
. .The Definitive Guide to SWT and JFace

by Robert Harris and Rob Warner ISBN:1590593251

Apress © 2004 (864 pages)

This authoritative guide explains SWT and provides extensive examples of building applications with

SWT, and includes demonstrations of building JFace applications which can be used as GUI plug-ins

for Eclipse.

Table of Contents

The Definitive Guide to SWT and JFace

Introduction

Part I - Getting Ready

Chapter 1 - Evolution of Java GUIs

Chapter 2 - Getting Started with Eclipse

Part II - Using SWT

Chapter 3 - Your First SWT Application

Chapter 4 - Layouts

Chapter 5 - Widgets

Chapter 6 - Events

Chapter 7 - Dialogs

Chapter 8 - Advanced Controls

Chapter 9 - The Custom Controls

Chapter 10 - Graphics

Chapter 11 - Displaying and Editing Text

Chapter 12 - Advanced Topics

Part III - Using JFace

Chapter 13 - Your First JFace Application

Chapter 14 - Creating Viewers

Chapter 15 - JFace Dialogs

Chapter 16 - User Interaction

Chapter 17 - Using Preferences

Chapter 18 - Editing Text

Chapter 19 - Miscellaneous Helper Classes

Chapter 20 - Creating Wizards

Index

List of Figures

List of Tables

List of Listings

List of Sidebars

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Back Cover

Need to build stand-alone Java applications? The Definitive Guide to SWT and Jface will help you build them from the

ground up. The book first runs down the Java GUI toolkit history. Then the book explains why SWT is superior and provides

extensive examples of building applications with SWT.

You'll come to understand the entire class hierarchy of SWT, and you'll learn to use all components in the toolkit with Java

code. Furthermore, the book describes JFace, an additional abstraction layer built on SWT. Demonstrations of building

JFace applications are also included and reinforced with thorough explanations and example code. These applications can

be used as GUI plug-ins for Eclipse, and they're compatible with the new Eclipse 3.0 application development framework.

About the Authors

Robert Harris is a software engineer focused on distributed object computing. Since earning his master of science degree

from the University of Florida, he has been designing and implementing flexible, resilient solutions in the

telecommunications, transportation, and medical industries.

Rob Warner graduated from Brigham Young University in December 1993 with a degree in English, and then immediately

took a job in the technology industry. He has developed software in various languages for the transportation, banking, and

medical industries during his career. Now president and CEO of Interspatial, Inc., he designs and develops Java-based

solutions using both Eclipse and its derivative, WebSphere Studio Application Developer. He has used SWT and JFace on

several projects, including an executive information system for a religious organization, a password-retrieval Eclipse plug-in,

and various other applications and utilities.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

The Definitive Guide to SWT and JFace
ROB WARNER WITH

ROBERT HARRIS

Copyright © 2004 by Rob Warner with Robert Harris

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or

mechanical, including photocopying, recording, or by any information storage or retrieval system, without the prior

written permission of the copyright owner and the publisher.

ISBN (pbk): 1-59059-325-1

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence of a

trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark owner, with no

intention of infringement of the trademark.

Lead Editor: Steve Anglin

Technical Reviewer: Gábor Lipták

Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Tony Davis, John Franklin, Jason

Gilmore, Chris Mills, Steve Rycroft, Dominic Shakeshaft, Jim Sumser, Karen Watterson, Gavin Wray, John Zukowski

Project Manager: Tracy Brown Collins

Copy Edit Manager: Nicole LeClerc

Copy Editors: Susannah Pfalzer, Kim Wimpsett

Production Manager: Kari Brooks

Production Editor: Ellie Fountain

Compositor: Linda Weidemann, Wolf Creek Press

Proofreader: Patrick Vincent

Indexer: Kevin Broccoli

Cover Designer: Kurt Krames

Manufacturing Manager: Tom Debolski

Distributed to the book trade in the United States by Springer-Verlag New York, Inc., 175 Fifth Avenue, New York, NY

10010 and outside the United States by Springer-Verlag GmbH & Co. KG, Tiergartenstr. 17, 69112 Heidelberg,

Germany.

In the United States: phone 1-800-SPRINGER, e-mail <orders@springer-ny.com>, or visit http://www.springer-ny.com.

Outside the United States: fax +49 6221 345229, e-mail <orders@springer.de>, or visit http://www.springer.de.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA 94710.

Phone 510-549-5930, fax 510-549-5939, e-mail <info@apress.com>, or visit http://www.apress.com.

The information in this book is distributed on an "as is" basis, without warranty. Although every precaution has been

taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to any person or entity

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

mailto:orders@springer-ny.com
http://www.springer-ny.com
mailto:orders@springer.de
http://www.springer.de
mailto:info@apress.com
http://www.apress.com

with respect to any loss or damage caused or alleged to be caused directly or indirectly by the information contained in

this work.

The source code for this book is available to readers at http://www.apress.com in the Downloads section.

To my son Tyson, age 10, who proclaimed this to be "some dumb computer book about Java, divided by 27."

—ROB WARNER

For Charlie, Mallory, Alison, and mom.

— ROBERT HARRIS

About the Authors

Rob Warner graduated from Brigham Young University in December 1993 with a degree in English, then immediately

took a job in the technology industry. He has developed software in various languages for the transportation, banking,

and medical industries during his career. Now president and CEO of Interspatial, Inc., he designs and develops

Java-based solutions using both Eclipse and its derivative, WebSphere Studio Application Developer. He has used

SWT and JFace on several projects, including an executive information system for a religious organization, a

password-retrieval Eclipse plugin, and various other applications and utilities. Rob lives in Jacksonville, Florida with his

wife Sherry and their five children: Tyson, Jacob, Mallory, Camie, and Leila.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://www.apress.com

Robert Harris is a software engineer focused on distributed object computing. Since earning his master's of science

degree from the University of Florida, he has been designing and implementing flexible, resilient solutions in the

telecommunications, transportation, and medical industries. His personal interests include speaking French with his

seven-year-old daughter Mallory, catching bugs with his six-year-old son Charlie, and infuriating his wife Alison (age

withheld).

About the Technical Reviewer

Gábor Lipták is an independent consultant with more than ten years of industry experience, mostly in object-oriented

environments with Smalltalk, C++, and Java. Gábor has written multiple technical articles and has served as technical

reviewer for several books. Gábor is now working on a Java e-commerce project and can be reached at

<gliptak@hotmail.com>.

Acknowledgments

I thank my beautiful wife and my wonderful children for their patience. This book represents hours not spent with them,

and I thank them for this opportunity. You can now have your husband and father back. I also thank my extended

family for their continual effort to fill the holes I kept leaving behind. I appreciate all your service.

I thank the wonderful folks at Apress for all their hard work in bringing this book to fruition. Tracy Brown Collins kept

the focus and kept this book moving forward. I thank her for her patient prodding. Susannah Pfalzer and Kim Wimpsett

helped clarify our thoughts and saved us from some embarrassing typos. Ellie Fountain and Steve Anglin took us

through the final stretch. Finally, Gábor Lipták provided essential insights to keep the book technically correct, and

kept us on our toes.

Thanks also to my colleague and now fellow author, Joseph Schmuller, for showing me the possibilities. Another

colleague, Keith Barrett, provided essential guidance during the formative years of my career, for which I'm grateful. I

also thank a dear friend, Ryan Smith, for giving me my first IDE and introducing me to programming.

During most of the time I was writing this book, I worked (in my day job) with a group of wonderful folks on the

ShipCSX team. I miss working with you, and I hope all is well.

Finally, thanks to the Eclipse team for producing such a wonderful IDE, widget set, and abstraction library. It has been

a pleasure immersing myself in Eclipse, and I continually find new capabilities in this amazing tool. Thanks, too, for

opening the source, which proved essential for understanding how to leverage SWT and JFace. This book wouldn't

have been possible without the open source.

—Rob Warner

Without the family with which I have been blessed, neither this book nor anything would be possible. I would therefore

like to thank my mother Marian and brothers Michael and David.

Over the years, I have had the opportunity to work with an amazing array of professionals, from whom I have learned

this wonderful and rewarding trade. A few that come to mind are Noam Kedem, Matthew Dragiff, Eyal Wirzansky, Jim

Simak, Bob Moriarty, Anish Mehra, Krishna Sai, Sreedhar Pampati, and James Earl Carter.

Also, a special thanks to Robert A. White, who has taught me many things, the first of which was "how to right."

I can't forget to mention Brenda Star, Bernie and Ruth Nachman, Landon Walker, Mike and Tammy Shumer, and

Clark Morgan. Thanks, guys.

—Robert Harris

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

mailto:gliptak@hotmail.com

Introduction

When the Eclipse.org team built their namesake product, Eclipse, they necessarily released the new graphical user

interface (GUI) libraries that composed its interface: SWT and JFace. Though Eclipse utterly depends on these

libraries, the converse isn't true: neither SWT nor JFace depends on Eclipse, and developers can freely use these

open source libraries in their own applications.

While most available information regarding these compelling libraries focuses on using them to extend the Eclipse tool,

The Definitive Guide to SWT and JFace takes a different tack: it explains how to use the libraries in standalone

applications. These libraries, which rely on native widgets, boast native look and feel and native performance. This

means that not only will Java applications built using these libraries run on all major environments, but also that they'll

run at native or near-native speeds. Java can finally shed the "too slow and ugly" label of its adolescence, having

matured into a worthy desktop competitor.

What to Expect From this Book

This book doesn't teach you Java. It also doesn't teach you how to use Eclipse, nor does it teach you how to build

Eclipse plug-ins. You can find a number of other books that teach Java or Eclipse, many of them excellent and

deserving of your time and study. This book ignores specific tools, however, and instead focuses on the SWT and

JFace libraries to help you build independent desktop applications.

After reading this book, you'll be able to design, develop, and deploy fully operational, cross-platform desktop

applications that use either SWT alone, or SWT combined with JFace. You'll understand how to leverage these

libraries to create a range of simple to intricate user interfaces that look, feel, and perform like the rest of the

applications your users run. You can use whatever development tools you choose to accomplish that.

This book uses SWT and JFace 3.0, which was still under development during this book's writing. As such, you may

find a wart or two, or a changed API. We apologize, but accept this as a necessary evil in order to give you the most

current information available. Check the Apress Web site for any errata or code changes.

This book serves as both tutorial and reference guide. We hope that, after your initial read, you keep this book handy,

ready to resolve your questions and problems with SWT and JFace. May it become soiled and dog-eared through

frequent use!

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Who Should Read this Book

If you're new to SWT and JFace, or even if you've used them but want to learn more, this book contains the

information you'll need to become an SWT and JFace expert. This book expects you to know how to program in Java,

though you don't have to be an expert. It does, however, assume that you know the meanings of terms such as

"compiler," "classpath," and "inheritance."

This book requires no knowledge or understanding of SWT or JFace, or even of GUI programming in general. It

targets the gamut of the SWT and JFace experience, from people who have never heard of SWT or JFace, to

developers who have worked with these libraries extensively, but want to fill in the gaps of what they know and use.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

How this Book is Organized

This book comprises three sections. The first section, which includes Chapters 1 and 2, explains both the history of

Java desktop toolkits and the need for SWT and JFace, and helps you set up your computer's environment for the rest

of the book. If history doesn't excite you, feel free to skim these chapters. Make sure, however, to glean from them the

information necessary to set up your environment for building SWT applications.

Chapters 3 through 12 make up the second section. They guide you through SWT, from the obligatory "Hello World"

program to advanced topics such as printing and Web browsing. The chapters build on each other, lending

themselves to sequential study. Type in the examples, compile them, and run them to see how SWT works. Feel free

to tinker with the code to produce new results.

Finally, the third section (Chapters 13 through 20) explores JFace. Again, these chapters build on each other, so we

recommend taking them step by step. If you have no plans to use JFace in your applications, and instead rely

exclusively on SWT, you may skip this section. However, you'll ignore a library that can help you build SWT

applications much more quickly.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

What You Need

To run the examples in this book, you must have a computer with a Java development environment version 1.4 or later

installed. Your computer must run an operating environment that SWT supports, which includes (among others)

Microsoft Windows 98 or later, Mac OS X, Linux, and various UNIX platforms. See more information about supported

platforms in Chapter 2.

The examples in this book don't require that you run Eclipse, or even have it installed on your computer. However, you

must have the SWT libraries installed to run the SWT examples in Chapters 3 through 12. To run the JFace examples

in Chapters 13 through 20, you must also have the JFace libraries installed. Chapter 2 explains how to install these

libraries.

Whether you use Eclipse, some other integrated development environment (IDE), or command-line tools, you must

have some way to edit text and compile the examples. We provide Ant build scripts to compile and run the examples;

to use them, you must have Ant (http://ant.apache.org) installed on your computer. However, compiling and running the

examples doesn't require that you use Ant. Chapter 2 explains how to set up various development environments to

compile and run the examples.

The examples in this book have been tested on Microsoft Windows, Linux, and Mac OS X. Except where otherwise

noted, they should run fine not only on these platforms, but also on all other SWT-supported platforms. Let us know if

you have any problems.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://ant.apache.org

Source Code

You can download all the source code, the Ant scripts, and the images used in the examples in this book from the

Apress Web site, packaged as a single ZIP file. To download, use your Web browser to go to this URL:

http://www.apress.com/book/download.html

Select The Definitive Guide to SWT and JFace from the list, and then follow the prompts to download the ZIP file

containing the code.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://www.apress.com/book/download.html

How to Contact Us

Please send any questions or comments regarding the book or the source code to the authors, at the e-mail

addresses listed below.

Rob Warner: <rwarner@interspatial.com>

Robert Harris: <rlharris@comcast.net>

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

mailto:rwarner@interspatial.com
mailto:rlharris@comcast.net

Part I: Getting Ready

Chapter List

Chapter 1: Evolution of Java GUIs

Chapter 2: Getting Started with Eclipse

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Chapter 1: Evolution of Java GUIs

Overview

When Java was first released in the spring of 1995, it included a library, the Abstract Windowing Toolkit (AWT), for

building graphical user interfaces (GUIs) for applications. Java's ambitious claim—"write once, run

anywhere"—promised that an application laden with drop-down menus, command buttons, scroll bars, and other

familiar GUI "controls" would function on various operating systems, including Microsoft Windows, Sun's own Solaris,

Apple's Mac OS, and Linux, without having to be recompiled into platform-specific binary code.

Revolutionary at the time, Java's claim, and albeit nascent support for true operating-system–independent application

development, led to both an explosion of Java applets (applications designed to run inside a Web browser) and plans

to port leading desktop applications to Java (Corel's WordPerfect Office suite and Netscape's Navigator, a.k.a.

"Javagator," to name two).

Although most of the efforts to create desktop applications have faded since then, the GUI capabilities of Java have

conversely grown stronger. Tracking the evolution of GUIs in Java takes us through three major windowing toolkits:

AWT, Swing, and the Standard Widget Toolkit (SWT). We examine each of these in this chapter, as well as a fourth

library, JFace, that's not a windowing toolkit, but rather an abstraction layer built atop SWT.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

AWT

Much of the excitement surrounding the introduction of Java was based on applets, a new technology by which

programs could be distributed via the Internet and executed inside of a browser. Users and developers alike embraced

the new paradigm, which promised to simplify multiplatform development, maintenance, and distribution—some of the

most challenging issues in commercial software development.

To facilitate the creation of GUIs in Java, Sun had originally created a graphics library with a distinctive, Java-based

look and feel on all platforms. Netscape, Sun's primary partner in the applet technology strategy, argued that applets

should maintain the look and feel of the runtime system. They hoped that applets would appear and behave just like

every other application on the platform. Netscape's views held sway, and Sun abandoned its Java look.

To achieve the Netscape "native look and feel" goal, AWT was created in the final development stages of the first

version of the Java Development Kit (JDK). The default implementation of AWT used a "peer" approach, in which

each Java GUI widget had a corresponding component in the underlying windowing system.

For example, each java.awt.Button object (AWT's "push" button) would create a dedicated button in the underlying

native windowing system. When a user clicked the button, the event would flow from the native implementation's

library into the Java Virtual Machine (JVM), and eventually to the logic associated with the java.awt.Button object. The

implementation of the peer system and the communication between the Java component and the peer was hidden

inside the low-level implementation of the JVM; the Java-level code stayed identical across platforms.

However, to remain faithful to the "write once, run anywhere" promise, compromises had to be made. Specifically, a

"lowest common denominator" approach was adopted in which only features offered by all of the native windowing

systems would be available in AWT. This required developers to develop their own high-level widgets for more

advanced features (such as a tree view), and left users with varied experiences.

Other issues slowed the acceptance of applets as well. Applets ran inside of a security "sandbox" that prevented

malicious applets from misusing resources such as the file system and network connection. Although the sandbox

prevented security breaches, it neutered applications. After all, what good is an application that can't make a

connection or save a file? Java GUIs were also not as responsive as native applications. This was due in some part to

the then-current level of hardware performance and the interpretive nature of Java.

As a consequence, applications developed with AWT lacked many of the features of a modern GUI, while still not

attaining the goal of appearing and behaving like applications developed using native windowing toolkits. Something

better was needed for Java GUIs to succeed.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Swing

Announced at the JavaOne conference in 1997 and released in March 1998, the Java Foundation Classes (JFC)

included a new windowing toolkit for Java. Code-named Swing, these new GUI components offered an appreciable

upgrade to AWT, and seemed poised to help Java take over the computing world. Times were heady for Java:

downloadable applets would be the software of the future, people would switch from other operating systems to

JavaOS and from traditional computers to thin-client network computers called JavaStations, and Microsoft would

finally be dethroned as the unchallenged player in the desktop arena. Although this vision was never realized, Swing

has nonetheless flourished as a GUI for Java applets and applications.

The Swing Architecture

Although "Swing" was just the code name for the new components, the name stuck and persists to this day. Perhaps

the name was too appropriate to jettison; the new windowing toolkit attempted to swing the proverbial pendulum in

several ways:

Whereas AWT relied on a peer architecture, with Java code widgets wrapping native widgets, Swing

used no native code and no native widgets.

AWT left screen painting to the native widgets; Swing components painted themselves.

Because Swing didn't rely on native widgets, it could abandon AWT's least-common-denominator

approach and implement every widget on every platform, creating a much more powerful toolkit than

AWT could ever achieve.

Swing, by default, would adopt the native platform's look and feel. However, it wasn't limited to that,

and introduced "pluggable look and feels" so that a Swing application could look like a Windows

application, a Motif application, or a Mac application. It even had its own look and feel, dubbed

"Metal," so that a Swing application could completely ignore the operating environment it ran on, and

just look like itself—a defiant blot on a humdrum, conforming desktop. Imagine the hubris!

However, Swing components moved beyond simple widgets, and embraced the emerging design patterns and best

practices. With Swing, you didn't just get a handle to a GUI widget and stuff data into it; you defined a model to hold

the data, a view to display the data, and a controller to respond to user input. In fact, most Swing components are built

on the model-view-controller (MVC) design pattern, which makes application development cleaner and maintenance

more manageable.

Where did it Fall Short?

Though Swing improved tremendously on AWT, it still failed to catapult Java forward as the tool ofchoice for creating

desktop applications. Its proponents will point quickly to successful Swing applications such as jEdit, an open-source

text editor (http://www.jedit.org/), or Together, a Unified Modeling Language (UML) modeling tool from Borland

(http://www.borland.com/), but Swing applications continue to be rarities on computing desktops. Sun posts "Swing

Sightings" (http://java.sun.com/products/jfc/tsc/sightings/), arunning log of available Swing applications, proof positive that

their advents are noteworthy. We've yet to see Webpages devoted to "C++ Sightings" or "Visual Basic Sightings."

Why hasn't Swing fulfilled its promise? The reasons probably boil down to

Speed, or, more specifically, the lack thereof

Look and feel

Swing devotees bristle at the suggestion that Swing applications struggle with speed. Admittedly, later iterations of

Swing, just-in-time (JIT) compilers, JVMs, and the Java language itself have significantly narrowed the gap between

Swing applications and their native counterparts. However, Swing continues to have a somewhat sluggish and less

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://www.jedit.org/
http://www.borland.com/
http://java.sun.com/products/jfc/tsc/sightings/

responsive feel than native applications. As desktop computers become faster and users' expectations rise along with

the speed improvements, any perceived lethargy becomes both frustrating and intolerable.

The howling you hear is from Swing developers outraged by the assertion that look and feel is an issue with Swing.

After all, they scream, Swing has all kinds of pluggable look and feels, and can look like virtually anything. Java 2

Platform, Standard Edition (J2SE) 1.4.2 even added Windows XP and GTK+ support, so that a Swing application on

those platforms automatically picks up their look and feel.

However, therein lies the issue: Swing will always be a step behind the latest GUIs, because support for the GUI must

be written explicitly into the Java library. A Swing application running on Windows XP still looks like a Windows 98

application if it's running under J2SE 1.4.1 or earlier. Also, users are increasingly imprinting their personalities on their

desktops using "skins," or alternative graphical look and feels, using software such as XP themes or WindowBlinds

(http://www.stardock.net/). Swing doesn't pick up the skins, defying not only the operating system, but now the user

preferences, too.

In short, Swing applications still don't perform as well as native applications, and don't quite look like them, either. For

Java to shrug off its perennial understudy position and command a starring role in desktop application development,

its GUI demands improvement.

Model-View-Controller

The MVC architecture segregates the data (model), the presentation of the data (view), and the manipulation of

the data (controller). For example, suppose that you have an application that keeps track of your favorite color.

The application must

Know the color you've selected and store it in memory

Display the currently selected color

Allow you to change the color

Persist the color

The selected color represents the model. It might be stored as a Java Color object, a binary RGB value, or a

String holding the HTML representation.

The way the currently selected color is displayed represents the view. It might display the RGB values as

numbers, the HTML value as a single string, the name of the color, or a color swatch.

The controller contains both the method for changing the color and the mechanism for persisting the data. You

might click the desired color in a color wheel, type in the name of the color, type in the HTML value for the color,

or move a set of sliders representing RGB values. To persist the color, the application might store it in a

database, write it to an XML file, or save it using the Java preferences API.

The way to display or select the color shouldn't have any impact on the color itself. The color selected shouldn't

change the storage mechanism. Adhering to the design allows you to change one component without having to

change the others. For example, if colorblind users complain that they can't determine what color they've

selected from the color swatch shown, you can change the view to show the name, but leave the model and the

controller alone.

The MVC pattern has proven itself a powerful, and now indispensable, way to build applications.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://www.stardock.net/

SWT

When the Eclipse.org consortium set out to build Eclipse, they realized that Swing and AWT were both inadequate for

building real-world commercial applications. Consequently, they decided to build a new GUI toolkit to use for the

Eclipse interface, borrowing heavily from libraries in VisualAge SmallTalk. They called the new toolkit the Standard

Widget Toolkit (SWT). Recognizing that native performance requires native widgets, SWT's designers adopted AWT's

peer architecture, falling back on Java implementations only when native widgets didn't exist (for example, tree

controls on Motif). Thus, SWT takes the "best of both worlds" approach between AWT and Swing: native functionality

when available, Java implementation when unavailable. This guarantees that widgets look and respond comparably to

native widgets.

SWT was released in 2001, integrated with the Eclipse Integrated Development Environment (IDE). Since that initial

release, it has evolved and become an independent release. It's available for numerous operating systems including

Microsoft Windows, Mac OS X, and several flavors of Unix, among others. At the time of this writing, the current official

release is version 2.1.3. Version 3.0 is in beta, and is also available for download. This book uses SWT 3.0.

Another important advantage of SWT is that its source code is freely available under an open-source license that has

no viral repercussions. This means you can use SWT in your applications and release them under any licensing

scheme. The availability of source code is also essential to understanding the library's lower-level functionality or

debugging applications. Open-source software also tends to be updated more frequently than commercially released

software.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

JFace

Building on top of SWT, JFace offers the power of SWT with the ease of the MVC pattern. SWT provides the raw

widgets with a straightforward API—for example, you create a table widget and insert the rows and columns of data

you want to display. JFace provides an abstraction layer on top of SWT, so instead of programming directly to the API,

you program to the abstraction layer and it talks to the API. Think of the difference between programming to the native

C interface of widgets vs. using a C++ GUI class library, or between using AWT vs. using Swing. These analogies help

to illustrate the difference between SWT and JFace. For example, to use a table in JFace, you still create the table

widget, but you don't put data into it. Instead, you give it your content (or model) provider class and your display (or

view) provider class. The table then calls your provider classes to determine both content and how to display that

content.

JFace doesn't completely abstract the breadth of SWT. Even in applications written in JFace, SWT and its lower-level

API peek their heads through often. After stepping you through SWT in the second section of this book to build the

proper foundation, we explore the power of JFace in the third section.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Summary

From its outset, Java has provided libraries for writing cross-platform, windowed, GUI applications, through AWT,

Swing, and now SWT and JFace. Initial toolkits were under-powered, but subsequent offerings have addressed

previous generations' shortcomings and effected great advances. SWT and JFace position Java as not only a viable,

but also an advantageous platform for developing desktop applications. Whereas attempts to embrace the portability

and strength of Java in times past necessarily meant accepting its GUI deficiencies, today that downside has

disappeared. Java can finally command its place on desktop computers.

The next chapter introduces you to Eclipse, the Java IDE that begat SWT and JFace, and shows you how to prepare

your system to build SWT and JFace applications.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Chapter 2: Getting Started with Eclipse

Overview

In November 2001, a consortium of technology companies formed to "create better development environments and

product integration," according to an Eclipse.org press release. [1] The consortium includes (among others):

IBM

Merant

Borland

Rational

Red Hat

SUSE LINUX

Dubbed Eclipse.org, the consortium soon released its flagship product, Eclipse: an open source, extensible IDE for

building Java applications.

The development community quickly took notice of Eclipse. When version 2.1 was released in March 2003, seven

million copies were downloaded in the first two days. Three lively Usenet newsgroups teem with Eclipse users. Web

sites have sprung up to supplement the main Eclipse Web site, http://www.eclipse.org. Articles have appeared on

various Web sites, including IBM's developerWorks site (http://www.ibm.com/developerworks/), detailing how to use this

exciting tool. IBM has even built its Web development IDE, WebSphere Studio Application Developer, as an extension

of Eclipse. Both Rational and Borland have released their UML modeling tools as plug-ins for Eclipse. SlickEdit's

Visual SlickEdit, an industry-leading source-code editor, is now available as an Eclipse plug-in. The Eclipse community

has responded with hundreds of other plug-ins, from the truly useful (Telnet clients, J2EE environments, profilers) to

the merely fun (MP3 players and Tetris clones). See the Eclipse Plugin Central Web site

(http://www.eclipseplugincentral.com/) for more details on available plug-ins.

Why all the fuss about another Java IDE? For one thing, the tool is free, both in the monetary sense (free as in beer, to

use the open source community's jargon) and in the reusable-code sense (free as in speech). For another, it affords

incredible opportunities for extension, and many individuals and companies have already written plug-in tools for

Eclipse.

Eclipse is written in Java, yet looks and performs as if it were a native program. Perhaps most important, it includes a

windowing toolkit—SWT—that is freely usable to build other Java applications that also look and perform as if they

were native programs. This toolkit, the focus of this book, can be used outside of Eclipse as well.

This chapter introduces you to Eclipse and shows you how to get started building SWT and JFace applications. It also

presents some alternatives to using Eclipse to build SWT and JFace applications. However, it doesn't go into depth on

using Eclipse—other texts do that. In fact, we rarely mention Eclipse after this chapter. Beyond this chapter, all of the

code and instructions are IDE agnostic, and you can use your favorite development tools as you learn SWT and

JFace. By the end of this chapter, you'll understand how to use SWT and JFace in whatever Java development

environment you use.

[1]Eclipse.org press release, "Eclipse.org Consortium Forms to Deliver New Era Application Development Tools,"

http://www.eclipse.org/org/pr.html.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://www.eclipse.org
http://www.ibm.com/developerworks/
http://www.eclipseplugincentral.com/
http://www.eclipseplugincentral.com/
http://www.eclipse.org/org/pr.html

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Installing Eclipse

The Eclipse.org download site distributes the entire Eclipse system, including SWT and JFace. The main download

site is http://www.eclipse.org/downloads. Several mirror sites, linked from the main download page, are also available for

downloading Eclipse. You can download Eclipse in either binary or source code form. Source code is available either

as a ZIP file or from CVS; binaries are platform-specific ZIP archives.

Eclipse supports most major platforms. Binary downloads are available for these platforms:

Windows 98/Me/2000/XP

Linux (both Motif and GTK 2)

Solaris 8

QNX

AIX

HP-UX

Mac OS X

You can also download SWT for Windows CE, but not Eclipse.

Most operating systems have only one corresponding distribution file. However, on Linux the distribution is also

windowing-system dependent: you choose between the Motif and GTK versions, though nothing prevents you from

downloading and installing both. Select the appropriate link for your system and download the installation file to a

temporary directory.

Note Eclipse doesn't include a Java Runtime Environment (JRE). You must first install a 1.4.1 or higher JRE or JDK

before running Eclipse.

Eclipse offers no fancy installers or setup routines. To install Eclipse, simply unzip the downloaded file to the desired

parent directory (for example, c:\ on Windows or /usr/local on Linux or Unix). A directory called eclipse is created inside

the selected parent directory, and all Eclipse files are copied to their appropriate locations beneath that directory. You

launch Eclipse by running the appropriate program for the operating system (for example, eclipse.exe or eclipse). You

can also create a desktop icon for launching Eclipse. Figure 2-1 shows the properties for a desktop icon on Windows.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://www.eclipse.org/downloads

Figure 2-1: Eclipse desktop shortcut properties

When you launch Eclipse for the first time, Eclipse completes the installation process and creates a workspace.

Passing arguments to the Eclipse launch command, whether from the command line or inside the shortcut, changes

Eclipse's default behavior during that run of the program. The defaults are reasonable, but if you're adventurous, you

can try some of the more useful command-line options shown in Table 2-1.

Table 2-1: Eclipse Command-Line Arguments

Argument Explanation

-data

<directory>
Specifies <directory> as the working directory in which Eclipse both loads current projects

and creates new ones. By default, the working directory is called workspace and resides

below the Eclipse installation directory—unless you don't have write permissions, in which

case it's created in your home directory.

-debug Starts Eclipse in debug mode

-nosplash Turns off (doesn't display) the splash screen

-vm <javaVM> Specifies <javaVM> as the JVM for Eclipse to use. You must either have a JVM in your

execution path or specify the location of one with the -vm command.

-vmargs

<arguments>
Specifies arguments to pass to the JVM

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig31%5F01%5F0%2Ejpg

Creating Your First Program

When you launch Eclipse, you see your workspace, which is a container for your projects. Your initial workspace

doesn't contain any projects, and looks something like Figure 2-2.

Figure 2-2: The Eclipse main window

You can't do much without a project, so select File Ø New Ø Project from the menu. You should see a dialog box like

the one shown in Figure 2-3.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig32%5F01%5F0%2Ejpg

Figure 2-3: The New Project window

Select Java in the left pane, Java Project in the right, and click Next. Type Test in the Project name field (see Figure

2-4).

Figure 2-4: Select a project name.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig33%5F01%5F0%2Ejpg
file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig34%5F01%5F0%2Ejpg

Click Finish. When prompted to switch to the Java Perspective; click Yes, which returns you to the Eclipse main

window. The Package Explorer window on the left should now show your new Test project.

Perspectives in Eclipse

Perspectives in Eclipse are task-specific views of your workspace. They define the window layout, menu

options, and available toolbars. You can edit your code in any perspective, but using the perspective appropriate

to your present task makes your work easier.

Eclipse installs a few useful perspectives, including Debug, which displays tools and options for debugging your

code, and Java Browsing, which is optimized for browsing through your Java code. You can customize these

perspectives to suit your needs, and even save the customized perspectives. Don't be afraid to

experiment—you can always restore a perspective to its default layout by selecting Window Ø Reset

Perspective from the main menu.

Some Eclipse plug-ins install new perspectives. For example, a profiling plug-in installs a Profiling perspective

that contains tools and views for profiling your programs. Source Control perspectives allow you to browse

through source control archives.

Perspectives offer powerful ways to accomplish the various tasks associated with software development. Learn

to leverage their capabilities to increase your development productivity.

Next, add code to your project. Right-click the Test project and select New Ø Class from the popup menu. The dialog

box should look like Figure 2-5.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig35%5F01%5F0%2Ejpg

Figure 2-5: The New Java Class window

Type test in the Name field, select the checkbox by the "public static void main(String[] args)" option in the "Which

method stubs would you like to create?" section, and click Finish. Eclipse creates your new source code file and

returns you to the main window, which should now look like Figure 2-6.

Figure 2-6: The Eclipse main window with your new source code file

You can see that Eclipse has automatically opened the new file, test.java, for editing. Let's add some code to make it

do something; inside the main() method, add the code:

System.out.println("Hello from Eclipse");

Click File Ø Save, which both saves the file and compiles it. You should now have a program ready to run. If you've

made any mistakes, the Tasks window at the bottom of the Eclipse main window will show an error icon and a

description of the problem, similar to Figure 2-7. Click the Task entry to jump to the offending code.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig36%5F01%5F0%2Ejpg

Figure 2-7: A syntax error in the Tasks window

Correct the error and click File Ø Save again. Correct all errors until the Tasks window has no entries.

To run the program, select Run Ø Run from the main menu. You should see a dialog that looks something like Figure

2-8.

Figure 2-8: The Run dialog

Select Java Application and click the New button. Eclipse automatically determines that you want to run your test

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig37%5F01%5F0%2Ejpg
file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig38%5F01%5F0%2Ejpg

class, and populates the dialog to look like Figure 2-9.

Figure 2-9: The Run dialog with your test class ready to run

Click the Run button. The program runs, and prints "Hello from Eclipse" in the console window at the bottom of the

Eclipse main window. You might have to scroll up to see it, but your Eclipse main window should now be greeting you

(see Figure 2-10).

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig39%5F01%5F0%2Ejpg

Figure 2-10: Hello from Eclipse

Congratulations! You're now up and running in Eclipse.

This was a simple application that required no external JAR files or libraries. In the next section, we tackle a more

complex example where you must edit the Eclipse compile and runtime environments.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig40%5F01%5F0%2Ejpg

Including the SWT Libraries

To create SWT programs in the Eclipse environment, you must configure the Java build path (or classpath) so that it

includes the SWT JAR file (swt.jar). To demonstrate the correct configuration of your environment for building SWT

applications, you'll create a simple program based on SWT that opens a window.

Add a new class to the project you created earlier by right-clicking your project's name in the Package Explorer

window and choosing New Ø Class from the context menu. Enter BlankWindow for the class name and click Finish.

Your new class is created and its code appears in the editor window. Enter the code in Listing 2-1 into the editor

window.

Listing 2-1: BlankWindow.java

import org.eclipse.swt.widgets.*;

public class BlankWindow

{

 public static void main (String[] args)

 {

 Display display = new Display();

 Shell shell = new Shell(display);

 shell.open();

 while (!shell.isDisposed())

 {

 if (!display.readAndDispatch())

 {

 display.sleep();

 }

 }

 display.dispose();

 }

}

When you save this file, you get indications of errors in the file (check the Tasks window). To compile the program,

add the SWT JAR file to the Java build path of the project. The build path is configured in the Properties window,

which you can open by right-clicking the project name in the Package Explorer tab of Eclipse and selecting Properties

from the context menu. Choose Java Build Path on the left, and select the Libraries tab on the right. Click the button

labeled Add External JARs to bring up a file selection dialog box. Use the file selection box to add swt.jar; its location is

operating system, windowing system, and Eclipse version dependent. In general, it's located in here:

<eclipse_install_directory>/

 plugins/

 org.eclipse.swt.<windowing_system>_<eclipse_version_number>/

 ws/

 <windowing_system>/

 swt.jar

For example, Eclipse 3.0 on Windows places swt.jar in plugins\ org.eclipse.swt.win32_3.0.0\ws\win32 beneath the Eclipse

installation directory; on Linux Motif, in plugins/org.eclipse.swt.motif_3.0.0/ws/motif; and on Mac OS X, in

plugins/org.eclipse.swt.carbon_3.0.0/ws/carbon. Figure 2-11 shows the SWT JAR added to the Java Build Path.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Figure 2-11: The Java Build Path

Note The GTK version also requires swt-pi.jar, found in the same directory as swt.jar, to be in the Java Build Path.

The errors should now disappear from the Tasks window. You have now successfully saved and compiled your first

program. However, you must configure one more parameter before you can run the program. As SWT depends on

Java Native Interface (JNI) implementations for the windowing system functionality, you must configure the runtime

environment so that it can locate the libraries in which the local implementations are stored. Again, this configuration is

dependent upon your operating and windowing systems.

To set up the native libraries, select Run Ø Run from the main menu of Eclipse to open the Run dialog box. Click the

New button, which creates a configuration called BlankWindow with BlankWindow as the Main class. Click the

Arguments tab, and in the "VM arguments" section enter an argument to add the directory containing the library to the

Java library path. The argument to define is -Djava.library.path. The library's parent directory structure is generally like

this:

<eclipse_install_directory>/

 plugins/

 org.eclipse.swt.<windowing_system>_<eclipse_version_number>/

 os/

 <operating_system>/

 <processor_architecture>

For Windows, it's plugins\org.eclipse.swt.win32_3.0.0\os\win32\x86 inside the Eclipse installation directory. For Mac OS X,

it's plugins/org.eclipse.swt.carbon_3.0.0/ os/macosx/ppc. See Figure 2-12 for an example of what you enter on Windows.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig42%5F01%5F0%2Ejpg

Figure 2-12: The Run dialog with the SWT library added

Click the Run button, and your blank window should appear. You're now ready to build more meaningful SWT and

JFace applications.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig43%5F01%5F0%2Ejpg

Getting Help

Eclipse installs extensive online documentation, including overviews, tutorials, and Javadocs of the SWT and JFace

libraries. To access the help, select Help Ø Help Contents from the main menu. The help window appears, and should

look like Figure 2-13.

Figure 2-13: The Eclipse help window

Eclipse uses an internal Web server to display the help, so you might have problems viewing the help from behind a

firewall. If you cannot see the help, check your proxy settings and make sure you aren't going through the proxy for

local addresses.

The left pane is a navigable tree; click through it to find the topic you want, and the text appears on the right pane.

Help for SWT and JFace is hidden in "Platform Plugin Developer Guide." The section titled "Programmer's Guide"

contains prose concerning SWT and JFace; "Reference" contains the Javadoc documentation; and "Examples Guide"

explains how to install and run the example code.

You can also search through the help text by entering a search string in the provided text field and clicking Go.

Suggested matches appear in the left pane; clicking them displays their text on the right.

Eclipse's main Web site (http://www.eclipse.org) offers articles, discussion forums, news, and code examples to help

you with Eclipse. You can also sign up on the Web site for access to the available Eclipse newsgroups, which are

hosted on news.eclipse.org. The groups are password protected, so be sure to sign up. These are the available groups

in the Eclipse Project:

eclipse.platform.swt: SWT User Forum

eclipse.tools.jdt: Java Development Tools User Forum

eclipse.platform: Eclipse Project Tool Builders Forum

eclipse.tools: Retired Eclipse Project Tool Builders Forum that was split into the preceding three

newsgroups; it's read-only, and stays available for its archive

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig44%5F01%5F0%2Ejpg
http://www.eclipse.org

The Web site provides instructions for configuring your news reader for these newsgroups.

Note You must have a user ID and password to access the Eclipse newsgroups.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Alternatives to Eclipse

So, do you think that IDEs are for wimps, and that real programmers use only Emacs or vi? Or do you love IntelliJ

IDEA and loathe the thought of switching to a different IDE? Perhaps you have no money, no hard drive space, little

memory, and are determined to do all development in Windows Notepad. Maybe you never leave Visual SlickEdit or

CodeWright. Can SWT accommodate you?

The answer, happily, is yes. Although Eclipse is built on SWT and can't run without it, the converse isn't true: SWT

runs fine without Eclipse. You can develop, build, and deploy SWT applications without Eclipse—you just need the

SWT libraries.

Obtaining the SWT Libraries

Eclipse provides a separate download for SWT, available from the Web site. The download contains all the files—JAR

file or files and native library—necessary to build SWT applications. The JAR file or files must be in your classpath,

and the native library must be in your library path. Note that the native library contains a version number, which

changes as SWT is updated, and you must use the JAR file packaged with the native library. See the sections on

setting up your libraries earlier in this chapter to determine how to set them up on your platform.

Obtaining the JFace Libraries

JFace, which is covered in the last section of this book, isn't yet available as a separate download, though the Eclipse

community continues to clamor for this. The only way to obtain the JFace libraries currently is to download and install

Eclipse. The libraries are all contained in Java class files, and are found in your eclipse\plugins directory. They are

org.eclipse.jface_<version_number>\jface.jar

org.eclipse.jface.text_<version_number>\jfacetext.jar

org.eclipse.osgi_3.0.0_<version number>\osgi.jar

org.eclipse.text_<version number>\text.jar

org.eclipse.core.runtime_<version_number>\runtime.jar

These files must all be in your classpath. Because JFace is built on top of SWT, it requires that the swt.jar file be in

your classpath and the SWT native libraries be in your library path as well.

Once you have downloaded and installed Eclipse, you can copy these files to other locations and remove Eclipse. Just

be sure to use the new locations when defining your classpath.

Using an Alternate IDE or Text Editor

Those not wanting to leave the familiarity of their current IDE—NetBeans, JBuilder, IDEA, or some other IDE—should

have no problems developing SWT and JFace applications. There are two crucial configuration steps for your IDE:

Add swt.jar to your classpath

Add the native library to your library path

For example, in NetBeans 3.5, add swt.jar to the classpath by right-clicking FileSystems, selecting Mount Ø Archive

Files, and navigating to and selecting swt.jar. To add the native library to the library path, do the following:

Select Tools Ø Options from the main menu.1.

Select Debugging and Executing Ø Execution Types Ø External Execution.2.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Select External Process and click the ellipses.3.

Add the argument right before the {classname} entry (Djava.library.path=<path containing the native

library>).

4.

The details for configuring other IDEs differ slightly, but the steps are the same: add the swt.jar file to the classpath and

the native library to the library path.

The same principles hold true for using a text editor; if your text editor supports configuring classpaths and launching

your applications with VM arguments, you can code, build, and test your SWT or JFace application from within your

editor. Consult your editor's documentation for how to configure your classpath and library path.

If your editor doesn't support those configuration features, or you don't wish to bother with them, you must pass the

arguments on the command line when you compile and run. To compile BlankWindow.java from the command line, you

type this code:

javac -classpath <full path of swt.jar> BlankWindow.java

To run the application, you type this code:

java -classpath <full path of swt.jar> -Djava.library.path=

 <full path containing native library> BlankWindow

Whether you work in Eclipse, some other IDE, or a text editor, you'll be able to compile and run SWT and JFace

applications.

Note For Visual SlickEdit users who want to use Eclipse without eaving their favorite editor behind,Visual SlickEdit is

available as an Eclipse plug-in. See the SlickEdit Web site (http://www.slickedit.com/) for details. It works in

Eclipse 2.x, and the company pledges to support Eclipse 3.0 when it's released. For vi key mapping, you can also

use viPlugin from http://www.satokar.com/viplugin/index.php.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://www.slickedit.com/
http://www.satokar.com/viplugin/index.php

Summary

In this chapter, you've seen that Eclipse.org has provided the Java community with a tremendous tool with its flagship

product, Eclipse. Capable as a Java development IDE, it also contains everything you need to develop standalone

applications using the included open source libraries, SWT and JFace. You've also discovered that SWT and JFace

impose no Eclipse usage requirement—you can continue to use your favorite development tools to build SWT and

JFace applications.

In the next chapter, you begin exploring SWT, and develop your first SWT application.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Part II: Using SWT

Chapter List

Chapter 3: Your First SWT Application

Chapter 4: Layouts

Chapter 5: Widgets

Chapter 6: Events

Chapter 7: Dialogs

Chapter 8: Advanced Controls

Chapter 9: The Custom Controls

Chapter 10: Graphics

Chapter 11: Displaying and Editing Text

Chapter 12: Advanced Topics

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Chapter 3: Your First SWT Application

Burgeoning programmers yearn to greet the world in code; this chapter guides you through creating your first

application in SWT—the inescapable "Hello, World." It explains how SWT works, and leads you through the major

objects you'll deal with when using SWT. It discusses the lifecycle of SWT widgets as well.

"Hello, World" in SWT

You must apply a few minor changes to your BlankWindow program from the previous chapter to convert it into the

canonical "Hello, World" application. More specifically, you must create an instance of an org.eclipse.swt.widgets.Label

object, set its text to the preferred message, and add the label to your form. The following code reflects these

changes.

import org.eclipse.swt.widgets.Display;

import org.eclipse.swt.widgets.Shell;

import org.eclipse.swt.widgets.Label;

import org.eclipse.swt.SWT;

public class HelloWorld

{

 public static void main(String[] args)

 {

 Display display = new Display();

 Shell shell = new Shell(display);

 Label label = new Label(shell, SWT.CENTER);

 label.setText("Hello, World");

 label.setBounds(shell.getClientArea());

 shell.open();

 while (!shell.isDisposed())

 {

 if (!display.readAndDispatch())

 {

 display.sleep();

 }

 }

 display.dispose();

 }

 }

Compiling and Running the Program

Compiling HelloWorld.java should work similarly to the compile command from the previous chapter. From this point

forward, we won't explicitly give instructions on the compilation or run steps, unless they vary from those examples

presented in the previous chapter.

Compiling and running your programs from the command line soon becomes tedious and error prone. To address this

issue, we provide an Ant build configuration file that you can use for the programs you develop in this book. To

compile and run your programs, copy build.xml to the same directory as your source code and run Ant, specifying your

main class name as the value for the property main.class. For example, to compile and run your HelloWorld program,

type this:

ant -Dmain.class=HelloWorld

To just compile your program, you may omit the main.class property, and you must specify the compile target, like this:

ant compile

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Listing 3-1 contains the Ant build file you'll use throughout the SWT portion of this book.

Listing 3-1: build.xml

<?xml version="1.0" encoding="ISO-8859-1"?>

<project name="GenericSwtApplication" default="run" basedir=".">

 <description>

 Generic SWT Application build and execution file

 </description>

 <property name="main.class" value=""/>

 <property name="src" location="."/>

 <property name="build" location="."/>

 <!-- Update location to match your eclipse home directory -->

 <property name="ecl.home" location="c:\eclipse"/>

 <!-- Update value to match your windowing system (win32, gtk, motif, etc.) -->

 <property name="win.sys" value="win32"/>

 <!-- Update value to match your os (win32, linux, etc.) -->

 <property name="os.sys" value="win32"/>

 <!-- Update value to match your architecture -->

 <property name="arch" value="x86"/>

 <!-- Update value to match your SWT version -->

 <property name="swt.ver" value="3.0.0"/>

 <!-- Do not edit below this line -->

 <property name="swt.subdir"

 location="${ecl.home}/plugins/org.eclipse.swt.${win.sys}_${swt.ver}"/>

 <property name="swt.jar.lib" location="${swt.subdir}/ws/${win.sys}"/>

 <property name="swt.jni.lib" location="${swt.subdir}/os/${os.sys}/${arch}"/>

 <path id="project.class.path">

 <pathelement path="${build}"/>

 <fileset dir="${swt.jar.lib}">

 <include name="**/*.jar"/>

 </fileset>

 </path>

 <target name="compile">

 <javac srcdir="${src}" destdir="${build}">

 <classpath refid="project.class.path"/>

 </javac>

 </target>

 <target name="run" depends="compile">

 <java classname="${main.class}" fork="true" failonerror="true">

 <jvmarg value="-Djava.library.path=${swt.jni.lib}"/>

 <classpath refid="project.class.path"/>

 </java>

 </target>

</project>

You must update your copy of the build.xml file as indicated in the file, updating the Eclipse home directory, the

windowing system, the operating system, the architecture, and the SWT version.

What is Ant?

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Ant, part of the Apache Jakarta project (http://jakarta.apache.org/), is a Java-specific "make" utility. Winner of the

Java Pro 2003 Readers' Choice Award for Most Valuable Java Deployment Technology, it simplifies the build

process for Java applications, and has become the Java industry standard build utility.

Rather than using traditional" make" files, Ant uses XML configuration files for building applications. To build a

Java application, then, you create an XML file that specifies your files, dependencies, and build rules, and then

run Ant against that XML file. By default, Ant searches for a file called build.xml, but you can tell Ant to use other

file names. You can specify targets and properties for Ant as well.

For more information, and to download Ant, see the Ant Web site at http://ant.apache.org/.

Running this program displays a window that greets the world, as seen in Figure 3-1.

Figure 3-1: "Hello,World" in SWT

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://jakarta.apache.org/
http://ant.apache.org/
file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig54%5F01%5F0%2Ejpg

Understanding the Program

These lines give you the proper imports for the class:

import org.eclipse.swt.widgets.Display;

import org.eclipse.swt.widgets.Shell;

import org.eclipse.swt.widgets.Label;

import org.eclipse.swt.SWT;

Most classes that use SWT import the SWT object and pieces of the swt.widgets package.

These lines create the Display object and the Shell object:

Display display = new Display();

Shell shell = new Shell(display);

At a high level, the Display object represents the underlying windowing system. The Shell object is an abstraction that

represents a top-level window when created with a Display object, as this one is. A more detailed introduction to the

Display and Shell classes is presented later in this chapter.

Next, you create your label widget with this code:

Label label = new Label(shell, SWT.CENTER);

label.setText("Hello, World");

label.setBounds(shell.getClientArea());

The Label object is capable of displaying either simple text, as you use it here, or an image. The widget is constructed

with a reference to a Shell object, which is an indirect descendant of the Composite class. Composite classes are

capable of containing other controls. When SWT encounters this line, it knows to create the underlying windowing

system's implementation of the label widget on the associated Composite object.

To make your window display, you call this:

shell.open();

This indicates to the underlying system to set the current shell visible, set the focus to the default button (if one exists),

and make the window associated with the shell active. This displays the window and allows it to begin receiving events

from the underlying windowing system.

The main loop of your application is this:

while (!shell.isDisposed())

{

 if (!display.readAndDispatch())

 {

 display.sleep();

 }

}

You'll have a loop similar to this in each of your SWT applications. In this loop, you first check to make sure that the

user hasn't closed your main window. Because the window is still open, you next check your event queue for any

messages that the windowing system or other parts of your application might have generated for you. If no events are

in the queue, you sleep, waiting for the next event to arrive. When the next event arrives, you repeat the loop, ensuring

first that the event didn't dispose your main window.

Finally, you call:

display.dispose();

Because your window has been disposed (by the user closing the window), you no longer need the resources of the

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

windowing system to pdisplay the graphical components. Being good computing citizens, you now return these

resources back to the system.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Understanding the Design Behind SWT

As you learned in Chapter 1, SWT uses the native widget library provided by the underlying OS, providing a Java

veneer for your application to talk to. The lifecycle of the widget's Java object mirrors the lifecycle of the native widget it

represents; when you create the Java widget, the native widget is created, and when the Java widget is destroyed the

native widget is also destroyed. This design avoids issues with calling methods on a code object when the underlying

widget hasn't yet been created, which can occur in other toolkits that don't match the lifecycles of the code widget and

the native widget.

For example, compare the two-step creation process of the Microsoft Foundation Classes (MFC). If you want to create

a button, you write code such as this:

CButton button; // Construct the C++ object on the stack

button.Create(<parameters>); // Create the Windows widget

Say you were to insert code between the construction of the C++ object and the native Windows widget that relied on

the existence of the Windows widget; for example, code such as this:

CButton button; // Construct the C++ object on the stack

CString str = _T("Hi"); // Create a CString to hold the button text

button.SetWindowText(str); // Set the button text--PROBLEM!

button.Create(<parameters>); // Creates the Windows widget

The code compiles without complaint, but doesn't run as expected. The debug version of the code causes an

assertion, and the behavior of the release version is undefined.

Parenting Widgets

Most GUIs require you to specify a parent for a widget before creating that widget, and the widget "belongs" to its

parent throughout its lifecycle. The lifetime of the parent component constrains the lifetime of the child component. In

addition, many native widgets have particular characteristics, or "styles," that you must set on their creation. For

example, a button might be a push button or a checkbox. Because an SWT widget creates its corresponding native

widget when it's constructed, it must have this information passed to its constructor. SWT widgets in general take two

parameters: a parent and a style. The parent is typically of type org.eclipse.swt.widgets.Widget or one of its subclasses.

The styles available are integer constants defined in the SWT class; you can pass a single style, or use bitwise ORs to

string several styles together. We'll introduce the styles available to a particular widget throughout this book as we

discuss that widget.

Disposing Widgets

Swing developers will scoff at the information in this section, taking it as proof of SWT's inferiority. Java developers in

general will likely feel a certain amount of distaste or discomfort here, for the message of this section is: you have to

clean up after yourself. This notion, anathema to Java developers, flouts Java's garbage collection and returns a

responsibility to developers that they'd long ago left behind.

Why do you have to dispose objects? Java's garbage collection manages memory admirably, but GUI resource

management operates under heavier constraints. The number of available GUI resources is much more limited and,

on many platforms, is a systemwide limitation. Because SWT works directly with the native underlying graphic

resources, each SWT resource consumes a GUI resource, and timely release of that resource is essential not only for

your SWT application's well-being, but also for the well-being of all other GUI programs currently running. Java's

garbage collection carries no timeliness guarantees, and would make a poor manager of graphic resources for SWT.

So, instead, you as programmer must assume the responsibility.

How onerous is the task? Actually, it's not much work at all. In their series of articles on SWT, Carolyn MacLeod and

Steve Northover describe two simple rules to guide your disposal efforts: [1]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

If you created it, you dispose it.

Disposing the parent disposes the children.

Rule 1: If You Created it, You Dispose It

In the section "Understanding the Design Behind SWT" earlier in this chapter, you learned that native resources are

created when an SWT object is created. In other words, when you call the SWT object's constructor, the underlying

native resource is created. So, if you code this, you've constructed an SWT Color object, and thus have allocated a

color resource from the underlying GUI platform:

Color color = new Color(display, 255, 0, 0); // Create a red Color

Rule 1 says you created it, so you must dispose it when you are done using it, like this:

color.dispose(); // I created it, so I dispose it

However, if you don't call a constructor to get a resource, you must not dispose the resource. For example, consider

the following code:

Color color = display.getSystemColor(SWT.COLOR_RED); // Get a red Color

Once again, you have a Color object that contains a red Color resource from the underlying platform, but you didn't

allocate it. Rule 1 says you must not dispose it. Why not? It doesn't belong to you—you've just borrowed it, and other

objects might still be using it or will use it. Disposing such a resource could be disastrous.

Rule 2: Disposing the Parent Disposes the Children

Calling dispose() on every SWT object created with new would quickly become tedious, and would doom SWT to a

marginalized existence. However, SWT's designers realized that, and created a logical cascade of automatic disposal.

Whenever a parent is disposed, all its children are disposed. This means that when a Shell is disposed, all the widgets

belonging to it are automatically disposed as well. In fact, when any Composite is disposed, all its children are

automatically disposed. You'll notice that you never call label.dispose() in your "Hello, World" program, even though you

create a new Label object using a constructor. When the user closes the Shell, the Label object is automatically

disposed for you.

You might be thinking that you'll never need to call dispose(), and that this entire section was a waste of space. Indeed,

you'll likely write many applications in which all resources have a parent, and they'll all automatically be disposed for

you. However, consider the case in which you want to change the font used in a Text control. You'd code something

like this:

Text text = new Text(shell, SWT.BORDER); // Create the text field

Font font = new Font(display, "Arial", 14, SWT.BOLD); // Create the new font

text.setFont(font); // Set the font into the text field

The Font object you've created has no parent, and thus won't be automatically disposed, even when the Shell is closed

and the Text object using it is disposed. You might chafe at the added burden of having to dispose of font yourself, but

realize that text has no business disposing it—it doesn't own it. In fact, you might be using the same Font object for

various other controls; automatic disposal would cause you serious problems.

Ignoring Disposed Objects

Astute readers will have noticed a hole in the mirrored lifecycle discussed in this chapter: what happens in the case

where the Java object wrapping a native widget is still in scope, but the Shell object to which it belongs has been

disposed? Or what about a widget that has had its dispose method invoked manually? Won't the native widget have

been disposed? Can't you then call a method on the Java object when the underlying native widget doesn't exist?

The answer is indeed yes, and you can get yourself into a bit of trouble if you call methods on a widget whose native

widget has been disposed. Once a widget has been disposed, even if it is still in scope, you shouldn't try to do

anything with it. Yes, the Java object is still available, but the underlying peer has been destroyed. If you do try to do

anything with a disposed widget, you'll get an SWTException with the text "Widget has been disposed." Consider the

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

code in Listing 3-2.

Listing 3-2: Broken.java

import org.eclipse.swt.*;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.widgets.*;

public class Broken

{

 public static void main(String[] args)

 {

 Display display = new Display();

 Shell shell = new Shell(display);

 shell.setLayout(new RowLayout());

 Text text = new Text(shell, SWT.BORDER);

 shell.open();

 while (!shell.isDisposed())

 {

 if (!display.readAndDispatch())

 {

 display.sleep();

 }

 }

 System.out.println(text.getText()); // PROBLEM!

 display.dispose();

 }

 }

The code compiles and runs, but after the main window is closed the console prints a stack trace that looks like this:

org.eclipse.swt.SWTException: Widget is disposed

 at org.eclipse.swt.SWT.error(SWT.java:2332)

 at org.eclipse.swt.SWT.error(SWT.java:2262)

 at org.eclipse.swt.widgets.Widget.error(Widget.java:385)

 at org.eclipse.swt.widgets.Control.getDisplay(Control.java:735)

 at org.eclipse.swt.widgets.Widget.isValidThread(Widget.java:593)

 at org.eclipse.swt.widgets.Widget.checkWidget(Widget.java:315)

 at org.eclipse.swt.widgets.Text.getText(Text.java:705)

 at Broken.main(Version.java:24)

What's more, when you run this on Windows XP, you get a dialog telling you that javaw.exe has encountered a

problem, needs to close, and would you like to send Microsoft an error report?

The lesson is simple: once an object is disposed, whether its dispose() method has been explicitly invoked or its parent

has been disposed, leave it alone.

[1]Carolyn MacLeod and Steve Northover, SWT: The Standard Widget Toolkit—Part 2: Managing Operating System

Resources, www.eclipse.org/articles/swt-design-2/swt-design-2.html.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://www.eclipse.org/articles/swt-design-2/swt-design-2.html
http://www.eclipse.org/articles/swt-design-2/swt-design-2.html

Understanding the Display Object

The Display object represents the connection between the application-level SWT classes and the underlying windowing

system implementation. The Display class is windowing-system dependent and might have some additional methods in

its API on some platforms. Here we'll discuss only the part of the API that's universally available.

In general, each of your applications will have one, and only one, Display object (this is a limitation of some lower-level

windowing systems). The thread that creates the Display object is, by default, the thread that executes the event loop

and is known as the user-interface thread. You can call many of the member functions of widgets only from the

user-interface thread. Other threads accessing these members will result in an

SWT.ERROR_THREAD_INVALID_ACCESS type of exception.

One of the most important tasks of this class is its event-handling mechanism. The Display class maintains a collection

of registered event listeners, reads events from the lower-level operating-system event queue, and delivers these

events to the appropriate implementations of registered listener logic.

There are two levels to the event-handling mechanism in SWT. At the lowest level, Listeners are registered via the

Display object with an identifier specifying the type of associated event. When the associated event occurs, the

Listener's handleEvent() method is called. This system isn't as elegant as the alternative event handling mechanism;

however, it's more efficient.

At a higher level, "typed" implementations of EventListeners are notified of the occurrence of the event. The classes

that are registered to listen for these events implement subinterfaces of EventListener. This system is more elegant,

granular, and objectoriented, at the expense of being more demanding on the system.

You typically construct a Display object with no arguments; you can construct one from a DeviceData object, which

might be useful for debugging. See Table 3-1 for descriptions of the Display constructors.

Table 3-1: Display Constructors

Constructor Description

public Display() Creates a new Display object and sets the current thread to be the user-interface

thread. You'll almost always use either this constructor or Display.getDefault() in

your application.

public

Display(DeviceData

data)

Creates a new Display object, setting the DeviceData member of the Display. You

use DeviceData for some lower-level debugging and error configuration.

Display also has several methods, some of which can be profitably ignored (beep(), anyone?). Table 3-2 lists Display's

methods.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Table 3-2: Display Methods

Method Description

void addFilter(int eventType,

Listener listener)
Adds a listener that's notified when an event of the type specified by

eventType occurs.

void addListener(int

eventType, Listener listener)
Adds a listener that's notified when an event of the type specified by

eventType occurs.

void asyncExec(Runnable

runnable)
Gives non-user-interface threads the ability to invoke the protected functions

of the SWT widget classes. The user-interface thread performs the code

(invokes the run() method) of the runnable at its next "reasonable

opportunity." This function returns immediately. See syncExec().

void beep() Sounds a beep.

void close() Closes this display.

void disposeExec(Runnable

runnable)
Registers a Runnable object whose run() method is invoked when the display

is disposed.

static Display findDisplay

(Thread thread)
Given a user-interface thread, this function returns the associated Display

object. If the given thread isn't a user-interface thread, this method returns

null.

Widget findWidget(int

handle)
Returns the widget for the specified handle, or null if no such widget exists.

Shell getActiveShell() Returns the currently active Shell, or null if no shell belonging to the currently

running application is active.

Rectangle getBounds() Returns this display's size and location.

Rectangle getClientArea() Returns the portion of this display that's capable of displaying data.

static Display getCurrent() If the currently running thread is a user-interface thread, this thread returns

the Display object associated with the thread. If the thread isn't a privileged

user-interface thread, this method returns null.

Control getCursorControl() If the mouse or other pointing device is over a control that's part of the current

application, this function returns a reference to the control; otherwise, it

returns null.

Point getCursorLocation() Returns the location of the on-screen pointer relative to the top left corner of

the screen.

Point[] getCursorSizes()

Object getData()
Returns the recommended cursor sizes. Returns the application-specific data

set into this display.

Object getData(String key) Returns the application-specific data for the specified key set into this display.

static Display getDefault() Returns the default display of this application. If one hasn't yet been created,

this method creates one and marks the current thread as the user-interface

thread. The side effect of becoming the userinterface thread obligates the use

of the current thread as the event loop thread for the application.

int getDismissalAlignment() Returns the alignment for the default button in a dialog, either SWT.LEFT or

SWT.RIGHT.

int getDoubleClickTime() Sets the maximum amount of time that can elapse between two mouse clicks

for a double-click event to occur.

Control getFocusControl() Returns the control that currently has the focus of the application. If no

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Method Description

int getIconDepth() Returns the depth of the icons on this display.

Point[] getIconSizes() Returns the recommended icon sizes.

Monitor[] getMonitors() Returns the monitors attached to this display.

Monitor getPrimaryMonitor() Returns the primary monitor for this display.

Shell[] getShells() Returns an array of the active shells (windows) that are associated with this

Display.

Thread getSyncThread() If the user-interface thread is executing code associated with a Runnable

object that was registered via the syncExec() method, this function will return a

reference to the thread that invoked syncExec() (the waiting thread).

Otherwise, this function returns null.

Color getSystemColor(int id) Returns the matching system color as defined in the SWT class. If no color is

associated with id, this method returns the color black. Remember this is a

system color—you shouldn't dispose it when you're finished with it.

Font getSystemFont() Returns a reference to a system font (it shouldn't be disposed), which is

appropriate to be used in the current environment. In general, widgets are

created with the correct font for the type of component that they represent

and you should rarely need to change this value to maintain the correct

system appearance.

Thread getThread() Returns the user-interface thread of this Display. The thread that created this

Display is the userinterface thread.

Point map(Control from,

Control to, int x, int y)
Maps the point specified by x, y from the from control's coordinate system to

the to control's coordinate system.

Rectangle map(Control

from, Control to, int x, int y,

int width, int height)

Maps the rectangle specified by x, y, width, height from the from control's

coordinate system to the to control's coordinate system.

Point map(Control from,

Control to, Point point)
Maps the specified point from the from control's coordinate system to the to

control's coordinate system.

Point map(Control from,

Control to, Rectangle

rectangle)

Maps the specified rectangle from the from control's coordinate system to the

to control's coordinate system.

boolean readAndDispatch() This is the main event function of the SWT system. It reads events, one at a

time, off the windowing system's event queue. After receiving the event, it

invokes the appropriate methods on the listener objects that have registered

interest in this event. If no events are on the event queue, readAndDispatch()

executes any requests that might have been registered with this display via

syncExec() or asyncExec(), notifying any syncExeced threads on completion of

the request. This method returns true if there are more events to be

processed, false otherwise. Returning false allows the calling thread to release

CPU resources until there are more events for the system to process via the

sleep() method.

void removeFilter(int

eventType, Listener listener)
Removes the specified listener from the notification list for the specified event

type.

void removeListener(int

eventType, Listener listener)
Removes the specified listener from the notification list for the specified event

type.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Method Description

static void setAppName

(String name)
Sets the application name.

void setCursorLocation (int

x, int y)
Moves the on-screen pointer to the specified location relative to the top left

corner of the screen.

void setCursorLocation

(Point point)
Moves the on-screen pointer to the specified location relative to the top left

corner of the screen.

void setData(Object data) Sets the application-specific data.

void setData(String key,

Object data)
Sets the application-specific data for the specified key.

void setSynchronizer

(Synchronizer synchronizer)
Sets the synchronizer for this display.

boolean sleep() Allows the user-interface thread to relinquish its CPU time until it has more

events to process or is awakened via another means; for example, wake().

This allows the system to process events much more efficiently, as the

user-interface thread only consumes CPU resources when it has events to

process.

void syncExec(Runnable

runnable)
Like asyncExec(), this method gives non-userinterface threads the ability to

invoke the protected functions of the SWT widget classes. The user-interface

thread performs this code (invokes the run method) of runnable at its next

"reasonable opportunity." This function returns after the run method of the

Runnable object returns.

void timerExec(int

milliseconds, Runnable

runnable)

Registers a Runnable object that the user-interface thread runs after the

specified time has elapsed.

void update() Causes all pending paint requests to be processed.

void wake() Wakes up the user-interface thread if it's in sleep(). Can be called by any

thread.

Although a Display object forms the foundation for your GUI, it doesn't present any graphical components to the

screen. In fact, the Display by itself displays nothing at all. You must create a window, represented by a Shell object.

This leads us to our next section, which discusses Shells.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Understanding the Shell Object

The Shell object represents a window—either a top-level window or a dialog window. It contains the various controls

that make up the application: buttons, text boxes, tables, and so on. It has six constructors; two of them aren't

recommended for use, and future releases might not support them. Construction follows the SWT pattern of passing a

parent and a style (or multiple styles bitwise-ORed together), though some constructors allow default values for either

or both parameters. Table 3-3 lists the constructors.

Table 3-3: Shell Constructors

Constructor Description

public Shell() Empty constructor, which is equivalent to calling Shell((Display) null). Currently,

passing null for the Display causes the Shell to be created on the active display, or, if

no display is active, on a "default" display. This constructor is discouraged, and might

be removed from a future SWT release.

public Shell(int

style)
This constructor, too, isn't recommended for use, as it calls Shell((Display) null, style),

so also might be removed from SWT.

public Shell(Display

display)
Constructs a shell using display as the display, null for the parent, and SHELL_TRIM for

the style, except on Windows CE, where it uses NONE (see Table 3-4).

public Shell(Display

display, int style)
Constructs a shell using display as the display, null for the parent, and style for the

style. See Table 3-4 for appropriate Shell styles.

public Shell(Shell

parent)
Constructs a shell using the parent's Display as the display, parent for the parent, and

DIALOG_TRIM for the style, except on Windows CE, where it uses NONE (see Table

3-4).

public Shell(Shell

parent, int style)
Constructs a shell using the parent's Display as the display, parent for the parent, and

style for the style. See Table 3-4 for appropriate Shell styles.

Table 3-4: Shell Styles

Style Description

BORDER Adds a border.

CLOSE Adds a close button.

MIN Adds a minimize button.

MAX Adds a maximize button.

NO_TRIM Creates a Shell that has no border and can't be moved, closed, resized,

minimized, or maximized. Not very useful, except perhaps for splash screens.

RESIZE Adds a resizable border.

TITLE Adds a title bar.

DIALOG_TRIM Convenience style, equivalent to TITLE | CLOSE | BORDER.

SHELL_TRIM Convenience style, equivalent to CLOSE | TITLE | MIN | MAX | RESIZE.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Style Description

APPLICATION_MODAL Creates a Shell that's modal to the application. Note that you should specify only

one of APPLICATION_MODAL, PRIMARY_MODAL, SYSTEM_MODAL, or

MODELESS; you can specify more, but only one is applied. The order of

preference is SYSTEM_MODAL, APPLICATION_MODAL, PRIMARY_MODAL, then

MODELESS.

PRIMARY_MODAL Creates a primary modal Shell.

SYSTEM_MODAL Creates a Shell that's modal system-wide.

MODELESS Creates a modeless Shell.

Internally, all the constructors call a package-visible constructor that sets the display, sets the style bits, sets the

parent, and then creates the window. If the Shell has a parent, it's a dialog; otherwise, it's a top-level window. Table

3-4 lists the appropriate styles for a Shell object; note that all style constants, as you'll see in the next section, are static

members of the SWT class. Also, realize that the style you set is treated as a hint; if the platform your application is

running on doesn't support the style, it's ignored.

Most of the time, you won't specify a style when you create a Shell, as the default settings usually produce what you

want. Feel free to experiment with the styles, though, so you understand what each of them does.

Shell inherits a number of methods from its extensive inheritance tree, and adds a few methods of its own (see Table

3-5 for a full listing of Shell-specific methods). However, the two methods you'll use most are open(), which opens

(displays) the Shell, and, to a lesser degree, close(), which closes the Shell. Note that the default operating platforms'

methods for closing a Shell (for example, clicking the close button on the title bar) are already implemented for you, so

you might never need to call close().

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Table 3-5: Shell Methods

Method Name Description

void addShellListener

(ShellListener listener)
Adds a listener that's notified when operations are performed on the Shell.

void close() Closes the Shell.

void dispose() Disposes the Shell, and recursively disposes all its children.

void forceActive() Moves the Shell to the top of the z-order on its Display and forces the window

manager to make it active.

Rectangle getBounds() Returns the Shell's size and location relative to its parent (or its Display in the

case of a top-level Shell).

Display getDisplay() Returns the Display this Shell was created on.

boolean getEnabled() Returns true if this Shell is enabled, and false if not.

int getImeInputMode() Returns this Shell's input-method editor mode, which is the result of bitwise

ORing one or more of SWT.NONE, SWT.ROMAN, SWT.DBCS,

SWT.PHONETIC, SWT.NATIVE, and SWT.ALPHA.

Point getLocation() Returns the location of this Shell relative to its parent (or its Display in the

case of a top-level Shell).

Region getRegion() Returns this Shell's region if it's nonrectangular. Otherwise, returns null.

Shell getShell() Returns a reference to itself.

Shell[] getShells() Returns all the Shells that are descendants of this Shell.

Point getSize() Returns this Shell's size.

boolean isEnabled() See getEnabled().

void open() Opens (displays) this Shell.

void removeShellListener

(ShellListener listener)
Removes the specified listener from the notification list.

void setActive() Moves the Shell to the top of the z-order on its Display and asks the window

manager to make it active.

void setEnabled(boolean

enabled)
Passing true enables this Shell; passing false disables it.

void setImeInputMode (int

mode)
Sets this Shell's input-method editor mode, which should be the result of

bitwise ORing one or more of SWT.NONE, SWT.ROMAN, SWT.DBCS,

SWT.PHONETIC, SWT.NATIVE, and SWT.ALPHA.

void setRegion(Region region) Sets the region for this Shell. Use for nonrectangular windows.

void setVisible(boolean

visible)
Passing true sets this Shell visible; passing false sets it invisible.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

The SWT Class—Constants and Methods

The SWT class contains a repository of class-level constants and methods to simplify SWT programming.

Curiously, nothing prevents you from creating an SWT object, though no harm is done by creating one. The SWT class

derives from java.lang.Object and has no constructors defined so that the default constructor can be invoked. However,

an SWT object has no state beyond what it inherits from java.lang.Object, and is essentially useless.

The SWT class provides a few convenience methods, all of which, as mentioned earlier, are static. Most applications

will have no need to use these; they're listed in Table 3-6.

Table 3-6: SWT Methods

Method Name Description

static void error(int

code)
Throws an exception based on code. It's the same as calling static void error(int code,

(Throwable) null).

static void error(int

code, Throwable

throwable)

Throws an exception based on code. throwable should either be null or the Throwable

that caused SWT to throw an exception. code is one of the error constants defined in

SWT.

static String

getMessage (String

key)

Gets the appropriate National Language Support (NLS) message as a String for key.

See java.util.ResourceBundle for more information on NLS. The resource bundle is

found in org.eclipse.swt.internal.SWTMessages .properties; see Table 3-7 for the

supported keys and corresponding messages.

static String

getPlatform()
Gets the SWT platform name (for example, "win32," "gtk," "carbon").

static int

getVersion()
Gets the SWT library version number.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table 3-7: SWT Message Keys and Values

Key Value

SWT_Yes Yes

SWT_No No

SWT_OK OK

SWT_Cancel Cancel

SWT_Abort Abort

SWT_Retry Retry

SWT_Ignore Ignore

SWT_Sample Sample

SWT_A_Sample_Text A Sample Text

SWT_Selection Selection

SWT_Current_Selection Current Selection

SWT_Font Font

SWT_Color Color

SWT_Extended_style Extended style

SWT_Size Size

SWT_Style Style

SWT_Save Save

SWT_Character_set Character set

SWT_ColorDialog_Title Colors

SWT_FontDialog_Title Fonts

SWT_Charset_Western Western

SWT_Charset_EastEuropean East European

SWT_Charset_SouthEuropean South European

SWT_Charset_NorthEuropean North European

SWT_Charset_Cyrillic Cyrillic

SWT_Charset_Arabic Arabic

SWT_Charset_Greek Greek

SWT_Charset_Hebrew Hebrew

SWT_Charset_Turkish Turkish

SWT_Charset_Nordic Nordic

SWT_Charset_Thai Thai

SWT_Charset_BalticRim Baltic Rim

SWT_Charset_Celtic Celtic

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Key Value

SWT_Charset_Romanian Romanian

SWT_Charset_SimplifiedChinese Simplified Chinese

SWT_Charset_TraditionalChinese Traditional Chinese

SWT_Charset_Japanese Japanese

SWT_Charset_Korean Korean

SWT_Charset_Unicode Unicode

SWT_Charset_ASCII ASCII

SWT_InputMethods Input Methods

Enter this code on Windows XP and Eclipse 2.1.1:

System.out.println("Platform: " + SWT.getPlatform());

System.out.println("Version: " + SWT.getVersion());

The code prints:

Platform: win32

Version: 2135

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Summary

An SWT-based program connects to the underlying windowing system through its Display object. Windows, widgets,

and events are built upon and travel through this crucial object. The windows you create in your applications are all

Shells. This chapter built your obligatory "Hello, World" SWT program and explained the design behind SWT. You now

know how to create widgets with parents, to clean up after yourselves, and not to touch things that don't belong to you.

In the next chapter, you learn how to place your widgets on windows where you want them.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Chapter 4: Layouts

Overview

AWT introduced layouts to an unsuspecting, and soon befuddled, programming audience. Most programmers had

learned to lay out controls by using drag-and-drop GUI builders or by editing resource files; with AWT, they had to

write code. After a time, Java IDEs began to incorporate custom layout managers that allowed developers to drag and

drop controls, but early adopters had to do without GUI builders. More puzzling, however, was the "layout" abstraction

itself; many programmers (read: Windows programmers) were accustomed to specifying exact locations and sizes for

each control. Aside from screen resolution technicalities, developers knew all they needed to know about the target

machines when building applications, so absolute positioning made absolute sense. However, the cross-platform

nature of Java demanded the abstraction; Java applications could be running on a variety of operating systems, on a

variety of hardware. Developers no longer knew enough about all the target machines: what fonts were available, how

large a text box would be to fit text vertically, how many pixels the decoration of a button would occupy, and so forth.

Layouts handled the relative positioning and sizing of controls; as programmers learned how to harness their power,

enthusiasm for layouts quickly grew.

SWT continues with layouts, offering five layout classes: FillLayout, RowLayout, GridLayout, FormLayout, and

StackLayout. This chapter discusses each of these layouts, explains how to build your own layout class, and shows you

how to place controls without using a layout. Finally, it discusses some of the GUI builders available for SWT.

Discussing layouts presents a chicken-and-egg problem: how do you teach layouts without having taught controls, so

you have controls to lay out? Conversely, how do you teach controls without having taught layouts, so you have some

way of placing and sizing controls for display? Our solution to this dilemma is to teach layouts using a single control—a

regular push button—and then teach controls in the next chapter. For now, all you need to know about controls is that

this code creates a button:

Button button = new Button(shell, SWT.PUSH);

You can set the button's text by calling its setText() method:

button.setText("My Button");

Alternatively, you can create and set text in one line:

new Button(shell, SWT.PUSH).setText("My Button");

The button is created and added to the parent window, so that the layout can place and size it appropriately.

When a Shell is first displayed, it assumes a default size assigned by the windowing system, without accounting for

what size it should be to contain its controls properly. Calling pack() causes the Shell to calculate its proper size and

resize itself accordingly. In many of the examples, you call pack() just before you call open(). One more thing to

understand before we delve into layouts is that composites are containers, both for controls and for other composites.

They're represented in SWT by the Composite object. The Shell object subclasses Composite, and thus can contain

controls and other composites; you can create and nest composites, each of which can hold both controls and other

composites. Create composites by calling this constructor, where parent is the parent composite, or the container for

the composite you're creating:

Composite composite = new Composite(parent, SWT.NONE);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Understanding Layouts

Layouts provide a decoupling layer between the controls in a composite and the composite itself; they define where to

place the composite's controls. They usually do this in a platform-independent manner, and often in a way that

maintains relative sizing when the parent window is resized. You set a layout into the composite using the composite's

setLayout() method.

All the layout classes available in SWT derive from org.eclipse.swt.widgets.Layout, which is an abstract class that

currently has no implementation (and yes, it's in the widgets package, not the layout package—this is so composites,

which reside in the same package, can call the protected methods on the layout class). It has no public API; you

create the layout class and associate it with the composite, and the SWT framework calls the necessary methods to

use the layout.

Although each composite can have only one layout, you can have multiple composites in a window, each with its own

layout. You can even nest the composites. Because each composite has its own layout object, independent from all

other composites, you can use any and all layout classes in the same window to achieve the overall layout you wish.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Using FillLayout

FillLayout is the simplest of the layout classes; it places all controls in either a single column or a single row, and makes

them all the same size. It has a public property, type, that determines whether to place the controls in column or a row.

You can pass type to the constructor, or you can set it after construction. See Table 4-1 for the FillLayout constructors.

Table 4-1: FillLayout Constructors

Constructor Description

public FillLayout() Constructs a FillLayout and sets type to SWT.HORIZONTAL.

public FillLayout(int type) Constructs a FillLayout and sets type to the passed type.

The possible values for type are SWT.HORIZONTAL, which then lays the controls out in a single row, and

SWT.VERTICAL, which lays the controls out in a single column.

Note FillLayout does no validation for the type you specify, so you can pass any int value. Although FillLayout defaults to

SWT.HORIZONTAL, if you specify a type that isn't SWT.HORIZONTAL or SWT.VERTICAL, it will use SWT.VERTICAL.

To create a horizontal FillLayout and set it into a Shell, you use this code:

FillLayout layout = new FillLayout();

layout.type = SWT.HORIZONTAL;

shell.setLayout(layout);

You can trim a line of code by passing the type in the constructor; you create a vertical FillLayout with this code:

FillLayout layout = new FillLayout(SWT.VERTICAL);

shell.setLayout(layout);

If you don't need to retain a reference to your layout after setting it into the Shell, you can construct and set in one

step:

shell.setLayout(new FillLayout(SWT.VERTICAL));

Let's look at an example of FillLayout. In the following code, you create a Display and a Shell, then you create a

horizontal FillLayout and set it as the layout for the Shell. You then add three buttons, labeled one, two, and three, and

you enter your main event loop. This code should show three buttons in a row, filling the window (see Figure 4-1).

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Figure 4-1: A horizontal FillLayout

To compile and run this code, create a file called FillLayoutHorizontal.java in the directory structure examples/ch4 beneath

a parent directory. Type the code shown in Listing 4-1 into the file and save it. Then, open a command prompt or a

shell and navigate to the parent directory. Copy the build.xml file you created in Chapter 3 into the parent directory and

type this:

ant -Dmain.class=examples.ch4.FillLayoutHorizontal

Listing 4-1: FillLayoutHorizontal.java

package examples.ch4;

import org.eclipse.swt.widgets.*;

import org.eclipse.swt.layout.FillLayout;

import org.eclipse.swt.SWT;

public class FillLayoutHorizontal {

 public static void main(String[] args) {

 Display display = new Display();

 Shell shell = new Shell(display);

 shell.setLayout(new FillLayout(SWT.HORIZONTAL));

 new Button(shell, SWT.PUSH).setText("one");

 new Button(shell, SWT.PUSH).setText("two");

 new Button(shell, SWT.PUSH).setText("three");

 shell.open();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

 display.dispose();

 }

}

Notice the full package name for your main class. The class should compile and run, and you should see the window

shown in Figure 4-1.

We won't repeat these instructions throughout the book; as we introduce new code, follow the preceding steps,

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig74%5F01%5F0%2Ejpg

substituting the fully qualified name of the appropriate class for main.class.

If you pass SWT.VERTICAL instead to your FillLayout constructor, so that the line reads as follows, the buttons are

aligned vertically (see Figure 4-2):

shell.setLayout(new FillLayout(SWT.VERTICAL));

Figure 4-2: A vertical FillLayout

FillLayouts can't do more than relatively simple layouts, so you'll likely reserve them for nested composites. For

complex layouts, you'll need to use one of the more advanced layout classes.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig75%5F01%5F0%2Ejpg

Using RowLayout

RowLayout is similar to FillLayout: it places all controls in a single column or row. However, it doesn't force all contained

controls to the same size. It also can wrap controls to a new row or column if it runs out of space.

RowLayout uses instances of the RowData class to determine initial widths and heights for its controls. You associate a

RowData object to a control by passing the RowData to the control's setLayoutData() method; the layout retrieves the

RowData from the control to determine sizing and placement.

Caution The Widget class, from which SWT controls derive, has a method called setData() that, like setLayoutData(), takes

an Object as a parameter. If you're setting a layout data instance into a control, and it's not behaving as you'd

expect, make sure you aren't inadvertently calling setData() instead of setLayoutData().

The RowData class has two public members:

public int height

public int width

You can set these after constructing a RowData object. For example, here's the code to create a Button and set it to

100 pixels wide and 50 pixels tall:

Button button = new Button(shell, SWT.PUSH);

RowData rowData = new RowData();

rowData.height = 50;

rowData.width = 100;

button.setLayoutData(rowData);

RowData provides two convenience constructors that allow you to specify height and width, either as two discrete

integers or as a Point. You could change the preceding code to this:

Button button = new Button(shell, SWT.PUSH);

button.setLayoutData(new RowData(100, 50)); // width, height

Alternatively, you could change the code to this:

Button button = new Button(shell, SWT.PUSH);

button.setLayoutData(new RowData(new Point(100, 50))); // width, height

RowLayout, like FillLayout, has a public attribute type that contains either SWT.HORIZONTAL or SWT.VERTICAL to

configure the layout as a row or a column, respectively. RowLayout has several other configurable attributes as well

(see Table 4-2).

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Table 4-2: RowLayout Attributes

Attribute Description

boolean justify If true, justifies the entire row or column; it doesn't change the size of the controls, but

rather spaces them evenly to fill the space. Think of a line of text in a newspaper story that

has excess space between letters to preserve the justification of the column. The default is

false.

int

marginBottom
The size of the bottom margin, in pixels, for the layout. The default is 3.

int marginLeft The size of the left margin, in pixels, for the layout. The default is 3.

int marginRight The size of the right margin, in pixels, for the layout. The default is 3.

int marginTop The size of the top margin, in pixels, for the layout. The default is 3.

boolean pack If true, tells all controls to use their preferred size. The default is true.

int spacing The size of the space, in pixels, between neighboring controls. The default is 3.

int type The type of the layout; if it's SWT.HORIZONTAL (the default), the layout will use rows. If it's

SWT.VERTICAL, the layout will use columns. Current implementations will use

SWT.VERTICAL if an invalid value is specified.

boolean wrap If true, will wrap the controls to the next row or column if the current row or column is out of

space. The default is true.

RowLayout has two constructors: an empty constructor, and one that takes a single parameter for the type value.

Consider the following code:

package examples.ch4;

import org.eclipse.swt.widgets.*;

import org.eclipse.swt.layout.RowLayout;

import org.eclipse.swt.SWT;

public class RowLayoutHorizontal {

 public static void main(String[] args) {

 Display display = new Display();

 Shell shell = new Shell(display);

 shell.setLayout(new RowLayout(SWT.HORIZONTAL));

 new Button(shell, SWT.PUSH).setText("one");

 new Button(shell, SWT.PUSH).setText("two");

 new Button(shell, SWT.PUSH).setText("three");

 new Button(shell, SWT.PUSH).setText("four");

 new Button(shell, SWT.PUSH).setText("five");

 new Button(shell, SWT.PUSH).setText("six");

 new Button(shell, SWT.PUSH).setText("seven");

 shell.open();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

 display.dispose();

 }

}

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

This code creates a horizontal row layout, accepting all the default values for the row layout's attributes. If you compile

and run this code, you'll see a window that looks like Figure 4-3.

Figure 4-3: A default RowLayout

Because you've accepted the default value for wrap, which is true, resizing the window causes the controls to wrap to a

second row (see Figure 4-4).

Figure 4-4: A default RowLayout after resizing

By manipulating the various values of the row layout, and using RowData objects for some controls, you can alter the

behavior of the layout significantly. See Listing 4-2 for some of the things you can do.

Listing 4-2: RowLayoutTest.java

package examples.ch4;

import org.eclipse.swt.widgets.*;

import org.eclipse.swt.layout.RowLayout;

import org.eclipse.swt.layout.RowData;

import org.eclipse.swt.SWT;

public class RowLayoutTest {

 public static void main(String[] args) {

 Display display = new Display();

 Shell shell = new Shell(display);

 RowLayout layout = new RowLayout(SWT.VERTICAL);

 layout.marginLeft = 12;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig78%5F01%5F0%2Ejpg

 layout.marginTop = 0;

 layout.justify = true;

 shell.setLayout(layout);

 new Button(shell, SWT.PUSH).setText("one");

 new Button(shell, SWT.PUSH).setText("two");

 new Button(shell, SWT.PUSH).setText("three");

 new Button(shell, SWT.PUSH).setText("four");

 new Button(shell, SWT.PUSH).setText("five");

 new Button(shell, SWT.PUSH).setText("six");

 Button b = new Button(shell, SWT.PUSH);

 b.setText("seven");

 b.setLayoutData(new RowData(100, 100));

 shell.open();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

 display.dispose();

 }

}

This code creates a vertical row layout, changes the top and left margins, and justifies the controls. It also uses a

RowData object to set the size of your button labeled "seven." Compiling and running the code displays a window that

looks like Figure 4-5.

Figure 4-5: A RowLayout with some changed properties

You'll see that a vertical row layout looks exactly like what you'd call a column layout; the columnar capability of

RowLayout was added in SWT 2.0. Rather than create a new class and duplicate a lot of code, SWT's developers

reused RowLayout and added the vertical attribute. For purists (and we've met a few), you could create a new class

called ColumnLayout that extends RowLayout and sets type to SWT.VERTICAL—if that would make you feel better. The

rest of you can just accept the name mismatch.

RowLayout's abilities supersede FillLayout's, but still don't suffice for complex layouts. GridLayout, the subject of our next

section, takes layouts a leap forward.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig80%5F01%5F0%2Ejpg

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Using GridLayout

If you plan to learn only one layout, make it GridLayout. Packing the most power for the learning effort required,

GridLayout works from the simple to the complex. As its name implies, GridLayout lays out controls in a grid. By using

Composites to nest GridLayouts within GridLayouts, you can give structure and aesthetics to complex layouts. GridLayout

has two constructors, listed in Table 4-3.

Table 4-3: GridLayout Constructors

Constructor Description

public GridLayout() Constructs a default GridLayout.

public GridLayout(int numColumns, boolean

makeColumnsEqualWidth)
Constructs a GridLayout with numColumns columns. If

makeColumnsEqualWidth is true, all columns will have the same

width.

GridLayout has six public data members, listed in Table 4-4. Perhaps the most important of these is numColumns, which

controls the structure of this layout. This member holds the number of columns this layout uses; controls are laid out

left to right, one per column, wrapping to the next row when the columns are filled.

