN 1930110561
360 pages, $39.95, Fall 2002

SHAWN BAYERN

ISBN 1930110529
480 pages, $39.95

Summer 2002

SCWCD Exam Study Kit:
Java Web Component

Developer Certification Bitter Java

HANUMANT DESHMUKH AND
JIGNESH MALAVIA

ISBN 1930110596
560 pages, includes CD ROM, $44.95

Summer 2002

BRUCE A. TATE

ISBN 193011043X
368 pages,$44.95

Spring 2002

More Java titles from Manning

For ordering information visit www.manning.com

JDK 1.4 Tutorial Java 3D Programming

GREGORY M. TRAVIS

ISBN 1930110456
408 pages, $34.95, Spring 2002

DANIEL SELMAN

ISBN 1930110359
400 pages, $49.95, Spring 2002

Instant Messaging in Java:
The Jabber Protocols

Web Development with Java
Server Pages, Second edition

IAIN SHIGEOKA

ISBN 1930110464
400 pages, $39.95

Spring 2002

DUANE FIELDS, MARK A. KOLB,
AND SHAWN BAYERN

ISBN 193011012X
800 pages, $44.95, November 2001

	Java Development with Ant.pdf
	brief contents
	contents
	preface
	acknowledgments
	about this book
	about the authors
	about the cover illustration
	foreword

	chapter�1
	1.1 What is Ant?
	1.1.1 What is a build process and why do you need one?
	1.1.2 Why do we think Ant makes a great build tool?

	1.2 The core concepts of Ant
	1.2.1 An example project

	1.3 Why use Ant?
	1.3.1 Integrated development environments
	1.3.2 Make
	1.3.3 Other build tools
	1.3.4 Up and running, in no time

	1.4 The evolution of Ant
	1.5 Ant and software development methodologies
	1.5.1 eXtreme Programming
	1.5.2 Rational Unified Process

	1.6 Our example project
	1.6.1 Documentation search engine—example Ant project

	1.7 Yeah, but can Ant…
	1.8 Beyond Java development
	1.8.1 Web publishing engine
	1.8.2 Simple workflow engine
	1.8.3 Microsoft .NET and other languages

	1.9 Summary

	chapter�2
	2.1 Defining our first project
	2.2 Step one: verifying the tools are in place
	2.3 Step two: writing your first Ant build file
	2.3.1 Examining the build file

	2.4 Step three: running your first build
	2.4.1 If the build fails
	2.4.2 Looking at the build in more detail

	2.5 Step four: imposing structure
	2.5.1 Laying out the source directories
	2.5.2 Laying out the build directories
	2.5.3 Laying out the dist directories
	2.5.4 Creating the build file
	2.5.5 Target dependencies
	2.5.6 Running the new build file
	2.5.7 Rerunning the build
	2.5.8 How Ant handles multiple targets on the command line

	2.6 Step five: running our program
	2.6.1 Why execute from inside Ant
	2.6.2 Adding an execute target
	2.6.3 Running the new target

	2.7 Ant command line options
	2.7.1 Specifying which build file to run
	2.7.2 Controlling the amount of information provided
	2.7.3 Getting information about a projec t

	2.8 The final build file
	2.9 Summary

	chapter�3
	3.1 Preliminaries
	3.1.1 Datatype overview
	3.1.2 Property overview

	3.2 Introducing datatypes and properties with <javac>
	3.3 Paths
	3.4 Filesets
	3.4.1 Fileset examples
	3.4.2 Default excludes

	3.5 Patternsets
	3.6 Selectors
	3.7 Datatype element naming
	3.8 Filterset
	3.8.1 Inserting date stamps in files at build-time

	3.9 FilterChains and FilterReaders
	3.10 Mappers
	3.10.1 Identity mappe r
	3.10.2 Flatten mapper
	3.10.3 Merge mapper
	3.10.4 Glob mapper
	3.10.5 Regexp mapper
	3.10.6 Package mapper

	3.11 Additional Ant datatypes
	3.11.1 ZipFileset
	3.11.2 Dirset
	3.11.3 Filelist
	3.11.4 ClassFileset

	3.12 Properties
	3.12.1 Setting properties with the <property> task
	3.12.2 How the <property> task is different
	3.12.3 Checking for the availability of resources: <available>
	3.12.4 Saving time by skipping unnecessary steps: <uptodate>
	3.12.5 Testing conditions with <condition>
	3.12.6 Setting properties from the command-line
	3.12.7 Creating a build timestamp with <tstamp>
	3.12.8 Loading properties from an XML file