Table 4-4: GridLayout Data Members

Attribute Description

int horizontalSpacing The amount of horizontal space, in pixels, between adjacent cells.

boolean

makeColumnsEqualWidth
If true, forces all columns to be the same width.

int marginHeight The size of the margin, in pixels, along the top and bottom edges of the

layout.

int marginWidth The size of the margin, in pixels, along the left and right edges of the

layout.

int numColumns The number of columns for the layout.

int verticalSpacing The amount of vertical space, in pixels, between adjacent cells.

You can further tune your GridLayout by setting GridData instances into your controls. GridData objects, which you

shouldn't reuse among controls, fine-tune how the layout treats the GridData's associated controls. They have two

constructors, as seen in Table 4-5.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Table 4-5: GridData Constructors

Constructor Description

public GridData() Constructs a default GridData.

public GridData(int

style)
Constructs a GridData, setting member data values according to the values

specified in style.

As with the other layout data classes, GridData has public members to control its state. It also provides various

constants that you can pass to the constructor; these constants set combinations of public members to achieve certain

effects. You can chain several constants together using bitwise ORs. Table 4-6 lists the data members; Table 4-7 lists

the constants, and what effect they have.

Table 4-6: GridData Members

Attribute Description

boolean

grabExcessHorizontalSpace
If true, instructs the cell to fill the excess horizontal space in the layout. The

default is false.

boolean

grabExcessVerticalSpace
If true, instructs the cell to fill the excess vertical space in the layout. The

default is false.

int heightHint The minimum height, in pixels, for the row. The default is SWT.DEFAULT.

int horizontalAlignment The horizontal alignment for the cell; possible values are BEGINNING,

CENTER, END, and FILL, for left justified, centered, right justified, and

justified, respectively. The default is BEGINNING, which will also be used if

an invalid value is set.

int horizontalIndent The size of the horizontal indent, in pixels, on the left of the cell. The default

is zero.

int horizontalSpan The number of columns the cell should occupy. The default is one.

int verticalAlignment The vertical alignment for the cell; possible values are BEGINNING,

CENTER, END, and FILL, for top justified, centered, bottom justified, and

justified, respectively. The default is CENTER, although BEGINNING will be

used if an invalid value is set.

int verticalSpan The number of rows the cell should occupy. The default is one.

int widthHint The minimum width, in pixels, for the column. The default is SWT.DEFAULT.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Table 4-7: GridData Constants

Constant Description

BEGINNING Not used for style; alignment constant that left aligns when specifying

horizontal alignment and top aligns when specifying vertical

alignment.

CENTER Not used for style; alignment constant that centers the control in the

cell, whether horizontally or vertically.

END Not used for style; alignment constant that right aligns when specifying

horizontal alignment and bottom aligns when specifying vertical

alignment.

FILL Not used for style; alignment constant that fully justifies the control in

the cell, whether horizontally or vertically.

FILL_BOTH Sets both horizontalAlignment and verticalAlignment to FILL. Sets both

grabExcessHorizontalSpace and grabExcessVerticalSpace to true.

FILL_HORIZONTAL Sets horizontalAlignment to FILL and grabExcessHorizontalSpace to true.

FILL_VERTICAL Sets verticalAlignment to FILL and grabExcessVerticalSpace to true.

GRAB_HORIZONTAL Sets grabExcessHorizontalSpace to true.

GRAB_VERTICAL Sets grabExcessVerticalSpace to true.

HORIZONTAL_ALIGN_BEGINNING Sets horizontalAlignment to BEGINNING.

HORIZONTAL_ALIGN_CENTER Sets horizontalAlignment to CENTER.

HORIZONTAL_ALIGN_END Sets horizontalAlignment to END.

HORIZONTAL_ALIGN_FILL Sets horizontalAlignment to FILL.

VERTICAL_ALIGN_BEGINNING Sets verticalAlignment to BEGINNING.

VERTICAL_ALIGN_CENTER Sets verticalAlignment to CENTER.

VERTICAL_ALIGN_END Sets verticalAlignment to END.

VERTICAL_ALIGN_FILL Sets verticalAlignment to FILL.

Be careful when specifying combinations of constants, as no check is done for conflicting values.

To create a 22 grid, you write code like this:

GridLayout layout = new GridLayout();

layout.numColumns = 2;

shell.setLayout(layout);

new Button(shell, SWT.PUSH).setText("one");

new Button(shell, SWT.PUSH).setText("two");

new Button(shell, SWT.PUSH).setText("three");

new Button(shell, SWT.PUSH).setText("four");

This produces a window that looks like Figure 4-6. Notice that the buttons have different widths, depending on the

length of their text. You might think that adding a line of code to set the makeColumnsEqualWidth to true makes the

buttons the same width:

layout.makeColumnsEqualWidth = true;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Figure 4-6: A 2×2 GridLayout

However, compiling and running this code demonstrates that this isn't the case (see Figure 4-7). The

makeColumnsEqualWidth data member forces the columns to have equal width, but doesn't affect the size of the

controls within the columns. You use GridData instances to do that.

Figure 4-7: A 2×2 GridLayout with equal column widths

Let's say you decide that you want the buttons to fill the horizontal and vertical excess space. You create a GridData

object with the FILL_BOTH style:

GridData data = new GridData(GridData.FILL_BOTH);

This sets horizontalAlignment and verticalAlignment to FILL, and sets grabExcessHorizontalSpace and

grabExcessVerticalSpace to true. Because you want all your buttons to have this same style, you might think you can

save object creation by reusing the GridData object:

 Button one = new Button(shell, SWT.PUSH);

 one.setText("one");

 one.setLayoutData(data);

 Button two = new Button(shell, SWT.PUSH);

 two.setText("two");

 two.setLayoutData(data);

 Button three = new Button(shell, SWT.PUSH);

 three.setText("three");

 three.setLayoutData(data);

 Button four = new Button(shell, SWT.PUSH);

 four.setText("four");

 four.setLayoutData(data);

However, when you compile and run this, you see that some buttons are missing (see Figure 4-8).

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Figure 4-8: Trying to reuse GridData objects

That's when you remember that GridData objects cannot be reused, and that each GridData must belong to only one

control. Here's the corrected code:

package examples.ch4;

import org.eclipse.swt.widgets.*;

import org.eclipse.swt.layout.GridData;

import org.eclipse.swt.layout.GridLayout;

import org.eclipse.swt.SWT;

public class GridLayout2x2 {

 public static void main(String[] args) {

 Display display = new Display();

 Shell shell = new Shell(display);

 GridLayout layout = new GridLayout();

 layout.numColumns = 2;

 layout.makeColumnsEqualWidth = true;

 shell.setLayout(layout);

 GridData data = new GridData(GridData.FILL_BOTH);

 Button one = new Button(shell, SWT.PUSH);

 one.setText("one");

 one.setLayoutData(data);

 data = new GridData(GridData.FILL_BOTH);

 Button two = new Button(shell, SWT.PUSH);

 two.setText("two");

 two.setLayoutData(data);

 data = new GridData(GridData.FILL_BOTH);

 Button three = new Button(shell, SWT.PUSH);

 three.setText("three");

 three.setLayoutData(data);

 data = new GridData(GridData.FILL_BOTH);

 Button four = new Button(shell, SWT.PUSH);

 four.setText("four");

 four.setLayoutData(data);

 shell.pack();

 shell.open();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

 display.dispose();

 }

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

}

Compiling and running this class produces the window seen in Figure 4-9.

Figure 4-9: A GridLayout with all buttons set to fill horizontally and vertically

Now that you understand the fundamentals of GridLayout, you can nest GridLayouts within other GridLayouts to produce

more complex layouts. For example, to produce the layout shown in Figure 4-10, you would write the code in Listing

4-3.

Figure 4-10: A complex GridLayout

Listing 4-3: GridLayoutComplex.java

package examples.ch4;

import org.eclipse.swt.widgets.*;

import org.eclipse.swt.layout.GridData;

import org.eclipse.swt.layout.GridLayout;

import org.eclipse.swt.SWT;

public class GridLayoutComplex {

 public static void main(String[] args) {

 Display display = new Display();

 Shell shell = new Shell(display);

 GridLayout layout = new GridLayout();

 layout.numColumns = 3;

 layout.makeColumnsEqualWidth = true;

 shell.setLayout(layout);

 // Create the big button in the upper left

 GridData data = new GridData(GridData.FILL_BOTH);

 data.widthHint = 200;

 Button one = new Button(shell, SWT.PUSH);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig88%5F01%5F0%2Ejpg

 one.setText("one");

 one.setLayoutData(data);

 // Create a composite to hold the three buttons in the upper right

 Composite composite = new Composite(shell, SWT.NONE);

 data = new GridData(GridData.FILL_BOTH);

 data.horizontalSpan = 2;

 composite.setLayoutData(data);

 layout = new GridLayout();

 layout.numColumns = 1;

 layout.marginHeight = 15;

 composite.setLayout(layout);

 // Create button "two"

 data = new GridData(GridData.FILL_BOTH);

 Button two = new Button(composite, SWT.PUSH);

 two.setText("two");

 two.setLayoutData(data);

 // Create button "three"

 data = new GridData(GridData.HORIZONTAL_ALIGN_CENTER);

 Button three = new Button(composite, SWT.PUSH);

 three.setText("three");

 three.setLayoutData(data);

 // Create button "four"

 data = new GridData(GridData.HORIZONTAL_ALIGN_BEGINNING);

 Button four = new Button(composite, SWT.PUSH);

 four.setText("four");

 four.setLayoutData(data);

 // Create the long button across the bottom

 data = new GridData();

 data.horizontalAlignment = GridData.FILL;

 data.grabExcessHorizontalSpace = true;

 data.horizontalSpan = 3;

 data.heightHint = 150;

 Button five = new Button(shell, SWT.PUSH);

 five.setText("five");

 five.setLayoutData(data);

 shell.pack();

 shell.open();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

 display.dispose();

 }

}

You might be tempted to skip the rest of this chapter, thinking that the layouts we've discussed so far afford all the

layout power you'll need. True, you can accomplish extremely complex layouts with what you've learned so far, and as

long as you make your windows a fixed size, you shouldn't have any problems. Look at what happens, though, if you

resize the complex grid layout you just created—some of the buttons disappear (see Figure 4-11).

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Figure 4-11: A resized complex grid layout

If you want more control over how your controls respond to resizing, you need to use FormLayout, which we discuss in

the next section.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig88%5F02%5F0%2Ejpg

Using FormLayout

Looming as the most difficult layout to learn and understand is FormLayout, but rewards come to those who invest the

time to learn it. As testimony to its complexity, it, unlike the other layouts, affords no simple explanation or

one-sentence overview. However, FormLayout does offer the most control over intricate layouts, and merits a place in

your arsenal. Consider it the GridBagLayout of SWT.

Like other layout classes, FormLayout uses a layout data class: FormData. FormData, in turn, uses an additional class to

control widget sizing and placement: FormAttachment. Up to four instances of FormAttachment are set into the FormData

object for the control; each FormAttachment instance corresponds to one side of the control (top, bottom, left, and right).

FormAttachment defines how widgets position themselves with respect to the parent composite or to other controls

within that composite. More specifically, a FormAttachment defines how the side of the control it belongs to positions

and sizes itself with respect to the thing it's attached to, be it the parent or another control.

For those of you whose dexterity in math fueled a career in computer programming, and if you now find yourself

grabbing data from a database and throwing it on a screen without doing so much as simple arithmetic, you need to

dust off a few of those math skills now. FormAttachment uses this algorithm to determine sizing and placement:

y = ax + b

You'll recognize this as the standard linear equation, in which y is the value of the y coordinate, x is the value of the x

coordinate, a is the slope, and b is the offset. In FormAttachment terms, y is the height, x is the width, a is a percentage of

the attached-to object, and b is the offset. FormAttachment instances hold these values in member data (see Table 4-8).

Table 4-8: FormAttachment Member Data

Attribute Description

int alignment Specifies the alignment of the side of the control that this FormAttachment belongs to,

relative to the control it's attached to. For attachments belonging to the top or bottom side,

possible values are SWT.TOP, SWT.CENTER, and SWT.BOTTOM. For left or right

attachments, possible values are SWT.LEFT, SWT.CENTER, and SWT.RIGHT. The side

belonging to this FormAttachment is attached to the side of the attached control indicated by

alignment. The default is to attach to the adjacent side.

Control

control
Specifies the control this FormAttachment attaches to.

int

denominator
Specifies the denominator of the a value of the equation. The default value is 100.

int numerator Specifies the numerator of the a value of the equation.

int offset Specifies the offset in pixels of the corresponding side from the attached composite or control.

FormAttachment specifies five constructors, none of which are empty, to help set its member data. They're listed in

Table 4-9.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table 4-9: FormAttachment Constructors

Constructor Description

FormAttachment(Control control) Constructs a FormAttachment attached to the specified control.

FormAttachment(Control control, int offset) Constructs a FormAttachment attached to the specified control,

with the specified offset.

FormAttachment(Control control, int offset,

int alignment)
Constructs a FormAttachment attached to the specified control,

with the specified offset and alignment.

FormAttachment(int numerator) Constructs a FormAttachment with the specified numerator, a

denominator of 100, and no offset.

FormAttachment(int numerator, int offset) Constructs a FormAttachment with the specified numerator and

offset, and a denominator of 100.

FormAttachment(int numerator, int

denominator, int offset)
Constructs a FormAttachment with the specified numerator,

denominator, and offset.

FormData contains up to four instances of FormAttachment, one for each side of the corresponding control. In addition,

FormData can specify a width and a height. Table 4-10 lists the member data for FormData.

Table 4-10: FormData Member Data

Attribute Description

FormAttachment bottom The FormAttachment corresponding to the bottom side of the control.

int height The desired height, in pixels, for the control.

FormAttachment left The FormAttachment corresponding to the left side of the control.

FormAttachment right The FormAttachment corresponding to the right side of the control.

FormAttachment top The FormAttachment corresponding to the top side of the control.

int width The desired width, in pixels, for the control.

When you construct a FormData object, you can optionally pass the width and height. Otherwise, use the default

(empty) constructor. If you specify no FormAttachment objects, the control will attach to the top and left edges of the

parent composite. If you define multiple controls this way, they'll be layered on top of each other, all in the upper-left

corner of the parent.

FormLayout itself has two data members, marginHeight and marginWidth, specifying sizes, in pixels, for the margins that

surround the composite's content. marginHeight corresponds to the top and bottom margins, and marginWidth

corresponds to the left and right margins. However, only an empty constructor is available, so you must specify any

margin values after constructing the FormLayout. The margin values default to zero.

The simplest usage of FormLayout would be a window with one button and no FormData (see Listing 4-4).

Listing 4-4: FormLayoutSimple.java

package examples.ch4;

import org.eclipse.swt.widgets.*;

import org.eclipse.swt.layout.FormLayout;

import org.eclipse.swt.SWT;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

public class FormLayoutSimple {

 public static void main(String[] args) {

 Display display = new Display();

 Shell shell = new Shell(display);

 shell.setLayout(new FormLayout());

 new Button(shell, SWT.PUSH).setText("Button");

 shell.pack();

 shell.open();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

 display.dispose();

 }

}

This code produces a window with a single button in the upper-left corner (see Figure 4-12).

Figure 4-12: A simple FormLayout

You can change the margins by retaining a reference to your FormLayout object and setting its marginHeight and

marginWidth properties, so that the code would look something like this:

FormLayout layout = new FormLayout();

layout.marginHeight = 5;

layout.marginWidth = 10;

shell.setLayout(layout);

The resulting window would look like Figure 4-13.

Figure 4-13: A simple FormLayout with margins set

However, until you use FormData and FormAttachment, you can't do much else.

Try using a FormData, but still no FormAttachments. FormData has the public properties height and width; you set those to

change the size of the button:

Button button = new Button(shell, SWT.PUSH);

button.setText("Button");

FormData data = new FormData();

data.height = 50;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

data.width = 50;

button.setLayoutData(data);

Now your window looks like Figure 4-14.

Figure 4-14: A FormLayout with a FormData set for the button

The button occupies a static position on the window; resizing this window has no effect on the button. Let's say,

though, that you always want the button to extend within 50 pixels of the right edge of the window; you must add a

FormAttachment to the FormData object you created earlier. Because you want to attach the right side of the button to

the parent window, you set the right property of the FormData. When attaching to the side of the parent composite, you

set the numerator to zero for the top and left edges, and 100 for the bottom and right edges, for 0% and 100% of the

parent composite, respectively. You use the constructor that takes the numerator, which you set to 100, and the offset,

which you set to -50. You don't need to set the denominator, because the default of 100 is what you want. The code

looks like this:

data.right = new FormAttachment(100, -50);

Now when you compile and run your program, the button appears with its right edge exactly 50 pixels from the right

edge of the window, as seen in Figure 4-15. Resizing the window keeps the button's right edge 50 pixels from the right

edge of the window, as seen in Figure 4-16.

Figure 4-15: A button attached to the right edge of the window, offset by 50 pixels

Figure 4-16: Resizing the window

Notice that the entire button has moved to maintain its right edge 50 pixels from the right edge of the window. Hmm.

What you really wanted was for the button to stay in the same place, but stretch to fill the space. To accomplish this,

you must attach the left side of the button to its location, so you set the FormData's left property:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

data.left = new FormAttachment(0, 10);

Passing zero for the numerator attaches the left edge of the button to the left side of the window (yes, it's also possible

to attach the left edge of the button to the right edge of the window—try it to see what happens). Passing 10 for the

offset maintains the left edge of the button 10 pixels from the left edge of the window. The initial window doesn't look

much different from your initial window before, but resizing the window demonstrates that the left edge of the button is

now anchored to the left edge of the window, as seen in Figure 4-17.

Figure 4-17: Left and right sides of the button attached to the left and right sides of the window, respectively

Notice that the FormAttachment settings trump the width you set on the FormData, so you remove that line of code.

You seem to be getting the hang of this. Now, attach the top of the button to the top of the window. However, instead

of attaching it to a precise pixel offset, you'll place it at the position that's 25% of the height of the window down from

the top of the window. Just for fun, you'll express it as 1/4, rather than setting the numerator to 25 and leaving the

denominator at the default of 100. You set the offset to zero. You add the following code.

data.top = new FormAttachment(1, 4, 0);

Now the button keeps its top edge one-fourth of the way down from the top of the window, no matter how often you

resize the window (see Figure 4-18).

Figure 4-18: Top edge of the button anchored to a point 25% down from the top of the window

Let's add a button below this button. You'll anchor the bottom of the button to the bottom of the window, the top of the

button to the bottom of your existing button (with five pixels of spacing between them), and the left and right edges of

the button to the left and right edges, respectively, of your existing button. You start by creating your button:

Button button2 = new Button(shell, SWT.PUSH);

button2.setText("Button 2");

You then create a FormData object, and set its bottom data member that attaches to the very bottom of the window. You

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

set the numerator to 100 and the offset to zero:

data = new FormData();

button2.setLayoutData(data);

data.bottom = new FormAttachment(100, 0);

To attach the top edge of your button to the existing button, you must use a FormAttachment constructor that takes a

Control as an argument, so you can pass the existing button. Because you also want five pixels' space between the

two buttons, you'll use the constructor that takes a Control and an offset:

data.top = new FormAttachment(button, 5);

You didn't have to specify that you wanted to attach to button's bottom edge; by default, edges are attached to

adjacent edges when you set Control. Because you're specifying a FormAttachment for the top of the new button, and

you're attaching to an existing button that was added before this one, your new button's top edge is adjacent to the

existing button's bottom edge, and the two are attached.

You might be tempted to use the same constructor to attach the new button's left edge to the existing button's left

edge, or even use the constructor that just takes a Control object, because the offset will be zero, so you use this code:

data.left = new FormAttachment(button);

However, this code attaches the left edge of your new button to the right edge of your existing button, as Figure 4-19

shows. Because you haven't specified which edge of button to attach to, the adjacent edge, the right, is assumed. You

must explicitly attach to the left edge by passing SWT.LEFT for alignment:

data.left = new FormAttachment(button, 0, SWT.LEFT);

Figure 4-19: Left edge of Button 2 erroneously attached to right edge of Button

You complete the task by attaching the right edge of the new button to the right edge of button:

data.right = new FormAttachment(button, 0, SWT.RIGHT);

Compiling and running demonstrates that you've achieved your desired results, as shown in Figure 4-20.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Figure 4-20: Two buttons attached

Listing 4-5 shows the entire code listing.

Listing 4-5: FormDataFormAttachment.java

package examples.ch4;

import org.eclipse.swt.widgets.*;

import org.eclipse.swt.layout.FormAttachment;

import org.eclipse.swt.layout.FormData;

import org.eclipse.swt.layout.FormLayout;

import org.eclipse.swt.SWT;

public class FormLayoutFormAttachment {

 public static void main(String[] args) {

 Display display = new Display();

 Shell shell = new Shell(display);

 FormLayout layout = new FormLayout();

 layout.marginHeight = 5;

 layout.marginWidth = 10;

 shell.setLayout(layout);

 Button button = new Button(shell, SWT.PUSH);

 button.setText("Button");

 FormData data = new FormData();

 data.height = 50;

 data.right = new FormAttachment(100, -50);

 data.left = new FormAttachment(0, 10);

 data.top = new FormAttachment(1, 4, 0);

 button.setLayoutData(data);

 Button button2 = new Button(shell, SWT.PUSH);

 button2.setText("Button 2");

 data = new FormData();

 button2.setLayoutData(data);

 data.bottom = new FormAttachment(100, 0);

 data.top = new FormAttachment(button, 5);

 data.left = new FormAttachment(button, 0, SWT.LEFT);

 data.right = new FormAttachment(button, 0, SWT.RIGHT);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 shell.pack();

 shell.open();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

 display.dispose();

 }

}

Caution Don't create circular attachments (for example, attaching the bottom of one control to the top of another, and

then attaching the top of that control to the bottom of the first). The results are undefined.

Now that you understand the fundamentals of FormLayout, FormData, and FormAttachment, let's tackle anew the layout

you created when we discussed GridLayout. This time, you want the following:

A button in the upper left, filling the left-upper quarter of the window

Three buttons that collectively fill the in the right-upper quarter of the window

A button filling the bottom half of the window

Five pixels of space between adjacent edges

You start with the upper-left button; you attach the top and left edges to the window, offsetting by five pixels:

Button one = new Button(shell, SWT.PUSH);

one.setText("One");

FormData data = new FormData();

data.top = new FormAttachment(0, 5);

data.left = new FormAttachment(0, 5);

data.bottom = new FormAttachment(50, -5);

data.right = new FormAttachment(50, -5);

one.setLayoutData(data);

To create the upper-right three buttons, you reason that you can put them all in a composite with a grid layout, and

attach the composite to your first button:

Composite composite = new Composite(shell, SWT.NONE);

GridLayout gridLayout = new GridLayout();

gridLayout.marginHeight = 0;

gridLayout.marginWidth = 0;

composite.setLayout(gridLayout);

Button two = new Button(composite, SWT.PUSH);

two.setText("two");

GridData gridData = new GridData(GridData.FILL_BOTH);

two.setLayoutData(gridData);

Button three = new Button(composite, SWT.PUSH);

three.setText("three");

gridData = new GridData(GridData.FILL_BOTH);

three.setLayoutData(gridData);

Button four = new Button(composite, SWT.PUSH);

four.setText("four");

gridData = new GridData(GridData.FILL_BOTH);

four.setLayoutData(gridData);

data = new FormData();

data.top = new FormAttachment(0, 5);

data.left = new FormAttachment(one, 5);

data.bottom = new FormAttachment(50, -5);

data.right = new FormAttachment(100, -5);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

composite.setLayoutData(data);

You attach the bottom button to the upper-left button and the window:

Button five = new Button(shell, SWT.PUSH);

five.setText("five");

data = new FormData();

data.top = new FormAttachment(one, 5);

data.left = new FormAttachment(0, 5);

data.bottom = new FormAttachment(100, -5);

data.right = new FormAttachment(100, -5);

five.setLayoutData(data);

The window displays the layout as you expect, even after resizing (see Figure 4-21).

Figure 4-21: A complex FormLayout

Listing 4-6 shows the complete code listing for your complex FormLayout.

Listing 4-6: FormLayoutComplex.java

package examples.ch4;

import org.eclipse.swt.widgets.*;

import org.eclipse.swt.layout.FormAttachment;

import org.eclipse.swt.layout.FormData;

import org.eclipse.swt.layout.FormLayout;

import org.eclipse.swt.layout.GridData;

import org.eclipse.swt.layout.GridLayout;

import org.eclipse.swt.SWT;

public class FormLayoutComplex {

 public static void main(String[] args) {

 Display display = new Display();

 Shell shell = new Shell(display);

 FormLayout layout = new FormLayout();

 shell.setLayout(layout);

 Button one = new Button(shell, SWT.PUSH);

 one.setText("One");

 FormData data = new FormData();

 data.top = new FormAttachment(0, 5);

 data.left = new FormAttachment(0, 5);

 data.bottom = new FormAttachment(50, -5);

 data.right = new FormAttachment(50, -5);

 one.setLayoutData(data);

 Composite composite = new Composite(shell, SWT.NONE);

 GridLayout gridLayout = new GridLayout();

 gridLayout.marginHeight = 0;

 gridLayout.marginWidth = 0;

 composite.setLayout(gridLayout);

 Button two = new Button(composite, SWT.PUSH);

 two.setText("two");

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig98%5F01%5F0%2Ejpg

 GridData gridData = new GridData(GridData.FILL_BOTH);

 two.setLayoutData(gridData);

 Button three = new Button(composite, SWT.PUSH);

 three.setText("three");

 gridData = new GridData(GridData.FILL_BOTH);

 three.setLayoutData(gridData);

 Button four = new Button(composite, SWT.PUSH);

 four.setText("four");

 gridData = new GridData(GridData.FILL_BOTH);

 four.setLayoutData(gridData);

 data = new FormData();

 data.top = new FormAttachment(0, 5);

 data.left = new FormAttachment(one, 5);

 data.bottom = new FormAttachment(50, -5);

 data.right = new FormAttachment(100, -5);

 composite.setLayoutData(data);

 Button five = new Button(shell, SWT.PUSH);

 five.setText("five");

 data = new FormData();

 data.top = new FormAttachment(one, 5);

 data.left = new FormAttachment(0, 5);

 data.bottom = new FormAttachment(100, -5);

 data.right = new FormAttachment(100, -5);

 five.setLayoutData(data);

 shell.pack();

 shell.open();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

 display.dispose();

 }

}

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Using StackLayout

We discuss StackLayout last, not because it's the most complex, but because it's the only SWT layout that isn't in

package org.eclipse.swt.layout. Instead, it's in org.eclipse.swt.custom, which is a loose collection of various customized

controls bolted onto SWT. It implements what amounts to be a flipchart: all controls are the same size and are put in

the same location. As the name of the layout intimates, they're all stacked atop each other, and only the topmost

control is visible.

StackLayout has only an empty constructor, and has a public data member calledtopControl that determines which

control is on top of the stack and visible. This member is of type Control and defaults to null, so no controls are visible in

the layout until you set this data member. Note that changing the value of topControl doesn't move the control to the

top of the stack until layout() on the container is called, either explicitly or in response to some event (such as resizing

the window).

See Table 4-11 for a full list of the StackLayout data members.

Table 4-11: StackLayout Data Members

Attribute Description

int marginHeight The size of the margin, in pixels, along the top and bottom edges of the layout.

int marginWidth The size of the margin, in pixels, along the left and right edges of the layout.

Control topControl The control to place on top of the stack and display. Default is null.

In Listing 4-7, you create a StackLayout and add three buttons to it. You also add an event handler, so that clicking the

top button cycles through the three buttons, bringing the next one to the top. (We discuss events in Chapter 6.) Notice

the call to shell.layout() near the bottom of the listing; try removing that line and rerunning the application.

Listing 4-7: StackLayoutTest.java

package examples.ch4;

import org.eclipse.swt.events.*;

import org.eclipse.swt.widgets.*;

import org.eclipse.swt.custom.StackLayout;

import org.eclipse.swt.SWT;

public class StackLayoutTest {

 public static void main(String[] args) {

 Display display = new Display();

 Shell shell = new Shell(display);

 StackLayout layout = new StackLayout();

 shell.setLayout(layout);

 StackLayoutSelectionAdapter adapter = new StackLayoutSelectionAdapter(shell,

 layout);

 Button one = new Button(shell, SWT.PUSH);

 one.setText("one");

 one.addSelectionListener(adapter);

 Button two = new Button(shell, SWT.PUSH);

 two.setText("two");

 two.addSelectionListener(adapter);

 Button three = new Button(shell, SWT.PUSH);

 three.setText("three");

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 three.addSelectionListener(adapter);

 layout.topControl = one;

 shell.open();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

 display.dispose();

 }

}

class StackLayoutSelectionAdapter extends SelectionAdapter {

 Shell shell;

 StackLayout layout;

 public StackLayoutSelectionAdapter(Shell shell, StackLayout layout) {

 this.shell = shell;

 this.layout = layout;

 }

 public void widgetSelected(SelectionEvent event) {

 Control control = layout.topControl;

 Control[] children = shell.getChildren();

 int i = 0;

 for (int n = children.length; i < n; i++) {

 Control child = children[i];

 if (child == control) {

 break;

 }

 }

 ++i;

 if (i >= children.length)

 i = 0;

 layout.topControl = children[i];

 shell.layout();

 }

}

Run the program and click the button repeatedly to see the buttons cycle among one, two, and three (see Figures

4-22 and 4-23).

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Figure 4-22: A StackLayout

Figure 4-23: The StackLayout after clicking the button once

We've covered all the layouts provided by SWT; what if none of these meet your needs? In that case, you have two

options: create your own layout class or abandon layouts altogether. We cover these options in the next two sections.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig102%5F01%5F0%2Ejpg
file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig103%5F01%5F0%2Ejpg

Creating Your Own Layout

Unless you require convoluted layout logic, creating a layout is relatively simple. You subclass

org.eclipse.swt.widgets.Layout and provide implementations for its two abstract methods:

protected abstract Point computeSize(Composite composite, int wHint, int hHint,

 boolean flushCache)

protected abstract void layout(Composite composite, boolean flushCache)

Both methods are declared protected, so you never call them directly. A composite calls computeSize() on its associated

layout to determine the minimum size it should occupy, while still holding all its child controls at their minimum sizes. In

your implementation, you typically will iterate through the container's controls to determine the minimum size they'll

use in your layout. The composite parameter contains the Composite object for which the layout will compute the size;

wHint and hHint are width and height hints, respectively, that can constrain the composite's size even further. Different

layouts treat these hints differently. The flushCache parameter tells the layout whether to flush any cached layout

values; for layouts that must make expensive computations, caching those values and respecting a false value for this

parameter can increase responsiveness.

You might notice that computeSize() returns a Point object. How, you might ask, can a Point object, which is one

dimensional, hold two-dimensional size information? The returned Point object is the lower-right corner of the

composite's bounding rectangle; the upper-left corner is at point (0, 0), so the Point that computeSize() returns is an

offset from (0, 0), and thus provides the composite's size.

The layout() method does the work of laying out the controls. It calculates the positions and sizes for the children of the

passed Composite, then places them accordingly by calling setBounds() on each one. In your implementation, you

typically will iterate through the container's controls, determining where to place and how to size each, then call the

control's setBounds() method using the values you've calculated. Again, the flushCache parameter determines whether

to flush any cached layout values; respect it if it makes sense for your layout.

If your layout requires some additional data per control, create a class to hold that data; users of your control can

create instances and set them into their controls using setLayoutData(). Convention dictates that the name of your

layout data class mimic the name of your layout, substituting Data for Layout, but that naming convention isn't required.

setLayoutData() takes a java.lang.Object as a parameter, so you can derive your layout data class from anything.

In this section, you create a new layout called BorderLayout. AWT users will remember this layout, which places

controls directionally (north, south, east, west, and center). You determine the following requirements:

You can add multiple controls for any given direction; we'll just show the last control added for that

direction.

It isn't necessary that any direction have an associated control.

A control need not have a direction; if no direction is specified, you assume "center" for the direction.

In the AWT BorderLayout, you specified the direction when you added the control to its container:

Panel panel = new Panel(); // Create the container

panel.setLayout(new BorderLayout()); // Create and set the layout

panel.add(new Button("Hello"), BorderLayout.NORTH);

Because SWT differs significantly (remember that you add a control to a parent by passing the parent to the control's

constructor), you can't reuse this API. Instead, you'll create a data object to be used in conjunction with your

BorderLayout called BorderData. Because you know exactly how many directions you must account for (five), you'll

create all the possible BorderData objects as static constants of the class, and prevent users from creating new

BorderData objects. Clients will reuse the five BorderData instances. Listing 4-8 shows your BorderData class.

Listing 4-8: BorderData.java

package examples.ch4;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

/**

 * Each control controlled by a BorderLayout

 * can have a BorderData attached to it, which

 * controls its placement on the layout.

 * Notice that the constructor is private;

 * we don't want people creating new BorderData

 * objects. We have the entire set of possibilities

 * in the public static constants.

 */

public class BorderData {

 /** North */

 public static final BorderData NORTH = new BorderData("North");

 /** South */

 public static final BorderData SOUTH = new BorderData("South");

 /** East */

 public static final BorderData EAST = new BorderData("East");

 /** West */

 public static final BorderData WEST = new BorderData("West");

 /** Center */

 public static final BorderData CENTER = new BorderData("Center");

 private String name;

 private BorderData(String name) {

 this.name = name;

 }

}

You can see that you use a TypeDef Enum pattern to create five BorderData objects, one for each direction. You make

the constructor private to prevent someone from clumsily creating a new BorderData, which you wouldn't know how to

handle anyway. You superfluously give each BorderData a name, though you don't do anything with it

You're now ready to create your BorderLayout class. In your implementation of computeSize(), you iterate through the

parent's controls to determine which control, any, to use for each of the directions. Remember that we decided that

you would show the last control added for a given direction. Because the presence and size of for each direction can

have an impact on the sizing and placement of controls for other directions, you can't approach this problem linearly.

For example, the first control in the array might be the "west" control, which you should place in the upper-left corner if

no "north" control exists; otherwise, it should go directly below the "north" control on the left. However, the "north"

control might be the last control in the list, so trying to determine size and placement for each control as you go

through the list would be difficult. Instead, you create five member variables, one for each control:

private Control north;

private Control south;

private Control east;

private Control west;

private Control center;

You then create a helper method to fill the controls, which you call from computeSize(). This method, called

getControls(), iterates through the parent's controls, determining the direction for each control. It sets the appropriate

member variable to that control, overlaying any previous value the member variable had. It looks like this:

protected void getControls(Composite composite) {

 // Iterate through all the controls, setting

 // the member data according to the BorderData.

 // Note that we overwrite any previously set data.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 // Note also that we default to CENTER

 Control[] children = composite.getChildren();

 for (int i = 0, n = children.length; i < n; i++) {

 Control child = children[i];

 BorderData borderData = (BorderData) child.getLayoutData();

 if (borderData == BorderData.NORTH)

 north = child;

 else if (borderData == BorderData.SOUTH)

 south = child;

 else if (borderData == BorderData.EAST)

 east = child;

 else if (borderData == BorderData.WEST)

 west = child;

 else

 center = child;

 }

}

Note that this method will throw a ClassCastException if the control's layout data is something other than a BorderData

object. You would discover this during development, and it's the behavior you want.

Once computeSize() knows which controls will actually display on the window, it can compute the minimum size for the

parent. The width is the maximum of the widths of these controls:

The north control

The south control

The west control plus the center control plus the east control

The wHint passed to computeSize()

Any of these controls that are null don't factor into the size. The height is the maximum of the heights of these:

The north control plus the maximum height among the west, center, and east controls, plus the south

control

The hHint passed to computeSize()

You create a helper method for determining the size of the control, which calls the control's computeSize() method,

passing in SWT.DEFAULT for both width and height; it looks like this:

protected Point getSize(Control control, boolean flushCache)

{

 return control.computeSize(SWT.DEFAULT, SWT.DEFAULT, flushCache);

}

Your implementation of computeSize() looks like this:

protected Point computeSize(Composite composite, int wHint, int hHint,

 boolean flushCache) {

 getControls(composite);

 int width = 0, height = 0;

 // The width is the width of the west control

 // plus the width of the center control

 // plus the width of the east control.

 // If this is less than the width of the north

 // or the south control, however, use the largest

 // of those three widths.

 width += west == null ? 0 : getSize(west, flushCache).x;

 width += east == null ? 0 : getSize(east, flushCache).x;

 width += center == null ? 0 : getSize(center, flushCache).x;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 if (north != null) {

 Point pt = getSize(north, flushCache);

 width = Math.max(width, pt.x);

 }

 if (south != null) {

 Point pt = getSize(south, flushCache);

 width = Math.max(width, pt.x);

 }

 // The height is the height of the north control

 // plus the height of the maximum height of the

 // west, center, and east controls

 // plus the height of the south control.

 height += north == null ? 0 : getSize(north, flushCache).y;

 height += south == null ? 0 : getSize(south, flushCache).y;

 int heightOther = center == null ? 0 : getSize(center, flushCache).y;

 if (west != null) {

 Point pt = getSize(west, flushCache);

 heightOther = Math.max(heightOther, pt.y);

 }

 if (east != null) {

 Point pt = getSize(east, flushCache);

 heightOther = Math.max(heightOther, pt.y);

 }

 height += heightOther;

 // Respect the wHint and hHint

 return new Point(Math.max(width, wHint), Math.max(height, hHint));

}

For your layout() method, which places and sizes the controls in the parent container, you face the same issue of

determining the actual controls to lay out. To solve this, you reuse the getControls() method you created earlier. Once

you have the controls, you get the area of the parent on which to lay out the controls with this line of code:

Rectangle rect = composite.getClientArea();

Then, you just go through your controls one at a time, reusing your getSize() method to get their sizes and calling

setBounds() to place them appropriately. Your layout() implementation, then, is this:

protected void layout(Composite composite, boolean flushCache) {

 getControls(composite);

 Rectangle rect = composite.getClientArea();

 int left = rect.x, right = rect.width, top = rect.y, bottom = rect.height;

 if (north != null) {

 Point pt = getSize(north, flushCache);

 north.setBounds(left, top, rect.width, pt.y);

 top += pt.y;

 }

 if (south != null) {

 Point pt = getSize(south, flushCache);

 south.setBounds(left, rect.height - pt.y, rect.width, pt.y);

 bottom -= pt.y;

 }

 if (east != null) {

 Point pt = getSize(east, flushCache);

 east.setBounds(rect.width - pt.x, top, pt.x, (bottom - top));

 right -= pt.x;

 }

 if (west != null) {

 Point pt = getSize(west, flushCache);

 west.setBounds(left, top, pt.x, (bottom - top));

 left += pt.x;

 }

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 if (center != null) {

 center.setBounds(left, top, (right - left), (bottom - top));

 }

}

Your BorderLayout class is now complete; the full listing appears in Listing 4-9.

Listing 4-9: BorderLayout.java

package examples.ch4;

import org.eclipse.swt.SWT;

import org.eclipse.swt.graphics.Point;

import org.eclipse.swt.graphics.Rectangle;

import org.eclipse.swt.widgets.Composite;

import org.eclipse.swt.widgets.Control;

import org.eclipse.swt.widgets.Layout;

/**

 * This class contains a BorderLayout, which is loosely

 * patterned after the old AWT BorderLayout.

 * It uses the <code>BorderData</code> class to determine

 * positioning of controls. To position controls,

 * call <code>control.setLayoutData()</code>, passing

 * the <code>BorderData</code> of your choice.

 *

 * For example:

 *

 * <code>

 * shell.setLayoutData(new BorderLayout());

 * Button button = new Button(shell, SWT.PUSH);

 * button.setLayoutData(BorderData.NORTH);

 * </code>

 *

 * Note that you can add as many controls to the

 * same direction as you like, but the last one

 * added for the direction will be the one displayed.

 */

public class BorderLayout extends Layout {

private Control north;

private Control south;

private Control east;

private Control west;

private Control center;

/**

 * Computes the size for this BorderLayout.

 * @param composite the composite that contains the controls

 * @param wHint width hint in pixels for the minimum width

 * @param hHint height hint in pixels for the minimum height

 * @param flushCache if true, flushes any cached values

 * @return Point

 * @see org.eclipse.swt.widgets.Layout#computeSize(

 org.eclipse.swt.widgets.Composite, int, int, boolean)

 */

protected Point computeSize(Composite composite, int wHint, int hHint,

 boolean flushCache) {

 getControls(composite);

 int width = 0, height = 0;

 // The width is the width of the west control

 // plus the width of the center control

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 // plus the width of the east control.

 // If this is less than the width of the north

 // or the south control, however, use the largest

 // of those three widths.

 width += west == null ? 0 : getSize(west, flushCache).x;

 width += east == null ? 0 : getSize(east, flushCache).x;

 width += center == null ? 0 : getSize(center, flushCache).x;

 if (north != null) {

 Point pt = getSize(north, flushCache);

 width = Math.max(width, pt.x);

 }

 if (south != null) {

 Point pt = getSize(south, flushCache);

 width = Math.max(width, pt.x);

 }

 // The height is the height of the north control

 // plus the height of the maximum height of the

 // west, center, and east controls

 // plus the height of the south control.

 height += north == null ? 0 : getSize(north, flushCache).y;

 height += south == null ? 0 : getSize(south, flushCache).y;

 int heightOther = center == null ? 0 : getSize(center, flushCache).y;

 if (west != null) {

 Point pt = getSize(west, flushCache);

 heightOther = Math.max(heightOther, pt.y);

 }

 if (east != null) {

 Point pt = getSize(east, flushCache);

 heightOther = Math.max(heightOther, pt.y);

 }

 height += heightOther;

 // Respect the wHint and hHint

 return new Point(Math.max(width, wHint), Math.max(height, hHint));

}

/**

 * This does the work of laying out our controls.

 * @see org.eclipse.swt.widgets.Layout#layout(

 * org.eclipse.swt.widgets.Composite, boolean)

 */

protected void layout(Composite composite, boolean flushCache) {

 getControls(composite);

 Rectangle rect = composite.getClientArea();

 int left = rect.x, right = rect.width, top = rect.y, bottom = rect.height;

 if (north != null) {

 Point pt = getSize(north, flushCache);

 north.setBounds(left, top, rect.width, pt.y);

 top += pt.y;

 }

 if (south != null) {

 Point pt = getSize(south, flushCache);

 south.setBounds(left, rect.height - pt.y, rect.width, pt.y);

 bottom -= pt.y;

 }

 if (east != null) {

 Point pt = getSize(east, flushCache);

 east.setBounds(rect.width - pt.x, top, pt.x, (bottom - top));

 right -= pt.x;

 }

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 if (west != null) {

 Point pt = getSize(west, flushCache);

 west.setBounds(left, top, pt.x, (bottom - top));

 left += pt.x;

 }

 if (center != null) {

 center.setBounds(left, top, (right - left), (bottom - top));

 }

}

protected Point getSize(Control control, boolean flushCache) {

 return control.computeSize(SWT.DEFAULT, SWT.DEFAULT, flushCache);

}

protected void getControls(Composite composite) {

 // Iterate through all the controls, setting

 // the member data according to the BorderData.

 // Note that we overwrite any previously set data.

 // Note also that we default to CENTER

 Control[] children = composite.getChildren();

 for (int i = 0, n = children.length; i < n; i++) {

 Control child = children[i];

 BorderData borderData = (BorderData) child.getLayoutData();

 if (borderData == BorderData.NORTH)

 north = child;

 else if (borderData == BorderData.SOUTH)

 south = child;

 else if (borderData == BorderData.EAST)

 east = child;

 else if (borderData == BorderData.WEST)

 west = child;

 else

 center = child;

 }

 }

}

To test your new layout, you create a window with controls in each direction. You create a BorderLayout and set it into

your Shell object. You create five buttons and set the appropriate BorderData for each using the setLayoutData() method.

Your code looks like Listing 4-10.

Listing 4-10: BorderLayoutTest.java

package examples.ch4;

import org.eclipse.swt.widgets.*;

import org.eclipse.swt.SWT;

public class BorderLayoutTest {

 public static void main(String[] args) {

 Display display = new Display();

 final Shell shell = new Shell(display);

 shell.setLayout(new BorderLayout());

 Button b1 = new Button(shell, SWT.PUSH);

 b1.setText("North");

 b1.setLayoutData(BorderData.NORTH);

 Button b2 = new Button(shell, SWT.PUSH);

 b2.setText("South");

 b2.setLayoutData(BorderData.SOUTH);

 Button b3 = new Button(shell, SWT.PUSH);

 b3.setText("East");

 b3.setLayoutData(BorderData.EAST);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 Button b4 = new Button(shell, SWT.PUSH);

 b4.setText("West");

 b4.setLayoutData(BorderData.WEST);

 Button b5 = new Button(shell, SWT.PUSH);

 b5.setText("Center");

 b5.setLayoutData(BorderData.CENTER);

 shell.pack();

 shell.open();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

 display.dispose();

 }

}

Compiling and running produces a window that looks like Figure 4-24.

Figure 4-24: Your BorderLayout in action

Try using BorderLayout in different scenarios, adding controls for only some directions, or adding multiple controls for

the same direction, to see how the layout handles those situations.

The built-in layouts will likely handle most of your layout needs, but when they don't, don't hesitate to build your own

layout class. With only two methods to implement (computeSize() and layout()), layouts are simple to build, and offer you

ultimate control over the presentation of your windows.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Not using a Layout

If you've read this far and can't stomach the thought of using layouts, rest assured that layouts aren't mandatory. You

can place controls absolutely, without using a layout, though you'll lose the benefits that layouts offer, including

platform transparency and automatic resizing and redistribution of your controls. You also assume the work of placing

your controls, so you haven't gained any benefit, but we'll show you how to shun layouts nonetheless.

You might naively think you can just create a Shell and add controls to it, so you code this:

Shell shell = new Shell(display);

new Button(shell, SWT.PUSH).setText("No layout");

shell.open();

Then you compile and run it, and you don't see your button; all you have is a blank window. One of the things a layout

does for you is call setBounds() on your controls to size and place them; because you aren't using a layout, you must

do it yourself. So, you code this:

package examples.ch4;

import org.eclipse.swt.widgets.*;

import org.eclipse.swt.SWT;

public class NoLayoutSimple {

 public static void main(String[] args) {

 Display display = new Display();

 Shell shell = new Shell(display);

 Button button = new Button(shell, SWT.PUSH);

 button.setText("No layout");

 button.setBounds(5, 5, 100, 100);

 shell.pack();

 shell.open();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

 display.dispose();

 }

}

Compiling and running this program shows your button (see Figure 4-25).

Figure 4-25: A window with no layout

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

The org.eclipse.swt.widgets.Control superclass has two public setBounds() implementations, as shown in Table 4-12.

Table 4-12: Control.setBounds() Implementations

Method Description

public void setBounds(int x, int

y, int width, int height)
Sets the bounds on the control; x is the x coordinate for the upper-left

corner; y is the y coordinate for the upper-left corner; width is the width of the

control; and height is the height of the control.

public void

setBounds(Rectangle rect)
Sets the bounds on the control; rect is type org.eclipse.swt.graphics.Rectangle,

which has four data members: x, y, width, height. It has a constructor that

takes all four as parameters.

You could also have used the setBounds() method that takes a Rectangle to achieve the same effect:

button.setBounds(new Rectangle(5, 5, 100, 100));

Be sure to import org.eclipse.swt.graphics.Rectangle if you take this approach.

You must call setBounds() on each control or composite you add to the window for it to appear. You can make the

screen as complex as you wish, and even resize your controls yourself by using event handlers (we discuss events in

Chapter 6). However, we expect that you'll soon realize that leveraging layouts is much easier than avoiding them.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

GUI Builders for SWT

If you're aching for a drag-and-drop tool to build your GUIs visually, rather than worming your way through code, you

have some options. First, Eclipse itself offers a tool with its plug-in examples (available as a separate download) that

provides rudimentary layout building. To obtain it, use Eclipse's Update Manager, or download it from the Eclipse

downloads site (http://www.eclipse.org/downloads). You can find complete instructions in the Eclipse help, under

Platform Plug-in Developer Guide Ø Examples Guide Ø Installing the examples. After installing, select Window Ø Show

View Ø Other, and in the resulting pop-up window, select SWT Examples Ø SWT Layouts. A new window is added to

your Eclipse window (see Figure 4-26).

Figure 4-26: The SWT Layouts plug-in

Use this plug-in to create FillLayouts, RowLayouts, GridLayouts, and FormLayouts (StackLayouts aren't provided,

presumably because they're in a different package). Select the tab of the layout you wish to create, set the properties

for the layout using the controls provided, and add controls to the layout by clicking the Add button. You can change

controls by selecting their type in the list and choosing a new type from the dropdown. You can change control

properties as well, and proper layout data objects are generated for you. When you're finished, click the Code button at

the bottom to see the generated code.

Admittedly, this isn't a full-featured GUI builder, and you'll probably want to alter control names from the generated

"button0," "button1" ilk. You also must be using Eclipse to run this tool. The tool is a one-way generator only; you can't

change the code to update the layout or import code into the layout. However, think of the SWT Layouts plug-in as a

quick-and-dirty mockup tool that alleviates much of the drudgery of creating layouts, and you'll probably find it useful.

A company called Instantiations (http://www.instantiations.com/) has released an SWT GUI builder called SWT Designer,

which comes in both a free (limited) version and a commercial professional version. Using SWT Designer, you can

drag and drop controls to create your interface. You can find more information about the tool at

http://www.swt-designer.com/.

Another SWT GUI builder comes from the Eclipse project. Called Visual Editor Project, it's still in its early stages, but

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://www.eclipse.org/downloads
file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig116%5F01%5F0%2Ejpg
http://www.instantiations.com/
http://www.swt-designer.com/

shows some promise. At the time of this writing, it supports building GUIs in Swing only, though version 1.0.0 promises

to support SWT. You can read about it at http://www.eclipse.org/vep/. Other SWT GUI builder tools are sprouting up as

developers rush to fill a niche. Check out the Eclipse Plug-in Central site (http://www.eclipseplugincentral.com/) to find

more tools.

The Apache Jakarta project offers another tool for creating SWT GUIs called JellySWT, which is a subset of the Jelly

Jakarta project (http://jakarta.apache.org/commons/jelly/index.html). JellySWT is a Jelly library to create SWT interfaces. It

provides no drag-and-drop or graphical layout capabilities, but rather allows you to create XML documents that render

SWT front ends. A sample JellySWT script—one that creates a blank window— looks something like this:

<?xml version="1.0"?>

<j:jelly xmlns:j="jelly:core" xmlns="jelly:swt" xmlns:log="jelly:log">

 <shell text="JellySWT" var="shell" style="border, close, min, max, resize,

 title">

 </shell>

 ${shell.pack()}

 ${shell.open()}

 <j:set var="display" value="${shell.display}"/>

 <j:while test="${!shell.isDisposed()}">

 <j:if test="${display.readAndDispatch()}">

 <j:set var="foo" value="${display.sleep()}"/>

 </j:if>

 </j:while>

 ${display.dispose()}

</j:jelly>

Using JellySWT alleviates none of the manual coding burden; it just changes the language you write the code in. It

certainly makes clear the separation of the view from the model and controller, and allows SWT to ride the XML wave.

For more information, see the JellySWT Web site (http://jakarta.apache.org/commons/jelly/jellyswt.html).

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://www.eclipse.org/vep/
http://www.eclipseplugincentral.com/
http://jakarta.apache.org/commons/jelly/index.html
http://jakarta.apache.org/commons/jelly/jellyswt.html
http://jakarta.apache.org/commons/jelly/jellyswt.html

Summary

Layouts assume the responsibility of placing and sizing your controls, even when their containing window is resized,

and display controls properly on all platforms. SWT offers five layouts, which you can mix and match to create

sophisticated layout aggregations. You can also create your own layout class that has whatever custom behavior you

deem appropriate. Embracing layouts in your SWT GUIs makes them easier to create. You can choose to eschew

layouts, and slog through placing your controls yourself, but we don't recommend it.

You have a few options to writing Java code when creating your layouts, including graphical builder tools and an XML

solution. Experiment with these tools and incorporate the ones that help into your toolset.

Now that you know how to lay out controls, you're ready to learn about the controls available for laying out in your

application. The next chapter covers all of the basic controls that SWT provides; combined with the information in this

chapter, you're ready to create professional-looking cross-platform GUIs.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Chapter 5: Widgets

Alas, man can't live by buttons alone. Building useful and elegant user interfaces depends on a rich set of graphical

components or widgets. This chapter covers the basic widgets offered by SWT: Label, Button, Text, List, Combo, Slider,

Group, ScrollBar, ProgressBar, and Menu. First, however, it discusses the base classes underlying the widgets: Widget

and Control.

Introducing Widget

SWT's Widget class forms the base of all windowing components. The Widget class provides generic low-level event

handling, creation and destruction semantics, and some convenience methods for finding certain values associated

with widgets. Although an abstract class, Widget has no abstract methods and isn't intended to be subclassed by

application developers. Table 5-1 describes Widget's methods.

Table 5-1: Widget Methods

Method Description

void addListener(int eventType, Listener

listener)
Adds a listener for the event type specified by eventType to

the notification list. Chapter 6 covers events and listeners.

void addDisposeListener(DisposeListener

listener)
Adds a listener that's notified when this Widget is disposed.

void dispose() Releases any resources associated with this Widget and all

its child Widgets.

Object getData() Returns the application-specific data associated with this

Widget.

Object getData(String key) Returns the application-specific data associated with this

Widget for the specified key.

Display getDisplay() Returns the Display used to create this Widget. If null, returns

the Display associated with this Widget's parent.

int getStyle() Returns the style constants associated with this Widget.

boolean isDisposed() Returns true if this Widget or its parent has been disposed.

void notifyListeners(int eventType, Event

event)
Notifies registered listeners for the event type specified by

eventType that an event has occurred.

void removeListener(int eventType, Listener

listener)
Removes the specified listener from the notification list for

the event type specified by eventType.

void removeDisposeListener(DisposeListener

listener)
Removes the specified listener from the notificationn list.

void setData(Object data) Sets the application-specific data for this Widget.

void setData(String key, Object value) Sets the application-specific data associated with this Widget

for the specified key.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Introducing Control

The abstract class Control subclasses Widget, and each Control wraps a native widget. Known as a "peer," the native

widget ties its lifetime to its associated Control. All the basic widget classes in this chapter except ScrollBar and Menu

directly subclass Control. The two exceptions directly subclass Widget and have no associated native peers.

A few styles, described in Table 5-2, apply to all Control classes. These styles, as well as any widget-specific styles,

represent hints to the underlying environment. You have no guarantee that the windowing system will comply with your

style requests.

Table 5-2: Control Styles

Style Description

SWT.BORDER Draws a border around this Control

SWT.LEFT_TO_RIGHT Orients this Control from left to right

SWT.RIGHT_TO_LEFT Orients this Control from right to left

Note Many styles represent hints that might or might not affect the realized component. Some operating or windowing

systems might not support particular styles and will ignore them. You can determine the applied styles for a

created widget by calling Widget's getStyle() method. Also note that some styles may have different effects based

on the layout manager.

Control provides methods that control its display and behavior, including size, colors, fonts, popup menus, and tool tips.

It also supports common events and listeners, discussed in greater depth in Chapter 6. Table 5-3 describes Control's

methods.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Table 5-3: Control Methods

Method Description

void addControlListener(ControlListener

listener)
Adds a listener that's notified when this Control is moved or

resized.

void addFocusListener(FocusListener

listener)
Adds a listener that's notified when this Control gains or loses

the focus.

void addHelpListener(HelpListener listener) Adds a listener that's notified when the user requests help,

typically by pressing the F1 key.

void addKeyListener(KeyListener listener) Adds a listener that's notified when this Control receives an

event from the keyboard.

void addMouseListener(MouseListener

listener)
Adds a listener that's notified when the user presses or

releases a mouse button on this Control.

void addMouseTrack Listener(MouseTrack

Listener listener)
Adds a listener that's notified when the mouse enters, exits, or

hovers over this Control.

void addMouseMove

Listener(MouseMoveListener listener)
Adds a listener that's notified when the mouse moves over the

area of this Control.

void addPaintListener(PaintListener listener) Adds a listener that's notified when this Control is painted.

void addTraverseListener(TraverseListener

listener)
Adds a listener that's notified when events such as the arrow,

Escape, or Tab keys are struck while this Control has the

keyboard focus..

Point computeSize(int wHint, int hHint) Computes the size of this Control using the width and height

hints specified by wHint and hHint, respectively. Returns the

size in a Point object.

Point computeSize(int wHint, int hHint,

boolean changed)
Computes the size of this Control using the width and height

hints specified by wHint and hHint, respectively. Returns the

size in a Point object. If changed is true, this Control shouldn't use

cached data from any previous computations to compute the

size.

boolean forceFocus() Causes this Control to assume the keyboard focus. Returns true

if this Control successfully assumes focus. Otherwise, returns

false.

Accessible getAccessible() Returns this Control's Accessible instance.

Color getBackground() Returns the current background color of this Control.

int getBorderWidth() Returns the width in pixels of this Control's border.

Rectangle getBounds() Returns the Rectangle that bounds this Control.

boolean getEnabled() Returns true if this Control is enabled or false if it's disabled.

Enabled Controls appear normal and allow users to interact

with them. Disabled Controls appear "grayed out" on most

systems and don't allow user interaction. Though the enabled

state of a Control might be true, it might still be disabled

because of the state of its parent.

Font getFont() Returns the font used to display text on this Control.

Color getForeground() Returns the current foreground color of this Control.

Object getLayoutData() Returns the layout data associated with this Control.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Method Description

Point getLocation() Returns this Control's location relative to its parent.

Menu getMenu() Returns the popup menu associated with this Control or null if

no associated popup menu exists.

Monitor getMonitor() Returns this Control's Monitor.

Composite getParent() Returns this Control's parent.

Shell getShell() Returns this Control's parent Shell.

Point getSize() Returns this Control's size as a Point.

String getToolTipText() Returns this Control's tool tip text.

boolean getVisible() Returns true if this Control is visible. Otherwise, returns false.

Note that though a Control's visible state may be true, it might

still not be visible if its parent isn't visible.

boolean isEnabled() Returns true if this Control and all of its ancestors are enabled.

Otherwise, returns false.

boolean isFocusControl() Returns true if this Control currently has the focus of keyboard

events. Otherwise, returns false.

boolean isReparentable() Returns true if the lower-level operating system allows this

Control to be associated with a different parent than the one

with which this Control was created. Otherwise, returns false.

boolean isVisible() Returns true if this Control and all its ancestors are currently

visible. Otherwise, returns false.

void moveAbove(Control control) Moves this Control on top of the specified Control, obscuring the

specified Control. If control is null, this Control will appear on top

of all other colocated Controls.

void moveBelow(Control control) Moves this Control beneath the specified Control so this Control

can't be seen. If control is null, this Control hides beneath all

other colocated Controls.

void pack() Resizes this Control and all its children to their preferred sizes.

void pack(boolean changed) Resizes this Control and all its children to their preferred sizes.

If changed is true, this Control shouldn't use cached data from

any previous computations to compute the sizes.

void redraw() Marks this Control for redraw.

void redraw(int x, int y, int width, int height,

boolean all)
Marks the area of this Control specified by x, y, width, and height

for redraw. If all is true, children that either wholly or partly

occupy the given rectangle are also marked for redraw.

void removeControlListener(ControlListener

listener)
Removes the specified listener from the notification list.

void removeFocusListener(FocusListener

listener)
Removes the specified listener from the notification list.

void removeHelpListener(HelpListener

listener)
Removes the specified listener from the notification list.

void removeKeyListener(KeyListener

listener)
Removes the specified listener from the notification list.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Method Description

void removeMouseTrack

Listener(MouseTrack Listener listener)
Removes the specified listener from the notification list.

void removeMouseListener n(MouseListener

listener)
Removes the specified listener from the notification list.

void

removeMouseMoveListener(MouseMove

Listener listener)

Removes the specified listener from the notification list.

void removePaintListener(PaintListener

listener)
Removes the specified listener from the notification list.

void removeTraverse Listener(Traverse

Listener listener)
Removes the specified listener from the notification list.

void setBackground(Color color) Sets this Control's background color. If color is null, sets the

background color to the default color for this Control.

void setBounds(int x, int y, int width, int

height)
Sets the bounds of this Control to the specified values.

void setBounds(Rectangle rect) Sets the bounds of this Control to the specified Rectangle.

void setCapture(boolean capture) If capture is true, this Control captures all mouse events.

Otherwise, this Control ignores mouse events.

void setCursor(Cursor cursor) Sets the cursor (for example, hourglass or arrow) to display

when the mouse pointer lies within the bounds of this Control.

If cursor is null, sets the cursor to the default Cursor for this

Control.

void setEnabled(boolean enabled) If enabled is true, enables this Control. Otherwise, disables this

Control.

boolean setFocus() Causes this Control to assume the keyboard focus. Returns true

if this Control successfully assumes focus. Otherwise, returns

false.

void setFont(Font font) Sets this Control's font.

void setForeground(Colorcolor) Sets this Control's foreground color.

void setLayoutData(Object layoutData) Sets this Control's layout data.

void setLocation(int x, int y) Sets the location of this Control relative to the upper-left corner

of its parent.

void setLocation(Pointlocation) Sets the location of this Control relative to the upper-left corner

of its parent.

void setMenu(Menu menu) Sets the popup menu associated with this Control.

boolean setParent(Composite parent) If the underlying system supports reparenting controls, sets

this Control's parent. Returns true if setting the parent

succeeds. Otherwise, returns false.

void setRedraw(boolean redraw) If redraw is false, prevents this Control from being redrawn when

paint events occur. Otherwise, allows redrawing to occur.

void setSize(int width, int height) Sets the size of this Control.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Method Description

void setSize(Point size) Sets the size of this Control.

void setToolTipText(String string) Sets this Control's tool tip text.

void setVisible(boolean visible) If visible is true, displays this Control. Otherwise, hides this

Control. Note that a visible Control won't display if its parent is

hidden or if it's obscured by a call to moveAbove() or

moveBelow().

Point toControl(int x,

int y)

Converts the specified coordinates from Display-relative to

Control-relative.

Point toControl(Point point) Converts the specified Point from Display-relative to

Control-relative.

Point toDisplay(int x, int y) Converts the specified coordinates from Control-relative to

Display-relative.

Point toDisplay(Pointpoint) Converts the specified Point from Control-relative to

Display-relative.

boolean traverse(int traversal) Performs the specified traversal. Returns true if the traversal

succeeds. Otherwise, returns false.

void update() Forces processing of all outstanding paint requests.

The rest of this chapter focuses on specific widgets provided by SWT. Take the time to familiarize yourself with these

widgets. Experiment with them. Understand their basic creation pattern. You'll see these widgets throughout the rest of

this book.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Introducing Label

In its basic form, a Label displays unselectable, uneditable text. You often use them to communicate the role of other

widgets. For example, you might place a Label displaying the text "Name:" beside a text field used to enter a name.

Beyond this traditional Label usage, the SWT Label class also serves two additional purposes: to display images and to

provide a graphical separator that divides other GUI components. This section explores all three Label uses.

To create a Label, use its only constructor:

Label(Composite parent, int style)

parent specifies the Composite to house the Label, and style specifies the style bits to apply to the Label. Table 5-4

describes the applicable styles. You can combine them using the bitwise OR operator, though some are mutually

exclusive. For example, you can specify only one alignment constant (SWT.LEFT, SWT.CENTER, or SWT.RIGHT).

Table 5-4: Label Styles

Style Description

SWT.SEPARATOR Creates a visual divider.

SWT.HORIZONTAL Used with SWT.SEPARATOR to create a horizontal separator.

SWT.VERTICAL Used with SWT.SEPARATOR to create a vertical separator. This is the default.

SWT.SHADOW_IN Used with SWT.SEPARATOR to draw a separator that appears recessed.

SWT.SHADOW_OUT Used with SWT.SEPARATOR to draw a separator that appears extruded.

SWT.SHADOW_NONE Used with SWT.SEPARATOR to draw a separator that appears unshadowed.

SWT.CENTER Orients the text or image in the center of this Label.

SWT.LEFT Orients the text or image to the left of this Label.

SWT.RIGHT Orients the text or image to the right of this Label.

SWT.WRAP Creates a Label that can wrap. Support for wrapped labels depends on the layout

manager and is spotty.

Many of the styles have an effect only when creating separators, as Table 5-4 indicates. Separators divide the visual

area of your applications into sections, which can make your interfaces more intuitive. They can run horizontally or

vertically and can display extruded, intruded, or flat. How they display depends on the underlying windowing system.

Table 5-5 lists Label's interesting methods. Note that separators display neither text nor images.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table 5-5: Label Methods

Method Description

int getAlignment() Returns the alignment constant associated with this Label (SWT.LEFT,

SWT.CENTER, or SWT.RIGHT).

Image getImage() Returns this Label's Image.

String getText() Returns this Label's text.

void setAlignment(int

alignment)
Sets this Label's alignment. alignment should be one of SWT.LEFT,

SWT.CENTER, or SWT.RIGHT.

void setImage(Image

image)
Sets this Label's Image.

void setText(String string) Sets this Label's text.

Labels display either text or an image, but not both. If you call both setText() and setImage() on the same Label, the last

one you call trumps. Chapter 10 discusses how to create images, as well as which image formats SWT supports.

For example, to create a left-aligned Label that displays the text "This is a Label," use this code:

new Label(parent, SWT.LEFT).setText("This is a Label");

The LabelExample program, shown in Listing 5-1, demonstrates Label. Figure 5-1 shows this program's window.

Figure 5-1: The LabelExample program

Listing 5-1: LabelExample.java

package examples.ch5;

import org.eclipse.swt.*;

import org.eclipse.swt.widgets.*;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.graphics.*;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig127%5F01%5F0%2Ejpg

/**

 * This class demonstrates Labels

 */

public class LabelExample {

 public static void main(String[] args) {

 Display display = new Display();

 Shell shell = new Shell();

 shell.setLayout(new GridLayout(1, false));

 // Create a label

 new Label(shell, SWT.NONE).setText("This is a plain label.");

 // Create a vertical separator

 new Label(shell, SWT.SEPARATOR);

 // Create a label with a border

 new Label(shell, SWT.BORDER).setText("This is a label with a border.");

 // Create a horizontal separator

 Label separator = new Label(shell, SWT.HORIZONTAL | SWT.SEPARATOR);

 separator.setLayoutData(new GridData(GridData.FILL_HORIZONTAL));

 // Create a label with an image

 Image image = new Image(display, "interspatial.gif");

 Label imageLabel = new Label(shell, SWT.NONE);

 imageLabel.setImage(image);

 shell.open();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

 display.dispose();

 }

}

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Introducing Button

When users want your application to do something, they often look for buttons to click. SWT uses the Button class to

represent standard push buttons. In addition, SWT uses Button to represent checkboxes, toggle buttons, and radio

buttons. You determine the type of widget that Button creates by the style constants you pass to Button's constructor,

which looks like this:

Button(Composite parent, int style)

Table 5-6 describes applicable styles for Button.

Table 5-6: Button Styles

Style Description

SWT.ARROW Creates a push button that displays an arrow.

SWT.CHECK Creates a checkbox.

SWT.PUSH Creates a push button.

SWT.RADIO Creates a radio button.

SWT.TOGGLE Creates a push button that preserves its pushed or nonpushed state.

SWT.FLAT Creates a push button that appears flat.

SWT.UP When combined with SWT.ARROW, displays an upward-pointing arrow.

SWT.DOWN When combined with SWT.ARROW, displays a downward-pointing arrow.

SWT.CENTER Centers the associated text.

SWT.LEFT Left-aligns the associated text. When combined with SWT.ARROW, displays a

leftward-pointing arrow.

SWT.RIGHT Right-aligns the associated text. When combined with SWT.ARROW, displays a

rightward-pointing arrow.

Think of these styles in sets: You may pass only one of SWT.LEFT, SWT.CENTER, or SWT.RIGHT. You may pass only

one of SWT.ARROW, SWT.CHECK, SWT.PUSH, SWT.RADIO, or SWT.TOGGLE. Finally, if you pass SWT.ARROW, you

may pass only one of SWT.UP, SWT.DOWN, SWT.LEFT, or SWT.RIGHT. You may combine style constants from

different sets, however, using the bitwise OR operator.

Use Button's API to control its appearance and behavior. Table 5-7 describes Button's methods.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table 5-7: Button Methods

Method Description

void addSelection

Listener(Selection Listener

listener)

Adds a listener that's notified when the user selects (pushes, checks, and

so on) this Button.

int getAlignment() Depending on the type of this Button, returns either the orientation of the

text (SWT.LEFT, SWT.RIGHT, or SWT.CENTER) or the direction of the

arrow (SWT.LEFT, SWT.RIGHT, SWT.UP, or SWT.DOWN).

Image getImage() Returns this Button's Image or null if this Button has no associated Image.

boolean getSelection() For SWT.CHECK, SWT.RADIO, or SWT.TOGGLE buttons, returns true if this

Button is selected. Otherwise, returns false.

String getText() Returns this Button's text.

void removeSelection

Listener(Selection Listener

listener)

Removes the specified listener from the notification list.

void setAlignment(int alignment) Sets this Button's alignment. For arrow buttons, you can pass one of

SWT.LEFT, SWT.RIGHT, SWT.UP, or SWT.DOWN. For all other button

types, you can pass one of SWT.LEFT, SWT.RIGHT, or SWT.CENTER.

void setImage(Image image) Sets this Button's Image.

void setSelection(boolean

selected)
If selected is true, selects this Button. Otherwise, deselects this Button. Valid

for SWT.TOGGLE, SWT.RADIO, or SWT.CHECK types only.

void setText(String string) Sets this Button's text.

The ButtonExample program in Listing 5-2 demonstrates creating the various button types (see Figure 5-2).

Figure 5-2: The ButtonExample program

Listing 5-2: ButtonExample.java

package examples.ch5;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

import org.eclipse.swt.SWT;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.widgets.*;

/**

 * This class demonstrates Buttons

 */

public class ButtonExample {

 public static void main(String[] args) {

 Display display = new Display();

 Shell shell = new Shell(display);

 shell.setLayout(new GridLayout(3, true));

 // Create three push buttons

 new Button(shell, SWT.PUSH).setText("Push 1");

 new Button(shell, SWT.PUSH).setText("Push 2");

 new Button(shell, SWT.PUSH).setText("Push 3");

 // Create three checkboxes

 new Button(shell, SWT.CHECK).setText("Checkbox 1");

 new Button(shell, SWT.CHECK).setText("Checkbox 2");

 new Button(shell, SWT.CHECK).setText("Checkbox 3");

 // Create three toggle buttons

 new Button(shell, SWT.TOGGLE).setText("Toggle 1");

 new Button(shell, SWT.TOGGLE).setText("Toggle 2");

 new Button(shell, SWT.TOGGLE).setText("Toggle 3");

 // Create three radio buttons

 new Button(shell, SWT.RADIO).setText("Radio 1");

 new Button(shell, SWT.RADIO).setText("Radio 2");

 new Button(shell, SWT.RADIO).setText("Radio 3");

 // Create three flat buttons

 new Button(shell, SWT.FLAT).setText("Flat 1");

 new Button(shell, SWT.FLAT).setText("Flat 2");

 new Button(shell, SWT.FLAT).setText("Flat 3");

 // Create three arrow buttons

 new Button(shell, SWT.ARROW);

 new Button(shell, SWT.ARROW | SWT.LEFT);

 new Button(shell, SWT.ARROW | SWT.DOWN);

 shell.pack();

 shell.open();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

 display.dispose();

 }

}

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Introducing Text

Reading labels, clicking buttons, and selecting checkboxes suffices for rudimentary interactions but falters when users

or applications require more expressive communications. Applications should encourage users to say what they think,

or at least type what they think, and they must be able to accept typed input. SWT offers the Text class for text-entry

fields that allow users to input data using the keyboard. To create a Text widget, call its constructor, passing the parent

and the desired style constants together using the bitwise OR operator:

Text(Composite parent, int style)

You can constrain Text instances to a single line of text or allow them to display multiple lines. You determine single

line vs. multiple line upon construction by passing the appropriate style. Table 5-8 describes the styles that Text

supports.

Table 5-8: Text Styles

Style Description

SWT.MULTI Creates a multiple-line text field.

SWT.SINGLE Creates a single-line text field. This is the default. You may specifiy only one of

SWT.MULTI or SWT.SINGLE.

SWT.READ_ONLY Creates a text field with uneditable contents.

SWT.WRAP With multiple-line text fields, causes text to wrap.

SWT.BORDER Draws a border around the text field. Note that this style isn't set by default, and your

text fields will look funny without it.

SWT.CENTER Centers the text in this text field.

SWT.LEFT Left-aligns the text in this text field. This is the default.

SWT.RIGHT Right-aligns the text in this text field. You may specify only one of SWT.CENTER,

SWT.LEFT, or SWT.RIGHT.

SWT.PASSWORD Creates a text field suitable for password entry—it doesn't display the actual

characters the user types, but rather it displays asterisks.

SWT.H_SCROLL Creates a horizontal scrollbar to scroll this text field.

SWT.V_SCROLL Creates a vertical scrollbar to scroll this text field.

To create a single-line Text with a border and left-aligned text, for example, use this code:

Text text = new Text(parent, SWT.BORDER); // SWT.SINGLE | SWT.LEFT set by default

You can configure the Text objects you create using Text's methods, described in Table 5-9.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table 5-9: Text Methods

Method Description

void addModifyListener(ModifyListener

listener)
Adds a listener that's notified when the text in this Text

changes.

void addSelectionListener

(SelectionListener listener)

Adds a listener that's notified when the user presses Enter

while this Text has focus. Note that notifications occur only for

single-line Texts.

void addVerifyListener(VerifyListener listener) Adds a listener that's notified when the text in this Text is

about to change. This listener can veto the change.

void append(String string) Appends the specified text to the text in this Text.

void clearSelection() Deselects any text in this Text.

void copy() Copies the selected text to the clipboard.

void cut() Cuts the selected text to the clipboard.

int getCaretLineNumber() Returns the zero-based line number of the current caret

position within this Text.

Point getCaretLocation() Returns the coordinates of the caret's location.

int getCaretPosition() Returns the zero-based offset of the current caret position

from the beginning of the text.

int getCharCount() Returns the number of characters in this Text.

boolean getDoubleClick Enabled() Returns true if double-clicking is enabled. Otherwise, returns

false.

char getEchoChar() Returns the character displayed for each character the user

types.

boolean getEditable() Returns true if the content of this text component can be

edited. Otherwise, returns false.

int getLineCount() Returns the number of lines of text in this Text.

String getLineDelimiter() Returns the line delimiter used between lines of text in a

multiple-line Text.

int getLineHeight() Returns the height in pixels of a line of text in this Text.

int getOrientation() Returns this Text's orientation (SWT.LEFT_TO_RIGHT or

SWT.RIGHT_TO_LEFT).

Point getSelection() Returns the range of the selected text. The x component

contains the zero-based index of the first selected character,

and the y component contains the number one higher than

the zero-based index of the last selected character.

int getSelectionCount() Returns the number of characters in the current selection.

String getSelectionText() Returns the selected text in this Text.

int getTabs() Returns the number of tab stops, which defaults to 8.

String getText() Returns the text in this Text.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Method Description

String getText(int start, int end) Returns the range of text in this Text specified by start and end.

start specifies the zero-based index of the first character in the

range, and end specifies the zero-based index of the last

character in the range.

int getTextLimit() Returns the number of characters this Text can hold.

int getTopIndex() Returns the zero-based line number of the line currently

displayed at the top of this Text.

int getTopPixel() Returns the top pixel of the line currently displayed at the top

of this Text.

void insert(String string) Inserts the specified text at the current caret position, shifting

any following text.

void paste() Pastes the contents of the clipboard into this Text, replacing

any currently selected text.

void removeModifyListener(ModifyListener

listener)
Removes the specified listener from the notification list.

void

removeSelectionListener(SelectionListener

listener)

Removes the specified listener from the notification list.

void removeVerifyListener(VerifyListener

listener)
Removes the specified listener from the notification list.

void selectAll() Selects all the text in this Text.

void setDoubleClickEnabled(boolean

doubleClick)
If doubleClick is true, enables double-click notifications.

Otherwise, disables them.

void setEchoChar(char echo) Sets the character that's displayed when the user enters text.

Use this to hide user input–like passwords.

void setEditable(boolean editable) If editable is true, makes the text in this Text editable. Otherwise,

makes it read-only.

void setFont(Font font) Sets the font used to display the text in this Text.

void setOrientation(int orientation) Sets this Text's orientation (SWT.LEFT_TO_RIGHT or

SWT.RIGHT_TO_LEFT).

void setRedraw(boolean redraw) If redraw is false, suspends redrawing this Text. Otherwise,

resumes redrawing this Text.

void setSelection(int start) Moves the caret to the zero-based offset specified by start.

void setSelection(int start, int end) Selects the range of text specified by start and end. start

specifies the zero-based index of the first character to select,

and end specifies the number one higher than the zero-based

index of the last character to select.

void setSelection(Point selection) Selects the range of text specified by the x and y members of

the specified Point. x specifies the zero-based index of the first

character to select, and y specifies the number one higher

than the zero-based index of the last character to select.

void setTabs(int tabs) Sets the number of tab stops for this Text.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Method Description

void setText(String string) Sets this Text's text.

void setTextLimit(int limit) Sets the maximum number of characters this Text will hold.

void setTopIndex(int index) Scrolls the line at the specified zero-based index to the top of

this Text.

void showSelection() Scrolls the text as necessary to display the current selection.

The TextExample program creates an array of Text widgets to demonstrate the possibilities. It creates a left-aligned

Text, a right-aligned Text, a password Text, a read-only Text, and a multiple-line Text. You can find the code in Listing

5-3. Figure 5-3 shows the program's main window.

Figure 5-3: The TextExample program

Listing 5-3: TextExample.java

package examples.ch5;

import org.eclipse.swt.SWT;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.widgets.*;

/**

 * This class demonstrates text fields

 */

public class TextExample {

 public static void main(String[] args) {

 Display display = new Display();

 Shell shell = new Shell(display);

 shell.setLayout(new GridLayout(1, false));

 // Create a single-line text field

 new Text(shell, SWT.BORDER);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig135%5F01%5F0%2Ejpg

 // Create a right-aligned single-line text field

 new Text(shell, SWT.RIGHT | SWT.BORDER);

 // Create a password text field

 new Text(shell, SWT.PASSWORD | SWT.BORDER);

 // Create a read-only text field

 new Text(shell, SWT.READ_ONLY | SWT.BORDER).setText("Read Only");

 // Create a multiple-line text field

 Text t = new Text(shell, SWT.MULTI | SWT.BORDER | SWT.WRAP | SWT.V_SCROLL);

 t.setLayoutData(new GridData(GridData.FILL_BOTH));

 shell.open();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

 display.dispose();

 }

}

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Introducing List

List boxes display lists of strings and allow users to select one or more of them. SWT uses the List class to implement

list boxes. To create a List, call its constructor, passing the parent and desired style constants:

List(Composite parent, int style)

You can combine style constants using the bitwise OR operator. Table 5-10 describes the applicable style constants

for List.

Table 5-10: List Styles

Style Effect

SWT.BORDER Draws a border around this List.

SWT.SINGLE Creates a List that allows selection of only one item at a time. This is the default.

SWT.MULTI Creates a List that allows selection of multiple items at a time. You may specify only one

of SWT.SINGLE or SWT.MULTI.

SWT.H_SCROLL Creates a horizontal scrollbar to scroll this List.

SWT.V_SCROLL Creates a vertical scrollbar to scroll this List.

The methods that List offers focus on adding, selecting, and removing items. Table 5-11 describes List's methods.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table 5-11: List Methods

Method Description

void add(String string) Adds the specified string as the last item in this List.

void add(String string, int index) Adds the specified string as the item at the specified

zero-based index in this List, shifting all following items

down.

void addSelectionListener(SelectionListener

listener)
Adds a listener that's notified when an item in this List is

selected.

void deselect(int index) Deselects the item at the specified zero-based index.

void deselect(int[] indices) Deselects the items at the specified zero-based indices.

void deselect(int start, int end) Deselects the items between the specified zero-based

indices, inclusive.

void deselectAll() Deselects all items in this List.

int getFocusIndex() Returns the zero-based index of the item in this List that

currently holds the focus or -1 if no item has the focus.

String getItem(int index) Returns the text of the item at the specified zero-based

index.

int getItemCount() Returns the number of items in this List.

int getItemHeight() Returns the height in pixels of one item in this List.

String[] getItems() Returns the text of all the items in this List.

String[] getSelection() Returns the text of all the selected items in this List.

int getSelectionCount() Returns the number of selected items in this List.

int getSelectionIndex() Returns the zero-based index of the first selected item in

this List or -1 if no items are selected.

int[] getSelectionIndices() Returns the zero-based indices of the selected items in this

List.

int getTopIndex() Returns the zero-based index of the item displayed at the

top of this List.

int indexOf(String string) Returns the zero-based index of the first item in this List that

matches the specified string or -1 if no items match.

int indexOf(String string, int start) Returns the zero-based index of the first item at or after the

index specified by start in this List that matches the specified

string or -1 if no items match.

boolean isSelected(int index) Returns true if the item at the given index is selected.

Otherwise, returns false.

void remove(int index) Removes the item at the specified zero-based index.

void remove(int[] indices) Removes the items at the specified zero-based indices.

void remove(int start, int end) Removes the items between the specified zero-based

indices, inclusive.

void remove(String string) Removes the first item in this List that matches the specified

string.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Method Description

void removeAll() Removes all the items from this List.

void removeSelectionListener(SelectionListener

listener)
Removes the specified listener from the notification list.

void select(int index) Selects the item at the specified zero-based index.

void select(int[] indices) Selects the items at the specified zero-based indices.

void select(int start, int end) Selects the items between the specified zero-based indices,

inclusive.

void selectAll() Selects all items in this List.

void setFont(Font font) Sets the font used by this List.

void setItem(int index, String string) Sets the text of the item at the specified zero-based index

to the specified string.

void setItems(String[] items) Sets the contents of this List to the specified strings.

void setSelection(int index) Deselects all currently selected items, and selects the item

at the specified zero-based index.

void setSelection(int[] indices) Deselects all currently selected items, and selects the items

at the specified zero-based indices.

void setSelection(int start, int end) Deselects all currently selected items, and selects the items

between the specified zero-based indices, inclusive.

void setSelection(String[] items) Deselects all currently selected items, and selects the

specified items.

void setTopIndex(int index) Scrolls this List so that the item at the specified zero-based

index appears at the top of this List.

void showSelection() Scrolls this List so that the selected item displays.

The ListExample program shown in Listing 5-4 creates two Lists, side by side. The List on the left allows a single

selection, and the List on the right allows multiple selections. The program fills both Lists with the same items, using two

different approaches. The program then selects some items in each list. Figure 5-4 shows the program.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Figure 5-4: The ListExample program

Listing 5-4: ListExample.java

package examples.ch5;

import org.eclipse.swt.SWT;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.widgets.*;

/**

 * This class demonstrates Lists

 */

public class ListExample {

 // Strings to use as list items

 private static final String[] ITEMS = { "Alpha", "Bravo", "Charlie", "Delta",

 "Echo", "Foxtrot", "Golf", "Hotel", "India", "Juliet", "Kilo", "Lima", "Mike",

 "November", "Oscar", "Papa", "Quebec", "Romeo", "Sierra", "Tango", "Uniform",

 "Victor", "Whiskey", "X-Ray", "Yankee", "Zulu"

};

 public static void main(String[] args) {

 Display display = new Display();

 Shell shell = new Shell(display);

 shell.setLayout(new FillLayout());

 // Create a single-selection list

 List single = new List(shell, SWT.BORDER | SWT.SINGLE | SWT.V_SCROLL);

 // Add the items, one by one

 for (int i = 0, n = ITEMS.length; i < n; i++) {

 single.add(ITEMS[i]);

 }

 // Select the fifth item

 single.select(4);

 // Create a multiple-selection list

 List multi = new List(shell, SWT.BORDER | SWT.MULTI | SWT.V_SCROLL);

 // Add the items all at once

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig139%5F01%5F0%2Ejpg

 multi.setItems(ITEMS);

 // Select the 10th through 12th items

 multi.select(9, 11);

 shell.open();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

 display.dispose();

 }

}

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Introducing Combo

The Text widget provides users the flexibility to enter what they want, but at a price—users assume the onus of

authoring the entire input. The List widget removes this onus by listing all available options and allowing users to select

one or more, but it doesn't allow the user to enter anything not listed. Combo boxes, also known as dropdowns,

combine the strengths of Text and List, erasing their shortcomings. They present a list of items from which users can

select but also allow users to type their own input.

SWT uses the Combo class to represent combo boxes. It offers one constructor:

Combo(Composite parent, int style)

The applicable style constants, described in Table 5-12, control Combo's behavior. A Combo can selectively show or

hide its list of options, appearing to make the list "drop down" below the text-input field. Alternatively, it can always

display its list of items and provide no mechanism for hiding the list. It can also force selection from the list, not

allowing users to type their own inputs.

Table 5-12: Combo Styles

Style Description

SWT.DROP_DOWN Creates a Combo whose list "drops down."

SWT.READ_ONLY Disallows typing input. Only SWT.DROP_DOWN Combos can be read-only.

SWT.SIMPLE Creates a Combo whose list always displays.

Since a Combo acts somewhat like a Text and somewhat like a List, its API supports both Text-like operations and

List-like operations. Some methods apply to a Combo's text field, and some apply to its list. Table 5-13 describes

Combo's methods.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table 5-13: Combo Methods

Method Description

void add(String string) Adds the specified string to the end of this Combo's list.

void add(String string, int index) Adds the specified string as the item in this Combo's list at the

specified zero-based index, shifting all following items down.

void addModifyListener(ModifyListener

listener)
Adds a listener that's notified when the text in this Combo's

text field changes.

void addSelectionListener(SelectionListener

listener)
Adds a listener that's notified when the user selects an item in

this Combo's list.

void clearSelection() Clears any selection in the text field of this Combo.

void copy() Copies the selected text in this Combo's text field to the

clipboard.

void cut() Cuts the selected text in this Combo's text field to the clipboard.

void deselect(int index) Deselects the item at the specified zero-based index in this

Combo's list.

void deselectAll() Deselects all items in this Combo's list.

String getItem(int index) Returns the item at the specified zero-based index in this

Combo's list.

int getItemCount() Returns the number of items in this Combo's list.

int getItemHeight() Returns the height in pixels of a single item in this Combo's list.

String[] getItems() Returns the items in this Combo's list.

int getOrientation() Returns this Combo's orientation (SWT.LEFT_TO_RIGHT or

SWT.RIGHT_TO_LEFT).

Point getSelection() Returns the zero-based indices of the current selection in this

Combo's text field. The returned Point's x member contains the

beginning of the range, and the y member contains the end of

the range.

int getSelectionIndex() Returns the zero-based index of the selected item in this

Combo's list or -1 if no items are selected.

String getText() Returns the text in this Combo's text field.

int getTextHeight() Returns the height in pixels of this Combo's text field.

int getTextLimit() Returns the maximum number of characters this Combo's text

field holds.

int indexOf(String string) Returns the zero-based index of the first item in this Combo's

list that matches the specified string or -1 if no items match.

int indexOf(String string, int start) Returns the zero-based index of the first item at or after the

index specified by start in this Combo's list that matches the

specified string or -1 if no items match.

void paste() Pastes from the clipboard into this Combo's text field.

void remove(int index) Removes the item at the specified zero-based index from this

Combo's list.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Method Description

void remove(int start, int end) Removes the items between the specified zero-based indices,

inclusive, from this Combo's list.

void remove(String string) Removes the first item in this Combo's list that matches the

specified string.

void removeAll() Removes all the items from this Combo's list.

void removeModifyListener(ModifyListener

listener)
Removes the specified listener from the notification list.

void

removeSelectionListener(SelectionListener

listener)

Removes the specified listener from the notification list.

void select(int index) Selects the item in this Combo's list at the specified

zero-based index.

void setItem(int index, String string) Sets the text of the item in this Combo's list at the specified

zero-based index to the specified string.

void setItems(String[] items) Sets the contents of this Combo's list to the specified strings.

void setOrientation(int orientation) Sets this Combo's orientation (SWT.LEFT_TO_RIGHT or

SWT.RIGHT_TO_LEFT).

void setSelection(Point selection) Selects the range of text in this Combo's text field specified by

the x and y members of the specified Point. x specifies the

zero-based index of the first character to select, and y

specifies the number one higher than the zero-based index of

the last character to select.

void setText(String string) Sets the text of this Combo's text field.

void setTextLimit(int limit) Sets the maximum number of characters this Combo's text

field will hold.

The ComboExample program shown in Listing 5-5 creates three Combos: a drop-down Combo, a read-only dropdown

Combo, and a simple Combo. Figure 5-5 shows ComboExample's window.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Figure 5-5: The ComboExample program

Listing 5-5: ComboExample.java

package examples.ch5;

import org.eclipse.swt.SWT;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.widgets.*;

/**

 * This class demonstrates Combo

 */

public class ComboExample {

 // Strings to use as list items

 private static final String[] ITEMS = { "Alpha", "Bravo", "Charlie", "Delta",

 "Echo", "Foxtrot", "Golf", "Hotel", "India", "Juliet", "Kilo", "Lima", "Mike",

 "November", "Oscar", "Papa", "Quebec", "Romeo", "Sierra", "Tango", "Uniform",

 "Victor", "Whiskey", "X-Ray", "Yankee", "Zulu"

 };

 public static void main(String[] args) {

 Display display = new Display();

 Shell shell = new Shell(display);

 shell.setLayout(new GridLayout(2, true));

 // Create a dropdown Combo

 Combo combo = new Combo(shell, SWT.DROP_DOWN);

 combo.setItems(ITEMS);

 // Create a read-only Combo

 Combo readOnly = new Combo(shell, SWT.DROP_DOWN | SWT.READ_ONLY);

 readOnly.setItems(ITEMS);

 // Create a "simple" Combo

 Combo simple = new Combo(shell, SWT.SIMPLE);

 simple.setItems(ITEMS);

 shell.open();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig143%5F01%5F0%2Ejpg

 display.sleep();

 }

 }

 display.dispose();

 }

}

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Introducing Slider

Sliders allow users to select a value within a given range by sliding a "thumb" across the range to the desired value.

Users can change the selected value by clicking and dragging the thumb with the mouse, pressing the arrow keys on

the keyboard, clicking the arrow buttons at the ends of the slider, or clicking between the arrow buttons and the thumb.

You can create both horizontal and vertical sliders. SWT uses the Slider class to represent sliders.

To create a slider, use its constructor:

Slider(Composite parent, int style)

You can pass either SWT.HORIZONTAL or SWT.VERTICAL for style to create a horizontal or a vertical slider,

respectively. You can't combine the styles.

To customize Sliders, use the methods described in Table 5-14.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table 5-14: Slider Methods

Method Description

void addSelectionListener(SelectionListener listener) Adds a listener that's notified when users select this

Slider.

boolean getEnabled() Returns true if this Slider is enabled. Otherwise,

returns false.

int getIncrement() Returns the increment value: the number by which

the selected value changes when users click the

arrow buttons at the ends of this Slider or press the

arrow keys on the keyboard.

int getMaximum() Returns this Slider's maximum value.

int getMinimum() Returns this Slider's minimum value.

int getPageIncrement() Returns the page increment value: the number by

which the selected value changes when users click

the areas between the thumb and the arrow buttons

or press the page up or page down keys on the

keyboard.

int getSelection() Returns this Slider's current value.

int getThumb() Returns the size of this Slider's thumb, relative to this

Slider's range.

void removeSelectionListener(SelectionListener

listener)
Removes the specified listener from the notification

list.

void setEnabled(boolean enabled) If enabled is true, enables this Slider. Otherwise,

disables this Slider.

void setIncrement(int value) Sets the increment value: the number by which the

selected value changes when users click the arrow

buttons at the ends of this Slider or press the arrow

keys on the keyboard.

void setMaximum(int value) Sets this Slider's maximum value.

void setMinimum(int value) Sets this Slider's minimum value.

void setPageIncrement(int value) Sets the page increment value: the number by which

the selected value changes when users click the

areas between the thumb and the arrow buttons or

press the page up or page down keys on the

keyboard.

void setSelection(int value) Sets this Slider's value.

void setThumb(int value) Sets the size of this Slider's thumb, relative to this

Slider's range.

void setValues(int selection, int minimum, int

maximum, int thumb, int increment, int pageIncrement)
Sets this Slider's value, minimum, maximum, thumb

size, increment value, and page increment value as

specified.

The SliderExample program, shown in Listing 5-6, demonstrates sliders. It creates a horizontal slider and a vertical

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

slider, as shown in Figure 5-6.

Figure 5-6: The SliderExample program

Listing 5-6: SliderExample.java

package examples.ch5;

import org.eclipse.swt.SWT;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.widgets.*;

/**

 * This class demonstrates Sliders

 */

public class SliderExample {

 public static void main(String[] args) {

 Display display = new Display();

 Shell shell = new Shell(display);

 shell.setLayout(new GridLayout(1, false));

 // Create a horizontal Slider, accepting the defaults

 new Slider(shell, SWT.HORIZONTAL);

 // Create a vertical Slider and set its properties

 Slider slider = new Slider(shell, SWT.VERTICAL);

 slider.setMinimum(0);

 slider.setMaximum(100);

 slider.setIncrement(5);

 slider.setPageIncrement(20);

 slider.setSelection(75);

 shell.open();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

 display.dispose();

 }

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig146%5F01%5F0%2Ejpg

}

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Introducing Group

Whether through using a personal digital assistant (PDA) or a traditional day planner, people strive to organize their

lives. Through organization, challenges that would otherwise overwhelm people instead become both manageable

and conquerable. Breaking life's tasks into discrete chunks has proven to be a winning strategy.

This divide-and-conquer approach applies to user interface design as well. Windows wadded with widgets erect

usability barriers. The group widget, represented in SWT by the Group class, provides visual organization and

structure. Surprisingly simple—it consists of a thin rectangular outline that surrounds its contained controls—it

nonetheless can offer the user an orderly interface that reinforces relationships among widgets.

Since a Group derives from Composite, it can contain other widgets. To add widgets to a Group, and thus cause them to

display within the Group's boxy embrace, pass the Group as the widget's parent in the widget's constructor. Radio

buttons, for example, typically rest inside a Group, counting on the Group to clue the user in that only one of the radio

buttons can be selected at a time. Use Groups to demarcate any set of widgets. To create a Group, pass the parent

and the desired style constants to the constructor:

Group(Composite parent, int style)

Although Group purports to support several styles that affect its line display, it emphatically reminds you that styles

merely provide hints about your wishes to the underlying windowing system. None of the "shadow" styles have any

effect on Microsoft Windows, for example. Table 5-15 describes the supported styles.

Table 5-15: Group Styles

Style Description

SWT.SHADOW_ETCHED_IN Creates a Group with the "etched in" shadow style.

SWT.SHADOW_ETCHED_OUT Creates a Group with the "etched out" shadow style.

SWT.SHADOW_IN Creates a Group with the "in" shadow style, which isn't necessarily popular.

SWT.SHADOW_OUT Creates a Group with the "out" shadow style.

SWT.SHADOW_NONE Creates a Group with no shadow style.

SWT.NO_RADIO_GROUP If this Group contains radio buttons, removes the default single-selection

behavior of radio buttons. It allows selection of multiple radio buttons

within this Group.

A Group can optionally display some text along its top, specified by the setText() method. Group's spartanly equipped

API, described in Table 5-16, reminds you that it offers little beyond visual organizational clues.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table 5-16: Group Methods

Method Description

Rectangle computeTrim(int x, int y, int

width, int height)
Computes the bounding Rectangle necessary to hold the client area

specified by x, y, width, and height

Rectangle getClientArea() Returns the bounding Rectangle of this Group's client area

String getText() Returns this Group's optional title text

void setText(String string) Sets this Group's optional title text

The GroupExample program in Listing 5-7 creates two Groups, each holding radio buttons. The second group has the

SWT.NO_RADIO_GROUP style, so you can select multiple radio buttons inside it (see Figure 5-7).

Figure 5-7: The GroupExample program

Listing 5-7: GroupExample.java

package examples.ch5;

import org.eclipse.swt.SWT;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.widgets.*;

/**

 * This class demonstrates Groups

 */

public class GroupExample {

 public static void main(String[] args) {

 Display display = new Display();

 Shell shell = new Shell(display);

 shell.setLayout(new GridLayout());

 // Create the first Group

 Group group1 = new Group(shell, SWT.SHADOW_IN);

 group1.setText("Who's your favorite?");

 group1.setLayout(new RowLayout(SWT.VERTICAL));

 new Button(group1, SWT.RADIO).setText("John");

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig149%5F01%5F0%2Ejpg

 new Button(group1, SWT.RADIO).setText("Paul");

 new Button(group1, SWT.RADIO).setText("George");

 new Button(group1, SWT.RADIO).setText("Ringo");

 // Create the second Group

 Group group2 = new Group(shell, SWT.NO_RADIO_GROUP);

 group2.setText("Who's your favorite?");

 group2.setLayout(new RowLayout(SWT.VERTICAL));

 new Button(group2, SWT.RADIO).setText("Barry");

 new Button(group2, SWT.RADIO).setText("Robin");

 new Button(group2, SWT.RADIO).setText("Maurice");

 shell.open();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

 display.dispose();

 }

}

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Introducing ScrollBar

Scrollbars, represented by SWT's ScrollBar class, appear and function much like Sliders. However, you don't create

ScrollBars directly. In fact, you have no access to ScrollBar's only constructor. Instead, you create a ScrollBar by passing

one of the scrolling style constants described in Table 5-17 to the constructor of a Scrollable-derived widget, and it

creates the ScrollBar. You can then retrieve a reference to the scrollable widget's ScrollBar by calling getHorizontalBar()

or getVerticalBar() for horizontal or vertical ScrollBars, respectively. Table 5-18 describes methods you can call on your

retrieved ScrollBar reference.

Table 5-17: Scrollable Styles

Style Description

SWT.H_SCROLL Creates a horizontal ScrollBar (passes the SWT.HORIZONTAL style to ScrollBar's

constructor)

SWT.V_SCROLL Creates a vertical ScrollBar (passes the SWT.VERTICAL style to ScrollBar's constructor)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table 5-18: ScrollBar Methods

Method Description

void addSelectionListener(SelectionListener listener) Adds a listener that's notified when the user scrolls

this ScrollBar.

void dispose() Disposes this ScrollBar.

boolean getEnabled() Returns true if this ScrollBar is enabled. Otherwise,

returns false.

int getIncrement() Returns the increment value: the number by which

the selected value changes when users click the

arrow buttons at the ends of this ScrollBar or press

the arrow keys on the keyboard.

int getMaximum() Returns this ScrollBar's maximum value.

int getMinimum() Returns this ScrollBar's minimum value.

int getPageIncrement() Returns the page increment value: the number by

which the selected value changes when users click

the areas between the thumb and the arrow buttons

or press the page up or page down keys on the

keyboard.

Scrollable getParent() Returns this ScrollBar's parent.

int getSelection() Returns this ScrollBar's current value.

Point getSize() Returns this ScrollBar's size. The x component of the

returned Point represents the width in pixels. The y

coordinate represents the height in pixels.

int getThumb() Returns the size of this ScrollBar's thumb, relative to

this ScrollBar's range.

boolean getVisible() Returns true if this ScrollBar is visible. Otherwise,

returns false.

boolean isEnabled() Returns true if this ScrollBar and all its ancestors are

enabled. Otherwise, returns false.

boolean isVisible() Returns true if this ScrollBar and all its ancestors are

visible. Otherwise, returns false.

void removeSelectionListener(SelectionListener

listener)
Removes the specified listener from the notification

list.

void setEnabled(boolean enabled) If enabled is true, enables this ScrollBar. Otherwise,

disables this ScrollBar.

void setIncrement(int value) Sets the increment value: the number by which the

selected value changes when users click the arrow

buttons at the ends of this ScrollBar or press the

arrow keys on the keyboard.

void setMaximum(int value) Sets this ScrollBar's maximum value.

void setMinimum(int value) Sets this ScrollBar's minimum value.

void setPageIncrement(int value) Sets the page increment value: the number by which

the selected value changes when users click the

areas between the thumb and the arrow buttons or

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Method Description

keyboard.

void setSelection(int value) Sets this ScrollBar's value.

void setThumb(int value) Sets the size of this ScrollBar's thumb, relative to this

ScrollBar's range.

void setValues(int selection, int minimum, int

maximum, int thumb, int increment, int pageIncrement)
Sets this ScrollBar's value, minimum, maximum,

thumb size, increment value, and page increment

value as specified.

void setVisible(boolean visible) If visible is true, shows this ScrollBar. Otherwise, hides

it.

ScrollBars, like Sliders, display a movable thumb that represents the ScrollBar's current position. They also have

clickable arrow buttons that move the thumb. Also, you can click the ScrollBar between the thumb and an arrow button

to increment or decrement the ScrollBar by a full page.

The ScrollBarExample program shown in Listing 5-8 creates a List with a vertical ScrollBar. The program adds several

items to the List and then selects the last item and scrolls it into view. Finally, it retrieves a reference to the List's

ScrollBar, determines its scroll value, and adds an item to the List that reports the value (see Figure 5-8).

Figure 5-8: The ScrollBarExample program

Listing 5-8: ScrollBarExample.java

package examples.ch5;

import org.eclipse.swt.SWT;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.widgets.*;

/**

 * This class demonstrates ScrollBars

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig152%5F01%5F0%2Ejpg

 */

public class ScrollBarExample {

 public static void main(String[] args) {

 Display display = new Display();

 Shell shell = new Shell(display);

 shell.setLayout(new FillLayout());

 // Create a List with a vertical ScrollBar

 List list = new List(shell, SWT.V_SCROLL);

 // Add a bunch of items to it

 for (int i = 0; i < 500; i++) {

 list.add("A list item");

 }

 // Scroll to the bottom

 list.select(list.getItemCount() - 1);

 list.showSelection();

 // Get the ScrollBar

 ScrollBar sb = list.getVerticalBar();

 // Add one more item that shows the selection value

 list.add("Selection: " + sb.getSelection());

 shell.open();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

 display.dispose();

 }

}

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Introducing ProgressBar

A well-written GUI constantly conveys its state. When your application performs a long-running process during which

the application might not be responsive, you should communicate as much as possible about the process's progress.

Designed for just this purpose, progress bars display, as their name implies, incremental progress. They display an

empty bar (either horizontal or vertical) that incrementally fills with color. For example, most Web browsers display a

progress bar to track the progress of large file downloads.

SWT uses the ProgressBar class to implement progress bars. To create a ProgressBar, pass the parent and style

constants to the constructor:

ProgressBar(Composite parent, int style)

Table 5-19 describes the supported styles.

Table 5-19: ProgressBar Styles

Style Description

SWT.SMOOTH Creates a progress bar that displays a continuous bar as its indicator. The default

is to display a distinctly divided bar.

SWT.HORIZONTAL Creates a horizontal progress bar.

SWT.VERTICAL Creates a vertical progress bar.

SWT.INDETERMINATE Creates a progress bar that constantly cycles, indicating continuous work.

A ProgressBar has a minimum value, a maximum value, and a current value, and ProgressBar's API provides getters

and setters for these values (see Table 5-20). Before beginning your work, you should set the minimum and maximum

values to numbers that reflect the work you're going to perform and then update the current value periodically to show

progress. You can avoid this minutia by using the SWT.INDETERMINATE style, but that gives users much less useful

feedback: the operation is happening but doesn't know when it'll finish.

Table 5-20: ProgressBar Methods

Method Description

int getMaximum() Returns this ProgressBar's maximum value

int getMinimum() Returns this ProgressBar's minimum value

int getSelection() Returns this ProgressBar's current value

void setMaximum(int value) Sets this ProgressBar's maximum value

void setMinimum(int value) Sets this ProgressBar's minimum value

void setSelection(int value) Sets this ProgressBar's current value

The ProgressBarExample program shown in Listing 5-9 shows two ProgressBars: a smooth one and a divided one. The

divided one carries the SWT.INDETERMINATE style, so it cycles constantly. The program spawns a thread that runs 30

seconds, incrementing the smooth ProgressBar every second. Figure 5-9 shows the program's window.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Figure 5-9: The ProgressBarExample program

Listing 5-9: ProgressBarExample.java

package examples.ch5;

import org.eclipse.swt.SWT;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.widgets.*;

/**

 * This class demonstrates ProgressBar

 */

public class ProgressBarExample {

 public static void main(String[] args) {

 Display display = new Display();

 Shell shell = new Shell(display);

 shell.setLayout(new GridLayout());

 // Create a smooth ProgressBar

 ProgressBar pb1 = new ProgressBar(shell, SWT.HORIZONTAL | SWT.SMOOTH);

 pb1.setLayoutData(new GridData(GridData.FILL_HORIZONTAL));

 pb1.setMinimum(0);

 pb1.setMaximum(30);

 // Create an indeterminate ProgressBar

 ProgressBar pb2 = new ProgressBar(shell, SWT.HORIZONTAL | SWT.INDETERMINATE);

 pb2.setLayoutData(new GridData(GridData.FILL_HORIZONTAL));

 // Start the first ProgressBar

 new LongRunningOperation(display, pb1).start();

 shell.open();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

 }

}

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig155%5F01%5F0%2Ejpg

/**

 * This class simulates a long-running operation

 */

class LongRunningOperation extends Thread {

 private Display display;

 private ProgressBar progressBar;

 public LongRunningOperation(Display display, ProgressBar progressBar) {

 this.display = display;

 this.progressBar = progressBar;

 }

 public void run() {

 // Perform work here--this operation just sleeps

 for (int i = 0; i < 30; i++) {

 try {

 Thread.sleep(1000);

 } catch (InterruptedException e) {

 // Do nothing

 }

 display.asyncExec(new Runnable() {

 public void run() {

 if (progressBar.isDisposed()) return;

 // Increment the progress bar

 progressBar.setSelection(progressBar.getSelection() + 1);

 }

 });

 }

 }

}

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Introducing Menus

The component listed third in the Windows-Icons-Menus-Pointers (WIMP) interface, menus wrench computing from

the exclusive grasp of the elite and hand it over to the masses. Interacting with computers used to mean memorizing

and typing cryptic commands to accomplish tasks. The domain knowledge rested with the user. For example, people

using vi had to type ":%s/this/that/g" (after first ensuring they were in command mode) to replace all instances of "this"

with "that" in the current file. MS-DOS users copied directory trees with "xcopy /s /e . newDir." WordPerfect users, at

least, could purchase paper overlays to place on their keyboards around the function keys so they could scan the

overlay before pressing Shift+F7 to print the current document.

Menus transfer that domain knowledge to the party better at memorization: the computer. To replace all instances of

"this" with "that," users using programs with menus select a command such as Edit Ø Replace from a menu. They

copy directory trees by selecting the directory to copy, selecting Copy from a menu, selecting the destination, and

selecting Paste from a menu. They print by selecting, again from a menu, File Ø Print. Menus eliminate the need to

memorize and type obscure commands, making program interaction available to average users.

Creating Menus

To create a menu, use SWT's Menu class, which offers the four constructors described in Table 5-21. Menus come in

the following three types:

Bar menus, which typically display across the top of the parent window.

Dropdown menus, which drop down from a bar, a popup, or another dropdown menu.

Popup menus, which display at the mouse cursor location and disappear after the user selects an

item.

Table 5-21: Menu Constructors

Constructor Description

Menu(Control parent) Constructs a popup menu as a child of the specified parent. Automatically uses

the SWT.POP_UP style.

Menu(Decorations parent,

int style)
Constructs a menu, with the specified style, as a child of the specified parent.

Chapter 8 covers Decorations, but you typically pass the parent Shell object.

Menu(Menu parentMenu) Constructs a dropdown menu as a child of the specified parent menu's parent.

Automatically uses the SWT.DROP_DOWN style.

Menu(MenuItem

parentItem)
Constructs a dropdown menu as a child of the specified parent item's parent

menu. Automatically uses the SWT.DROP_DOWN style.

SWT uses style constants for these types, described in Table 5-22. You may specify only one of SWT.BAR,

SWT.DROP_DOWN, or SWT.POP_UP for a single menu. You can add a style to each of these menu types (using the

bitwise OR operator), SWT.NO_RADIO_GROUP, to remove support for radio groups in the menu. You shouldn't

subclass Menu.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Table 5-22: Menu Styles

Style Description

SWT.BAR Creates a horizontal menu used as the main menu for the window

SWT.DROP_DOWN Creates a menu that drops down from another menu, either a bar menu or

another dropdown menu

SWT.POP_UP Creates a menu that pops up at a given location and isn't a child of a bar menu

SWT.NO_RADIO_GROUP Creates a menu that doesn't support radio groups

What you consider to be a single menu for an application actually comprises, in SWT, several Menu objects. Consider,

for example, the menu shown in Figure 5-10. In SWT, this uses several Menu objects: a bar (shown by itself in Figure

5-11) and dropdowns (such as the one shown—the vertical menu that drops down from the bar) for each of the items

in the bar. Popup menus, too, can consist of several Menu objects cascading from each other.

Figure 5-10: Two menus (a bar and a dropdown)

Figure 5-11: A bar menu

The following code, for example, creates a bar menu:

Menu menu = new Menu(shell, SWT.BAR);

and this code creates a popup menu:

Menu menu = new Menu(composite, SWT.POP_UP);

Adding Items to Menus

Menus must have items to be useful. File, from Figure 5-10, is a menu item. So is Exit. Without menu items, the menu

would have nothing to select and couldn't respond to user input in any meaningful way.

SWT uses the MenuItem class to represent items in the menu. It offers two constructors:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

MenuItem(Menu parent, int style)

MenuItem(Menu parent, int style, int index)

where parent is the menu this item belongs to, style is the style for the menu item, and index is the zero-based index of

the menu item, relative to the other items in the parent menu. You shouldn't combine styles, and you shouldn't

subclass MenuItem. Support for the styles depends on the underlying environment. The SWT.PUSH style, for example,

has no effect in Windows. Table 5-23 describes the supported styles.

Table 5-23: MenuItem Styles

Style Description

SWT.CHECK Creates a menu item that can be toggled on and off. When on, it displays a check

mark beside it.

SWT.CASCADE Creates a menu item that can have a set of submenu items.

SWT.PUSH Creates a menu item that can be pushed.

SWT.RADIO Creates one item within a group that can be toggled on and off. Only one item in the

group can be on. When on, it displays a check mark beside it.

SWT.SEPARATOR Creates a separator item.

Traditional menu items, such as those in Figure 5-10 that do something when you click them, use the style SWT.NONE.

The following code creates a traditional menu item:

MenuItem item = new MenuItem(menu, SWT.NONE);

and this code creates a check menu item:

MenuItem item = new MenuItem(menu, SWT.CHECK);

Creating a Bar Menu with Dropdowns

Most applications have a traditional menu, which consists of a bar menu and several dropdown menus. To create such

a menu, use these steps:

Create a bar menu.1.

Add several menu items of type SWT.CASCADE.2.

Set the text of each menu item using MenuItem.setText().3.

Create each dropdown menu by calling either new Menu(shell, SWT.DROP_DOWN) or new

Menu(barMenu).

4.

Set each dropdown into the appropriate bar menu item by calling

MenuItem.setMenu(dropdownMenu).

5.

Create items for each dropdown menu.6.

Set the bar menu as the main menu for the shell by calling setMenuBar(menu).7.

For example, to create the menu shown in Figure 5-10 (without displaying the accelerator keys), use the code shown

in Listing 5-10.

Listing 5-10: Creating a Bar Menu with Dropdowns

// Create the bar menu

Menu menu = new Menu(shell, SWT.BAR);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

// Create all the items in the bar menu

MenuItem fileItem = new MenuItem(menu, SWT.CASCADE);

fileItem.setText("File");

MenuItem editItem = new MenuItem(menu, SWT.CASCADE);

editItem.setText("Edit");

MenuItem formatItem = new MenuItem(menu, SWT.CASCADE);

formatItem.setText("Format");

MenuItem viewItem = new MenuItem(menu, SWT.CASCADE);

viewItem.setText("View");

MenuItem helpItem = new MenuItem(menu, SWT.CASCADE);

helpItem.setText("Help");

// Create the File item's dropdown menu

Menu fileMenu = new Menu(menu);

fileItem.setMenu(fileMenu);

// Create all the items in the File dropdown menu

MenuItem newItem = new MenuItem(fileMenu, SWT.NONE);

newItem.setText("New");

MenuItem openItem = new MenuItem(fileMenu, SWT.NONE);

openItem.setText("Open...");

MenuItem saveItem = new MenuItem(fileMenu, SWT.NONE);

saveItem.setText("Save");

MenuItem saveAsItem = new MenuItem(fileMenu, SWT.NONE);

saveAsItem.setText("Save As...");

// Create the first separator

new MenuItem(fileMenu, SWT.SEPARATOR);

MenuItem pageSetupItem = new MenuItem(fileMenu, SWT.NONE);

pageSetupItem.setText("Page Setup...");

MenuItem printItem = new MenuItem(fileMenu, SWT.NONE);

printItem.setText("Print...");

// Create the second separator

new MenuItem(fileMenu, SWT.SEPARATOR);

MenuItem exitItem = new MenuItem(fileMenu, SWT.NONE);

exitItem.setText("Exit");

// Set the bar menu as the menu in the shell

shell.setMenuBar(menu);

This code creates only one dropdown menu—the one for the File bar menu item— but you can mimic that dropdown

menu to create dropdown menus for each of the other bar menu items.

Creating a Popup Menu

Popup menus languished in obscurity until Microsoft discovered the right mouse button (the secondary button in

politically correct terminology) and made it an integral part of Windows 95. Now, users expect to be able to right-click

virtually anything to see a menu describing the actions the user can perform on the selected object. As the name

suggests, a popup menu "pops up" when the appropriate platform-specific mouse button or key sequence is pressed.

Like bar menus, popup menus can have cascading items and dropdown menus. They can have all types of menu

items and can do anything a bar menu can.

For example, to create a popup menu for a composite that looks like Figure 5-12, use the code shown in Listing 5-11.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Figure 5-12: A popup menu

Listing 5-11: Creating a Popup Menu

// Create the popup menu

Menu menu = new Menu(composite);

// Create all the items in the popup menu

MenuItem newItem = new MenuItem(menu, SWT.CASCADE);

newItem.setText("New");

MenuItem refreshItem = new MenuItem(menu, SWT.NONE);

refreshItem.setText("Refresh");

MenuItem deleteItem = new MenuItem(menu, SWT.NONE);

deleteItem.setText("Delete");

// Create the New item's dropdown menu

Menu newMenu = new Menu(menu);

newItem.setMenu(newMenu);

// Create the items in the New dropdown menu

MenuItem shortcutItem = new MenuItem(newMenu, SWT.NONE);

shortcutItem.setText("Shortcut");

MenuItem iconItem = new MenuItem(newMenu, SWT.NONE);

iconItem.setText("Icon");

// Set the popup menu as the popup for the composite

composite.setMenu(menu);

Creating a No Radio Group

Radio groups allow only one item within the group to be selected at a time. You can create menu items as part of a

radio group using the SWT.RADIO style. You can even create multiple radio groups in the same menu by separating

sets of radio menu items using a separator menu item. For example, Listing 5-12 creates two radio groups, each of

which can have only one selected item.

Listing 5-12: Creating a No Radio Group

// Create the first radio group

MenuItem item1 = new MenuItem(menu, SWT.RADIO);

item1.setText("Radio One");

MenuItem item2 = new MenuItem(menu, SWT.RADIO);

item2.setText("Radio Two");

MenuItem item3 = new MenuItem(menu, SWT.RADIO);

item3.setText("Radio Three");

new MenuItem(menu, SWT.SEPARATOR);

// Create the second radio group

MenuItem itema = new MenuItem(menu, SWT.RADIO);

itema.setText("Radio A");

MenuItem itemb = new MenuItem(menu, SWT.RADIO);

itemb.setText("Radio B");

MenuItem itemc = new MenuItem(menu, SWT.RADIO);

itemc.setText("Radio C");

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Figure 5-13 shows the menu created by Listing 5-12, with one item from each group selected.

Figure 5-13: A menu with two radio groups

Sometimes, however, you might want the radio look and selection functionality, but you want users to be able to select

each option individually and have multiple options within the group selected. To achieve this, create the menu with the

SWT.NO_RADIO_GROUP style, using the bitwise OR operator to add the style to any other style you specify. You can't

use any of the Menu constructors that don't allow the specification of a style, so your code will look something like this:

Menu popUp = new Menu(shell, SWT.POP_UP | SWT.NO_RADIO_GROUP);

Menu dropDown = new Menu(shell, SWT.DROP_DOWN | SWT.NO_RADIO_GROUP);

Menus created with this style enforce no radio group restrictions, and users can select and deselect multiple radio

items as if they were created with the SWT.CHECK style. Figure 5-14 shows a no radio group menu with all three

options selected.

Figure 5-14: A no radio group menu

Manipulating Menus and MenuItems

In many cases, you'll create your application's menu as previously shown, add event handlers to it (covered in Chapter

6), and not worry about the menu again. Sometimes, however, you'll want to customize how the menu and its items

behave. Both Menu and MenuItem have a set of methods to enable you to do that. Table 5-24 describes Menu's

methods, and Table 5-25 describes MenuItem's methods.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Table 5-24: Menu Methods

Method Description

void addHelpListener(HelpListener listener) Adds a listener that's notified when the user requests help,

usually by pressing F1.

void addMenuListener(MenuListener

listener)
Adds a listener that's notified when a menu is either hidden or

shown.

MenuItem getDefaultItem() Returns the default menu item or null if none has been set.

boolean getEnabled() Returns true if this menu is enabled and false if it isn't.

MenuItem getItem(int index) Returns the menu item at the specified zero-based index.

int getItemCount() Returns the number of items in this menu.

MenuItem[] getItems() Returns the items in the menu.

Decorations getParent() Returns this menu's parent.

MenuItem getParentItem() Returns this menu's parent menu item or null if has no parent

item.

Menu getParentMenu() Returns this menu's parent menu or null if it has no parent menu.

Shell getShell() Returns the Shell to which this menu belongs.

boolean getVisible() Returns true if this menu is visible and false if it's invisible.

int indexOf(MenuItem item) Returns the zero-based index of the specified menu item or -1 if

the item does not exist in this menu.

boolean isEnabled() Returns true if this menu and all its ancestors are enabled or false

if it or any of its ancestors isn't enabled.

boolean isVisible() Returns true if this menu and all its ancestors are visible or false if

it or any of its ancestors isn't visible.

void removeHelpListener(HelpListener

listener)
Removes the specified listener from the notification list.

void removeMenuListener(MenuListener

listener)
Removes the specified listener from the notification list.

void setDefaultItem(MenuItem item) Sets the specified menu item as the default item for this menu.

void setEnabled(boolean enabled) If enabled is true, enables this menu. Otherwise, disables this

menu.

void setLocation(int x, int y). Sets this menu's location relative to the display

void setLocation(Point location) Sets this menu's location relative to the display.

void setVisible(boolean visible) If visible is true, shows this menu. Otherwise, hides this menu.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Table 5-25: MenuItem Methods

Method Description

void addArmListener(ArmListener listener) Adds a listener that's notified when the item is about to be

selected ("armed").

void addHelpListener(Help Listener listener) Adds a listener that's notified when the user requests help,

usually by pressing F1.

void addSelectionListener(SelectionListener

listener)
Adds a listener that's notified when this item is selected.

int getAccelerator() Returns this item's accelerator key.

boolean getEnabled() Returns true if this item is enabled or false if it's not enabled.

Image getImage() Returns this item's image or null if it has no image.

Menu getMenu() Returns the dropdown menu associated with this item (if this

item is a cascade menu) or null if it has no associated menu.

Menu getParent() Returns this item's parent menu.

boolean getSelection() Returns true if this item is selected or false if it's not selected.

String getText() Returns this item's text.

boolean isEnabled() Returns true if this item and all its ancestors are enabled or

false if it or any of its ancestors isn't enabled.

void removeArmListener(ArmListener listener) Removes the specified listener from the notification list.

void removeHelpListener(HelpListener listener) Removes the specified listener from the notification list.

void removeSelection

Listener(SelectionListener listener)
Removes the specified listener from the notification list.

void setAccelerator(int accelerator) Sets this item's accelerator key.

void setEnabled(boolean enabled) If enabled is true, enables this item. Otherwise, disables this

item.

void setImage(Image image) Sets this item's image.

void setMenu(Menu menu) Sets this item's dropdown menu.

void setSelection(boolean selected) If selected is true, selects this item. Otherwise, deselects this

item.

void setText(String text) Sets this item's text.

One method that you'll use virtually every time you create a menu item is its setText() method. Otherwise, the item will

be blank, and users will have no idea what they're selecting. You'll use setMenu() to associate a dropdown menu with

its parent. You can enable and disable menu items and entire menus by calling the appropriate setEnabled() method,

and you can show and hide both menus and menu items by calling setVisible().

Selecting Menu Items

Both check and radio menu items can be selected, both by the user and by the program. MenuItem offers the

setSelection() method to select and deselect an item. For example, to create a check menu item and select it, use the

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

following code:

MenuItem item = new MenuItem(menu, SWT.CHECK);

item.setText("My Check Item");

item.setSelection(true);

The next bit of code creates a radio menu item and deselects it:

MenuItem item = new MenuItem(menu, SWT.RADIO);

item.setText("My Radio Item");

item.setSelection(false);

Adding Images

Menu items can display images, which can make them easier to identify. When facing a long list of textual menu items,

users will appreciate an unambiguous image that directs them to their desired menu item choice at a glance. You add

the image to the item by calling its setImage() method. This code shows you how:

MenuItem item = new MenuItem(menu, SWT.NONE);

item.setText("My Menu Item");

item.setImage(myImage);

Images can adorn menu items of all types and, when used judiciously, can make your menus easier to navigate.

Figure 5-15 shows a menu with images.

Figure 5-15: A menu with images

Seeing Menus in Action

The Menus application listed in Listing 5-13 shows the various types of menus and menu items. It has a bar menu

across the top, with a dropdown menu attached to the File menu item. The left half of the window has a popup menu

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

with a cascading drop-down menu, a check menu item, a push menu item, and two radio groups. It also has images

associated with some of the items. The right half of the window has a no radio group popup menu. Experiment with

both the code and the application to see what menus can do for you.

Listing 5-13: Menus.java

package examples.ch5;

import org.eclipse.swt.*;

import org.eclipse.swt.graphics.*;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.widgets.*;

/**

 * This class demonstrates menus

 */

public class Menus {

 private Image star;

 private Image circle;

 private Image square;

 private Image triangle;

 /**

 * Runs the application

 */

 public void run() {

 Display display = new Display();

 Shell shell = new Shell(display);

 shell.setText("Menus");

 createContents(shell);

 shell.open();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

 if (circle != null) circle.dispose();

 if (star != null) star.dispose();

 if (square != null) square.dispose();

 if (triangle != null) triangle.dispose();

 display.dispose();

 }

 /**

 * Creates the main window's contents

 *

 * @param shell the main window

 */

 private void createContents(Shell shell) {

 shell.setLayout(new FillLayout());

 createBarMenu(shell);

 createPopUpMenu(shell);

 createNoRadioGroupPopUpMenu(shell);

 }

 /**

 * Creates the bar menu for the main window

 *

 * @param shell the main window

 */

 private void createBarMenu(Shell shell) {

 // Create the bar menu

 Menu menu = new Menu(shell, SWT.BAR);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 // Create all the items in the bar menu

 MenuItem fileItem = new MenuItem(menu, SWT.CASCADE);

 fileItem.setText("File");

 MenuItem editItem = new MenuItem(menu, SWT.CASCADE);

 editItem.setText("Edit");

 MenuItem formatItem = new MenuItem(menu, SWT.CASCADE);

 formatItem.setText("Format");

 MenuItem viewItem = new MenuItem(menu, SWT.CASCADE);

 viewItem.setText("View");

 MenuItem helpItem = new MenuItem(menu, SWT.CASCADE);

 helpItem.setText("Help");

 // Create the File item's dropdown menu

 Menu fileMenu = new Menu(menu);

 fileItem.setMenu(fileMenu);

 // Create all the items in the File dropdown menu

 MenuItem newItem = new MenuItem(fileMenu, SWT.NONE);

 newItem.setText("New");

 MenuItem openItem = new MenuItem(fileMenu, SWT.NONE);

 openItem.setText("Open...");

 MenuItem saveItem = new MenuItem(fileMenu, SWT.NONE);

 saveItem.setText("Save");

 MenuItem saveAsItem = new MenuItem(fileMenu, SWT.NONE);

 saveAsItem.setText("Save As...");

 new MenuItem(fileMenu, SWT.SEPARATOR);

 MenuItem pageSetupItem = new MenuItem(fileMenu, SWT.NONE);

 pageSetupItem.setText("Page Setup...");

 MenuItem printItem = new MenuItem(fileMenu, SWT.NONE);

 printItem.setText("Print...");

 new MenuItem(fileMenu, SWT.SEPARATOR);

 MenuItem exitItem = new MenuItem(fileMenu, SWT.NONE);

 exitItem.setText("Exit");

 // Set the bar menu as the menu in the shell

 shell.setMenuBar(menu);

 }

 /**

 * Creates the left-half of the popup menu

 *

 * @param shell the main window

 */

 private void createPopUpMenu(Shell shell) {

 // Create a composite that the popup menu will be

 // associated with

 Label label = new Label(shell, SWT.BORDER);

 label.setText("Pop-up Menu");

 // Create the popup menu

 Menu menu = new Menu(label);

 // Create the images

 star = new Image(shell.getDisplay(), this.getClass().getResourceAsStream(

 "/images/star.gif"));

 circle = new Image(shell.getDisplay(), this.getClass().getResourceAsStream(

 "/images/circle.gif"));

 square = new Image(shell.getDisplay(), this.getClass().getResourceAsStream(

 "/images/square.gif"));

 triangle = new Image(shell.getDisplay(), this.getClass().getResourceAsStream(

 "/images/triangle.gif"));

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 // Create all the items in the popup menu

 MenuItem newItem = new MenuItem(menu, SWT.CASCADE);

 newItem.setText("New");

 newItem.setImage(star);

 MenuItem refreshItem = new MenuItem(menu, SWT.NONE);

 refreshItem.setText("Refresh");

 refreshItem.setImage(circle);

 MenuItem deleteItem = new MenuItem(menu, SWT.NONE);

 deleteItem.setText("Delete");

 new MenuItem(menu, SWT.SEPARATOR);

 // Add a check menu item and select it

 MenuItem checkItem = new MenuItem(menu, SWT.CHECK);

 checkItem.setText("Check");

 checkItem.setSelection(true);

 checkItem.setImage(square);

 // Add a push menu item

 MenuItem pushItem = new MenuItem(menu, SWT.PUSH);

 pushItem.setText("Push");

 new MenuItem(menu, SWT.SEPARATOR);

 // Create some radio items

 MenuItem item1 = new MenuItem(menu, SWT.RADIO);

 item1.setText("Radio One");

 item1.setImage(triangle);

 MenuItem item2 = new MenuItem(menu, SWT.RADIO);

 item2.setText("Radio Two");

 MenuItem item3 = new MenuItem(menu, SWT.RADIO);

 item3.setText("Radio Three");

 // Create a new radio group

 new MenuItem(menu, SWT.SEPARATOR);

 // Create some radio items

 MenuItem itema = new MenuItem(menu, SWT.RADIO);

 itema.setText("Radio A");

 MenuItem itemb = new MenuItem(menu, SWT.RADIO);

 itemb.setText("Radio B");

 MenuItem itemc = new MenuItem(menu, SWT.RADIO);

 itemc.setText("Radio C");

 // Create the New item's dropdown menu

 Menu newMenu = new Menu(menu);

 newItem.setMenu(newMenu);

 // Create the items in the New dropdown menu

 MenuItem shortcutItem = new MenuItem(newMenu, SWT.NONE);

 shortcutItem.setText("Shortcut");

 MenuItem iconItem = new MenuItem(newMenu, SWT.NONE);

 iconItem.setText("Icon");

 // Set the popup menu as the popup for the label

 label.setMenu(menu);

 }

 /**

 * Creates the no radio group popup menu

 *

 * @param shell the main window

 */

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 private void createNoRadioGroupPopUpMenu(Shell shell) {

 // Create a composite that the popup menu will be

 // associated with

 Label label = new Label(shell, SWT.BORDER);

 label.setText("No Radio Group Menu");

 // Create the popup menu with the no radio group style

 Menu menu = new Menu(shell, SWT.POP_UP | SWT.NO_RADIO_GROUP);

 label.setMenu(menu);

 // Create all the items in the popup menu

 MenuItem item1 = new MenuItem(menu, SWT.RADIO);

 item1.setText("Radio One");

 MenuItem item2 = new MenuItem(menu, SWT.RADIO);

 item2.setText("Radio Two");

 MenuItem item3 = new MenuItem(menu, SWT.RADIO);

 item3.setText("Radio Three");

 // Set the popup menu as the popup for the label

 label.setMenu(menu);

 }

 /**

 * The application entry point

 *

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 new Menus().run();

 }

}

Either create the necessary images or download them with the source codes, and copy them to a directory called

images that's a peer to the examples directory.

Running this application produces the window shown in Figure 5-16. Right-click (or use your platform's appropriate

mouse button or keystroke) the left half of the window to see the popup menu, and right-click the right half to see the

no radio group menu. Click the File menu item in the bar menu to show its dropdown menu.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Figure 5-16: The Menus application

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig171%5F01%5F0%2Ejpg

Summary

The extensive palette of widgets that SWT offers allows you to build user interfaces that range from the simple to the

complex. The wide variety of controls accommodates many types of programs, and the widgets conform to a common

usage pattern. By using a peer system, wrapping Java code around native widgets, SWT guarantees that the widgets

you use in your applications look and behave as users expect.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Chapter 6: Events

Displaying a useful set of graphical components, however elegantly and dynamically laid out, garners neither

accolades nor loyalty if your applications don't respond to user input. When users click buttons or select menu items,

for example, your applications better do something in response. Users quickly lose interest in applications that ignore

them.

The scheme that a windowing system uses to deliver events into application code is known as the "event model."

SWT communicates events using the Observer design pattern, in which listeners implement a well-known interface

and register their interest with sources. When an event occurs, the source broadcasts the event to its list of registered

listeners. The listeners then choose how to respond to the event.

Understanding Untyped vs. Typed Listeners

SWT offers two types of listeners: untyped and typed. Though less friendly to code with, untyped listeners can lead to

smaller, though potentially uglier, code. Typed listeners lead to more modular designs and also make clear which

events a particular widget supports. Either typed or untyped widgets work equally well in running code.

Introducing Untyped Listeners

The untyped listener interface, represented by the Listener interface, contains one method:

void handleEvent(Event event)

It resides in the org.eclipse.swt.widgets package, as does the Event object it receives. Event offers an amalgam of public

members, described in Table 6-1, that contains data relevant to the particular event. Note that members irrelevant to a

particular event contain garbage. Use the member data to determine how to respond to the event.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Table 6-1: Event Members

Member Description

int button The one-based index of the button that was clicked or released.

char

character
The character that was typed.

int count The number of pending paint events.

Object data Application-specific data.

int detail A detail constant from the SWT class that contains details about the event.

Display

display
The display where the event occurred.

boolean doit A flag indicating whether to process this event. Not supported for all events.

int end The end of the range of modified text.

GC gc The graphics context associated with this event.

int height The height in pixels of the rectangle that needs painting.

Widget item The widget where the event occurred.

int keyCode The key code of the key that was typed.

int start The beginning of the range of modified text.

int stateMask The mask describing the state of the modifier keys at the time of the event.

String text The text to insert.

int time The event's time.

int type The type of the event. This is the field to switch on to handle the various event types.

Widget

widget
The widget that issued the event.

int width The width in pixels of the rectangle that needs painting.

int x Either the x offset of the rectangle that needs painting or the x coordinate of the mouse

pointer at the time of the event, depending n the event.

int y Either the y offset of the rectangle that needs painting or the y coordinate of the mouse

pointer at the time of the event, depending on the event.

Using the untyped event mechanism can result in an untamed morass of spaghetti code if you're not careful. You can

also freely add listeners to widgets for events that the widgets don't support. The compiler won't complain, and the

program won't throw exceptions at run time. The program will blithely ignore your listeners, however, and might inflict

frustrating debugging sessions as you wonder why your listeners aren't being called. Consider yourself warned.

To add an untyped listener to a widget, call addListener() on it. Its signature looks like this:

void addListener(int eventType, Listener listener)

eventType contains one of the event type constants from the SWT class, described in Table 6-2. Each type constant

corresponds to an event that can occur in your programs. The Listener class represented by the listener parameter can

be named or anonymous and can be inner or outer, though you'll usually use an anonymous inner class. To add a

listener to a button, for example, that reacts when the button is clicked, use code like this:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

button.addListener(SWT.Selection, new Listener() {

 public void handleEvent(Event e) {

 switch (e.type) {

 case SWT.Selection:

 System.out.println("Button pressed");

 break;

 }

 }

};

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Table 6-2: Event Types

Type Description

SWT.Activate Triggered when the widget becomes the active window

SWT.Arm Triggered when the widget is armed

SWT.Close Triggered when the widget is closed

SWT.Collapse Triggered when a tree node is collapsed

SWT.Deactivate Triggered when the widget is no longer the active window

SWT.DefaultSelection Triggered when the default selection occurs

SWT.Deiconify Triggered when the widget is restored from being minimized

SWT.Dispose Triggered when the widget is disposed

SWT.DragDetect Triggered when the widget is dragged

SWT.Expand Triggered when a tree node is expanded

SWT.FocusIn Triggered when the widget gains focus

SWT.FocusOut Triggered when the widget loses focus

SWT.HardKeyDown Triggered when a special hardware key, such as on a Pocket PC device, is

pressed

SWT.HardKeyUp Triggered when a special hardware key, such as on a Pocket PC device, is

released

SWT.Help Triggered when the user requests help

SWT.Hide Triggered when the widget is hidden

SWT.Iconify Triggered when the widget is minimized

SWT.KeyDown Triggered when the user presses a key

SWT.KeyUp Triggered when the user releases a key

SWT.MenuDetect Triggered when a menu is selected

SWT.Modify Triggered when the text of a widget is modified

SWT.MouseDoubleClick Triggered when the mouse is double-clicked

SWT.MouseDown Triggered when the mouse button is clicked

SWT.MouseEnter Triggered when the mouse pointer enters the widget

SWT.MouseExit Triggered when the mouse pointer exits the widget

SWT.MouseHover Triggered when the mouse pointer hovers over the widget

SWT.MouseMove Triggered when the mouse pointer moves through the widget

SWT.MouseUp Triggered when the mouse button is released

SWT.Move Triggered when the widget is moved

SWT.None Null event

SWT.Paint Triggered when the widget is painted

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Type Description

SWT.Selection Triggered when the widget is selected

SWT.Show Triggered when the widget is shown

SWT.Traverse Triggered when the user tabs through the controls

SWT.Verify Triggered when the text for the widget is about to change, allowing you to veto

the change

Introducing Typed Listeners

Typed listeners live in a different package—org.eclipse.swt.events—as if to distance themselves from the taint of

untyped listeners. Instead of relying on generic methods, listeners, and events, typed listeners use classes and

interfaces specific to each possible event. For instance, to listen for a button click, you register a SelectionListener

implementation with the button using the button's addSelectionListener() method. SelectionListener contains a method

called widgetSelected() that's called when the button is pressed. Its signature is as follows:

void widgetSelected(SelectionEvent event)

You can see that the method to add the listener specifies what type of listener to add. The listener itself has a specific

type. The method called when the event triggers also shuns the generic handleEvent(). Finally, the event itself carries a

specific type. No trace of the untyped event model's blandness remains.

All typed events ultimately derive from a common class: TypedEvent. This class contains the public members common

to all the typed events described in Table 6-3. Each event class potentially contains other members that carry further

data specific to the event. For example, many event classes have a boolean member called doit that you can set to

false to cancel the processing of that event.

Table 6-3: TypedEvent Members

Member Description

Object data Contains application-specific data

Display display The display where the event occurred

int time The time at which the event occurred

Widget widget The source of the event

Implementations of the typed listener interfaces must define each method declared by the interface. For interfaces that

define only one method, this presents no hardship. Interfaces that define more than one method, however, can make

you do more work than you had planned. For example, the SelectionListener interface mentioned previously has a

second method—widgetDefaultSelected()—that you must implement whether you have any response for it. To alleviate

this burden, SWT provides implementations of every listener interface that has more than one method. The names of

these classes end in Adapter.

Table 6-4 describes each typed listener with its associated event class and adapter, if applicable.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Table 6-4: Typed Listeners

Listener Description Event Adapter

ArmListener Listens for arm events ArmEvent None

ControlListener Listens for move and resize events ControlEvent ControlAdapter

DisposeListener Listens for dispose events DisposeEvent None

FocusListener Listens for focus gained and lost events FocusEvent FocusAdapter

HelpListener Listens for help requests HelpEvent None

KeyListener Listens for key presses and releases KeyEvent KeyAdapter

MenuListener Listens for menu events MenuEvent MenuAdapter

ModifyListener Listens for text modifications ModifyEvent None

MouseListener Listens for mouse button presses MouseEvent MouseAdapter

MouseMoveListener Listens for mouse movements MouseEvent None

MouseTrackListener Listens for when the mouse enters, exits, or

hovers over a control

MouseEvent MouseTrackAdapter

PaintListener Listens for paint events PaintEvent None

SelectionListener Listens for selection events (for example,

button clicks)

SelectionEvent SelectionAdapter

ShellListener Listens for shell events ShellEvent ShellAdapter

TraverseListener Listens for traverse events TraverseEvent None

TreeListener Listens for tree events TreeEvent TreeAdapter

VerifyListener Listens for, and potentially intercepts, text

modifications

VerifyEvent None

The balance of this chapter examines a representative sample of the typed listeners through code.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Using SelectionListener and DisposeListener

If buttons or menus form any part of your application's interface, you'll surely create SelectionListeners to respond when

users click the buttons or select the menus. The DisposeListenerExample program demonstrates SelectionListener (see

Listing 6-1). It also demonstrates DisposeListener, which is notified on the associated widget's disposal. It creates two

shell windows, one a child of the other. The parent shell displays a message. The child shell displays a message and

a button. Clicking the button or closing the child shell changes the message on the main shell.

Listing 6-1: DisposeListenerExample.java

package examples.ch6;

import org.eclipse.swt.SWT;

import org.eclipse.swt.events.*;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.widgets.*;

/**

 * This class demonstrates SelectionListener and DisposeListener

 */

public class DisposeListenerExample {

 /**

 * The application entry point

 *

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 Display display = new Display();

 // Create the main window

 Shell mainShell = new Shell(display);

 mainShell.setLayout(new FillLayout());

 mainShell.setText("Big Brother");

 final Label mainMessage = new Label(mainShell, SWT.LEFT);

 mainMessage.setText("Don't even think about it");

 // Create the child shell and the dispose listener

 final Shell childShell = new Shell(mainShell);

 childShell.addDisposeListener(new DisposeListener() {

 public void widgetDisposed(DisposeEvent event) {

 // When the child shell is disposed, change the message on the main shell

 mainMessage.setText("Gotcha");

 }

 });

 childShell.setLayout(new FillLayout());

 childShell.setText("little brother");

 // Put a message on the child shell

 new Label(childShell, SWT.LEFT)

 .setText("If you dispose me, my big brother's gonna get you!");

 // Add a button and a listener to the child shell

 Button button = new Button(childShell, SWT.PUSH);

 button.setText("Close Me!");

 button.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 // When the button is clicked, close the child shell

 childShell.close();

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 }

 });

 // Open the shells

 mainShell.open();

 childShell.open();

 while (!mainShell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

 display.dispose();

 }

}

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Using ControlListener

A ControlListener listens for resize or move events. The ControlListenerExample program displays a whimsical image in

a window (see Listing 6-2). If you resize the window so that the image doesn't fit inside it, the image disappears and a

message displays. Resize the window large enough, and the image reappears.

Listing 6-2: ControlListenerExample.java

package examples.ch6;

import org.eclipse.swt.SWT;

import org.eclipse.swt.events.*;

import org.eclipse.swt.graphics.*;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.widgets.*;

/**

 * This class demonstrates ControlListeners

 */

public class ControlListenerExample {

 /**

 * Runs the application

 */

 public void run() {

 Display display = new Display();

 Shell shell = new Shell(display);

 Image image = new Image(display, "happyGuy.gif");

 createContents(shell, image);

 shell.pack();

 shell.open();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

 if (image != null) image.dispose();

 display.dispose();

 }

 /**

 * Creates the main window's contents

 *

 * @param shell the main window

 * @param image the image

 */

 private void createContents(Shell shell, Image image) {

 shell.setLayout(new GridLayout());

 // Create a label to hold the image

 Label label = new Label(shell, SWT.NONE);

 label.setLayoutData(new GridData(GridData.VERTICAL_ALIGN_BEGINNING));

 label.setImage(image);

 shell.setData(label);

 // Add the listener

 shell.addControlListener(new ControlAdapter() {

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 public void controlResized(ControlEvent event) {

 // Get the event source (the shell)

 Shell shell = (Shell) event.getSource();

 // Get the source's data (the label)

 Label label = (Label) shell.getData();

 // Determine how big the shell should be to fit the image

 Rectangle rect = shell.getClientArea();

 ImageData data = label.getImage().getImageData();

 // If the shell is too small, hide the image

 if (rect.width < data.width || rect.height < data.height) {

 shell.setText("Too small.");

 label.setText("I'm melting!");

 } else {

 // He fits!

 shell.setText("Happy Guy Fits!");

 label.setImage(label.getImage());

 }

 }

 });

 }

 /**

 * Application entry point

 *

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 new ControlListenerExample().run();

 }

}

Figure 6-1 shows the application's window sized large enough to hold the image, and Figure 6-2 shows the window

sized too small.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Figure 6-1: The window showing the image

Figure 6-2: The window when too small

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Using FocusListener

FocusListener is informed when a control gains or loses the focus. The Focus-ListenerExample program displays six

buttons (see Listing 6-3). It creates a FocusListener that changes the button's text when it gains or loses focus and

adds the listener to each button. Tab through or click the buttons to see the text change.

Listing 6-3: FocusListenerExample.java

package examples.ch6;

import org.eclipse.swt.SWT;

import org.eclipse.swt.events.*;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.widgets.*;

/**

 * This class demonstrates FocusListener

 */

public class FocusListenerExample {

 /**

 * The application entry point

 *

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 // Create the shell

 Display display = new Display();

 Shell shell = new Shell(display);

 shell.setLayout(new GridLayout(3, true));

 shell.setText("One Potato, Two Potato");

 // Create the focus listener

 FocusListener listener = new FocusListener() {

 public void focusGained(FocusEvent event) {

 Button button = (Button) event.getSource();

 button.setText("I'm It!");

 }

 public void focusLost(FocusEvent event) {

 Button button = (Button) event.getSource();

 button.setText("Pick Me!");

 }

 };

 // Create the buttons and add the listener to each one

 for (int i = 0; i < 6; i++) {

 Button button = new Button(shell, SWT.PUSH);

 button.setLayoutData(new GridData(GridData.FILL_HORIZONTAL));

 button.setText("Pick Me!");

 button.addFocusListener(listener);

 }

 // Display the window

 shell.pack();

 shell.open();

 while (!shell.isDisposed()) {

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

 display.dispose();

 }

}

Figure 6-3 shows the program's window with the focus on the bottom-right button. Notice that its text differs from the

other buttons' text.

Figure 6-3: The FocusListenerExample program

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Using MouseListener, MouseMoveListener, and MouseTrackListener

SWT divides mouse-related activity into three separate listener interfaces for performance reasons. One advantage of

SWT's event model is that when an event occurs that has no registered listeners, the event drops out early in the

event-handling process. For events that happen infrequently, passing an event all the way into application-specific

code, just to be ignored, has little impact on performance. Events that occur frequently, however, would waste valuable

resources to deliver a large quantity of events into application code where they'll ultimately be ignored. To avoid

burning CPU cycles, SWT divides mouse event handling into logical categories based on their frequency.

At the lowest frequency, the MouseListener interface receives notification of mouse click events. MouseTrackListener, at

the middle frequency, receives notification when the mouse enters, exits, or hovers over the associated widget. Finally,

at the highest frequency, MouseMoveListener receives notification each time the mouse moves. The

MouseEventExample program implements all three interfaces, displaying information any time one of them receives

mouse events (see Listing 6-4).

Listing 6-4: MouseEventExample.java

package examples.ch6;

import org.eclipse.swt.SWT;

import org.eclipse.swt.events.*;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.widgets.*;

/**

 * This class demonstrates mouse events

 */

public class MouseEventExample implements MouseListener, MouseMoveListener,

 MouseTrackListener {

 // The label to hold the messages from mouse events

 Label myLabel = null;

 /**

 * MouseEventExample constructor

 *

 * @param shell the shell

 */

 public MouseEventExample(Shell shell) {

 myLabel = new Label(shell, SWT.BORDER);

 myLabel.setText("I ain't afraid of any old mouse");

 shell.addMouseListener(this);

 shell.addMouseMoveListener(this);

 shell.addMouseTrackListener(this);

 }

 /**

 * The application entry point

 *

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 // Create the window

 Display display = new Display();

 Shell shell = new Shell(display);

 shell.setLayout(new GridLayout());

 shell.setSize(450, 200);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 shell.setText("Mouse Event Example");

 // Create the listener

 MouseEventExample myMouseEventExample = new MouseEventExample(shell);

 // Display the window

 shell.open();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

 display.dispose();

 }

 /**

 * Called when user double-clicks the mouse

 */

 public void mouseDoubleClick(MouseEvent e) {

 myLabel.setText("Double Click " + e.button + " at: " + e.x + "," + e.y);

 }

 /**

 * Called when user clicks the mouse

 */

 public void mouseDown(MouseEvent e) {

 myLabel.setText("Button " + e.button + " Down at: " + e.x + "," + e.y);

 }

 /**

 * Called when user releases the mouse after clicking

 */

 public void mouseUp(MouseEvent e) {

 myLabel.setText("Button " + e.button + " Up at: " + e.x + "," + e.y);

 }

 /**

 * Called when user moves the mouse

 */

 public void mouseMove(MouseEvent e) {

 myLabel.setText("Mouse Move at: " + e.x + "," + e.y);

 }

 /**

 * Called when user enters the shell with the mouse

 */

 public void mouseEnter(MouseEvent e) {

 myLabel.setText("Mouse Enter at: " + e.x + "," + e.y);

 }

 /**

 * Called when user exits the shell with the mouse

 */

 public void mouseExit(MouseEvent e) {

 myLabel.setText("Mouse Exit at: " + e.x + "," + e.y);

 }

 /**

 * Called when user hovers the mouse

 */

 public void mouseHover(MouseEvent e) {

 myLabel.setText("Mouse Hover at: " + e.x + "," + e.y);

 }

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

}

Figure 6-4 shows the program's window after the release of the first button.

Figure 6-4: The MouseEventExample program

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig186%5F01%5F0%2Ejpg

Using Several Listeners

The MultipleListenersExample program uses three listeners—ModifyListener, VerifyListener, and HelpListener—to

present a temperature conversion utility (see Listing 6-5). It displays two text fields, one for Fahrenheit temperatures

and one for Celsius temperatures. Type a temperature in one field to see the appropriate converted value in the

other. Press F1 while the cursor is in one of the text fields to display contextsensitive help.

Listing 6-5: MultipleListenersExample.java

package examples.ch6;

import org.eclipse.swt.SWT;

import org.eclipse.swt.events.*;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.widgets.*;

/**

 * This class demonstrates various listeners

 */

public class MultipleListenersExample implements HelpListener, VerifyListener,

 ModifyListener {

 // Constants used for conversions

 private static final double FIVE_NINTHS = 5.0 / 9.0;

 private static final double NINE_FIFTHS = 9.0 / 5.0;

 // Widgets used in the window

 private Text fahrenheit;

 private Text celsius;

 private Label help;

 /**

 * Runs the application

 */

 public void run() {

 Display display = new Display();

 Shell shell = new Shell(display);

 shell.setText("Temperatures");

 createContents(shell);

 shell.pack();

 shell.open();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

 display.dispose();

 }

 /**

 * Create the main window's contents

 * @param shell the main window

 */

 private void createContents(Shell shell) {

 shell.setLayout(new GridLayout(3, true));

 // Create the label and input box for Fahrenheit

 new Label(shell, SWT.LEFT).setText("Fahrenheit:");

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 fahrenheit = new Text(shell, SWT.BORDER);

 GridData data = new GridData(GridData.FILL_HORIZONTAL);

 data.horizontalSpan = 2;

 fahrenheit.setLayoutData(data);

 // Set the context-sensitive help

 fahrenheit.setData("Type a temperature in Fahrenheit");

 // Add the listeners

 fahrenheit.addHelpListener(this);

 fahrenheit.addVerifyListener(this);

 fahrenheit.addModifyListener(this);

 // Create the label and input box for Celsius

 new Label(shell, SWT.LEFT).setText("Celsius:");

 celsius = new Text(shell, SWT.BORDER);

 data = new GridData(GridData.FILL_HORIZONTAL);

 data.horizontalSpan = 2;

 celsius.setLayoutData(data);

 // Set the context-sensitive help

 celsius.setData("Type a temperature in Celsius");

 // Add the listeners

 celsius.addHelpListener(this);

 celsius.addVerifyListener(this);

 celsius.addModifyListener(this);

 // Create the area for help

 help = new Label(shell, SWT.LEFT | SWT.BORDER);

 data = new GridData(GridData.FILL_HORIZONTAL);

 data.horizontalSpan = 3;

 help.setLayoutData(data);

 }

 /**

 * Called when user requests help

 */

 public void helpRequested(HelpEvent event) {

 // Get the help text from the widget and set it into the help label

 help.setText((String) event.widget.getData());

}

/**

 * Called when the user types into a text box, but before the text box gets

 * what the user typed

 */

public void verifyText(VerifyEvent event) {

 // Assume you don't allow it

 event.doit = false;

 // Get the character typed

 char myChar = event.character;

 String text = ((Text) event.widget).getText();

 // Allow '-' if first character

 if (myChar == '-' && text.length() == 0) event.doit = true;

 // Allow zero to nine

 if (Character.isDigit(myChar)) event.doit = true;

 // Allow backspace

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 if (myChar == '\b') event.doit = true;

}

/**

 * Called when the user modifies the text in a text box

 */

public void modifyText(ModifyEvent event) {

 // Remove all the listeners, so you don't enter any infinite loops

 celsius.removeVerifyListener(this);

 celsius.removeModifyListener(this);

 fahrenheit.removeVerifyListener(this);

 fahrenheit.removeModifyListener(this);

 // Get the widget whose text was modified

 Text text = (Text) event.widget;

 try {

 // Get the modified text

 int temp = Integer.parseInt(text.getText());

 // If they modified Fahrenheit, convert to Celsius

 if (text == fahrenheit) {

 celsius.setText(String.valueOf((int) (FIVE_NINTHS * (temp - 32))));

 } else {

 // Convert to Fahrenheit

 fahrenheit.setText(String.valueOf((int) (NINE_FIFTHS * temp + 32)));

 }

 } catch (NumberFormatException e) { /* Ignore */ }

 // Add the listeners back

 celsius.addVerifyListener(this);

 celsius.addModifyListener(this);

 fahrenheit.addVerifyListener(this);

 fahrenheit.addModifyListener(this);

 }

 /**

 * The application entry point

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 new MultipleListenersExample().run();

 }

}

The application uses ModifyListener to detect when the text in one of the text fields changes, so it can calculate the

converted value and display it in the other text field. It uses VerifyListener to prevent the user from typing invalid

characters (for example, letters) into the temperature fields. Finally, it uses HelpListener to display the help.

Figure 6-5 shows the window with a temperature entered and some help text displayed.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Figure 6-5: Converting temperatures

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Summary

In contrast to poker, which rewards stoicism, applications must react to their surroundings. Specifically, they must

react appropriately and expectedly to user input. Whether you opt for the massive switch statement approach offered

by untyped listeners or the modular approach of typed listeners, you can receive notifications for virtually anything that

happens to your applications. If you opt for the typed approach, besure to take advantage of the adapter classes,

where applicable, to save yourself from implementing empty methods for events that don't interest you.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Chapter 7: Dialogs

Overview

Users interact with applications primarily through the applications' main windows. For example, in a word processor,

users type their documents in the main window, change font styles and sizes using the menu housed by the main

window, and print using the print button on the main window's toolbar. Often, users never leave the main application

window for the duration of their interaction with the application.

Sometimes, however, the main application window doesn't have sufficient space to handle all necessary user

interactions. Perhaps the application must display an informational message related to a temporary state, or ask for

confirmation before performing a destructive operation. Reserving perpetual space in the main application window for

this interaction would unnecessarily clog the main window. Instead, the main window delegates these sorts of tasks to

dialog windows that pop up, accomplish the specific task, and disappear.

SWT provides wrapper classes for six common dialogs:

Message box

Color Selection dialog

Directory Selection dialog

File Open/File Save dialog

Font Selection dialog

Print dialog

This chapter discusses five of the six common dialogs, deferring discussion of the Print dialog to Chapter 12, which

covers printing. It also explains how to create and use your own dialog classes.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Using the Dialogs

The common dialog classes in SWT descend from SWT's abstract Dialog class (org.eclipse.swt.widgets.Dialog). A

dialog's parent, which is passed to the constructor, is always a Shell object. Dialogs can be modal, which means they

disallow input to other windows until they're dismissed, or modeless. "Modeless" means they allow input to all other

windows while they're displayed. Different levels of modality are available, each of which disallows input to different

sets of windows. Not all platforms support all modalities; this is a restriction of the underlying platforms, not SWT. The

parent and mode, expressed by constants and combined with any other appropriate style, are passed to the

constructor. Table 7-1 lists the mode constants.

Table 7-1: Mode Constants

Constant Description

SWT.APPLICATION_MODAL Modal to the application; input is blocked to other windows in the application,

but input to other applications isn't blocked.

SWT.PRIMARY_MODAL Modal to the parent window of the dialog; input is blocked to the parent of

the dialog only, but input to other dialogs in the application, or to any

windows in other applications, isn't blocked.

SWT.SYSTEM_MODAL Input is blocked to all other windows of all applications until the dialog is

dismissed.

SWT.NONE Modeless (the default).

Note All the common dialogs default to primary modal, though you change the modality by passing the appropriate

style to the constructor.Your custom dialogs can use any of the offered modalities.

The Dialog class provides methods to get and to set the text in the title bar:

String getText() // Gets the title bar text

void setText(String text) // Sets the title bar text

When creating your own dialog classes, discussed at the end of this chapter, you derive from Dialog; you never

subclass any of the common dialog classes, however much you are tempted to do so. The SWT documentation

mentions this design intention, which is neither arbitrary nor mean spirited. The SWT common dialog classes wrap

common dialogs provided by the various platforms that SWT supports, and these common dialogs vary widely across

the several platforms. Because the common dialogs can differ from platform to platform in look, widget placement, and

features, trying to change behavior that might or might not exist across platforms would be problematic at best, and

catastrophic at worst. For example, your common dialog subclass might work perfectly on Windows, and work with

some glitches on Linux GTK+, but fizzle miserably on Mac OS X. If the common dialogs don't meet your requirements,

don't subclass them; write your own dialogs from scratch.

Caution Don't subclass SWT's common dialog classes!

Whenever you use one of SWT's dialog classes (or one you've created yourself), you follow a pattern:

Instantiate the dialog, passing the parent Shell and any pertinent style constants.1.

Set any pertinent data into the dialog.2.

Call the dialog's open() method, which displays the dialog, receives the user input, and returns the

selected data when the user dismisses the dialog.

3.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Do something with the returned data.4.

In code, this procedure looks something like this:

<DialogType> dlg = new <DialogType>(shell);

dlg.setSomeData(data);

<ReturnType> returnValue = dlg.open();

if (returnValue == null) {

 // User clicked cancel

} else {

 // Do something with returnValue

}

Message boxes, implemented by the class MessageBox, deviate slightly from this pattern: their open() methods return

an int, not an Object, so testing for null doesn't compile. The int that open() returns is the style value of the button used to

dismiss it. The next section covers message boxes.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Displaying Messages

Marriage counselors harp on the importance of communication; your applications must heed the same advice and

communicate to your users. You commonly need to display information and get simple responses, whether merely

acknowledgments that the user has read the presented information or answers to questions that affect processing. For

example, an application might alert users that an entered value is out of range, or might ask users if they really want to

delete a file. Use the MessageBox class for these communications, when all you need to do is display some simple text

or ask a question, and receive one of the following responses:

OK

Yes

No

Cancel

Retry

Abort

Ignore

Displaying a Message Box

To display a message box, create a MessageBox object and call its open() method, like this:

MessageBox messageBox = new MessageBox(shell);

messageBox.open();

This creates a default message box, seen in Figure 7-1. Of course, this empty message box wouldn't impress users.

You must do a little more work to customize the message box and make it useful.

Figure 7-1: A default message box

A message box contains four customizable pieces of information:

The text in the title bar

The text message displayed within the dialog

The icon displayed within the dialog

The buttons displayed within the dialog

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

As with the other dialog classes, call setText() to change the text in the title bar. For example, write this to display the

text "Important Message!" in the message box's title bar:

messageBox.setText("Important Message!");

The text message displays within the window of the dialog, above any buttons. It usually contains the information

you're presenting or the question you're posing. Call setMessage() to change the text message:

messageBox.setMessage("Are you sure you want to delete the file?");

The icons and buttons are determined at construction by the style bits passed to the constructor. Combine the desired

icon style with the desired buttons into an int using the bitwise OR operator. Table 7-2 lists the icon styles, and Table

7-3 lists the button styles.

Table 7-2: The Icon Styles for MessageBox

Style Description

SWT.ICON_ERROR Displays the error icon

SWT.ICON_INFORMATION Displays the information icon

SWT.ICON_QUESTION Displays the question icon

SWT.ICON_WARNING Displays the warning icon

SWT.ICON_WORKING Displays the working icon

Table 7-3: The Button Styles for MessageBox

Style Description

SWT.OK Displays an OK button

SWT.OK | SWT.CANCEL Displays an OK and a Cancel button

SWT.YES | SWT.NO Displays a Yes and a No button

SWT.YES | SWT.NO | SWT.CANCEL Displays a Yes, a No, and a Cancel button

SWT.RETRY | SWT.CANCEL Displays a Retry and a Cancel button

SWT.ABORT | SWT.RETRY | SWT.IGNORE Displays an Abort, a Retry, and an Ignore button

Only one icon displays in the message box, so you should pass only one of the icon styles to the constructor. Passing

more than one produces undefined behavior.

For example, to display a message box with the question icon, a button labeled Yes, a button labeled No, and a simple

question, use this code:

MessageBox messageBox = new MessageBox(shell, SWT.ICON_QUESTION |SWT.YES |

 SWT.NO);

messageBox.setMessage("Is this question simple?");

int rc = messageBox.open();

Clicking one of the buttons closes the dialog and returns the int value of the selected button to the calling application.

For example, if the user clicked the button labeled Yes in the message box created by this code, rc would equal

SWT.YES.

Note You might try to create different combinations of buttons by mixing the button constants, such as SWT.YES and

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

SWT.ABORT. However, SWT ignores all but the listed combinations.

Table 7-4 lists MessageBox's methods. Figures 7-2 through 7-7 display various button and icon combinations for

message boxes on Windows. Icons differ across platforms.

Table 7-4: MessageBox Methods

Method Description

String getMessage() Returns the text message displayed within the message box

int open() Opens the message box and returns the style constant corresponding to the

button clicked to dismiss the message box

void setMessage(String

string)
Sets the text message displayed within the message box

Figure 7-2: An informational message box

Figure 7-3: An error message box

Figure 7-4: A yes/no question message box

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig196%5F02%5F0%2Ejpg
file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig196%5F03%5F0%2Ejpg

Figure 7-5: A yes/no/cancel question message box

Figure 7-6: A warning message box

Figure 7-7: An abort/retry/ignore message box

Customizing a Message Box

The ShowMessageBox program in Listing 7-1 allows you to type a message, select an icon and button style, and click

the Show Message button to display a message box with your information. It displays the return value of the message

box's open() method, which is the style constant of the selected button. Figure 7-8 shows its main window.

Figure 7-8: The ShowMessageBox application

Listing 7-1: ShowMessageBox.java

package examples.ch7;

import org.eclipse.swt.*;

import org.eclipse.swt.events.*;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.widgets.*;

/**

 * This class demonstrates the MessageBox class

 */

public class ShowMessageBox {

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig197%5F01%5F0%2Ejpg
file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig197%5F02%5F0%2Ejpg
file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig197%5F03%5F0%2Ejpg
file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig201%5F01%5F0%2Ejpg

 // Strings to show in the Icon dropdown

 private static final String[] ICONS = { "SWT.ICON_ERROR",

 "SWT.ICON_INFORMATION", "SWT.ICON_QUESTION", "SWT.ICON_WARNING",

 "SWT.ICON_WORKING"};

 // Strings to show in the Buttons dropdown

 private static final String[] BUTTONS = { "SWT.OK", "SWT.OK | SWT.CANCEL",

 "SWT.YES | SWT.NO", "SWT.YES | SWT.NO | SWT.CANCEL",

 "SWT.RETRY | SWT.CANCEL", "SWT.ABORT | SWT.RETRY | SWT.IGNORE"};

 /**

 * Runs the application

 */

 public void run() {

 Display display = new Display();

 Shell shell = new Shell(display);

 shell.setText("Show Message Box");

 createContents(shell);

 shell.pack();

 shell.open();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

 display.dispose();

 }

 /**

 * Creates the main window's contents

 *

 * @param shell the parent shell

 */

 private void createContents(final Shell shell) {

 shell.setLayout(new GridLayout(2, false));

 // Create the dropdown to allow icon selection

 new Label(shell, SWT.NONE).setText("Icon:");

 final Combo icons = new Combo(shell, SWT.DROP_DOWN | SWT.READ_ONLY);

 for (int i = 0, n = ICONS.length; i < n; i++)

 icons.add(ICONS[i]);

 icons.select(0);

 // Create the dropdown to allow button selection

 new Label(shell, SWT.NONE).setText("Buttons:");

 final Combo buttons = new Combo(shell, SWT.DROP_DOWN | SWT.READ_ONLY);

 for (int i = 0, n = BUTTONS.length; i < n; i++)

 buttons.add(BUTTONS[i]);

 buttons.select(0);

 // Create the entry field for the message

 new Label(shell, SWT.NONE).setText("Message:");

 final Text message = new Text(shell, SWT.BORDER);

 message.setLayoutData(new GridData(GridData.FILL_HORIZONTAL));

 // Create the label to show the return from the open call

 new Label(shell, SWT.NONE).setText("Return:");

 final Label returnVal = new Label(shell, SWT.NONE);

 returnVal.setLayoutData(new GridData(GridData.FILL_HORIZONTAL));

 // Create the button and event handler

 // to display the message box

 Button button = new Button(shell, SWT.PUSH);

 button.setText("Show Message");

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 button.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 // Clear any previously returned value

 returnVal.setText("");

 // This will hold the style to pass to the MessageBox constructor

 int style = 0;

 // Determine which icon was selected and

 // add it to the style

 switch (icons.getSelectionIndex()) {

 case 0:

 style |= SWT.ICON_ERROR;

 break;

 case 1:

 style |= SWT.ICON_INFORMATION;

 break;

 case 2:

 style |= SWT.ICON_QUESTION;

 break;

 case 3:

 style |= SWT.ICON_WARNING;

 break;

 case 4:

 style |= SWT.ICON_WORKING;

 break;

 }

 // Determine which set of buttons was selected

 // and add it to the style

 switch (buttons.getSelectionIndex()) {

 case 0:

 style |= SWT.OK;

 break;

 case 1:

 style |= SWT.OK | SWT.CANCEL;

 break;

 case 2:

 style |= SWT.YES | SWT.NO;

 break;

 case 3:

 style |= SWT.YES | SWT.NO | SWT.CANCEL;

 break;

 case 4:

 style |= SWT.RETRY | SWT.CANCEL;

 break;

 case 5:

 style |= SWT.ABORT | SWT.RETRY | SWT.IGNORE;

 break;

 }

 // Display the message box

 MessageBox mb = new MessageBox(shell, style);

 mb.setText("Message from SWT");

 mb.setMessage(message.getText());

 int val = mb.open();

 String valString = "";

 switch (val) // val contains the constant of the selected button

 {

 case SWT.OK:

 valString = "SWT.OK";

 break;

 case SWT.CANCEL:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 valString = "SWT.CANCEL";

 break;

 case SWT.YES:

 valString = "SWT.YES";

 break;

 case SWT.NO:

 valString = "SWT.NO";

 break;

 case SWT.RETRY:

 valString = "SWT.RETRY";

 break;

 case SWT.ABORT:

 valString = "SWT.ABORT";

 break;

 case SWT.IGNORE:

 valString = "SWT.IGNORE";

 break;

 }

 returnVal.setText(valString);

 }

 });

 }

 /**

 * Application entry point

 *

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 new ShowMessageBox().run();

 }

}

Experiment with the ShowMessageBox application. Notice the various icons used on your platform. Understand the

return values from the open() method. You'll use message boxes time and again in your applications to communicate

with users.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Choosing a Color

The color selection dialog displays the spectrum of available screen colors, allowing users to select one by clicking it.

Chapter 10, which covers graphics, discusses color much more in depth. For the purposes of this chapter, you need

only understand that colors on a computer screen comprise the following three components.

Red

Green

Blue

These are stored as integers, each ranging from zero to 255. The union of red, green, and blue is commonly

abbreviated to RGB. SWT provides a class called RGB that stores RGB values. Its sole constructor takes three int

parameters, one for each color component:

public RGB(int red, int green, int blue)

Note that the RGB class holds the data that can represent a color, but does not itself represent a color—a subtle, yet

important, distinction. SWT provides a class called Color that represents an actual color, and can be instantiated by

passing both the device the color will be displayed on and an RGB object to its constructor, like this:

RGB rgb = new RGB(255, 0, 0); // pure red

Color color = new Color(display, rgb);

Note You manage the Color objects you create, and therefore you must dispose them when you're through using them

by calling dispose().RGB objects are merely data and represent no operating system resources, so therefore aren't

disposed.

Displaying the Color Selection Dialog

ColorDialog offers the standard two SWT constructors: one that takes a parent, and ,one that takes a parent and a

style. The parent is always a Shell, so the two constructors look like this:

public ColorDialog(Shell parent)

public ColorDialog(Shell parent, int style)

Because no styles apply to ColorDialog, you'll usually call the single-argument constructor.

Table 7-5 lists the methods for ColorDialog. The open() method displays the color selection dialog and returns an RGB

object containing the appropriate values for the selected color, or null if the dialog was cancelled. You can use this RGB

object to create a Color object for use anywhere in your applications. Here's the syntax for using ColorDialog to have

users select a color and then for creating a Color object to match the selected color:

ColorDialog dlg = new ColorDialog(shell);

RGB rgb = dlg.open();

if (rgb != null) {

 Color color = new Color(shell.getDisplay(), rgb);

 // Do something with color

 // Remember to call color.dispose() when your application is done with color

}

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Table 7-5: ColorDialog Methods

Method Description

RGB getRGB() Returns the RGB object containing the red, green, and blue values for the color

selected, or null if no color was selected

RGB open() Displays the color selection dialog and returns the RGB object containing the red,

green, and blue values for the color selected, or null if no color was selected

void setRGB(RGB

rgb)
Selects the color whose red, green, and blue values match those of the passed RGB

object

Caution Don't dispose a color while your application is still using it.

Customizing the Color Selection Dialog

You can change the text in the title bar of the color dialog by calling setText(), passing a String containing the new text.

However, you'll usually leave the default text intact. What you'll usually customize, though, is the color that's initially

selected, matching it to any previously selected color. To select a color, call setRGB(), passing an RGB object that

contains the red, green, and blue values for the color you want selected. For example, to display a color selection

dialog with the color blue selected, you use this code:

ColorDialog dlg = new ColorDialog(shell);

dlg.setRGB(new RGB(0, 0, 255));

dlg.open();

The ChooseColor program in Listing 7-2 demonstrates ColorDialog. It displays a color and a button. Click the button to

show the standard color selection dialog. Choose a color to change the color display in the main application window.

Listing 7-2: ChooseColor.java

package examples.ch7;

import org.eclipse.swt.*;

import org.eclipse.swt.events.*;

import org.eclipse.swt.graphics.*;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.widgets.*;

/**

 * This class demonstrates the ColorDialog class

 */

public class ChooseColor {

 private Color color;

 /**

 * Runs the application

 */

 public void run() {

 Display display = new Display();

 Shell shell = new Shell(display);

 shell.setText("Color Chooser");

 createContents(shell);

 shell.pack();

 shell.open();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 // Dispose the color we created for the Label

 if (color != null) {

 color.dispose();

 }

 display.dispose();

 }

 /**

 * Creates the window contents

 *

 * @param shell the parent shell

 */

 private void createContents(final Shell shell) {

 shell.setLayout(new GridLayout(2, false));

 // Start with Celtics green

 color = new Color(shell.getDisplay(), new RGB(0, 255, 0));

 // Use a label full of spaces to show the color

 final Label colorLabel = new Label(shell, SWT.NONE);

 colorLabel.setText(" ");

 colorLabel.setBackground(color);

 Button button = new Button(shell, SWT.PUSH);

 button.setText("Color...");

 button.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 // Create the color-change dialog

 ColorDialog dlg = new ColorDialog(shell);

 // Set the selected color in the dialog from

 // user's selected color

 dlg.setRGB(colorLabel.getBackground().getRGB());

 // Change the title bar text

 dlg.setText("Choose a Color");

 // Open the dialog and retrieve the selected color

 RGB rgb = dlg.open();

 if (rgb != null) {

 // Dispose the old color, create the

 // new one, and set into the label

 color.dispose();

 color = new Color(shell.getDisplay(), rgb);

 colorLabel.setBackground(color);

 }

 }

 });

 }

 /**

 * The application entry point

 *

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 new ChooseColor().run();

 }

}

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Figure 7-9 shows the main window for the application, while Figure 7-10 shows the standard color selection dialog on

Windows.

Figure 7-9: The ChooseColor application's main window

Figure 7-10: The standard color selection dialog on Windows

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig206%5F02%5F0%2Ejpg

Browsing Directories

One of the raging questions clogging message boards when Windows 95 appeared was how to present a standard

directory-selection dialog. Windows 95, and all subsequent 32-bit Windows operating systems, do offer a directory

selection dialog, but it's somewhat confusing to program. It involves memory structures, item identifier lists, and shell

programming; a typical use in C++ might look like this:

BROWSEINFO bi;

ZeroMemory(&bi, sizeof(BROWSEINFO));

bi.hwndOwner = AfxGetMainWnd()->m_hWnd;

bi.ulFlags = BIF_RETURNONLYFSDIRS;

LPITEMIDLIST pidl = SHBrowseForFolder(&bi);

if (pidl != NULL) {

 CString strDir;

 LPTSTR szPath = strDir.GetBuffer(MAX_PATH + 1);

 SHGetPathFromIDList(pidl, szPath);

 strDir.ReleaseBuffer();

 // Do something with the selected directory, now in strDir

}

SWT's DirectoryDialog class is, thankfully, simpler to use, yet provides all the same functionality as

SHBrowseForFolder()—and is, of course, cross platform. You'll use this class whenever your applications require a

user-selected directory, whether it's for an installation location, a location to store the MP3 files users (legally) rip using

your CD recording software, or for any other situation requiring a directory.

Displaying the Directory Selection Dialog

As with the other dialog classes, DirectoryDialog must have a Shell as its parent. It has no applicable styles, and

provides, in addition to the standard parent-and-style constructor, a constructor that takes only a parent:

public DirectoryDialog(Shell parent, int style)

public DirectoryDialog(Shell parent)

Table 7-6 lists DirectoryDialog's methods. The open() method opens the dialog, allows the user to navigate through the

file system to select a directory, and returns the selected directory as a String. Here's the syntax for creating the dialog

and retrieving the selected directory:

DirectoryDialog dlg = new DirectoryDialog(shell);

String selectedDirectory = dlg.open();

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Table 7-6: DirectoryDialog Methods

Method Description

String getFilterPath() Returns the selected directory

String getMessage() Returns the message displayed within the dialog

String getText() Returns the text displayed in the dialog's title bar

String open() Displays the dialog and returns the full path to the selected directory, or null if

the user cancels the dialog

void setFilterPath(String

string)
Sets the initial directory to select and display

void setMessage(String

string)
Sets the message to display within the dialog

void setText(String string) Sets the text to display in the dialog's title bar

This code displays the dialog seen in Figure 7-11. Note that in the preceding code, selectedDirectory contains null if the

dialog is dismissed via its Cancel button. Otherwise, it contains the selected directory.

Figure 7-11: The standard DirectoryDialog

Customizing the Directory Selection Dialog

You have a few options for customizing the dialog. You can change these:

The text displayed in the title bar

The text displayed as a message

The initially selected and displayed directory

Call setText(), passing the desired text, to change what's displayed in the title bar. Call setMessage(), passing your

custom message, to change the message text. Finally, call setFilterPath(), passing in the desired initial directory as a

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig208%5F01%5F0%2Ejpg

String. If the path doesn't exist, it will be ignored.

The ShowDirectoryDialog program in Listing 7-3 provides a text box for directory entry, and a button labeled Browse

that displays a DirectoryDialog. Selecting a directory in the dialog updates the text box in the main window with the full

path of the selected directory. The code looks like this:

Listing 7-3: ShowDirectoryDialog.java

package examples.ch7;

import org.eclipse.swt.*;

import org.eclipse.swt.events.*;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.widgets.*;

/**

 * This class demonstrates the DirectoryDialog class

 */

public class ShowDirectoryDialog {

 /**

 * Runs the application

 */

 public void run() {

 Display display = new Display();

 Shell shell = new Shell(display);

 shell.setText("Directory Browser");

 createContents(shell);

 shell.pack();

 shell.open();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

 }

 /**

 * Creates the window contents

 *

 * @param shell the parent shell

 */

 private void createContents(final Shell shell) {

 shell.setLayout(new GridLayout(6, true));

 new Label(shell, SWT.NONE).setText("Directory:");

 // Create the text box extra wide to show long paths

 final Text text = new Text(shell, SWT.BORDER);

 GridData data = new GridData(GridData.FILL_HORIZONTAL);

 data.horizontalSpan = 4;

 text.setLayoutData(data);

 // Clicking the button will allow the user

 // to select a directory

 Button button = new Button(shell, SWT.PUSH);

 button.setText("Browse...");

 button.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 DirectoryDialog dlg = new DirectoryDialog(shell);

 // Set the initial filter path according

 // to anything they've selected or typed in

 dlg.setFilterPath(text.getText());

 // Change the title bar text

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 dlg.setText("SWT's DirectoryDialog");

 // Customizable message displayed in the dialog

 dlg.setMessage("Select a directory");

 // Calling open() will open and run the dialog.

 // It will return the selected directory, or

 // null if user cancels

 String dir = dlg.open();

 if (dir != null) {

 // Set the text box to the new selection

 text.setText(dir);

 }

 }

 });

 }

 /**

 * The application entry point

 *

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 new ShowDirectoryDialog().run();

 }

}

The main window for the application looks like Figure 7-12. Click the button labeled Browse to display the directory

selection dialog, shown in Figure 7-13. Experiment with the application to see the interaction.

Figure 7-12: The ShowDirectoryDialog main window

Figure 7-13: A customized DirectoryDialog

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig210%5F01%5F0%2Ejpg
file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig211%5F01%5F0%2Ejpg

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Selecting Files for Open or Save

The lifeblood of most applications, files typically contain all the data that users have painstakingly and laboriously

entered into your programs. If your applications can't open and save files properly, users will be streaking to uninstall

them. The interface for opening and saving files must be simple and painless. Luckily for you, you don't have to design

or implement a solution; SWT's FileDialog displays the common open and save file dialogs your users are accustomed

to.

Displaying the Open or Save File Dialog

FileDialog offers two constructors:

public FileDialog(Shell parent, int style)

public FileDialog(Shell parent)

The parent must be a Shell, and style designates whether the dialog is for opening a single file, opening multiple files,

or saving a file. The style constants are listed in Table 7-7. If you specify both SWT.OPEN and SWT.SAVE, the results

are undefined.

Table 7-7: FileDialog Constants

Constant Description

SWT.OPEN Creates a dialog for opening a single file. This is the default.

SWT.MULTI Creates a dialog for opening multiple files.

SWT.SAVE Creates a dialog for saving a file.

Table 7-8 lists FileDialog's methods. To open an Open FileDialog, use this code:

FileDialog dlg = new FileDialog(shell, SWT.OPEN);

String fileName = dlg.open();

if (fileName != null) {

 // Open the file

}

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Table 7-8: FileDialog Methods

Method Description

String getFileName() Returns the name of the selected file relative to the filter path. When

multiple files are selected, returns the name of the first selected file relative

to the filter path.

String[] getFileNames() Returns the names of all selected files, relative to the filter path.

String[] getFilterExtensions() Returns the filter extensions used by the dialog.

String[] getFilterNames() Returns the filter names used by the dialog.

String getFilterPath() Returns the filter path used by the dialog.

String getText() Returns the title bar text.