	3.13 Controlling Ant with properties
	3.13.1 Conditional target execution
	3.13.2 Conditional patternset inclusion/exclusion
	3.13.3 Conditional build failure

	3.14 References
	3.14.1 Properties and references
	3.14.2 Using references for nested patternsets

	3.15 Best practices
	3.16 Summary

	chapter�4
	4.1 Refactoring
	4.2 Java main() testing
	4.3 JUnit primer
	4.3.1 Writing a test case
	4.3.2 Running a test case
	4.3.3 Asserting desired results
	4.3.4 TestCase lifecycle
	4.3.5 Writing a TestSuite
	4.3.6 Obtaining and installing JUnit
	4.3.7 Extensions to JUnit

	4.4 Applying unit tests to our application
	4.4.1 Writing the test first
	4.4.2 Dealing with external resources during testing

	4.5 The JUnit task—<junit>
	4.5.1 Structure directories to accommodate testing
	4.5.2 Fitting JUnit into the build process

	4.6 Test failures are build failures
	4.6.1 Capturing test results
	4.6.2 Running multiple tests
	4.6.3 Creating your own results formatter

	4.7 Generating test result reports
	4.7.1 Generate reports and allow test failures to fail the build
	4.7.2 Run a single test case from the command-line
	4.7.3 Initializing the test environment
	4.7.4 Other test issues

	4.8 Short-circuiting tests
	4.8.1 Dealing with large number of tests

	4.9 Best practices
	4.10 Summary

	chapter�5
	5.1 Why you need to run external�programs
	5.2 Running Java programs
	5.2.1 Introducing the <java> task
	5.2.2 Setting the classpath
	5.2.3 Arguments
	5.2.4 Defining system properties
	5.2.5 Running the program in a new JVM
	5.2.6 Setting environment variables
	5.2.7 Controlling the new JVM
	5.2.8 Handling errors with failonerror
	5.2.9 Executing JAR files
	5.2.10 Calling third-party programs
	5.2.11 Probing for a Java program before calling it
	5.2.12 Setting a timeout

	5.3 Starting native programs with�<exec>
	5.3.1 Setting environment variables
	5.3.2 Handling errors
	5.3.3 Handling timeouts
	5.3.4 Making and executing shell commands
	5.3.5 Probing for a program before calling it

	5.4 Bulk execution with <apply>
	5.5 Processing output
	5.6 Limitations on execution
	5.7 Best practices
	5.8 Summary

	chapter�6
	6.1 Moving, copying, and deleting files
	6.1.1 How to delete files
	6.1.2 How to copy files
	6.1.3 How to move files
	6.1.4 Filtering

	6.2 Preparing to package
	6.2.1 Building and documenting release code
	6.2.2 Adding data files
	6.2.3 Preparing documentation
	6.2.4 Preparing install scripts and documents
	6.2.5 Preparing libraries for redistribution

	6.3 Creating archive files
	6.3.1 JAR files
	6.3.2 Creating a JAR file
	6.3.3 Testing the JAR file
	6.3.4 Creating JAR manifests
	6.3.5 Adding extra metadata to the JAR
	6.3.6 JAR file best practices
	6.3.7 Signing JAR files

	6.4 Creating Zip files
	6.4.1 Creating a binary distribution
	6.4.2 Creating a source distribution
	6.4.3 Merging Zip files
	6.4.4 Zip file best practices

	6.5 Creating tar files
	6.6 Creating web applications with WAR�files
	6.7 Testing packaging
	6.8 Summary

	chapter�7
	7.1 Example deployment problems
	7.1.1 Reviewing the tasks
	7.1.2 Tools for deployment

	7.2 Tasks for deployment
	7.2.1 File transfer with <ftp>
	7.2.2 Probing for server availability
	7.2.3 Inserting pauses into the build with <sleep>
	7.2.4 Ant’s email task
	7.2.5 Fetching remote files with <get>
	7.2.6 Using the tasks to deploy

	7.3 FTP-based distribution of a�packaged�application
	7.3.1 Asking for information with the <input> task

	7.4 Email-based distribution of a�packaged�application
	7.5 Local deployment to Tomcat�4.x
	7.5.1 The Tomcat management servlet API
	7.5.2 Deploying to Tomcat with Ant