String open() Displays the file dialog and returns the full path of the selected file.

void setFileName(String string) Sets the name of the file to select initially when the dialog appears.

void setFilterExtensions

(String[] extensions)
Sets the filter extensions the user can choose from to filter the files the

dialog displays.

void setFilterNames (String[]

names)
Sets the filter names the user can choose from to filter the files the dialog

displays.

void setFilterPath(String string) Sets the filter path.

void setText(String text) Sets the title bar text.

Specifying File Types and Extensions

Both Open and Save file dialogs allow you to specify the types of files your applications can open and save, both by

description and by extension. These types you specify are commonly called filters, because they filter which files are

displayed in the dialog. FileDialog provides methods for setting these filter descriptions and extensions:

setFilterNames(String[] names);

setFilterExtensions(String[] extensions);

The filter names and extensions are passed in parallel arrays of Strings. You'll typically use static data, either

hard-coded or read from a resource bundle. Convention dictates that the filter names show their corresponding filter

extensions in parentheses, but this is entirely optional and has no bearing on which files are filtered. If you pass more

filter names than filter extensions, the extraneous names are ignored. However, if you pass more filter extensions than

filter names, the extra filter extensions are retained, and are used as the filter names as well. For example, a program

that opens tabular data from various other programs might set its filter names and extensions like this:

dlg.setFilterNames(new String[] {

 "OpenOffice.org Spreadsheet Files (*.sxc)",

 "Microsoft Excel Spreadsheet Files (*.xls)",

 "Comma Separated Values Files (*.csv)",

 "All Files (*.*)"

});

dlg.setFilterExtensions(new String[] {

 "*.sxc", "*.xls", "*.csv", "*.*"

};

Figure 7-14 shows the Open dialog using these names and extensions, and Figure 7-15 shows the Save dialog.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Figure 7-14: The File Open dialog

Figure 7-15: The File Save dialog

Specifying the Starting Directory and File Name

Users appreciate applications that remember where they like to open and save files, without having to navigate

through the directory tree every time. FileDialog's setFilterPath() method allows you to specify the initial directory for the

dialog. You can retrieve this information by calling getFilterPath(), and store it in the user's preferences for future use.

Some applications suggest a file name to use for saving a file by prefilling the entry field in the Save dialog box. You

can do the same by calling setFileName(), passing the suggested file name, before calling the open() method.

Getting the Selected File or Files

Usually you'll save the return value from calling open(), which contains the full path of the selected file (or null if the user

cancelled the dialog). However, in some situations you'll want more or different information. Perhaps you want just the

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig213%5F01%5F0%2Ejpg
file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig214%5F01%5F0%2Ejpg

file name, without the path, or you've allowed selection of multiple files. The getFileName() method returns just the

selected file's name, without the path information. The getFilterPath() method returns just the path information. You can

stitch the two together to get the full path to the file.

When you're dealing with multiple files, you must stitch the paths and file names together to get full path names to the

selected files. The getFileNames() method returns an array of Strings containing just the selected files' names, without

path information. Use the getFilterPath() method to get the path to prepend. For example, to store the full path names

for all selected files into a collection called files, write code like this:

FileDialog dlg = new FileDialog(shell, SWT.MULTI);

Collection files = new ArrayList();

if (dlg.open() != null) {

 String[] names = dlg.getFileNames();

 for (int i = 0, n = names.length(); i < n; i++) {

 StringBuffer buf = new StringBuffer(dlg.getFilterPath());

 if (buf.charAt(buf.length() 1) != File.separatorChar)

 buf.append(File.separatorChar);

 buf.append(names[i]);

 files.add(buf.toString());

 }

}

Using the File Dialogs

The example application in Listing 7-4, ShowFileDialog, demonstrates how to use FileDialog. It displays three buttons:

Open Multiple, Open, and Save. Clicking a button displays the file dialog in the requested mode. The text box in the

main application window displays any selected files. Figure 7-16 shows the application.

Listing 7-4: ShowFileDialog.java

package examples.ch7;

import java.io.File;

import org.eclipse.swt.*;

import org.eclipse.swt.events.*;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.widgets.*;

/**

 * This class demonstrates FileDialog

 */

public class ShowFileDialog {

 // These filter names are displayed to the user in the file dialog. Note that

 // the inclusion of the actual extension in parentheses is optional, and

 // doesn't have any effect on which files are displayed.

 private static final String[] FILTER_NAMES = {

 "OpenOffice.org Spreadsheet Files (*.sxc)",

 "Microsoft Excel Spreadsheet Files (*.xls)",

 "Comma Separated Values Files (*.csv)", "All Files (*.*)"};

 // These filter extensions are used to filter which files are displayed.

 private static final String[] FILTER_EXTS = { "*.sxc", "*.xls", "*.csv", "*.*"};

 /**

 * Runs the application

 */

 public void run() {

 Display display = new Display();

 Shell shell = new Shell(display);

 shell.setText("File Dialog");

 createContents(shell);

 shell.pack();

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 shell.open();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

 display.dispose();

 }

 /**

 * Creates the contents for the window

 *

 * @param shell the parent shell

 */

 public void createContents(final Shell shell) {

 shell.setLayout(new GridLayout(5, true));

 new Label(shell, SWT.NONE).setText("File Name:");

 final Text fileName = new Text(shell, SWT.BORDER);

 GridData data = new GridData(GridData.FILL_HORIZONTAL);

 data.horizontalSpan = 4;

 fileName.setLayoutData(data);

 Button multi = new Button(shell, SWT.PUSH);

 multi.setText("Open Multiple...");

 multi.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 // User has selected to open multiple files

 FileDialog dlg = new FileDialog(shell, SWT.MULTI);

 dlg.setFilterNames(FILTER_NAMES);

 dlg.setFilterExtensions(FILTER_EXTS);

 String fn = dlg.open();

 if (fn != null) {

 // Append all the selected files. Since getFileNames() returns only

 // the names, and not the path, prepend the path, normalizing

 // if necessary

 StringBuffer buf = new StringBuffer();

 String[] files = dlg.getFileNames();

 for (int i = 0, n = files.length; i < n; i++) {

 buf.append(dlg.getFilterPath());

 if (buf.charAt(buf.length() 1) != File.separatorChar) {

 buf.append(File.separatorChar);

 }

 buf.append(files[i]);

 buf.append(" ");

 }

 fileName.setText(buf.toString());

 }

 }

 });

 Button open = new Button(shell, SWT.PUSH);

 open.setText("Open...");

 open.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 // User has selected to open a single file

 FileDialog dlg = new FileDialog(shell, SWT.OPEN);

 dlg.setFilterNames(FILTER_NAMES);

 dlg.setFilterExtensions(FILTER_EXTS);

 String fn = dlg.open();

 if (fn != null) {

 fileName.setText(fn);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 }

 }

 });

 Button save = new Button(shell, SWT.PUSH);

 save.setText("Save...");

 save.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 // User has selected to save a file

 FileDialog dlg = new FileDialog(shell, SWT.SAVE);

 dlg.setFilterNames(FILTER_NAMES);

 dlg.setFilterExtensions(FILTER_EXTS);

 String fn = dlg.open();

 if (fn != null) {

 fileName.setText(fn);

 }

 }

 });

 }

 /**

 * The application entry point

 *

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 new ShowFileDialog().run();

 }

}

Figure 7-16: The ShowFileDialog application

Warning before Overwriting Existing Files

Before you become too smug about how simply you can get file names for opening and saving, try this: in the

ShowFileDialog sample application, select to save a file, and in the ensuing File dialog box, select an existing file and

click OK. Don't you expect a warning, saying that the file already exists, and do you want to overwrite it? No such

warning displays, and the file name is returned to the application without any indication that you've selected an existing

file. For the ShowFileDialog application, this presents no problem, as no files are saved and no overwriting happens.

However, if your applications overwrite users' files without seeking confirmation, your users won't use them for long.

Users expect applications to request confirmation before performing destructive actions.

Scanning FileDialog's documentation reveals no method call or style setting to address this problem, nor does the

source code. The omission seems curious, until you remember that not only is SWT cross platform, but also that it

uses each operating environment's native dialogs. Not all Save dialogs offer built-in support for warning before

overwriting files. SWT doesn't address this problem directly; you must solve it yourself.

Following object-oriented principles would lead you to subclass FileDialog and provide your own implementation for the

open() method. However, SWT warns against subclassing its dialog classes, so shun that solution. Instead, create a

façade that wraps FileDialog, passing all method calls but open() to the underlying FileDialog instance. The code

samples accompanying this book include the full source of an example class—SafeSaveDialog. You can find the code

samples in the Downloads section of the Apress Web site (http://www.apress.com). SafeSaveDialog has a private

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig215%5F01%5F0%2Ejpg
http://www.apress.com

FileDialog member:

private FileDialog dlg;

This member is constructed in the SafeSaveDialog constructor:

public SafeSaveDialog(Shell shell) {

 dlg = new FileDialog(shell, SWT.SAVE);

}

SWT provides wrapper methods for the entire FileDialog API that simply pass the request to the dlg member variable.

However, the open() method is different, and looks like this:

public String open() {

 // Store the selected file name in fileName

 String fileName = null;

 // The user has finished when one of the

 // following happens:

 // 1) The user dismisses the dialog by pressing Cancel

 // 2) The selected file name does not exist

 // 3) The user agrees to overwrite existing file

 boolean done = false;

 while (!done) {

 // Open the File Dialog

 fileName = dlg.open();

 if (fileName == null) {

 // User has cancelled, so quit and return

 done = true;

 }

 else {

 // User has selected a file; see if it already exists

 File file = new File(fileName);

 if (file.exists()) {

 // The file already exists; asks for confirmation

 MessageBox mb = new MessageBox(dlg.getParent(),

 SWT.ICON_WARNING | SWT.YES | SWT.NO);

 mb.setMessage(fileName + " already exists. Do you want to replace it?");

 // If they click Yes, drop out. If they click No,

 // redisplay the File Dialog

 done = mb.open() == SWT.YES;

 } else {

 // File does not exist, so drop out

 done = true;

 }

 }

 }

 return fileName;

}

If the user selects an existing file from within SafeSaveDialog, a message box appears asking for confirmation. If the

user selects not to overwrite the existing file, the file dialog reappears, and will continue reappearing until the user

cancels the File dialog, selects a file name that doesn't represent an existing file, or answers Yes to the warning.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Choosing a Font

With early word processors, users were tickled enough that they could edit the content on screen before printing their

documents onto paper. No longer shackled to the irreversibility of typewriters, few cared whether the typeface or font

on screen matched the one on the printed documents. Word processors tracked typefaces by codes or markers

embedded in the text. However, as operating environments moved from text-based displays to graphical-based

displays, users became more exacting about the relationship between the computer screen and the printed page. The

shift to What You See Is What You Get (WYSIWYG) meant that the fonts displayed on the screen had to match the

fonts printed on paper. Interfaces to allow users to select fonts evolved into today's common Font Selection dialog.

SWT provides the FontDialog class to display the common font selection dialog. FontDialog's open() method returns a

FontData object (or null if the user cancels the dialog), which you can use to create a Font. Chapter 11 delves deeper

into fonts; this chapter offers only enough to understand how to use FontDialog.

SWT uses two classes to represent fonts: Font, which represents the onscreen font, and FontData, which represents

the data used to construct the onscreen font. You saw this paradigm earlier in the chapter, with Color representing an

onscreen color and RGB representing the data used to create the color. Like Color objects, Font objects represent

operating system resources, and you must dispose any you create. FontData objects contain only data, and aren't

operating system resources, so they aren't disposed.

Fonts can be displayed in many colors, but neither Font nor FontData store any color information. In order to display

fonts in colors other than black, controls carry both font properties and color properties, wedding them for the display.

However, the common Font dialog allows color selection, as seen in Figure 7-17.

Figure 7-17: The common Font dialog

Displaying the Font Selection Dialog

To display the Font Selection dialog, create a FontDialog instance and call its open() method. The open() method returns

a FontData object containing all the data necessary to create the selected font, or null if the user cancelled the dialog.

The code looks like this:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig221%5F01%5F0%2Ejpg

FontDialog dlg = new FontDialog(shell);

FontData fontData = dlg.open();

if (fontData != null) {

 Font font = new Font(shell.getDisplay(), fontData);

 // Do something with font

 // Remember to call font.dispose() when your application is done with font

}

Caution Don't dispose a font while your application is still using it.

Though using FontDialog seems as straightforward as using the other common dialogs, two factors muddy the waters:

The returned FontData object doesn't contain any information about the color selected in the font

selection dialog.

The corresponding accessor for the returned FontData, getFontData(), is deprecated, indicating that

you probably shouldn't use the returned FontData.

First, let's look at the issue with color. A method call can return only one object, so open() can't return both a FontData

and an RGB to specify the font information and the color information, respectively. To solve this, FontDialog could have

done any of the following:

Provided an open() method that took an RGB object as a parameter, filled the passed RGB with the

selected color data, and returned the FontData

Cobbled together a FontDataAndRGB class that was a composite of a FontData and an RGB, and had

open() return a FontDataAndRGB instance

Returned the FontData containing the information about the selected font, and provided a method call

to retrieve the color information

SWT's designers opted for the last option, which seems the most straightforward. So, you call FontDialog.getRGB() to

retrieve the selected color's information. To use the font selection dialog to change both the font and the color of a

label, write code that looks like this:

FontDialog dlg = new FontDialog(shell);

FontData fontData = dlg.open();

if (fontData != null) {

 Font font = new Font(shell.getDisplay(), fontData);

 Color color = new Color(shell.getDisplay(), dlg.getRGB());

 myLabel.setFont(font);

 myLabel.setForeground(color);

}

That solves the color problem. Now, why is getFontData() deprecated? On most platforms, a single FontData suffices to

create the selected font. However, the X Window System can require multiple FontData objects to create a font. SWT

2.1 added a Font constructor that takes an array of FontData objects instead of just a single FontData. SWT 2.1.1

deprecated FontDialog's getFontData() and setFontData() methods, and added getFontList() and setFontList() to deal with

FontData arrays. Because changing the open() method to return FontData[] would break existing code, you're stuck with

a return value you probably shouldn't use, except perhaps to determine whether the user clicked OK or Cancel.

Rewriting the preceding code to use getFontList() produces the following:

FontDialog dlg = new FontDialog(shell);

if (dlg.open() != null) {

 Font font = new Font(shell.getDisplay(), dlg.getFontList());

 Color color = new Color(shell.getDisplay(), dlg.getRGB());

 myLabel.setFont(font);

 myLabel.setForeground(color);

}

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Table 7-9 lists FontDialog's methods.

Table 7-9: FontDialog Methods

Method Description

FontData getFontData() This method is deprecated; use getFontList() instead.

FontData[] getFontList() Returns an array of FontData objects that contain the information about the

selected font.

RGB getRGB() Returns the red, green, and blue values as an RGB object for the selected

color.

String getText() Gets the title bar text for the dialog.

FontData open() Displays the dialog and returns a FontData object representing the selected

font, or null if the user cancelled the dialog.

void setFontData(FontData

fontData)
This method is deprecated; use setFontList() instead.

void setFontList(FontData[]

fontData)
Sets the information for the font to display as selected in the dialog.

void setRGB(RGB rgb) Sets the RGB values for the color to display as selected in the dialog.

void setText(String text) Sets the title bar text for the dialog.

Customizing the Font Selection Dialog

Besides changing the title bar text of the font selection dialog by calling setText(), you can set the font and color that are

initially selected when the dialog appears. Call setFontList(), passing the array of FontData objects that represents the

font you want to select. The Font class provides a method called getFontData that returns its array of FontData objects.

Call setRGB(), passing the RGB that represents the color you want to select. The ChooseFont program in Listing 7-5

demonstrates how to do that. Its main window displays the text "The Selected Font" and a button for displaying the font

selection dialog. Click the button, and the font selection dialog displays with the main window's font already selected.

Figure 7-18 shows the application's main window.

Figure 7-18: The ChooseFont application

Listing 7-5: ChooseFont.java

package examples.ch7;

import org.eclipse.swt.*;

import org.eclipse.swt.events.*;

import org.eclipse.swt.graphics.*;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.widgets.*;

/**

 * This class demonstrates the FontDialog class

 */

public class ChooseFont {

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig226%5F01%5F0%2Ejpg

 private Font font;

 private Color color;

 /**

 * Runs the application

 */

 public void run() {

 Display display = new Display();

 Shell shell = new Shell(display);

 shell.setText("Font Chooser");

 createContents(shell);

 shell.pack();

 shell.open();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

 // Dispose the font and color we created

 if (font != null) font.dispose();

 if (color != null) color.dispose();

 display.dispose();

 }

 /**

 * Creates the window contents

 *

 * @param shell the parent shell

 */

 private void createContents(final Shell shell) {

 shell.setLayout(new GridLayout(2, false));

 final Label fontLabel = new Label(shell, SWT.NONE);

 fontLabel.setText("The selected font");

 Button button = new Button(shell, SWT.PUSH);

 button.setText("Font...");

 button.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 // Create the color-change dialog

 FontDialog dlg = new FontDialog(shell);

 // Prefill the dialog with any previous selection

 if (font != null) dlg.setFontList(fontLabel.getFont().getFontData());

 if (color != null) dlg.setRGB(color.getRGB());

 if (dlg.open() != null) {

 // Dispose of any fonts or colors we have created

 if (font != null) font.dispose();

 if (color != null) color.dispose();

 // Create the new font and set it into the label

 font = new Font(shell.getDisplay(), dlg.getFontList());

 fontLabel.setFont(font);

 // Create the new color and set it

 color = new Color(shell.getDisplay(), dlg.getRGB());

 fontLabel.setForeground(color);

 // Call pack() to resize the window to fit the new font

 shell.pack();

 }

 }

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 });

 }

 /**

 * The application entry point

 *

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 new ChooseFont().run();

 }

}

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Creating Your Own Dialogs

As helpful as the common dialogs are, they don't cover all, or even most, situations. You'll often need to create your

own custom dialogs to accommodate your applications' needs. Custom dialogs can contain the gamut of widgets that

main windows can. They can use all the same layout classes. They can be modal or modeless. They can have a fixed

size, or be resizable. They're essential to most nontrivial applications.

Create dialogs to show and allow editing of preferences, to display an About box for your application, or for any other

situation in which you need input from the user and don't want to (or can't) devote main window space to that input.

Creating a Dialog Class

To create your own dialog, you do the following:

Create a class that subclasses org.eclipse.swt.widgets.Dialog.1.

Implement a method named open() that returns an object appropriate to your dialog's purpose.2.

In open(), create the window, create the controls and event handlers (including controls and event

handlers to dismiss the dialog), and display the window.

3.

Provide getters and setters for any data.4.

For example, suppose you must implement a dialog that requests a line of text from the user. It must do the following:

Display a customizable message that defaults to "Please enter a value:"

Provide a text box to receive the user's input

Provide an OK button to dismiss the dialog and return the text the user typed

Provide a Cancel button to dismiss the dialog and return no text

Begin by creating a class that extends SWT's Dialog class:

public class InputDialog extends Dialog

Add two member variables, one to hold the customizable message and one to hold the input:

private String message;

private String input;

Add a getter and a setter for each variable, and set the default value for message in the constructor.

The bulk of your work lies in the development of the open() method, which must do the following:

Create a Shell object to house the dialog.1.

Create the controls (one Label, one Text, and two buttons).2.

Create event handlers for the buttons that dismiss the dialog and set the appropriate value into

input (the text in the text box for the OK button, or null for the Cancel button).

3.

Return the value of input.4.

Listing 7-6 shows the complete class.

Listing 7-6: InputDialog.java

package examples.ch7;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

import org.eclipse.swt.*;

import org.eclipse.swt.events.*;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.widgets.*;

/**

 * This class demonstrates how to create your own dialog classes. It allows users

 * to input a String

 */

public class InputDialog extends Dialog {

 private String message;

 private String input;

 /**

 * InputDialog constructor

 *

 * @param parent the parent

 */

 public InputDialog(Shell parent) {

 // Pass the default styles here

 this(parent, SWT.DIALOG_TRIM | SWT.APPLICATION_MODAL);

 }

 /**

 * InputDialog constructor

 *

 * @param parent the parent

 * @param style the style

 */

 public InputDialog(Shell parent, int style) {

 // Let users override the default styles

 super(parent, style);

 setText("Input Dialog");

 setMessage("Please enter a value:");

 }

 /**

 * Gets the message

 *

 * @return String

 */

 public String getMessage() {

 return message;

 }

 /**

 * Sets the message

 *

 * @param message the new message

 */

 public void setMessage(String message) {

 this.message = message;

 }

 /**

 * Gets the input

 *

 * @return String

 */

 public String getInput() {

 return input;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 }

 /**

 * Sets the input

 *

 * @param input the new input

 */

 public void setInput(String input) {

 this.input = input;

 }

 /**

 * Opens the dialog and returns the input

 *

 * @return String

 */

 public String open() {

 // Create the dialog window

 Shell shell = new Shell(getParent(), getStyle());

 shell.setText(getText());

 createContents(shell);

 shell.pack();

 shell.open();

 Display display = getParent().getDisplay();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

 // Return the entered value, or null

 return input;

 }

 /**

 * Creates the dialog's contents

 *

 * @param shell the dialog window

 */

 private void createContents(final Shell shell) {

 shell.setLayout(new GridLayout(2, true));

 // Show the message

 Label label = new Label(shell, SWT.NONE);

 label.setText(message);

 GridData data = new GridData();

 data.horizontalSpan = 2;

 label.setLayoutData(data);

 // Display the input box

 final Text text = new Text(shell, SWT.BORDER);

 data = new GridData(GridData.FILL_HORIZONTAL);

 data.horizontalSpan = 2;

 text.setLayoutData(data);

 // Create the OK button and add a handler

 // so that pressing it will set input

 // to the entered value

 Button ok = new Button(shell, SWT.PUSH);

 ok.setText("OK");

 data = new GridData(GridData.FILL_HORIZONTAL);

 ok.setLayoutData(data);

 ok.addSelectionListener(new SelectionAdapter() {

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 public void widgetSelected(SelectionEvent event) {

 input = text.getText();

 shell.close();

 }

 });

 // Create the cancel button and add a handler

 // so that pressing it will set input to null

 Button cancel = new Button(shell, SWT.PUSH);

 cancel.setText("Cancel");

 data = new GridData(GridData.FILL_HORIZONTAL);

 cancel.setLayoutData(data);

 cancel.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 input = null;

 shell.close();

 }

 });

 // Set the OK button as the default, so

 // user can type input and press Enter

 // to dismiss

 shell.setDefaultButton(ok);

 }

}

Figure 7-19 shows the InputDialog.

Figure 7-19: The InputDialog

Using Your Dialog Class

You use your dialog class the same way you use the common dialogs:

Construct an instance, passing the parent Shell.

Perform any customizations by calling setters.

Call open(), saving the return value.

Test the return value for null. If non-null, use the value.

Here's a simple usage of the InputDialog class you created:

InputDialog dlg = new InputDialog(shell);

String input = dlg.open();

if (input != null) {

 // Do something with input

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

}

You can also customize the dialog by changing its title bar text and message before calling open():

dlg.setText("Name");

dlg.setMessage("Please enter your name:");

The ShowInputDialog program in Listing 7-7 uses the InputDialog class. It contains a place to display some text, and a

button that says Push Me (see Figure 7-20). Pushing the button pops up the dialog. Enter some text and click OK, and

the text you entered appears in the main window.

Figure 7-20: The ShowInputDialog program

Listing 7-7: ShowInputDialog.java

package examples.ch7;

import org.eclipse.swt.*;

import org.eclipse.swt.events.*;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.widgets.*;

/**

 * This class demonstrates the custom InputDialog class

 */

public class ShowInputDialog {

 public void run() {

 Display display = new Display();

 Shell shell = new Shell(display);

 createContents(shell);

 shell.pack();

 shell.open();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

 display.dispose();

 }

 private void createContents(final Shell parent) {

 parent.setLayout(new FillLayout(SWT.VERTICAL));

 final Label label = new Label(parent, SWT.NONE);

 Button button = new Button(parent, SWT.PUSH);

 button.setText("Push Me");

 button.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 // Create and display the InputDialog

 InputDialog dlg = new InputDialog(parent);

 String input = dlg.open();

 if (input != null) {

 // User clicked OK; set the text into the label

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 label.setText(input);

 label.getParent().pack();

 }

 }

 });

 }

 public static void main(String[] args) {

 new ShowInputDialog().run();

 }

}

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Summary

Dialogs break out of the confines of the main application window, offering rich opportunities for user interaction without

hogging main window space. Avail yourself of the power and ease of the standard dialog classes, whether to show

error messages, allow color selection, provide file system navigation to open files, or any of the other common dialog

functions. With only a few lines of code, you can incorporate proven dialogs into your applications.

Creating your own dialogs is only marginally more difficult. By adhering to the pattern that the common dialogs use,

you can make your own dialogs as easy to use as the common dialogs are. Use dialogs to offload user interaction that

doesn't merit a permanent place in your main application windows.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Chapter 8: Advanced Controls

Many applications run admirably using only the standard controls discussed in Chapter 5, adequately presenting all

application data and sufficiently handling user interaction. However, as applications become more advanced in the

kinds of data they consume, process, and display, they become starved for more powerful widgets. This chapter

discusses the advanced controls that SWT offers: decorations, tabs, toolbars, coolbars, sashes, tables, and trees.

Using them expands the realm of problems your applications can solve.

Decorations

Decorations objects (that's not a typo; the class indeed is named Decorations, not Decoration) represent windows inside

a main window. They're neither main windows (Shells) nor dialog boxes (Dialogs); they're always contained within a

top-level window. They exhibit much of the same look and behavior as Shell objects, but are wholly contained inside

them. Depending on how they're created, you can maximize, minimize, move, resize, and close them. They could

almost fool you into thinking they'd be useful for Multiple Document Interface (MDI) applications, but they're too

crippled to meaningfully stand in for full MDI windows, as this chapter explains.

The Eclipse team claims that the Decorations class was supposed to be abstract (it's the superclass of Shell), but

somehow it slipped through as concrete in SWT 1.0. [1] Because changing it would break others' extant code, the

Eclipse team has left it concrete and available. They warn, however (though the Javadoc documentation makes no

mention of it), that the implementation is partial, and that you use it at your own risk. After reading this section, you

might come to the same conclusions.

Caution The Eclipse team recommends that you not use the Decorations class.

What can you use for developing MDI applications, then, if Decorations can't do MDI? SWT doesn't yet include full MDI

support, though it's planned for some undetermined future release. Because the Eclipse IDE doesn't use MDI, adding

the support hasn't yet risen high enough on the priority list to be implemented in SWT. Until MDI support appears,

you can try to limp along with Decorations objects, or you can use tabbed interfaces to present multiple documents

instead. See the section on tabs in this chapter for more information.

Creating Decorations

The appearance and behavior of Decorations objects depend on three factors:

The constants passed to the Decorations constructor

The capabilities of the host window manager

The layout of the parent

Decorations has a single constructor:

public Decorations(Composite parent, int style)

Table 8-1 lists the available constants for style. You can combine multiple styles using the bitwise OR operator.

Understand that the specified constants are hints to the underlying window manager, and don't provide behaviors that

the window manager doesn't natively provide. For example, the SWT.ON_TOP style currently has no effect on

Windows. You shouldn't subclass Decorations.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table 8-1: Decorations Styles

Constant Description

SWT.BORDER Creates a window with a nonresizable border.

SWT.CLOSE Creates a window that can be closed. For most window managers, this means

creating a title bar with a close button.

SWT.MIN Creates a window that can be minimized. For most window managers, this means

creating a title bar with a minimize button.

SWT.MAX Creates a window that can be maximized. For most window managers, this means

creating a title bar with a maximize button.

SWT.NO_TRIM Creates a window with no border, title bar, or any other kind of trim.

SWT.RESIZE Creates a window with a resizable border.

SWT.TITLE Creates a window with a title bar.

SWT.ON_TOP Creates a window at the top of the z-order within the parent composite.

SWT.TOOL Creates a window with a thin tool border.

SWT.SHELL_TRIM Convenience constant that combines SWT.CLOSE, SWT.TITLE, SWT.MIN, SWT.MAX,

and SWT.RESIZE.

SWT.DIALOG_TRIM Convenience constant that combines SWT.CLOSE, SWT.TITLE, and SWT.BORDER.

Even if you never directly use the Decorations class, it's worth familiarizing yourself with its methods. Because Shell

subclasses Decorations, you'll use many of these methods when working with Shells. Table 8-2 lists the methods.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table 8-2: Decorations Methods

Method Description

Rectangle computeTrim(int x, int y, int

width, int height)
Returns the bounding rectangle required to hold the client area

specified by the arguments.

Rectangle getBounds() Returns the bounding rectangle for this Decorations.

Rectangle getClientArea() Returns the bounding rectangle for the client area only.

Button getDefaultButton() Returns the default button, or null if none has been set.

Image getImage() Returns the image associated with this Decorations, or null if no

image has been set.

Image[] getImages() Returns the images associated with this Decorations, or null if no

images have been set.

Point getLocation() Returns this Decorations' location relative to its parent.

boolean getMaximized() Returns true if this Decorations is maximized, or false if it isn't.

Menu getMenuBar() Returns this Decorations' menu bar, or null if no menu bar has been

set.

boolean getMinimized() Returns true if this Decorations is minimized, or false if it isn't.

Point getSize() Returns this Decorations' size.

String getText() Returns the text this Decorations displays in its title bar (if it has one).

boolean isReparentable() Returns true if the underlying windowing system supports changing

the parent of this Decorations, or false if it doesn't.

void setDefaultButton(Button button) Sets the default button for this Decorations.

void setImage(Image image) Sets the image for this Decorations.

void setImages(Image[] images) Sets the images for this Decorations.

void setMaximized(boolean maximized) If maximized is true, maximizes this Decorations.

void setMenuBar(Menu menu) Sets the menu bar for this Decorations.

void setMinimized(boolean minimized) If minimized is true, minimizes this Decorations.

void setText(String string) Sets the text that this Decorations displays in its title bar.

void setVisible(boolean visible) If visible is true, shows this Decorations. If visible is false, hides it.

SWT places and sizes Decorations objects within the parent composite's layout just as it does for other controls. For

example, if the parent composite's layout is a GridLayout, a child Decorations will initially occupy its cell in the grid,

obeying all GridData set into it. See Chapter 4 for more information on layouts. However, once the Decorations is

initially sized and placed, it isn't confined by the layout. Resizable Decorations can be resized, and movable ones can

be moved, beyond the bounds specified by the layout. However, resizing the parent window enforces anew the layout,

and the child Decorations instances jump back to their initial size and position in the layout. Because this behavior will

likely disconcert users, keep it in mind when designing your applications.

Displaying Decorations

The DecorationsExample program in Listing 8-1 displays nine Decorations objects, one for each distinct style. It labels

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

each Decorations with the style used to create it. Run the application and try manipulating the Decorations objects—see

which can be resized, which can be closed, which can be minimized, and which can be maximized. Remember that

results will vary depending on the underlying window manager.

Listing 8-1: DecorationsExample.java

package examples.ch8;

import org.eclipse.swt.*;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.widgets.*;

/**

 * This application shows the various styles of Decorations

 */

public class DecorationsExample {

 /**

 * Runs the application

 */

 public void run() {

 Display display = new Display();

 Shell shell = new Shell(display);

 shell.setText("Decorations Example");

 createContents(shell);

 shell.open();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

 display.dispose();

 }

 /**

 * Creates the various Decorations

 *

 * @param composite the parent composite

 */

 public void createContents(Composite composite) {

 // There are nine distinct styles, so create

 // a 3x3 grid

 composite.setLayout(new GridLayout(3, true));

 // The SWT.BORDER style

 Decorations d = new Decorations(composite, SWT.BORDER);

 d.setLayoutData(new GridData(GridData.FILL_BOTH));

 d.setLayout(new FillLayout());

 new Label(d, SWT.CENTER).setText("SWT.BORDER");

 // The SWT.CLOSE style

 d = new Decorations(composite, SWT.CLOSE);

 d.setLayoutData(new GridData(GridData.FILL_BOTH));

 d.setLayout(new FillLayout());

 new Label(d, SWT.CENTER).setText("SWT.CLOSE");

 // The SWT.MIN style

 d = new Decorations(composite, SWT.MIN);

 d.setLayoutData(new GridData(GridData.FILL_BOTH));

 d.setLayout(new FillLayout());

 new Label(d, SWT.CENTER).setText("SWT.MIN");

 // The SWT.MAX style

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 d = new Decorations(composite, SWT.MAX);

 d.setLayoutData(new GridData(GridData.FILL_BOTH));

 d.setLayout(new FillLayout());

 new Label(d, SWT.CENTER).setText("SWT.MAX");

 // The SWT.NO_TRIM style

 d = new Decorations(composite, SWT.NO_TRIM);

 d.setLayoutData(new GridData(GridData.FILL_BOTH));

 d.setLayout(new FillLayout());

 new Label(d, SWT.CENTER).setText("SWT.NO_TRIM");

 // The SWT.RESIZE style

 d = new Decorations(composite, SWT.RESIZE);

 d.setLayoutData(new GridData(GridData.FILL_BOTH));

 d.setLayout(new FillLayout());

 new Label(d, SWT.CENTER).setText("SWT.RESIZE");

 // The SWT.TITLE style

 d = new Decorations(composite, SWT.TITLE);

 d.setLayoutData(new GridData(GridData.FILL_BOTH));

 d.setLayout(new FillLayout());

 new Label(d, SWT.CENTER).setText("SWT.TITLE");

 // The SWT.ON_TOP style

 d = new Decorations(composite, SWT.ON_TOP);

 d.setLayoutData(new GridData(GridData.FILL_BOTH));

 d.setLayout(new FillLayout());

 new Label(d, SWT.CENTER).setText("SWT.ON_TOP");

 // The SWT.TOOL style

 d = new Decorations(composite, SWT.TOOL);

 d.setLayoutData(new GridData(GridData.FILL_BOTH));

 d.setLayout(new FillLayout());

 new Label(d, SWT.CENTER).setText("SWT.TOOL");

 }

 /**

 * The entry point for the application

 *

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 new DecorationsExample().run();

 }

}

The program's display should look like Figure 8-1. Figure 8-2 shows the application with a few windows moved, one

resized, and one minimized (see the lower-left corner of the main window).

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Figure 8-1: Decorations in their applicable styles

Figure 8-2: Moving, resizing, and minimizing Decorations

Remember the caveat about resizing the parent window, that it will lay out anew the Decorations objects? This can

particularly become a problem if any Decorations objects have been closed. For example, GridLayouts will throw an

ArrayIndexOutOfBoundsException if the parent window is resized after a child Decorations has been closed, because they

will try to position a control that no longer exists. Extensively test any of your applications that use Decorations, and

don't forget to note the effects of resizing the parent.

[1]
https://bugs.eclipse.org/bugs/show_bug.cgi?id=29891

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig240%5F01%5F0%2Ejpg
file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig241%5F01%5F0%2Ejpg
http://www.https://bugs.eclipse.org/bugs/show_bug.cgi?id=29891

Tabs

When controls run amok in a congested GUI, often the best solution involves splitting them among several windows.

To maintain cohesion, GUI designers invented tabs, which allow several windows or "pages" of forms to be stacked on

top of each other. Selecting a tab brings the corresponding page of controls to the fore, much as selecting a physical

tab in a notebook flips directly to a specific page in the notebook. OS/2's properties notebooks pushed tabs toward the

mainstream, and Microsoft's Windows 95, with its Properties pages, popularized tabs into a mainstay of desktop GUIs.

Tabs continue to grow their domain. Spreadsheets come together in "workbooks," providing tabs for navigation among

them. Configuration screens separate categories of options into separate tabs. The latest Web browsers, including

Mozilla, Netscape, and Opera, offer "tabbed browsing," displaying each Web page in its own tab. Tabs have largely

displaced the MDI model for presenting multiple views in a window, and are essential to solving the information

overload computers present.

Creating Tabs

SWT divides its tab implementation into two classes: TabFolder and TabItem, neither of which should be subclassed.

TabFolders, which aren't visible, contain TabItems. To create a tabbed interface, create a TabFolder with a Shell as its

parent, and create TabItems as children of the TabFolder. For example, to create and display a single tab, you code

this:

TabFolder tabFolder = new TabFolder(shell, SWT.NONE);

TabItem item = new TabItem(tabFolder, SWT.NONE);

Pass SWT.TOP (the default) or SWT.BOTTOM to TabFolder's constructor to create tabs that run along the top or the

bottom of the parent composite, respectively. Any styles passed to TabItem's constructor are ignored.

TabFolder offers a few methods, the more interesting of which are listed in Table 8-3.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Table 8-3: TabFolder Methods

Method Description

void addSelectionListener

(SelectionListener listener)
Adds a listener that's notified when any of the tabs in the tab folder is

selected.

TabItem getItem(int index) Returns the tab at the specified zero-based index.

int getItemCount() Returns the number of tabs in this tab folder.

TabItem[] getItems() Returns an array containing all the tabs in this tab folder.

TabItem[] getSelection() Returns an array containing all the selected tabs in this tab folder, or an

empty array if no tabs are selected.

int getSelectionIndex() Returns the index of the selected tab.

int indexOf(TabItem tabItem) Returns the zero-based index of the specified tab.

void removeSelectionListener

(SelectionListener listener)
Removes the specified selection listener from the notification list.

void setSelection(int index) Selects the tab at the specified zero-based index.

void setSelection(TabItem[]

items)
Selects the tabs specified. Passing null throws an exception; passing an

empty array deselects all tabs. The algorithm selects each tab, starting with

the last tab in the array and moving backward to the first. This means that

for implementations that can have only one selected tab, like Windows, the

first tab in the array is selected.

However, most programs will ignore this API and not call any of these methods, because the tab paradigm works as

you'd expect without any help from you. You click a tab, and the tab and its contents come to the front. You just create

the TabFolder and the TabItems it contains.

Adding Content to Tabs

The simple example in the previous section created a TabFolder and a TabItem, but the displayed tab was blank (see

Figure 8-3). The only thing less interesting than a blank tab is a set of blank tabs; tabs should have content. They

should also have labels. TabItem provides methods to do that, as well as other functions necessary for using tabs.

Table 8-4 lists TabItem's methods.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Table 8-4: TabItem Methods

Method Description

void dispose() Closes the tab, recursively disposing all its contained widgets.

Control getControl() Returns the contents—the widgets displayed—of this tab. The returned

Control can be a single control, or it can be a composite that contains other

controls.

Image getImage() Returns the image associated with this tab.

TabFolder getParent() Returns this tab's parent.

String getText() Returns this tab's label.

String getToolTipText() Returns the tool tip text for this tab.

void setControl(Control

control)
Sets the contents—the widgets displayed—of this tab. control can be a single

control, or it can be a single composite that contains other controls.

void setImage(Image image) Sets the image for this tab.

void setText(String text) Sets the label for this tab.

void setToolTipText(String

toolTipText)
Sets the tool tip text for this tab.

Figure 8-3: A lone, anonymous tab

Create a tab with a label, an image, a tool tip, and a control, using code such as this:

TabItem tabItem = new TabItem(tabFolder, SWT.NONE);

tabItem.setText("My Tab");

tabItem.setToolTipText("This is my tab");

tabItem.setImage(myImage);

// Notice the control's parent: tabFolder, not tabItem or shell

tabItem.setControl(new Text(tabFolder, SWT.BORDER | SWT.MULTI | SWT.WRAP));

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig243%5F01%5F0%2Ejpg

This code creates a tab labeled My Tab. Hovering over the tab displays the tool tip "This is my tab." The tab has an

image (the image contained in myImage) and displays a multiline edit field.

Because setControl() takes a single control, you might think that you're limited to displaying a single widget per tab,

rendering tabs not very useful. You can display as many widgets as memory and resources permit; you create a

Composite, and stuff the controls into it. You then pass the Composite to the tab's setControl() method. The code might

look like this:

TabItem tabItem = new TabItem(tabFolder, SWT.NONE);

tabItem.setText("My Tab");

tabItem.setToolTipText("A tab with multiple widgets");

Composite composite = new Composite(tabFolder, SWT.NONE);

composite.setLayout(new FillLayout());

new Button(composite, SWT.PUSH).setText("Button One");

new Button(composite, SWT.PUSH).setText("Button Two");

new Button(composite, SWT.PUSH).setText("Button Three");

tabItem.setControl(composite);

This creates a tab with three buttons on it. You can nest composites within composites to create whatever layouts and

widgets you wish.

The TabComplex program in Listing 8-2 illustrates the abilities of tabs. It creates four tabs, each containing a label and

an image. Three of the tabs have associated controls (the fourth tab stays empty, demonstrating that you don't have to

put controls on a tab). You can copy the images from the downloaded code, or open your favorite graphics editor and

create your own images. Put them in a directory called images that's a peer to your examples directory.

Listing 8-2: TabComplex.java

package examples.ch8;

import java.io.*;

import org.eclipse.swt.SWT;

import org.eclipse.swt.events.*;

import org.eclipse.swt.graphics.Image;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.widgets.*;

/**

 * Creates a tabbed display with four tabs, and a few controls on each page

 */

public class TabComplex {

 private static final String IMAGE_PATH = "images"

 + System.getProperty("file.separator");

 private Image circle;

 private Image square;

 private Image triangle;

 private Image star;

 /**

 * Runs the application

 */

 public void run() {

 Display display = new Display();

 Shell shell = new Shell(display);

 shell.setLayout(new FillLayout());

 shell.setText("Complex Tabs");

 createImages(shell);

 createContents(shell);

 shell.open();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 }

 }

 display.dispose();

 }

 /**

 * Creates the contents

 *

 * @param shell the parent shell

 */

 private void createContents(Shell shell) {

 // Create the containing tab folder

 final TabFolder tabFolder = new TabFolder(shell, SWT.NONE);

 // Create each tab and set its text, tool tip text,

 // image, and control

 TabItem one = new TabItem(tabFolder, SWT.NONE);

 one.setText("one");

 one.setToolTipText("This is tab one");

 one.setImage(circle);

 one.setControl(getTabOneControl(tabFolder));

 TabItem two = new TabItem(tabFolder, SWT.NONE);

 two.setText("two");

 two.setToolTipText("This is tab two");

 two.setImage(square);

 two.setControl(getTabTwoControl(tabFolder));

 TabItem three = new TabItem(tabFolder, SWT.NONE);

 three.setText("three");

 three.setToolTipText("This is tab three");

 three.setImage(triangle);

 three.setControl(getTabThreeControl(tabFolder));

 TabItem four = new TabItem(tabFolder, SWT.NONE);

 four.setText("four");

 four.setToolTipText("This is tab four");

 four.setImage(star);

 // Select the third tab (index is zero-based)

 tabFolder.setSelection(2);

 // Add an event listener to write the selected tab to stdout

 tabFolder.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(org.eclipse.swt.events.SelectionEvent event) {

 System.out.println(tabFolder.getSelection()[0].getText() + " selected");

 }

 });

 }

 /**

 * Creates the images

 *

 * @param shell the parent shell

 */

 private void createImages(Shell shell) {

 try {

 circle = new Image(shell.getDisplay(), new FileInputStream(IMAGE_PATH

 + "circle.gif"));

 square = new Image(shell.getDisplay(), new FileInputStream(IMAGE_PATH

 + "square.gif"));

 star = new Image(shell.getDisplay(), new FileInputStream(IMAGE_PATH

 + "star.gif"));

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 triangle = new Image(shell.getDisplay(), new FileInputStream(IMAGE_PATH

 + "triangle.gif"));

 } catch (IOException e) {

 // Images not found; handle gracefully

 }

 }

 /**

 * Disposes the images

 */

 private void disposeImages() {

 if (circle != null)

 circle.dispose();

 if (square != null)

 square.dispose();

 if (star != null)

 star.dispose();

 if (triangle != null)

 triangle.dispose();

 }

 /**

 * Gets the control for tab one

 *

 * @param tabFolder the parent tab folder

 * @return Control

 */

 private Control getTabOneControl(TabFolder tabFolder) {

 // Create a composite and add four buttons to it

 Composite composite = new Composite(tabFolder, SWT.NONE);

 composite.setLayout(new FillLayout(SWT.VERTICAL));

 new Button(composite, SWT.PUSH).setText("Button one");

 new Button(composite, SWT.PUSH).setText("Button two");

 new Button(composite, SWT.PUSH).setText("Button three");

 new Button(composite, SWT.PUSH).setText("Button four");

 return composite;

 }

 /**

 * Gets the control for tab two

 *

 * @param tabFolder the parent tab folder

 * @return Control

 */

 private Control getTabTwoControl(TabFolder tabFolder) {

 // Create a multiline text field

 return new Text(tabFolder, SWT.BORDER | SWT.MULTI | SWT.WRAP);

 }

 /**

 * Gets the control for tab three

 *

 * @param tabFolder the parent tab folder

 * @return Control

 */

 private Control getTabThreeControl(TabFolder tabFolder) {

 // Create some labels and text fields

 Composite composite = new Composite(tabFolder, SWT.NONE);

 composite.setLayout(new RowLayout());

 new Label(composite, SWT.LEFT).setText("Label One:");

 new Text(composite, SWT.BORDER);

 new Label(composite, SWT.RIGHT).setText("Label Two:");

 new Text(composite, SWT.BORDER);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 return composite;

 }

 /**

 * The entry point for the application

 *

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 new TabComplex().run();

 }

}

Compile and run to see a window with four tabs, with the third tab selected (see Figure 8-4). Select the various tabs,

one by one, and bring each to the forefront. Figure 8-5 shows the window with the first tab selected. Notice that as you

select the tabs, a line is written to the console indicating which tab is selected.

Figure 8-4: A window with multiple tabs

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig248%5F01%5F0%2Ejpg

Figure 8-5: A window with the first tab selected

TabFolder and TabItem should meet your typical tabbing needs. Chapter 9 discusses CTabFolder, from the SWT custom

package, which adds more power and flexibility to tabs.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig249%5F01%5F0%2Ejpg

Toolbars

A Windows word processor called Ami, produced by a small company called Samna, introduced toolbars in 1988. [2]

Ami was subsequently bought by Lotus and renamed Ami Pro. It continued to outpace its competitors (Microsoft Word

and WordPerfect) in usability. Contemporary trade magazines heralded this upstart word processor, and Ami Pro

cultivated a devout following. Sadly, Ami Pro stagnated, came late to the 32-bit party, swapped its friendly moniker for

Word Pro, and disappeared from public consciousness, usage, and hard drives (though it's still available; see

http://www.lotus.com/products/smrtsuite.nsf/wPages/wordpro). Fortunately, however, its competitors aped its advances,

including its toolbar, and today almost all applications have toolbars. SWT makes adding toolbars to your applications

easy.

Creating Toolbars

The ToolBar class implements a container for toolbar items—buttons or dropdowns—displaying images, text, or both.

This class should not be subclassed. A toolbar can be horizontal or vertical, which is determined at construction. This

code creates a horizontal toolbar:

ToolBar toolBar = new ToolBar(shell, SWT.HORIZONTAL);

This code creates a vertical toolbar:

ToolBar toolBar = new ToolBar(shell, SWT.VERTICAL);

The target platform determines whether a particular alignment (horizontal or vertical) is available. For example, on

Windows the toolbar is always horizontal, no matter which alignment you specify. Table 8-5 lists other styles and their

effects.

Table 8-5: ToolBar Constants

Constant Description

SWT.FLAT Makes the toolbar items flat; only the button under the mouse pointer appears

raised. If not specified, the items will be perpetually raised.

SWT.WRAP Wraps the toolbar buttons; this style has no effect on Windows.

SWT.RIGHT Right aligns the toolbar.

SWT.HORIZONTAL Draws a horizontal toolbar.

SWT.VERTICAL Draws a vertical toolbar.

SWT.SHADOW_OUT Causes a shadow to be drawn around the toolbar that makes the toolbar look as if

it's protruding from the screen.

You can use these styles alone or in combinations using the bitwise OR operator. ToolBar has a few methods worth

noting; Table 8-6 lists them.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://www.lotus.com/products/smrtsuite.nsf/wPages/wordpro
http://www.lotus.com/products/smrtsuite.nsf/wPages/wordpro

Table 8-6: ToolBar Methods

Method Description

ToolItem getItem(int index) Returns the toolbar item for the zero-based index.

ToolItem getItem(Point

point)
Returns the toolbar item beneath the specified point (or null if no item exists

beneath that point).

int getItemCount() Returns the number of items in this toolbar.

ToolItem[] getItems() Returns all the items in this toolbar.

int getRowCount() Returns the number of rows occupied by this toolbar (used when the toolbar

wraps).

int indexOf(ToolItem item) Returns the zero-based index of the specified ToolItem.

Plugging in ToolItems

A toolbar without any toolbar items can't do much. The ToolItem class implements the items that appear in a toolbar.

These items can be any of the following:

Regular push buttons

Stateful push buttons ("toggle" buttons)

Grouped stateful push buttons (only one in the group can be selected at a time)

Dropdowns

You can also create separators, which enforce gaps between items. You determine the type of a ToolItem by passing

its corresponding constant to the constructor (see Table 8-7 for the constants). You shouldn't combine constants using

bitwise OR operators; the results of doing that are undefined.

Table 8-7: Constants for Creating Tool Items

Constant Description

SWT.CHECK Creates a stateful push button ("toggle" button).

SWT.DROP_DOWN Creates a dropdown.

SWT.PUSH Creates a traditional push button.

SWT.RADIO Creates a grouped stateful push button (only one in the group may be selected at a

time).

SWT.SEPARATOR Creates a separator.

Items in the toolbar can display text, images, both, or neither. All items in the toolbar adopt the same size for the

dimension perpendicular to the alignment, but maintain their natural sizing for the dimension parallel to the alignment.

In other words, items in a horizontal toolbar have the same height but varying widths, depending on their contents,

while the items in a vertical toolbar have the same width but varying heights.

For example, to create a push button you use this code:

ToolItem item = new ToolItem(toolBar, SWT.PUSH);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

You can mix and match the different types on the same toolbar. For example, the following code creates a toolbar with

two push buttons, two check buttons, two radio buttons, and two dropdowns, with separators dividing dissimilar types:

ToolBar toolBar = new ToolBar(shell, SWT.HORIZONTAL);

ToolItem item = new ToolItem(toolBar, SWT.PUSH);

item.setText("Button One");

item = new ToolItem(toolBar, SWT.PUSH);

item.setText("Button Two");

new ToolItem(toolBar, SWT.SEPARATOR);

item = new ToolItem(toolBar, SWT.CHECK);

item.setText("Check One");

item = new ToolItem(toolBar, SWT.CHECK);

item.setText("Check Two");

new ToolItem(toolBar, SWT.SEPARATOR);

item = new ToolItem(toolBar, SWT.RADIO);

item.setText("Radio One");

item = new ToolItem(toolBar, SWT.RADIO);

item.setText("Radio Two");

new ToolItem(toolBar, SWT.SEPARATOR);

item = new ToolItem(toolBar, SWT.DROP_DOWN);

item.setText("Dropdown One");

item = new ToolItem(toolBar, SWT.DROP_DOWN);

item.setText("Dropdown Two");

The toolbar produced by this code appears in Figure 8-6; click the buttons to demonstrate the statelessness of the

push buttons and the statefulness of the check and radio buttons (see Figure 8-7).

Figure 8-6: A simple toolbar

Figure 8-7: A simple toolbar with some buttons pressed

The ToolItem class offers methods to control its behavior, listed in Table 8-8.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig252%5F01%5F0%2Ejpg
file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig252%5F02%5F0%2Ejpg

Table 8-8: ToolItem Methods

Method Description

void addSelectionListener

(SelectionListener listener)
Adds a listener that gets notified when this item is selected.

Rectangle getBounds() Returns the containing Rectangle for this item, relative to the parent

toolbar.

Control getControl() Returns the control associated with this item; valid only when this

item is a separator.

Image getDisabledImage() Returns the image to display when this item is disabled, or null if

no disabled image has been set.

boolean getEnabled() Returns true if this item is enabled, or false if it's disabled.

Image getHotImage() Returns the image to display when this item is "hot" (selected);

applies to check and radio buttons only.

Returns null if no hot image has been set.

Image getImage() Returns the image to display for this item, or null if no image has

been set. Defined in superclass Item.

Toolbar getParent() Returns the parent toolbar.

boolean getSelection() Returns true if this item is selected, or false if it isn't selected.

String getText() Returns this item's text, or null if no text has been set. Defined in

superclass Item.

String getToolTipText() Returns this item's tool tip text, or null if no tool tip text has been set.

int getWidth() Returns the width, in pixels, of this item.

boolean isEnabled() Returns true if this item and its ancestors are enabled, or false if they

aren't.

void removeSelectionListener

(SelectionListener listener)
Removes the listener from the notification list.

void setControl(Control control) Sets the control for this item; valid only for separators.

void setDisabledImage(Image image) Sets the image to display when this item is disabled.

void setEnabled(boolean enabled) If enabled is true, enables this item; if enabled is false, disables this

item.

void setHotImage(Image image) Sets the image to display when this item is "hot" (selected);

applies to check and radio buttons only. Pass null for no "hot"

image.

void setImage(Image image) Sets the image to display for this item. Defined in superclass Item.

void setSelection(boolean selected) If selected is true, selects this item; if selected is false , deselects this

item.

void setText(String text) Sets the text to display for this item. Defined in superclass Item.

void setToolTipText(String toolTipText) Sets the tool tip text for this item.

void setWidth(int width) Sets this item's width in pixels.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Traditionally, toolbars contain a set of push buttons that display an image and no text, and perform some action when

pushed. They also display some text (inside a tool tip) when the mouse hovers over them, describing what they do

when pushed. The tool tip is provided in case the image doesn't adequately communicate the button's function. For

some reason, Web browsers foisted upon the world the notion that buttons in a toolbar should carry both images and

text, redundantly declaring their functions and usurping valuable screen space. Though the practice of putting both text

and image on a toolbar button seems absurd, SWT nonetheless allows you to do this. However, we recommend that

you stick with images that unambiguously indicate the function of the toolbar button, and leave the text for tool tips.

To create a toolbar button with image, text, and tool tip, use code that looks like this:

ToolItem item = new ToolItem(toolBar, SWT.PUSH);

item.setText("Button One");

item.setImage(myImage);

item.setToolTipText("This is button one");

The preceding code creates a "push button" toolbar item that displays the image contained in myImage above the text

"Button One." Hovering the mouse pointer over the button causes a tool tip to appear displaying the text "This is button

one."

Creating Radio Groups

Radio buttons allow only one option from the group to be selected, and allow any number of options in the group. To

create more than one group of radio buttons in the same toolbar, separate each group using a separator. The

following code creates two radio button groups, each with three options:

ToolItem item = new ToolItem(toolBar, SWT.RADIO);

item.setText("One");

item = new ToolItem(toolBar, SWT.RADIO);

item.setText("Two");

item = new ToolItem(toolBar, SWT.RADIO);

item.setText("Three");

new ToolItem(toolBar, SWT.SEPARATOR); // Signals end of group

item = new ToolItem(toolBar, SWT.RADIO);

item.setText("One");

item = new ToolItem(toolBar, SWT.RADIO);

item.setText("Two");

item = new ToolItem(toolBar, SWT.RADIO);

item.setText("Three");

Each radio group is independent of the other, and each group allows only one button within it to be selected, as shown

in Figure 8-8.

Figure 8-8: Two radio groups

Working with Dropdowns

The otherwise straightforward SWT API might have lulled you into thinking that dropdown tool items would provide

methods for adding strings to the dropdown list and for getting the selected item from the list. This thinking certainly

sounds reasonable; the Combo class, which is also a dropdown, provides these methods and more. A dropdown tool

item looks similar to a Combo object, as Figure 8-9 demonstrates.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Figure 8-9: A Combo and a dropdown

Though they share functionality, appearance, and a button with a downward-pointing arrow (or other indicator,

depending on the underlying window manager), ToolItem dropdowns and Combos don't offer the same API. Whereas a

Combo maintains a list of selectable items, a dropdown tool item possesses no such list. It's just a button made up to

look like a Combo, almost like an imposter. To offer the dropdown list and selection functionality, you must implement

them yourself.

However, a dropdown tool item isn't just a Combo with an abbreviated API. You can click it like a "push" button, which

is something you can't do to a Combo. A good use for this widget, then, is to provide several actions from one button.

Users can click the down arrow to select the action that the button will perform, and click the button itself to perform

the action.

To provide Combo-like functionality to a dropdown tool item, create an event listener, derived from SelectionAdapter, for

the item that displays and manages a menu to mimic a Combo's dropdown menu. Store the parent dropdown item in a

member variable, as you need it in various places in the code. The constructor for your event handler receives the

parent item, which you use to get the parent Shell and create the Menu object that implements the dropdown list:

public DropdownSelectionListener(ToolItem dropdown) {

 this.dropdown = dropdown;

 menu = new Menu(dropdown.getParent().getShell());

}

The appropriately named add() method adds an item to the dropdown list. It adds the item to the menu, and adds an

event handler so that if the item is selected, the parent dropdown's text changes to the text of the selected menu item:

public void add(String item) {

 MenuItem menuItem = new MenuItem(menu, SWT.NONE);

 menuItem.setText(item);

 menuItem.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 MenuItem selected = (MenuItem) event.widget;

 dropdown.setText(selected.getText());

 }

 });

}

The widgetSelected() method responds appropriately when the dropdown is selected. If the user clicks the dropdown

arrow, the menu displays. If the user clicks the dropdown itself, the appropriate action executes. In the present

implementation, a message box pops up that tells the user what has been selected.

public void widgetSelected(SelectionEvent event) {

 // If they clicked the arrow, show the list

 if (event.detail == SWT.ARROW) {

 // Determine where to put the dropdown list

 ToolItem item = (ToolItem) event.widget;

 Rectangle rect = item.getBounds();

 Point pt = item.getParent().toDisplay(new Point(rect.x, rect.y));

 menu.setLocation(pt.x, pt.y + rect.height);

 menu.setVisible(true);

 } else {

 // They pushed the button; take appropriate action

 MessageBox msgBox =

 new MessageBox(dropdown.getParent().getShell(), SWT.OK);

 msgBox.setMessage(dropdown.getText() + " Pressed");

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 msgBox.open();

 }

}

Creating Feature-Rich Toolbars

The ToolBarComplex application in Listing 8-3 combines the various tool item types to create a functioning toolbar.

Listing 8-3: ToolBarComplex.java

package examples.ch8;

import java.io.*;

import org.eclipse.swt.SWT;

import org.eclipse.swt.events.*;

import org.eclipse.swt.graphics.Image;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.widgets.*;

/**

 * This class creates a complex toolbar. It has two regular push buttons, two

 * "toggle" push buttons, two "radio" push buttons, and two dropdowns.

 */

public class ToolBarComplex {

 private static final String IMAGE_PATH = "images"

 + System.getProperty("file.separator");

 // Images to use on our tool items

 private Image circle, grayCircle;

 private Image square, graySquare;

 private Image star, grayStar;

 private Image triangle, grayTriangle;

 // Labels to display tool item statuses

 private Label checkOneStatus;

 private Label checkTwoStatus;

 private Label radioStatus;

 private Label dropdownOneStatus;

 private Label dropdownTwoStatus;

 /**

 * Runs the application

 */

 public void run() {

 Display display = new Display();

 Shell shell = new Shell(display);

 shell.setText("Toolbar with Images");

 createImages(shell);

 createContents(shell);

 shell.open();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

 disposeImages();

 display.dispose();

 }

 /**

 * Creates the images

 *

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 * @param shell the parent shell

 */

 private void createImages(Shell shell) {

 try {

 circle = new Image(shell.getDisplay(), new FileInputStream(IMAGE_PATH

 + "circle.gif"));

 grayCircle = new Image(shell.getDisplay(), new FileInputStream(IMAGE_PATH

 + "grayCircle.gif"));

 square = new Image(shell.getDisplay(), new FileInputStream(IMAGE_PATH

 + "square.gif"));

 graySquare = new Image(shell.getDisplay(), new FileInputStream(IMAGE_PATH

 + "graySquare.gif"));

 star = new Image(shell.getDisplay(), new FileInputStream(IMAGE_PATH

 + "star.gif"));

 grayStar = new Image(shell.getDisplay(), new FileInputStream(IMAGE_PATH

 + "grayStar.gif"));

 triangle = new Image(shell.getDisplay(), new FileInputStream(IMAGE_PATH

 + "triangle.gif"));

 grayTriangle = new Image(shell.getDisplay(), new FileInputStream(IMAGE_PATH

 + "grayTriangle.gif"));

 } catch (IOException e) {

 // Images not found; handle gracefully

 }

 }

 /**

 * Disposes the images

 */

 private void disposeImages() {

 if (circle != null)

 circle.dispose();

 if (grayCircle != null)

 grayCircle.dispose();

 if (square != null)

 square.dispose();

 if (graySquare != null)

 graySquare.dispose();

 if (star != null)

 star.dispose();

 if (grayStar != null)

 grayStar.dispose();

 if (triangle != null)

 triangle.dispose();

 if (grayTriangle != null)

 grayTriangle.dispose();

 }

 /**

 * Creates the window contents

 *

 * @param shell the parent shell

 */

 private void createContents(Shell shell) {

 shell.setLayout(new RowLayout(SWT.VERTICAL));

 createToolbar(shell);

 // Create the labels to display the statuses of

 // the "check" and "radio" buttons

 Composite composite = new Composite(shell, SWT.NONE);

 composite.setLayout(new GridLayout(2, true));

 new Label(composite, SWT.RIGHT).setText("Check One Status:");

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 checkOneStatus = new Label(composite, SWT.LEFT);

 checkOneStatus.setText("Off");

 new Label(composite, SWT.RIGHT).setText("Check Two Status:");

 checkTwoStatus = new Label(composite, SWT.LEFT);

 checkTwoStatus.setText("Off");

 new Label(composite, SWT.RIGHT).setText("Radio Status:");

 radioStatus = new Label(composite, SWT.LEFT);

 radioStatus.setText("None");

 }

 /**

 * Creates the toolbar

 *

 * @param shell the parent shell

 */

 private void createToolbar(final Shell shell) {

 ToolBar toolBar = new ToolBar(shell, SWT.HORIZONTAL);

 // Create push buttons

 ToolItem item = createToolItem(toolBar, SWT.PUSH, "Button One", circle, null,

 "This is button one");

 item.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 showMessage(shell, "Button One Pressed");

 }

 });

 item = createToolItem(toolBar, SWT.PUSH, "Button Two", square, null,

 "This is button two");

 item.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 showMessage(shell, "Button Two Pressed");

 }

 });

 ToolItem myItem = new ToolItem(toolBar, SWT.SEPARATOR);

 // Create "check" buttons

 item = createToolItem(toolBar, SWT.CHECK, "Check One", grayStar, star,

 "This is check one");

 item.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 ToolItem item = (ToolItem) event.widget;

 checkOneStatus.setText(item.getSelection() ? "On" : "Off");

 }

 });

 item = createToolItem(toolBar, SWT.CHECK, "Check Two", grayTriangle,

 triangle, "This is check two");

 item.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 ToolItem item = (ToolItem) event.widget;

 checkTwoStatus.setText(item.getSelection() ? "On" : "Off");

 }

 });

 new ToolItem(toolBar, SWT.SEPARATOR);

 // Create "radio" buttons

 item = createToolItem(toolBar, SWT.RADIO, "Radio One", grayCircle, circle,

 "This is radio one");

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 item.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 radioStatus.setText("One");

 }

 });

 item = createToolItem(toolBar, SWT.RADIO, "Radio Two", graySquare, square,

 "This is radio two");

 item.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 radioStatus.setText("Two");

 }

 });

 new ToolItem(toolBar, SWT.SEPARATOR);

 // Create dropdowns

 item = createToolItem(toolBar, SWT.DROP_DOWN, "Dropdown One", star, null,

 "This is dropdown one");

 DropdownSelectionListener listenerOne = new DropdownSelectionListener(item);

 listenerOne.add("Option One for One");

 listenerOne.add("Option Two for One");

 listenerOne.add("Option Three for One");

 item.addSelectionListener(listenerOne);

 item = createToolItem(toolBar, SWT.DROP_DOWN, "Dropdown Two", triangle, null,

 "This is dropdown two");

 DropdownSelectionListener listenerTwo = new DropdownSelectionListener(item);

 listenerTwo.add("Option One for Two");

 listenerTwo.add("Option Two for Two");

 listenerTwo.add("Option Three for Two");

 item.addSelectionListener(listenerTwo);

 }

 /**

 * Helper function to create tool item

 *

 * @param parent the parent toolbar

 * @param type the type of tool item to create

 * @param text the text to display on the tool item

 * @param image the image to display on the tool item

 * @param hotImage the hot image to display on the tool item

 * @param toolTipText the tool tip text for the tool item

 * @return ToolItem

 */

 private ToolItem createToolItem(ToolBar parent, int type, String text,

 Image image, Image hotImage, String toolTipText) {

 ToolItem item = new ToolItem(parent, type);

 item.setText(text);

 item.setImage(image);

 item.setHotImage(hotImage);

 item.setToolTipText(toolTipText);

 return item;

 }

 /**

 * Helper method to display a message box. We use it to display a message when

 * a "push" button or "dropdown" button is pushed.

 *

 * @param shell the parent shell for the message box

 * @param message the message to display

 */

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 public static void showMessage(Shell shell, String message) {

 MessageBox msgBox = new MessageBox(shell, SWT.OK);

 msgBox.setMessage(message);

 msgBox.open();

 }

 /**

 * The application entry point

 *

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 new ToolBarComplex().run();

 }

}

This program uses the same images from the tab section earlier in this chapter, adding some grayscale images so that

the "hot" images stand out. Again, these are all in the downloaded code, and are used from the same location that they

were in the tab example.

To cut down on the amount of code, ToolBarComplex uses a helper method to create the toolbar items, called

createToolItem(). This method creates the toolbar item and sets its text, image, hot image, and tool tip text. The

program doesn't use any disabled images, but you could easily modify the createToolItem() method to accept and set a

disabled image as well.

For the dropdowns to function, create a listener patterned after the one in the previous section, as shown in Listing 8-4.

Listing 8-4: DropdownSelectionListener.java

package examples.ch8;

import org.eclipse.swt.*;

import org.eclipse.swt.events.*;

import org.eclipse.swt.graphics.*;

import org.eclipse.swt.widgets.*;

/**

 * This class provides the "drop down" functionality for our dropdown tool items.

 */

public class DropdownSelectionListener extends SelectionAdapter {

 private ToolItem dropdown;

 private Menu menu;

 /**

 * Constructs a DropdownSelectionListener

 *

 * @param dropdown the dropdown this listener belongs to

 */

 public DropdownSelectionListener(ToolItem dropdown) {

 this.dropdown = dropdown;

 menu = new Menu(dropdown.getParent().getShell());

 }

/**

 * Adds an item to the dropdown list

 *

 * @param item the item to add

 */

public void add(String item) {

 MenuItem menuItem = new MenuItem(menu, SWT.NONE);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 menuItem.setText(item);

 menuItem.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 MenuItem selected = (MenuItem) event.widget;

 dropdown.setText(selected.getText());

 }

 });

}

/**

 * Called when either the button itself or the dropdown arrow is clicked

 *

 * @param event the event that trigged this call

 */

public void widgetSelected(SelectionEvent event) {

 // If they clicked the arrow, we show the list

 if (event.detail == SWT.ARROW) {

 // Determine where to put the dropdown list

 ToolItem item = (ToolItem) event.widget;

 Rectangle rect = item.getBounds();

 Point pt = item.getParent().toDisplay(new Point(rect.x, rect.y));

 menu.setLocation(pt.x, pt.y + rect.height);

 menu.setVisible(true);

 } else {

 // They pushed the button; take appropriate action

 ToolBarComplex.showMessage(dropdown.getParent().getShell(), dropdown

 .getText()

 + " Pressed");

 }

 }

}

Compiling and running this program produces the window shown in Figure 8-10. Figure 8-11 shows the window with

some buttons pressed and a dropdown menu visible.

Figure 8-10: The feature-rich toolbar

Figure 8-11: The feature-rich toolbar in action

[2]http://www.zisman.ca/Articles/1991-92/OCP_AmiPro.html

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig263%5F01%5F0%2Ejpg
file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig263%5F02%5F0%2Ejpg
http://www.zisman.ca/Articles/1991-92/OCP_AmiPro.html

Coolbars

During the one-upmanship of the browser wars of the 1990s, when new versions of Internet Explorer and Netscape

Navigator seemed to appear weekly and everyone talked about "Internet Time," Microsoft introduced the coolbar. It

first appeared in Internet Explorer 3.0 and carried the name "rebar," but even pasty programmers know that rebar

mundanely reinforces concrete, so the name was hastily changed to something more hip. [3] Coolbars contain other

controls—toolbars, combo boxes, edit fields, and so forth—and can be moved around inside the containing window.

You recognize a coolbar by its distinctive "gripper": a vertical line or lines at the left edge of the coolbar that allows

resizing, as seen in Figure 8-12.

Figure 8-12: A coolbar with its gripper

Creating Coolbars

SWT uses two classes to implement coolbars: CoolBar, which contains the items, and CoolItem, which displays a

gripper and the associated control. These two classes are to coolbars what ToolBar and ToolItem are to toolbars, and

shouldn't be subclassed.

Create a coolbar by constructing a CoolBar object, then constructing CoolItem objects and adding controls to them.

CoolBar offers a single constructor:

public CoolBar(Composite parent, int style)

Because no styles are appropriate, you should pass SWT.NONE for style. Table 8-9 lists the CoolBar methods.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig264%5F01%5F0%2Ejpg

Table 8-9: CoolBar Methods

Method Description

CoolItem getItem(int index) Returns the item currently displayed at the specified zero-based

index.

int getItemCount() Returns the number of items that this CoolBar contains.

int[] getItemOrder() Returns an array of integers that reflect the currently displayed

order of the items.

CoolItem[] getItems() Returns an array containing the items in their currently

displayed order.

Point[] getItemSizes() Returns an array containing the Points that describe the sizes of

the items in their currently displayed order.

boolean getLocked() Returns whether this CoolBar is locked (immovable).

int[] getWrapIndices() Returns an array of integers that reflect the currently displayed

order of the items that have wrapped to a second row.

int indexOf(CoolItem item) Returns the zero-based index of the specified item as it's

currently displayed.

void setItemLayout(int[] itemOrder, int[]

wrapIndices, Point[] sizes)
Convenience method to set order, wrap, and sizes in one

method call.

void setLocked(boolean locked) Sets whether this CoolBar is locked (immovable).

void setWrapIndices(int[] wrapIndices) Sets the indices of the items that will wrap to the next row.

Like an empty toolbar, an empty coolbar offers little. The next section discusses how to add items to a coolbar.

Plugging in CoolItems

CoolBars contain CoolItems, which contain other controls. To add a CoolItem to a CoolBar, construct the CoolItem and

pass the CoolBar as the first argument to the constructor. CoolItem offers two constructors, listed in Table 8-10.

Table 8-10: CoolItem Constructors

Constructor Description

CoolItem(CoolBar parent, int style) Constructs a CoolItem at the next logical index.

CoolItem(CoolBar parent, int style, int index) Constructs a CoolItem, using index for the index.

Passing SWT.NONE for style creates a standard cool item. Alternatively, you can pass SWT.DROP_DOWN, which

displays a button with a chevron on the cool item if it's sized too small to display its contents. However, the button

doesn't do anything, so you would have to write code to make it functional.

Table 8-11 lists CoolItem's methods.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table 8-11: CoolItem Methods

Method Description

void addSelectionListener (SelectionListener

listener)
Adds a listener that's notified when this CoolItem is selected.

Point computeSize(int wHint, int hHint) Returns the preferred size of this CoolItem.

Rectangle getBounds() Returns the bounding rectangle for this CoolItem, relative to

its parent.

Control getControl() Returns the control associated with this CoolItem, or null if no

control has been set.

Display getDisplay() Returns the Display associated with this CoolItem.

Point getMinimumSize() Returns the Point describing this CoolItem's minimum size.

CoolBar getParent() Returns this CoolItem's parent.

Point getPreferredSize() Returns the Point describing this CoolItem's preferred size.

Point getSize() Returns the Point describing this CoolItem's current size.

void removeSelectionListener

(SelectionListener listener)
Removes the listener from this CoolItem's notification list.

void setControl(Control control) Sets the control for this CoolItem.

void setMinimumSize(int width, int height) Sets the minimum size for this CoolItem.

void setMinimumSize(Point size) Sets the minimum size for this CoolItem.

void setPreferredSize(int width, int height) Sets the preferred or ideal size for this CoolItem to the

specified width and height.

void setPreferredSize(Point size) Sets the preferred or ideal size for this CoolItem to the

specified size.

void setSize(int width, int height) Sets the actual size for this CoolItem to the specified width

and height.

void setSize(Point size) Sets the actual size for this CoolItem to the specified size.

Create a simple CoolBar containing one button like this:

CoolBar coolbar = new CoolBar(shell, SWT.NONE);

CoolItem item = new CoolItem(coolbar, SWT.NONE);

Button button = new Button(coolbar, SWT.PUSH);

button.setText("Cool One");

item.setControl(button);

// Compute the size by first computing the control's default size

Point pt = button.computeSize(SWT.DEFAULT, SWT.DEFAULT);

// Now we take into account the size of the cool item

pt = item.computeSize(pt.x, pt.y);

// Now we set the size

item.setSize(pt);

Each CoolItem contains exactly one control, which can be a composite containing multiple controls. Notice that you

must size the CoolItem yourself, or it won't be sized properly. Compute the size by first getting the default size for the

control. Then, get the size for the item by passing in the size of its control. Finally, set the computed size back into the

item. The preceding code creates a coolbar that looks like Figure 8-13.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Figure 8-13: A coolbar containing one button

A cool item often contains a toolbar, but can contain any number and type of controls. Add a control to a cool item by

calling the cool item's setControl() method, passing the control. To add multiple controls, create a composite, add the

controls to the composite, and pass the composite to the cool item's setControl() method.

Currently, setting a Combo as the control in a CoolItem doesn't work properly in Windows; the list won't drop down. To

skirt the issue, create a composite whose only control is a Combo, and set the composite into the CoolItem.

The CoolBarTest program in Listing 8-5 creates a coolbar with three items, one containing a toolbar, one containing a

standard dropdown (using the trick from the previous paragraph so that it works properly in Windows), and one

containing two buttons stacked vertically. The item containing the toolbar uses the SWT.DROP_DOWN style, so a

chevron displays if the item is displayed too small to display the full toolbar. The program uses an event handler to

detect when the user clicks the chevron button, and responds to the click by restoring the item to its full size.

Listing 8-5: CoolBarTest.java

package examples.ch8;

import java.io.*;

import org.eclipse.swt.events.*;

import org.eclipse.swt.graphics.*;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.widgets.*;

import org.eclipse.swt.SWT;

public class CoolBarTest {

 private static final String IMAGE_PATH = "images"

 + System.getProperty("file.separator");

 private Image circle;

 private Image square;

 private Image star;

 private Image triangle;

 /**

 * Runs the application

 */

 public void run() {

 Display display = new Display();

 Shell shell = new Shell(display);

 shell.setText("CoolBar Test");

 createImages(shell);

 createContents(shell);

 shell.open();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

 disposeImages();

 display.dispose();

 }

 /**

 * Creates the window contents

 *

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 * @param shell the parent shell

 */

 private void createContents(Shell shell) {

 shell.setLayout(new GridLayout(1, false));

 CoolBar coolbar = createCoolBar(shell);

 coolbar.setLayoutData(new GridData(GridData.FILL_HORIZONTAL));

 }

 /**

 * Creates the CoolBar

 *

 * @param shell the parent shell

 * @return CoolBar

 */

 private CoolBar createCoolBar(Shell shell) {

 CoolBar coolbar = new CoolBar(shell, SWT.NONE);

 // Create toolbar coolitem

 final CoolItem item = new CoolItem(coolbar, SWT.DROP_DOWN);

 item.setControl(createToolBar(coolbar));

 calcSize(item);

 // Add a listener to handle clicks on the chevron button

 item.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 calcSize(item);

 }

 });

 // Create combo coolitem

 CoolItem item2 = new CoolItem(coolbar, SWT.NONE);

 item2.setControl(createCombo(coolbar));

 calcSize(item2);

 // Create a dropdown coolitem

 item2 = new CoolItem(coolbar, SWT.NONE);

 item2.setControl(createStackedButtons(coolbar));

 calcSize(item2);

 return coolbar;

 }

 /**

 * Creates the ToolBar

 *

 * @param composite the parent composite

 * @return Control

 */

 private Control createToolBar(Composite composite) {

 ToolBar toolBar = new ToolBar(composite, SWT.NONE);

 ToolItem item = new ToolItem(toolBar, SWT.PUSH);

 item.setImage(circle);

 item = new ToolItem(toolBar, SWT.PUSH);

 item.setImage(square);

 item = new ToolItem(toolBar, SWT.PUSH);

 item.setImage(star);

 item = new ToolItem(toolBar, SWT.PUSH);

 item.setImage(triangle);

 return toolBar;

 }

 /**

 * Creates the Combo

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 *

 * @param composite the parent composite

 * @return Control

 */

 private Control createCombo(Composite composite) {

 // A bug with Windows causes the Combo not to drop

 // down if you add it directly to the CoolBar.

 // To work around this, create a Composite, add the

 // Combo to it, and add the Composite to the CoolBar.

 // This should work both on Windows and on all other

 // platforms.

 Composite c = new Composite(composite, SWT.NONE);

 c.setLayout(new FillLayout());

 Combo combo = new Combo(c, SWT.DROP_DOWN);

 combo.add("Option One");

 combo.add("Option Two");

 combo.add("Option Three");

 return c;

 }

 /**

 * Creates two stacked buttons

 *

 * @param composite the parent composite

 * @return Control

 */

 private Control createStackedButtons(Composite composite) {

 Composite c = new Composite(composite, SWT.NONE);

 c.setLayout(new GridLayout(1, false));

 new Button(c, SWT.PUSH).setText("Button One");

 new Button(c, SWT.PUSH).setText("Button Two");

 return c;

 }

 /**

 * Helper method to calculate the size of the cool item

 *

 * @param item the cool item

 */

 private void calcSize(CoolItem item) {

 Control control = item.getControl();

 Point pt = control.computeSize(SWT.DEFAULT, SWT.DEFAULT);

 pt = item.computeSize(pt.x, pt.y);

 item.setSize(pt);

 }

 /**

 * Creates the images

 *

 * @param shell the parent shell

 */

 private void createImages(Shell shell) {

 try {

 circle = new Image(shell.getDisplay(), new FileInputStream(IMAGE_PATH

 + "circle.gif"));

 square = new Image(shell.getDisplay(), new FileInputStream(IMAGE_PATH

 + "square.gif"));

 star = new Image(shell.getDisplay(), new FileInputStream(IMAGE_PATH

 + "star.gif"));

 triangle = new Image(shell.getDisplay(), new FileInputStream(IMAGE_PATH

 + "triangle.gif"));

 } catch (IOException e) {

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 // Images not found; handle gracefully

 }

 }

 /**

 * Disposes the images

 */

 private void disposeImages() {

 if (circle != null)

 circle.dispose();

 if (square != null)

 square.dispose();

 if (star != null)

 star.dispose();

 if (triangle != null)

 triangle.dispose();

 }

 /**

 * The entry point for the application

 *

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 new CoolBarTest().run();

 }

}

Figure 8-14 shows the program's window with the three items all in a row. Remember that you can move cool items

around; try moving them around both within the same row and to other rows. Figure 8-15 shows the items after

rearranging.

Figure 8-14: Three cool items

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig271%5F01%5F0%2Ejpg

Figure 8-15: Three cool items rearranged

Try dragging the various cool items over each other, partially obscuring their contents. Notice that the cool item

containing the toolbar displays a chevron when it's partially covered, as seen in Figure 8-16, while the other cool items

don't. Click the chevron button to restore the toolbar's cool item to its original size.

Figure 8-16: A cool item with the SWT.DROP_DOWN style

[3]
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnwui/html/msdn_rebar.asp

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig272%5F01%5F0%2Ejpg
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnwui/html/msdn_rebar.asp

Sashes

Sashes, also called splitters, relinquish control of the allocation of screen space to the user. They divide a window, but

let the user decide where the division occurs. They can be dragged from side to side or up and down, and offer a

flexible way to display two groups of information in a limited space. Perhaps the most familiar use of sashes is in

Windows Explorer, which has a list of drives and directories on the left of a vertical sash, and a list of files and

subdirectories on the right. Users can drag the dividing sash left or right, depending on where they prefer the space to

be allocated.

Creating Sashes

Sashes can be horizontal or vertical; the type is determined at construction time, and cannot be changed. The default

is vertical. Passing SWT.HORIZONTAL or SWT.VERTICAL to the constructor determines the type, as the following code

shows:

Sash horizontalSash = new Sash(shell, SWT.HORIZONTAL); // Horizontal sash

Sash verticalSash = new Sash(shell, SWT.VERTICAL); // Vertical sash

The Sash class provides a limited API that is nonetheless important to ensure proper sash behavior. Table 8-12 lists

the methods that Sash provides.

Table 8-12: Sash Methods

Method Description

void addSelectionListener (SelectionListener listener) Adds a listener that's notified when this Sash is

selected.

Point computeSize(int wHint, int hHint, boolean

changed)
Computes the size for this Sash.

void removeSelectionListener (SelectionListener

listener)
Removes the listener from this Sash's notification list.

When a sash is created, the parent composite determines its size and location according to the parent's layout. For

example, if you create a sash in a composite that's using a FillLayout, the sash will assume the same size and shape

as the other controls in the layout. The SashExampleOne application in Listing 8-6 shows a sash in a FillLayout.

Listing 8-6: SashExampleOne.java

package examples.ch8;

import org.eclipse.swt.*;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.widgets.*;

/**

 * This class demonstrates a Sash

 */

public class SashExampleOne {

 /**

 * Runs the application

 */

 public void run() {

 Display display = new Display();

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 Shell shell = new Shell(display);

 shell.setText("Sash One");

 createContents(shell);

 shell.pack();

 shell.open();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

 display.dispose();

 }

 /**

 * Creates the contents of the main window

 *

 * @param composite the parent composite

 */

 public void createContents(Composite composite) {

 composite.setLayout(new FillLayout());

 new Text(composite, SWT.BORDER);

 new Sash(composite, SWT.VERTICAL);

 new Text(composite, SWT.BORDER);

 }

 /**

 * Application entry point

 *

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 new SashExampleOne().run();

 }

}

This application creates two text fields, separated by a sash, in a FillLayout. The window it displays looks like Figure

8-17. The gap between the text fields is the sash, and you can drag it left or right (though it won't stay where you drag

it).

Figure 8-17: A sash between two text fields

However, because a sash is just a divider, you likely don't want one to usurp the same amount of space as your other

controls. In fact, you most likely want the sash to be a thin stripe, with the controls on either side attached. As the sash

moves, you want the adjacent edges of the controls on either side of the sash to move as well. Use a FormLayout and

its FormData and FormAttachment helper classes to implement this behavior.

Switching the preceding code to use a FormLayout makes the createContents() method look like this:

public void createContents(Composite composite) {

 composite.setLayout(new FormLayout());

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 // Create the sash first, so the other controls

 // can be attached to it.

 Sash sash = new Sash(composite, SWT.VERTICAL);

 FormData data = new FormData();

 data.top = new FormAttachment(0, 0); // Attach to top

 data.bottom = new FormAttachment(100, 0); // Attach to bottom

 data.left = new FormAttachment(50, 0); // Attach halfway across

 sash.setLayoutData(data);

 // Create the first text box and attach its right edge

 // to the sash

 Text one = new Text(composite, SWT.BORDER);

 data = new FormData();

 data.top = new FormAttachment(0, 0);

 data.bottom = new FormAttachment(100, 0);

 data.left = new FormAttachment(0, 0);

 data.right = new FormAttachment(sash, 0);

 one.setLayoutData(data);

 // Create the second text box and attach its left edge

 // to the sash

 Text two = new Text(composite, SWT.BORDER);

 data = new FormData();

 data.top = new FormAttachment(0, 0);

 data.bottom = new FormAttachment(100, 0);

 data.left = new FormAttachment(sash, 0);

 data.right = new FormAttachment(100, 0);

 two.setLayoutData(data);

}

Review Chapter 4, if necessary, to understand the parameters you're passing to the various FormAttachment objects.

The application now looks as it should, as shown in Figure 8-18. The sash is now the correct width.

Figure 8-18: The sash revisited

Dragging the sash left or right displays an outline of where the sash should go when you release the mouse button, as

seen in Figure 8-19. However, releasing the mouse button doesn't cause the sash to relocate; the sash stubbornly

remains at its initial location, ignoring your dragging action. The next section explains how to make the sash obey the

requested move.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Figure 8-19: Dragging the sash

Making a Sash Stick

The default behavior of the sash allows dragging, but you must write code to make the sash stay where the users drag

it. Fortunately, this code is simple. You implement an event handler to adjust the FormAttachment object associated

with the sash's movable direction. For a vertical sash, adjust the left FormAttachment; for a horizontal sash, adjust the

top FormAttachment.

Add this code to createContents():

sash.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 // Reattach to the left edge, and use the x value of the event to

 // determine the offset from the left

 ((FormData) sash.getLayoutData()).left = new FormAttachment(0, event.x);

 // Until the parent window does a layout, the sash will not be redrawn in

 // its new location. So, force a layout.

 sash.getParent().layout();

 }

});

You also must make the sash variable final, so that you can use it in the event handler:

final Sash sash = new Sash(composite, SWT.VERTICAL);

You must also import the SWT events package:

import org.eclipse.swt.events.*;

Now the sash will stay where you move it (see Figure 8-20).

Figure 8-20: A sash that sticks

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Tables

Presenting columnar data without the aid of tables would prove difficult at best. Tables, sometimes called grids, excel

at organizing data in a format popularized by spreadsheet programs. SWT tables can display either text or graphics in

each table cell, support single-line, clickable headers (often used to allow the user to sort the data in the column), and

can either show or hide their grid lines. They also can contain other widgets inside their cells (discussed in the next

chapter). They use three classes—Table, TableColumn, and TableItem—that correspond to the table, its columns, and

its rows, respectively. None of these classes should be subclassed.

Creating Tables

The Table class offers a lone constructor, which takes a parent and a style:

public Table(Composite parent, int style)

Table 8-13 lists its style constants. You can combine styles using the bitwise OR operator.

Table 8-13: Table Styles

Style Description

SWT.SINGLE Only one table row may be selected at a time. This is the default.

SWT.MULTI Multiple table rows may be selected, usually by holding down a key on the

keyboard (typically the Ctrl key) while clicking the table row.

SWT.CHECK Places a checkbox at the beginning of each table row. Note that the checked

state of the checkbox is independent from the selected state of the table row.

SWT.FULL_SELECTION Highlights the entire row, rather than just the first column of the row, when the

row is selected. The default is to highlight only the first column.

SWT.HIDE_SELECTION Removes the highlight from the selected row (if any) when the window

containing the table isn't the foreground window. The default is to keep the row

highlighted whether or not the parent window is the foreground window.

Figure 8-21 shows a table created with the SWT.SINGLE and SWT.CHECK styles, as created by this code:

Table table = new Table(parent, SWT.SINGLE | SWT.CHECK);

Figure 8-21: A single-selection, checkbox table

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig278%5F01%5F0%2Ejpg

Figure 8-22 shows a table created with the SWT.MULTI and SWT.FULL_SELECTION styles, as created by this code:

Table table = new Table(parent, SWT.MULTI | SWT.FULL_SELECTION);

Figure 8-22: A multi- and full-selection table

A rich control such as Table merits a rich API, and Table certainly offers that. Most of Table's public methods deal with

selecting and deselecting items in the table, but other methods allow you to show or hide headers or grid lines, or set

or retrieve display properties such as the font. Table 8-14 lists Table's methods.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig278%5F02%5F0%2Ejpg

Table 8-14: Table Methods

Method Description

void addSelectionListener

(SelectionListener listener)
Adds a listener that's notified when this table is selected.

void deselect(int index) Deselects the item at the specified zero-based index.

void deselect(int[] indices) Deselects the items at the specified zero-based indices. Valid for

multiselection tables.

void deselect(int start, int end) Deselects the range of items specified by start and end, inclusive. Valid for

multiselection tables.

void deselectAll() TableColumn

getColumn(int index)
Deselects all items. Returns the column at the specified zero-based index.

int getColumnCount() Returns the number of columns in the table.

TableColumn[] getColumns() Returns all the columns in the table.

int getGridLineWidth() Returns the width, in pixels, of the grid lines used to separate table cells.

int getHeaderHeight() Returns the height, in pixels, of the header.

boolean getHeaderVisible() Returns true if the header is visible, false if it isn't.

TableItem getItem(int index) Returns the item at the specified zero-based index.

TableItem getItem(Point point) Returns the item at the specified point, or null if no item exists at the point.

int getItemCount() Returns the number of items in the table.

int getItemHeight() Returns the height in pixels of a single item in the table.

TableItem[] getItems() Returns all the items in the table.

boolean getLinesVisible() Returns true if the grid lines separating the table cells are visible, false if

they aren't.

TableItem[] getSelection() Returns all the selected items.

int getSelectionCount() Returns the number of selected items.

int getSelectionIndex() Returns the zero-based index of the selected item, or -1 if no items are

selected. In the case of multiselect tables with multiple items selected,

returns the index of the first selected item only.

int[] getSelectionIndices() Returns the zero-based indices of all selected items, or an empty array if

no items are selected. Valid for multiselect tables.

int getTopIndex() Returns the zero-based index of the item currently displayed at the top of

the table.

int indexOf(TableColumn

column)
Returns the zero-based index of the specified column.

int indexOf(TableItem item) Returns the zero-based index of the specified item.

boolean isSelected(int index) Returns true if the item at the specified zero-based index is selected, or

false if it isn't.

void remove(int index) Removes the item at the specified zero-based index. Throws an

IllegalArgumentException if no item exists at the index.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Method Description

void remove(int[] indices) Removes the items at the specified zero-based indices. Throws an

IllegalArgumentException if any of the items don't exist.

void remove(int start, int end) Removes all items in the range specified by start and end, inclusive.

Throws an IllegalArgumentException if any of the items don't exist.

void removeAll() Removes all items in the table.

void removeSelectionListener

(SelectionListener listener)
Removes the listener from the notification list.

void select(int index) Selects the item at the specified zero-based index.

void select(int[] indices) Selects the items at the specified zero-based indices. Valid for multiselect

tables.

void select(int start, int end) Selects the items in the range specified by start and end, inclusive. Valid

for multiselect tables.

void selectAll() Selects all the items in the table.

void setFont(Font font) Sets the font used to display text in the table. Passing null causes the

default font to be used.

void setHeaderVisible(boolean

show)
If show is true, displays the header. If show is false, doesn't display the

header. The table defaults to not showing the header.

void setLinesVisible(boolean

show)
If show is true, displays the grid lines separating the table cells. If show is

false, doesn't display the grid lines. The table defaults to not showing the

grid lines.

void setRedraw(boolean redraw) If redraw is false, subsequent drawing operations will be ignored. Warning:

leaving this set at false causes your table never to be redrawn. Use this

before inserting items into the table to prevent flashing and multiple

repaints, but be sure to set this back to true.

void setSelection(int index) Selects the item at the specified zero-based index.

void setSelection(int[] indices) Selects the items at the specified zero-based indices.

void setSelection(int start, int

end)
Selects the range of items specified by start and end, inclusive.

void setSelection(TableItem[]

items)
Selects the specified items.

void setTopIndex(int index) Moves the item indicated by the specified zero-based index to the top (or

as close to the top as scrolling allows) of the displayed table.

void showItem(TableItem item) Moves the specified item into view, scrolling the table if necessary.

void showSelection() Shows the selected item or items.

Adding Columns

The TableColumn class represents a column in the table. You create a column with a parent table, a style, and

optionally an index. If you don't specify an index, the column assumes the next available zero-based index. Here are

TableColumn's constructors:

public TableColumn(Table parent, int style)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

public TableColumn(Table parent, int style, int index)

The supported styles all specify the alignment for the column's contents: SWT.LEFT for left alignment, SWT.CENTER

for center alignment, and SWT.RIGHT for right alignment. You should specify only one of these; specifying more than

one results in undefined behavior. You can change alignment after construction using the setAlignment() method.

Alignment defaults to left and affects all rows in the column.

Columns in the table can display headers. Each header can have a single line of text (embedding carriage returns or

linefeeds in the text causes the ASCII representation of the character to be displayed; see Figure 8-23). The parent

table controls whether headers are displayed through its setHeadersVisible() method.

Figure 8-23: An attempt to show two lines of text in a column header

Columns in the table can be clicked or resized. However, nothing happens when the column header is clicked, so if

you want the column to sort when the header is clicked, you must write an event handler.

Table 8-15 lists TableColumn's methods.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Table 8-15: TableColumn Methods

Method Description

void addControlListener (ControlListener

listener)
Adds a listener that's notified when the column is resized or

moved.

void addSelectionListener

(SelectionListener listener)
Adds a listener that's notified when the column header is

selected.

int getAlignment() Returns the alignment for this column, which is SWT.LEFT,

SWT.CENTER, or SWT.RIGHT.

Image getImage() Returns the image displayed in this column's header.

Table getParent() Returns the parent table for this column.

boolean getResizable() Returns true if this column can be resized, false if it can't.

String getText() Returns the text displayed in this column's header.

int getWidth() Returns the width, in pixels, of this column.

void pack() Resizes this column to the minimum width that will still fit all its

contents (not including the header's contents).

void removeControlListener

(ControlListener listener)
Removes the listener from the notification list.

void removeSelectionListener

(SelectionListener listener)
Removes the listener from the notification list.

void setAlignment(int alignment) Sets the alignment for this column, which should be one of

SWT.LEFT, SWT.CENTER, or SWT.RIGHT.

void setImage(Image image) Sets the image to display in this column's header. Pass null for

no image.

void setResizable(boolean resizable) Sets whether this column can be resized.

void setText(String string) Sets the text to display in this column's header.

void setWidth(int width) Sets the width, in pixels, for this column.

Adding Rows

The TableItem class represents rows in the table. The parent of a TableItem, as with a TableColumn, is the containing

Table. Therefore, here are its constructors:

TableItem(Table parent, int style)

TableItem(Table parent, int style, int index)

Using the second constructor inserts the row at the specified zero-based index, and shifts existing rows downward.

Passing an index out of range throws an IllegalArgumentException. For example, if no rows currently exist in the table,

try writing this code:

new TableItem(table, SWT.NONE, 1);

The preceding code results in this exception:

java.lang.IllegalArgumentException: Index out of bounds

No styles apply for TableItem, so you should always pass SWT.NONE. SWT ignores any other value.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

You can change both the background color and the foreground color for a TableItem, either on a row-wide or an

individual-cell basis. Cells can display text, images, or both. If you specify both, the image will display to the left of the

text. Rows in the table can also sport a checkbox, displayed to the left of the row. Table 8-16 lists the API that makes

these possible.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Table 8-16: TableItem Methods

Method Description

Color getBackground() Returns the background color (for the entire row) for this table item.

Color getBackground(int

index)
Returns the background color for this table item for the column at the specified

zero-based index.

Rectangle getBounds(int

index)
Returns the size and location for this table item for the column at the specified

zero-based index.

boolean getChecked() Returns true if the checkbox for this table item is checked, false if it's not

checked.

Color getForeground() Returns the foreground color (for the entire row) for this table item.

Color getForeground(int

index)
Returns the foreground color for this table item for the column at the specified

zero-based index.

boolean getGrayed() If this table item has a checkbox, returns true if the table item is grayed

(indeterminate), false if it's not grayed.

Image getImage() Returns the image for this table item (for the entire row).

Image getImage(int index) Returns the image for this table item for the column at the specified

zero-based index.

Rectangle

getImageBounds(int index)
Returns the size and location for the image for this table item for the column at

the specified zero-based index.

int getImageIndent() Returns the image indent (the padding to the left of the image), in increments

of the image's width.

Table getParent() Returns this table item's parent.

String getText(int index) Returns the text for the column at the specified zero-based index, or an empty

string (not null) if no text has been set.

void setBackground(Color

color)
Sets the background color for this table item for the entire row.

void setBackground(int

index, Color color)
Sets the background color for this table item for the column at the specified

zero-based index.

void setChecked(boolean

checked)
If this table item has a checkbox, sets its checked status.

void setForeground(Color

color)
Sets the foreground color for this table item for the entire row.

void setForeground(int

index, Color color)
Sets the foreground color for this table item for the column at the specified

zero-based index.

void setGrayed(boolean

grayed)
If this table item has a checkbox, sets its grayed (indeterminate) status.

void setImage(Image

image)
Sets the image for this table item for the first column.

void setImage(Image[]

images)
Sets the images for this table item for multiple columns. Each image in the

array is set into the column at the corresponding zero-based index.

void setImage(int index,

Image image)
Sets the image for this table item for the column at the specified zero-based

index.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Method Description

void setImageIndent(int

indent)
Sets the image indent (the padding to use to the left of the image) in

increments of the image's width.

void setText(int index,

String string)
Sets the text for this row item for the column at the specified zero-based index.

Passing null for string throws an IllegalArgumentException.

void setText(String string) Sets the text for this row item for the first column. Passing null for string throws

an IllegalArgumentException.

void setText(String[]

strings)
Sets the text for this table item for multiple columns. Each string in the array is

set into the column at the corresponding zero-based index. Passing null for any

of the String objects in the array throws an IllegalArgumentException.

One invaluable application for software developers, one that begs for a table, is a simple ASCII table that displays

ASCII characters and their decimal, hexadecimal, octal, and binary representations. Displaying ASCII tables using

Java is a little tricky, because Java stores all characters as Unicode. Unicode is sprinkled with control characters, but

as long as you confine yourself to the first 128 characters in the ASCII set, you should have no issues.

The AsciiTable application in Listing 8-7 uses a table to display the first 128 characters in the ASCII set, along with

their decimal, hexadecimal, octal, and binary representations. It also displays the names of the first 32 characters. It

uses the table's headers to label the columns, and puts each display value in its own cell. For fun, it uses various

background colors for the rows, demonstrating how easy changing colors in rows is.

Listing 8-7: AsciiTable.java

package examples.ch8;

import org.eclipse.swt.*;

import org.eclipse.swt.graphics.Font;

import org.eclipse.swt.graphics.Color;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.widgets.*;

/**

 * Displays ASCII Codes

 */

public class AsciiTable {

 // The number of characters to show.

 private static final int MAX_CHARS = 128;

 // Names for each of the columns

 private static final String[] COLUMN_NAMES = { "Char", "Dec", "Hex", "Oct",

 "Bin", "Name"};

 // The names of the first 32 characters

 private static final String[] CHAR_NAMES = { "NUL", "SOH", "STX", "ETX", "EOT",

 "ENQ", "ACK", "BEL", "BS", "TAB", "LF", "VT", "FF", "CR", "SO", "SI",

 "DLE", "DC1", "DC2", "DC3", "DC4", "NAK", "SYN", "ETB", "CAN", "EM", "SUB",

 "ESC", "FS", "GS", "RS", "US", "Space"};

 // The font to use for displaying characters

 private Font font;

 // The background colors to use for the rows

 private Color[] colors = new Color[MAX_CHARS];

 /**

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 * Runs the application

 */

 public void run() {

 Display display = new Display();

 Shell shell = new Shell(display);

 shell.setText("ASCII Codes");

 createContents(shell);

 shell.pack();

 shell.open();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

 // Call dispose to dispose any resources

 // we have created

 dispose();

 display.dispose();

 }

 /**

 * Disposes the resources created

 */

 private void dispose() {

 // We created this font; we must dispose it

 if (font != null) {

 font.dispose();

 }

 // We created the colors; we must dispose them

 for (int i = 0, n = colors.length; i < n; i++) {

 if (colors[i] != null) {

 colors[i].dispose();

 }

 }

 }

 /**

 * Creates the font

 */

 private void createFont() {

 // Create a font that will display the range

 // of characters. "Terminal" works well in

 // Windows

 font = new Font(Display.getCurrent(), "Terminal", 10, SWT.NORMAL);

 }

 /**

 * Creates the columns for the table

 *

 * @param table the table

 * @return TableColumn[]

 */

 private TableColumn[] createColumns(Table table) {

 TableColumn[] columns = new TableColumn[COLUMN_NAMES.length];

 for (int i = 0, n = columns.length; i < n; i++) {

 // Create the TableColumn with right alignment

 columns[i] = new TableColumn(table, SWT.RIGHT);

 // This text will appear in the column header

 columns[i].setText(COLUMN_NAMES[i]);

 }

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 return columns;

 }

 /**

 * Creates the window's contents (the table)

 *

 * @param composite the parent composite

 */

 private void createContents(Composite composite) {

 composite.setLayout(new FillLayout());

 // The system font will not display the lower 32

 // characters, so create one that will

 createFont();

 // Create a table with visible headers

 // and lines, and set the font that we

 // created

 Table table = new Table(composite, SWT.SINGLE | SWT.FULL_SELECTION);

 table.setHeaderVisible(true);

 table.setLinesVisible(true);

 table.setRedraw(false);

 table.setFont(font);

 // Create the columns

 TableColumn[] columns = createColumns(table);

 for (int i = 0; i < MAX_CHARS; i++) {

 // Create a background color for this row

 colors[i] = new Color(table.getDisplay(), 255 - i, 127 + i, i);

 // Create the row in the table by creating

 // a TableItem and setting text for each

 // column

 int c = 0;

 TableItem item = new TableItem(table, SWT.NONE);

 item.setText(c++, String.valueOf((char) i));

 item.setText(c++, String.valueOf(i));

 item.setText(c++, Integer.toHexString(i).toUpperCase());

 item.setText(c++, Integer.toOctalString(i));

 item.setText(c++, Integer.toBinaryString(i));

 item.setText(c++, i < CHAR_NAMES.length ? CHAR_NAMES[i] : "");

 item.setBackground(colors[i]);

 }

 // Now that we've set the text into the columns,

 // we call pack() on each one to size it to the

 // contents

 for (int i = 0, n = columns.length; i < n; i++) {

 columns[i].pack();

 }

 // Set redraw back to true so that the table

 // will paint appropriately

 table.setRedraw(true);

 }

 /**

 * The application entry point

 *

 * @param args the command line arguments

 */

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 public static void main(String[] args) {

 new AsciiTable().run();

 }

}

Run the application to see the ASCII table shown in Figure 8-24.

Figure 8-24: The AsciiTable application

Sorting Tables

Users expect that clicking table headers will sort the rows by that column, alternating between ascending and

descending order. SWT's Table doesn't do that automatically, but sorting is trivial to implement. To implement sorting,

you do the following:

Add a listener to detect when the column header is clicked.1.

Retain the current sort information (which column the table is currently sorted by, and which

direction it's sorted—ascending or descending).

2.

Sort the data within the table and redisplay.3.

The PlayerTable application illustrates sorting. It displays baseball players' names and lifetime batting averages. You

can sort the table by first name, last name, or batting average. Download the code to see this application; this section

highlights the classes and their functions.

The Player class holds the player information: first name, last name, and batting average. It offers standard getters and

setters for those fields. The application stores the Player objects in a java.util.List, and relies on Collections.sort(list,

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig288%5F01%5F0%2Ejpg

comparator) to do the sorting.

The PlayerComparator class performs the comparisons. Its implementation of compare(Object obj1, Object obj2) sorts on

the specified column and in the specified direction, so it contains state variables and setters for column and direction. It

could also provide a getter for the direction, so that reversing the direction would entail the following:

Getting the current direction from the comparator1.

Calculating the value for the reversed direction2.

Setting the new direction back into the comparator3.

Because this seems more complicated than it should be, the PlayerComparator class instead has a convenience

method that simply reverses the direction.

Finally, the PlayerTable class launches the application, creates and stores a list of players, and also creates an

instance of PlayerComparator to use in the event handlers. The application creates a table, adds three columns (first

name, last name, and batting average), and adds listeners to each column that are triggered when the column's

header is clicked. This listener does the following:

Sets the column for sorting into the comparator1.

Reverses the direction for the sort2.

Calls the fillTable() helper method, which empties the table, sorts the players, and reinserts them

into the table

3.

The code for each listener looks something like this:

columns[0].addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 comparator.setColumn(PlayerComparator.FIRST_NAME);

 comparator.reverseDirection();

 fillTable(table);

 }

});

Each time the user clicks a table header, the listener sets the comparator's column member to the clicked column. It

then reverses the direction for the sort, and refills the table with the sorted data.

Compile and run the application. You should see a window like the one in Figure 8-25. Click the column headers to

sort the players; Figure 8-26 shows the players sorted by batting average.

Figure 8-25: The players

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Figure 8-26: The players sorted by batting average

If you're a Swing developer, you're probably smirking about how tedious it was to sort the table: drop the data, reorder

it, and reinsert it. Programming with SWT means programming at the widget level, with data (model), view, and the

means to manipulate that view (controller) inseparably intertwined. Separating data, view, and controller in an MVC

pattern, as Swing's table does, makes sorting more straightforward. However, remember that although SWT exposes

only the widget interface, JFace provides an MVC layer on top of SWT that makes table sorting in JFace as simple as

in Swing. Chapter 14 covers tables, along with how to sort them, in JFace.

Putting Widgets in the Cells

Sometimes you'll use tables purely for displaying data, but other times you'll want to provide means for editing that

data. Tables in SWT support widgets in cells, so you can allow users to edit table data within the table. The TableEditor

class, part of the org.eclipse.swt.custom package, provides this functionality. Chapter 9 covers the org.eclipse.swt.custom

package, including putting widgets in table cells.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Trees

Trees present hierarchical data. Like tables, trees contain items. However, instead of being arranged in columns and

rows, items in trees can contain other items, creating parent-child relationships between them. Users can hide or show

the children of each item in the tree—a process called contraction and expansion, respectively. The selective display

ability of trees allows them to use their allotted space economically to present large amounts of data.

Creating Trees

SWT uses two classes, Tree and TreeItem, to implement tree controls. Neither of these should be subclassed. You

create a tree by instantiating a Tree object, passing the parent and the desired style, as shown by this constructor:

public Tree(Composite parent, int style)

Trees can allow either a single selection or multiple selections. They also can have a checkbox displayed to the left of

each item in the tree. These attributes are controlled by the style constants passed to the constructor, shown in Table

8-17. You can combine style constants using the bitwise OR operator. However, you should specify only one of

SWT.SINGLE and SWT.MULTI.

Table 8-17: Tree Styles

Style Description

SWT.SINGLE Allows only one item in the tree to be selected at a time. This is the default.

SWT.MULTI Allows multiple items in the tree to be selected at the same time, usually by holding down a

key on the keyboard (typically the Ctrl key) while clicking each tree node.

SWT.CHECK Displays a checkbox to the left of each of the root items in the tree.

Table 8-18 lists Tree's methods.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Table 8-18: Tree Methods

Method Description

void addSelectionListener

(SelectionListener listener)
Adds a listener that's notified when the tree's selection changes.

void addTreeListener (TreeListener

listener)
Adds a listener that's notified when any part of the tree is expanded

or collapsed.

void deselectAll() Deselects any selected items in the tree.

TreeItem getItem(Point point) Returns the item that contains the specified point, or null if the point

isn't contained by any item.

int getItemCount() Returns the number of items in the tree.

int getItemHeight() Returns the height, in pixels, of a single item in the tree.

TreeItem[] getItems() Returns the items in the tree.

TreeItem getParentItem() Returns the parent item in the tree.

TreeItem[] getSelection() Returns the selected items in the tree.

int getSelectionCount() Returns the number of items selected in the tree.

TreeItem getTopItem() Returns the item currently displayed at the top of the tree.

void removeAll() Removes all items from the tree.

void removeSelection

Listener(SelectionListener listener)
Removes the specified listener from the notification list.

void removeTreeListener

(TreeListener listener)
Removes the specified listener from the notification list.

void selectAll() Selects all the items in the tree.

void setInsertMark (TreeItem item,

boolean before)
Shows the insertion point where a new item would be inserted into

the tree. If before is true, shows the mark above the specified item;

otherwise, shows the mark below the item.

void setRedraw(boolean redraw) If redraw is false, suspends further drawing of the tree. Otherwise,

resumes drawing the tree anytime the tree needs to be redrawn.

void setSelection (TreeItem[] items) Selects the specified items in the tree.

void setTopItem (TreeItem item) Moves the item to the top (or as close to the top as scrolling will

allow) of the displayed portion of the tree.

void showItem(TreeItem item) Displays the specified item in the tree, scrolling the view of the tree if

necessary.

void showSelection() Displays the selected item in the tree, scrolling the view of the tree if

necessary.

Adding Nodes

Nodes in a tree, also called leaves and branches (stretching the metaphor beyond its usefulness), are implemented by

the TreeItem class. Nodes can be at the root of the tree, or they can be children of another node. You determine the

parent of a node at construction time, and it cannot be changed. For root nodes, pass the Tree itself as the parent; for

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

child nodes, pass the parent TreeItem. Table 8-19 lists the TreeItem constructors.

Table 8-19: TreeItem Constructors

Constructor Description

public TreeItem(Tree parent, int style) Creates a root tree item with the specified style.

public TreeItem(Tree parent, int

style, int index)
Creates a root tree item with the specified style and at the specified

zero-based index.

public TreeItem(TreeItem parentItem,

int style)
Creates a tree item that is a child to parentItem, with the specified style.

public TreeItem(TreeItem parentItem,

int style, int index)
Creates a tree item that is a child to parentItem, with the specified

style and at the specified zero-based index, relative to parentItem.

The nodes in a tree can display images and text. Each node can display a background color, and can have a

checkbox at its left (for trees created with the SWT.CHECK style). Table 8-20 lists the methods for TreeItem.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Table 8-20: TreeItem Methods

Method Description

Color getBackground() Returns the background color for this item.

Rectangle getBounds() Returns the bounding Rectangle for this item, relative to the parent tree.

boolean getChecked() Returns true if the checkbox for this item is checked, false if it isn't checked. Used

for items in tables created with the SWT.CHECK style.

boolean getExpanded() Returns true if the item is expanded, false if it isn't expanded.

Color getForeground() Returns the foreground color for this item.

boolean getGrayed() Returns true if the checkbox for this item is in the indeterminate state, false if it

isn't in the indeterminate state. Used for items in tables created with the

SWT.CHECK style.

Image getImage() Gets the image for this item.

int getItemCount() Returns the number of items that are children of this item.

TreeItem[] getItems() Returns the items that are children of this item.

Tree getParent() Returns the parent tree of this item.

TreeItem getParentItem() Returns the parent item of this tree, or null if this item is at the root of the tree.

String getText() Returns the text for this item. Defined in superclass Item.

void setBackground

(Color color)
Sets the background color for this item.

void setChecked

(boolean checked)
If checked is true, places a check in the checkbox for this item. Otherwise,

removes the check from the checkbox for this item. Used for items in trees

created with the SWT.CHECK style.

void setExpanded

(boolean expanded)
If expanded is true, expands the item. Otherwise, collapses the item.

void setForeground

(Color color)
Sets the foreground color for this item.

void setGrayed (boolean

grayed)
If grayed is true, sets the checkbox for this item in the indeterminate state.

Otherwise, removes it from indeterminate state.

void setImage(Image

image)
Sets the image for this item.

void setText(String text) Sets the text for this item.

The TreeExample application in Listing 8-8 creates three trees: a single-selection tree, a multiselection tree, and a

checkbox tree. You can expand and contract the nodes in the trees, select them, and check and uncheck their

checkboxes.

Listing 8-8: TreeExample.java

package examples.ch8;

import org.eclipse.swt.*;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.widgets.*;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

/**

 * Displays a single-selection tree, a multiselection tree, and a checkbox tree

 */

public class TreeExample {

 /**

 * Runs the application

 */

 public void run() {

 Display display = new Display();

 Shell shell = new Shell(display);

 shell.setText("TreeExample");

 createContents(shell);

 shell.open();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

 display.dispose();

 }

 private void createContents(Composite composite) {

 // Set the single-selection tree in the upper left,

 // the multiselection tree in the upper right,

 // and the checkbox tree across the bottom.

 // To do this, create a 1x2 grid, and in the top

 // cell, a 2x1 grid.

 composite.setLayout(new GridLayout(1, true));

 Composite top = new Composite(composite, SWT.NONE);

 GridData data = new GridData(GridData.FILL_BOTH);

 top.setLayoutData(data);

 top.setLayout(new GridLayout(2, true));

 Tree single = new Tree(top, SWT.SINGLE | SWT.BORDER);

 data = new GridData(GridData.FILL_BOTH);

 single.setLayoutData(data);

 fillTree(single);

 Tree multi = new Tree(top, SWT.MULTI | SWT.BORDER);

 data = new GridData(GridData.FILL_BOTH);

 multi.setLayoutData(data);

 fillTree(multi);

 Tree check = new Tree(composite, SWT.CHECK | SWT.BORDER);

 data = new GridData(GridData.FILL_BOTH);

 check.setLayoutData(data);

 fillTree(check);

 }

 /**

 * Helper method to fill a tree with data

 *

 * @param tree the tree to fill

 */

 private void fillTree(Tree tree) {

 // Turn off drawing to avoid flicker

 tree.setRedraw(false);

 // Create five root items

 for (int i = 0; i < 5; i++) {

 TreeItem item = new TreeItem(tree, SWT.NONE);

 item.setText("Root Item " + i);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 // Create three children below the root

 for (int j = 0; j < 3; j++) {

 TreeItem child = new TreeItem(item, SWT.NONE);

 child.setText("Child Item " + i + " - " + j);

 // Create three grandchildren under the child

 for (int k = 0; k < 3; k++) {

 TreeItem grandChild = new TreeItem(child, SWT.NONE);

 grandChild.setText("Grandchild Item " + i + " - " + j + " - " + k);

 }

 }

 }

 // Turn drawing back on!

 tree.setRedraw(true);

 }

 /**

 * The entry point for the application

 *

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 new TreeExample().run();

 }

}

Compile and run the program to see the main window, shown in Figure 8-27. Figure 8-28 shows the tree after some

manipulation.

Figure 8-27: A single-selection tree, a multiselection tree, and a checkbox tree

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig296%5F01%5F0%2Ejpg

Figure 8-28: The trees after expanding and selecting

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig297%5F01%5F0%2Ejpg

Combining Advanced Controls

Using several advanced controls in concert demonstrates their power. The code you can download contains an XML

viewer program (called, imaginatively, XmlView) that uses a tree to navigate the hierarchy of the XML, and a table to

display the attributes of the selected tree node. A sash separates the tree and table, so you can reallocate the division

of space between them. You can open multiple XML files simultaneously, and each file displays in its own tab. The

program offers both a menu and a toolbar to open and close files.

The program uses a toolkit called JDOM to read and parse the XML files. See the sidebar "What Is JDOM?" for more

information on JDOM. To build and run the application, you need JDOM, available for download from

http://www.jdom.org/, in your classpath.

What Is JDOM?

JDOM (which doesn't stand for anything) is an open-source toolkit for reading and writing XML data. Written in

and designed especially for Java, it meshes well with existing Java constructs, APIs, and classes. Though the

library officially claims beta status (the current version is JDOM Beta 10 Release Candidate #1), it nonetheless

is sufficiently robust for prime-time use.

Reading and writing XML data has typically meant using the Document Object Model (DOM), which stretches

the capabilities of all but the elite. In response to the complexities, Jason Hunter and Brett McLaughlin launched

the JDOM Project "to build a complete, Java-based solution for accessing, manipulating, and outputting XML

data from Java code" (from the JDOM Web site).

Read more about the JDOM Project at http://www.jdom.org/.

When you first run the XmlView application, the window looks like Figure 8-29. Figure 8-30 shows the program with

three open files.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://www.jdom.org/
http://www.jdom.org/
file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig298%5F01%5F0%2Ejpg

Figure 8-29: The XmlView application

Figure 8-30: The XmlView application with three open files

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig299%5F01%5F0%2Ejpg

Summary

By using SWT's advanced controls, you expand the domain of problems you can solve with your applications. The

controls aren't difficult to program, and add professionalism to your programs. Leveraging your users' familiarity with

these controls eases their learning curve with your applications.

The next chapter discusses SWT's custom controls, which enhance some of the controls discussed in this chapter and

some from Chapter 5. As promised, it also explains how to place controls inside cells in a table.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Chapter 9: The Custom Controls

Overview

Chapter 5 details the basic widgets offered by SWT, and Chapter 8 explores advanced widgets suitable for most tasks.

The Eclipse developers, however, aimed for a best-of-breed IDE and thus had interface requirements that neither the

basic nor the advanced widgets could handle. To answer their requirements, they created the org.eclipse.swt.custom

package, which contains new controls to add functionality, makes enhancements to existing controls, and contains

new controls to work with existing controls. This chapter examines the following:

BusyIndicator

CCombo

CLabel

CTabFolder

TableTree

Control editors

TableCursor

PopupList

SashForm

ScrolledComposite

ViewForm

Using these controls adds a professional touch to your applications, improving the user experience and adding polish.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Introducing BusyIndicator

Ideally, your applications will perform all operations instantaneously, responding immediately to every user input and

never making your users wait. Sometimes, however, your applications can't avoid performing tasks that take time, and

they can't respond to user input until they're done. In these situations, informing users you're temporarily paying them

no attention usually only makes your inattentiveness forgivable. The busy cursor, implemented by SWT's BusyIndicator

class, provides this simple feedback, saying, "Don't worry—I'm busy, but I'll be right back."

Using a BusyIndicator

To use most SWT classes, you instantiate an object of the desired type, passing it a parent and a style. Although you

can create a BusyIndicator object, you can't pass it any parameters. What's more, you can't do much with it—it has no

public methods beyond those offered by java.lang.Object. It has no member variables, either, and preserves no state. In

other words, don't bother creating a BusyIndicator.

Instead, use BusyIndicator's only method, which is static:

void showWhile(Display display, Runnable runnable)

The display parameter represents the display on which the busy cursor should display. If you pass null for this

parameter, the current thread's display is used; if the current thread has no display, no busy cursor displays, but the

specified operation still executes. The runnable parameter contains the thread that executes your long-running

operation and can't be null. When this method executes, it shows the busy cursor, spawns the specified thread, and

blocks until the thread completes. When the thread completes, the busy cursor reverts to the normal cursor, and

execution of the calling thread resumes.

Showing the Busy Cursor

The BusyIndicatorTest program displays a window with a single button (see Listing 9-1).Click the button to display the

busy cursor and launch a thread that sleeps for three seconds. When the thread completes, you see the cursor return

to normal.

Listing 9-1: BusyIndicatorTest.java

package examples.ch9;

import org.eclipse.swt.*;

import org.eclipse.swt.custom.*;

import org.eclipse.swt.events.*;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.widgets.*;

/**

 * This program demonstrates BusyIndicator

 */

public class BusyIndicatorTest {

 // The amount of time to sleep (in ms)

 private static final int SLEEP_TIME = 3000;

 // Labels for the button

 private static final String RUN = "Press to Run";

 private static final String IS_RUNNING = "Running...";

 /**

 * Runs the application

 */

 private void run() {

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 Display display = new Display();

 Shell shell = new Shell(display);

 shell.setText("BusyIndicator Test");

 createContents(shell);

 shell.pack();

 shell.open();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

 display.dispose();

 }

 /**

 * Create the window's contents

 *

 * @param shell the parent shell

 */

 private void createContents(Shell shell) {

 shell.setLayout(new FillLayout());

 final Button button = new Button(shell, SWT.PUSH);

 button.setText(RUN);

 button.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 // Change the button's text

 button.setText(IS_RUNNING);

 // Show the busy indicator

 BusyIndicator.showWhile(button.getDisplay(),

 new SleepThread(SLEEP_TIME));

 // Thread has completed; reset the button's text

 button.setText(RUN);

 }

 });

 }

 /**

 * Application's entry point

 *

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 new BusyIndicatorTest().run();

 }

}

/**

 * This class is a thread that sleeps the specified number of milliseconds

 */

class SleepThread extends Thread {

 private long ms;

 /**

 * SleepThread constructor

 *

 * @param ms the number of milliseconds to sleep

 */

 public SleepThread(long ms) {

 this.ms = ms;

 }

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 /**

 * Runs the thread

 */

 public void run() {

 try {

 sleep(ms);

 } catch (InterruptedException e) {}

 }

}

Figure 9-1 shows the program's window, and Figure 9-2 shows the window while the long-running thread executes.

Notice the hourglass cursor, which tells you that the program is busy.

Figure 9-1: The BusyIndicatorTest application

Figure 9-2: The BusyIndicatorTest application while busy

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Introducing CCombo

Chapter 5 covers the Combo widget, which implements a dropdown or combo box. You'll rarely stray from Combo for

your dropdown needs. The custom package, however, adds an additional dropdown widget called CCombo. Table 9-1

compares Combo and CCombo, but essentially the CCombo widget exists for use in table cells. Combo widgets don't

assume the proper height inside table cells, but CCombo widgets do. [1] Figure 9-3 shows a Combo and a CCombo in a

table—the Combo overlaps the lower edge of its table cell, but the CCombo fits within its table cell.

Table 9-1: Combo vs. CCombo

Description Combo CCombo

Can be set to read-only Yes Yes

Can be drawn with or without a border Yes Yes

Can be drawn with a flat button No Yes

Can be set to always display the list Yes No

Fits the height of a table cell No Yes

Figure 9-3: A Combo and a CCombo in a table

The Combo widget wraps a native combo box widget, which generally doesn't offer enough control to size it properly in

a table cell. A CCombo, on the other hand, aggregates a Text, a List, and a Button. The Text always displays, and it

shows the currently selected item. The Button shows at the right edge of the Text, and it displays the expected

downward arrow. Together, they fill the table cell without overlapping. When users click the button, the List containing

all the options displays below the Text.

Creating a CCombo

Create a CCombo by passing a parent and a style to the constructor:

public CCombo(Composite parent, int style)

Table 9-2 lists the styles that apply to CCombo. You can combine style constants using the bitwise OR operator. Figure

9-4 shows the effects of the styles.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Figure 9-4: Some CCombo styles

Table 9-2: CCombo Styles

Style Description

SWT.BORDER Draws a border around the combo box.

SWT.FLAT Draws the arrow button with a flat look. The default is a threedimensional look.

SWT.READ_ONLY Creates a combo that doesn't allow users to type in the text box; they can only select

an option from the list.

Using a CCombo

You use a CCombo much as you do a Combo: You create one, add items to it, and retrieve the selected values. With

minor exceptions, the methods that CCombo offers mirror those offered by Combo. Table 9-3 describes CCombo's

methods.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig306%5F01%5F0%2Ejpg

Table 9-3: CCombo Methods

Method Description

void add(String string) Adds an item to the list.

void add(String string, int index) Adds an item to the list at the specified zero-based index.

void addModifyListener

(ModifyListener listener)
Adds a listener that's notified when the text in the text box is changed by

typing.

void addSelectionListener

(SelectionListener listener)
Adds a listener that's notified when the selection changes.

void clearSelection() Clears any selection.

Point computeSize(int wHint, int

hHint, boolean changed)
Computes this CCombo's size using the specified hints.

void deselect(int index) Deselects the item at the specified zero-based index.

void deselectAll() Deselects all items.

Control[] getChildren() Though you'd expect this method to return all the children of this combo

(the Text, List, and Button), it currently returns only an empty array.

boolean getEditable() Returns true if the CCombo is editable. Otherwise, returns false.

String getItem(int index) Returns the item at the specified zero-based index.

int getItemCount() Returns the number of items in this CCombo.

int getItemHeight() Returns the height in pixels of a single item in the list.

String[] getItems() Returns all the items in the list.

Point getSelection() Returns a point describing the location of the selected text in the Text

portion of this CCombo. The x value contains the starting point of the

selection, and the y value contains the ending part.

int getSelectionIndex() Returns the zero-based index of the selected item or -1 if no items are

selected.

String getText() Returns the text in the Text portion of this CCombo.

int getTextHeight() Returns the height, in pixels, of the Text portion of this CCombo.

int getTextLimit() Returns the maximum number of characters the Text portion of this

CCombo can hold.

int indexOf(String string) Returns the zero-based index of the first item in the list that matches

string.

int indexOf(String string, int start) Returns the zero-based index of the first item at or after start that

matches string.

boolean isFocusControl() Returns true if this CCombo has the focus and false if it doesn't.

void redraw() Marks this CCombo to be redrawn.

void redraw(int x, int y, int width,

int height, boolean all)
Marks the portion of this CCombo specified by the arguments to be

redrawn.

void remove(int index) Removes the item at the specified zero-based index.

void remove(int start, int end) Removes the items between the zero-based indices specified by start

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Method Description

void remove(String string) Removes the first item matching the text specified by string.

void removeAll() Removes all the items.

void removeModifyListener

(ModifyListener listener)
Removes the specified listener from the notification list.

void removeSelectionListener

(SelectionListener listener)
Removes the specified listener from the notification list.

void select(int index) Selects the item at the specified zero-based index.

void setBackground(Color color) Sets the background to the specified color.

void setEditable(boolean editable) If editable is true, makes this CCombo editable. Other- wise, makes it

uneditable.

boolean setFocus() Sets the keyboard focus to this CCombo.

void setFont(Font font) Sets the font to the specified font.

void setForeground(Color color) Sets the foreground to the specified color.

void setItem(int index, String

string)
Sets the text of the item at the specified zero-based index to string. If

index specifies an item that doesn't exist, throws an

IllegalArgumentException.

void setItems(String[] items) Replaces any existing items with the items specified by items.

void setSelection(Point selection) Sets the selected characters in the Text portion of this CCombo. The x

value contains the beginning of the selection, while the y value contains

the end.

void setText(String string) Sets the displayed text to string.

void setTextLimit(int limit) Sets the maximum number of characters that the Text portion of this

CCombo will allow.

void setToolTipText(String string) Sets the tool tip text to string.

void setVisible(boolean visible) If visible is true, shows this CCombo. If visible is false, hides it.

Use CCombo whenever you need its sizing flexibility, such as inside table cells. Otherwise, you'll probably use Combo.

The "Using TableEditor" section in this chapter demonstrates CCombo usage.

[1]
http://dev.eclipse.org/newslists/news.eclipse.platform.swt/msg01832.html. (This link requires a password to access.)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://dev.eclipse.org/newslists/news.eclipse.platform.swt/msg01832.html

Introducing CLabel

Labels, covered in Chapter 5, display either text or an image. They communicate directly to users, and their Spartan

nature lends them well to many usages. You'll use labels extensively throughout your applications. Sometimes,

however, you'll want much more from your labels. How about text and an image? Why choose? And why must you

settle for monochrome backgrounds? Enter CLabel, which saunters forth as a debutante at the ball to Label's

pedestrianism, providing glitz and glamour to Label's drabness.

Creating a CLabel

Calling CLabel's only constructor produces a CLabel:

CLabel(Composite parent, int style)

Table 9-4 describes the valid values for style. You can combine an alignment constant, such as SWT.CENTER, with a

shadow constant, such as SWT.SHADOW_OUT, using the bitwise OR operator. Combining more than one alignment

constant or more than one shadow constant, however, produces undefined results.

Table 9-4: CLabel Styles

Style Description

SWT.LEFT Creates a left-aligned CLabel

SWT.CENTER Creates a center-aligned CLabel

SWT.RIGHT Creates a right-aligned CLabel

SWT.SHADOW_IN Creates a CLabel that appears recessed into the screen

SWT.SHADOW_OUT Creates a CLabel that appears to extrude from the screen

SWT.SHADOW_NONE Creates a CLabel with no shadow

The CLabelTest program, shown in Listing 9-2, creates three CLabels using various style combinations. Figure 9-5

shows the program's main window.

Figure 9-5: CLabel styles

Listing 9-2: CLabelTest.java

package examples.ch9;

import org.eclipse.swt.SWT;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

import org.eclipse.swt.custom.CLabel;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.widgets.*;

/**

 * This class demonstrates CLabel

 */

public class CLabelTest {

 /**

 * Runs the application

 */

 public void run() {

 Display display = new Display();

 Shell shell = new Shell(display);

 shell.setText("CLabel Test");

 createContents(shell);

 shell.open();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

 display.dispose();

 }

 /**

 * Creates the main window's contents

 *

 * @param parent the main window

 */

 private void createContents(Composite parent) {

 parent.setLayout(new GridLayout(1, false));

 // Create the CLabels

 CLabel left = new CLabel(parent, SWT.LEFT | SWT.SHADOW_IN);

 left.setText("Left and Shadow In");

 left.setLayoutData(new GridData(GridData.FILL_HORIZONTAL));

 CLabel center = new CLabel(parent, SWT.CENTER | SWT.SHADOW_OUT);

 center.setText("Center and Shadow Out");

 center.setLayoutData(new GridData(GridData.FILL_HORIZONTAL));

 CLabel right = new CLabel(parent, SWT.RIGHT | SWT.SHADOW_NONE);

 right.setText("Right and Shadow None");

 right.setLayoutData(new GridData(GridData.FILL_HORIZONTAL));

 }

 /**

 * The application entry point

 *

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 new CLabelTest().run();

 }

}

Label vs. CLabel

CLabel presents a much prettier face than Label; not all of CLabel's enhancements are cosmetic, however. CLabel

responds better to limited space than Label, as demonstrated in the "CLabels in Limited Space" section later in this

chapter. Table 9-5 compares Label and CLabel.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table 9-5: Label vs. CLabel

Description Label CLabel

Alignment (left, right, and center) Yes Yes

Shadow (in, out, and none) Yes Yes

Wrap Yes No

Text Yes Yes

Image Yes Yes

Text and image No Yes

Tool tip Yes Yes

Background color Yes Yes

Background color gradient No Yes

Background image No Yes

Font Yes Yes

Automatically shorten text No Yes

If you're just displaying some text, such as to label a text field or to display an error message, you'll likely just use

Label. Any time you want to spice up your label with background images or color gradients, want to display both an

image and a label together, or want automatic space handling for limited space, use CLabel.

Configuring CLabel

Greater power brings greater responsibility—or so says conventional wisdom. CLabel exposes a fuller API than Label,

to accommodate its greater power. Table 9-6 describes CLabel's methods. Most of these methods are easy to

understand, except for the setBackground() method that takes an array of Color objects and an array of ints. This section

explains that method.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table 9-6: CLabel Methods

Method Description

Point computeSize(int wHint, int hHint, boolean

changed)
Computes the preferred size of this CLabel.

int getAlignment() Returns the alignment of this CLabel (SWT.LEFT,

SWT.CENTER, or SWT.RIGHT).

Image getImage() Returns this CLabel's image or null if no image has been set.

String getText() Returns this CLabel's text or null if no text has been set.

String getToolTipText() Returns this CLabel's tool tip text or null if no tool tip text has

been set.

void setAlignment(int alignment) Sets the alignment of this CLabel (SWT.LEFT, SWT.CENTER,

or SWT.RIGHT).

void setBackground(Color color) Sets the background color for this CLabel.

void setBackground(Color[] colors, int[]

percents)
Sets the background gradient colors for this CLabel.

void setBackground(Image image) Sets the background image for this CLabel.

void setFont(Font font) Sets the font for this CLabel. Pass null to use the default font.

void setImage(Image image) Sets the image for this CLabel.

void setText(String text) Sets the text for this CLabel.

void setToolTipText(String text) Sets the tool tip text for this CLabel.

To draw a gradient background in a CLabel, call the setBackground() method that takes an array of Color objects and an

array of ints. The Colors can be any number of colors, and they can be system colors or colors you create. You can

also include null in the array, and the original background color will be substituted.

The ints must all lie within the range 0–100, inclusive. They must be in ascending order; each member in the array

must be greater than or equal to the previous member. Finally, the int array must have exactly one fewer member than

the Color array. Failing to meet these criteria results in an exception.

Each int in the array specifies a stopping point, as a percentage, for a gradient drawn with the corresponding color in

the Color array and the subsequent color. For example, if you write code like this:

cLabel.setBackground(new Color[] { red, green, blue }, new int[] { 25, 50 });

a red/green gradient is drawn from the left edge of the CLabel to the point 25% of the CLabel's total width. From there, a

green/blue gradient is drawn to the point 50% of the CLabel's total width. The balance of the background isn't redrawn.

Because the ints represent stopping points, to have a gradient span the entire CLabel you must pass 100 as the final

entry in the array. Currently, having your gradient stop short of 100% causes display problems (the background shows

behind the window), as Figure 9-6 shows.

Figure 9-6: A gradient that stops short of 100%

The CLabelGradient program demonstrates background gradients (see Listing 9-3). It creates two CLabels and sets

them to show gradients in their backgrounds. The first CLabel uses the red/green/blue example shown in Figure 9-6.

The second CLabel draws a gradient from white to gray to dark gray to black.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig312%5F01%5F0%2Ejpg

Listing 9-3: CLabelGradient.java

package examples.ch9;

import org.eclipse.swt.SWT;

import org.eclipse.swt.custom.CLabel;

import org.eclipse.swt.graphics.Color;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.widgets.*;

/**

 * This class demonstrates CLabel gradients

 */

public class CLabelGradient {

 /**

 * Runs the application

 */

 public void run() {

 Display display = new Display();

 Shell shell = new Shell(display);

 shell.setText("CLabel Gradient");

 createContents(shell);

 shell.open();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

 display.dispose();

 }

 /**

 * Creates the main window's contents

 *

 * @param parent the main window

 */

 private void createContents(Composite parent) {

 parent.setLayout(new GridLayout(1, false));

 // Create the CLabels

 CLabel one = new CLabel(parent, SWT.LEFT);

 one.setText("First Gradient Example");

 one.setLayoutData(new GridData(GridData.FILL_HORIZONTAL));

 one.setBackground(parent.getDisplay().getSystemColor(SWT.COLOR_GRAY));

 // Set the background gradient

 one.setBackground(new Color[] {

 parent.getDisplay().getSystemColor(SWT.COLOR_RED),

 parent.getDisplay().getSystemColor(SWT.COLOR_GREEN),

 parent.getDisplay().getSystemColor(SWT.COLOR_BLUE)},

 new int[] { 25, 50});

 CLabel two = new CLabel(parent, SWT.LEFT);

 two.setText("Second Gradient Example");

 two.setLayoutData(new GridData(GridData.FILL_HORIZONTAL));

 // Set the background gradient

 two.setBackground(new Color[] {

 parent.getDisplay().getSystemColor(SWT.COLOR_WHITE),

 parent.getDisplay().getSystemColor(SWT.COLOR_GRAY),

 parent.getDisplay().getSystemColor(SWT.COLOR_DARK_GRAY),

 parent.getDisplay().getSystemColor(SWT.COLOR_BLACK)}, new int[] { 33, 67,

 100});

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 }

 /**

 * The application entry point

 *

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 new CLabelGradient().run();

 }

}

This program produces the window shown in Figure 9-7. Note the display problems with the first CLabel, whose

gradient stops at 50%.

Figure 9-7: CLabel gradients

CLabels in Limited Space

When space shrinks and a CLabel can't fit into what's been allotted, it adopts the following strategy:

It eliminates any indent when left-aligned.

It hides any image and its requisite gap.

It shortens the text by replacing the center portion of the text with an ellipsis (...).

It shortens the text by removing the center portion.

This functionality requires no effort on your part—it just automatically happens with CLabel. Cynics might grouse that

you can't prevent it, either, but if you don't like this default behavior, subclass CLabel and provide your own

implementation for the shortening method:

protected String shortenText(GC gc, String t, int width)

The CLabelShort program displays a CLabel with both an image and some text (see Listing 9-4). Resizing the window

shows how CLabel responds to a reduction in space, as shown in Figures 9-8, 9-9, and 9-10.

Figure 9-8: The full-sized CLabel

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig314%5F01%5F0%2Ejpg

Figure 9-9: The CLabel after the image disappears

Figure 9-10: The CLabel with an ellipsis

Listing 9-4: CLabelShort.java

package examples.ch9;

import org.eclipse.swt.SWT;

import org.eclipse.swt.custom.CLabel;

import org.eclipse.swt.graphics.Image;

import org.eclipse.swt.layout.FillLayout;

import org.eclipse.swt.widgets.*;

/**

 * This class demonstrates CLabel

 */

public class CLabelShort {

 private Image lookImage;

 /**

 * Runs the application

 */

 public void run() {

 Display display = new Display();

 Shell shell = new Shell(display);

 shell.setText("CLabel Short");

 // Load the image

 lookImage = new Image(display, this.getClass().getResourceAsStream(

 "/images/look.gif"));

 createContents(shell);

 shell.pack();

 shell.open();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

 // Dispose the image

 if (lookImage != null) lookImage.dispose();

 display.dispose();

 }

 /**

 * Creates the main window's contents

 *

 * @param parent the main window

 */

 private void createContents(Composite parent) {

 parent.setLayout(new FillLayout());

 // Create the CLabel

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 CLabel label = new CLabel(parent, SWT.LEFT);

 label.setText("This is a CLabel with a lot of long-winded text");

 label.setImage(lookImage);

 }

 /**

 * The application entry point

 *

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 new CLabelShort().run();

 }

}

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Introducing CTabFolder

Tabs, covered in Chapter 8, separate controls into pages using a notebook metaphor. A selectable tab adorns each

page, allowing users to quickly select any page of controls by clicking the tab. Each tab can display text, an image, or

both. SWT uses two classes, TabFolder and TabItem, to implement tabs. Review Chapter 8 for more information on

tabs.

The custom packages CTabFolder and CTabItem add flexibility to the standard tabs. Table 9-7 compares

TabFolder/TabItem to CTabFolder/CTabItem. Most of the changes enhance aesthetics, but these new tab classes also

allow for a close button to show at the top right.

Table 9-7: TabFolder/TabItem vs. CTabFolder/CTabItem

Description TabFolder/TabItem CTabFolder/CTabItem

Tab position On top or on bottom On top or on bottom

Supports text Yes Yes

Supports tool tips Yes Yes

Supports images Yes Yes

Supports disabled images No Yes

Supports flat look No Yes

Supports customizable margins No Yes

Supports a control in the top-right corner No Yes

Supports a gradient background No Yes

Supports an image background No Yes

Caution In the late stages of Eclipse 3.0 development, the Eclipse team has focused much attention on CTabFolder and

CTabItem. Consequently, warnings fill the associated Javadoc documentation about anticipated changes to the

API.While this section faithfully reports current information at the time of its writing, you should review the

Javadoc for the most complete and accurate information.

Creating a CTabFolder

Create a CTabFolder by passing a parent and a style to the constructor:

CTabFolder(Composite parent, int style)

Table 9-8 describes the style constants.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Table 9-8: CTabFolder Style Constants

Style Description

SWT.TOP Displays the children tabs along the top edge of this CTabFolder.

SWT.BOTTOM Displays the children tabs along the bottom edge of this CTabFolder.

SWT.FLAT If borders are visible, displays the children tabs with a flat look. If SWT.FLAT isn't specified

and borders are visible, displays the children tabs with a three-dimensional look. Also,

displays any scrolling controls with a flat look.

You can combine SWT.FLAT with either SWT.TOP or SWT.BOTTOM using the bitwise OR operator, but you shouldn't

combine SWT.TOP and SWT.BOTTOM. Figure 9-11 shows top, flat tabs, and Figure 9-12 shows bottom,

three-dimensional tabs.

Figure 9-11: Top, flat tabs

Figure 9-12: Bottom, three-dimensional tabs

Configuring CTabFolder

CTabFolder offers several fields to modify its appearance. Some of these are static, so changing their values affects all

CTabFolder instances running within the Java Virtual Machine (JVM). Table 9-9 describes the fields.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Table 9-9: CTabFolder Fields

Field Description

static RGB

borderInsideRGB
Red, green, blue (RGB) value used to create the color of the inside line of the drop

shadow border. Affects all CTabFolder instances.

static RGB

borderMiddleRGB
RGB value used to create the color of the middle line of the drop shadow border.

Affects all CTabFolder instances.

static RGB

borderOutsideRGB
RGB value used to create the color of the outside line of the drop shadow border.

Affects all CTabFolder instances.

int marginHeight Height, in pixels, of the margin used on the top and bottom of each tab's form.

int marginWidth Width, in pixels, of the margin used on the left and right of each tab's form.

int MIN_TAB_WIDTH The minimum width, in multiples of the tab's height, to which each tab will be

compressed before scrolling arrows will be displayed for navigation. Note that this

field, though capitalized, isn't final.

Of more interest are the methods that CTabFolder offers. Table 9-10 describes these methods.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Table 9-10: CTabFolder Methods

Method Description

void addCTabFolderListener Adds a listener that's notified when a child tab is closed.

(CTabFolderListener listener) Also adds a close button to each tab in this CTabFolder.

void addSelectionListener

(SelectionListener listener)
Adds a listener that's notified when a child tab is selected.

Point computeSize(int wHint, int

hHint, boolean changed)
Computes this CTabFolder's preferred size.

Rectangle computeTrim(int x, int

y, int width, int height)
Computes the size of the overall CTabFolder required to house the client

area specified by the arguments.

Rectangle getClientArea() Returns a Rectangle describing the client area of this CTabFolder.

CTabItem getItem(int index) Returns the tab at the specified zero-based index.

CTabItem getItem(Point point) Returns the tab at the specified point, or null if no item exists at the

specified point.

int getItemCount() Returns the number of tabs in this CTabFolder.

CTabItem[] getItems() Returns the tabs in this CTabFolder.

CTabItem getSelection() Returns the selected tab, or null if no tabs are selected.

int getSelectionIndex() Returns the zero-based index of the selected tab, or -1 if no tabs are

selected.

int getTabHeight() Returns the height, in pixels, of the children tabs.

Control getTopRight() Returns the control in the top-right corner of this CTabFolder.

int indexOf(CTabItem) Returns the zero-based index of the specified item, or -1 if the item

doesn't exist in this CTabFolder.

void removeCTabFolderListener

(CTabFolderListener listener)
Removes the specified listener from the notification list.

void removeSelectionListener

(SelectionListener listener)
Removes the specified listener from the notification list.

void setBackground(Color color) Sets the background color of all the tabs and their forms.

void setBorderVisible (boolean

show)
If show is true, displays a border around this CTabFolder.

void setFont(Font font) Sets the font to use for the tabs.

void setInsertMark(CTabItem

item, boolean after)
Shows a marker beside the specified tab; shows the marker before the

tab if after is false, and after the tab if after is true.

void setInsertMark(int index,

boolean after)
Shows a marker beside the tab corresponding to the specified

zero-based index; shows the marker before the tab if after is false, and

shows it after the tab if after is true.

void setSelection(CTabItem item) Selects the specified tab.

void setSelection(int index) Selects the tab corresponding to the specified zero-based index.

void setSelectionBackground

(Color[] colors, int[] percents)
Draws a gradient background using the specified colors on the selected

tab. The percents array holds percentages between 0–100 indicating

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Method Description

one fewer item than colors, or an InvalidArgumentException is thrown.

void setSelectionBackground

(Image image)
Displays the specified image in the background of the selected tab.

void setSelectionForeground

(Color color)
Sets the specified color to use for the foreground of the selected tab.

void setTabHeight(int height) Sets the height, in pixels, for the tabs.

void setTopRight(Control control) Sets the control to display in the top-right portion of this CTabFolder.

void showItem(CTabItem item) Shows the specified tab.

void showSelection() Shows the selected tab, scrolling left or right as necessary.

Caution The Javadoc documentation for setInsertMark() claims that passing -1 for index, or null for item, will erase the

mark. This doesn't work—the mark doesn't go away. This has been reported and is bug #32846. To work

around this, call setInsertMark(), passing either -1 or null, and then call CTabFolder.redraw().

Adding CTabItems

Like TabFolder, CTabFolder holds little interest without any tabs. To add tabs to a CTabFolder, construct CTabItem

instances by calling one of its two constructors, passing the CTabFolder for the parent. Because no styles apply, pass

SWT.NONE for the style. Optionally, you can pass an index to specify the zero-based order of the tab. The constructors

are as follows:

public CTabItem(CTabFolder parent, int style)

public CTabItem(CTabFolder parent, int style, int index)

Configuring CTabItem

Each tab in a CTabFolder can display text, an image, and a tool tip. Additionally, it can display an alternate image when

disabled. Like TabFolder, its window contents are set by calling the setControl() method. Table 9-11 describes

CTabItem's methods.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Table 9-11: CTabItem Methods

Method Description

void dispose() Closes this tab, disposing its resources and its children's resources

Rectangle getBounds() Returns a Rectangle describing this tab's size and location relative to

its parent

Control getControl() Returns the control associated with this tab

Image getDisabledImage() Returns the image displayed when this tab is disabled

Image getImage() Returns the image displayed on this tab

CTabFolder getParent() Returns the parent of this tab

String getText() Returns the text displayed on this tab

String getToolTipText() Returns the tool tip text for this tab

void setControl(Control control) Sets the control associated with this tab

void setDisabledImage(Image

image)
Sets the image to display when this tab is disabled

void setImage(Image image) Sets the image to display on this tab

void setText(String string) Sets the text to display on this tab

void setToolTipText(String string) Sets the tool tip text for this tab

Closing a CTabItem

Chapter 8's Extensible Markup Language (XML) viewer application provides both a menu option and a toolbar button

to close a tab and its associated file. Though functional, the implementation could confuse some users because the

close mechanisms have no visible tie to the tabs. Putting a close button directly on the tab would clearly demonstrate

how to close a tab, and CTabFolder allows you to do just that.

To add a close button to each tab, add a CTabFolderListener to the CTabFolder:

tabFolder.addCTabFolderListener(new CTabFolderAdapter() {

 public void itemClosed(CTabFolderEvent event) {

 }

}

That's it—that's all you have to do. Your application will display a close button on each tab when the user moves the

mouse over the tab, and clicking the button will close the tab. Figure 9-13 shows a set of tabs, with the first tab

displaying a close button.

Figure 9-13: Tab 1 has the close button displayed.

Although the previous itemClosed() method has no implementation, and none is required to get the working close

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

button on each tab, you can certainly add some code. Because itemClosed() is called before the tab closes, you can

use this method to ask for confirmation before closing the tab. That code might look something like this:

tabFolder.addCTabFolderListener(new CTabFolderAdapter() {

 public void itemClosed(CTabFolderEvent event) {

 MessageBox mb = new MessageBox(shell, SWT.ICON_QUESTION | SWT.YES | SWT.NO);

 mb.setMessage("Are you sure you want to close the tab?");

 if (SWT.NO == mb.open())

 {

 event.doIt = false; // Cancel the event processing, so tab stays open

 }

 }

}

Setting the Insert Mark

CTabFolder sports an optional insertion mark—a vertical line between tabs, used to indicate where a new tab would be

inserted into the "notebook." You specify where to display the insert mark by calling one of these two setInsertMark()

methods:

public void setInsertMark(CTabItem item, boolean after)

public void setInsertMark(int index, boolean after)

The first parameter specifies by which tab to show the insert mark. You pass either the tab itself or its zero-based

index. The second parameter indicates whether to show the insert mark before or after the tab. Pass false to show the

insert mark before the tab, or pass true to show it after the tab.

Displaying a Gradient Background

You can configure the selected tab to display a gradient background using CTabFolder's setSelectionBackground()

method. It takes two parameters: an array of colors and an array of integers. The array of colors must have exactly one

more item than the array of integers. The array of integers must be in ascending order and must include only numbers

from the range 0–100, inclusive.

The colors array contains the colors you want to use in the gradient. You can create the colors yourself, remembering

to dispose them when you're through with them, or you can use system colors. If you use system colors, make sure

you don't dispose them.

Each integer in the integer array specifies a percentage of the total tab's width at which the gradient should switch to

the next set of colors. The gradients work just like those in CLabel. Refer to the "Configuring CLabel" section for more

information about gradients.

Seeing CTabFolder

The ShowCTabFolder program demonstrates CTabFolder (see Listing 9-5). It displays a button to add new tabs, and it

displays a button to move the insert mark left and right for where new tabs will be added. New tabs display the location

of the insert mark whenthey were added. Figure 9-14 shows the main window without any added tabs.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Figure 9-14: The ShowCTabFolder program

Listing 9-5: ShowCTabFolder.java

package examples.ch9;

import org.eclipse.swt.*;

import org.eclipse.swt.custom.*;

import org.eclipse.swt.events.*;

import org.eclipse.swt.graphics.*;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.widgets.*;

/**

 * This class demonstrates CTabFolder

 */

public class ShowCTabFolder {

// Because CTabFolder doesn't have a getInsertMark() method,

// store the value so you can keep track of it

private int insertMark = -1;

private CTabFolder tabFolder;

/**

 * Runs the application

 */

public void run() {

 Display display = new Display();

 Shell shell = new Shell(display);

 shell.setText("Show CTabFolder");

 createContents(shell);

 shell.open();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

 display.dispose();

}

/**

 * Creates the window's contents

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig326%5F01%5F0%2Ejpg

 *

 * @param shell the parent shell

 */

private void createContents(Shell shell) {

 shell.setLayout(new GridLayout(1, true));

 // Create the buttons to create tabs

 Composite composite = new Composite(shell, SWT.NONE);

 composite.setLayoutData(new GridData(GridData.FILL_HORIZONTAL));

 composite.setLayout(new RowLayout());

 createButtons(composite);

 // Create the tabs

 tabFolder = new CTabFolder(shell, SWT.TOP);

 tabFolder.setBorderVisible(true);

 tabFolder.setLayoutData(new GridData(GridData.FILL_BOTH));

 Display display = shell.getDisplay();

 // Set up a gradient background for the selected tab

 tabFolder.setSelectionBackground(new Color[] {

 display.getSystemColor(SWT.COLOR_WIDGET_DARK_SHADOW),

 display.getSystemColor(SWT.COLOR_WIDGET_NORMAL_SHADOW),

 display.getSystemColor(SWT.COLOR_WIDGET_LIGHT_SHADOW)}, new int[] { 50,

 100});

 // Add a listener to get the close button on each tab

 tabFolder.addCTabFolderListener(new CTabFolderAdapter() {

 public void itemClosed(CTabFolderEvent event) {}

 });

}

/**

 * Creates the buttons for moving the insert mark and adding a tab

 *

 * @param composite the parent composite

 */

private void createButtons(Composite composite) {

 // Move mark left

 Button button = new Button(composite, SWT.PUSH);

 button.setText("<<");

 button.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 if (insertMark > -1) {

 --insertMark;

 resetInsertMark();

 }

 }

 });

 // Move mark right

 button = new Button(composite, SWT.PUSH);

 button.setText(">>");

 button.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 if (insertMark < tabFolder.getItemCount() 1) {

 ++insertMark;

 resetInsertMark();

 }

 }

 });

 // Add a tab

 button = new Button(composite, SWT.PUSH);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 button.setText("Add Tab");

 button.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 new CTabItem(tabFolder, SWT.NONE, insertMark + 1).setText("Tab ("

 + (insertMark + 1) + ")");

 }

 });

}

 /**

 * Moves the insert mark to the new location

 */

 private void resetInsertMark() {

 tabFolder.setInsertMark(insertMark, true);

 // Workaround for bug #32846

 if (insertMark == -1) {

 tabFolder.redraw();

 }

 }

 /**

 * The application entry point

 *

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 new ShowCTabFolder().run();

 }

}

The selected tab displays a gradient background. Click a tab's close button to close it. Move the insert mark left and

right before clicking Add Tab to add the new tab to a different location within the CTabFolder. Figure 9-15 shows the

program with various tabs added.

Figure 9-15: The ShowCTabFolder program with some tabs added

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig327%5F01%5F0%2Ejpg

Introducing TableTree

Chapter 8 discusses both tables and trees, and the XmlView sample application shows the power of using them side

by side. Recognizing the synergies created by juxtaposing tables and trees, SWT's creators hatched the TableTree: a

blend of a tree and a table. It has columns like a table, but each row can have children like a tree. The synergies

created by the combination of the two widgets offer great power. Use this widget for hierarchical columnar data.

Creating a TableTree

TableTree has a single constructor:

TableTree(Composite parent, int style)

The style parameter controls whether users can select multiple items from the table at a time and also how the

selection is displayed (first column only or the entire row). It also can specify whether to display a checkbox by each

row. You can combine various styles using the bitwise OR operator, though the styles for single selection vs. multiple

selection are mutually exclusive. Table 9-12 describes the style constants.

Table 9-12: TableTree Style Constants

Constant Description

SWT.SINGLE Creates a TableTree that permits only one item at a time to be selected. This is

the default.

SWT.MULTI Creates a TableTree that permits multiple items to be selected at a time.

SWT.CHECK Creates a TableTree that displays a selectable checkbox by each item.

SWT.FULL_SELECTION Creates a TableTree that highlights the entire selected row. The default highlights

only the first column in the selected row or rows.

Instead of deriving from Table or Tree, TableTree inherits from Composite, and it contains an instance of Table. It doesn't

provide a façade for Table, so you can't create a TableTree and call Table methods on it. Instead, TableTree provides a

getTable() method, and you can call any of Table's method on the underlying Table object. Table 9-13 describes

TableTree's methods.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table 9-13: TableTree Methods

Method Description

void addSelectionListener

(SelectionListener listener)
Adds a listener that's notified when the selection changes.

void addTreeListener (TreeListener listener) Adds a listener that's notified when the tree is expanded or

collapsed.

Point computeSize(int wHint, int hHint,

boolean changed)
Computes the preferred size for the TableTree.

Rectangle computeTrim(int x, int y, int

width, int height)
Computes the bounding rectangle for the TableTree from the

client area specified by the parameters.

void deselectAll() Deselects all items in the TableTree.

Color getBackground() Returns the background color used by this TableTree.

Rectangle getClientArea() Returns the bounding rectangle for the client area only of this

TableTree.

boolean getEnabled() Returns true if this TableTree is enabled or false if it's disabled.

Font getFont() Returns the font used by this TableTree.

Color getForeground() Returns the foreground color used by this TableTree.

TableTreeItem getItem(Point point) Returns the item that contains the point specified by point, or

null if no item contains the specified point.

int getItemCount() Returns the number of items this TableTree contains.

int getItemHeight() Returns the height in pixels of one item in this TableTree.

TableTreeItem[] getItems() Returns the items this TableTree contains.

TableTreeItem[] getSelection() Returns the selected items in this TableTree.

int getSelectionCount() Returns the number of items selected in this TableTree.

int getStyle() Returns this TableTree's style.

Table getTable() Returns the underlying Table.

String getToolTipText() Returns the tool tip text for this TableTree.

int indexOf(TableTreeItem item) Returns the zero-based index of the item specified by item, or -1

if item doesn't exist in this TableTree.

void removeAll() Removes all the items from this TableTree.

void removeSelectionListener

(SelectionListener listener)
Removes the listener from the notification list.

void removeTreeListener (TreeListener

listener)
Removes the listener from the notification list.

void selectAll() Selects all the items in this TableTree.

void setBackground(Color color) Sets the background color used by this TableTree.

void setEnabled(boolean enabled) If enabled is true, enables this TableTree. If enabled is false,

disables it.

void setFont(Font font) Sets the font used by this TableTree.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Method Description

void setForeground(Color color) Sets the foreground color used by this TableTree.

void setMenu(Menu menu) Sets the pop-up menu used by this TableTree.

void setSelection (TableTreeItem[] items) Selects the items specified by items.

void setToolTipText(String text) Sets the tool tip text for this TableTree.

void showItem(TableTreeItem item) Shows the item specified by item, scrolling the table if necessary.

void showSelection() Shows the selected item, scrolling the table if necessary.

Adding Items to a TableTree

SWT uses the TableTreeItem class to represent items in a TableTree. It offers four constructors, described in Table

9-14. No styles apply to TableTree items, so use SWT.NONE. A TableTree item's parent can be a TableTree, in which

case it's a root item in the TableTree, or it can be another TableTree item.

Table 9-14: TableTreeItem Constructors

Constructor Description

TableTreeItem(TableTree parent, int style) Constructs a root item with the specified style

TableTreeItem(TableTree parent, int style, int

index)
Constructs a root item at the specified zero-based index

with the specified style

TableTreeItem(TableTreeItem parent, int style) Constructs a child item with the specified style

TableTreeItem(TableTreeItem parent, int style,

int index)
Constructs a child item at the specified zero-based index

with the specified style

Once you've constructed a TableTreeItem, you can call its methods to customize its behavior. Table 9-15 describes

TableTreeItem's methods.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table 9-15: TableTreeItem Methods

Method Description

void dispose() Removes this item from the table.

Color getBackground() Returns this item's background color.

Rectangle getBounds(int index) Returns this item's bounding rectangle.

boolean getChecked() Returns true if this item's checkbox is checked, or false if it's not checked.

Valid when parent table's style includes SWT.CHECK.

boolean getExpanded() Returns true if this item's contents are currently expanded, or false otherwise.

Color getForeground() Returns this item's foreground color.

boolean getGrayed() Returns true if this item's checkbox is grayed, or false if it's not grayed. Valid

when parent table's style includes SWT.CHECK.

Image getImage() Returns the image associated with this item.

Image getImage(int index) Returns the image associated with this image at the zero-based column

specified by index.

int getItemCount() Returns the number of children this item has.

TableTreeItem[] getItems() Returns the items that are children of this item.

TableTree getParent() Returns this item's parent TableTree.

TableTreeItem getParentItem() Returns this item's parent item. Returns null if this is a root item.

String getText() Returns this item's text.

String getText(int index) Return this item's text for the specified zero-based column.

int indexOf(TableTreeItem

item)
Returns the zero-based index of the specified item, or null if specified item

doesn't exist in the TableTree.

void setBackground(Color

color)
Sets the background color for this item.

void setChecked(boolean

checked)
If checked is true, checks this item. Otherwise, clears the checkbox. Valid

when parent table's style includes SWT.CHECK.

void setExpanded(boolean

expanded)
If expanded is true, expands this item. Otherwise, contracts this item.

void setForeground(Color

color)
Sets the foreground color for this item.

void setGrayed(boolean

grayed)
If grayed is true, grays this item's checkbox. Otherwise, clears the

checkbox. Valid when parent table's style includes SWT.CHECK.

void setImage(Image image) Sets the image for this item.

void setImage(int index, Image

image)
Sets the image for this item for the specified zero-based column.

void setText(String text) Sets the text for this item.

void setText(int index, String

text)
Sets the text for this item for the specified zero-based column.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

TableTree differs most significantly from Table in that each row in the table can have children. If a row has a child or

children, it displays a plus sign to its left. Click the plus to expand the tree. Each row, whether parent or child, can

display data in each column. Also, you can programmatically expand an item's children by calling setExpanded(true).

You create a parent-child relationship by passing the parent to the child's constructor, like so:

TableTreeItem parent = new TableTreeItem(tableTree, SWT.NONE);

parent.setText(0, "Parent column 1");

parent.setText(1, "Parent column 2");

// Create the child

TableTreeItem child = new TableTreeItem(parent, SWT.NONE);

child.setText(0, "Child column 1");

child.setText(1, "Child column 2");

// Expand the parent

parent.setExpanded(true);

Adding Columns to a TableTree

SWT contains no TableTreeColumn class for adding columns to a TableTree, and you can't pass a TableTree to a

TableColumn's constructor. How, then, can you add columns to a TableTree? Remember that TableTree has a getTable()

method that returns the underlying Table object. You'll use this method to set table-specific data on your TableTrees.

For example, to add a column to a TableTree, use code like this:

TableColumn column = new TableColumn(tableTree.getTable(), SWT.LEFT);

To turn on the headers and grid lines in your TableTree, use getTable() again:

tableTree.getTable().setHeaderVisible(true);

tableTree.getTable().setLinesVisible(true);

You can also assign a Table reference to the underlying table, and use that wherever you want to call methods on the

table:

Table table = tableTree.getTable();

table.setLinesVisible(false);

Using TableTree

The TableTreeTest program creates a TableTree with three columns, three root items, and three child items for each

root item (see Listing 9-6). It displays data in each column for each item, whether parent or child. Figure 9-16 shows

the program's window.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Figure 9-16: A TableTree control

Listing 9-6: TableTreeTest.java

package examples.ch9;

import org.eclipse.swt.SWT;

import org.eclipse.swt.custom.*;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.widgets.*;

/**

 * This class demonstrates TableTree

 */

public class TableTreeTest {

 // The number of rows and columns

 private static final int NUM = 3;

 /**

 * Runs the application

 */

 public void run() {

 Display display = new Display();

 Shell shell = new Shell(display);

 shell.setText("TableTree Test");

 createContents(shell);

 shell.pack();

 shell.open();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

 display.dispose();

 }

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 /**

 * Creates the main window's contents

 *

 * @param shell the main window

 */

 private void createContents(final Shell shell) {

 shell.setLayout(new FillLayout());

 // Create the TableTree and set some attributes on the underlying table

 TableTree tableTree = new TableTree(shell, SWT.NONE);

 Table table = tableTree.getTable();

 table.setHeaderVisible(true);

 table.setLinesVisible(false);

 // Create the columns, passing the underlying table

 for (int i = 0; i < NUM; i++) {

 new TableColumn(table, SWT.LEFT).setText("Column " + (i + 1));

 }

 // Create the data

 for (int i = 0; i < NUM; i++) {

 // Create a parent item and add data to the columns

 TableTreeItem parent = new TableTreeItem(tableTree, SWT.NONE);

 parent.setText(0, "Parent " + (i + 1));

 parent.setText(1, "Data");

 parent.setText(2, "More data");

 // Add children items

 for (int j = 0; j < NUM; j++) {

 // Create a child item and add data to the columns

 TableTreeItem child = new TableTreeItem(parent, SWT.NONE);

 child.setText(0, "Child " + (j + 1));

 child.setText(1, "Some child data");

 child.setText(2, "More child data");

 }

 // Expand the parent item

 parent.setExpanded(true);

 }

 // Pack the columns

 TableColumn[] columns = table.getColumns();

 for (int i = 0, n = columns.length; i < n; i++) {

 columns[i].pack();

 }

 }

 /**

 * The application entry point

 *

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 new TableTreeTest().run();

 }

}

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Introducing Control Editors

Early spreadsheet programs used the grid to display data only—all editing occurred on a data-entry line above the

grid. The data editor always appeared in a separate location from the data display. Like a vestigial tail, today's

spreadsheet programs still display the edit line above the grid, but they also allow editing within the appropriate cell in

the grid, as Figure 9-17 shows.

Figure 9-17: Editing within a cell of Microsoft Excel

Control editors allow users to edit data where the data lies. They appear on top of, and move and size with, the

associated control. They can completely cover the associated control, or you can anchor them to a certain side or

sides and fill them either vertically or horizontally. Use them to edit cells in a table and to edit nodes in a tree, or use

them as buttons to launch a dialog box for editing a property.

SWT provides a base class, ControlEditor, that offers basic control-editing abilities: You can create a control editor,

attach it to a control, and specify how it should move and resize as the parent control moves and resizes. SWT also

offers three derived classes: TableEditor, TreeEditor, and TableTreeEditor. This chapter examines all four classes and

shows how to use them.

Using ControlEditor

You can associate a ControlEditor with any Composite, which you pass to ControlEditor's only constructor, like this:

ControlEditor(Composite parent)

You control the editor's behavior—sizing and moving—with respect to its parent by setting the fields described in Table

9-16.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig334%5F02%5F0%2Ejpg

Table 9-16: ControlEditor Fields

Field Description

boolean

grabHorizontal
If set to true, causes this editor to assume the entire width of its parent. The default is

false.

boolean grabVertical If set to true, causes this editor to assume the entire height of its parent. The default is

false.

int minimumHeight Specifies the minimum height, in pixels, for this editor.

int minimumWidth Specifies the minimum width, in pixels, for this editor.

int

horizontalAlignment
Specifies the horizontal alignment for this editor, relative to its parent. Use SWT.LEFT

for left alignment, SWT.RIGHT for right alignment, or SWT.CENTER for center

alignment. SWT.CENTER is the default and is used if an invalid value is specified.

int verticalAlignment Specifies the vertical alignment for this editor, relative to its parent. Use SWT.TOP for

top alignment, SWT.BOTTOM for bottom alignment, or SWT.CENTER for center

alignment. SWT.CENTER is the default and is used if an invalid value is specified.

For example, to create a ControlEditor that's anchored to the upper-left corner of its parent, you code the following:

ControlEditor editor = new ControlEditor(parent);

editor.horizontalAlignment = SWT.LEFT;

editor.verticalAlignment = SWT.TOP;

ControlEditor's methods, described in Table 9-17, allow you to get and set the control associated with the editor, as well

as force a redraw and dispose of the editor. The control you associate with the editor must have the same parent

composite as the editor, or the results are undefined. Because they both have the same parent, they're governed by

the same layout, if any.

Table 9-17: ControlEditor Methods

Method Description

void dispose() Disposes this editor and disassociates it from its parent.

Control getEditor() Returns the control associated with this ControlEditor.

void layout() Forces the associated control to compute its size and position and redraw itself.

void setEditor(Control

editor)
Sets the control associated with this ControlEditor, which must have the same

parent as the ControlEditor.

Caution A control editor and its associated control should both have the same parent.

The ControlEditorTest program, as shown in Listing 9-7, fills a window with a color and creates a control editor

associated with the window (which is a Shell object). It sets a Text object as the control associated with the editor; type

the name of the color to change the color displayed in the window.

Listing 9-7: ControlEditorTest.java

package examples.ch9;

import java.util.*;

import org.eclipse.swt.SWT;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

import org.eclipse.swt.custom.*;

import org.eclipse.swt.events.*;

import org.eclipse.swt.graphics.*;

import org.eclipse.swt.widgets.*;

/**

 * This class demonstrates ControlEditor

 */

public class ControlEditorTest {

 // Create a map to hold all the supported colors

 private static final Map COLORS = new HashMap();

 static {

 COLORS.put("red", new RGB(255, 0, 0));

 COLORS.put("green", new RGB(0, 255, 0));

 COLORS.put("blue", new RGB(0, 0, 255));

 COLORS.put("yellow", new RGB(255, 255, 0));

 COLORS.put("black", new RGB(0, 0, 0));

 COLORS.put("white", new RGB(255, 255, 255));

 }

 private Color color;

 /**

 * Runs the application

 */

 public void run() {

 Display display = new Display();

 Shell shell = new Shell(display);

 shell.setText("Control Editor");

 createContents(shell);

 shell.pack();

 shell.open();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

 if (color != null) color.dispose();

 display.dispose();

 }

 /**

 * Creates the main window's contents

 *

 * @param shell the main window

 */

 private void createContents(final Shell shell) {

 color = new Color(shell.getDisplay(), 255, 0, 0);

 // Create a composite that will be the parent of the editor

 final Composite composite = new Composite(shell, SWT.NONE);

 composite.setBackground(color);

 composite.setBounds(0, 0, 300, 100);

 // Create the editor

 ControlEditor editor = new ControlEditor(composite);

 // Create the control associated with the editor

 final Text text = new Text(composite, SWT.BORDER);

 text.addModifyListener(new ModifyListener() {

 public void modifyText(ModifyEvent event) {

 RGB rgb = (RGB) COLORS.get(text.getText());

 if (rgb != null) {

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 if (color != null) color.dispose();

 color = new Color(shell.getDisplay(), rgb);

 composite.setBackground(color);

 }

 }

 });

 // Place the editor in the top middle of the parent composite

 editor.horizontalAlignment = SWT.CENTER;

 editor.verticalAlignment = SWT.TOP;

 Point size = text.computeSize(SWT.DEFAULT, SWT.DEFAULT);

 editor.minimumWidth = size.x;

 editor.minimumHeight = size.y;

 editor.setEditor(text);

 }

 /**

 * The application entry point

 *

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 new ControlEditorTest().run();

 }

}

The program produces the window shown in Figure 9-18. Type the name of a supported color inside the editor's Text

control, and the composite's color changes, as Figure 9-19 demonstrates.

Figure 9-18: A Text control associated with an editor

Figure 9-19: The changed color

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

The ControlEditorTestTwo program takes a different approach to changing the color (see Listing 9-8). Instead of being

wholly self-contained, it displays a button as its editor control. When clicked, the button launches the standard color

dialog box. For a change of pace, it aligns the button along the entire bottom edge of the parent composite.

Listing 9-8: ControlEditorTestTwo.java

package examples.ch9;

import org.eclipse.swt.SWT;

import org.eclipse.swt.custom.*;

import org.eclipse.swt.events.*;

import org.eclipse.swt.graphics.*;

import org.eclipse.swt.widgets.*;

/**

 * This class demonstrates ControlEditor

 */

public class ControlEditorTestTwo {

 private Color color;

 /**

 * Runs the application

 */

 public void run() {

 Display display = new Display();

 Shell shell = new Shell(display);

 shell.setText("Control Editor Two");

 createContents(shell);

 shell.pack();

 shell.open();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

 if (color != null) color.dispose();

 display.dispose();

 }

 /**

 * Creates the main window's contents

 *

 * @param shell the main window

 */

 private void createContents(final Shell shell) {

 color = new Color(shell.getDisplay(), 255, 0, 0);

 // Create a composite that will be the parent of the editor

 final Composite composite = new Composite(shell, SWT.NONE);

 composite.setBackground(color);

 composite.setBounds(0, 0, 300, 100);

 // Create the editor

 ControlEditor editor = new ControlEditor(composite);

 // Create the control associated with the editor

 Button button = new Button(composite, SWT.PUSH);

 button.setText("Change Color...");

 button.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 ColorDialog dialog = new ColorDialog(shell);

 if (color != null) dialog.setRGB(color.getRGB());

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 RGB rgb = dialog.open();

 if (rgb != null) {

 if (color != null) color.dispose();

 color = new Color(shell.getDisplay(), rgb);

 composite.setBackground(color);

 }

 }

 });

 // Place the editor along the bottom of the parent composite

 editor.grabHorizontal = true;

 editor.verticalAlignment = SWT.BOTTOM;

 Point size = button.computeSize(SWT.DEFAULT, SWT.DEFAULT);

 editor.minimumHeight = size.y;

 editor.setEditor(button);

 }

 /**

 * The application entry point

 *

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 new ControlEditorTestTwo().run();

 }

}

Figure 9-20 shows this program's main window, and Figure 9-21 shows it after using the dialog box to change the color

to white.

Figure 9-20: A button associated with an editor

Figure 9-21: The changed color

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Using TableEditor

As in the aforementioned example of spreadsheets, TableEditor allows users to edit the data inside a table cell. Like

ControlEditor, TableEditor can use a wholly self-contained control, such as Text or CCombo, or can use a button to

launch a dialog box for editing the data. This section examines both approaches.

A TableEditor's parent must be a Table, which is passed in TableEditor's only constructor, as shown here:

public TableEditor(Table parent)

Because TableEditor derives from ControlEditor, it inherits the fields used to control its size and position and adds no

new ones. It does add a few new methods, described in Table 9-18.

Table 9-18: TableEditor Methods

Method Description

int getColumn() Returns the zero-based index of the column this editor

occupies

TableItem getItem() Returns the item this editor is using

void setColumn(int column) Sets the zero-based index of the column this editor

should occupy

void setEditor(Control editor, TableItem item, int

column)
Sets the control, item, and column for this editor

void setItem(TableItem item) Sets the item for this editor

Though a TableEditor has a Table for a parent, it also has an associated row (TableItem) and column. In other words, a

TableEditor actually belongs to a cell in the parent Table. Use the setters for row and column to set the cell, like this:

TableEditor editor = new TableEditor(myTable);

editor.setEditor(myControl);

editor.setItem(myItem);

editor.setColumn(myColumn);

You can also use TableEditor's new setEditor() method that takes three parameters—an editor, an item, and a

column—to set everything in one call, like this:

TableEditor editor = new TableEditor(myTable);

editor.setEditor(myControl, myItem, myColumn);

Exchanging Data

You might expect the association between editor and cell to run so deep that values typed into the editor would pass

seamlessly into the cell, and from the cell into the editor, with no intervention on your part. No such luck—you must

write code to pass the text back and forth. You'll usually set the text from the cell into your editor's control when you

create the control, and you'll set the text from the control back into the cell any time it's modified. Here's some code to

exchange data between a cell and a Text control:

// User has selected a cell in the table

// Create the Text object for the editor

final Text text = new Text(table, SWT.NONE);

// Transfer any text from the cell to the Text control and select it

text.setText(item.getText(column));

text.selectAll();

text.setFocus();

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

// Set the Text control into the editor

editor.setEditor(text, item, column);

// Add a handler to transfer the text back to the cell

// any time it's modified

text.addModifyListener(new ModifyListener() {

 public void modifyText(ModifyEvent event) {

 item.setText(column, text.getText());

 }

});

Placing the Editor

If you're always editing the same column in a table, determining which cell to place the control for the editor in is

straightforward. Add a selection listener to the table, overriding the widgetSelected() method. The event object received

in that method contains the selected row, so you can place the editor with code like this:

table.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 // Figure out which row was selected

 TableItem item = (TableItem) event.item;

 if (item != null) {

 // Create the Text object for your editor

 Text text = new Text(table, SWT.NONE);

 editor.setEditor(text, item, 2); // Always edit the third column

 }

 }

});

Determining the column selected, however, is trickier. Tables have methods for determining the selected row, but none

for the selected column. The SelectionEvent object contains x and y data members; if you can use those to determine

where the user clicked the mouse, you could iterate through the columns to see where the point lies. Unfortunately, for

SelectionEvent, both x and y are always zero. Those values are always in MouseEvent, however, so if you use a mouse

listener instead of a selection listener, you can determine both row and column with little fuss. That code might look

something like this:

table.addMouseListener(new MouseAdapter() {

 public void mouseDown(MouseEvent event) {

 // Determine where the mouse was clicked

 Point pt = new Point(event.x, event.y);

 // Get the row

 TableItem item = table.getItem(pt);

 if (item != null) {

 // Iterate through the columns to determine which column was clicked

 int column = -1;

 for (int i = 0, n = table.getColumnCount(); i < n; i++) {

 Rectangle rect = item.getBounds(i);

 if (rect.contains(pt)) {

 // This column contains the clicked point

 column = i;

 break;

 }

 }

 if (column > -1) {

 // Create control, set into editor, etc.

 }

 }

 }

});

Cleaning Up

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Creating a new control to associate with the editor each time the user clicks a cell is fine, but you've got to clean up

after yourself. You usually dispose any associated control in your event handler, before you create a new control and

associate it with the editor. That code looks like this:

table.addMouseListener(new MouseAdapter() {

 public void mouseDown(MouseEvent event) {

 // Dispose any existing control from the editor

 Control control = editor.getEditor();

 if (control != null)

 control.dispose();

 // The rest of the code . . .

 }

});

In some situations, you know when the user is through editing. For example, if the editing control is a CCombo, users

have completed an editing session when they select an item from the dropdown. You can end the editing session then,

like this:

CCombo combo = new CCombo(table, SWT.READ_ONLY);

// Add data, set into editor, etc.

combo.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 item.setText(column, combo.getText());

 combo.dispose(); // End the editing session

 }

});

Using a Button

Though Text and CCombo seem the obvious choices for TableEditor controls, you can also use a button that launches a

dialog box. To make the button fit within the cell, be sure to use the height of the table's items for the button's height.

Then, set the button's sizes into the editor. The code to do that looks like this:

// Create the button and set its height

Button button = new Button(table, SWT.PUSH);

button.setText("Font...");

button.computeSize(SWT.DEFAULT, table.getItemHeight());

// Create the editor and set the button as its control

TableEditor editor = new TableEditor(table);

editor.grabHorizontal = true;

editor.minimumWidth = button.getSize().x;

editor.minimumHeight = button.getSize().y;

editor.setEditor(button, item, column);

// Set the handler to open the dialog box when the button is clicked, etc.

Putting it Together

The TextTableEditor program creates a table with five rows and five columns (see Listing 9-9). The first column

contains buttons, one for each row, for changing the foreground color of the row. The second column contains CCombo

objects for selecting data from a dropdown. You can edit the rest of the cells in the table in place—just click the desired

cell in the table and start typing. Click outside the cell to stop editing.

Listing 9-9: TextTableEditor.java

package examples.ch9;

import org.eclipse.swt.SWT;

import org.eclipse.swt.custom.*;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

import org.eclipse.swt.events.*;

import org.eclipse.swt.graphics.*;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.widgets.*;

/**

 * This class demonstrates TableEditor.