	7.6 Remote deployment to Tomcat
	7.6.1 Interlude: calling targets with <antcall>
	7.6.2 Using <antcall> in deployment

	7.7 Testing deployment
	7.8 Summary

	chapter�8
	8.1 Our application thus far
	8.2 Building the custom Ant task library
	8.3 Loading common properties across multiple�projects
	8.4 Handling versioned dependencies
	8.4.1 Installing a new library version

	8.5 Build file philosophy
	8.5.1 Begin with the end in mind
	8.5.2 Integrate tests with the build
	8.5.3 Support automated deployment
	8.5.4 Make it portable
	8.5.5 Allow for customizations

	8.6 Summary

	chapter�9
	9.1 Designing an Ant-based build process
	9.1.1 Analyzing your project
	9.1.2 Creating the core build file
	9.1.3 Evolve the build file

	9.2 Migrating to Ant
	9.3 The ten steps of migration
	9.3.1 Migrating from Make-based projects
	9.3.2 Migrating from IDE-based projects

	9.4 Master builds: managing large projects
	9.4.1 Refactoring build files
	9.4.2 Introducing the <ant> task
	9.4.3 Example: a basic master build file
	9.4.4 Designing a scalable, flexible master build file

	9.5 Managing child project builds
	9.5.1 How to control properties of child projects
	9.5.2 Inheriting properties and references from a master build file
	9.5.3 Declaring properties and references in <ant>
	9.5.4 Sharing properties via XML file fragments
	9.5.5 Sharing targets with XML file fragments

	9.6 Creating reusable library build files
	9.7 Looking ahead: large project support evolution
	9.8 Ant project best practices
	9.8.1 Managing libraries
	9.8.2 Implementing processes

	9.9 Summary

	chapter�10
	10.1 Understanding types of tasks
	10.1.1 So, what is an “optional” task?
	10.1.2 Ant’s major optional tasks
	10.1.3 Why third-party tasks?

	10.2 Optional tasks in action
	10.2.1 Manipulating property files
	10.2.2 Adding audio and visual feedback during a build
	10.2.3 Adding dependency checks
	10.2.4 Grammar parsing with JavaCC
	10.2.5 Regular expression replacement

	10.3 Using software configuration management�tasks
	10.3.1 CVS
	10.3.2 ClearCase

	10.4 Using third-party tasks
	10.4.1 Defining tasks with <taskdef>

	10.5 Notable third-party tasks
	10.5.1 Checkstyle
	10.5.2 Torque–object-relational mapping

	10.6 The ant-contrib tasks
	10.7 Sharing task definitions among�projects
	10.8 Best practices
	10.9 Summary

	chapter�11
	11.1 Installing XDoclet
	11.2 To-do list generation
	11.3 XDoclet architecture
	11.3.1 XDoclet’s Ant tasks
	11.3.2 Templating
	11.3.3 How XDoclet works

	11.4 Writing your own XDoclet template
	11.4.1 Code generation
	11.4.2 Per-class versus single-file generation
	11.4.3 Filtering classes processed

	11.5 Advanced XDoclet
	11.5.1 Custom subtasks
	11.5.2 Creating a custom tag handler

	11.6 The direction of XDoclet
	11.6.1 XDoclet versus C#
	11.6.2 Looking into Java’s future: JSR 175 and 181

	11.7 XDoclet best practices
	11.7.1 Dependency checking

	11.8 Summary

	chapter�12
	12.1 How are web applications different?
	12.2 Working with tag libraries
	12.2.1 Creating a tag library
	12.2.2 Integrating tag libraries
	12.2.3 Summary of taglib development with Ant

	12.3 Compiling JSP pages
	12.3.1 Installing the <jspc> task
	12.3.2 Using the <jspc> task
	12.3.3 JSP compilation for deployment
	12.3.4 Other JSP compilation tasks

	12.4 Customizing web applications
	12.4.1 Filterset-based customization
	12.4.2 Customizing deployment descriptors with XDoclet
	12.4.3 Customizing libraries in the WAR file

	12.5 Generating static content
	12.5.1 Generating new content
	12.5.2 Creating new files
	12.5.3 Modifying existing files

	12.6 Testing web applications with HttpUnit
	12.6.1 Writing HttpUnit tests
	12.6.2 Compiling the tests
	12.6.3 Preparing to run HttpUnit tests from Ant
	12.6.4 Running the HttpUnit tests
	12.6.5 Integrating the tests
	12.6.6 Limitations of HttpUnit
	12.6.7 Canoo WebTest