 */

public class TextTableEditor {

 // Number of rows and columns

 private static final int NUM = 5;

 // Colors for each row

 private Color[] colors = new Color[NUM];

 // Options for each dropdown

 private String[] options = { "Option 1", "Option 2", "Option 3"};

 /**

 * Runs the application

 */

 public void run() {

 Display display = new Display();

 Shell shell = new Shell(display);

 shell.setText("Text Table Editor");

 createContents(shell);

 shell.pack();

 shell.open();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

 // Dispose any created colors

 for (int i = 0; i < NUM; i++) {

 if (colors[i] != null) colors[i].dispose();

 }

 display.dispose();

 }

 /**

 * Creates the main window's contents

 *

 * @param shell the main window

 */

 private void createContents(final Shell shell) {

 shell.setLayout(new FillLayout());

 // Create the table

 final Table table = new Table(shell, SWT.SINGLE | SWT.FULL_SELECTION

 | SWT.HIDE_SELECTION);

 table.setHeaderVisible(true);

 table.setLinesVisible(true);

 // Create five columns

 for (int i = 0; i < NUM; i++) {

 TableColumn column = new TableColumn(table, SWT.CENTER);

 column.setText("Column " + (i + 1));

 column.pack();

 }

 // Create five table editors for color

 TableEditor[] colorEditors = new TableEditor[NUM];

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 // Create five buttons for changing color

 Button[] colorButtons = new Button[NUM];

 // Create five rows and the editors for those rows. The first column has the

 // color change buttons. The second column has dropdowns. The final three

 // have text fields.

 for (int i = 0; i < NUM; i++) {

 // Create the row

 final TableItem item = new TableItem(table, SWT.NONE);

 // Create the editor and button

 colorEditors[i] = new TableEditor(table);

 colorButtons[i] = new Button(table, SWT.PUSH);

 // Set attributes of the button

 colorButtons[i].setText("Color...");

 colorButtons[i].computeSize(SWT.DEFAULT, table.getItemHeight());

 // Set attributes of the editor

 colorEditors[i].grabHorizontal = true;

 colorEditors[i].minimumHeight = colorButtons[i].getSize().y;

 colorEditors[i].minimumWidth = colorButtons[i].getSize().x;

 // Set the editor for the first column in the row

 colorEditors[i].setEditor(colorButtons[i], item, 0);

 // Create a handler for the button

 final int index = i;

 colorButtons[i].addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 ColorDialog dialog = new ColorDialog(shell);

 if (colors[index] != null) dialog.setRGB(colors[index].getRGB());

 RGB rgb = dialog.open();

 if (rgb != null) {

 if (colors[index] != null) colors[index].dispose();

 colors[index] = new Color(shell.getDisplay(), rgb);

 item.setForeground(colors[index]);

 }

 }

 });

 }

 // Create an editor object to use for text editing

 final TableEditor editor = new TableEditor(table);

 editor.horizontalAlignment = SWT.LEFT;

 editor.grabHorizontal = true;

 // Use a mouse listener, not a selection listener, because you're interested

 // in the selected column as well as row

 table.addMouseListener(new MouseAdapter() {

 public void mouseDown(MouseEvent event) {

 // Dispose any existing editor

 Control old = editor.getEditor();

 if (old != null) old.dispose();

 // Determine where the mouse was clicked

 Point pt = new Point(event.x, event.y);

 // Determine which row was selected

 final TableItem item = table.getItem(pt);

 if (item != null) {

 // Determine which column was selected

 int column = -1;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 for (int i = 0, n = table.getColumnCount(); i < n; i++) {

 Rectangle rect = item.getBounds(i);

 if (rect.contains(pt)) {

 // This is the selected column

 column = i;

 break;

 }

 }

 // Column 2 holds dropdowns

 if (column == 1) {

 // Create the dropdown and add data to it

 final CCombo combo = new CCombo(table, SWT.READ_ONLY);

 for (int i = 0, n = options.length; i < n; i++) {

 combo.add(options[i]);

 }

 // Select the previously selected item from the cell

 combo.select(combo.indexOf(item.getText(column)));

 // Compute the width for the editor

 // Also, compute the column width, so that the dropdown fits

 editor.minimumWidth = combo.computeSize(SWT.DEFAULT, SWT.DEFAULT).x;

 table.getColumn(column).setWidth(editor.minimumWidth);

 // Set the focus on the dropdown and set into the editor

 combo.setFocus();

 editor.setEditor(combo, item, column);

 // Add a listener to set the selected item back into the cell

 final int col = column;

 combo.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 item.setText(col, combo.getText());

 // They selected an item; end the editing session

 combo.dispose();

 }

 });

 } else if (column > 1) {

 // Create the Text object for your editor

 final Text text = new Text(table, SWT.NONE);

 text.setForeground(item.getForeground());

 // Transfer any text from the cell to the Text control,

 // set the color to match this row, select the text,

 // and set focus to the control

 text.setText(item.getText(column));

 text.setForeground(item.getForeground());

 text.selectAll();

 text.setFocus();

 // Recalculate the minimum width for the editor

 editor.minimumWidth = text.getBounds().width;

 // Set the control into the editor

 editor.setEditor(text, item, column);

 // Add a handler to transfer the text back to the cell

 // any time it's modified

 final int col = column;

 text.addModifyListener(new ModifyListener() {

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 public void modifyText(ModifyEvent event) {

 // Set the text of the editor's control back into the cell

 item.setText(col, text.getText());

 }

 });

 }

 }

 }

 });

 }

 /**

 * The application entry point

 *

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 new TextTableEditor().run();

 }

}

The application's main window looks like Figure 9-22. Figure 9-23 shows the application with some colors changed,

some options selected, and some text typed into a few cells.

Figure 9-22: The TextTableEditor program

Figure 9-23: The TextTableEditor program with some cells edited

Using TableTreeEditor

Learning to use a TableEditor flattens the learning curve for a TableTreeEditor—they're virtually the same. You use

TableEditor for Tables and TableTreeEditor for TableTrees, and everything else you know about TableEditor applies to

TableTreeEditor.

Create a TableTreeEditor by calling its only constructor:

public TableTreeEditor(TableTree tableTree)

TableTreeEditor inherits all the same fields as methods that TableEditor does, because it also derives from ControlEditor.

It adds the methods described in Table 9-19.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig350%5F01%5F0%2Ejpg
file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig350%5F02%5F0%2Ejpg

Table 9-19: TableTreeEditor Methods

Method Description

void dispose() Disposes this editor

int getColumn() Returns the zero-based index of the column this editor

occupies

TableTreeItem getItem() Returns the item this editor is using

void setColumn(int column) Sets the zero-based index of the column this editor

should occupy

void setEditor(Control editor, TableTreeItem item, int

column)
Sets the control, item, and column for this editor

void setItem(TableTreeItem item) Sets the item for this editor

You'll notice that the API for TableTreeEditor matches the API for TableEditor, except that it uses TableTreeItem in place

of TreeItem for all items. Otherwise, you can use TableTreeEditor just as you use TableEditor.

Using TreeEditor

A TreeEditor allows users to edit the text associated with a tree's nodes. It's derived from ControlEditor, and it inherits all

the methods and data members from ControlEditor. Its parent is always a Tree, which is passed in the constructor:

public TreeEditor(Tree parent)

It adds no data members and adds the methods described in Table 9-20.

Table 9-20: TreeEditor Methods

Method Description

void dispose() Disposes this editor

TreeItem getItem() Returns the item associated with this TreeEditor

void setEditor(Control editor, TreeItem item) Sets the control and item for this editor

void setItem(TreeItem item) Sets the item for this editor

You'll most often use a TreeEditor to allow in-place editing of item text in the tree. You can also associate the editor

with a button to launch a dialog box for editing tree nodes. You create the editor and control just like you do with the

other editor classes. Here's some sample code:

TreeEditor editor = new TreeEditor(tree);

editor.horizontalAlignment = SWT.LEFT;

editor.grabHorizontal = true;

Text text = new Text(tree, SWT.NONE);

editor.setEditor(text, treeItem);

The TextTreeEditor program implements a TreeEditor that uses a Text control for its editing (see Listing 9-10). It mimics

the following standard Windows keystrokes for editing data in place:

Press F2 to edit the selected item.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

While editing, press Enter to accept the changes and stop editing.

While editing, press Escape to throw away the changes and stop editing.

Listing 9-10: TextTreeEditor.java

package examples.ch9;

import org.eclipse.swt.SWT;

import org.eclipse.swt.custom.*;

import org.eclipse.swt.events.*;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.widgets.*;

/**

 * This class demonstrates TreeEditor

 */

public class TextTreeEditor {

 // Constant for how many items to create at each level

 private static final int NUM = 3;

 /**

 * Runs the application

 */

 public void run() {

 Display display = new Display();

 Shell shell = new Shell(display);

 shell.setText("Text Tree Editor");

 createContents(shell);

 shell.open();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

 display.dispose();

 }

 /**

 * Creates the contents of the main window

 *

 * @param shell the main window

 */

 public void createContents(Shell shell) {

 shell.setLayout(new FillLayout());

 // Create the tree

 final Tree tree = new Tree(shell, SWT.SINGLE);

 // Fill the tree with data

 for (int i = 0; i < NUM; i++) {

 TreeItem iItem = new TreeItem(tree, SWT.NONE);

 iItem.setText("Item " + (i + 1));

 for (int j = 0; j < NUM; j++) {

 TreeItem jItem = new TreeItem(iItem, SWT.NONE);

 jItem.setText("Sub Item " + (j + 1));

 for (int k = 0; k < NUM; k++) {

 new TreeItem(jItem, SWT.NONE).setText("Sub Sub Item " + (k + 1));

 }

 jItem.setExpanded(true);

 }

 iItem.setExpanded(true);

 }

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 // Create the editor and set its attributes

 final TreeEditor editor = new TreeEditor(tree);

 editor.horizontalAlignment = SWT.LEFT;

 editor.grabHorizontal = true;

 // Add a key listener to the tree that listens for F2.

 // If F2 is pressed, you do the editing

 tree.addKeyListener(new KeyAdapter() {

 public void keyPressed(KeyEvent event) {

 // Make sure one and only one item is selected when F2 is pressed

 if (event.keyCode == SWT.F2 && tree.getSelectionCount() == 1) {

 // Determine the item to edit

 final TreeItem item = tree.getSelection()[0];

 // Create a text field to do the editing

 final Text text = new Text(tree, SWT.NONE);

 text.setText(item.getText());

 text.selectAll();

 text.setFocus();

 // If the text field loses focus, set its text into the tree

 // and end the editing session

 text.addFocusListener(new FocusAdapter() {

 public void focusLost(FocusEvent event) {

 item.setText(text.getText());

 text.dispose();

 }

 });

 // If they hit Enter, set the text into the tree and end the editing

 // session. If they hit Escape, ignore the text and end the editing

 // session

 text.addKeyListener(new KeyAdapter() {

 public void keyPressed(KeyEvent event) {

 switch (event.keyCode) {

 case SWT.CR:

 // Enter hit--set the text into the tree and drop through

 item.setText(text.getText());

 case SWT.ESC:

 // End editing session

 text.dispose();

 break;

 }

 }

 });

 // Set the text field into the editor

 editor.setEditor(text, item);

 }

 }

 });

 }

 /**

 * The application entry point

 *

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 new TextTreeEditor().run();

 }

}

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

You can also click outside the item being edited to save the changes and stop editing.

In the createContents() method, the code creates a TreeEditor and sets its data. It adds a key listener to listen for an F2

key press. When F2 is pressed, it first makes sure that only one item in the tree is selected, and then it begins the

editing session. It creates a Text for the editor's control and adds two listeners to it: one to detect loss of focus and

one to detect key presses. On loss of focus, it saves the text into the tree and ends the editing by calling text.dispose().

In the key listener, if Enter is pressed, it saves the text into the tree. If Escape is pressed, it ignores the text. For either

of those two keys, it ends the editing session by calling text.dispose().

Figure 9-24 shows the running application. Figure 9-25 shows the running application with an active editing session.

Figure 9-24: The TextTreeEditor program

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Figure 9-25: The TextTreeEditor program with the first node being edited

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Introducing TableCursor

Despite its name, TableCursor has nothing to do with databases. Instead, it provides a means to navigate around a

table widget using the keyboard. In addition to highlighting a row in the table, it selects a single cell in the table, as

Figure 9-26 shows. To navigate, use the following keys:

Arrows, which move the selection one row or column in the direction of the arrow

Home, which moves the selection to the first row of the currently selected column

End, which moves the selection to the last row of the currently selected column

Page Up, which moves the selection up a page

Page Down, which moves the selection down a page

Enter, which generates a Default Selection event

Figure 9-26: A TableCursor with the middle cell selected

You'll typically react to the Enter key by initiating an editing session. Because the parent of the editor is a TableCursor,

not a Table, use ControlEditor, not TableEditor.

Creating a TableCursor

TableCursor has a single constructor:

public TableCursor(Table parent, int style)

The parent is always a Table, and the style can be either SWT.NONE or SWT.BORDER. Figure 9-26 (earlier) shows a

TableCursor with the SWT.NONE style, and Figure 9-27 shows one with the SWT.BORDER style.

Figure 9-27: A TableCursor with the border style

While calling the TableCursor constructor creates a TableCursor and associates it with a Table, the TableCursor is

necessarily event driven. The next section discusses the event handling you'll use to make TableCursor useful.

Using a TableCursor

A TableCursor with no event handlers displays a selection box around the currently selected cell. Pressing the

navigation keys listed previously moves the selection accordingly. It doesn't, however, change the selected row in the

table. It also doesn't provide any editing capabilities. It's just a box, roaming around the screen on demand.

Table 9-21 describes TableCursor's methods. You'll want to add a selection listener so your TableCursor can respond to

user requests as expected. Listing 9-11 shows a sample selection listener.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Table 9-21: TableCursor Methods

Method Description

void addSelectionListener (SelectionListener

listener)
Adds a listener to the notification list that's notified when this

TableCursor is selected.

int getColumn() Returns the zero-based index of the currently selected column.

TableItem getRow() Returns the currently selected row.

void setSelection(int row, int column) Selects the cell at the zero-based row and column.

void setSelection(TableItem row, int column) Selects the cell at the row and zero-based column.

void setVisible(boolean visible) If visible is true, shows this TableCursor. Otherwise, hides this

TableCursor.

Listing 9-11: A Selection Listener

cursor.addSelectionListener(new SelectionAdapter() {

 // This is called as the user navigates around the table

 public void widgetSelected(SelectionEvent event) {

 // Select the row in the table where the TableCursor is

 table.setSelection(new TableItem[] { cursor.getRow() });

 }

 // This is called when the user hits Enter

 public void widgetDefaultSelected(SelectionEvent event) {

 // Begin an editing session

 // Notice that the parent of the Text is the TableCursor, not the Table

 final Text text = new Text(cursor, SWT.NONE);

 // Copy the text from the cell to the Text

 text.setText(cursor.getRow().getText(cursor.getColumn()));

 text.setFocus();

 // Add a handler to detect key presses

 text.addKeyListener(new KeyAdapter() {

 public void keyPressed(KeyEvent event) {

 // End the editing and save the text if the user presses Enter

 // End the editing and throw away the text if the user presses Escape

 switch (event.keyCode)

 {

 case SWT.CR:

 cursor.getRow().setText(cursor.getColumn(), text.getText());

 case SWT.ESC:

 text.dispose();

 break;

 }

 }

 });

 editor.setEditor(text);

 }

});

The TableCursorTest program creates a table with five rows and columns (see Listing 9-12). It also creates a

TableCursor to navigate through the table, adding the selection listener code listed previously to provide editing.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Listing 9-12: TableCursorTest.java

package examples.ch9;

import org.eclipse.swt.SWT;

import org.eclipse.swt.custom.*;

import org.eclipse.swt.events.*;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.widgets.*;

/**

 * This class demonstrates TableCursor

 */

public class TableCursorTest {

 // The number of rows and columns

 private static final int NUM = 5;

 /**

 * Runs the program

 */

 public void run() {

 Display display = new Display();

 Shell shell = new Shell(display);

 shell.setText("Table Cursor Test");

 createContents(shell);

 shell.pack();

 shell.open();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

 display.dispose();

 }

 /**

 * Creates the main window's contents

 *

 * @param shell the main window

 */

 private void createContents(Shell shell) {

 shell.setLayout(new FillLayout());

 // Create the table

 final Table table = new Table(shell, SWT.SINGLE | SWT.FULL_SELECTION);

 table.setHeaderVisible(true);

 table.setLinesVisible(true);

 // Create the columns

 for (int i = 0; i < NUM; i++) {

 TableColumn column = new TableColumn(table, SWT.CENTER);

 column.setText("Column " + (i + 1));

 column.pack();

 }

 // Create the rows

 for (int i = 0; i < NUM; i++) {

 new TableItem(table, SWT.NONE);

 }

 // Create the TableCursor

 final TableCursor cursor = new TableCursor(table, SWT.NONE);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 // Create the editor

 // Use a ControlEditor, not a TableEditor, because the cursor is the parent

 final ControlEditor editor = new ControlEditor(cursor);

 editor.grabHorizontal = true;

 editor.grabVertical = true;

 // Add the event handling

 cursor.addSelectionListener(new SelectionAdapter() {

 // This is called as the user navigates around the table

 public void widgetSelected(SelectionEvent event) {

 // Select the row in the table where the TableCursor is

 table.setSelection(new TableItem[] { cursor.getRow()});

 }

 // This is called when the user hits Enter

 public void widgetDefaultSelected(SelectionEvent event) {

 // Begin an editing session

 // Notice that the parent of the Text is the TableCursor, not the Table

 final Text text = new Text(cursor, SWT.NONE);

 text.setFocus();

 // Copy the text from the cell to the Text control

 text.setText(cursor.getRow().getText(cursor.getColumn()));

 text.setFocus();

 // Add a handler to detect key presses

 text.addKeyListener(new KeyAdapter() {

 public void keyPressed(KeyEvent event) {

 // End the editing and save the text if the user presses Enter

 // End the editing and throw away the text if the user presses Escape

 switch (event.keyCode) {

 case SWT.CR:

 cursor.getRow().setText(cursor.getColumn(), text.getText());

 case SWT.ESC:

 text.dispose();

 break;

 }

 }

 });

 editor.setEditor(text);

 }

 });

 }

 /**

 * The application entry point

 *

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 new TableCursorTest().run();

 }

}

Figure 9-28 shows the program's main window with the TableCursor showing, and Figure 9-29 shows the program with

several cells edited.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Figure 9-28: The TableCursorTest program

Figure 9-29: The TableCursorTest program with some cells edited

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig361%5F01%5F0%2Ejpg
file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig361%5F02%5F0%2Ejpg

Introducing PopupList

The custom package offers another control, PopupList, that functions much like a Combo or CCombo. It displays a list of

items, allows the user to select an item, and disappears. Where it displays the list and how many items it shows,

however, depends on the available screen room.

Creating a PopupList

PopupList offers two constructors:

public PopupList(Shell shell);

public PopupList(Shell shell, int style);

Because no styles apply, however, you'll likely use the single-argument constructor. Note that the parent is a Shell, not

a Composite. You then show the popup list by calling the open() method. Table 9-22 describes PopupList's methods.

Table 9-22: PopupList Methods

Method Description

Font getFont() Returns the font associated with this PopupList

String[] getItems() Returns the items in the list

int getMinimumWidth() Returns the minimum width for the list in pixels

String open(Rectangle

rectangle)
Opens the list, using the specified Rectangle to determine size and placement,

and returns the selected item (or null if none selected)

void select(String string) Selects the first item in the list that starts with the specified string

void setFont(Font font) Sets the font for this PopupList

void setItems(String[]

strings)
Sets the items for this list

void setMinimumWidth(int

width)
Sets the minimum width, in pixels, for this PopupList

Using PopupList

You usually create and launch a PopupList in response to some event. You might, for example, launch the list when a

button is clicked. To accomplish this, create a selection listener for the button that looks something like this:

Button button = new Button(shell, SWT.PUSH);

button.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 PopupList list = new PopupList(shell);

 list.setItems(new String[] { "one", "two", "three" });

 String selected = list.open(shell.getBounds());

 }

});

Because PopupList offers no add() method to add a single string or set of strings, you must call setItems(), passing an

array of strings, to set the options available in the list.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

The PopupListTest program shows a button that launches a PopupList when clicked (see Listing 9-13). It uses the

shell's bounds to determine where to place the list and prints the selected item to the console.

Listing 9-13: PopupListTest.java

package examples.ch9;

import org.eclipse.swt.SWT;

import org.eclipse.swt.custom.*;

import org.eclipse.swt.events.*;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.widgets.*;

/**

 * This class demonstrates PopupList

 */

public class PopupListTest {

 // These are the options that display in the list

 private static final String[] OPTIONS = { "Apple", "Banana", "Cherry",

 "Doughnut", "Eggplant", "Filbert", "Greens", "Hummus", "Ice Cream", "Jam"};

 /**

 * Runs the application

 */

 public void run() {

 Display display = new Display();

 Shell shell = new Shell(display);

 shell.setText("PopupList Test");

 createContents(shell);

 shell.pack();

 shell.open();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

 display.dispose();

 }

 /**

 * Creates the main window's contents

 *

 * @param shell the main window

 */

 private void createContents(final Shell shell) {

 shell.setLayout(new RowLayout());

 // Create a button to launch the list

 Button button = new Button(shell, SWT.PUSH);

 button.setText("Push Me");

 button.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 // Create a list

 PopupList list = new PopupList(shell);

 // Add the items to the list

 list.setItems(OPTIONS);

 // Open the list and get the selected item

 String selected = list.open(shell.getBounds());

 // Print the item to the console

 System.out.println(selected);

 }

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 });

 }

 /**

 * The application entry point

 *

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 new PopupListTest().run();

 }

}

Figure 9-30 shows the program with the list below the window. Figure 9-31 shows the program after its main window

has been moved to the bottom of the screen—the list has moved above the window.

Figure 9-30: A PopupList below the main window

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Figure 9-31: A PopupList above the main window

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Introducing SashForm

You learned about sashes—draggable splitters dividing two controls—in Chapter 8. SashForm wraps the setup of a

sash, removing the tedium from creating and using sashes. To recap, you create a sash by following these steps:

Instantiating a Sash object1.

Creating a FormData object for the sash with the appropriate attachments2.

Creating the controls for either side of the sash3.

Creating FormData objects for the controls and attaching them to the sash4.

Creating an event handler to make the sash stick when it's dragged5.

Aside from deciding whether to make the sash horizontal or vertical, and determining which controls to place on the

sides of the sash, you won't change much code in your sash setup routines—and it's a lot of code each time.

SashForm takes care of this burden for you—to use SashForm, you do the following:

Instantiate a SashForm.1.

Create the controls for each side.2.

You'll find this a considerable improvement.

Creating a SashForm

You instantiate a SashForm by calling its only constructor:

SashForm(Composite parent, int style)

Like sashes, SashForms can be either horizontal or vertical. You specify the desired orientation with the style you pass

to the constructor—either SWT.HORIZONTAL or SWT.VERTICAL, for horizontal or vertical orientation, respectively. This

orientation, however, refers to the controls, not the sash. A horizontal orientation places the controls horizontally,

divided by a vertical sash. A vertical orientation places the controls vertically, with a horizontal sash. Figure 9-32

shows a horizontal SashForm, and Figure 9-33 shows a vertical SashForm.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Figure 9-32: A SashForm with the SWT.HORIZONTAL style

Figure 9-33: A SashForm with the SWT.VERTICAL style

To create a horizontal SashForm, use code like this:

SashForm sashForm = new SashForm(parent, SWT.HORIZONTAL);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

new Button(sashForm, SWT.PUSH).setText("Left");

new Button(sashForm, SWT.PUSH).setText("Right");

These three lines of code create two buttons, side by side, separated by a vertical sash that sticks when you move it.

You don't have to attach the buttons to the sash; SashForm takes care of that detail for you.

To see SashForm yourself, compile and run the SashFormTest program shown in Listing 9-14.

Listing 9-14: SashFormTest.java

package examples.ch9;

import org.eclipse.swt.SWT;

import org.eclipse.swt.custom.SashForm;

import org.eclipse.swt.layout.FillLayout;

import org.eclipse.swt.widgets.*;

/**

 * This class demonstrates SashForm

 */

public class SashFormTest {

 /**

 * Runs the application

 */

 public void run() {

 Display display = new Display();

 Shell shell = new Shell(display);

 shell.setText("SashForm Test");

 createContents(shell);

 shell.open();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

 display.dispose();

 }

 /**

 * Creates the main window's contents

 *

 * @param parent the parent window

 */

 private void createContents(Composite parent) {

 // Fill the parent window with the buttons and sash

 parent.setLayout(new FillLayout());

 // Create the SashForm and the buttons

 SashForm sashForm = new SashForm(parent, SWT.HORIZONTAL);

 new Button(sashForm, SWT.PUSH).setText("Left");

 new Button(sashForm, SWT.PUSH).setText("Right");

 }

 /**

 * The application entry point

 *

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 new SashFormTest().run();

 }

}

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Configuring a SashForm

Although you can create a sticky sash and its two controls with three lines of code, you're stuck with two equally sized

controls and a sash with a fixed orientation. Your requirements, however, might dictate a little more flexibility. You

might want to change the sash's width, or even create more than one sash. You might want the user to be able to

change the sash's orientation during run time. Perhaps you want one control to claim all of the space allocated to the

sashing area. Maybe you want to change the colors or weights for the controls. Though SashForm does allow you to

get off the ground quickly with minimum fuss, it also provides methods to customize its stock behavior. Table 9-23

describes these methods.

Table 9-23: SashForm Methods

Method Description

Point computeSize(int wHint, int hHint,

boolean changed)
Computes the preferred size of this SashForm.

Control getMaxmimizedControl() Returns the control that's currently maximized or null if no control

is maximized.

int getOrientation() Returns SWT.HORIZONTAL for horizontally aligned SashForms or

SWT.VERTICAL for vertically aligned SashForms.

int[] getWeights() Returns the relative weights for the controls in this SashForm.

void layout(boolean changed) Forces the SashForm to recalculate the sizes and positions of its

sashes and controls and to redraw itself.

void setBackground(Color color) Sets the background color for this SashForm.

void setForeground(Color color) Sets the foreground color for this SashForm.

void setLayout(Layout layout) Currently does nothing.

void setMaximizedControl(Control

control)
Sets the control to maximize in this SashForm, restoring any

previously maximized control. Passing null restores all controls.

void setOrientation(int orientation) Sets the orientation for this SashForm. Valid values are

SWT.HORIZONTAL and SWT.VERTICAL.

void setWeights(int[] weights) Sets the relative weights for the controls in this SashForm.

Additionally, SashForm has a public member, int SASH_WIDTH, which controls the width in pixels of all sashes in this

SashForm. You get and set the value of this member directly, like this:

sashForm.SASH_WIDTH = 5;

The SashFormAdvanced program demonstrates some of SashForm's capabilities (see Listing 9-15). It creates three

buttons in a SashForm and uses green, extra-wide sashes to divide them. It sets the relative weights for the three

buttons, so they're not all the same size. Clicking one of the buttons maximizes that button; clicking it again restores it.

The program also provides two extra buttons: one labeled Switch Orientation and one labeled Restore Weights.

Clicking the Switch Orientation button will toggle the SashForm between horizontal and vertical orientations. Clicking

the Restore Weights button will restore the original relative weights for the SashForm's buttons (you'll see the effects

only if you've dragged the sashes to new locations).

Listing 9-15: SashFormAdvanced.java

package examples.ch9;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

import org.eclipse.swt.SWT;

import org.eclipse.swt.custom.SashForm;

import org.eclipse.swt.events.*;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.widgets.*;

/**

 * This class demonstrates SashForm

 */

public class SashFormAdvanced {

 /**

 * Runs the application

 */

 public void run() {

 Display display = new Display();

 Shell shell = new Shell(display);

 shell.setText("SashForm Advanced");

 createContents(shell);

 shell.open();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

 display.dispose();

 }

 /**

 * Creates the main window's contents

 *

 * @param parent the parent window

 */

 private void createContents(Composite parent) {

 // The layout will have a row of buttons, and

 // then a SashForm below it.

 parent.setLayout(new GridLayout(1, false));

 // Create the row of buttons

 Composite buttonBar = new Composite(parent, SWT.NONE);

 buttonBar.setLayout(new RowLayout());

 Button flip = new Button(buttonBar, SWT.PUSH);

 flip.setText("Switch Orientation");

 Button weights = new Button(buttonBar, SWT.PUSH);

 weights.setText("Restore Weights");

 // Create the SashForm

 Composite sash = new Composite(parent, SWT.NONE);

 sash.setLayout(new FillLayout());

 sash.setLayoutData(new GridData(GridData.FILL_BOTH));

 final SashForm sashForm = new SashForm(sash, SWT.HORIZONTAL);

 // Change the width of the sashes

 sashForm.SASH_WIDTH = 20;

 // Change the color used to paint the sashes

 sashForm.setBackground(parent.getDisplay().getSystemColor(SWT.COLOR_GREEN));

 // Create the buttons and their event handlers

 final Button one = new Button(sashForm, SWT.PUSH);

 one.setText("One");

 one.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 maximizeHelper(one, sashForm);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 }

 });

 final Button two = new Button(sashForm, SWT.PUSH);

 two.setText("Two");

 two.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 maximizeHelper(two, sashForm);

 }

 });

 final Button three = new Button(sashForm, SWT.PUSH);

 three.setText("Three");

 three.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 maximizeHelper(three, sashForm);

 }

 });

 // Set the relative weights for the buttons

 sashForm.setWeights(new int[] { 1, 2, 3});

 // Add the Switch Orientation functionality

 flip.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 switch (sashForm.getOrientation()) {

 case SWT.HORIZONTAL:

 sashForm.setOrientation(SWT.VERTICAL);

 break;

 case SWT.VERTICAL:

 sashForm.setOrientation(SWT.HORIZONTAL);

 break;

 }

 }

 });

 // Add the Restore Weights functionality

 weights.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 sashForm.setWeights(new int[] { 1, 2, 3});

 }

 });

 }

 /**

 * Helper method for our maximize behavior. If the passed control is already

 * maximized, restore it. Otherwise, maximize it.

 *

 * @param control the control to maximize or restore

 * @param sashForm the parent SashForm

 */

 private void maximizeHelper(Control control, SashForm sashForm) {

 // See if the control is already maximized

 if (control == sashForm.getMaximizedControl()) {

 // Already maximized; restore it

 sashForm.setMaximizedControl(null);

 } else {

 // Not yet maximized, so maximize it

 sashForm.setMaximizedControl(control);

 }

 }

 /**

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 * The application entry point

 *

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 new SashFormAdvanced().run();

 }

}

Figure 9-34 shows the program's main window, Figure 9-35 shows the program after the orientation has been

switched, and Figure 9-36 shows one of the buttons maximized.

Figure 9-34: The SashFormAdvanced program

Figure 9-35: The SashFormAdvanced program with the orientation switched

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig372%5F01%5F0%2Ejpg
file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig373%5F01%5F0%2Ejpg

Figure 9-36: The SashFormAdvanced program with a maximized button

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig373%5F02%5F0%2Ejpg

Introducing ScrolledComposite

Until now, all the controls in the example code have fit inside the application window. Sometimes, however, your

controls won't fit, and you'll want users to be able to scroll left and right or up and down to see them, as if panning over

your application using a smaller view port. The ScrollableComposite class is a concrete Composite class with scrollbars.

Use it anywhere you'd use a Composite but want users to be able to scroll through the Composite's contents when they

don't fit.

A key difference between Composites and ScrolledComposites lies in how you add children to them. With Composites,

you simply pass the Composite to each of the children's constructors. ScrolledComposite, however, scrolls through a

single control, so you can specify either a single control or another Composite that contains all the children controls.

Creating a ScrolledComposite

ScrolledComposite has one constructor:

ScrolledComposite(Composite parent, int style)

where style is SWT.H_SCROLL to enable horizontal scrolling, SWT.V_SCROLL to enable vertical scrolling, or

SWT.H_SCROLL | SWT.V_SCROLL to enable both. Figure 9-37 shows a ScrolledComposite with the style

SWT.H_SCROLL | SWT.V_SCROLL.

Figure 9-37: A ScrolledComposite

Sizing a ScrolledComposite

You take one of the following two approaches to size the scrollable area of a ScrolledComposite:

You can set the size of the child control, and the ScrolledComposite will show scrollbars whenever the

child control can't be fully displayed.

You can set the minimum size of the child control, and the ScrolledComposite will resize the control to

fill the ScrolledComposite's area, down to the prescribed minimum size. Scrollbars will display when the

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig374%5F01%5F0%2Ejpg

child control can't be fully displayed.

The next two sections examine these two approaches, respectively.

Setting the Child Control's Size

When you set the size of the child control, the child control never shrinks or expands. The ScrolledComposite's

scrollbars display whenever its child control can't completely fit within it. You implement this approach with code like

this:

// Create the ScrolledComposite to scroll horizontally and vertically

ScrolledComposite sc = new ScrolledComposite(parent, SWT.H_SCROLL

 | SWT.V_SCROLL);

// Create a child composite to hold the controls

Composite child = new Composite(sc, SWT.NONE);

child.setLayout(new FillLayout());

// Create the buttons

new Button(child, SWT.PUSH).setText("One");

new Button(child, SWT.PUSH).setText("Two");

// Set the absolute size of the child

child.setSize(400, 400);

// Set the child as the scrolled content of the ScrolledComposite

sc.setContent(child);

This code produces the window shown in Figure 9-38. Figure 9-39 shows the same window after resizing smaller than

the child control's specified size.

Figure 9-38: A ScrolledComposite with a sized child control

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig376%5F01%5F0%2Ejpg

Figure 9-39: The resized ScrolledComposite

Setting the Child Control's Minimum Size

Sometimes you want controls to fill a given area, expanding or contracting as necessary, and you want to set a limit on

how far the controls will contract. To implement this, you set the minimum size for the child control, either by calling

setMinSize() to set both the minimum width and minimum height in one method call or by calling both setMinWidth() and

setMinHeight() to set the minimum width and the minimum height, respectively. You also must specify the axes along

which the child control will expand. Call setExpandHorizontal(true) to expand horizontally, and call

setExpandHorizontal(true) to expand vertically.

Listing 9-16 shows some example code.

Listing 9-16: Setting Minimum Size for a Child Control

// Create the ScrolledComposite to scroll horizontally and vertically

ScrolledComposite sc = new ScrolledComposite(parent, SWT.H_SCROLL

 | SWT.V_SCROLL);

// Create a child composite to hold the controls

Composite child = new Composite(sc, SWT.NONE);

child.setLayout(new FillLayout());

// Create the buttons

new Button(child, SWT.PUSH).setText("One");

new Button(child, SWT.PUSH).setText("Two");

// Set the child as the scrolled content of the ScrolledComposite

sc.setContent(child);

// Set the minimum size

sc.setMinSize(400, 400);

// Expand both horizontally and vertically

sc.setExpandHorizontal(true);

sc.setExpandVertical(true);

This code produces the window shown in Figure 9-40. Note how the buttons now fill the window. Figure 9-41 shows

the same window after resizing, and Figure 9-42 shows it after resizing smaller than the child control's specified

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig376%5F02%5F0%2Ejpg

minimum size.

Figure 9-40: A ScrolledComposite with an expanding child control

Figure 9-41: The ScrolledComposite after resizing

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig378%5F01%5F0%2Ejpg
file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig378%5F02%5F0%2Ejpg

Figure 9-42: The ScrolledComposite after resizing smaller than the minimum size

Configuring a ScrolledComposite

You've seen some of ScrolledComposite's methods, but it offers a few more, described in Table 9-24.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig379%5F01%5F0%2Ejpg

Table 9-24: ScrolledComposite Methods

Method Description

Point computeSize(int wHint, int hHint,

boolean changed)
Computes the preferred size of this ScrolledComposite.

boolean getAlwaysShowScrollBars() Returns true if the scrollbars are set to always show, or false if they

aren't.

Control getContent() Returns the child control for this ScrolledComposite.

Point getOrigin() Returns the point in the child control that's currently displayed in

the upper left of this ScrolledComposite.

void layout(boolean changed) Forces this ScrolledComposite to recalculate the size of its child

control and redraw itself.

void setAlwaysShowScrollBars (boolean

show)
If show is true, sets the scrollbars to always display. If show is false,

sets the scrollbars to display only when necessary.

void setContent(Control content) Sets the child control for this ScrolledComposite.

void setExpandHorizontal(boolean

expand)
If expand is true, expands the child control along the horizontal

axis. If expand is false, doesn't expand the child control along the

horizontal axis.

void setExpandVertical(boolean

expand)
If expand is true, expands the child control along the vertical axis. If

expand is false, doesn't expand the child control along the vertical

axis.

void setLayout(Layout layout) Sets the layout for this ScrolledComposite.

void setMinHeight(int height) Sets the minimum height in pixels for the child control.

void setMinSize(int width, int height) Sets the minimum size in pixels for the child control.

void setMinSize(Point size) Sets the minimum size in pixels for the child control.

void setMinWidth(int width) Sets the minimum size in pixels for the child control.

void setOrigin(int x, int y) Scrolls the child control until the point specified by x, y displays in

the upper left of this ScrolledComposite.

void setOrigin(Point origin) Scrolls the child control until the point specified by origin displays

in the upper left of this ScrolledComposite.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Introducing ViewForm

The Eclipse developers created ViewForm to institute a standard mechanism to display the many views that Eclipse

offers. There's no reason to let them hog all the fun, however—you can use ViewForm as a shortcut for creating views

in your applications as well.

ViewForm creates three controls in a row across the top of a Composite, with a content area below the controls. See

Figure 9-43 for an example of a ViewForm, taken from Eclipse. The first control contains the image in the upper left and

the text Outline. The second control contains the toolbar buttons to the right of the text Outline, up to, but not including,

the close button in the upper right. The third control is the close button in the upper right. Everything else is the content

area.

Figure 9-43: An example ViewForm

The second of the three controls can wrap to a second line, as shown in Figure 9-44. It will automatically wrap when

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

the size of the ViewForm can't accommodate all three controls. You can force this behavior to occur, regardless of size,

as you'll see in the next section.

Figure 9-44: An example ViewForm, with the second control wrapped

Creating a ViewForm

You create a ViewForm by calling its only constructor:

ViewForm(Composite parent, int style)

The applicable styles for ViewForm are SWT.BORDER, which draws a visible border and a drop shadow around the

ViewForm, and SWT.FLAT, which eliminates the drop shadow. SWT.FLAT must be combined with SWT.BORDER (using

the bitwise OR operator) to have any effect.

This code creates the ViewForm shown in Figure 9-45:

ViewForm viewForm = new ViewForm(parent, SWT.BORDER);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Figure 9-45: A plain ViewForm

You can discern a drop shadow around its edges, but not much else of interest. Without the three top controls or the

content area, a ViewForm offers little. The next section discusses how to get more from your ViewForms.

Configuring a ViewForm

The three controls lined across the top of a ViewForm are called the top-left control, the top-center control, and the

top-right control. The control for the content area is called the content control. Although ViewForm offers a setLayout()

method, it ignores the layout passed and lays out these controls according to its preset rules. However, the top-center

control wraps to its own line below the top-left and top-right controls either if there's not enough space to display it on

the same line or if you call the following:

viewForm.setTopCenterSeparate(true);

You can change which controls you set into the ViewForm. You can also change the colors used to paint the drop

shadows, as well as the margins surrounding the controls. You can hide or display the border at run time, and you can

change the font used for the three top controls with a single method call. Some behaviors are controlled by public

member variables, and some are controlled by methods. Table 9-25 describes ViewForm's public member variables,

and Table 9-26 describes ViewForm's methods.

Table 9-25: ViewForm Member Variables

Member Description

static RGB

borderInsideRGB
RGB describing the color used to paint the innermost line of the drop shadow.

Note that it's static and thus will affect all instances of ViewForm.

static RGB

borderMiddleRGB
RGB describing the color used to paint the middle line of the drop shadow. Note

that it's static and thus will affect all instances of ViewForm.

static RGB

borderOutsideRGB
RGB describing the color used to paint the outermost line of the drop shadow.

Note that it's static and thus will affect all instances of ViewForm.

int marginHeight The height of the margin, in pixels, along the top and bottom edges of this

ViewForm.

int marginWidth The width of the margin, in pixels, along the left and right edges of this ViewForm.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig382%5F01%5F0%2Ejpg

Table 9-26: ViewForm Methods

Method Description

Point computeSize(int wHint, int

hHint, boolean changed)
Computes the preferred size of the ViewForm.

Rectangle computeTrim(int x, int y, int

width, int height)
Computes the bounding rectangle necessary to produce the client

area specified.

Rectangle getClientArea() Returns the bounding rectangle of the client area only.

Control getContent() Returns the content control.

Control getTopCenter() Returns the top-center control.

Control getTopLeft() Returns the top-left control.

Control getTopRight() Returns the top-right control.

void layout(boolean changed) Forces the ViewForm to recalculate the sizes and positions of its

controls and to redraw itself.

void setBorderVisible(boolean show) If show is true, displays the border. If show is false, hides the border.

void setContent(Control content) Sets the content control.

void setFont(Font font) Sets the font for the three top controls.

void setLayout(Layout layout) Currently does nothing.

void setTopCenter(Control control) Sets the top center control.

void setTopCenterSeparate(boolean

separate)
If separate is true, forces the top-center control to its own row below

the other two top controls. If separate is false, and the top row has

enough room to accommodate the top-center control, the top-center

control displays in the same row as the other two top controls.

void setTopLeft(Control control) Sets the top left control.

void setTopRight(Control control) Sets the top right control.

Note You shouldn't subclass ViewForm.

The Look program, shown in Figure 9-46, implements an extremely low-budget text editor. Each time you click the

New Document button, Look creates a new ViewForm. The top-left control of each ViewForm displays an attractive Look

icon and the text Document xx, where xx is the number of the document. The top-center control shows a

downward-pointing arrow; click the arrow to display a menu with a single option, Clear, that clears the text in the

content control. The top-right control is a close button that closes the ViewForm. Finally, the content control is a

multiline text box. Feel free to use Look as your full-time programming editor—just remember to cut and paste the

code you write into a program that will actually save it, or you'll lose all your work.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Figure 9-46: The Look program

Listing 9-17 shows the source code for Look.

Listing 9-17: Look.java

package examples.ch9;

import org.eclipse.swt.SWT;

import org.eclipse.swt.custom.*;

import org.eclipse.swt.events.*;

import org.eclipse.swt.graphics.*;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.widgets.*;

/**

 * This class demonstrates ViewForm

 */

public class Look {

 // Images used in the ViewForm

 private Image lookImage;

 private Image menuImage;

 // Counter for titles of ViewForms

 private int count = 0;

 /**

 * Runs the application

 */

 public void run() {

 Display display = new Display();

 Shell shell = new Shell(display);

 shell.setText("Look");

 // Load the images

 lookImage = new Image(display, this.getClass().getResourceAsStream(

 "/images/look.gif"));

 menuImage = new Image(display, this.getClass().getResourceAsStream(

 "/images/down.gif"));

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig384%5F01%5F0%2Ejpg

 createContents(shell);

 shell.open();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

 // You created the images, so you must dispose

 if (lookImage != null) lookImage.dispose();

 if (menuImage != null) menuImage.dispose();

 display.dispose();

 }

 /**

 * Creates the main window's contents

 *

 * @param parent the main window

 */

 public void createContents(Composite parent) {

 parent.setLayout(new GridLayout(1, false));

 // Clicking the New Document button will create a new ViewForm

 Button button = new Button(parent, SWT.PUSH);

 button.setText("New Document");

 // Create the composite that holds the ViewForms

 final Composite composite = new Composite(parent, SWT.NONE);

 composite.setLayoutData(new GridData(GridData.FILL_BOTH));

 composite.setLayout(new FillLayout());

 // Add the event handler to create the ViewForms

 button.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 createViewFormHelper(composite, "Document " + (++count));

 composite.layout();

 }

 });

 }

 /**

 * Helper function for creating the ViewForms

 *

 * @param parent the parent Composite

 * @param text the title text

 */

 private void createViewFormHelper(final Composite parent, String text) {

 // Create the ViewForm

 final ViewForm vf = new ViewForm(parent, SWT.BORDER);

 // Create the CLabel for the top left, which will have an image and text

 CLabel label = new CLabel(vf, SWT.NONE);

 label.setText(text);

 label.setImage(lookImage);

 label.setAlignment(SWT.LEFT);

 vf.setTopLeft(label);

 // Create the downward-pointing arrow to display the menu

 // and set it as the top center

 final ToolBar tbMenu = new ToolBar(vf, SWT.FLAT);

 final ToolItem itemMenu = new ToolItem(tbMenu, SWT.PUSH);

 itemMenu.setImage(menuImage);

 vf.setTopCenter(tbMenu);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 // Create the close button and set it as the top right

 ToolBar tbClose = new ToolBar(vf, SWT.FLAT);

 ToolItem itemClose = new ToolItem(tbClose, SWT.PUSH);

 itemClose.setText("X");

 itemClose.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 vf.dispose();

 parent.layout();

 }

 });

 vf.setTopRight(tbClose);

 // Create the content--a multiline text box

 final Text textArea = new Text(vf, SWT.MULTI | SWT.WRAP | SWT.V_SCROLL);

 vf.setContent(textArea);

 // Create the menu to display when the down arrow is pressed

 final Menu menu = new Menu(tbMenu);

 MenuItem clear = new MenuItem(menu, SWT.NONE);

 clear.setText("Clear");

 clear.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 textArea.setText("");

 }

 });

 // Add the handler to display the menu

 itemMenu.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 // Place the menu right below the toolbar button

 Rectangle rect = itemMenu.getBounds();

 menu.setLocation(tbMenu.toDisplay(rect.x, rect.y + rect.height));

 menu.setVisible(true);

 }

 });

 }

 /**

 * The application entry point

 *

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 new Look().run();

 }

}

Figure 9-47 shows Look with three open "documents," each containing the source code of the Look program.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Figure 9-47: The Look program with three ViewForms

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig388%5F01%5F0%2Ejpg

Creating a Usable Example

You can combine widgets from the custom package with widgets from other packages to create usable applications.

The source code for this chapter includes an application called Password that securely stores passwords. Though it

doesn't compare in features to other commercial or open-source solutions, it provides a lightweight solution for secure

password storage and a base for developing better applications.

The Password application uses a TableTree to display passwords by category. Each password entry contains a name,

user ID, and password. You could, for example, create a category called Web Sites and then create an entry named

Slashdot with your Slashdot user ID and password. It stores all the password information in files, and it displays each

open file in its own tab using CTabFolder. Each file has a master password. The master password itself is never stored.

Instead, the Password application stores a hash for the master password, making it virtually impossible to crack. It

uses this master password to encrypt or decrypt the other entries, using password-based encryption. Beyond those

bare essentials, encryption lies outside the scope of this book.

Figure 9-48 shows the application's main window. Figure 9-49 shows the password entry dialog box, and Figure 9-50

shows the main window with a few items entered.

Figure 9-48: The Password application

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig389%5F01%5F0%2Ejpg

Figure 9-49: The Password Entry dialog box

Figure 9-50: The Password application with some passwords entered

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig390%5F01%5F0%2Ejpg

Summary

The same custom controls that separate the Eclipse IDE from average programs can differentiate your applications

from the rest. Used judiciously, the custom controls improve both the appearance and usability of your applications.

Don't ignore their power or utility, and you'll produce professional-looking and professional-responding programs

without having to create mountains of code.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Chapter 10: Graphics

Overview

GUIS rely on graphics. They present data and offer interaction through graphical widgets. Although SWT offers

graphical widgets for most types of display and interaction, you might want to draw some things that SWT won't

natively draw. In these situations, use SWT's graphics capabilities to unleash the Picasso within you.

The GC class (short for graphical context) forms the core of SWT's graphics engine. GC offers all the methods required

for drawing shapes, text, and images. You can draw on Controls, Devices, or other Images. Generally, drawing

lifecycles consists of the following:

Creating or obtaining a GC to draw on the desired target1.

Drawing2.

If you created the GC, disposing the GC3.

In code, the drawing lifecycle looks like this:

GC gc = new GC(display);

gc.drawRectangle(...);

gc.drawText(...);

gc.drawImage(...);

gc.dispose();

You generally put drawing code in a paint handler, like this:

shell.addPaintListener(new PaintListener() {

 public void paintControl(PaintEvent event) {

 // Create GC, draw, and dispose

 }

});

Because the PaintEvent passed to the paintControl() method contains a valid GC instance, you can avoid creating a GC

and just use the one from the event. If you do this, you shouldn't dispose that GC. That code looks like this:

shell.addPaintListener(new PaintListener() {

 public void paintControl(PaintEvent event) {

 event.gc.drawRectangle();

 }

});

To create a GC, call the constructor, passing a Drawable (a Control, a Device, or an Image) and optionally a style. You

can pass either SWT.LEFT_TO_RIGHT or SWT.RIGHT_TO_LEFT for the style, demonstrating bidirectional support. This

chapter examines GC's drawing methods.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Drawing Shapes

Although you can draw on any component with an associated GC, SWT offers the Canvas class specifically for drawing

arbitrary graphics. Canvases, like shells, are composites, which means that they can contain other widgets. Create

canvases by specifying their parent composite and style.

As a canvas is a control, it inherits the setForeground() and getForeground() methods. Setting this value controls the

color with which graphics and text are drawn. In the same vein, Canvas offers you the setFont() method, controlling the

font used to render text. You draw on a Canvas by getting a reference to its GC, as in Listing 10-1.

Listing 10-1: CanvasExample.java

package examples.ch10;

import org.eclipse.swt.SWT;

import org.eclipse.swt.events.*;

import org.eclipse.swt.graphics.*;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.widgets.*;

/**

 * This class demonstrates a Canvas

 */

public class CanvasExample {

 /**

 * Runs the application

 */

 public void run() {

 Display display = new Display();

 Shell shell = new Shell(display);

 shell.setText("Canvas Example");

 createContents(shell);

 shell.open();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

 display.dispose();

 }

 /**

 * Creates the main window's contents

 *

 * @param shell the main window

 */

 private void createContents(Shell shell) {

 shell.setLayout(new FillLayout());

 // Create a canvas

 Canvas canvas = new Canvas(shell, SWT.NONE);

 // Create a button on the canvas

 Button button = new Button(canvas, SWT.PUSH);

 button.setBounds(10, 10, 300, 40);

 button.setText("You can place widgets on a canvas");

 // Create a paint handler for the canvas

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 canvas.addPaintListener(new PaintListener() {

 public void paintControl(PaintEvent e) {

 // Do some drawing

 Rectangle rect = ((Canvas) e.widget).getBounds();

 e.gc.setForeground(e.display.getSystemColor(SWT.COLOR_RED));

 e.gc.drawFocus(5, 5, rect.width - 10, rect.height - 10);

 e.gc.drawText("You can draw text directly on a canvas", 60, 60);

 }

 });

 }

 /**

 * The application entry point

 *

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 new CanvasExample().run();

 }

}

This example, shown in Figure 10-1, uses a Canvas as the parent of a Button, and uses a layout to control the button's

size and placement. It implements a PaintListener for the canvas, which gets notified whenever a GUI component

needs to be repainted. This implementation uses the associated GC to draw a rectangle and some text. The version of

drawRectangle() it calls takes four integers: the x and y locations of the upper-left corner of the rectangle to draw,

relative to the upper-left corner of the canvas, and the width and height of the rectangle. You can instead pass a

Rectangle instance to drawRectangle(). Because this code uses the GC from the event, it doesn't dispose it.

Figure 10-1: Putting a widget, some text, and some graphics on a Canvas

You can create "filled" rectangles using the fillRectangle() methods. These methods create a solid rectangle based on

the background color of their parent component. In general, you draw outlined shapes using methods that begin with

"draw" and solid shapes using methods that begin with "fill." Here's an example of code that draws a "filled" rectangle,

shown in Figure 10-2:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig394%5F01%5F0%2Ejpg

private class CanvasExamplePaintListener implements PaintListener {

 public void paintControl(PaintEvent e) {

 e.gc.setBackground(e.display.getSystemColor(SWT.COLOR_RED));

 e.gc.fillRectangle(30, 40, 400, 200);

 }

}

Figure 10-2: A "filled" rectangle

Drawing Points and Lines

GC offers the drawLine() method for drawing explicit lines. drawLine() takes four integers that define two Cartesian

points, relative to the upper-left corner of the component. For instance, to divide a canvas into four equal sections (see

Figure 10-3), use the code in Listing 10-2.

Figure 10-3: Drawing lines

Listing 10-2: Painting a line

public void paintControl(PaintEvent e) {

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig395%5F01%5F0%2Ejpg
file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig396%5F01%5F0%2Ejpg

 Canvas canvas = (Canvas) e.widget;

 int maxX = canvas.getSize().x;

 int maxY = canvas.getSize().y;

 int halfX = (int) maxX/2;

 int halfY = (int) maxY/2;

 e.gc.setForeground(e.display.getSystemColor(SWT.COLOR_BLUE));

 e.gc.setLineWidth(10);

 e.gc.drawLine(halfX, 0, halfX, maxY);

 e.gc.drawLine(0, halfY, maxX, halfY);

}

You can also draws sets of connecting lines with GC's drawPolyline() method. You pass an integer array containing

concatenated (x,y) pairs, which are connected via a series of drawn lines. Changing the PaintListener implementation to

that shown in Listing 10-3 renders the display shown in Figure 10-4.

Figure 10-4: Drawing multiple lines

Listing 10-3: Polyline

private class CanvasExamplePaintListener implements PaintListener {

 public void paintControl(PaintEvent e) {

 e.gc.setLineWidth(4);

 int[] points = { 0, 0, 100, 0, 0, 100, 100, 100, 0, 200};

 e.gc.drawPolyline(points);

 }

}

Use the drawPoint() method to plot points. Listing 10-4 draws a horizontal line to represent the x axis of the standard

Cartesian diagram. Next, it draws a standard sine wave, which is somewhat complex because it's based on angles in

radians. To move this complexity out of the graphics rendering code, the PointExample program uses a private

method that takes the x value (the location as the curve moves from left to right across the canvas) and calculates the

appropriate y value. Figure 10-5 shows the sine wave.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig397%5F01%5F0%2Ejpg

Figure 10-5: Plotting the sine function

Listing 10-4: PointExample.java

package examples.ch10;

import org.eclipse.swt.SWT;

import org.eclipse.swt.events.*;

import org.eclipse.swt.layout.FillLayout;

import org.eclipse.swt.widgets.*;

/**

 * This class demonstrates drawing points. It draws a sine wave.

 */

public class PointExample {

 /**

 * Runs the application

 */

 public void run() {

 Display display = new Display();

 Shell shell = new Shell(display);

 shell.setText("Point Example");

 createContents(shell);

 shell.open();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

 display.dispose();

 }

 /**

 * Creates the main window's contents

 *

 * @param shell the main window

 */

 private void createContents(Shell shell) {

 shell.setLayout(new FillLayout());

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig399%5F01%5F0%2Ejpg

 // Create the canvas for drawing on

 Canvas canvas = new Canvas(shell, SWT.NONE);

 // Add the paint handler to draw the sine wave

 canvas.addPaintListener(new PointExamplePaintListener());

 // Use a white background

 canvas.setBackground(shell.getDisplay().getSystemColor(SWT.COLOR_WHITE));

 }

 /**

 * This class draws a sine wave using points

 */

 private class PointExamplePaintListener implements PaintListener {

 public void paintControl(PaintEvent e) {

 // Get the canvas and its dimensions

 Canvas canvas = (Canvas) e.widget;

 int maxX = canvas.getSize().x;

 int maxY = canvas.getSize().y;

 // Calculate the middle

 int halfX = (int) maxX / 2;

 int halfY = (int) maxY / 2;

 // Set the line color and draw a horizontal axis

 e.gc.setForeground(e.display.getSystemColor(SWT.COLOR_BLACK));

 e.gc.drawLine(0, halfY, maxX, halfY);

 // Draw the sine wave

 for (int i = 0; i < maxX; i++) {

 e.gc.drawPoint(i, getNormalizedSine(i, halfY, maxX));

 }

 }

 /**

 * Calculates the sine value

 *

 * @param x the value along the x-axis

 * @param halfY the value of the y-axis

 * @param maxX the width of the x-axis

 * @return int

 */

 int getNormalizedSine(int x, int halfY, int maxX) {

 double piDouble = 2 * Math.PI;

 double factor = piDouble / maxX;

 return (int) (Math.sin(x * factor) * halfY + halfY);

 }

 }

 /**

 * The application entry point

 *

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 new PointExample().run();

 }

}

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Drawing a Round Rectangle

You can draw a rectangle with rounded corners with GC's drawRoundRectangle() method, which looks like this:

drawRoundRectangle(int x, int y, int width, int height, int arcWidth,

 int arcHeight)

The last two parameters specify the number of pixels from the corner to begin the rounding: arcWidth for the top and

bottom sides and arcHeight for the left and right sides of the rectangle. The example in Listing 10-5 draws a rectangle,

then allows you to input the arcWidth and arcHeight parameters to see the rounded drawing in action. Figure 10-6

shows this program's output.

Figure 10-6: Demonstrating a rounded rectangle

Listing 10-5: RoundRectangleExample.java

package examples.ch10;

import org.eclipse.swt.SWT;

import org.eclipse.swt.events.*;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.widgets.*;

public class RoundRectangleExample {

 private Text txtArcWidth = null;

 private Text txtArcHeight = null;

 /**

 * Runs the application

 */

 public void run() {

 Display display = new Display();

 Shell shell = new Shell(display);

 shell.setText("RoundRectangle Example");

 createContents(shell);

 shell.open();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig402%5F01%5F0%2Ejpg

 display.sleep();

 }

 }

 display.dispose();

 }

 /**

 * Creates the main window's contents

 *

 * @param shell the main window

 */

 private void createContents(Shell shell) {

 shell.setLayout(new FillLayout(SWT.VERTICAL));

 // Create the composite that holds the input fields

 Composite widgetComposite = new Composite(shell, SWT.NONE);

 widgetComposite.setLayout(new GridLayout(2, false));

 // Create the input fields

 new Label(widgetComposite, SWT.NONE).setText("Arc Width:");

 txtArcWidth = new Text(widgetComposite, SWT.BORDER);

 new Label(widgetComposite, SWT.NONE).setText("Arc Height");

 txtArcHeight = new Text(widgetComposite, SWT.BORDER);

 // Create the button that launches the redraw

 Button button = new Button(widgetComposite, SWT.PUSH);

 button.setText("Redraw");

 shell.setDefaultButton(button);

 // Create the canvas to draw the round rectangle on

 final Canvas drawingCanvas = new Canvas(shell, SWT.NONE);

 drawingCanvas.addPaintListener(new RoundRectangleExamplePaintListener());

 // Add a handler to redraw the round rectangle when pressed

 button.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent e) {

 drawingCanvas.redraw();

 }

 });

 }

 /**

 * This class gets the user input and draws the requested round rectangle

 */

 private class RoundRectangleExamplePaintListener implements PaintListener {

 public void paintControl(PaintEvent e) {

 // Get the canvas for drawing and its width and height

 Canvas canvas = (Canvas) e.widget;

 int x = canvas.getBounds().width;

 int y = canvas.getBounds().height;

 // Determine user input, defaulting everything to zero.

 // Any blank fields are converted to zero

 int arcWidth = 0;

 int arcHeight = 0;

 try {

 arcWidth = txtArcWidth.getText().length() == 0 ? 0 : Integer

 .parseInt(txtArcWidth.getText());

 arcHeight = txtArcWidth.getText().length() == 0 ? 0 : Integer

 .parseInt(txtArcHeight.getText());

 } catch (NumberFormatException ex) {

 // Any problems, set them both to zero

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 arcWidth = 0;

 arcHeight = 0;

 }

 // Set the line width

 e.gc.setLineWidth(4);

 // Draw the round rectangle

 e.gc.drawRoundRectangle(10, 10, x - 20, y - 20, arcWidth, arcHeight);

 }

 }

 /**

 * The application entry point

 *

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 new RoundRectangleExample().run();

 }

}

Drawing a Focus Rectangle

In addition to the rectangles mentioned earlier, you can also draw a focus rectangle, if the underlying system supports

it. A focus rectangle outlines a component when the component has the application focus. On most Windows

platforms, this appears as a light dotted rectangle. You create focus rectangles with GC's drawFocus() method, which

looks like this:

void drawFocus(int x, int y, int width, int height)

It functions just like its rectangular cousin.

If your underlying system doesn't support focus rectangles, the system draws a rectangle using the current

characteristics of the GC (line width, foreground color, and so on).

Figure 10-7 shows a focus rectangle.

Figure 10-7: A focus rectangle

Drawing Ovals

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig403%5F01%5F0%2Ejpg

To draw an oval, specify the x and y coordinates of the upper-left corner, along with the height and width of the oval's

bounding rectangle. Specifying the same value for the width and the height renders a circle. Like rectangles, ovals can

also be filled; use fillOval() instead of drawOval(). The OvalExample program in Listing 10-6 demonstrates drawing

ovals, as Figure 10-8 shows.

Figure 10-8: An oval

Listing 10-6: OvalExample.java

package examples.ch10;

import org.eclipse.swt.SWT;

import org.eclipse.swt.events.*;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.widgets.*;

/**

 * This class demonstrates drawing ovals

 */

public class OvalExample {

 private Text txtWidth = null;

 private Text txtHeight = null;

 /**

 * Runs the application

 */

 public void run() {

 Display display = new Display();

 Shell shell = new Shell(display);

 shell.setText("Oval Example");

 createContents(shell);

 shell.open();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

 display.dispose();

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig406%5F01%5F0%2Ejpg

 }

 /**

 * Creates the main window's contents

 *

 * @param shell the main window

 */

 private void createContents(Shell shell) {

 shell.setLayout(new FillLayout(SWT.VERTICAL));

 // Create the composite that holds the input fields

 Composite widgetComposite = new Composite(shell, SWT.NONE);

 widgetComposite.setLayout(new GridLayout(2, false));

 // Create the input fields

 new Label(widgetComposite, SWT.NONE).setText("Width:");

 txtWidth = new Text(widgetComposite, SWT.BORDER);

 new Label(widgetComposite, SWT.NONE).setText("Height");

 txtHeight = new Text(widgetComposite, SWT.BORDER);

 // Create the button that launches the redraw

 Button button = new Button(widgetComposite, SWT.PUSH);

 button.setText("Redraw");

 shell.setDefaultButton(button);

 // Create the canvas to draw the oval on

 final Canvas drawingCanvas = new Canvas(shell, SWT.NONE);

 drawingCanvas.addPaintListener(new OvalExamplePaintListener());

 // Add a handler to redraw the oval when pressed

 button.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent e) {

 drawingCanvas.redraw();

 }

 });

 }

 /**

 * This class gets the user input and draws the requested oval

 */

 private class OvalExamplePaintListener implements PaintListener {

 public void paintControl(PaintEvent e) {

 // Get the canvas for drawing and its width and height

 Canvas canvas = (Canvas) e.widget;

 int x = canvas.getBounds().width;

 int y = canvas.getBounds().height;

 // Determine user input, defaulting everything to zero.

 // Any blank fields are converted to zero

 int width = 0;

 int height = 0;

 try {

 width = txtWidth.getText().length() == 0 ? 0 : Integer.parseInt(txtWidth

 .getText());

 height = txtHeight.getText().length() == 0 ? 0 : Integer

 .parseInt(txtHeight.getText());

 } catch (NumberFormatException ex) {

 // Any problems, set them both to zero

 width = 0;

 height = 0;

 }

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 // Set the drawing width for the oval

 e.gc.setLineWidth(4);

 // Draw the requested oval

 e.gc.drawOval((x - width) / 2, (y - height) / 2, width, height);

 }

 }

 /**

 * The application entry point

 *

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 new OvalExample().run();

 }

}

Drawing Arcs

Think of arcs as subsections or parts of ovals. To draw an arc, you specify the same parameters as drawing ovals,

with the addition of two parameters: the beginning point and length of the arc. The beginning point is an angle between

zero and 360 degrees. In this model, zero degrees indicates the same position as 3:00 on a clock dial. The length of

the arc is also expressed in degrees. Positive values draw the arc counterclockwise the number of indicated degrees,

while negative values draw the arc clockwise. Specifying 360 for the angle draws a complete oval.

Like the other shapes in this chapter, arcs can be filled. Filled arcs appear roughly like pie chart sections. Endpoints of

the arc are connected to the point that would be the center of the associated oval. The ArcExample program in Listing

10-7 shows how to draw arcs (see Figure 10-9).

Figure 10-9: Drawing filled arcs

Listing 10-7: ArcExample.java

package examples.ch10;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig409%5F01%5F0%2Ejpg

import org.eclipse.swt.SWT;

import org.eclipse.swt.events.*;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.widgets.*;

/**

 * This class demonstrates drawing an Arc

 */

public class ArcExample {

 private Text txtWidth = null;

 private Text txtHeight = null;

 private Text txtBeginAngle = null;

 private Text txtAngle = null;

 /**

 * Runs the application

 */

 public void run() {

 Display display = new Display();

 Shell shell = new Shell(display);

 shell.setText("Arc Example");

 createContents(shell);

 shell.open();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

 display.dispose();

 }

 /**

 * Creates the main window's contents

 *

 * @param shell the main window

 */

 private void createContents(Shell shell) {

 shell.setLayout(new FillLayout(SWT.VERTICAL));

 // Create the composite that holds the input fields

 Composite widgetComposite = new Composite(shell, SWT.NONE);

 widgetComposite.setLayout(new GridLayout(2, false));

 // Create the input fields

 new Label(widgetComposite, SWT.NONE).setText("Width:");

 txtWidth = new Text(widgetComposite, SWT.BORDER);

 new Label(widgetComposite, SWT.NONE).setText("Height");

 txtHeight = new Text(widgetComposite, SWT.BORDER);

 new Label(widgetComposite, SWT.NONE).setText("Begin Angle:");

 txtBeginAngle = new Text(widgetComposite, SWT.BORDER);

 new Label(widgetComposite, SWT.NONE).setText("Angle:");

 txtAngle = new Text(widgetComposite, SWT.BORDER);

 // Create the button that launches the redraw

 Button button = new Button(widgetComposite, SWT.PUSH);

 button.setText("Redraw");

 shell.setDefaultButton(button);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 // Create the canvas to draw the arc on

 final Canvas drawingCanvas = new Canvas(shell, SWT.NONE);

 drawingCanvas.addPaintListener(new ArcExamplePaintListener());

 // Add a handler to redraw the arc when pressed

 button.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent e) {

 drawingCanvas.redraw();

 }

 });

 }

 /**

 * This class gets the user input and draws the requested arc

 */

 private class ArcExamplePaintListener implements PaintListener {

 public void paintControl(PaintEvent e) {

 // Get the canvas for drawing and its dimensions

 Canvas canvas = (Canvas) e.widget;

 int x = canvas.getBounds().width;

 int y = canvas.getBounds().height;

 // Determine user input, defaulting everything to zero.

 // Any blank fields are converted to zero

 int width = 0;

 int height = 0;

 int begin = 0;

 int angle = 0;

 try {

 width = txtWidth.getText().length() == 0 ? 0 : Integer.parseInt(txtWidth

 .getText());

 height = txtHeight.getText().length() == 0 ? 0 : Integer

 .parseInt(txtHeight.getText());

 begin = txtBeginAngle.getText().length() == 0 ? 0 : Integer

 .parseInt(txtBeginAngle.getText());

 angle = txtAngle.getText().length() == 0 ? 0 : Integer.parseInt(txtAngle

 .getText());

 } catch (NumberFormatException ex) {

 // Any problems, reset them all to zero

 width = 0;

 height = 0;

 begin = 0;

 angle = 0;

 }

 // Set the drawing color to black

 e.gc.setBackground(e.display.getSystemColor(SWT.COLOR_BLACK));

 // Draw the arc, centered on the canvas

 e.gc.fillArc((x - width) / 2, (y - height) / 2, width, height, begin,

 angle);

 }

 }

 /**

 * The application entry point

 *

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 new ArcExample().run();

 }

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

}

Drawing Polygons

You can draw polygons with an arbitrary number of sides and vertices with the drawPolygon() method, which takes an

array of ints. Like the drawPolyline() method discussed earlier, drawPolygon() draws a number of lines connecting the

(x,y) pairs defined in the array points. However, unlike drawPolyline(), drawPolygon() connects the last point in the array

to the first point in the array to create a closed shape. GC also offers a fillPolygon() method that draws a filled polygon.

The PolygonExample program in Listing 10-8 demonstrates polygons, as shown in Figure 10-10.

Figure 10-10: Arbitrary polygons

Listing 10-8: PolygonExample.java

package examples.ch10;

import org.eclipse.swt.SWT;

import org.eclipse.swt.events.*;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.widgets.*;

/**

 * This class demonstrates drawing polygons

 */

public class PolygonExample {

 private Text txtWidth = null;

 private Text txtHeight = null;

 /**

 * Runs the application

 */

 public void run() {

 Display display = new Display();

 Shell shell = new Shell(display);

 shell.setText("Polygon Example");

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig412%5F01%5F0%2Ejpg

 createContents(shell);

 shell.open();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

 display.dispose();

 }

 /**

 * Creates the main window's contents

 *

 * @param shell the main window

 */

 private void createContents(Shell shell) {

 shell.setLayout(new FillLayout(SWT.VERTICAL));

 // Create the canvas to draw the polygons on

 Canvas drawingCanvas = new Canvas(shell, SWT.NONE);

 drawingCanvas.addPaintListener(new PolygonExamplePaintListener());

 }

 /**

 * This class gets the user input and draws the requested oval

 */

 private class PolygonExamplePaintListener implements PaintListener {

 public void paintControl(PaintEvent e) {

 // Get the canvas for drawing and its dimensions

 Canvas canvas = (Canvas) e.widget;

 int x = canvas.getBounds().width;

 int y = canvas.getBounds().height;

 // Set the drawing color

 e.gc.setBackground(e.display.getSystemColor(SWT.COLOR_BLACK));

 // Create the points for drawing a triangle in the upper left

 int[] upper_left = { 0, 0, 200, 0, 0, 200};

 // Create the points for drawing a triangle in the lower right

 int[] lower_right = { x, y, x, y - 200, x - 200, y};

 // Draw the triangles

 e.gc.fillPolygon(upper_left);

 e.gc.fillPolygon(lower_right);

 }

 }

 /**

 * The application entry point

 *

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 new PolygonExample().run();

 }

}

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Drawing Text

In addition to shapes, SWT can draw text on the screen. You can change the font, size, color, style, and even

orientation of the text. You can display the text on a single line, or wrap the text to the next line automatically. This

section explains how to use SWT's text-drawing facilities.

Displaying Text

GC provides five methods, listed in Table 10-1, for drawing text. drawString() is a cinch to use, and drawText() isn't much

harder. The drawText() family of methods differs from the drawString() family in its handling of newlines and tabs; unless

explicitly instructed not to, drawText() processes newlines and tabs as these elements intend. In other words, newlines

shunt subsequent characters to the next line, and tabs leave noticeable gaps between words. The drawString() family,

on the other hand, displays newlines and tabs as nonprintable characters, retaining all text on a single line.

Table 10-1: GC's Text Drawing Methods

Method Description

void drawString(String

string, int x, int y)
Draws the specified string with its origin at the point specified by (x, y),

displaying newlines and tabs as nonprintable characters.

void drawString(String

string, int x, int y, boolean

isTransparent)

Draws the specified string with its origin at the point specified by (x, y),

displaying newlines and tabs as nonprintable characters. If isTransparent is

true, GC will use a transparent background, allowing the original background

to show through. Otherwise, GC will use an opaque background.

void drawText(String text, int

x, int y)
Draws the specified string with its origin at the point specified by (x, y),

processing newlines and expanding tabs.

void drawText(String text, int

x, int y, boolean

isTransparent)

Draws the specified string with its origin at the point specified by (x, y),

processing newlines and expanding tabs. If isTransparent is true, GC will use a

transparent background, allowing the original background to show through.

Otherwise, GC uses an opaque background.

void drawText(String text, int

x, int y, int flags)
Draws the specified string with its origin at the point specified by (x, y),

processing newlines and expanding tabs. Uses the rules specified by flags

(see Table 10-2 for more information).

Table 10-2: drawText() Flags

Constant Description

SWT.DRAW_DELIMITER Processes newlines by drawing subsequent characters on the next line.

SWT.DRAW_TAB Processes tabs by displaying a gap between surrounding characters.

SWT.DRAW_MNEMONIC Draws an underline beneath the mnemonic character—the character

preceded by an ampersand (&). Use this when drawing menus.

SWT.DRAW_TRANSPARENT Uses a transparent background when drawing the string.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

The last method listed in Table 10-1 indicates an int parameter called flags. This parameter contains zero or more

constants, combined using the bitwise OR operator, that affect the way drawText() draws the passed string. Table 10-2

lists the applicable constants.

To draw the text "Hello, World," use code that looks like this:

gc.drawString("Hello, World", 5, 5);

The following code draws "Hello, World" with the "W" in "World" underlined, and with a transparent background:

gc.drawText("Hello, &World", 5, 5, SWT.DRAW_MNEMONIC |

 SWT.DRAW_TRANSPARENT);

The DrawText program in Listing 10-9 draws text using each of the five text drawing methods. It displays a background

image to demonstrate the difference between using a transparent background or an opaque background. Figure 10-11

shows the program's window.

Figure 10-11: Drawing text using drawString() and drawText()

Listing 10-9: DrawText.java

package examples.ch10;

import org.eclipse.swt.SWT;

import org.eclipse.swt.events.*;

import org.eclipse.swt.graphics.*;

import org.eclipse.swt.widgets.*;

/**

 * This class demonstrates how to draw text

 */

public class DrawText {

 // The string to draw

 private static final String HELLO = "Hello,\n&World!\tFrom SWT";

 /**

 * Runs the application

 */

 public void run() {

 Display display = new Display();

 final Shell shell = new Shell(display);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 // Load an image to use as the background

 final Image image = new Image(display, this.getClass().getResourceAsStream(

 "/images/square.gif"));

 shell.addPaintListener(new PaintListener() {

 public void paintControl(PaintEvent event) {

 // Stretch the image to fill the window

 Rectangle rect = shell.getClientArea();

 event.gc.drawImage(image, 0, 0, image.getImageData().width, image

 .getImageData().height, 0, 0, rect.width, rect.height);

 // This will draw the string on one line, with nonprinting characters

 // for \n and \t, with an ampersand, and with an opaque background

 event.gc.drawString(HELLO, 5, 0);

 // This will draw the string on one line, with nonprinting characters

 // for \n and \t, with an ampersand, and with a transparent background

 event.gc.drawString(HELLO, 5, 40, true);

 // This will draw the string on two lines, with a tab between World! and

 // From, with an ampersand, and with an opaque background

 event.gc.drawText(HELLO, 5, 80);

 // This will draw the string on two lines, with a tab between World! and

 // From, with an ampersand, and with a transparent background

 event.gc.drawText(HELLO, 5, 120, true);

 // This will draw the string on two lines, with a tab between World! and

 // From, with the W underlined, and with a transparent background

 event.gc.drawText(HELLO, 5, 160, SWT.DRAW_MNEMONIC | SWT.DRAW_DELIMITER

 | SWT.DRAW_TAB | SWT.DRAW_TRANSPARENT);

 }

 });

 shell.setText("Draw Text");

 shell.open();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

 image.dispose();

 display.dispose();

 }

 /**

 * The application entry point

 *

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 new DrawText().run();

 }

}

Changing Fonts

Unless you tell GC otherwise, it draws all text in the default font (the one returned by Display.getSystemFont()). To

change the font, call GC's setFont() method, passing the desired font. As with any font you create, you're responsible

for disposing the font when you're done with it. You can create the font inside your paint handler, draw your text, and

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

dispose the font. This has the advantage of minimizing the scope of your font. However, it incurs the expense of

creating and disposing the font each time your application paints. Alternatively, you can create the font for the lifetime

of the application, disposing it when your application closes.

If you choose to create and dispose the font each time through your paint handler, your code will look something like

this:

GC gc = new GC(shell);

Font font = new Font(shell.getDisplay(), "Helvetica", 18, SWT.NORMAL);

gc.drawText("My Text", 0, 0);

font.dispose();

The DrawHelveticaText program in Listing 10-10 takes the other approach: it creates the font once and disposes it

when the application closes.

Listing 10-10: DrawHelveticaText.java

package examples.ch10;

import org.eclipse.swt.SWT;

import org.eclipse.swt.events.*;

import org.eclipse.swt.graphics.*;

import org.eclipse.swt.widgets.*;

/**

 * This class demonstrates how to draw text

 */

public class DrawHelveticaText {

 public void run() {

 Display display = new Display();

 final Shell shell = new Shell(display);

 // Create the font

 final Font font = new Font(display, "Helvetica", 18, SWT.NORMAL);

 shell.addPaintListener(new PaintListener() {

 public void paintControl(PaintEvent event) {

 // Set the font

 event.gc.setFont(font);

 // Draw the text

 event.gc.drawText("My Text", 0, 0);

 }

 });

 shell.setText("Draw Helvetica Text");

 shell.open();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

 font.dispose();

 display.dispose();

 }

 public static void main(String[] args) {

 new DrawHelveticaText().run();

 }

}

Figure 10-12 shows the program's window. Note the larger font used by drawText().

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Figure 10-12: Drawing with a different font

Creating Fonts

In the previous section, you created and used a different font for drawing text. Fonts, which are represented by Font

objects, are constructed like any other Java class. Font offers three constructors, listed in Table 10-3.

Table 10-3: Font Constructors

Constructor Description

public Font(Device device,

FontData fd)
Creates a font using the specified device and font data.

public Font(Device device,

FontData[] fds)
Creates a font using the specified device and array of font data.

public Font(Device device, String

name, int height, int style)
Creates a font using the specified device, name, height (in points), and

style. Style constants are SWT.NORMAL, SWT.BOLD, and SWT.ITALIC.

In this chapter, the Device object you pass is always the target Display object. When printing (covered in Chapter 12),

you'll pass the appropriate Printer object. SWT must know the medium onto which it will render the font to create it

properly.

The DrawHelveticaText program from the previous section creates its font using the third constructor with this code:

Font font = new Font(display, "Helvetica", 18, SWT.NORMAL);

The first parameter, display, specifies the target rendering device (the screen). The second parameter, "Helvetica",

specifies the font name. SWT does a best-guess match with the name you specify, falling back to the system font if

you pass something bewildering. If the underlying platform supports font foundries, you can specify the foundry name

along with the name in the form "foundry-fontName" (see the sidebar "Font Foundries"). The third parameter, 18,

specifies the point size for the font. Finally, the fourth parameter, SWT.NORMAL, specifies the font style. Table 10-4

lists the possible styles.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig417%5F01%5F0%2Ejpg

Table 10-4: Font Styles

Style Description

SWT.NORMAL Creates a normal font

SWT.BOLD Creates a bold font

SWT.ITALIC Creates an italic font

You can combine style constants using the bitwise OR operator.

Font Foundries

Font foundries originally described buildings or works in which metal typefaces were cast. In today's digital age,

the term "font foundries" has been extended to mean companies that create digital fonts—for example, Adobe.

SWT respects font foundries on platforms that support them, so that Adobe's Courier font carries the name

"adobe-courier."

Using either of the other constructors requires understanding a new class, FontData. Fortunately, FontData is little more

than a data structure containing the same fields passed to that third constructor: font name, height, and style. You can

construct a FontData object using those fields, changing the code to this:

Font font = new Font(display, new FontData("Helvetica", 18, SWT.NORMAL));

Table 10-5 lists FontData's constructors, and Table 10-6 lists FontData's methods, which are getters and setters for the

data members. Because a FontData instance merely represents data, you should never dispose it.

Table 10-5: FontData Constructors

Constructor Description

public FontData() Creates an empty FontData.

public

FontData(String

string)

Creates a FontData from the specified string. The string must be in the format

generated by FontData's toString() method, which contains data about the font

delimited by pipe characters. For example, the string to create the font used in the

DrawHelveticaText program on Windows is 1|Helvetica|18|0|WINDOWS|1|-30|0|0|

0|0|0|0|0|1|0|0|0|0|Helvetica.

public

FontData(String

name, int height, int

style)

Creates a FontData from the specified parameters. See the discussion of the

Font(String name, int height, int style) constructor for more information.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Table 10-6: FontData Methods

Method Description

public int getHeight() Returns the height in points

public String getLocale() Returns the locale

public String getName() Returns the name

public int getStyle() Returns the style

public void setHeight(int height) Sets the height in points

public void setLocale(String locale) Sets the locale

public void setName() Sets the name

public void setStyle(int style) Sets the style, using the style constants listed in Table 10-4

public String toString() Returns a string suitable to use to create a new font

The second constructor for Font listed in Table 10-3 takes an array of FontData objects instead of a single FontData

object. Most platforms require only one FontData instance to create any font, but the X Window System can require

more than one. SWT 2.1 added this constructor to accommodate the X Window System. Platforms that don't require

multiple FontData instances, like Windows, use only the first entry in the array.

Besides its constructors and its dispose() method (which you should always call on fonts you create when you're done

with them), Font offers a few interesting methods. Table 10-7 lists Font's methods.

Table 10-7: Font Methods

Method Description

void dispose() Disposes the resources associated with this font.

boolean

equals(Object obj)
Returns true if this font represents the same font specified by obj, or false if it doesn't.

FontData[]

getFontData()
Returns an array of FontData objects containing the data underlying this font. Most

platforms return an array with only one entry.

boolean isDisposed() Returns true if this font has been disposed, or false if it hasn't.

String toString() Returns a string representation of this font suitable for constructing another font.

Getting Font Characteristics

The FontData object underlying a Font instance specifies the font's name, height (in points), and style. This data

represents the font in a vacuum—it reveals nothing about how much space the font occupies. Until the font is melded

with a device, either a Display or a Printer, it has no size characteristics. The font must know its rendering target before

it knows its size.

Once you select a font into a GC using setFont(), it assumes physical characteristics pertaining to that GC's device. You

can retrieve those characteristics, also known as the font's metrics, by calling GC's getFontMetrics() method. As

expected, getFontMetrics() returns the metrics for the GC's current font, when rendered on the GC's device. The metrics

are returned in a FontMetrics object, which is read only. Its only constructor is package private, and it has no setters.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

However, creating or altering a FontMetrics instance would make no sense, because it reports how a given font renders

on a specific device.

You retrieve the metrics from a FontMetrics object using the methods listed in Table 10-8. Understanding the data

returned by FontMetrics' getter methods requires knowledge of font-specific terms, listed in Table 10-9 and displayed in

Figure 10-13.

Figure 10-13: Leading area, ascent, descent, and height demonstrated

Table 10-8: FontMetrics Methods

Method Description

int getAscent() Returns the ascent in pixels

int getAverageCharWidth() Returns the width of an average character in pixels

int getDescent() Returns the descent in pixels

int getHeight() Returns the height in pixels

int getLeading() Returns the leading area in pixels

Table 10-9: Font Terminology

Term Meaning

baseline The imaginary line the font sits on

ascent The number of pixels that characters reach above the baseline to the top of typical

lowercase characters

descent The number of pixels that characters reach below the baseline

height The total height of characters in pixels, equal to the ascent plus the descent plus the

leading area

leading

area

The number of pixels above the top of typical lowercase characters

For example, to determine the height of the "b," the "o," and the "y" from Figure 10-13, as well as the total height

occupied by "boy," use code such as this:

FontMetrics fm = gc.getFontMetrics();

int bHeight = fm.getLeading() + fm.getAscent();

int oHeight = fm.getAscent();

int yHeight = fm.getAscent() + fm.getDescent();

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

int totalHeight = fm.getHeight(); // Equals fm.getLeading() + fm.getAscent()

 // + fm.getDescent();

Although FontMetrics returns the width of an average character, wouldn't it be important to know the exact width of a

given string? You could get the width of an average character and multiply by the number of characters, but if your

string was "iiiiiii" or "wwwwwww," you'd be off by a large margin. The width and the height that a string occupies when

drawn with a specific font on a specific device is called its extent. FontMetrics offers no method to get the extent of a

string, but GC does. In fact, it offers three, listed in Table 10-10.

Table 10-10: GC Methods to Determine Width of a String

Method Description

Point stringExtent(String

string)
Returns the extent of the specified string, without processing newlines or

expanding tabs.

Point textExtent(String

string)
Returns the extent of the specified string. Processes newlines and expands

tabs.

Point textExtent(String

string, int flags)
Returns the extent of the specified string, using the flags specified in flags.

These flags are the same as the flags passed to drawText(), and are listed in

Table 10-2.

To retrieve the extent of the string "iiiiiii," for example, call this:

Point point = gc.stringExtent("iiiiiii");

The Extents program fills the window with the uplifting message "Go Celtics!" It provides a dropdown (using a

ControlEditor) to change the size of the font. When you change the value in the dropdown, the font changes size to

match the selected value and redraws the screen. It uses both GC.getStringExtent() and GC.getFontMetrics() to

determine where to draw the strings. Listing 10-11 contains the source.

Listing 10-11: Extents.java

package examples.ch10;

import org.eclipse.swt.SWT;

import org.eclipse.swt.custom.*;

import org.eclipse.swt.events.*;

import org.eclipse.swt.graphics.*;

import org.eclipse.swt.widgets.*;

/**

 * This class demonstrates FontMetrics and extents

 */

public class Extents {

 // The string to display

 private static final String STRING = "Go Celtics!";

 // The size options for the combo

 private static final String[] SIZES = { "8", "10", "12", "14", "16", "18"};

 // The font used to draw the string

 private Font font;

 /**

 * Runs the application

 */

 public void run() {

 Display display = new Display();

 Shell shell = new Shell(display);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 shell.setText("Extents");

 createContents(shell);

 shell.open();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

 if (font != null) font.dispose();

 display.dispose();

 }

 /**

 * Creates the main window's contents

 *

 * @param shell the main window

 */

 private void createContents(final Shell shell) {

 // Create a canvas to draw on

 final Canvas canvas = new Canvas(shell, SWT.NONE);

 // Add a listener to the shell to resize the canvas to fill the window

 // any time the window is resized

 shell.addControlListener(new ControlAdapter() {

 public void controlResized(ControlEvent event) {

 canvas.setBounds(shell.getClientArea());

 }

 });

 // Add a listener to the canvas. This is where we draw the text.

 canvas.addPaintListener(new PaintListener() {

 public void paintControl(PaintEvent event) {

 // Set the font into the gc

 event.gc.setFont(font);

 // Calculate the width (nad height) of the string

 Point pt = event.gc.stringExtent(STRING);

 // Figure out how big our drawing area is

 Rectangle rect = canvas.getBounds();

 // Calculate the height of the font. We could have used pt.y,

 // but this demonstrates FontMetrics

 int height = event.gc.getFontMetrics().getHeight();

 // Outside loop goes from the top of the window to the bottom.

 // Since the (x, y) passed to drawString represents the upper left

 // corner, subtract the height of the font from the height of the

 // drawing area, so we don't have any partial drawing.

 for (int i = 0, n = rect.height - height; i < n; i += height) {

 // Inside loop goes from the left to the right, stopping far enough

 // from the right to ensure no partial string drawing.

 for (int j = 0, m = rect.width - pt.x; j < m; j += pt.x) {

 // Draw the string

 event.gc.drawString(STRING, j, i);

 }

 }

 }

 });

 // Create an editor to house the dropdown

 ControlEditor editor = new ControlEditor(canvas);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 // Create the combo and fill it

 final Combo combo = new Combo(canvas, SWT.READ_ONLY);

 for (int i = 0, n = SIZES.length; i < n; i++) {

 combo.add(SIZES[i]);

 }

 // Set up the editor

 editor.horizontalAlignment = SWT.CENTER;

 editor.verticalAlignment = SWT.TOP;

 Point size = combo.computeSize(SWT.DEFAULT, SWT.DEFAULT);

 editor.minimumWidth = size.x;

 editor.minimumHeight = size.y;

 editor.setEditor(combo);

 // Add a listener to the combo, so that when the selection changes,

 // we change the font and redraw the canvas

 combo.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 if (font != null) font.dispose();

 font = new Font(shell.getDisplay(), "Helvetica", new Integer(combo

 .getText()).intValue(), SWT.BOLD);

 canvas.redraw();

 }

 });

 // Select the first item in the combo

 combo.select(0);

 }

 /**

 * The application entry point

 *

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 new Extents().run();

 }

}

Figure 10-14 shows the program's main window. Figure 10-15 shows the window after changing the dropdown's value

to 18.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Figure 10-14: Using extents to determine where to draw strings

Figure 10-15: Using extents with a larger font

Changing Colors

The fonts thus far have been only in black, but an entire array of colors awaits. As Chapter 7 explains, fonts

themselves have no color. Instead, the font's container has a foreground color, which it uses to draw the font. For

example, to draw some text in blue, use this code:

gc.setForeground(display.getSystemColor(SWT.COLOR_BLUE));

gc.drawText("I'm in blue!");

The foreground color affects only subsequent drawing operations, so to follow some blue text with some green text,

use code such as this:

gc.setForeground(display.getSystemColor(SWT.COLOR_BLUE));

gc.drawText("I'm in blue!");

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig425%5F01%5F0%2Ejpg
file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig426%5F01%5F0%2Ejpg

gc.setForeground(display.getSystemColor(SWT.COLOR_GREEN));

gc.drawText("I'm in green!");

The ColorFont program in Listing 10-12 uses various colors to display some text in a column. It uses

GC.setForeground() to change the color. Figure 10-16 shows the running program.

Figure 10-16: Drawing fonts in colors

Listing 10-12: ColorFont.java

package examples.ch10;

import org.eclipse.swt.SWT;

import org.eclipse.swt.events.*;

import org.eclipse.swt.widgets.*;

/**

 * This class demonstrates how to draw text in colors

 */

public class ColorFont {

 // The color indices to use for the text

 private static final int[] COLOR_INDICES = { SWT.COLOR_BLUE, SWT.COLOR_GREEN,

 SWT.COLOR_RED, SWT.COLOR_GRAY};

 /**

 * Runs the application

 */

 public void run() {

 Display display = new Display();

 final Shell shell = new Shell(display);

 // Handler to do the drawing

 shell.addPaintListener(new PaintListener() {

 public void paintControl(PaintEvent event) {

 // Loop through the colors, moving down the screen each iteration

 for (int i = 0, n = COLOR_INDICES.length, y = 0, height = event.gc

 .getFontMetrics().getHeight(); i < n; i++, y += height) {

 event.gc.setForeground(shell.getDisplay().getSystemColor(

 COLOR_INDICES[i]));

 event.gc.drawText("Hooray for Color!", 0, y);

 }

 }

 });

 shell.setText("Color Font");

 shell.open();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

 display.dispose();

 }

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 /**

 * The application entry point

 *

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 new ColorFont().run();

 }

}

Drawing Vertical Text

Because GC has no drawVerticalText() method, and the drawText() method that accepts flags ignores SWT.VERTICAL,

you might think yourself stuck with horizontal text. Although SWT doesn't directly support vertical text, you can still

draw vertical text by following these steps:

Draw the text to an offscreen image.1.

Rotate the offscreen image.2.

Draw the rotated image to the screen.3.

To draw the text to an offscreen image, calculate the dimensions of the text and create an Image instance that's the

same size as the text, like this:

FontMetrics fm = gc.getFontMetrics();

Point pt = gc.textExtent(string);

Image stringImage = new Image(display, pt.x, pt.y);

Next, create a GC associated with this image, and set the original GC's attributes into it, so that it uses the same colors

and font:

GC stringGc = new GC(stringImage);

stringGc.setForeground(gc.getForeground());

stringGc.setBackground(gc.getBackground());

stringGc.setFont(gc.getFont());

Draw the string onto the new GC, which isn't associated with anything on the screen, so nothing displays (yet):

stringGc.drawText(string, 0, 0);

Make sure to pass zeroes for x and y; these values are relative to the new GC, not the original GC. Finally, rotate the

image, draw it to the original GC, and clean up.

The GraphicsUtils class in Listing 10-13 holds two methods: drawVerticalText() and drawVerticalImage(). drawVerticalText()

uses drawVerticalImage() to do the rotation and drawing to the original GC. Both methods take as parameters the x and

y coordinates for the top left corner of the drawing rectangle, the GC to ultimately draw on, and a style constant

(SWT.UP or SWT.DOWN) for whether to rotate +90 degrees or -90 degrees.

Listing 10-13: GraphicsUtils.java

package examples.ch10;

import org.eclipse.swt.*;

import org.eclipse.swt.graphics.*;

import org.eclipse.swt.widgets.Display;

/**

 * This class contains utility methods for drawing graphics

 */

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

public class GraphicsUtils {

 /**

 * Draws text vertically (rotates plus or minus 90 degrees). Uses the current

 * font, color, and background.

 * <dl>

 * <dt>Styles: </dt>

 * <dd>UP, DOWN</dd>

 * </dl>

 *

 * @param string the text to draw

 * @param x the x coordinate of the top left corner of the drawing rectangle

 * @param y the y coordinate of the top left corner of the drawing rectangle

 * @param gc the GC on which to draw the text

 * @param style the style (SWT.UP or SWT.DOWN)

 * <p>

 * Note: Only one of the style UP or DOWN may be specified.

 * </p>

 */

 public static void drawVerticalText(String string, int x, int y, GC gc,

 int style) {

 // Get the current display

 Display display = Display.getCurrent();

 if (display == null) SWT.error(SWT.ERROR_THREAD_INVALID_ACCESS);

 // Determine string's dimensions

 FontMetrics fm = gc.getFontMetrics();

 Point pt = gc.textExtent(string);

 // Create an image the same size as the string

 Image stringImage = new Image(display, pt.x, pt.y);

 // Create a GC so we can draw the image

 GC stringGc = new GC(stringImage);

 // Set attributes from the original GC to the new GC

 stringGc.setForeground(gc.getForeground());

 stringGc.setBackground(gc.getBackground());

 stringGc.setFont(gc.getFont());

 // Draw the text onto the image

 stringGc.drawText(string, 0, 0);

 // Draw the image vertically onto the original GC

 drawVerticalImage(stringImage, x, y, gc, style);

 // Dispose the new GC

 stringGc.dispose();

 // Dispose the image

 stringImage.dispose();

 }

 /**

 * Draws an image vertically (rotates plus or minus 90 degrees)

 * <dl>

 * <dt>Styles: </dt>

 * <dd>UP, DOWN</dd>

 * </dl>

 *

 * @param image the image to draw

 * @param x the x coordinate of the top left corner of the drawing rectangle

 * @param y the y coordinate of the top left corner of the drawing rectangle

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 * @param gc the GC on which to draw the image

 * @param style the style (SWT.UP or SWT.DOWN)

 * <p>

 * Note: Only one of the style UP or DOWN may be specified.

 * </p>

 */

 public static void drawVerticalImage(Image image, int x, int y, GC gc, int

 style) {

 // Get the current display

 Display display = Display.getCurrent();

 if (display == null) SWT.error(SWT.ERROR_THREAD_INVALID_ACCESS);

 // Use the image's data to create a rotated image's data

 ImageData sd = image.getImageData();

 ImageData dd = new ImageData(sd.height, sd.width, sd.depth, sd.palette);

 // Determine which way to rotate, depending on up or down

 boolean up = (style & SWT.UP) == SWT.UP;

 // Run through the horizontal pixels

 for (int sx = 0; sx < sd.width; sx++) {

 // Run through the vertical pixels

 for (int sy = 0; sy < sd.height; sy++) {

 // Determine where to move pixel to in destination image data

 int dx = up ? sy : sd.height - sy - 1;

 int dy = up ? sd.width - sx - 1 : sx;

 // Swap the x, y source data to y, x in the destination

 dd.setPixel(dx, dy, sd.getPixel(sx, sy));

 }

 }

 // Create the vertical image

 Image vertical = new Image(display, dd);

 // Draw the vertical image onto the original GC

 gc.drawImage(vertical, x, y);

 // Dispose the vertical image

 vertical.dispose();

 }

 /**

 * Creates an image containing the specified text, rotated either plus or minus

 * 90 degrees.

 * <dl>

 * <dt>Styles: </dt>

 * <dd>UP, DOWN</dd>

 * </dl>

 *

 * @param text the text to rotate

 * @param font the font to use

 * @param foreground the color for the text

 * @param background the background color

 * @param style direction to rotate (up or down)

 * @return Image

 * <p>

 * Note: Only one of the style UP or DOWN may be specified.

 * </p>

 */

 public static Image createRotatedText(String text, Font font, Color foreground,

 Color background, int style) {

 // Get the current display

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 Display display = Display.getCurrent();

 if (display == null) SWT.error(SWT.ERROR_THREAD_INVALID_ACCESS);

 // Create a GC to calculate font's dimensions

 GC gc = new GC(display);

 gc.setFont(font);

 // Determine string's dimensions

 FontMetrics fm = gc.getFontMetrics();

 Point pt = gc.textExtent(text);

 // Dispose that gc

 gc.dispose();

 // Create an image the same size as the string

 Image stringImage = new Image(display, pt.x, pt.y);

 // Create a gc for the image

 gc = new GC(stringImage);

 gc.setFont(font);

 gc.setForeground(foreground);

 gc.setBackground(background);

 // Draw the text onto the image

 gc.drawText(text, 0, 0);

 // Draw the image vertically onto the original GC

 Image image = createRotatedImage(stringImage, style);

 // Dispose the new GC

 gc.dispose();

 // Dispose the horizontal image

 stringImage.dispose();

 // Return the rotated image

 return image;

 }

 /**

 * Creates a rotated image (plus or minus 90 degrees)

 * <dl>

 * <dt>Styles: </dt>

 * <dd>UP, DOWN</dd>

 * </dl>

 *

 * @param image the image to rotate

 * @param style direction to rotate (up or down)

 * @return Image

 * <p>

 * Note: Only one of the style UP or DOWN may be specified.

 * </p>

 */

 public static Image createRotatedImage(Image image, int style) {

 // Get the current display

 Display display = Display.getCurrent();

 if (display == null) SWT.error(SWT.ERROR_THREAD_INVALID_ACCESS);

 // Use the image's data to create a rotated image's data

 ImageData sd = image.getImageData();

 ImageData dd = new ImageData(sd.height, sd.width, sd.depth, sd.palette);

 // Determine which way to rotate, depending on up or down

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 boolean up = (style & SWT.UP) == SWT.UP;

 // Run through the horizontal pixels

 for (int sx = 0; sx < sd.width; sx++) {

 // Run through the vertical pixels

 for (int sy = 0; sy < sd.height; sy++) {

 // Determine where to move pixel to in destination image data

 int dx = up ? sy : sd.height - sy - 1;

 int dy = up ? sd.width - sx - 1 : sx;

 // Swap the x, y source data to y, x in the destination

 dd.setPixel(dx, dy, sd.getPixel(sx, sy));

 }

 }

 // Create the vertical image

 return new Image(display, dd);

 }

}

drawVerticalImage() rotates the image by iterating through its pixels and swapping the x coordinate for the y coordinate,

and vice versa, using rules that depend on whether it's rotating the image up or down.

To illustrate the code, the VerticalText program (see Listing 10-14) draws "Hello" going up in the upper-left corner of

the window, and "Good Bye" going down in the lower right. Drawing "Hello" in the upper left is easy:

GraphicsUtils.drawVerticalText("Hello", 0, 0, gc, SWT.UP);

Listing 10-14: VerticalText.java

package examples.ch10;

import org.eclipse.swt.SWT;

import org.eclipse.swt.events.*;

import org.eclipse.swt.graphics.*;

import org.eclipse.swt.widgets.*;

/**

 * This class demonstrates how to draw vertical text

 */

public class VerticalText {

 /**

 * Runs the application

 */

 public void run() {

 Display display = new Display();

 final Shell shell = new Shell(display);

 final Font font = new Font(display, "Arial", 36, SWT.ITALIC);

 shell.addPaintListener(new PaintListener() {

 public void paintControl(PaintEvent event) {

 // Set the font

 event.gc.setFont(font);

 // Draw some text up in the upper left

 GraphicsUtils.drawVerticalText("Hello", 0, 0, event.gc, SWT.UP);

 // Draw some text down in the lower right

 // Note how we calculate the origin

 String goodBye = "Good Bye";

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 Point pt = event.gc.textExtent(goodBye);

 Rectangle rect = shell.getClientArea();

 GraphicsUtils.drawVerticalText(goodBye, rect.width - pt.y, rect.height

 - pt.x, event.gc, SWT.DOWN);

 }

 });

 shell.setText("Vertical Text");

 shell.open();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

 font.dispose();

 display.dispose();

 }

 /**

 * The application entry point

 *

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 new VerticalText().run();

 }

}

Drawing "Good Bye" in the lower right is a bit trickier, because you must determine where the top left corner of the

vertical text should be. To calculate the top left corner of the text, get the extent of the text, and then use its width to

calculate the height portion of the offset from the extreme lower-right corner, and use the extent's height to calculate

the width portion. That code looks like this:

Point pt = gc.textExtent(goodBye);

Rectangle rect = shell.getClientArea();

GraphicsUtils.drawVerticalText(goodBye, rect.width - pt.y,

 rect.height - pt.x, gc, SWT.DOWN);

Figure 10-17 shows this program.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Figure 10-17: Vertical text

The drawVerticalText() method boasts an interface similar to drawText(), and completely hides the implementation fact

that it converts the text to an image before rotating and drawing. You can blithely call it and remain completely ignorant

of the image layer. However, after the euphoria of the great interface passes, the performance overhead of this

implementation settles in. Every time the application paints the text, it must go through the overhead of creating the

image, rotating it, and drawing it to the screen. Hmm. Although some applications can afford the cycles, others will bog

down. Perhaps another go would be helpful.

Two new methods, createRotatedText() and createRotatedImage(), each of which returns an Image, seem the best

solution. Users of these methods pass either text or an image, depending on which of the two methods they call, and

receive an image back. Both methods begin with create to remind users that they're responsible for disposing the

image. Listing 10-15 contains the code for these methods, which you should add to GraphicsUtils.java.

Listing 10-15: Additional methods for GraphicsUtils.java

/**

 * Creates an image containing the specified text, rotated either

 * plus or minus 90 degrees.

 * <dl>

 * <dt>Styles:</dt>

 * <dd>UP, DOWN</dd>

 * </dl>

 * @param text the text to rotate

 * @param font the font to use

 * @param foreground the color for the text

 * @param background the background color

 * @param style direction to rotate (up or down)

 * @return Image

 * <p>

 * Note: Only one of the style UP or DOWN may be specified.

 * </p>

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 */

public static Image createRotatedText(String text, Font font, Color foreground,

 Color background, int style)

{

 // Get the current display

 Display display = Display.getCurrent();

 if (display == null)

 SWT.error(SWT.ERROR_THREAD_INVALID_ACCESS);

 // Create a GC to calculate font's dimensions

 GC gc = new GC(display);

 gc.setFont(font);

 // Determine string's dimensions

 FontMetrics fm = gc.getFontMetrics();

 Point pt = gc.textExtent(text);

 // Dispose that gc

 gc.dispose();

 // Create an image the same size as the string

 Image stringImage = new Image(display, pt.x, pt.y);

 // Create a gc for the image

 gc = new GC(stringImage);

 gc.setFont(font);

 gc.setForeground(foreground);

 gc.setBackground(background);

 // Draw the text onto the image

 gc.drawText(text, 0, 0);

 // Draw the image vertically onto the original GC

 Image image = createRotatedImage(stringImage, style);

 // Dispose the new GC

 gc.dispose();

 // Dispose the horizontal image

 stringImage.dispose();

 // Return the rotated image

 return image;

}

/**

 * Creates a rotated image (plus or minus 90 degrees)

 * <dl>

 * <dt>Styles:</dt>

 * <dd>UP, DOWN</dd>

 * </dl>

 * @param image the image to rotate

 * @param style direction to rotate (up or down)

 * @return Image

 * <p>

 * Note: Only one of the style UP or DOWN may be specified.

 * </p>

 */

public static Image createRotatedImage(Image image, int style)

{

 // Get the current display

 Display display = Display.getCurrent();

 if (display == null)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 SWT.error(SWT.ERROR_THREAD_INVALID_ACCESS);

 // Use the image's data to create a rotated image's data

 ImageData sd = image.getImageData();

 ImageData dd = new ImageData(sd.height, sd.width, sd.depth, sd.palette);

 // Determine which way to rotate, depending on up or down

 boolean up = (style & SWT.UP) == SWT.UP;

 // Run through the horizontal pixels

 for (int sx = 0; sx < sd.width; sx++)

 {

 // Run through the vertical pixels

 for (int sy = 0; sy < sd.height; sy++)

 {

 // Determine where to move pixel to in destination image data

 int dx = up ? sy : sd.height - sy - 1;

 int dy = up ? sd.width - sx - 1 : sx;

 // Swap the x, y source data to y, x in the destination

 dd.setPixel(dx, dy, sd.getPixel(sx, sy));

 }

 }

 // Create the vertical image

 return new Image(display, dd);

}

To use these two methods, create your rotated text once, like this:

Image image = GraphicsUtils.createRotatedText("My text", font, foreground,

 background, SWT.UP);

Then draw the new image in your drawing handler. Finally, call dispose() on the image when you're through with it.

The VerticalTextSpanish program in Listing 10-16 uses createRotatedText() to duplicate the VerticalText program,

translating to Spanish.

Listing 10-16: VerticalTextSpanish.java

package examples.ch10;

import org.eclipse.swt.SWT;

import org.eclipse.swt.events.*;

import org.eclipse.swt.graphics.*;

import org.eclipse.swt.widgets.*;

/**

 * This class demonstrates how to draw vertical text

 */

public class VerticalTextSpanish {

 /**

 * Runs the application

 */

 public void run() {

 Display display = new Display();

 final Shell shell = new Shell(display);

 final Font font = new Font(display, "Arial", 36, SWT.ITALIC);

 // Create "Hello" image

 final Image hello = GraphicsUtils.createRotatedText("Hola", font, shell

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 .getForeground(), shell.getBackground(), SWT.UP);

 // Create "Good Bye" image

 final Image goodBye = GraphicsUtils.createRotatedText("Chao Pescado", font,

 shell.getForeground(), shell.getBackground(), SWT.DOWN);

 shell.addPaintListener(new PaintListener() {

 public void paintControl(PaintEvent event) {

 // Set the font

 event.gc.setFont(font);

 // Draw hello in the upper left

 event.gc.drawImage(hello, 0, 0);

 // Draw good bye in the lower right

 // Note how we calculate the origin

 Rectangle rcImage = goodBye.getBounds();

 Rectangle rect = shell.getClientArea();

 event.gc.drawImage(goodBye, rect.width - rcImage.width, rect.height

 - rcImage.height);

 }

 });

 shell.setText("Vertical Text Spanish");

 shell.open();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

 goodBye.dispose();

 hello.dispose();

 font.dispose();

 display.dispose();

 }

 /**

 * The application entry point

 *

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 new VerticalTextSpanish().run();

 }

}

Figure 10-18 shows this program's main window.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Figure 10-18: Vertical text in Spanish

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Drawing Images

You've learned that you can use SWT to generate graphics on the fly by drawing shapes and text. SWT can also

display graphic images from files. It supports the following graphic file formats:

Graphics Interchange Format (GIF), including animated GIFs

Portable Network Graphics (PNG)

Joint Photographic Experts Group (JPEG)

Tagged Image File Format (TIFF)

Windows Icon (ICO)

Windows Bitmap (BMP)

Windows Bitmap with run-length encoding (RLE)

SWT uses the Image class to represent images. Although you'll usually load formatted images from files, you can also

use the Image class to create images in memory. However, whether you load them from files or create them in

memory, you must dispose all Images that you create.

Creating Images

You'll usually load an image file from disk when you create an Image object. Image offers four constructors for creating

an Image object from an image file. Sometimes, as with the rotated text example, you'll create an empty Image object

and draw on it. You can also create an Image from an ImageData structure, discussed later in this chapter. Finally, you

can create an Image from another Image. Table 10-11 lists Image's constructors.

Table 10-11: Image Constructors

Constructor Description

Image(Device device, String filename) Creates an image from the specified file name

Image(Device device, InputStream stream) Creates an image from the specified stream

Image(Device device, int width, int height) Creates an empty image of the specified width and height

(in pixels)

Image(Device device, Rectangle bounds) Creates an empty image of the specified size

Image(Device device, ImageData data) Creates an image from the specified ImageData

Image(Device device, ImageData source,

ImageData mask)
Creates an image by combining the specified ImageData

objects

Image(Device device, Image source, int flag) Creates an image from the specified image, using the

value specified by flag

The Device you pass is the device on which the image will be rendered, usually the primary Display instance. The next

three sections examine the various constructors.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Creating an Image From a File

When your image sits in a file on a disk, and you want to display the image just as it sits, you can create it by passing

its file name to the constructor. For example, to load the file whose path is c:\temp\swt.png, use this code:

Image image = new Image(display, "c:\\temp\\swt.png");

Another way to load an image from a file is to create an input stream from it and pass the input stream to the

constructor, like this:

Image image = new Image(display, new FileInputStream("c:\\temp\\swt.png"));

You can also use the constructor that takes an input stream in conjunction with the Class.getResourceAsStream()

method, which returns an InputStream instance, like this:

Image image = new Image(display, MyClass.getResourceAsStream("/temp/swt.png"));

Creating an Empty Image

Suppose you have a complicated visual that depends on some values entered at run time. You could render the image

each time your window paints, but that might cause performance issues. However, if the values are entered only once,

you'll end up reworking the same complications each time. In situations such as this, you can create an image, draw it

once, and then save the image. Only the saved image is repainted.

To create an empty image, pass the desired size to the constructor. You can specify the size as a width and a height,

or you can pass a Rectangle. The two ways would look like this:

Image image1 = new Image(display, 300, 200);

Image image2 = new Image(display, myRect);

Because an Image is a Drawable, you can pass it to a GC to draw on it, like this:

GC gc = new GC(image);

You can then call GC's drawing methods to draw on the image.

Creating an Image From an ImageData

To understand how to create an image from an ImageData instance, you must first understand what an ImageData is.

ImageData encapsulates the body of metadata describing an Image. This data is device independent (that is, the data

doesn't depend on the target rendering device, be it a screen or a printer). ImageData's constructors, listed in Table

10-12, allow you to either create an ImageData from a file, or to create one using predetermined data.

Table 10-12: ImageData Constructors

Constructor Description

ImageData(InputStream stream) Creates an ImageData from an image passed as a stream.

ImageData(String filename) Creates an ImageData from the image specified by filename.

ImageData(int width, int height, int depth,

PaletteData palette)
Creates an ImageData with the specified width, height,

color depth, and palette.

ImageData(int width, int height, int depth,

PaletteData palette, int scanlinePad, byte[] data)
Creates an ImageData with the specified width, height,

color depth, palette, scanline pad, and data. data holds the

image's pixel data.

The last two constructors introduce two new concepts: palettes and scanline pads. Palettes represent the colors in an

image, and are represented in SWT by PaletteData objects. A scanline is a row in the image, and the scanline pad is

the amount of padding on each scanline.

ImageData has numerous fields, listed in Table 10-13, that contain data about the image. These fields are all public, so

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

you can access them directly. Table 10-14 contains constants used by ImageData's disposalMethod field, to specify how

to dispose the image, and Table 10-15 lists constants used by ImageData's type field, for specifying the type or format of

the image.

Table 10-13: ImageData Fields

Field Description

int alpha The alpha value used by every pixel in the image. Alpha values are used to describe

transparency.

byte[] alphaData The alpha data for the entire image.

int bytesPerLine The number of bytes per scanline (row) in the image.

byte[] data The pixel data for the entire image.

int delayTime The number of milliseconds to delay before showing the next frame of the animation.

This field corresponds to an animated GIF's Delay Time field.

int depth The color depth, in bits per pixel, of the image.

int

disposalMethod
A constant specifying how to dispose the current image before displaying the next. See

Table 10-14 for possible values and descriptions. This field corresponds to an animated

GIF's Disposal Method field.

int height The image's height, in pixels.

byte[] maskData The mask data for an icon.

int maskPad The mask pad value for an icon.

PaletteData

palette
The image's palette.

int scanlinePad The scanline pad.

int

transparentPixel
The value of transparent pixels; all pixels with this value are drawn transparent.

int type A constant specifying this image's format. See Table 10-15 for possible values.

int width The image's width, in pixels.

int x The x coordinate of the image's top left corner. This field corresponds to an animated

GIF's Image Left Position field.

int y The y coordinate of the image's top left corner. This field corresponds to an animated

GIF's Image Top Position field.

Table 10-14: Disposal Method Constants

Constant Description

SWT.DM_UNSPECIFIED Unspecified disposal method

SWT.DM_FILL_NONE Don't dispose; leave current image in place

SWT.DM_FILL_BACKGROUND Fill the image with the background color

SWT.DM_FILL_PREVIOUS Restore the previous image

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Table 10-15: Type Constants

Constant Description

SWT.IMAGE_UNDEFINED Unknown image type

SWT.IMAGE_BMP BMP

SWT.IMAGE_BMP_RLE RLE

SWT.IMAGE_GIF GIF

SWT.IMAGE_ICO ICO

SWT.IMAGE_JPEG JPEG

SWT.IMAGE_TIFF TIFF

SWT.IMAGE_PNG PNG

ImageData's fields contain most of what you need to know about the corresponding image: they contain data pertaining

to the entire image. However, to get or set data corresponding to individual pixels within the image, you must use

ImageData's methods, listed in Table 10-16.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table 10-16: ImageData Methods

Method Description

Object clone() A safe cloning operation that returns a duplicate of this ImageData.

int getAlpha(int x, int y) Returns the alpha value for the pixel specified by (x, y).

void getAlphas(int x, int y, int

getWidth, byte[] alphas, int startIndex)
Returns the number of alpha values specified by getWidth, from the

pixel specified by (x, y). Returns the values in the alphas array,

starting at the index specified by startIndex.

int getPixel(int x, int y) Returns the pixel value for the pixel specified by (x, y).

void getPixels(int x, int y, int getWidth,

byte[] pixels, int startIndex)
Returns the number of pixel values specified by getWidth, from the

pixel specified by (x, y). Returns the values in the pixels array, starting

at the index specified by startIndex.

void getPixels(int x, int y, int getWidth,

int[] pixels, int startIndex)
Identical to the previous method, but returns the data in an array of

ints instead of an array of bytes.

RGB[] getRGBs() Returns the image's indexed color table as an array of RGB objects.

ImageData getTransparencyMask() Returns the transparency mask for the image, or null if the image

has no transparency mask.

ImageData scaledTo(int width, int

height)
Returns an ImageData that contains the data for the image scaled to

width and height.

void setAlpha(int x, int y, int alpha) Sets the alpha value for the pixel specified by (x, y).

void setAlphas(int x, int y, int

putWidth, byte[] alphas, int startIndex)
Sets the number of alpha values specified by putWidth, starting at

the pixel specified by (x, y). The values are passed in the alphas

array, starting at the index specified by startIndex.

void setPixel(int x, int y, int pixelValue) Sets the pixel value for the pixel specified by (x, y).

void setPixels(int x, int y, int putWidth,

byte[] pixels, int startIndex)
Sets the number of pixels specified by putWidth, starting at the pixel

specified by (x, y). The values are passed in the pixels array, starting

at the index specified by startIndex.

void setPixels(int x, int y, int putWidth,

int[] pixels, int startIndex)
Identical to the previous method, except that the pixel data is

specified in an array of ints instead of an array of bytes.

You can get an ImageData instance from an existing Image by calling the getImageData() method, like this:

ImageData data = myImage.getImageData();

You can use this ImageData as is to create a new image, or you can manipulate it by changing its fields' values or

calling its setter methods, and then create an image. You can also create an ImageData object using one of its

constructors listed earlier. Once you have an ImageData object, you create an image by passing it to one of the

constructors that accepts an ImageData. For example, you create an image from a single ImageData like this:

Image image = new Image(display, data);

If you have two ImageData objects, one containing the data for the image and one containing the data for the image's

mask, you create the image like this:

Image image = new Image(display, sourceData, maskData);

Creating an Image From Another Image

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

To create an image that duplicates another image, or that has a disabled or a grayscale look, use the constructor that

takes an Image and a flag:

Image image = new Image(display, otherImage, flag);

Table 10-17 lists the possible values for flag.

Table 10-17: flag Constants

Constant Description

SWT.IMAGE_COPY Create an exact copy of the image

SWT.IMAGE_DISABLE Create an image that has a disabled look

SWT.IMAGE_GRAY Create an image that has the grayscale look

The ShowImageFlags program in Listing 10-17 demonstrates the effects of the flag values. It loads an image, then

creates three more images from it. The first passes SWT.IMAGE_COPY, the second passes SWT.IMAGE_DISABLE, and

the third passes SWT.IMAGE_GRAY. Figure 10-19 shows the program's main window.

Figure 10-19: Images created using different flags

Listing 10-17: ShowImageFlags.java

package examples.ch10;

import org.eclipse.swt.*;

import org.eclipse.swt.graphics.*;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.widgets.*;

/**

 * This class demonstrates the effects of the flags on the constructor:

 *

 * <code>Image(Device device, Image srcImage, int flag)</code>

 */

public class ShowImageFlags {

 // Members to hold the images

 private Image image;

 private Image copy;

 private Image disable;

 private Image gray;

 /**

 * Runs the program

 */

 public void run() {

 Display display = new Display();

 Shell shell = new Shell(display);

 shell.setText("Show Image Flags");

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig447%5F01%5F0%2Ejpg

 // Load the image

 image = new Image(display, this.getClass().getResourceAsStream(

 "/images/swt.png"));

 // Create the duplicate image

 copy = new Image(display, image, SWT.IMAGE_COPY);

 // Create the disabled image

 disable = new Image(display, image, SWT.IMAGE_DISABLE);

 // Create the gray image

 gray = new Image(display, image, SWT.IMAGE_GRAY);

 createContents(shell);

 shell.pack();

 shell.open();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

 // Dispose the images

 image.dispose();

 copy.dispose();

 disable.dispose();

 gray.dispose();

 display.dispose();

 }

 /**

 * Creates the main window's contents

 *

 * @param shell the main window

 */

 private void createContents(Shell shell) {

 shell.setLayout(new FillLayout());

 // Create labels to hold each image

 new Label(shell, SWT.NONE).setImage(image);

 new Label(shell, SWT.NONE).setImage(copy);

 new Label(shell, SWT.NONE).setImage(disable);

 new Label(shell, SWT.NONE).setImage(gray);

 }

 /**

 * The application entry point

 *

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 new ShowImageFlags().run();

 }

}

Drawing Images

Once you have an image, whether you've loaded it from disk or created it in memory, you can draw it to the screen by

calling one of GC's drawImage() methods, listed in Table 10-18. You can also set the image into any of SWT's widgets

that display an image, as the ShowImageFlags program does with Labels.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Table 10-18: GC's drawImage() Methods

Method Description

void drawImage(Image image, int x, int y) Draws the image with its top left corner at the point specified by (x,

y)

void drawImage(Image image, int srcX,

int srcY, int srcWidth, int srcHeight, int

destX, int destY, int destWidth, int

destHeight)

Draws the image or part of the image, starting from the point

(srcX, srcY), with the width and height specified by srcWidth and

srcHeight, respectively, at the point specified by (destX, destY), with

the width and height specified by destWidth and destHeight,

respectively

The first drawImage() method adds no complications: take the image and draw it at the specified location. However, the

second drawImage() method complicates things a bit: you specify which part of the image to draw, and where to draw it

to. SWT shrinks or stretches the image (or the portion of the image) to fit the specified area. The DrawImages program

in Listing 10-18 shows both drawImage() methods. In the upper-left corner of the window, it draws the image. In the

lower-right corner, it draws half the image, taken out of the middle of the image, but doubles its size. This displays two

same-sized images, one a close-up of the other.

Listing 10-18: DrawImages.java

package examples.ch10;

import org.eclipse.swt.events.*;

import org.eclipse.swt.graphics.*;

import org.eclipse.swt.widgets.*;

/**

 * This class demonstrates how to draw images

 */

public class DrawImages {

 public void run() {

 Display display = new Display();

 final Shell shell = new Shell(display);

 // Load an image

 final Image image = new Image(display, this.getClass().getResourceAsStream(

 "/images/swt.png"));

 System.out.println(image.getImageData().scanlinePad);

 image.getImageData().scanlinePad = 40;

 System.out.println(image.getImageData().scanlinePad);

 shell.addPaintListener(new PaintListener() {

 public void paintControl(PaintEvent event) {

 // Draw the untainted image

 event.gc.drawImage(image, 0, 0);

 // Determine how big the drawing area is

 Rectangle rect = shell.getClientArea();

 // Get information about the image

 ImageData data = image.getImageData();

 // Calculate drawing values

 int srcX = data.width / 4;

 int srcY = data.height / 4;

 int srcWidth = data.width / 2;

 int srcHeight = data.height / 2;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 int destWidth = 2 * srcWidth;

 int destHeight = 2 * srcHeight;

 // Draw the image

 event.gc.drawImage(image, srcX, srcY, srcWidth, srcHeight, rect.width

 - destWidth, rect.height - destHeight, destWidth, destHeight);

 }

 });

 shell.setText("Draw Images");

 shell.open();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

 image.dispose();

 display.dispose();

 }

 /**

 * The application entry point

 *

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 new DrawImages().run();

 }

}

Figure 10-20 shows the program's main window.

Figure 10-20: An image and a zoomed image

Double Buffering

Game developers and animators must deal with flickering, when a moving image flashes, and tearing, when a moving

image seems to shift in one direction partway through the image, causing it to no longer line up properly. Either

annoyance causes the animation not to display properly, ruining the entire effect.

To combat flickering and tearing, animators invented double buffering. When you double buffer, you perform all your

drawing operations on an invisible canvas. When you're completely through drawing, you then draw that canvas onto

the screen. In SWT, you implement this by creating an Image, creating a GC for that image, drawing on the GC, and

then drawing that Image to the screen. The drawVerticalText() method in this chapter uses this approach.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig450%5F01%5F0%2Ejpg

The Animator program in Listing 10-19 doesn't use double buffering, and can result in flickering and tearing.

AnimatorDoubleBuffer, which draws the same animation, uses double buffering, and thus avoids flickering and tearing.

Listing 10-19: Animator.java

package examples.ch10;

import org.eclipse.swt.SWT;

import org.eclipse.swt.events.*;

import org.eclipse.swt.graphics.*;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.widgets.*;

/**

 * This class demonstrates animation.

 */

public class Animator {

 // The width (and height) of the image

 private static final int IMAGE_WIDTH = 100;

 // The timer interval in milliseconds

 private static final int TIMER_INTERVAL = 10;

 // The location of the "ball"

 private int x = 0;

 private int y = 0;

 // The direction the "ball" is moving

 private int directionX = 1;

 private int directionY = 1;

 // We draw everything on this canvas

 private Canvas canvas;

 /**

 * Runs the application

 */

 public void run() {

 final Display display = new Display();

 Shell shell = new Shell(display);

 shell.setText("Animator");

 createContents(shell);

 shell.open();

 // Set up the timer for the animation

 Runnable runnable = new Runnable() {

 public void run() {

 animate();

 display.timerExec(TIMER_INTERVAL, this);

 }

 };

 // Launch the timer

 display.timerExec(TIMER_INTERVAL, runnable);

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

 // Kill the timer

 display.timerExec(-1, runnable);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 display.dispose();

 }

 /**

 * Creates the main window's contents

 *

 * @param shell the main window

 */

 private void createContents(final Shell shell) {

 shell.setLayout(new FillLayout());

 // Create the canvas for drawing

 canvas = new Canvas(shell, SWT.NO_BACKGROUND);

 canvas.addPaintListener(new PaintListener() {

 public void paintControl(PaintEvent event) {

 // Draw the background

 event.gc.fillRectangle(canvas.getBounds());

 // Set the color of the ball

 event.gc.setBackground(shell.getDisplay().getSystemColor(SWT.COLOR_RED));

 // Draw the ball

 event.gc.fillOval(x, y, IMAGE_WIDTH, IMAGE_WIDTH);

 }

 });

 }

 /**

 * Animates the next frame

 */

 public void animate() {

 // Determine the ball's location

 x += directionX;

 y += directionY;

 // Determine out of bounds

 Rectangle rect = canvas.getClientArea();

 if (x < 0) {

 x = 0;

 directionX = 1;

 } else if (x > rect.width - IMAGE_WIDTH) {

 x = rect.width - IMAGE_WIDTH;

 directionX = -1;

 }

 if (y < 0) {

 y = 0;

 directionY = 1;

 } else if (y > rect.height - IMAGE_WIDTH) {

 y = rect.height - IMAGE_WIDTH;

 directionY = -1;

 }

 // Force a redraw

 canvas.redraw();

 }

 /**

 * The application entry point

 *

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 new Animator().run();

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 }

}

The code for the two programs is nearly identical, except for the paint handlers. The paint handler in Animator draws

everything to the screen: it first erases the background, then draws the ball in the proper position. The paint handler in

AnimatorDoubleBuffer also first erases the background, then draws the ball in the proper position. The difference is

that it does all its drawing off screen to an Image. Only after all the drawing is complete does it draw the completed

image to the screen. If you run these two programs, you'll see flickering in Animator and no flickering in

AnimatorDoubleBuffer. This is AnimatorDoubleBuffer's paint handler:

canvas.addPaintListener(new PaintListener() {

 public void paintControl(PaintEvent event) {

 // Create the image to fill the canvas

 Image image = new Image(shell.getDisplay(), canvas.getBounds());

 // Set up the offscreen gc

 GC gcImage = new GC(image);

 // Draw the background

 gcImage.setBackground(event.gc.getBackground());

 gcImage.fillRectangle(image.getBounds());

 // Set the color of the ball

 gcImage.setBackground(shell.getDisplay().getSystemColor(SWT.COLOR_RED));

 // Draw the ball

 gcImage.fillOval(x, y, IMAGE_WIDTH, IMAGE_WIDTH);

 // Draw the offscreen buffer to the screen

 event.gc.drawImage(image, 0, 0);

 // Clean up

 image.dispose();

 gcImage.dispose();

 }

});

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Understanding Device

The graphics package contains a class, Device, that represents a physical device. It's an abstract class, and has two

concrete subclasses: Display and Printer. Chapter 12, which discusses printing, examines the Printer class. The present

chapter focuses on drawing graphics on the screen, which is what the Display class represents. Sometimes you'll want

to know some attributes of the current screen you're drawing on. Turn to the Device class to retrieve that data. Device

also offers a few other interesting methods, such as the one to get a color from the underlying system without having

to create and manage one yourself (getSystemColor()). Table 10-19 lists Device's methods.

Table 10-19: Device Methods

Method Description

void dispose() Disposes this device, freeing any resources.

Rectangle getBounds() Returns the bounding rectangle for this device.

Rectangle getClientArea() Returns the bounding rectangle for the drawing area of this device.

int getDepth() Returns the bit depth of this device.

DeviceData getDeviceData() Returns the DeviceData instance associated with this device.

Point getDPI() Returns this device's dots per inch (DPI). The x data member of the

returned point contains the horizontal DPI, and the y data member

contains the vertical DPI.

FontData[] getFontList(String

faceName, boolean scalable)
Returns an array of FontData objects that match the specified faceName

and scalable.

Color getSystemColor(int id) Returns the color specified by id. Note that because you didn't create

the returned color, you shouldn't dispose it.

Font getSystemFont() Returns the system font.

boolean getWarnings() Returns true if printing warnings to the console has been turned on.

boolean isDisposed() Returns true if this device has been disposed, or false if it hasn't.

void setWarnings(boolean

warnings)
If warnings is true, turns on printing warnings to the console. Note that

not all platforms support printing warnings to the console.

Run the ShowDevice program (see Listing 10-20) to discover your current display's capabilities. This program lists the

display's boundaries, client area, color depth, DPI, and whether or not it supports printing warnings to the console.

Listing 10-20: ShowDevice.java

package examples.ch10;

import org.eclipse.swt.SWT;

import org.eclipse.swt.graphics.*;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.widgets.*;

/**

 * This class displays information about the display device.

 */

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

public class ShowDevice {

 /**

 * Runs the application

 */

 public void run() {

 Display display = new Display();

 Shell shell = new Shell(display);

 shell.setText("Display Device");

 createContents(shell);

 shell.pack();

 shell.open();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

 display.dispose();

 }

 /**

 * Creates the main window's contents

 *

 * @param shell the main window

 */

 private void createContents(Shell shell) {

 shell.setLayout(new FillLayout());

 // Create a text box to hold the data

 Text text = new Text(shell, SWT.MULTI | SWT.H_SCROLL | SWT.V_SCROLL);

 // Get the display device

 Device device = shell.getDisplay();

 // Put its data into a buffer

 StringBuffer buf = new StringBuffer();

 buf.append("getBounds(): ").append(device.getBounds()).append("\n");

 buf.append("getClientArea(): ").append(device.getClientArea()).append("\n");

 buf.append("getDepth(): ").append(device.getDepth()).append("\n");

 buf.append("getDPI(): ").append(device.getDPI()).append("\n");

 // By setting warnings to true and then getting warnings, we know if the

 // current platform supports it

 device.setWarnings(true);

 buf.append("Warnings supported: ").append(device.getWarnings()).append("\n");

 // Put the collected information into the text box

 text.setText(buf.toString());

 }

 /**

 * The application entry point

 *

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 new ShowDevice().run();

 }

}

Figure 10-21 shows this program running under Windows XP. You can see that the computer it's running on has a

screen resolution of 1024768, that it's using 16 bits per color and 120 DPI, and that it doesn't support printing warnings

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

to the console.

Figure 10-21: The display's attributes

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Summary

SWT offers a rich array of drawing tools you can use any time you want to escape the bounds of the existing GUI

widgets. You can draw various shapes: squares, rectangles, circles, ovals, lines, arcs, and other polygons. You can

draw text in different sizes and fonts. You can draw all of these in different colors. You can draw images, whether

loaded from files or created in memory. You can manipulate images when you draw them. You can draw animations,

with or without flickers.

The heart of GUIs is graphics, and SWT equips you to draw whatever graphics you can imagine.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Chapter 11: Displaying and Editing Text

Beneath all the fancy widgets and advanced UI, Eclipse is, at its heart, a text editor. Naturally, then, a main focus of

SWT is its ability to display and edit text. SWT's StyledText widget displays text in different colors, styles, sizes, and

fonts, though it's limited to one size and font per StyledText widget. StyledText is geared toward editing source code, but

you can use it for many other applications. It offers a full-featured text editor, complete with clipboard functionality and

printing.

You have two approaches when using a StyledText widget: you can program directly to its API, or you can provide

listeners for the StyledText widget to call. You can accomplish the same results using either method, but you shouldn't

mix the two. This chapter first examines programming to the API, and then explores providing listeners.

Using the StyledText API

Plopping a StyledText into your application gives you a text editor that likely performs almost every task you expect.

You can do things such as type text into it, move the caret around inside it using the arrow keys, page up and down

through what you've typed, select text, cut or copy text to the clipboard, and paste text from the clipboard. However, to

harness the range of its power, and do things such as print its contents, display its content using color syntax

highlighting, control word wrapping, set tabs, restrict keystrokes, or attach actions to keystrokes, you must dig deeper

and write code. Controlling the power of StyledText requires an extensive API, as Table 11-1 shows. However, the API

isn't nearly as daunting as it seems at first blush, and soon you'll be able to port vi to SWT.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Table 11-1: The StyledText API

Method Description

void addBidiSegmentListener(BidiSegmentListener

listener)
Adds a bidirectional segment listener to the

notification list.

void addExtendedModifyListener(ExtendedModifyListener

listener)
Adds a listener to the notification list that's

notified when text is modified. The event passed

to the modifyText() method of this listener contains

more information than the one passed to a

ModifyListener's modifyText() method.

void addLineBackgroundListener(LineBackgroundListener

listener)
Adds a listener to the notification list that's

notified when a line is about to be drawn, in order

to determine the line's background color. Use this

method with the listener/ callback approach.

void addLineStyleListener(LineStyleListener listener) Adds a listener to the notification list that's

notified when a line is about to be drawn, in order

to determine the line's style. Use this method with

the listener/callback approach.

void addModifyListener(ModifyListener listener) Adds a listener to the notification list that's

notified when text is modified.

void addSelectionListener(SelectionListener listener) Adds a listener to the notification list that's

notified when this StyledText is selected.

void addVerifyKeyListener(VerifyKeyListener listener) Adds a listener to the notification list that's

notified when a key is pressed.

void addVerifyListener(VerifyListener listener) Adds a listener to the notification list that's

notified when the text in this StyledText is about to

change.

void append(String text) Appends the text in text to the end of the text in

this StyledText.

Point computeSize(int wHint, int hHint, boolean changed) Computes the preferred size of this StyledText.

void copy() Copies the selected text to the clipboard.

void cut() Cuts the selected text to the clipboard.

Color getBackground() Returns the background color for this StyledText.

int getCaretOffset() Returns the zero-based position of the caret

relative to the start of the text.

int getCharCount() Returns the number of characters in this

StyledText.

StyledTextContent getContent() Returns the StyledTextContent associated with this

StyledText, or null if no StyledTextContent is

associated with this StyledText.

boolean getDoubleClickEnabled() Returns true if this StyledText has been set to

respond to double clicks with the mouse.

Otherwise, returns false.

boolean getEditable() Returns true if the text in this StyledText can be

edited. Otherwise, returns false.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Method Description

Color getForeground() Returns the color this StyledText uses to draw text.

int getHorizontalIndex() Returns the zero-based character position of the

horizontal scroll relative to the start of the line.

int getHorizontalPixel() Returns the zero-based pixel position of the

horizontal scroll relative to the start of the line.

int getKeyBinding(int key) Returns the binding associated with the key press

specified by key .

int getLineAtOffset(int offset) Returns the zero-based index of the line

containing the zero-based offset specified by

offset.

Color getLineBackground(int index) Returns the background color of the line at the

zero-based index specified by index.

int getLineCount() Returns the number of lines of text in this

StyledText.

String getLineDelimiter() Returns the delimiter used at the end of lines.

int getLineHeight() Returns the height of a line, in pixels.

Point getLocationAtOffset(int offset) Returns the upper-left corner of the character at

the zero-based offset specified by offset.

int getOffsetAtLine(int lineIndex) Returns the zero-based offset into the text of the

first character in the line specified by lineIndex.

int getOffsetAtLocation(Point point) Returns the zero-based offset into the text of the

character at the location specified by point.

int getOrientation() Returns the orientation for this StyledText (either

SWT.LEFT_TO_RIGHT or SWT.RIGHT_TO_LEFT).

Point getSelection() Returns the current selection. The returned

Point's x member contains the offset of the first

selected character, and the y member contains

the offset after the last selected character.

Color getSelectionBackground() Returns the color used for the background of the

selection.

int getSelectionCount() Returns the number of selected characters.

Color getSelectionForeground() Returns the color used for the selected text.

Point getSelectionRange() Returns the selection as the offset of the first

selected character, contained in the returned

Point's x member, and the length of the selection,

contained in the y member.

String getSelectedText() Returns the selected text.

int getStyle() Returns the style for this StyledText.

StyleRange getStyleRangeAtOffset(int offset) Returns the style range at the zero-based offset.

StyleRange[] getStyleRanges() Returns the style ranges for this StyledText.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Method Description

StyleRange[] getStyleRanges(int start, int length) Returns the style ranges starting at the

zero-based index specified by start and continuing

for length characters.

int getTabs() Returns the number of characters used for tabs.

String getText() Returns a copy of the text in this StyledText.

String getText(int start, int end) Returns a copy of the text in this StyledText

starting at the offset specified by start and ending

at the offset specified by end.

int getTextLimit() Returns the maximum number of characters this

StyledText will hold.

String getTextRange(int start, int length) Returns a copy of the text in this StyledText

starting at the offset specified by start and

continuing for length characters.

int getTopIndex() Returns the zero-based index of the line currently

shown at the top of this StyledText.

int getTopPixel() Returns the pixel position of the line currently

shown at the top of this StyledText.

boolean getWordWrap() Returns true if word wrap for this StyledText is

turned on. Otherwise, returns false.

void insert(String string) Inserts the text specified by string at the selection

point, replacing any selected text.

void invokeAction(int action) Invokes an action. See Table 11-4 for possible

actions.

void paste() Pastes the text from the clipboard into this

StyledText at the current caret position.

void print() Prints this StyledText's text to the default printer.

Runnable print(Printer printer) Returns a runnable that you can run to print this

StyledText's text to the specified printer.

Runnable print(Printer printer, StyledTextPrintOptions

options)
Returns a runnable that you can run to print this

StyledText's text, using the specified options, to

the specified printer.

void redraw() Marks this StyledText to be redrawn.

void redraw(int x, int y, int width, int height, boolean all) Marks the area of this StyledText specified by x, y,

width, and height to be redrawn. If all is true, also

marks the intersecting area of any of this

StyledText's children to be redrawn.

void redrawRange(int start, int length, boolean

clearBackground)
Redraws the range of characters staring at the

zero-based offset specified by start and continuing

for length characters. If clearBackground is true,

clears the background before redrawing.

Otherwise, doesn't clear the background.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Method Description

void removeBidiSegmentListener(BidiSegmentListener

listener)
Removes the specified listener from the

notification list.

void

removeExtendedModifyListener(ExtendedModifyListener

listener)

Removes the specified listener from the

notification list.

void

removeLineBackgroundListener(LineBackgroundListener

listener)

Removes the specified listener from the

notification list.

void removeLineStyleListener(LineStyleListener listener) Removes the specified listener from the

notification list.

void removeModifyListener(ModifyListener listener) Removes the specified listener from the

notification list.

void removeSelectionListener(SelectionListener listener) Removes the specified listener from the

notification list.

void removeVerifyKeyListener(VerifyKeyListener listener) Removes the specified listener from the

notification list.

void removeVerifyListener(VerifyListener listener) Removes the specified listener from the

notification list.

void replaceStyleRanges(int start, int length, StyleRange[]

ranges)
Replaces the style ranges from the zero-based

offset specified by start and continuing length

characters with the style ranges specified by

ranges.

void replaceTextRange(int start, int length, String text) Replaces the text from the zero-based offset

specified by start and continuing length characters

with the text specified by text.

void selectAll() Selects all the text in this StyledText.

void setBackground(Color color) Sets the background color for this StyledText.

void setCaret(Caret caret) Sets the caret for this StyledText.

void setCaretOffset(int offset) Sets the caret's zero-based offset.

void setContent(StyledTextContent content) Sets the content for this StyledText.

void setCursor(Cursor cursor) Sets the cursor for this StyledText.

void setDoubleClickEnabled(boolean enable) If enable is true, enables double-click mouse

behavior (selects an entire word) for this

StyledText. Otherwise, disables it.

void setEditable(boolean editable) If editable is true, allows the text of this StyledText to

be edited. Otherwise, disallows editing.

void setFont(Font font) Sets the font for this StyledText.

void setForeground(Color color) Sets the color to use for drawing text in this

StyledText.

void setHorizontalIndex(int offset) Sets the horizontal scroll to the specified

zero-based offset from the start of the line.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Method Description

void setHorizontalPixel(int pixel) Sets the horizontal scroll to the specified pixel

relative to the start of the line.

void setKeyBinding(int key, int action) Sets the key binding for the key specified by key

to the action specified by action.

void setLineBackground(int startLine, int lineCount, Color

color)
Sets the background color for the specified lines,

starting at the line at the zero-based index

specified by startLine and continuing for lineCount

lines.

void setOrientation(int orientation) Sets this StyledText's orientation. orientation

should be either SWT.LEFT_TO_RIGHT or

SWT.RIGHT_TO_LEFT.

void setSelection(int start) Sets the selection to the character at the

zero-based index specified by start, and scrolls

the selection into view.

void setSelection(int start, int end) Sets the selection beginning at the character at

the zero-based index specified by start and

ending at the character at the zero-based index

specified by end, and scrolls the selection into

view.

void setSelection(Point point) Sets the selection beginning at the character at

the zero-based index specified by point.x and

ending at the character at the zero-based index

specified by point.y, and scrolls the selection into

view.

void setSelectionBackground(Color color) Sets the background color for the selection.

void setSelectionForeground(Color color) Sets the text color for the selection.

void setSelectionRange(int start, int length) Sets the selection beginning at the character at

the zero-based index specified by start and

continuing length characters.

void setStyleRange(StyleRange range) Adds the style specified by range.

void setStyleRanges(StyleRange[] ranges) Replaces all style ranges for this StyledText with

the style ranges specified by ranges.

void setTabs(int tabs) Sets the number of characters to use for tabs in

this StyledText.

void setText(String text) Sets the text for this StyledText.

void setTextLimit(int limit) Sets the maximum number of characters for this

StyledText.

void setTopIndex(int index) Scrolls the text in this StyledText so that the

zero-based line specified by index displays at the

top.

void setTopPixel(int pixel) Scrolls the text in this StyledText so that the pixel

specified by pixel displays at the top.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Method Description

void setWordWrap(boolean wrap) If wrap is true, turns on wrapping for this StyledText.

Otherwise, turns off wrapping.

void showSelection() Scrolls the selection into view.

Creating a StyledText Widget

The StyledText constructor adheres to SWT's parent/style pattern:

StyledText(Composite parent, int style)

Table 11-2 lists the possible constants for style, which you can combine using the bitwise OR operator.

Table 11-2: StyledText Styles

Constant Description

SWT.BORDER Draws a border around the StyledText.

SWT.SINGLE Creates a single-line StyledText.

SWT.MULTI Creates a multiline StyledText. This is the default.

SWT.H_SCROLL Enables horizontal scrolling.

SWT.V_SCROLL Enables vertical scrolling.

SWT.WRAP Turns on word wrapping, trumping the horizontal scrolling style.

SWT.READ_ONLY Makes the StyledText read-only.

SWT.FULL_SELECTION Causes redrawing operations to redraw the full line instead of only the

invalidated portion.

For example, to create a StyledText that scrolls vertically, wraps text, and displays a border, use this code:

StyledText text = new StyledText(parent, SWT.V_SCROLL | SWT.WRAP | SWT.BORDER);

Using the Clipboard

Using the clipboard with StyledText is almost embarrassingly easy. To cut from, copy from, or paste to a SyledText, call

cut(), copy(), or paste(), respectively. For example, to cut the selected text from StyledText st1 and put it on the clipboard,

and then paste it into the current caret position of StyledText st2, use this code:

st1.cut();

st2.paste();

That's all there is to it. StyledText already supports the platform's keystrokes for cutting, copying, and pasting, so you

don't even have to call these methods to get clipboard functionality in your application. If you want to allow clipboard

operations from a menu or toolbar handler, though, call these methods.

Using Word Wrap

When the caret reaches the right margin and the user continues to type, two things can happen: the additional text can

continue on the same line, or it can wrap to the next line. Word processors usually wrap to the next line, while

programmers' text editors usually continue on the same line. Wrapping to the next line is called word wrap, and is off

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

by default in StyledText. You can turn word wrap on at construction time by passing the SWT.WRAP style bit.

You can retrieve word wrap settings at run time by calling getWordWrap(), which returns true if word wrap is on or false

if it isn't. You can change word wrap settings at run time as well, using the setWordWrap() method. You pass true to turn

on word wrap, or false to turn it off. For example, you can toggle word wrap settings like this:

styledText.setWordWrap(!styledText.getWordWrap());

Getting Statistics

Many word processors and text editors display running counts of data concerning the current text being edited. For

example, the word processor we're using to type this displays the current page number of the present document, the

total number of pages, the current column, and the current line. Additionally, we can see the number of words,

characters, paragraphs, and lines in the present document.

StyledText records a few statistics about the text it holds as well, which you can retrieve using the API. For example,

you can get the zero-based offset into the StyledText's text of the current caret position by calling getCaretOffset(). The

following code prints the caret's offset, the total number of lines of text, the total number of characters, and the current

(one-based) line:

System.out.println("Caret Offset: " + styledText.getCaretOffset());

System.out.println("Total Lines of Text: " + styledText.getLineCount());

System.out.println("Total Characters: " + styledText.getCharCount());

System.out.println("Current Line: " +

 (styledText.getLineAtOffset(styledText.getCaretOffset()) + 1));

Printing

Chapter 12 covers printing, printers, and the print dialog, but printing the contents of a StyledText requires little

understanding of printing. At its simplest, you can print a StyledText's contents like this:

styledText.print();

This prints the contents to the default printer, in the same thread as the calling program. For long documents or slow

printing subsystems, this will tie up your GUI. You can print to the default printer in a separate thread, thus maintaining

a responsive GUI, like this:

styledText.print(myPrinter).run();

Calling new Printer() returns the default printer, but you can pass any Printer object. However, you must dispose any

Printer object that you create. Chapter 12 covers how to enumerate the available printers. Finally, you can set various

options on the print job by passing a StyledTextPrintOptions object in addition to the printer. StyledTextPrintOptions adds

no new methods, but maintains all options as public data members, listed in Table 11-3.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Table 11-3: StyledTextPrintOptions Members

Member Description

String footer The footer to display on each page. The footer is formatted in three sections: left,

center, and right, separated by StyledTextPrintOptions.SEPARATOR characters.

String header The header to display on each page. It's formatted the same as the footer.

String jobName The name for the print job.

boolean

printLineBackground
If true, prints the line background color.

boolean

printTextBackground
If true, prints the text background color.

boolean

printTextFontStyle
If true, prints the text styles (bold or italic).

boolean

printTextForeground
If true, prints the text foreground color.

static String

SEPARATOR
The string used to separate the left, center, and right sections of the header and

footer.

static String

PAGE_TAG
The constant used in header and footer to indicate that the page number should

be printed.

For example, to print the name of the file on top of each page, the page number at the bottom of each page, the word

"Confidential" in the lower-right corner, and the text in the appropriate colors and styles, use code such as this:

StyledTextPrintOptions options = new StyledTextPrintOptions();

options.header = StyledTextPrintOptions.SEPARATOR + filename +

 StyledTextPrintOptions.SEPARATOR;

options.footer = StyledTextPrintOptions.SEPARATOR +

 StyledTextPrintOptions.PAGE_TAG + StyledTextPrintOptions.SEPARATOR +

 "Confidential";

options.printLineBackground = true;

options.printTextbackground = true;

options.printTextFontStyle = true;

options.printTextForeground = true;

st.print(new Printer(), options).run();

Getting and Setting Key Bindings

Programmers settle into certain key bindings, and chafe when the editor they're using doesn't support them. Whether

they use GNU Emacs, vi, Brief, or Common User Access (CUA) key bindings, developers grow comfortable with

certain keys performing certain actions. StyledText defaults to several common CUA key bindings, so you should

immediately find yourself in familiar surroundings when editing text in a StyledText widget.

StyledText can associate one key and modifier combination with one action. The ST class contains the possible actions

that keys can bind to. Table 11-4 lists the actions.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Table 11-4: Key Binding Actions from the ST Class

Constant Description

static int COLUMN_NEXT Moves the caret to the next column.

static int COLUMN_PREVIOUS Moves the caret to the previous column.

static int COPY Copies the currently selected text to the clipboard.

static int CUT Cuts the currently selected text to the clipboard.

static int DELETE_NEXT Deletes the next character.

static int DELETE_PREVIOUS Deletes the previous character.

static int DELETE_WORD_NEXT Deletes the next word.

static int

DELETE_WORD_PREVIOUS
Deletes the previous word.

static int LINE_DOWN Moves the caret down one line.

static int LINE_END Moves the caret to the end of the current line.

static int LINE_START Moves the caret to the start of the current line.

static int LINE_UP Moves the caret up one line.

static int PAGE_DOWN Moves the caret down one page.

static int PAGE_UP Moves the caret up one page.

static int PASTE Pastes the text from the clipboard to the current caret position.

static int SELECT_COLUMN_NEXT Selects the character in the next column and moves the caret to the

next column.

static int

SELECT_COLUMN_PREVIOUS
Selects the character in the previous column and moves the caret to

the previous column.

static int SELECT_LINE_DOWN Moves the caret down one line, selecting the text between the

previous caret position and the new caret position.

static int SELECT_LINE_END Moves the caret to the end of the current line, selecting the text

between the previous caret position and the new caret position.

static int SELECT_LINE_START Moves the caret to the start of the current line, selecting the text

between the previous caret position and the new caret position.

static int SELECT_LINE_UP Moves the caret up one line, selecting the text between the previous

caret position and the new caret position.

static int SELECT_PAGE_DOWN Moves the caret down one page, selecting the text between the

previous caret position and the new caret position.

static int SELECT_PAGE_UP Moves the caret up one page, selecting the text between the previous

caret position and the new caret position.

static int SELECT_TEXT_END Moves the caret to the end of the text, selecting the text between the

previous caret position and the new caret position.

static int SELECT_TEXT_START Moves the caret to the start of the text, selecting the text between the

previous caret position and the new caret position.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Constant Description

static int SELECT_WINDOW_END Moves the caret to the end of the text currently displayed in the

window, selecting the text between the previous caret position and the

new caret position.

static int

SELECT_WINDOW_START
Moves the caret to the start of the text currently displayed in the

window, selecting the text between the previous caret position and the

new caret position.

static int SELECT_WORD_NEXT Moves the caret to the next word, selecting the text between the

previous caret position and the new caret position.

static int

SELECT_WORD_PREVIOUS
Moves the caret to the previous word, selecting the text between the

previous caret position and the new caret position.

static int TEXT_END Moves the caret to the end of the text.

static int TEXT_START Moves the caret to the start of the text.

static int TOGGLE_OVERWRITE Toggles the insert/overwrite flag.

static int WINDOW_END Moves the caret to the end of the text currently displayed in the window.

static int WINDOW_START Moves the caret to the start of the text currently displayed in the

window.

static int WORD_NEXT Moves the caret to the next word.

static int WORD_PREVIOUS Moves the caret to the previous word.

To get the action a key is bound to, call getKeyBinding(), passing the key you want to get the binding for. The key you

pass can be a character or a key constant from the SWT class. You can also use the bitwise OR operator to pass

modifier keys as well (Shift, Ctrl, and so on). For example, to get the action bound to Alt+E, use this code:

int altEAction = styledText.getKeyBinding('e' | SWT.ALT);

To get the action for Shift+Left, use this code:

int shiftLeftAction = styledText.getKeyBinding(SWT.ARROW_LEFT | SWT.SHIFT);

Passing a modifier constant isn't necessary, as this code shows:

int zAction = styledText.getKeyBinding('z');

To set a key binding, call setKeyBinding() and pass both the key and the action. The possible values for the key are the

same as for getKeyBinding(): characters or key constants from SWT, optionally bitwise ORed with modifier key

constants. The possible values for the action are the constants from the ST class. For example, to bind the

insert/overwrite toggle action to Alt+I, use this code:

styledText.setKeyBinding('i' | SWT.ALT, ST.TOGGLE_OVERWRITE);

To clear any key bindings, pass SWT.NULL for the action. For example, to remove the preceding insert/overwrite

toggle, use this code:

styledText.setKeyBinding('i' | SWT.ALT, SWT.NULL);

Changing Miscellaneous Settings

You can get and set the number of columns used to display tabs using getTabs() and setTabs(), respectively. StyledText

defaults to a tab width of four columns. For example, you can set the tab width to two, like this:

styledText.setTabs(2);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

You can make a StyledText read-only, useful for viewing files without allowing editing, or preventing users from making

changes to files that they don't have permission to save. To make the StyledText read only, you can pass the

SWT.READ_ONLY style to the constructor, or you can call setEditable(false). Calling setEditable(true) turns on editing

capabilities.

You can limit the number of characters that the StyledText accepts by calling setTextLimit(), passing the maximum

number of characters to accept. For example, to limit a StyledText to 100 characters, use this code:

styledText.setTextLimit(100);

Handling Events

When users type, delete from, cut from, or paste to a StyledText, four events fire: key verification, verification,

modification, and extended modification. Before the StyledText allows the changes to itself, it first processes the key

verification and the verification. These handlers, VerifyKeyListeners and VerifyListeners, can allow, veto, or alter the

requested text change. After the change has happened, ModifyListeners and ExtendedModifyListeners react to the

changes.

Filtering Change

Sometimes reacting to a change that has already occurred doesn't suffice for your application needs. In some

situations, you want to step in before the change occurs and either veto it, modify the change, or let it pass through.

StyledText notifies two sets of handlers before allowing changes to its contents: VerifyKeyListeners and VerifyListeners.

When the user presses a key, all registered VerifyKeyListeners are notified. You add a VerifyKeyListener by calling

addVerifyKeyListener(). It has a single method:

public void verifyKey(VerifyEvent event)

Note that the passed event isn't VerifyKeyEvent, which doesn't exist, but the recycled VerifyEvent that VerifyListeners

also use. We examine VerifyEvent's fields when we discuss VerifyListeners. No VerifyEvent fields are filled when

VerifyKeyListeners are called.

Caution No VerifyEvent-specific fields contain appropriate data in VerifyKeyListeners.

VerifyEvent derives from KeyEvent, which contains pertinent fields for VerifyKeyListeners. Table 11-5 lists the fields.

Table 11-5: KeyEvent Fields

Field Description

char

character
The character that the typed key represents. Changing this value has no effect on event

processing.

boolean

doit
A flag that specifies whether this event should be processed. Setting doit to false cancels

event processing for this event.

int keyCode The code of the typed key, as defined in the SWT class. Changing this value has no effect on

event processing.

int

stateMask
The state of the keyboard modifier keys when this event was generated. Possible values are

combinations of SWT.ALT, SWT.COMMAND, SWT.CONTROL, SWT.CTRL, SWT.MOD1,

SWT.MOD2, SWT.MOD3, SWT.MOD4, and SWT.SHIFT.

KeyEvent, in turn, derives from TypedEvent, but you'll likely not reference any of TypedEvent's fields in your

VerifyKeyEvent handlers.

To illustrate VerifyKeyListeners, suppose you're developing a hex editor. You want to allow users to type 0–9, a–f, and

A–F only. You also want to allow basic editing keys (arrows, Backspace, Delete, and Enter). Your handler might look

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

like this:

st.addVerifyKeyListener(new VerifyKeyListener() {

 public void verifyKey(VerifyEvent event) {

 // Assume this is an invalid key

 event.doit = false;

 // Allow 0 - 9

 if (Character.isDigit(event.character))

 event.doit = true;

 // Allow a - f

 else if (event.character >= 'a' && event.character <= 'f')

 event.doit = true;

 // Allow A - F

 else if (event.character >= 'A' && event.character <= 'F')

 event.doit = true;

 // Allow backspace and delete

 else if (event.character == '\u0008' || event.character == '\u007F')

 event.doit = true;

 // Allow arrow keys

 else if (event.keyCode == SWT.ARROW_UP || event.keyCode == SWT.ARROW_DOWN

 || event.keyCode == SWT.ARROW_LEFT || event.keyCode == SWT.ARROW_RIGHT)

 event.doit = true;

 // Allow return

 else if (event.character == '\r')

 event.doit = true;

 }

});

After all VerifyKeyListeners are notified, any VerifyListeners are then notified. Again, this happens before the change is

effected, so you still have veto power. VerifyListener defines one method that you must implement:

public void verifyText(VerifyEvent e)

In contrast to VerifyEvents passed to VerifyKeyListeners, the VerifyEvent objects passed to VerifyListeners contain

relevant data. Table 11-6 lists VerifyEvent's fields.

Table 11-6: VerifyEvent Fields

Field Description

int start The zero-based offset of the start of the range of the text to be changed. Changing this value

has no effect on event processing.

int end The zero-based offset of the end of the range of the text to be changed. Changing this value

has no effect on event processing.

String

text
The text that will be inserted. Changing this value changes the text to be inserted.

Each time users type a key, SWT fires a VerifyEvent and triggers all VerifyListeners. The fields in VerifyEvent contain

data related to that key press. For example, if the current caret position is at offset 714 and the user types B,

VerifyEvent's data will be as follows:

event.start = 714

event.end = 714

event.text = "B"

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

When users paste text of more than one character into a StyledText, text contains more than one character—it contains

the full text to paste. For example, if the clipboard contains the text "home runs," and the current caret position is at

offset 755, if the user elects to paste from the clipboard then VerifyEvent 's data will be as follows:

event.start = 755

event.end = 755

event.text = "home runs"

When text is selected in the StyledText and the user either types a character or pastes text from the clipboard, start and

end don't equal. If the user has three characters selected starting at offset 60, and then types R, VerifyEvent's data will

contain this code:

event.start = 60

event.end = 63

event.text = "R"

Deleting text fires a VerifyEvent filled with the proper data as well. Remember that start refers to the starting offset in the

affected range, not the starting position of the caret. This means that start is always less than or equal to end, even if

the caret moves backwards (as in the case of Backspace). For example, if the caret is at offset 70, and the user

presses the Backspace key, VerifyEvent will contain this code:

event.start = 69

event.end = 70

event.text = ""

You can modify the data in VerifyEvent to change the effect of user's keystrokes. For example, you might have a

vendetta against cut-and-paste programmers, and decide to insert belittling remarks anytime a user pastes text. When

text contains more than one character, you go for the jugular like this:

styledText.addVerifyListener(new VerifyListener() {

 public void verifyText(VerifyEvent event) {

 if (event.text.length() > 1)

 {

 event.text = "Stop pasting, you buffoon!";

 }

 }

});

You can also veto the event by setting its doit member to false. For example, if you were penning a lipogram and

decided to stretch your linguistic abilities and exclude the letter "E," you might put in a handler that prevents the letter

"E," uppercase or lowercase, from being either typed or pasted:

styledText.addVerifyListener(new VerifyListener() {

 public void verifyText(VerifyEvent event) {

 // If the text contains E or e, throw it all away

 if (event.text.indexOf('e') > -1 ||

 event.text.indexOf('E') > -1) {

 event.text = "";

 }

 }

});

Reacting to Change

As a text editor, StyledText encourages editing. Users type, delete, cut, paste, and perpetually alter the contents of a

StyledText. When they do, listeners are notified so you can react to the changes. All ModifyListeners are notified first,

and then all ExtendedModifyListeners. These notifications occur after the text has already changed inside the StyledText.

You call addModifyListener() to register a ModifyListener, which must implement the modifyText() method, like this:

public void modifyText(ModifyEvent event) {}

ModifyEvent contains no information about the specific change; it just tells you that something happened. For example,

suppose that your application displays a running count of the number of characters in the StyledText. Your handler

might look like this:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

styledText.addModifyListener(new ModifyListener() {

 public void modifyText(ModifyEvent event) {

 charCountLabel.setText("Character Count: " + styledText.getCharCount());

 }

});

Call addExtendedModifyListener() to add an ExtendedModifyListener. Your ExtendedModifyListener implementation also

must implement modifyText(), like this:

public void modifyText(ExtendedModifyEvent event) {}

In contrast to ModifyEvent, ExtendedModifyEvent contains change-specific information. In other words, you're not merely

notified that a change has occurred. Instead, you're told what the change was. Table 11-7 lists ExtendedModifyEvent's

fields.

Table 11-7: ExtendedModifyEvent Fields

Field Description

int start The zero-based offset, relative to the start of the StyledText, of the first position of the

changed text.

int length The length of the changed text, in characters.

String

replacedText
The text that was replaced by this change.

If you're using StyleRanges to color and style sections of the text, you might use an ExtendedModifyListener to color and

style the new text appropriately. The fields start and length tell you where the new text is, and you can query the

surrounding text to determine how to color or style it.

Another use for an ExtendedModifyListener is to capture the change information for undo purposes. For example, you

might allow users to undo the latest change they make in a StyledText. In your ExtendedModifyListener you store the

change information in member variables so you can reapply it if the user chooses to undo. The code for the listener

might look something like this:

styledText.addExtendedModifyListener(new ExtendedModifyListener() {

 public void modifyText(ExtendedModifyEvent event) {

 start = event.start;

 length = event.length;

 replacedText = event.replacedText;

 }

});

Your undo method looks something like this:

public void undo()

{

 styledText.replaceTextRange(start, length, replacedText);

}

You call your undo method from a menu selection or keystroke.

Using StyleRanges

Older programmers remember the magical feeling when they saw syntax coloring for the first time. They fired up some

new editor, started coding, and suddenly keywords changed to one color and font style, comments to another, and

punctuation to still another. It seemed like wizardry. Code was instantly easier to understand, a quick glance at the

code told you things that before required scrutiny, and syntax errors such as unclosed strings or comments glared

tellingly, affording quick fixes. Syntax coloring represents perhaps the biggest advance in editors since the jump from

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

line editors to screen editors.

Of course, Luddites scoffed at the colors and styles, calling the concept a frivolous toy and saying it made their source

files look like a jellybean jar. They steadfastly refused to adopt syntax coloring, clinging fiercely to monochromatic

editing. They've since all become managers.

StyledText incorporates syntax coloring and styling, though it's a bit of work to implement. It uses instances of the

StyleRange class to track the colors and styles. Each StyleRange controls a portion of the StyledText's text, storing the

starting offset of the controlled portion, the length (in characters) of the portion, and the foreground color, background

color, and font style to use. StyleRange stores this data in public fields, listed in Table 11-8.

Table 11-8: StyleRange Fields

Field Description

Color background The background color, or null to for the default background color.

int fontStyle The font style (SWT.NORMAL or SWT.BOLD).

Color foreground The foreground color, or null for the default foreground color.

int length The length, in number of characters.

int start The starting offset.

You create a StyleRange by calling one of its constructors, listed in Table 11-9. The following code creates two identical

StyleRange objects:

// Use the empty constructor and set the fields

StyleRange sr1 = new StyleRange();

sr1.start = 7;

sr1.length = 14;

sr1.foreground = display.getSystemColor(SWT.COLOR_GREEN);

sr1.background = display.getSystemColor(SWT.COLOR_WHITE);

sr1.fontStyle = SWT.BOLD;

// Use the constructor that accepts the fields

StyleRange sr2 = new StyleRange(7, 14, display.getSystemColor(SWT.COLOR_GREEN),

 display.getSystemColor(SWT.COLOR_WHITE), SWT.BOLD);

Table 11-9: StyleRange Constructors

Constructor Description

StyleRange() Creates an empty StyleRange.

StyleRange(int start, int length, Color foreground,

Color background)
Creates a StyleRange with the specified start, length,

foreground color, and background color.

StyleRange(int start, int length, Color foreground,

Color background, int fontStyle)
Creates a StyleRange with the specified start, length,

foreground color, background color, and font style.

StyleRange offers a few methods, listed in Table 11-10. One useful method, similarTo(), compares the display data for

two StyleRange objects for equality: the foreground color, the background color, and the font style. It ignores which

portion of the text the StyleRanges correspond to (their start and length fields).

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Table 11-10: StyleRange Methods

Method Description

Object clone() Creates a new StyleRange with the same field values as this StyleRange.

boolean equals(Object

object)
Returns true if this StyleRange equals the one specified by object. Otherwise,

returns false.

boolean isUnstyled() Returns true if this StyleRange doesn't contain font style information. Otherwise,

returns false.

boolean

similarTo(StyleRange

range)

Returns true if this StyleRange is similar to the one specified by range; that is, if

they have the same foreground color, background color, and font style.

Otherwise, returns false.

String toString() Returns a string representation of this StyleRange.

Because a StyleRange specifies not only how to display certain text, but also which text the display values correspond

to, you can't reuse StyleRange instances. Each range of text that should have display characteristics different from the

defaults must have its own StyleRange instance.

As listed in Table 11-1, StyledText offers the following methods to set StyleRanges:

void setStyleRange(StyleRange range)

void setStyleRanges(StyleRange[] ranges)

void replaceStyleRanges(int start, int length, StyleRange[] ranges)

You retrieve StyleRange data using these StyledText methods, also listed in Table 11-1:

StyleRange getStyleRangeAtOffset(int offset)

StyleRange[] getStyleRanges()

StyleRange[] getStyleRanges(int start, int length)

However, you'll find that using the API to set StyleRanges (and thereby to incorporate dynamic syntax coloring and

highlighting) is stodgy, limiting, and more prone to coding errors. You'll likely prefer to use LineStyleListeners, which this

chapter discusses. Nevertheless, the StyledText API regarding StyleRanges follows.

Set a single StyleRange into a StyledText like this:

styledText.setStyleRange(myStyleRange);

This sets the properties for the text in the range specified by myStyleRange, trumping any previous StyleRange whose

range overlaps the specified range. It doesn't affect text outside the specified range. For example, the following code

prints "Go" in orange and "Gators" in blue (the space remains orange, but you can't see it anyway):

// Set the text

styledText.setText("Go Gators");

// Turn all of the text orange, with the default background color

styledText.setStyleRange(new StyleRange(0, 9, orange, null));

// Turn "Gators" blue

styledText.setStyleRange(new StyleRange(3, 6, blue, null));

Figure 11-1 shows this code in action. A few interesting things to note: the colors used must be valid (not disposed) for

the life of the StyleRanges. Also, the offsets and lengths of the StyleRanges must be valid. That is, they must be within

the range of existing text—when created, or when an exception is thrown. However, as text is modified, added, or

deleted, the offsets and lengths need not remain valid. Any added text, even within the "Go Gators," doesn't pick up

the colors, nor does it disrupt the existing colors. Figure 11-2 shows this same program with the text "Florida" inserted.

"Florida" displays in black, the default color.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Figure 11-1: Two StyleRanges

Figure 11-2: Two StyleRanges with text inserted

This example uses the setStyleRange() method to set each StyleRange individually. It could have aggregated the

StyleRanges into an array, and called setStyleRanges(), which replaces all the StyleRanges in the StyledText with the new

ones. Passing the StyleRanges at once reduces the amount of flashing as the StyledText repaints.

However, the results are undefined if the ranges in the array overlap, as they do in this example. To rectify this, change

the range of the "Go" style to include only the desired characters. The code looks like this:

// Create the array to hold the StyleRanges

StyleRange[] ranges = new StyleRange[2];

// Create the first StyleRange, making sure not to overlap. Include the space.

ranges[0] = new StyleRange(0, 3, orange, null);

// Create the second StyleRange

ranges[1] = new StyleRange(3, 6, blue, null);

// Replace all the StyleRanges for the StyledText

styledText.setStyleRanges(ranges);

The program renders the same output, and reacts the same to text additions and deletions. It's slightly more efficient

as well, because it repaints the StyledText only once, instead of repainting twice. However, this code directs the entire

StyledText to repaint, instead of just the affected area. In this case the affected area is the entire text, so the point is

moot. However, other cases might reflect an affected area that represents only a portion of the entire text, so

repainting the entire StyledText would be inefficient. To avoid this inefficiency, use the replaceStyleRanges() method,

which specifies which portion of the StyledText to repaint. Modifying the example code to use replaceStyleRanges()

results in this:

// Create the array to hold the StyleRanges

StyleRange[] ranges = new StyleRange[2];

// Create the first StyleRange, making sure not to overlap. Include the space.

ranges[0] = new StyleRange(0, 3, orange, null);

// Create the second StyleRange

ranges[1] = new StyleRange(3, 6, blue, null);

// Replace only the StyleRanges in the affected area

styledText.replaceStyleRanges(0, 9, ranges);

Listing 11-1 contains the complete source for the program, including all three StyleRange-setting methods. Uncomment

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

the different sections to prove that the results are the same, however you set the ranges.

Listing 11-1: StyleRangeTest.java

package examples.ch11;

import org.eclipse.swt.SWT;

import org.eclipse.swt.custom.*;

import org.eclipse.swt.graphics.Color;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.widgets.*;

/**

 * This class demonstrates StyleRanges

 */

public class StyleRangeTest {

 private Color orange;

 private Color blue;

 /**

 * Runs the application

 */

 public void run() {

 Display display = new Display();

 Shell shell = new Shell(display);

 // Create colors for style ranges

 orange = new Color(display, 255, 127, 0);

 blue = display.getSystemColor(SWT.COLOR_BLUE);

 createContents(shell);

 shell.open();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

 // We created orange, but not blue

 orange.dispose();

 display.dispose();

 }

 /**

 * Creates the main window contents

 *

 * @param shell the main window

 */

 private void createContents(Shell shell) {

 shell.setLayout(new FillLayout());

 // Create the StyledText

 StyledText styledText = new StyledText(shell, SWT.BORDER);

 // Set the text

 styledText.setText("Go Gators");

 /*

 * The multiple setStyleRange() method // Turn all of the text orange, with

 * the default background color styledText.setStyleRange(new StyleRange(0, 9,

 * orange, null));

 * // Turn "Gators" blue styledText.setStyleRange(new StyleRange(3, 6, blue,

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 * null));

 */

 /*

 * The setStyleRanges() method // Create the array to hold the StyleRanges

 * StyleRange[] ranges = new StyleRange[2];

 * // Create the first StyleRange, making sure not to overlap. Include the

 * space. ranges[0] = new StyleRange(0, 3, orange, null);

 * // Create the second StyleRange ranges[1] = new StyleRange(3, 6, blue,

 * null);

 * // Replace all the StyleRanges for the StyledText

 * styledText.setStyleRanges(ranges);

 */

 /* The replaceStyleRanges() method */

 // Create the array to hold the StyleRanges

 StyleRange[] ranges = new StyleRange[2];

 // Create the first StyleRange, making sure not to overlap. Include the

 // space.

 ranges[0] = new StyleRange(0, 3, orange, null);

 // Create the second StyleRange

 ranges[1] = new StyleRange(3, 6, blue, null);

 // Replace only the StyleRanges in the affected area

 styledText.replaceStyleRanges(0, 9, ranges);

 }

 /**

 * The application entry point

 *

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 new StyleRangeTest().run();

 }

}

This code sets the StyleRanges statically. To use the API to implement dynamic syntax coloring, add an event handler

to detect the change, analyze the affected text, and set any appropriate StyleRange. The SyntaxTest program detects

any punctuation (whether typed or pasted) and turns it red and bold. To detect the punctuation, it uses an

ExtendedModifyListener that looks like this:

// Add the syntax coloring handler

styledText.addExtendedModifyListener(new ExtendedModifyListener() {

 public void modifyText(ExtendedModifyEvent event) {

 // Determine the ending offset

 int end = event.start + event.length - 1;

 // If they typed something, get it

 if (event.start <= end)

 {

 // Get the text

 String text = styledText.getText(event.start, end);

 // Create a collection to hold the StyleRanges

 java.util.List ranges = new java.util.ArrayList();

 // Turn any punctuation red

 for (int i = 0, n = text.length(); i < n; i++)

 {

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 if (PUNCTUATION.indexOf(text.charAt(i)) > -1)

 {

 ranges.add(new StyleRange(event.start + i, 1, red, null, SWT.BOLD));

 }

 }

 // If we have any ranges to set, set them

 if (!ranges.isEmpty())

 {

 styledText.replaceStyleRanges(event.start, event.length,

 (StyleRange[]) ranges.toArray(new StyleRange[0]));

 }

 }

 }

});

This handler first determines if the modification was an addition or a deletion. It ignores deletions. For additions, it gets

the affected text from the StyledText, and then examines it, character by character, for punctuation. For any

punctuation characters, it creates a StyleRange. After examining all the affected text, it calls replaceStyleRanges() to set

all the created StyleRange objects into the StyledText. Figure 11-3 shows the SyntaxTest program with its code pasted

into itself. Listing 11-2 shows the entire source code for the program.

Figure 11-3: Dynamic syntax coloring and styling

Listing 11-2: SyntaxTest.java

package examples.ch11;

import org.eclipse.swt.SWT;

import org.eclipse.swt.custom.*;

import org.eclipse.swt.graphics.Color;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.widgets.*;

/**

 * This class implements syntax coloring using the StyledText API

 */

public class SyntaxTest {

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig481%5F01%5F0%2Ejpg

 // Punctuation

 private static final String PUNCTUATION = "(){};!&|.+-*/";

 // Color for the StyleRanges

 private Color red;

 /**

 * Runs the application

 */

 public void run() {

 Display display = new Display();

 Shell shell = new Shell(display);

 // Get color for style ranges

 red = display.getSystemColor(SWT.COLOR_RED);

 createContents(shell);

 shell.open();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

 // No need to dispose red

 display.dispose();

 }

 /**

 * Creates the main window contents

 *

 * @param shell the main window

 */

 private void createContents(Shell shell) {

 shell.setLayout(new FillLayout());

 // Create the StyledText

 final StyledText styledText = new StyledText(shell, SWT.BORDER);

 // Add the syntax coloring handler

 styledText.addExtendedModifyListener(new ExtendedModifyListener() {

 public void modifyText(ExtendedModifyEvent event) {

 // Determine the ending offset

 int end = event.start + event.length - 1;

 // If they typed something, get it

 if (event.start <= end) {

 // Get the text

 String text = styledText.getText(event.start, end);

 // Create a collection to hold the StyleRanges

 java.util.List ranges = new java.util.ArrayList();

 // Turn any punctuation red

 for (int i = 0, n = text.length(); i < n; i++) {

 if (PUNCTUATION.indexOf(text.charAt(i)) > -1) {

 ranges.add(new StyleRange(event.start + i, 1, red, null,

 SWT.BOLD));

 }

 }

 // If we have any ranges to set, set them

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 if (!ranges.isEmpty()) {

 styledText.replaceStyleRanges(event.start, event.length,

 (StyleRange[]) ranges.toArray(new StyleRange[0]));

 }

 }

 }

 });

 }

 /**

 * The application entry point

 *

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 new SyntaxTest().run();

 }

}

Dynamically coloring and styling the punctuation requires a fair amount of work, but it represents the most trivial case:

examining single characters. Dynamically coloring and styling whole words becomes more difficult. You must analyze

characters surrounding the change to determine if any words were created or deleted, and set or remove StyleRanges

accordingly. The pain quickly outweighs the return it brings. The next section bypasses this pain by shunning the API

and using a LineStyleListener instead.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Using a LineStyleListener

In contrast to the StyledText API, which requires you to treat the text as a whole and drive the coloring and styling

process, LineStyleListeners examine single lines at a time. Further, they don't worry about when and which lines require

coloring and styling—the StyledText invokes the LineStyleListener as necessary.

To add a LineStyleListener to a StyledText, use the addLineStyleListener() method. LineStyleListener defines a single

method:

void lineGetStyle(LineStyleEvent event)

Note that, despite the "Get" in the method name, the method returns void. Note, too, that though the method name

implies a single style, you can set multiple styles into the line. This method is called when the StyledText is about to

draw a line, and needs style information. You return the style information inside the LineStyleEvent.

LineStyleEvent contains the fields listed in Table 11-11. Think of the first two, lineOffset and lineText, as input

parameters, and styles as an output parameter. You create StyleRange objects based on the offset and text passed in

lineOffset and lineText, respectively, and return them in styles.

Table 11-11: LineStyleEvent Fields

Field Description

int lineOffset The zero-based offset, relative to the whole text, of the line the StyledText needs style

information for. Note: this is the character offset, not the line number.

String lineText The text of the line the StyledText needs style information for.

StyleRange []

styles
The array that holds the StyleRange objects you create for the line.

The StyleRanges you create include an offset, as described earlier, that's relative to the start of the entire text, not the

start of the line. You can calculate this by adding the offset relative to the start of the line to lineOffset, like this:

int styleRangeOffset = offsetIntoLine + event.lineOffset;

Creating a LineStyleListener

To create a LineStyleListener that sets all "e" characters to red, first create the StyledText that uses the LineStyleListener:

StyledText styledText = new StyledText(shell, SWT.BORDER | SWT.H_SCROLL

 | SWT.V_SCROLL);

Next, add the LineStyleListener to it. Its code scans through the text passed to it, searching for "e" characters. When it

finds an "e," it creates a StyleRange for it. An optimization it creates is that, upon finding an "e," it searches for any

successive "e" characters and creates one StyleRange for each run of successive "e" characters. The code looks like

this:

styledText.addLineStyleListener(new LineStyleListener() {

 public void lineGetStyle(LineStyleEvent event) {

 // Create a collection to hold the StyleRanges

 java.util.List styles = new java.util.ArrayList();

 // Iterate through the text

 for (int i = 0, n = event.lineText.length(); i < n; i++)

 {

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 // Check for 'e'

 if (event.lineText.charAt(i) == 'e')

 {

 // Found an 'e'; combine all subsequent e's into the same StyleRange

 int start = i;

 for (; i < n && event.lineText.charAt(i) == 'e'; i++);

 // Create the StyleRange and add it to the collection

 styles.add(new StyleRange(event.lineOffset + start,

 i - start, red, null));

 }

 }

 // Set the styles for the line

 event.styles = (StyleRange[]) styles.toArray(new StyleRange[0]);

 }

});

The most complex part of this code is the search for successive "e" characters, and the subsequent calculations for

the length of the created StyleRange. Deleting this optimization and creating new StyleRange objects for each "e" results

in a tighter loop:

// Iterate through the text

for (int i = 0, n = event.lineText.length(); i < n; i++)

{

 // Check for 'e'

 if (event.lineText.charAt(i) == 'e')

 {

 // Create the StyleRange and add it to the collection

 styles.add(new StyleRange(event.lineOffset + i, 1, red, null));

 }

}

The RedEListener program (see Listing 11-3) uses this listener to make all "e" characters red. Figure 11-4 shows the

program's window.

Figure 11-4: Using a LineStyleListener to turn all the "e" characters red

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig486%5F01%5F0%2Ejpg

Listing 11-3: RedEListener.java

package examples.ch11;

import org.eclipse.swt.SWT;

import org.eclipse.swt.custom.*;

import org.eclipse.swt.graphics.Color;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.widgets.*;

/**

 * This class turns 'e' characters red using a LineStyleListener

 */

public class RedEListener {

 // Color for the StyleRanges

 private Color red;

 /**

 * Runs the application

 */

 public void run() {

 Display display = new Display();

 Shell shell = new Shell(display);

 // Get color for style ranges

 red = display.getSystemColor(SWT.COLOR_RED);

 createContents(shell);

 shell.open();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

 display.dispose();

 }

 /**

 * Creates the main window contents

 *

 * @param shell the main window

 */

 private void createContents(Shell shell) {

 shell.setLayout(new FillLayout());

 // Create the StyledText

 final StyledText styledText = new StyledText(shell, SWT.BORDER | SWT.H_SCROLL

 | SWT.V_SCROLL);

 // Add the syntax coloring handler

 styledText.addLineStyleListener(new LineStyleListener() {

 public void lineGetStyle(LineStyleEvent event) {

 // Create a collection to hold the StyleRanges

 java.util.List styles = new java.util.ArrayList();

 // Iterate through the text

 for (int i = 0, n = event.lineText.length(); i < n; i++) {

 // Check for 'e'

 if (event.lineText.charAt(i) == 'e') {

 // Found an 'e'; combine all subsequent e's into the same StyleRange

 int start = i;

 for (; i < n && event.lineText.charAt(i) == 'e'; i++);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 // Create the StyleRange and add it to the collection

 styles.add(new StyleRange(event.lineOffset + start, i - start, red,

 null));

 }

 }

 // Set the styles for the line

 event.styles = (StyleRange[]) styles.toArray(new StyleRange[0]);

 }

 });

 }

 /**

 * The application entry point

 *

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 new RedEListener().run();

 }

}

Not much work at all, though for admittedly not many results. Red "e" text editors have never garnered much of a

following. However, this code provides a solid foundation for doing more with dynamic syntax coloring and styling.