	12.7 Server-side testing with Cactus
	12.7.1 Cactus from Ant’s perspective
	12.7.2 How Cactus works
	12.7.3 And now our test case
	12.7.4 Cactus summary

	12.8 Summary

	chapter�13
	13.1 Preamble: all about XML libraries
	13.2 Validating XML
	13.2.1 When a file isn’t validated
	13.2.2 Resolving XML DTDs
	13.2.3 Supporting alternative XML validation mechanisms

	13.3 Transforming XML with XSLT
	13.3.1 Using the XMLCatalog datatype
	13.3.2 Generating PDF files from XML source
	13.3.3 Styler–a third-party transformation task

	13.4 Generating an XML build log
	13.4.1 Stylesheets
	13.4.2 Output files
	13.4.3 Postprocessing the build log

	13.5 Loading XML data into Ant�properties
	13.6 Next steps in XML processing
	13.7 Summary

	chapter�14
	14.1 EJB overview
	14.1.1 The many types of Enterprise JavaBeans
	14.1.2 EJB JAR
	14.1.3 Vendor-specific situations

	14.2 A simple EJB build
	14.3 Using Ant’s EJB tasks
	14.4 Using <ejbjar>
	14.4.1 Vendor-specific <ejbjar> processing

	14.5 Using XDoclet for EJB development
	14.5.1 XDoclet subtasks
	14.5.2 XDoclet’s @tags
	14.5.3 Supporting different application servers with XDoclet
	14.5.4 Ant property substitution

	14.6 Middlegen
	14.7 Deploying to J2EE application servers
	14.8 A complete EJB example
	14.9 Best practices in EJB projects
	14.10 Summary

	chapter�15
	15.1 What are web services and what is SOAP?
	15.1.1 The SOAP API
	15.1.2 Adding web services to Java

	15.2 Creating a SOAP client application with Ant
	15.2.1 Preparing our build file
	15.2.2 Creating the proxy classes
	15.2.3 Using the SOAP proxy classes
	15.2.4 Compiling the SOAP client
	15.2.5 Running the SOAP service
	15.2.6 Reviewing SOAP client creation

	15.3 Creating a SOAP service with Axis�and Ant
	15.3.1 The simple way to build a web service

	15.4 Adding web services to an existing web�application
	15.4.1 Configuring the web application
	15.4.2 Adding the libraries
	15.4.3 Including SOAP services in the build
	15.4.4 Testing the server for needed classes
	15.4.5 Implementing the SOAP endpoint
	15.4.6 Deploying our web service

	15.5 Writing a client for our SOAP�service
	15.5.1 Importing the WSDL
	15.5.2 Implementing the tests
	15.5.3 Writing the Java client

	15.6 What is interoperability, and why is it a problem?
	15.7 Building a C# client
	15.7.1 Probing for the classes
	15.7.2 Importing the WSDL in C#
	15.7.3 Writing the C# client class
	15.7.4 Building the C# client
	15.7.5 Running the C# client
	15.7.6 Review of the C# client build process

	15.8 The rigorous way to build a web�service
	15.9 Reviewing web service development
	15.10 Calling Ant via SOAP
	15.11 Summary

	chapter�16
	16.1 Scheduling Ant builds with the operating system
	16.1.1 The Windows way
	16.1.2 The Unix version
	16.1.3 Making use of scripting

	16.2 CruiseControl
	16.2.1 How it works
	16.2.2 It’s all about the cruise—getting the build runner working
	16.2.3 Build log reporting
	16.2.4 Email notifications and build labeling
	16.2.5 CruiseControl summary
	16.2.6 Tips and tricks
	16.2.7 Pros and cons to CruiseControl

	16.3 Anthill
	16.3.1 Getting Anthill working
	16.3.2 How Anthill works
	16.3.3 Anthill summary

	16.4 Gump
	16.4.1 Installing and running Gump
	16.4.2 How Gump works
	16.4.3 Summary of Gump

	16.5 Comparison of continuous integration tools
	16.6 Summary

	chapter�17
	17.1 The challenge of native code
	17.2 Using existing build tools
	17.2.1 Delegating to an IDE
	17.2.2 Using Make

	17.3 Introducing the <cc> task
	17.3.1 Installing the tasks
	17.3.2 Adding a compiler
	17.3.3 A quick introduction to the <cc> task

	17.4 Building a JNI library in Ant
	17.4.1 Steps to building a JNI library
	17.4.2 Writing the Java stub
	17.4.3 Writing the C++ class
	17.4.4 Compiling the C++ source
	17.4.5 Deploying and testing the library

	17.5 Going cross-platform
	17.5.1 Migrating the C++ source
	17.5.2 Extending the build file
	17.5.3 Testing the migration
	17.5.4 Porting the code

	17.6 Looking at <cc> in more detail
	17.6.1 Defining preprocessor macros
	17.6.2 Linking to libraries with <libset>
	17.6.3 Configuring compilers and linkers
	17.6.4 Customizing linkers

	17.7 Distributing native libraries
	17.8 Summary

	chapter�18
	18.1 The challenge of different application servers
	18.1.1 Fundamentally different underlying behaviors
	18.1.2 Different Java run-time behavior
	18.1.3 Coping with different API implementations
	18.1.4 Vendor-specific libraries
	18.1.5 Deployment descriptors
	18.1.6 Server-specific deployment processes
	18.1.7 Server-specific management

	18.2 Working with operations
	18.2.1 Operations use cases
	18.2.2 Operations tests
	18.2.3 Operations defect tracking
	18.2.4 Integrating operations with the build process

	18.3 Addressing the deployment challenge with Ant
	18.3.1 Have a single source tree
	18.3.2 Have a unified target for creating the archive files
	18.3.3 Run Ant server-side to deploy
	18.3.4 Automate the upload and deployment process

	18.4 Introducing Ant’s deployment power tools
	18.4.1 The <copy> task
	18.4.2 The <serverdeploy> task
	18.4.3 Remote control with <telnet>

	18.5 Building a production deployment process
	18.5.1 The plan
	18.5.2 The directory structure
	18.5.3 The configuration files
	18.5.4 The build files
	18.5.5 The remote build.xml build file
	18.5.6 Writing the build file for installing to a server
	18.5.7 Uploading to the remote server
	18.5.8 The remote deployment in action
	18.5.9 Reviewing the deployment process

	18.6 Deploying to specific application servers
	18.6.1 Tomcat 4.0 and 4.1
	18.6.2 BEA WebLogic
	18.6.3 HP Bluestone application server
	18.6.4 Other servers

	18.7 Verifying deployment
	18.7.1 Creating the timestamp file
	18.7.2 Adding the timestamp file to the application
	18.7.3 Testing the timestamp

	18.8 Best practices
	18.9 Summary

	chapter�19
	19.1 What exactly is an Ant task?
	19.1.1 The world’s simplest Ant task
	19.1.2 Compiling and using a task in the same build
	19.1.3 Task lifecycle

	19.2 Ant API primer
	19.2.1 Task
	19.2.2 Project
	19.2.3 Path
	19.2.4 FileSet
	19.2.5 DirectoryScanner
	19.2.6 EnumeratedAttribute
	19.2.7 FileUtils

	19.3 How tasks get data
	19.3.1 Setting attributes
	19.3.2 Supporting nested elements
	19.3.3 Supporting datatypes
	19.3.4 Allowing free-form body text

	19.4 Creating a basic Ant Task subclass
	19.4.1 Adding an attribute to a task
	19.4.2 Handling element text

	19.5 Operating on a fileset
	19.6 Error handling
	19.7 Testing Ant tasks
	19.8 Executing external programs
	19.8.1 Dealing with process output
	19.8.2 Summary of native execution

	19.9 Executing a Java program within�a�task
	19.9.1 Example task to execute a forked Java program

	19.10 Supporting arbitrarily named elements and attributes
	19.11 Building a task library
	19.12 Supporting multiple versions�of�Ant
	19.13 Summary

	chapter�20
	20.1 Scripting within Ant
	20.1.1 Implicit objects provided to <script>
	20.1.2 Scripting summary

	20.2 Listeners and loggers
	20.2.1 Writing a custom listener
	20.2.2 Using Log4j logging capabilities
	20.2.3 Writing a custom logger
	20.2.4 Using the MailLogger

	20.3 Developing a custom mapper
	20.4 Creating custom selectors
	20.4.1 Using a custom selector in a build

	20.5 Implementing a custom filter
	20.5.1 Coding a custom filter reader

	20.6 Summary

	appendix�a
	appendix�b
	appendix�c
	appendix�d
	appendix�e
	index

	Resources
	index