Crossing Lines

LineStyleListener receives only one line at a time, which is usually sufficient for applying StyleRanges. However, many

languages, including Java, support comments that span more than one line. Because LineStyleListener doesn't support

parsing multiple lines or applying styles across lines, you must determine whether a line is inside or outside a

comment yourself. In addition, you might need to manage redrawing, because you might make a line a comment that

the StyledText wasn't planning to redraw.

StyledText offers three methods for redrawing its contents. The easiest to use, void redraw(), redraws the entire

contents of the StyledText. It's also the most inefficient, because it redraws text that might not need redrawing. To

restrict what's redrawn, use one of the other two redrawing methods:

void redraw(int x, int y, int width, int height, boolean all)

void redrawRange(int start, int length, boolean clearBackground)

See Table 11-1 for more information on these methods.

The MultiLineComment program displays a StyledText that supports multiline comments, beginning with /* and ending

with */. It uses the MultiLineCommentListener class to do the following:

Recalculate the comment offsets

Provide the StyleRange information

MultiLineComment, shown in Listing 11-4, registers an instance of MultiLineCommentListener (see Listing 11-5) as its

LineStyleListener, like this:

final MultiLineCommentListener lineStyleListener =

 new MultiLineCommentListener();

styledText.addLineStyleListener(lineStyleListener);

Listing 11-4: MultiLineComment.java

package examples.ch11;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

import org.eclipse.swt.*;

import org.eclipse.swt.custom.*;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.widgets.*;

/**

 * This program demonstrates multiline comments. It uses MultiLineCommentListener

 * to do the syntax coloring

 */

public class MultiLineComment {

 /**

 * Runs the application

 */

 public void run() {

 Display display = new Display();

 Shell shell = new Shell(display);

 shell.setText("Multiline Comments");

 createContents(shell);

 shell.open();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

 display.dispose();

 }

 /**

 * Creates the main window contents

 *

 * @param shell the main window

 */

 private void createContents(Shell shell) {

 shell.setLayout(new FillLayout());

 final StyledText styledText = new StyledText(shell, SWT.BORDER | SWT.H_SCROLL

 | SWT.V_SCROLL);

 // Add the line style listener

 final MultiLineCommentListener lineStyleListener =

 new MultiLineCommentListener();

 styledText.addLineStyleListener(lineStyleListener);

 // Add the modification listener

 styledText.addExtendedModifyListener(new ExtendedModifyListener() {

 public void modifyText(ExtendedModifyEvent event) {

 // Recalculate the comments

 lineStyleListener.refreshMultilineComments(styledText.getText());

 // Redraw the text

 styledText.redraw();

 }

 });

 }

 /**

 * The application entry point

 *

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 new MultiLineComment().run();

 }

}

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Listing 11-5: MultiLineCommentListener.java

package examples.ch11;

import java.util.*;

import org.eclipse.swt.SWT;

import org.eclipse.swt.custom.*;

import org.eclipse.swt.graphics.Color;

import org.eclipse.swt.widgets.Display;

/**

 * This class supports multiline comments. It turns comments green.

 */

public class MultiLineCommentListener implements LineStyleListener {

 // Markers for multiline comments

 private static final String COMMENT_START = "/*";

 private static final String COMMENT_END = "*/";

 // Color for comments

 private static final Color COMMENT_COLOR = Display.getCurrent().getSystemColor(

 SWT.COLOR_DARK_GREEN);

 // Offsets for all multiline comments

 List commentOffsets;

 /**

 * MultilineCommentListener constructor

 */

 public MultiLineCommentListener() {

 commentOffsets = new LinkedList();

 }

 /**

 * Refreshes the offsets for all multiline comments in the parent StyledText.

 * The parent StyledText should call this whenever its text is modified. Note

 * that this code doesn't ignore comment markers inside strings.

 *

 * @param text the text from the StyledText

 */

 public void refreshMultilineComments(String text) {

 // Clear any stored offsets

 commentOffsets.clear();

 // Go through all the instances of COMMENT_START

 for (int pos = text.indexOf(COMMENT_START); pos > -1; pos = text.indexOf(

 COMMENT_START, pos)) {

 // offsets[0] holds the COMMENT_START offset

 // and COMMENT_END holds the ending offset

 int[] offsets = new int[2];

 offsets[0] = pos;

 // Find the corresponding end comment.

 pos = text.indexOf(COMMENT_END, pos);

 // If no corresponding end comment, use the end of the text

 offsets[1] = pos == -1 ? text.length() - 1 :

 pos + COMMENT_END.length() - 1;

 pos = offsets[1];

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 // Add the offsets to the collection

 commentOffsets.add(offsets);

 }

 }

 /**

 * Called by StyledText to get the styles for a line

 *

 * @param event the event

 */

 public void lineGetStyle(LineStyleEvent event) {

 // Create a collection to hold the StyleRanges

 List styles = new ArrayList();

 // Store the length for convenience

 int length = event.lineText.length();

 for (int i = 0, n = commentOffsets.size(); i < n; i++) {

 int[] offsets = (int[]) commentOffsets.get(i);

 // If starting offset is past current line--quit

 if (offsets[0] > event.lineOffset + length) break;

 // Check if we're inside a multiline comment

 if (offsets[0] <= event.lineOffset + length

 && offsets[1] >= event.lineOffset) {

 // Calculate starting offset for StyleRange

 int start = Math.max(offsets[0], event.lineOffset);

 // Calculate length for style range

 int len = Math.min(offsets[1], event.lineOffset + length) - start + 1;

 // Add the style range

 styles.add(new StyleRange(start, len, COMMENT_COLOR, null));

 }

 }

 // Copy all the ranges into the event

 event.styles = (StyleRange[]) styles.toArray(new StyleRange[0]);

 }

}

It also registers an ExtendedModifyListener that uses the created instance of MultiLineCommentListener to recalculate the

comment offsets. It then redraws all the text. The code looks like this:

styledText.addExtendedModifyListener(new ExtendedModifyListener() {

 public void modifyText(ExtendedModifyEvent event) {

 // Recalculate the comments

 lineStyleListener.refreshMultilineComments(styledText.getText());

 // Redraw the text

 styledText.redraw();

 }

});

MultiLineCommentListener provides the lineGetStyle() method, which iterates through the collection of comments to

determine if the current line is part of a comment. The offsets for each comment are stored in a two-element array:

offsets[0] stores the starting offset and offsets[1] stores the ending offset. To determine whether any part of the current

line falls within the comment, the code tests that

the starting offset is before the end of the current line, and

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

the ending offset is after the start of the current line.

The code for the test looks like this:

if (offsets[0] <= event.lineOffset + length && offsets[1] >= event.lineOffset)

If the code determines that the current line contains comments, or is part of a larger comment, it creates the

appropriate StyleRanges and adds them to the collection.

Figure 11-5 shows the MultiLineComment program displaying part of its code. Figure 11-6 shows the same display, but

with a comment added.

Figure 11-5: The MultiLineComment program

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig491%5F01%5F0%2Ejpg

Figure 11-6: The MultiLineComment program with a comment added

Understanding the Repercussions

When you use a LineStyleListener , you shouldn't use the following API calls:

getStyleRangeAtOffset(int offset)

StyleRange[] getStyleRanges()

void replaceStyleRanges(int start, int length, StyleRange[] ranges)

void setStyleRange(StyleRange range)

void setStyleRanges(StyleRange[] ranges)

Mixing these API calls with a LineStyleListener is unsupported.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig492%5F01%5F0%2Ejpg

Using a LineBackgroundListener

Although you can set background colors using StyleRanges, you can also use StyledText.setLineBackground(), detailed

in Table 11-1. For example, the following code turns the background blue for the first six lines of the StyledText:

styledText.setLineBackground(0, 6, blue);

Just as you can use either the API or a listener to set StyleRanges, you can use either the API or a listener to set

background colors. The listener you use for background colors, called LineBackgroundListener, defines a single method:

void lineGetBackground(LineBackgroundEvent event)

Background colors set via setLineBackground() or a LineBackgroundListener, in contrast to those in StyleRanges, color the

line for the width of the StyledText. Background colors in StyleRanges color the line for the width of the text only.

If you use a LineBackgroundListener, you shouldn't use getLineBackground() or setLineBackground(). Mixing these API

calls with a listener is unsupported.

Understanding LineBackgroundEvent

As with LineStyleListener's lineGetStyle(), lineGetBackground() returns its data inside the event. LineBackgroundEvent has

two input fields and one output field, listed in Table 11-12.

Table 11-12: LineBackgroundEvent Fields

Field Description

int lineOffset The zero-based offset, relative to the whole text, of the line the StyledText needs

background color information for. Note: this is the character offset, not the line

number.

String lineText The text of the line the StyledText needs background color information for.

Color

lineBackground
The field that holds the color you set. The StyledText uses this field to set the

background color for the line.

Creating a LineBackgroundListener

To create a LineBackgroundListener, create a new class that defines the lineGetBackground() method, and call

addLineBackgroundListener() to add it to your StyledText. For example, the following code adds a listener that turns all

lines that contain the text "SWT" red:

styledText.addLineBackgroundListener(new LineBackgroundListener() {

 public void lineGetBackground(LineBackgroundEvent event) {

 if (event.lineText.indexOf("SWT") > -1)

 {

 event.lineBackground = red;

 }

 }

});

The LineBackgroundListenerTest program in Listing 11-6 uses this listener to turn lines red. Here's the complete code:

Listing 11-6: LineBackgroundListenerTest.java

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

package examples.ch11;

import org.eclipse.swt.SWT;

import org.eclipse.swt.custom.*;

import org.eclipse.swt.graphics.*;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.widgets.*;

/**

 * This class demonstrates LineBackgroundListeners

 */

public class LineBackgroundListenerTest {

 // The color to use for backgrounds

 Color red;

 /**

 * Runs the application

 */

 public void run() {

 Display display = new Display();

 red = display.getSystemColor(SWT.COLOR_RED);

 Shell shell = new Shell(display);

 createContents(shell);

 shell.open();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

 display.dispose();

 }

 /**

 * Creates the main window's contents

 *

 * @param shell the main window

 */

 private void createContents(Shell shell) {

 shell.setLayout(new FillLayout());

 StyledText styledText = new StyledText(shell, SWT.BORDER);

 // Add the line background listener

 styledText.addLineBackgroundListener(new LineBackgroundListener() {

 public void lineGetBackground(LineBackgroundEvent event) {

 if (event.lineText.indexOf("SWT") > -1) {

 event.lineBackground = red;

 }

 }

 });

 }

 /**

 * The application entry point

 *

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 new LineBackgroundListenerTest().run();

 }

}

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Figure 11-7 shows this program's main window with some text typed, including lines that contain "SWT."

Figure 11-7: A LineBackgroundListener

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig495%5F01%5F0%2Ejpg

Adding Complexity

You can push a little farther into StyledText to create highly functional text editors. The Poor Man's Programmer's

Editor (PmpEditor) demonstrates some of the more advanced capabilities of StyledText. It supports common clipboard

operations. It supports printing. It adds two custom key bindings: Ctrl+K deletes the next word, and Ctrl+$ moves the

caret to the end of the current line. It supports word wrap. It supports multilevel undo. It maintains and reports statistics

about the current file in a status bar at the bottom of the window.

It also supports syntax highlighting for any file extension via properties files. Properties files for Java source files and

MS-DOS batch files are included (java.properties and bat.properties). You may create your own properties files for

different extensions. The properties file for a file extension must have the same name as the extension, followed by

.properties. The file name for .java files, for example, is java.properties. The format is as follows:

comment=(the marker for single line comments)

multilinecommentstart=(the marker for starting a multiline comment)

multilinecommentend=(the marker for ending a multiline comment)

keywords=(a space-delimited list of keywords)

punctuation=(all punctuation characters, concatenated together)

You'll find that the syntax highlighting trips occasionally. For example, type _break in a .java file, and you'll see that

"break" appears as a keyword. The highlighting works pretty well for most purposes, but has purposely been kept

relatively simple.

This program doesn't compete with real editors such as Visual SlickEdit, CodeWright, vi, GNU Emacs, jEdit, or even

the editor embedded in the Eclipse IDE. It's not guaranteed to make your programming life easier, and you'll probably

never use it as your primary source code editor. Read through its code, though, for a deeper understanding of how to

use StyledText in your programs.

The PmpEditor class in Listing 11-7 provides the main program, creating the view and controlling user interaction.

Listing 11-7: PmpEditor.java

package examples.ch11;

import java.io.IOException;

import java.util.Stack;

import org.eclipse.swt.SWT;

import org.eclipse.swt.custom.*;

import org.eclipse.swt.events.*;

import org.eclipse.swt.graphics.*;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.printing.*;

import org.eclipse.swt.widgets.*;

/**

 * This program demonstrates StyledText

 */

public class PmpEditor {

 // The number of operations that can be undone

 private static final int UNDO_LIMIT = 500;

 // Contains a reference to this application

 private static PmpEditor app;

 // Contains a reference to the main window

 private Shell shell;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 // Displays the file

 private StyledText st;

 // The full path of the current file

 private String filename;

 // The font for the StyledText

 private Font font;

 // The label to display statistics

 private Label status;

 // The print options and printer

 private StyledTextPrintOptions options;

 private Printer printer;

 // The stack used to store the undo information

 private Stack changes;

 // Flag to set before performaing an undo, so the undo

 // operation doesn't get stored with the rest of the undo

 // information

 private boolean ignoreUndo = false;

 // Syntax data for the current extension

 private SyntaxData sd;

 // Line style listener

 private PmpeLineStyleListener lineStyleListener;

 /**

 * Gets the reference to this application

 *

 * @return HexEditor

 */

 public static PmpEditor getApp() {

 return app;

 }

 /**

 * Constructs a PmpEditor

 */

 public PmpEditor() {

 app = this;

 changes = new Stack();

 // Set up the printing options

 options = new StyledTextPrintOptions();

 options.footer = StyledTextPrintOptions.SEPARATOR

 + StyledTextPrintOptions.PAGE_TAG + StyledTextPrintOptions.SEPARATOR

 + "Confidential";

 }

 /**

 * Runs the application

 */

 public void run() {

 Display display = new Display();

 shell = new Shell(display);

 // Choose a monospaced font

 font = new Font(display, "Terminal", 12, SWT.NONE);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 createContents(shell);

 shell.open();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

 font.dispose();

 display.dispose();

 if (printer != null)

 printer.dispose();

 }

 /**

 * Creates the main window's contents

 *

 * @param shell the main window

 */

 private void createContents(Shell shell) {

 // Set the layout and the menu bar

 shell.setLayout(new FormLayout());

 shell.setMenuBar(new PmpEditorMenu(shell).getMenu());

 // Create the status bar

 status = new Label(shell, SWT.BORDER);

 FormData data = new FormData();

 data.left = new FormAttachment(0, 0);

 data.right = new FormAttachment(100, 0);

 data.bottom = new FormAttachment(100, 0);

 data.height = status.computeSize(SWT.DEFAULT, SWT.DEFAULT).y;

 status.setLayoutData(data);

 // Create the styled text

 st = new StyledText(shell, SWT.BORDER | SWT.H_SCROLL | SWT.V_SCROLL);

 data = new FormData();

 data.left = new FormAttachment(0);

 data.right = new FormAttachment(100);

 data.top = new FormAttachment(0);

 data.bottom = new FormAttachment(status);

 st.setLayoutData(data);

 // Set the font

 st.setFont(font);

 // Add Brief delete next word

 // Use SWT.MOD1 instead of SWT.CTRL for portability

 st.setKeyBinding('k' | SWT.MOD1, ST.DELETE_NEXT);

 // Add vi end of line (kind of)

 // Use SWT.MOD1 instead of SWT.CTRL for portability

 // Use SWT.MOD2 instead of SWT.SHIFT for portability

 // Shift+4 is $

 st.setKeyBinding('4' | SWT.MOD1 | SWT.MOD2, ST.LINE_END);

 // Handle key presses

 st.addKeyListener(new KeyAdapter() {

 public void keyPressed(KeyEvent event) {

 // Update the status bar

 updateStatus();

 }

 });

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 // Handle text modifications

 st.addModifyListener(new ModifyListener() {

 public void modifyText(ModifyEvent event) {

 // Update the status bar

 updateStatus();

 // Update the comments

 if (lineStyleListener != null) {

 lineStyleListener.refreshMultilineComments(st.getText());

 st.redraw();

 }

 }

 });

 // Store undo information

 st.addExtendedModifyListener(new ExtendedModifyListener() {

 public void modifyText(ExtendedModifyEvent event) {

 if (!ignoreUndo) {

 // Push this change onto the changes stack

 changes.push(new TextChange(event.start, event.length,

 event.replacedText));

 if (changes.size() > UNDO_LIMIT) changes.remove(0);

 }

 }

 });

 // Update the title bar and the status bar

 updateTitle();

 updateStatus();

 }

 /**

 * Opens a file

 */

 public void openFile() {

 FileDialog dlg = new FileDialog(shell);

 String temp = dlg.open();

 if (temp != null) {

 try {

 // Get the file's contents

 String text = PmpeIoManager.getFile(temp);

 // File loaded, so save the file name

 filename = temp;

 // Update the syntax properties to use

 updateSyntaxData();

 // Put the new file's data in the StyledText

 st.setText(text);

 // Update the title bar

 updateTitle();

 // Delete any undo information

 changes.clear();

 } catch (IOException e) {

 showError(e.getMessage());

 }

 }

 }

 /**

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 * Saves a file

 */

 public void saveFile() {

 if (filename == null) {

 saveFileAs();

 } else {

 try {

 // Save the file and update the title bar based on the new file name

 PmpeIoManager.saveFile(filename, st.getText().getBytes());

 updateTitle();

 } catch (IOException e) {

 showError(e.getMessage());

 }

 }

 }

 /**

 * Saves a file under a different name

 */

 public void saveFileAs() {

 SafeSaveDialog dlg = new SafeSaveDialog(shell);

 if (filename != null) {

 dlg.setFileName(filename);

 }

 String temp = dlg.open();

 if (temp != null) {

 filename = temp;

 // The extension may have changed; update the syntax data accordingly

 updateSyntaxData();

 saveFile();

 }

 }

 /**

 * Prints the document to the default printer

 */

 public void print() {

 if (printer == null)

 printer = new Printer();

 options.header = StyledTextPrintOptions.SEPARATOR + filename

 + StyledTextPrintOptions.SEPARATOR;

 st.print(printer, options).run();

 }

 /**

 * Cuts the current selection to the clipboard

 */

 public void cut() {

 st.cut();

 }

 /**

 * Copies the current selection to the clipboard

 */

 public void copy() {

 st.copy();

 }

 /**

 * Pastes the clipboard's contents

 */

 public void paste() {

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 st.paste();

 }

 /**

 * Selects all the text

 */

 public void selectAll() {

 st.selectAll();

 }

 /**

 * Undoes the last change

 */

 public void undo() {

 // Make sure undo stack isn't empty

 if (!changes.empty()) {

 // Get the last change

 TextChange change = (TextChange) changes.pop();

 // Set the flag. Otherwise, the replaceTextRange call will get placed

 // on the undo stack

 ignoreUndo = true;

 // Replace the changed text

 st.replaceTextRange(change.getStart(), change.getLength(), change

 .getReplacedText());

 // Move the caret

 st.setCaretOffset(change.getStart());

 // Scroll the screen

 st.setTopIndex(st.getLineAtOffset(change.getStart()));

 ignoreUndo = false;

 }

 }

 /**

 * Toggles word wrap

 */

 public void toggleWordWrap() {

 st.setWordWrap(!st.getWordWrap());

 }

 /**

 * Gets the current word wrap settings

 *

 * @return boolean

 */

 public boolean getWordWrap() {

 return st.getWordWrap();

 }

 /**

 * Shows an about box

 */

 public void about() {

 MessageBox mb = new MessageBox(shell, SWT.ICON_INFORMATION | SWT.OK);

 mb.setMessage("Poor Man's Programming Editor");

 mb.open();

 }

 /**

 * Updates the title bar

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 */

 private void updateTitle() {

 String fn = filename == null ? "Untitled" : filename;

 shell.setText(fn + " -- PmPe");

 }

 /**

 * Updates the status bar

 */

 private void updateStatus() {

 // Show the offset into the file, the total number of characters in the file,

 // the current line number (1-based) and the total number of lines

 StringBuffer buf = new StringBuffer();

 buf.append("Offset: ");

 buf.append(st.getCaretOffset());

 buf.append("\tChars: ");

 buf.append(st.getCharCount());

 buf.append("\tLine: ");

 buf.append(st.getLineAtOffset(st.getCaretOffset()) + 1);

 buf.append(" of ");

 buf.append(st.getLineCount());

 status.setText(buf.toString());

 }

 /**

 * Updates the syntax data based on the filename's extension

 */

 private void updateSyntaxData() {

 // Determine the extension of the current file

 String extension = "";

 if (filename != null) {

 int pos = filename.lastIndexOf(".");

 if (pos > -1 && pos < filename.length() - 2) {

 extension = filename.substring(pos + 1);

 }

 }

 // Get the syntax data for the extension

 sd = SyntaxManager.getSyntaxData(extension);

 // Reset the line style listener

 if (lineStyleListener != null) {

 st.removeLineStyleListener(lineStyleListener);

 }

 lineStyleListener = new PmpeLineStyleListener(sd);

 st.addLineStyleListener(lineStyleListener);

 // Redraw the contents to reflect the new syntax data

 st.redraw();

 }

 /**

 * Shows an error message

 *

 * @param error the text to show

 */

 private void showError(String error) {

 MessageBox mb = new MessageBox(shell, SWT.ICON_ERROR | SWT.OK);

 mb.setMessage(error);

 mb.open();

 }

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 /**

 * The application entry point

 *

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 new PmpEditor().run();

 }

}

The PmpEditorMenu class in Listing 11-8 provides the main menu for the application. It creates all the menu options

and the selection listeners for those options. All the listeners call into methods in PmpEditor.

Listing 11-8: PmpEditorMenu.java

package examples.ch11;

import org.eclipse.swt.*;

import org.eclipse.swt.events.*;

import org.eclipse.swt.widgets.*;

/**

 * This class contains the menu for the Poor Man's Programming Editor application

 */

public class PmpEditorMenu {

 // The underlying menu this class wraps

 Menu menu = null;

 /**

 * Constructs a PmpEditorMenu

 *

 * @param shell the parent shell

 */

 public PmpEditorMenu(final Shell shell) {

 // Create the menu

 menu = new Menu(shell, SWT.BAR);

 // Create the File top-level menu

 MenuItem item = new MenuItem(menu, SWT.CASCADE);

 item.setText("File");

 Menu dropMenu = new Menu(shell, SWT.DROP_DOWN);

 item.setMenu(dropMenu);

 // Create File->Open

 item = new MenuItem(dropMenu, SWT.NULL);

 item.setText("Open...\tCtrl+O");

 item.setAccelerator(SWT.CTRL + 'O');

 item.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 PmpEditor.getApp().openFile();

 }

 });

 // Create File->Save

 item = new MenuItem(dropMenu, SWT.NULL);

 item.setText("Save\tCtrl+S");

 item.setAccelerator(SWT.CTRL + 'S');

 item.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 PmpEditor.getApp().saveFile();

 }

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 });

 // Create File->Save As

 item = new MenuItem(dropMenu, SWT.NULL);

 item.setText("Save As...");

 item.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 PmpEditor.getApp().saveFileAs();

 }

 });

 new MenuItem(dropMenu, SWT.SEPARATOR);

 // Create File->Print

 item = new MenuItem(dropMenu, SWT.NULL);

 item.setText("Print\tCtrl+P");

 item.setAccelerator(SWT.CTRL + 'P');

 item.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 PmpEditor.getApp().print();

 }

 });

 new MenuItem(dropMenu, SWT.SEPARATOR);

 // Create File->Exit

 item = new MenuItem(dropMenu, SWT.NULL);

 item.setText("Exit\tAlt+F4");

 item.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 shell.close();

 }

 });

 // Create Edit

 item = new MenuItem(menu, SWT.CASCADE);

 item.setText("Edit");

 dropMenu = new Menu(shell, SWT.DROP_DOWN);

 item.setMenu(dropMenu);

 // Create Edit->Cut

 item = new MenuItem(dropMenu, SWT.NULL);

 item.setText("Cut\tCtrl+X");

 item.setAccelerator(SWT.CTRL + 'X');

 item.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 PmpEditor.getApp().cut();

 }

 });

 // Create Edit->Copy

 item = new MenuItem(dropMenu, SWT.NULL);

 item.setText("Copy\tCtrl+C");

 item.setAccelerator(SWT.CTRL + 'C');

 item.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 PmpEditor.getApp().copy();

 }

 });

 // Create Edit->Paste

 item = new MenuItem(dropMenu, SWT.NULL);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 item.setText("Paste\tCtrl+V");

 item.setAccelerator(SWT.CTRL + 'V');

 item.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 PmpEditor.getApp().paste();

 }

 });

 new MenuItem(dropMenu, SWT.SEPARATOR);

 // Create Select All

 item = new MenuItem(dropMenu, SWT.NULL);

 item.setText("Select All\tCtrl+A");

 item.setAccelerator(SWT.CTRL + 'A');

 item.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 PmpEditor.getApp().selectAll();

 }

 });

 new MenuItem(dropMenu, SWT.SEPARATOR);

 // Create Undo

 item = new MenuItem(dropMenu, SWT.NULL);

 item.setText("Undo\tCtrl+Z");

 item.setAccelerator(SWT.CTRL + 'Z');

 item.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 PmpEditor.getApp().undo();

 }

 });

 new MenuItem(dropMenu, SWT.SEPARATOR);

 // Create Word Wrap

 final MenuItem wwItem = new MenuItem(dropMenu, SWT.CHECK);

 wwItem.setText("Word Wrap\tCtrl+W");

 wwItem.setAccelerator(SWT.CTRL + 'W');

 wwItem.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 PmpEditor.getApp().toggleWordWrap();

 }

 });

 wwItem.addArmListener(new ArmListener() {

 public void widgetArmed(ArmEvent event) {

 wwItem.setSelection(PmpEditor.getApp().getWordWrap());

 }

 });

 // Create Help

 item = new MenuItem(menu, SWT.CASCADE);

 item.setText("Help");

 dropMenu = new Menu(shell, SWT.DROP_DOWN);

 item.setMenu(dropMenu);

 // Create Help->About

 item = new MenuItem(dropMenu, SWT.NULL);

 item.setText("About\tCtrl+A");

 item.setAccelerator(SWT.CTRL + 'A');

 item.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 PmpEditor.getApp().about();

 }

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 });

 }

 /**

 * Gets the underlying menu

 *

 * @return Menu

 */

 public Menu getMenu() {

 return menu;

 }

}

The PmpeIoManager class in Listing 11-9 loads and saves files for editing.

Listing 11-9: PmpeIoManager.java

package examples.ch11;

import java.io.*;

/**

 * This class handles loading and saving files

 */

public class PmpeIoManager {

 /**

 * Gets a file (loads it) from the filesystem

 *

 * @param filename the full path of the file

 * @return String

 * @throws IOException if file cannot be loaded

 */

 public static String getFile(String filename) throws IOException {

 InputStream in = new BufferedInputStream(new FileInputStream(filename));

 StringBuffer buf = new StringBuffer();

 int c;

 while ((c = in.read()) != -1) {

 buf.append((char) c);

 }

 return buf.toString();

 }

 /**

 * Saves a file

 *

 * @param filename the full path of the file to save

 * @param data the data to save

 * @throws IOException if file cannot be saved

 */

 public static void saveFile(String filename, byte[] data) throws IOException {

 File outputFile = new File(filename);

 FileOutputStream out = new FileOutputStream(outputFile);

 out.write(data);

 out.close();

 }

}

Listing 11-10 shows the TextChange class, which contains each discrete change in the editor. The editor uses this

information to perform undo operations.

Listing 11-10: TextChange.java

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

package examples.ch11;

/**

 * This class contains a single change, used for Undo processing

 */

public class TextChange {

 // The starting offset of the change

 private int start;

 // The length of the change

 private int length;

 // The replaced text

 String replacedText;

 /**

 * Constructs a TextChange

 *

 * @param start the starting offset of the change

 * @param length the length of the change

 * @param replacedText the text that was replaced

 */

 public TextChange(int start, int length, String replacedText) {

 this.start = start;

 this.length = length;

 this.replacedText = replacedText;

 }

 /**

 * Returns the start

 *

 * @return int

 */

 public int getStart() {

 return start;

 }

 /**

 * Returns the length

 *

 * @return int

 */

 public int getLength() {

 return length;

 }

 /**

 * Returns the replacedText

 *

 * @return String

 */

 public String getReplacedText() {

 return replacedText;

 }

}

The SyntaxData class (see Listing 11-11) contains extension-specific information for syntax coloring and styling. Each

loaded file extension has its own instance of SyntaxData (or null if no properties file exists for that extension).

Listing 11-11: SyntaxData.java

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

package examples.ch11;

import java.util.*;

/**

 * This class contains information for syntax coloring and styling for an

 * extension

 */

public class SyntaxData {

 private String extension;

 private Collection keywords;

 private String punctuation;

 private String comment;

 private String multiLineCommentStart;

 private String multiLineCommentEnd;

 /**

 * Constructs a SyntaxData

 *

 * @param extension the extension

 */

 public SyntaxData(String extension) {

 this.extension = extension;

 }

 /**

 * Gets the extension

 *

 * @return String

 */

 public String getExtension() {

 return extension;

 }

 /**

 * Gets the comment

 *

 * @return String

 */

 public String getComment() {

 return comment;

 }

 /**

 * Sets the comment

 *

 * @param comment The comment to set.

 */

 public void setComment(String comment) {

 this.comment = comment;

 }

 /**

 * Gets the keywords

 *

 * @return Collection

 */

 public Collection getKeywords() {

 return keywords;

 }

 /**

 * Sets the keywords

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 *

 * @param keywords The keywords to set.

 */

 public void setKeywords(Collection keywords) {

 this.keywords = keywords;

 }

 /**

 * Gets the multiline comment end

 *

 * @return String

 */

 public String getMultiLineCommentEnd() {

 return multiLineCommentEnd;

 }

 /**

 * Sets the multiline comment end

 *

 * @param multiLineCommentEnd The multiLineCommentEnd to set.

 */

 public void setMultiLineCommentEnd(String multiLineCommentEnd) {

 this.multiLineCommentEnd = multiLineCommentEnd;

 }

 /**

 * Gets the multiline comment start

 *

 * @return String

 */

 public String getMultiLineCommentStart() {

 return multiLineCommentStart;

 }

 /**

 * Sets the multiline comment start

 *

 * @param multiLineCommentStart The multiLineCommentStart to set.

 */

 public void setMultiLineCommentStart(String multiLineCommentStart) {

 this.multiLineCommentStart = multiLineCommentStart;

 }

 /**

 * Gets the punctuation

 *

 * @return String

 */

 public String getPunctuation() {

 return punctuation;

 }

 /**

 * Sets the punctuation

 *

 * @param punctuation The punctuation to set.

 */

 public void setPunctuation(String punctuation) {

 this.punctuation = punctuation;

 }

}

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

The SyntaxManager class in Listing 11-12 loads the syntax properties files and converts them into SyntaxData instances.

It caches each file it loads to avoid having to reload properties files. If no properties file exists for an extension, it

doesn't create a SyntaxData instance and no syntax coloring or styling is performed on the file.

Listing 11-12: SyntaxManager.java

package examples.ch11;

import java.util.*;

/**

 * This class manages the syntax coloring and styling data

 */

public class SyntaxManager {

 // Lazy cache of SyntaxData objects

 private static Map data = new Hashtable();

 /**

 * Gets the syntax data for an extension

 */

 public static synchronized SyntaxData getSyntaxData(String extension) {

 // Check in cache

 SyntaxData sd = (SyntaxData) data.get(extension);

 if (sd == null) {

 // Not in cache; load it and put in cache

 sd = loadSyntaxData(extension);

 if (sd != null) data.put(sd.getExtension(), sd);

 }

 return sd;

 }

 /**

 * Loads the syntax data for an extension

 *

 * @param extension the extension to load

 * @return SyntaxData

 */

 private static SyntaxData loadSyntaxData(String extension) {

 SyntaxData sd = null;

 try {

 ResourceBundle rb = ResourceBundle.getBundle("examples.ch11." + extension);

 sd = new SyntaxData(extension);

 sd.setComment(rb.getString("comment"));

 sd.setMultiLineCommentStart(rb.getString("multilinecommentstart"));

 sd.setMultiLineCommentEnd(rb.getString("multilinecommentend"));

 // Load the keywords

 Collection keywords = new ArrayList();

 for (StringTokenizer st = new StringTokenizer(rb.getString("keywords"),

 " "); st.hasMoreTokens();) {

 keywords.add(st.nextToken());

 }

 sd.setKeywords(keywords);

 // Load the punctuation

 sd.setPunctuation(rb.getString("punctuation"));

 } catch (MissingResourceException e) {

 // Ignore

 }

 return sd;

 }

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

}

Finally, the PmpeLineStyleListener class in Listing 11-13 implements the syntax coloring and styling for the editor.

Listing 11-13: PmpeLineStyleListener.java

package examples.ch11;

import java.util.*;

import org.eclipse.swt.SWT;

import org.eclipse.swt.custom.*;

import org.eclipse.swt.graphics.Color;

import org.eclipse.swt.widgets.Display;

/**

 * This class performs the syntax highlighting and styling for Pmpe

 */

public class PmpeLineStyleListener implements LineStyleListener {

 // Colors

private static final Color COMMENT_COLOR = Display.getCurrent().getSystemColor(

 SWT.COLOR_DARK_GREEN);

private static final Color COMMENT_BACKGROUND = Display.getCurrent()

 .getSystemColor(SWT.COLOR_GRAY);

private static final Color PUNCTUATION_COLOR = Display.getCurrent()

 .getSystemColor(SWT.COLOR_DARK_CYAN);

private static final Color KEYWORD_COLOR = Display.getCurrent().getSystemColor(

 SWT.COLOR_DARK_MAGENTA);

// Holds the syntax data

private SyntaxData syntaxData;

// Holds the offsets for all multiline comments

List commentOffsets;

/**

 * PmpeLineStyleListener constructor

 *

 * @param syntaxData the syntax data to use

 */

public PmpeLineStyleListener(SyntaxData syntaxData) {

 this.syntaxData = syntaxData;

 commentOffsets = new LinkedList();

}

/**

 * Refreshes the offsets for all multiline comments in the parent StyledText.

 * The parent StyledText should call this whenever its text is modified. Note

 * that this code doesn't ignore comment markers inside strings.

 *

 * @param text the text from the StyledText

 */

public void refreshMultilineComments(String text) {

 // Clear any stored offsets

 commentOffsets.clear();

 if (syntaxData != null) {

 // Go through all the instances of COMMENT_START

 for (int pos = text.indexOf(syntaxData.getMultiLineCommentStart());

 pos > -1; pos = text.indexOf(syntaxData.getMultiLineCommentStart(), pos))

 {

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 // offsets[0] holds the COMMENT_START offset

 // and COMMENT_END holds the ending offset

 int[] offsets = new int[2];

 offsets[0] = pos;

 // Find the corresponding end comment.

 pos = text.indexOf(syntaxData.getMultiLineCommentEnd(), pos);

 // If no corresponding end comment, use the end of the text

 offsets[1] = pos == -1 ? text.length() - 1 : pos

 + syntaxData.getMultiLineCommentEnd().length() - 1;

 pos = offsets[1];

 // Add the offsets to the collection

 commentOffsets.add(offsets);

 }

 }

}

/**

 * Checks to see if the specified section of text begins inside a multiline

 * comment. Returns the index of the closing comment, or the end of the line if

 * the whole line is inside the comment. Returns -1 if the line doesn't begin

 * inside a comment.

 *

 * @param start the starting offset of the text

 * @param length the length of the text

 * @return int

 */

private int getBeginsInsideComment(int start, int length) {

 // Assume section doesn't being inside a comment

 int index = -1;

 // Go through the multiline comment ranges

 for (int i = 0, n = commentOffsets.size(); i < n; i++) {

 int[] offsets = (int[]) commentOffsets.get(i);

 // If starting offset is past range, quit

 if (offsets[0] > start + length) break;

 // Check to see if section begins inside a comment

 if (offsets[0] <= start && offsets[1] >= start) {

 // It does; determine if the closing comment marker is inside

 // this section

 index = offsets[1] > start + length ? start + length : offsets[1]

 + syntaxData.getMultiLineCommentEnd().length() - 1;

 }

 }

 return index;

}

/**

 * Called by StyledText to get styles for a line

 */

public void lineGetStyle(LineStyleEvent event) {

 // Only do styles if syntax data has been loaded

 if (syntaxData != null) {

 // Create collection to hold the StyleRanges

 List styles = new ArrayList();

 int start = 0;

 int length = event.lineText.length();

 // Check if line begins inside a multiline comment

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 int mlIndex = getBeginsInsideComment(event.lineOffset, event.lineText

 .length());

 if (mlIndex > -1) {

 // Line begins inside multiline comment; create the range

 styles.add(new StyleRange(event.lineOffset, mlIndex - event.lineOffset,

 COMMENT_COLOR, COMMENT_BACKGROUND));

 start = mlIndex;

 }

 // Do punctuation, single-line comments, and keywords

 while (start < length) {

 // Check for multiline comments that begin inside this line

 if (event.lineText.indexOf(syntaxData.getMultiLineCommentStart(), start)

 == start) {

 // Determine where comment ends

 int endComment = event.lineText.indexOf(syntaxData

 .getMultiLineCommentEnd(), start);

 // If comment doesn't end on this line, extend range to end of line

 if (endComment == -1)

 endComment = length;

 else

 endComment += syntaxData.getMultiLineCommentEnd().length();

 styles.add(new StyleRange(event.lineOffset + start, endComment - start,

 COMMENT_COLOR, COMMENT_BACKGROUND));

 // Move marker

 start = endComment;

 }

 // Check for single line comments

 else if (event.lineText.indexOf(syntaxData.getComment(), start) == start)

 {

 // Comment rest of line

 styles.add(new StyleRange(event.lineOffset + start, length - start,

 COMMENT_COLOR, COMMENT_BACKGROUND));

 // Move marker

 start = length;

 }

 // Check for punctuation

 else if (syntaxData.getPunctuation()

 .indexOf(event.lineText.charAt(start)) > -1) {

 // Add range for punctuation

 styles.add(new StyleRange(event.lineOffset + start, 1,

 PUNCTUATION_COLOR, null));

 ++start;

 } else if (Character.isLetter(event.lineText.charAt(start))) {

 // Get the next word

 StringBuffer buf = new StringBuffer();

 int i = start;

 // Call any consecutive letters a word

 for (; i < length && Character.isLetter(event.lineText.charAt(i)); i++)

 {

 buf.append(event.lineText.charAt(i));

 }

 // See if the word is a keyword

 if (syntaxData.getKeywords().contains(buf.toString())) {

 // It's a keyword; create the StyleRange

 styles.add(new StyleRange(event.lineOffset + start, i - start,

 KEYWORD_COLOR, null, SWT.BOLD));

 }

 // Move the marker to the last char (the one that wasn't a letter)

 // so it can be retested in the next iteration through the loop

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 start = i;

 } else

 // It's nothing we're interested in; advance the marker

 ++start;

 }

 // Copy the StyleRanges back into the event

 event.styles = (StyleRange[]) styles.toArray(new StyleRange[0]);

 }

 }

}

Figure 11-8 shows The Poor Man's Programming Editor's main window, containing the source code for

PmpeLineStyleListener.java.

Figure 11-8: The Poor Man's Programming Editor

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig517%5F01%5F0%2Ejpg

Summary

You can add powerful text editing to your application simply by adding a StyledText widget. You get clipboard

operations, word wrap, custom key binding, and a host of other features for free or almost free. However, adding

colors and styles increases your workload significantly. Using listeners eases the burden, but expect to do some work

to convert StyledText into a competitive source code editor with dynamic syntax coloring and styling.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Chapter 12: Advanced Topics

Small touches can make the difference between applications that get used and applications that get uninstalled. For

example, an e-mail client might have a polished interface, perform efficiently, and offer powerful search capabilities.

However, if users can't organize their e-mails by dragging them and dropping them onto storage folders, or can't print

out their e-mails or address books, they might turn to a different e-mail client. This chapter examines advanced topics

that might supply the necessary touch for your applications.

Dragging and Dropping

Drag and Drop (DND) allows users to exchange data among graphical components. The components can belong to

the same application or different applications. Although the semantics and implementation of DND might vary

drastically from system to system, SWT's creators have succeeded in abstracting these differences and creating a

robust and straightforward DND framework. Take advantage of DND to provide users the interoperability they've come

to expect from applications.

A DND operation involves dragging something from a component and dropping it on another component. The

component you drag from is called the drag source, and the component you drop on is called the drop target, also

known as a source and sink, respectively. This terminology applies universally to all components in the windowing

system, not just those in SWT or Java applications. SWT supports DND operations between any windowing system

components.

Drag Source

SWT uses the DragSource class to represent drag sources. It offers a single constructor:

DragSource(Control control, int style)

It converts the specified control into a drag source, so you can drag from it. Table 12-1 lists the valid styles for the style

parameter, which you can combine using the bitwise OR operator. Table 12-2 lists DragSource's methods.

Table 12-1: DragSource Styles

Style Description

DND.DROP_NONE No drag or drop supported

DND.DROP_COPY Copies the dragged data to the drop target

DND.DROP_MOVE Moves the dragged data to the drop target

DND.DROP_LINK Creates a link from the dragged data to the drop target

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Table 12-2: DragSource Methods

Method Description

void addDragListener

(DragSourceListener listener)
Adds the specified listener to the list of listeners notified before,

during, and after a DND operation

Control getControl() Returns the control wrapped by this DragSource

Transfer[] getTransfer() Returns the list of data types supported by this DragSource

void removeDragListener

(DragSourceListener listener)
Removes the specified listener from the notification list

void setTransfer(Transfer[] transferAgents) Sets the data types this DragSource supports

This brief API reveals two crucial parts of drag operations: Transfer objects and DragSourceListeners. Transfer objects,

used for drop operations as well, convert data from its Java representation to the underlying platform's data

representation, and vice versa. You can write your own Transfer classes, but you'll usually use one of SWT's concrete

Transfer classes—usually FileTransfer, to drag and drop files, or TextTransfer, to drag and drop text. The array of

Transfer objects you pass to setTransfer() describes the types of data you can drag from the drag source. These

Transfer objects follow the singleton pattern, so use their static getInstance() methods to get instances to pass to

setTransfer(). For example, to create a drag source that you can drag either text or files from, use code such as this:

DragSource ds = new DragSource(control, DND.DROP_COPY);

ds.setTransfer(new Transfer[] { FileTransfer.getInstance(),

 TextTransfer.getInstance() });

The other crucial drag component, DragSourceListener, dictates how your drag sources react to drag operations. You

can add multiple drag source listeners to a drag source. Table 12-3 lists DragSourceListener's methods. You can

implement the interface directly, or extend from SWT's DragSourceAdapter class to avoid writing implementations of

methods for which you don't need any behavior.

Table 12-3: DragSourceListener Methods

Method Description

void dragStart(DragSourceEvent

event)
Called when a drag operation begins. You can cancel the drag by

setting event.doIt to false.

void

dragSetData(DragSourceEvent

event)

Called when a drag operation requests the data, usually when the data

has been dropped. You should set event.data to the data dragged, so

the drop target can do something with it.

void

dragFinished(DragSourceEvent

event)

Called when a drag operation ends. Performs any final activity for your

application, such as deleting the source data of a move.

Caution When you implement any of the functions in DragSourceListener or its peer DropTargetListener, you must handle

all exceptions within the function. Due to low-level differences in implementations, the library traps exceptions

and this is your only opportunity to handle them gracefully.

Drop Target

To implement drop targets, SWT uses the DropTarget class. Its semantics mirror those of DragSource, and its lone

constructor looks like this:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

DropTarget(Control control, int style)

In parallel with DragSource, DropTarget converts the specified control into a drop target. Refer to Table 12-1 to see the

available constants for style. Table 12-4 lists DropTarget's methods.

Table 12-4: DropTarget Methods

Method Description

void addDropListener (DropTargetListener

listener)
Adds the specified listener to the list of listeners notified before,

during, and after a drop operation

Control getControl() Returns the control wrapped by this DropTarget

Transfer[] getTransfer() Returns the list of data types supported by this DropTarget

void removeDropListener

(DropTargetListener listener)
Removes the specified listener from the notification list

void setTransfer(Transfer[]

transferAgents)
Sets the data types this DropTarget supports

Use the same Transfer objects discussed in conjunction with DragSource for DropTarget, passing the ones you wish to

support to setTransfer(). For example, to create a drop target that supports having files or text dropped on it, use code

such as this:

DropTarget dt = new DropTarget(control, DND.DROP_COPY);

dt.setTransfer(new Transfer[] { FileTransfer.getInstance(),

 TextTransfer.getInstance() });

As with drag sources, a listener dictates how your drop target reacts to drop operations. You can add multiple drop

listeners to a single drop target. You can implement DropTargetListener directly, or start from the DropTargetAdapter

class, which provides empty implementations of all DropTargetListener methods. Table 12-5 lists DropTargetListener's

methods.

Table 12-5: DropTargetListener Methods

Method Description

void dragEnter(DropTargetEvent event) Called when the cursor drags data into the bounds of your drop

target

void dragLeave(DropTargetEvent event) Called when the cursor leaves the bounds of your drop target

void dragOperationChanged

(DropTargetEvent event)
Called when the user changes the DND operation, usually by

changing the pressed modifier keys

void dragOver(DropTargetEvent event) Called as the cursor drags data within the bounds of your drop

target

void drop(DropTargetEvent event) Called when data has been dropped on your drop target

void dropAccept(DropTargetEvent event) Called when the drop operation is about to happen. You can veto

the drop by setting event.detail to DND.DROP_NONE

Witnessing a Drop

Many applications offer, in addition to the File ? Open menu, the ability to open files by dragging and dropping the files

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

onto the applications' main windows. This section adds that ability to Chapter 11's Poor Man's Programming Editor.

You can drag files from any file manager that supports dragging and drop them on PmpEditor's main window. All

necessary modifications occur in the PmpEditor.java file.

To begin, import the DND library:

import org.eclipse.swt.dnd.*;

Next, create the drop target. Use the application's existing StyledText control, which virtually fills the main application

window, as the drop target. You also must create the transfer types and a DropTargetListener implementation and add

them to the drop target. The following code creates the drop target, the transfer types, and the listener as an

anonymous inner class, derived from DropTargetAdapter. Add this code to the end of the createContents() method:

// Create the drag and drop types

Transfer[] types = new Transfer[] { FileTransfer.getInstance()};

// Create the drop target

DropTarget target = new DropTarget(st, DND.DROP_MOVE | DND.DROP_COPY

 | DND.DROP_DEFAULT);

target.setTransfer(types);

target.addDropListener(new DropTargetAdapter() {

 /**

 * Called when the cursor enters

 */

 public void dragEnter(DropTargetEvent event) {

 // Allow a copy

 if (event.detail == DND.DROP_DEFAULT) {

 event.detail = (event.operations & DND.DROP_COPY) != 0 ? DND.DROP_COPY

 : DND.DROP_NONE;

 }

 }

 /**

 * Called when the cursor drags over the target

 */

 public void dragOver(DropTargetEvent event) {

 // Give feedback

 event.feedback = DND.FEEDBACK_SELECT | DND.FEEDBACK_SCROLL;

 }

 /**

 * Called when user drops the files

 */

 public void drop(DropTargetEvent event) {

 // See if it's a file

 if (FileTransfer.getInstance().isSupportedType(event.currentDataType)) {

 String[] files = (String[]) event.data;

 // Since we support only one file, open the first one

 if (files.length > 0) openFile(files[0]);

 }

 }

});

Finally, you must provide an openFile() method that accepts a file name, so it can open a dropped file. Change the

existing openFile() implementation to accept a String, and add the following code to test whether to open a file selection

dialog box.

public void openFile(String temp) {

 if (temp == null) {

 FileDialog dlg = new FileDialog(shell);

 temp = dlg.open();

 }

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 if (temp != null) {

 // The rest of the existing code goes here

Add a no-parameter openFile() method for File ? Open that calls the other openFile():

public void openFile() {

 openFile(null);

}

Figure 12-1 shows the program with a file dragged onto it. Note the plus sign adjoining the cursor.

Figure 12-1: Dragging a file onto PmpEditor

Dragging Data

The SnippetBoard program demonstrates dragging data. It creates a table and seeds it with a few code snippets. You

can drag the snippets and drop them onto the same table. You can also drag snippets from SnippetBoard and drop

them on any program that accepts dragged text. Finally, you can drag text from any program that allows it and drop

the text onto SnippetBoard, to add the text to the table. Listing 12-1 contains the program's code.

Listing 12-1: SnippetBoard.java

package examples.ch12;

import org.eclipse.swt.*;

import org.eclipse.swt.dnd.*;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.widgets.*;

/**

 * This program illustrates dragging

 */

public class SnippetBoard {

 /**

 * Runs the application

 */

 public void run() {

 Display display = new Display();

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig524%5F01%5F0%2Ejpg

 Shell shell = new Shell(display);

 createContents(shell);

 shell.open();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

 display.dispose();

 }

 private void createContents(Shell shell) {

 shell.setLayout(new FillLayout());

 Table table = new Table(shell, SWT.BORDER | SWT.H_SCROLL | SWT.V_SCROLL);

 // Create the types

 Transfer[] types = new Transfer[] { TextTransfer.getInstance()};

 // Create the drag source

 DragSource source = new DragSource(table, DND.DROP_MOVE | DND.DROP_COPY);

 source.setTransfer(types);

 source.addDragListener(new DragSourceAdapter() {

 public void dragSetData(DragSourceEvent event) {

 // Get the selected items in the drag source

 DragSource ds = (DragSource) event.widget;

 Table table = (Table) ds.getControl();

 TableItem[] selection = table.getSelection();

 // Create a buffer to hold the selected items and fill it

 StringBuffer buff = new StringBuffer();

 for (int i = 0, n = selection.length; i < n; i++) {

 buff.append(selection[i].getText());

 }

 // Put the data into the event

 event.data = buff.toString();

 }

 });

 // Create the drop target

 DropTarget target = new DropTarget(table,

 DND.DROP_MOVE | DND.DROP_COPY | DND.DROP_DEFAULT);

 target.setTransfer(types);

 target.addDropListener(new DropTargetAdapter() {

 public void dragEnter(DropTargetEvent event) {

 if (event.detail == DND.DROP_DEFAULT) {

 event.detail = (event.operations & DND.DROP_COPY) != 0 ? DND.DROP_COPY

 : DND.DROP_NONE;

 }

 // Allow dropping text only

 for (int i = 0, n = event.dataTypes.length; i < n; i++) {

 if (TextTransfer.getInstance().isSupportedType(event.dataTypes[i])) {

 event.currentDataType = event.dataTypes[i];

 }

 }

 }

 public void dragOver(DropTargetEvent event) {

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 // Provide visual feedback

 event.feedback = DND.FEEDBACK_SELECT | DND.FEEDBACK_SCROLL;

 }

 public void drop(DropTargetEvent event) {

 // If any text was dropped . . .

 if (TextTransfer.getInstance().isSupportedType(event.currentDataType)) {

 // Get the dropped data

 DropTarget target = (DropTarget) event.widget;

 Table table = (Table) target.getControl();

 String data = (String) event.data;

 // Create a new item in the table to hold the dropped data

 TableItem item = new TableItem(table, SWT.NONE);

 item.setText(new String[] { data});

 table.redraw();

 }

 }

 });

 TableColumn column = new TableColumn(table, SWT.NONE);

 // Seed the table

 TableItem item = new TableItem(table, SWT.NONE);

 item.setText(new String[] { "private static final int"});

 item = new TableItem(table, SWT.NONE);

 item.setText(new String[] { "String"});

 item = new TableItem(table, SWT.BORDER);

 item.setText(new String[] { "private static void main(String[] args) {"});

 column.pack();

 }

 /**

 * The application entry point

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 new SnippetBoard().run();

 }

}

Figure 12-2 shows SnippetBoard in action.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Figure 12-2: SnippetBoard

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig527%5F01%5F0%2Ejpg

Printing

Despite prognostications of paperless offices, application users generally expect the option of printing their data onto

paper. SWT's StyledText widget directly supports printing its contents, but if your data doesn't sit inside a StyledText

widget, you must delve into SWT's printing API. Three classes, all found in the org.eclipse.swt.printing package, make

up this API: Printer, PrinterData, and PrintDialog.

Printer descends from Device. As such, you can create a graphical context from it and draw on the graphical context.

You can draw text, images, or both, using the standard drawing methods explained in Chapter 10. You create a Printer

object using either its empty constructor, or the one that takes a PrinterData object. As with the other Device class

you've used, Display, you must dispose Printer objects you create. However, Printer's needs diverge from Display's

because you're drawing on a physical, more permanent surface. Table 12-6 lists the API developed to meet those

needs.

Table 12-6: Printer Methods

Method Description

void cancelJob() Cancels a print job.

Rectangle computeTrim(int x, int y,

int width, int height)
Returns the total page size in pixels for this Printer, including both

printable and nonprintable areas.

void endJob() Ends the current print job.

void endPage() Ends the current page.

Rectangle getBounds() Returns the page size in pixels for this Printer.

Rectangle getClientArea() Returns the size of the printable area on the page, in pixels, for this

Printer.

static PrinterData

getDefaultPrinterData()
Returns the information that describes the default printer, or null if no

printers are available.

Point getDPI() Returns the horizontal and vertical DPI of this Printer. The returned

Point's x value contains the horizontal DPI, and its y value contains the

vertical DPI.

PrinterData getPrinterData() Returns the data that describes this Printer and print job.

static PrinterData[] getPrinterList() Returns an array of PrinterData objects that represent all the Printer

devices available on the system.

boolean startJob(String jobName) Starts a print job with the specified job name. Returns true if the job

starts successfully. Otherwise, returns false.

boolean startPage() Starts a new page. Returns true if the page starts successfully.

Otherwise, returns false.

The standard pattern for printing involves the following steps:

Create a Printer object.1.

Start a print job.2.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Create a GC.3.

Start a page.4.

Draw on the page.5.

End the page.6.

Repeat steps 4-6 as necessary.7.

End the print job.8.

Clean up.9.

For example, the following code draws some text on a Printer (or, in other words, prints some text onto a piece of

paper), and then cleans up after itself:

Printer printer = new Printer();

if (printer.startJob("Printing . . .")) {

 GC gc = new GC(printer);

 if (printer.startPage()) {

 gc.drawText("Hello, World!", 20, 20);

 printer.endPage();

 }

 gc.dispose();

}

printer.dispose();

Each time you create a print job, you create an instance of a PrinterData object to describe the print job. The PrinterData

object encapsulates information pertaining to the printer on which this print job runs: the number of pages to print, the

selected pages to print, and so on. Table 12-7 lists PrinterData's members.

Table 12-7: PrinterData Members

Member Description

boolean collate If true, collates printed pages. Otherwise, doesn't collate.

int copyCount The number of copies to print.

String driver The name of the printer driver.

int endPage When scope is PAGE_RANGE, the number of the last page in the print range.

String fileName When printToFile is true, the file name to print to.

String name The name of the printer.

boolean printToFile If true, prints the document to a file. Otherwise, prints to a printer.

int scope The scope or range of pages to print. See Table 12-8 for supported values.

int startPage When scope is PAGE_RANGE, the number of the first page in the page range.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Table 12-8: PrinterData Scope Constants

Constant Description

static int ALL_PAGES Sets print scope to all pages in the document

static int PAGE_RANGE Sets print scope to the range beginning with startPage and ending with endPage

static int SELECTION Sets print scope to the selected portion of the document

PrinterData's scope member describes the range of pages to print, whether it's all pages, a range of pages denoted by

startPage and endPage, or just the selected portion of the document. Table 12-8 lists the valid values for scope.

You can create a PrinterData object directly, making assumptions about what values the user would like concerning

which printer to use, which pages to print, and so forth. Usually, however, you'll use SWT's PrintDialog class, which

displays the standard print dialog and allows users to make their own print selections. Figure 12-3 shows PrintDialog on

Windows XP.

Figure 12-3: The PrintDialog class

You use PrintDialog in the same way that you use other dialog classes: instantiate, call open(), and use the return value

from open(). PrintDialog.open() returns a PrinterData object, so a typical usage looks like this:

PrintDialog dlg = new PrintDialog(shell);

PrinterData printerData = dlg.open();

if (printerData != null) {

 Printer printer = new Printer(printerData);

 // Use printer . . .

 printer.dispose();

}

You might want to select some options programmatically before displaying the dialog. For example, you might detect

that the user has selected some text in your application, so you guess that the desired scope is

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig530%5F01%5F0%2Ejpg

PrinterData.SELECTION. To set and get options, use PrintDialog's API, listed in Table 12-9.

Table 12-9: PrintDialog Methods

Method Description

int getEndPage() Returns the selected end page.

boolean getPrintToFile() Returns true if the user selected to print to a file. Otherwise, returns

false.

int getScope() Returns the selected scope. See Table 12-8 for valid values.

int getStartPage() Returns the selected start page.

PrinterData open() Opens the dialog and returns the selected options as a PrinterData

object.

void setEndPage(int endPage) Sets the end page.

void setPrintToFile(boolean

printToFile)
Sets the print to file setting.

void setScope(int scope) Sets the scope. See Table 12-8 for valid values.

void setStartPage(int startPage) Sets the start page.

Determining Where to Print

The more permanent nature of ink on paper, as opposed to pixels on a screen, elevates the importance of proper

placement of your drawing. You don't get "do overs" with paper. Also, different printers have different capabilities,

including where they can print. You can't just pass arbitrary (x, y) values to your drawing calls that work on your

machine—you must determine, at run time, how to draw to the selected printer, and adjust your drawing accordingly.

To determine the entire printable area of the page for the selected printer, call Printer's getClientArea() method, which

returns a Rectangle object that contains the printable area's boundaries. Sometimes users will want to print to the

entire printable surface of each piece of paper, but often they'll want to specify different margins. Because you specify

drawing locations using pixels, you might try to force users to specify margins in pixels. However, not only will you

confuse and confound your users, but also, not all pixels are the same size. Different printers render the same

pixel-based margins in different sizes, depending on the printers' capabilities. Users expect to specify margins using

units of measurements that remain consistent no matter the printer: inches or centimeters. How do you translate pixels

to inches or centimeters?

The Printer class has a method—getDPI()—that neatly performs these translations. Because getDPI() returns a Point

whose x value contains the number of dots, or pixels, per inch that the printer prints horizontally in an inch, and whose

y value contains the vertical counterpart, you can use the returned Point to determine your margins precisely. For

example, to get half-inch margins, divide each dimension of the returned Point in half to get the number of pixels of

spacing to add. If you need centimeters instead of inches, multiply each inch value by 2.54 to get the number of

centimeters.

You might naively add your margins to the values returned by getClientArea(), but this spaces margins from the

printable area of the page, not from the edges of the paper. Users expect margins to space from the edges of the

paper, so you must do a little extra work. Specifically, you must call Printer.computeTrim() to get the entire area of the

paper, and add your margins to that. For example, the following code places one-inch margins on the page:

Point dpi = printer.getDPI(); // Get the DPI

Rectangle rect = printer.getClientArea(); // Get the printable area

Rectangle trim = printer.computeTrim(0, 0, 0, 0); // Get the whole page

int left = trim.x + dpi.x; // Set left margin one inch from left side of paper

int top = trim.y + dpi.y; // Set top margin

int right = (rect.width + trim.x + trim.width) - dpi.x; // 1st three values give

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 // you the right side of the page

int bottom = (rect.height + trim.y + trim.height) - dpi.y; // Set bottom margin

You then use left, top, right, and bottom as the boundaries that govern where you draw on the page.

Printing Text

Use GC.drawString() or GC.drawText() to print text. If all your lines of text fit neatly on the page, both horizontally and

vertically, you'll find printing text straightforward and simple. Generally, however, your text won't always fit so neatly,

and you'll have to reformat the text, wrapping to the next line, to produce the expected result.

The TextPrinterExample program in Listing 12-2 demonstrates how to wrap text on word boundaries to fit the target

printer and page. It displays a file selection dialog, prompting you to select a file to print. It then displays a printer

dialog, requesting the target printer. It then prints the file.

Listing 12-2: TextPrinterExample.java

package examples.ch12;

import org.eclipse.swt.*;

import org.eclipse.swt.graphics.*;

import org.eclipse.swt.printing.*;

import org.eclipse.swt.widgets.*;

import java.io.*;

/**

 * This class demonstrates printing text

 */

public class TextPrinterExample {

 /**

 * Runs the application

 */

 public void run() {

 Display display = new Display();

 Shell shell = new Shell(display);

 // Get the file to print

 FileDialog fileChooser = new FileDialog(shell, SWT.OPEN);

 String fileName = fileChooser.open();

 if (fileName != null) {

 // Have user select a printer

 PrintDialog dialog = new PrintDialog(shell);

 PrinterData printerData = dialog.open();

 if (printerData != null) {

 // Create the printer

 Printer printer = new Printer(printerData);

 try {

 // Print the contents of the file

 new WrappingPrinter(printer, fileName,

 getFileContents(fileName)).print();

 } catch (Exception e) {

 MessageBox mb = new MessageBox(shell, SWT.ICON_ERROR | SWT.OK);

 mb.setMessage(e.getMessage());

 mb.open();

 }

 // Dispose the printer

 printer.dispose();

 }

 }

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 display.dispose();

 }

 /**

 * Read in the file and return its contents

 * @param fileName

 * @return

 * @throws FileNotFoundException

 * @throws IOException

 */

 private String getFileContents(String fileName)

 throws FileNotFoundException, IOException {

 StringBuffer contents = new StringBuffer();

 BufferedReader reader = null;

 try {

 // Read in the file

 reader = new BufferedReader(new FileReader(fileName));

 while (reader.ready()) {

 contents.append(reader.readLine());

 contents.append("\n"); // Throw away LF chars, and just replace CR

 }

 } finally {

 if (reader != null) try {

 reader.close();

 } catch (IOException e) {}

 }

 return contents.toString();

 }

 /**

 * The application entry point

 *

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 new TextPrinterExample().run();

 }

}

/**

 * This class performs the printing, wrapping text as necessary

 */

class WrappingPrinter {

 private Printer printer; // The printer

 private String fileName; // The name of the file to print

 private String contents; // The contents of the file to print

 private GC gc; // The GC to print on

 private int xPos, yPos; // The current x and y locations for print

 private Rectangle bounds; // The boundaries for the print

 private StringBuffer buf; // Holds a word at a time

 private int lineHeight; // The height of a line of text

 /**

 * WrappingPrinter constructor

 * @param printer the printer

 * @param fileName the fileName

 * @param contents the contents

 */

 WrappingPrinter(Printer printer, String fileName, String contents) {

 this.printer = printer;

 this.fileName = fileName;

 this.contents = contents;

 }

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 /**

 * Prints the file

 */

 void print() {

 // Start the print job

 if (printer.startJob(fileName)) {

 // Determine print area, with margins

 bounds = computePrintArea(printer);

 xPos = bounds.x;

 yPos = bounds.y;

 // Create the GC

 gc = new GC(printer);

 // Determine line height

 lineHeight = gc.getFontMetrics().getHeight();

 // Determine tab width--use three spaces for tabs

 int tabWidth = gc.stringExtent(" ").x;

 // Print the text

 printer.startPage();

 buf = new StringBuffer();

 char c;

 for (int i = 0, n = contents.length(); i < n; i++) {

 // Get the next character

 c = contents.charAt(i);

 // Check for newline

 if (c == '\n') {

 printBuffer();

 printNewline();

 }

 // Check for tab

 else if (c == '\t') {

 xPos += tabWidth;

 }

 else {

 buf.append(c);

 // Check for space

 if (Character.isWhitespace(c)) {

 printBuffer();

 }

 }

 }

 printer.endPage();

 printer.endJob();

 gc.dispose();

 }

 }

 /**

 * Prints the contents of the buffer

 */

 void printBuffer() {

 // Get the width of the rendered buffer

 int width = gc.stringExtent(buf.toString()).x;

 // Determine if it fits

 if (xPos + width > bounds.x + bounds.width) {

 // Doesn't fit--wrap

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 printNewline();

 }

 // Print the buffer

 gc.drawString(buf.toString(), xPos, yPos, false);

 xPos += width;

 buf.setLength(0);

 }

 /**

 * Prints a newline

 */

 void printNewline() {

 // Reset x and y locations to next line

 xPos = bounds.x;

 yPos += lineHeight;

 // Have we gone to the next page?

 if (yPos > bounds.y + bounds.height) {

 yPos = bounds.y;

 printer.endPage();

 printer.startPage();

 }

 }

 /**

 * Computes the print area, including margins

 * @param printer the printer

 * @return Rectangle

 */

 Rectangle computePrintArea(Printer printer) {

 // Get the printable area

 Rectangle rect = printer.getClientArea();

 // Compute the trim

 Rectangle trim = printer.computeTrim(0, 0, 0, 0);

 // Get the printer's DPI

 Point dpi = printer.getDPI();

 // Calculate the printable area, using 1 inch margins

 int left = trim.x + dpi.x;

 if (left < rect.x) left = rect.x;

 int right = (rect.width + trim.x + trim.width) - dpi.x;

 if (right > rect.width) right = rect.width;

 int top = trim.y + dpi.y;

 if (top < rect.y) top = rect.y;

 int bottom = (rect.height + trim.y + trim.height) - dpi.y;

 if (bottom > rect.height) bottom = rect.height;

 return new Rectangle(left, top, right - left, bottom - top);

 }

}

Note that the program displays no main window, so it prints the document in the same thread as the main program. In

typical programs, you'll usually spawn your printing code in a separate thread, so you don't tie up the UI.

Printing Graphics

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

To print graphics, you must address the same physical paper constraints that you do with text. You calculate the

margins the same way, of course, but you likely scale any images according to the printer's DPI to fit the page. After

calculating the scale factor, you pass it to the drawing methods that accept scale factors.

The ImagePrinterExample program in Listing 12-3 prints the contents of an image file, scaling it to fit the page. It first

presents a file selection dialog, allowing you to select an image. It then presents a printer selection dialog so you can

select the desired printer. It then prints the image.

Listing 12-3: ImagePrinterExample.java

package examples.ch12;

import org.eclipse.swt.*;

import org.eclipse.swt.graphics.*;

import org.eclipse.swt.printing.*;

import org.eclipse.swt.widgets.*;

/**

 * This class demonstrates printing images

 */

public class ImagePrinterExample {

 /**

 * The application entry point

 * @param args the command line arguments

 */

public static void main(String[] args) {

 Display display = new Display();

 Shell shell = new Shell(display, SWT.NONE);

 try {

 // Prompt the user for an image file

 FileDialog fileChooser = new FileDialog(shell, SWT.OPEN);

 String fileName = fileChooser.open();

 if (fileName == null) { return; }

 // Load the image

 ImageLoader loader = new ImageLoader();

 ImageData[] imageData = loader.load(fileName);

 if (imageData.length > 0) {

 // Show the Choose Printer dialog

 PrintDialog dialog = new PrintDialog(shell, SWT.NULL);

 PrinterData printerData = dialog.open();

 if (printerData != null) {

 // Create the printer object

 Printer printer = new Printer(printerData);

 // Calculate the scale factor between the screen resolution and printer

 // resolution in order to size the image correctly for the printer

 Point screenDPI = display.getDPI();

 Point printerDPI = printer.getDPI();

 int scaleFactor = printerDPI.x / screenDPI.x;

 // Determine the bounds of the entire area of the printer

 Rectangle trim = printer.computeTrim(0, 0, 0, 0);

 // Start the print job

 if (printer.startJob(fileName)) {

 if (printer.startPage()) {

 GC gc = new GC(printer);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 Image printerImage = new Image(printer, imageData[0]);

 // Draw the image

 gc.drawImage(printerImage, 0, 0, imageData[0].width,

 imageData[0].height, -trim.x, -trim.y,

 scaleFactor * imageData[0].width,

 scaleFactor * imageData[0].height);

 // Clean up

 printerImage.dispose();

 gc.dispose();

 printer.endPage();

 }

 }

 // End the job and dispose the printer

 printer.endJob();

 printer.dispose();

 }

 }

 } catch (Exception e) {

 MessageBox messageBox = new MessageBox(shell, SWT.ICON_ERROR);

 messageBox.setMessage("Error printing test image");

 messageBox.open();

 }

 }

}

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Web Browsing

Delivering dynamic content to your applications through the Internet can differentiate them from the heap of me-too

programs. SWT offers a Web-browsing component—one that supports both Hypertext Transfer Protocol (HTTP) and

Hypertext Transfer Protocol Secure (HTTPS), as well as JavaScript—that you can embed in your applications, along

with an API for controlling that component. Although published, the browser API is still in flux, and might change up to

the release of SWT 3.0.

Caution The Web browser API might change. The present chapter accurately reflects the API at the time of this writing.

Only the following platforms support the Web browser component:

Windows (requires Internet Explorer 5.0 or greater)

Linux GTK (requires Mozilla 1.5 GTK2)

Linux Motif (requires Mozilla 1.5 GTK2)

Photon

Getting the Web browser component to work under Linux presents some challenges; see the sidebar "Using the SWT

Browser Under Linux" for more details.

Using the SWT Browser Under Linux

Whereas running SWT's Web browsing component under Windows requires only that Internet Explorer 5.0 or

later be installed, running under Linux can prove daunting. The SWT FAQ found at

http://dev.eclipse.org/viewcvs/index.cgi/%7Echeckout%7E/platform-swt-home/faq.html#mozillaredhat states the

following:

Q: Which version of Mozilla do I need to install to run the SWT Browser on Linux

GTK or Linux Motif (RedHat 9 users)?

Q: Which version of Mozilla do I need to install to run the SWT Browser on Linux

GTK or Linux Motif (non RedHat 9 users)?

Answers

A: You need the Mozilla version 1.5 GTK2 RPMs for RedHat9. These RPMs can be

downloaded from the Mozilla ftp site.

Uninstall any prior Mozilla version

Install Mozilla into the default folder set by the RPM

(/usr/lib/mozilla-1.5). If you install Mozilla into a non default folder, you

will need to set the LD_LIBRARY_PATH to your custom mozilla folder

before executing an application using the SWT Browser widget.

Run Mozilla once. Verify the application opens HTML documents

correctly. Check the version number (1.5) in the Mozilla About dialog.

Verify you now have the following Mozilla configuration file:

/etc/gre.conf. You can now use the SWT Browser widget.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://dev.eclipse.org/viewcvs/index.cgi/%7Echeckout%7E/platform-swt-home/faq.html#mozillaredhat

A: You need the Mozilla version 1.5 GTK2.

Check if your Linux distribution provides Mozilla 1.5 GTK2. Install this

build if it is available. Otherwise you need to download the Mozilla 1.5

source code from the Mozilla website and follow their build

instructions. In this case you need to configure the Mozilla makefile to

build a Mozilla GTK2 non debug build.

Uninstall any prior Mozilla version

You must ensure the Mozilla 1.5 GTK2 build is installed under the

/usr/lib/mozilla-1.5 folder. If you install Mozilla into a different folder,

you will need to set the LD_LIBRARY_PATH to your custom mozilla

folder before executing an application using the SWT Browser widget.

Run Mozilla once. Verify the application runs correctly and check the

version number (1.5) in the Mozilla About dialog. Verify you now have

the following configuration file /etc/gre.conf. You can now use the SWT

Browser widget.

Follow these instructions before attempting to use SWT's Web browsing component in

your applications. Understand as well that your target audience must also install Mozilla

1.5 GTK2.

The org.eclipse.swt.browser.Browser class represents the Web browser component, and shouldn't be subclassed. It

offers a single constructor:

Browser(Composite parent, int style)

You can pass SWT.BORDER for style to create a border around the browser, or SWT.NONE for no border. And no, you

can't currently use Mozilla on Windows, however much the mix of open source and closed source might rankle.

A Web browser, left to itself, remains conspicuously blank and uninspiring. It depends on Web pages to provide

content. Browser's method for opening a Web page, setUrl(), takes a Uniform Resource Locator (URL) as a parameter.

It returns a boolean for success or failure, but it measures as success only that the URL-opening mechanism worked.

Hitting an unreachable or nonexistent URL, one that returns a 404 to the browser, still returns true.

Caution Although setUrl() returns success or failure, it doesn't indicate if a page was successfully received.

The ShowSlashdot program in Listing 12-4 creates a Web browser component and opens the Slashdot home page.

One wonders if the popularity of this book might cause the Slashdot site to be Slashdotted . . . probably not.

Listing 12-4: ShowSlashdot.java

package examples.ch12;

import org.eclipse.swt.SWT;

import org.eclipse.swt.browser.*;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.widgets.*;

/**

 * This class uses a web browser to display Slashdot's home page

 */

public class ShowSlashdot {

 /**

 * Runs the application

 */

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 public void run() {

 Display display = new Display();

 Shell shell = new Shell(display);

 shell.setText("Slashdot");

 createContents(shell);

 shell.open();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

 display.dispose();

 }

 /**

 * Creates the main window's contents

 *

 * @param shell the main window

 */

 private void createContents(Shell shell) {

 shell.setLayout(new FillLayout());

 // Create a web browser

 Browser browser = new Browser(shell, SWT.NONE);

 // Navigate to Slashdot

 browser.setUrl("http://slashdot.org");

 }

 /**

 * The application entry point

 *

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 new ShowSlashdot().run();

 }

}

The browser code for opening and displaying Slashdot's home page totals two lines:

Browser browser = new Browser(shell, SWT.NONE);

browser.setUrl("http://slashdot.org");

Figure 12-4 shows this program displaying early morning headlines from January 13, 2004. Because this application

doesn't create an address bar, you can't type a different URL to navigate to. However, notice that the browser

functions fully; you can log in, click links, and fill out forms.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Figure 12-4: A Web browser displaying Slashdot's home page

Controlling the Browser

From their early Mosaic incarnation, Web browsers have offered forward and back navigation. To counter the

possibility of network issues, they've offered the ability to stop the loading of a page. They've also supported refreshing

the current page. SWT's Web browser offers these methods and more, listed in Table 12-10. The section titled

"Responding to Events" provides more information about the events and listeners in Browser's API.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig543%5F01%5F0%2Ejpg

Table 12-10: Browser Methods

Method Description

void addCloseWindowListener

(CloseWindowListener listener)
Adds a listener to the notification list that's notified when the

parent window should be closed.

void addLocationListener (LocationListener

listener)
Adds a listener to the notification list that's notified when the

current location is about to change or has changed.

void addOpenWindowListener

(OpenWindowListener listener)
Adds a listener to the notification list that's notified when a

new window should be created.

void addProgressListener (ProgressListener

listener)
Adds a listener to the notification list that's notified when

progress is made on loading the current document, and also

when loading is complete.

void addStatusTextListener

(StatusTextListener listener)
Adds a listener to the notification list that's notified when the

status text changes.

void addVisibilityWindowListener

(VisibilityWindowListener listener)
Adds a listener to the notification list that's notified when this

browser receives a request to show or hide itself.

boolean back() Takes the browser back one page in its history. Returns true

for a successful operation, or false for an unsuccessful

operation.

boolean forward() Takes the browser forward one page in its history. Returns

true for a successful operation, or false for an unsuccessful

operation.

String getUrl() Returns this browser's current URL, or an empty string if it

has no current URL.

void refresh() Refreshes the current page.

void removeCloseWindowListener

(CloseWindowListener listener)
Removes the specified listener from the notification list.

void removeLocationListener

(LocationListener listener)
Removes the specified listener from the notification list.

void removeOpenWindowListener

(OpenWindowListener listener)
Removes the specified listener from the notification list.

void removeProgressListener

(ProgressListener listener)
Removes the specified listener from the notification list.

void removeStatusTextListener

(StatusTextListener listener)
Removes the specified listener from the notification list.

void removeVisibilityWindowListener

(VisibilityWindowListener listener)
Removes the specified listener from the notification list.

boolean setText(String html) Renders the HTML code specified by html. Returns true for a

successful operation, or false for an unsuccessful operation.

boolean setUrl(String url) Loads the URL specified by url. Returns true for a successful

operation, or false for an unsuccessful operation.

void stop() Stops loading the current page. Note that you don't have to

write multithreading code to use this method.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

The SimpleBrowser program in Listing 12-5 displays an address bar, so users can type a target URL, along with a Go

button to trigger loading. It also sports Back, Forward, Refresh, and Stop buttons. You probably won't be tempted to

use SimpleBrowser as your full-time Web browser, but you could.

Listing 12-5: SimpleBrowser.java

package examples.ch12;

import org.eclipse.swt.SWT;

import org.eclipse.swt.browser.*;

import org.eclipse.swt.events.*;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.widgets.*;

/**

 * This class implements a web browser

 */

public class SimpleBrowser {

 /**

 * Runs the application

 */

 public void run() {

 Display display = new Display();

 Shell shell = new Shell(display);

 shell.setText("Simple Browser");

 createContents(shell);

 shell.open();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

 display.dispose();

 }

 /**

 * Creates the main window's contents

 *

 * @param shell the main window

 */

 private void createContents(Shell shell) {

 shell.setLayout(new FormLayout());

 // Create the composite to hold the buttons and text field

 Composite controls = new Composite(shell, SWT.NONE);

 FormData data = new FormData();

 data.top = new FormAttachment(0, 0);

 data.left = new FormAttachment(0, 0);

 data.right = new FormAttachment(100, 0);

 controls.setLayoutData(data);

 // Create the web browser

 final Browser browser = new Browser(shell, SWT.NONE);

 data = new FormData();

 data.top = new FormAttachment(controls);

 data.bottom = new FormAttachment(100, 0);

 data.left = new FormAttachment(0, 0);

 data.right = new FormAttachment(100, 0);

 browser.setLayoutData(data);

 // Create the controls and wire them to the browser

 controls.setLayout(new GridLayout(6, false));

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 // Create the back button

 Button button = new Button(controls, SWT.PUSH);

 button.setText("Back");

 button.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 browser.back();

 }

 });

 // Create the forward button

 button = new Button(controls, SWT.PUSH);

 button.setText("Forward");

 button.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 browser.forward();

 }

 });

 // Create the refresh button

 button = new Button(controls, SWT.PUSH);

 button.setText("Refresh");

 button.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 browser.refresh();

 }

 });

 // Create the stop button

 button = new Button(controls, SWT.PUSH);

 button.setText("Stop");

 button.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 browser.stop();

 }

 });

 // Create the address entry field and set focus to it

 final Text url = new Text(controls, SWT.BORDER);

 url.setLayoutData(new GridData(GridData.FILL_HORIZONTAL));

 url.setFocus();

 // Create the go button

 button = new Button(controls, SWT.PUSH);

 button.setText("Go");

 button.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 browser.setUrl(url.getText());

 }

 });

 // Allow users to hit enter to go to the typed URL

 shell.setDefaultButton(button);

 }

 /**

 * The application entry point

 *

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 new SimpleBrowser().run();

 }

}

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Figure 12-5 shows the SimpleBrowser program displaying Apress's Web site.

Figure 12-5: The SimpleBrowser program

Responding to Events

You might have noticed the unidirectional nature of SimpleBrowser's address field. Typing a URL into it and clicking

the Go button loads that URL. However, clicking a link within that page loads the new URL, but doesn't update the

address field with the new URL. To detect when users click links, as well as to detect various other events, you must

add event handling to your Browser objects. Browser supports the following listeners:

CloseWindowListener

LocationListener

OpenWindowListener

ProgressListener

StatusTextListener

VisibilityWindowListener

Users have come to expect functionality such as animated progress loaders and status-bar messages from their

browsers. You must handle events to have any hope of competing with Internet Explorer, Mozilla, Netscape, Opera,

Konqueror, Safari, Galeon, et al.

Handling CloseWindowListener

Most applications can be closed using platform-specific actions, usually by clicking a standard close button on the title

bar of the application's main window, or selecting File ? Exit from the application's main menu. However, HTML and

JavaScript present an interesting twist: together, they can close a browser window. For example, the following HTML

link closes the browser window:

Close this Window

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig547%5F01%5F0%2Ejpg

When the browser closes, you'll usually want to close the browser's parent window, or the browser's parent tab if

you've created a tabbed interface for your browser application. To receive notification when the browser closes, add an

event handler that implements the CloseWindowListener interface. It declares a single method:

public void close(WindowEvent event)

In addition to the members inherited from TypedEvent, the WindowEvent object that close() receives has three fields:

Browser browser

Point location

Point size

However, these members are all null when CloseWindowListeners are notified. The member you'll likely work with in

your close() method is one inherited from TypedEvent: widget, which references the browser that's closing. You can get

the widget's parent shell and close it, as the following example does:

public class SampleCloseWindowListener implements CloseWindowListener {

 // Called when the browser closes

 public void close(WindowEvent event) {

 // Get the browser that's closing

 Browser browser = (Browser) event.widget;

 // Get the browser's parent shell

 Shell shell = browser.getShell();

 // Close the parent shell

 shell.close();

 }

}

Using LocationListener

The "Location" in LocationListener refers to URLs. Specifically, it refers to the URL the browser is loading. The

LocationListener interface defines two methods:

void changed(LocationEvent event)

void changing(LocationEvent event)

changed() is called after the displayed location changes, while changing() is called when a location change has been

requested, but the location hasn't yet changed. SWT includes a LocationAdapter class that implements the

LocationListener interface, so you can subclass LocationAdapter and override only one of the methods if you wish.

LocationEvent has two fields:

boolean cancel

String location

You can set cancel to true in your changing() method to cancel loading the requested URL. location contains the

requested URL; changing this value has no effect. A sample LocationListener might block attempts to go to

pornographic sites (those with "xxx" in the URL), and log all loaded URLs. Its code might look like this:

public class SampleLocationListener implements Listener {

 // This method is called after the location has changed

 public void changed(LocationEvent event) {

 // Log the URL to stdout

 System.out.println(event.location);

 }

 // This method is called before the location has changed

 public void changing(LocationEvent event) {

 // Don't load pornographic sites

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 // Do they all have "xxx" in the URL?

 if (event.location.indexOf("xxx") != -1) {

 event.cancel = true;

 }

 }

}

Using OpenWindowListener

Browser conventions allow spawning new browser windows. Things that can trigger a new browser window include

the following:

The user right-clicks a link and selects Open in New Window from the context menu (note that you

must build this functionality yourself).

The user holds down Shift while clicking a link.

The user clicks a link that has a named target for which no browser currently exists.

When the user performs an action within the browser that spawns a new browser window, any OpenWindowListeners

are first notified. OpenWindowListener declares one method:

public void open(WindowEvent event)

As with CloseWindowListener, the three WindowEvent fields (browser, location, and field) are null when passed to open(),

and the widget field inherited from TypedEvent contains a reference to the current browser.

Using ProgressListener

From the spinning "e" to the shining "N" to the progress bar, and everything in between, browsers have responded to

network latency by keeping something moving while waiting for pages to load. Animated feedback does much to

mollify impatient users. You can use ProgressListener implementations to receive progress events while URLs load.

ProgressListener declares two methods:

void changed(ProgressEvent event)

void completed(ProgressEvent event)

As loading of a URL progresses, changed() is called. When the URL finishes loading, complete() is called. SWT

includes a class called ProgressAdapter that implements both methods, so you can extend ProgressAdapter and

override only one of the methods, if you wish. ProgressEvent contains two fields:

int current

int total

When changed() is called, current contains an int representing the current progress of the load, while total contains an int

representing the total to load. These numbers are more arbitrary than accurate, but give some indication of what's

going on. When completed() is called, neither field contains meaningful data.

public class SampleProgressListener implements ProgressListener {

 // This method is called when progress is made

 public void changed(ProgressEvent event) {

 System.out.println(event.current + " of " + event.total + " loaded");

 }

 // This method is called when the page finishes loading

 public void completed(ProgressEvent event) {

 System.out.println("Loaded!");

 }

}

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Using StatusTextListener

Most browsers feature a status bar along the bottom of the browser window that reports information to the user. For

instance, hover over a link in your default browser to see the target URL for that link displayed in the status bar.

However, SWT's Browser class has no status bar, so you must manage status messages yourself. SWT does provide

StatusTextListener to assist you in status reporting. It declares a single method:

void changed(StatusTextEvent event)

changed() is called when the status text has changed. StatusTextEvent contains a single field, text, that contains the

new status text. The following example StatusTextListener implementation prints each status text change to stdout:

public class SampleStatusTextListener implements StatusTextListener {

 public void changed(StatusTextEvent event) {

 System.out.println(event.text);

 }

}

Using VisibilityWindowListener

You can detect when the browser is about to be hidden, or redisplayed after being hidden, using a

VisibilityWindowListener. It defines two methods:

void hide(WindowEvent event)

void show(WindowEvent event)

hide() is called when the browser is about to be hidden, and show() is called when the browser is about to be

redisplayed. Implement these methods to react to these events.

Advancing the Browser

Adding event handling to a browser increases its usability dramatically. The AdvancedBrowser program in Listing 12-6

leverages event handling to do the following:

Keep the address text field in sync with the displayed URL.

Display status messages in a status bar.

Display progress information as a percentage.

Close the parent shell when the browser closes.

Listing 12-6: AdvancedBrowser.java

package examples.ch12;

import org.eclipse.swt.SWT;

import org.eclipse.swt.browser.*;

import org.eclipse.swt.events.*;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.widgets.*;

/**

 * This class implements a web browser

 */

public class AdvancedBrowser {

 // The "at rest" text of the throbber

 private static final String AT_REST = "Ready";

 /**

 * Runs the application

 *

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 * @param location the initial location to display

 */

 public void run(String location) {

 Display display = new Display();

 Shell shell = new Shell(display);

 shell.setText("Advanced Browser");

 createContents(shell, location);

 shell.open();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

 display.dispose();

 }

 /**

 * Creates the main window's contents

 *

 * @param shell the main window

 * @param location the initial location

 */

 public void createContents(Shell shell, String location) {

 shell.setLayout(new FormLayout());

 // Create the composite to hold the buttons and text field

 Composite controls = new Composite(shell, SWT.NONE);

 FormData data = new FormData();

 data.top = new FormAttachment(0, 0);

 data.left = new FormAttachment(0, 0);

 data.right = new FormAttachment(100, 0);

 controls.setLayoutData(data);

 // Create the status bar

 Label status = new Label(shell, SWT.NONE);

 data = new FormData();

 data.left = new FormAttachment(0, 0);

 data.right = new FormAttachment(100, 0);

 data.bottom = new FormAttachment(100, 0);

 status.setLayoutData(data);

 // Create the web browser

 final Browser browser = new Browser(shell, SWT.BORDER);

 data = new FormData();

 data.top = new FormAttachment(controls);

 data.bottom = new FormAttachment(status);

 data.left = new FormAttachment(0, 0);

 data.right = new FormAttachment(100, 0);

 browser.setLayoutData(data);

 // Create the controls and wire them to the browser

 controls.setLayout(new GridLayout(7, false));

 // Create the back button

 Button button = new Button(controls, SWT.PUSH);

 button.setText("Back");

 button.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 browser.back();

 }

 });

 // Create the forward button

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 button = new Button(controls, SWT.PUSH);

 button.setText("Forward");

 button.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 browser.forward();

 }

 });

 // Create the refresh button

 button = new Button(controls, SWT.PUSH);

 button.setText("Refresh");

 button.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 browser.refresh();

 }

 });

 // Create the stop button

 button = new Button(controls, SWT.PUSH);

 button.setText("Stop");

 button.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 browser.stop();

 }

 });

 // Create the address entry field and set focus to it

 final Text url = new Text(controls, SWT.BORDER);

 url.setLayoutData(new GridData(GridData.FILL_HORIZONTAL));

 url.setFocus();

 // Create the go button

 button = new Button(controls, SWT.PUSH);

 button.setText("Go");

 button.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 browser.setUrl(url.getText());

 }

 });

 // Create the animated "throbber"

 Label throbber = new Label(controls, SWT.NONE);

 throbber.setText(AT_REST);

 // Allow users to hit enter to go to the typed URL

 shell.setDefaultButton(button);

 // Add event handlers

 browser.addCloseWindowListener(new AdvancedCloseWindowListener());

 browser.addLocationListener(new AdvancedLocationListener(url));

 browser.addProgressListener(new AdvancedProgressListener(throbber));

 browser.addStatusTextListener(new AdvancedStatusTextListener(status));

 // Go to the initial URL

 if (location != null) {

 browser.setUrl(location);

 }

 }

 /**

 * This class implements a CloseWindowListener for AdvancedBrowser

 */

class AdvancedCloseWindowListener implements CloseWindowListener {

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 /**

 * Called when the parent window should be closed

 */

 public void close(WindowEvent event) {

 // Close the parent window

 ((Browser) event.widget).getShell().close();

 }

}

/**

 * This class implements a LocationListener for AdvancedBrowser

 */

class AdvancedLocationListener implements LocationListener {

 // The address text box to update

 private Text location;

 /**

 * Constructs an AdvancedLocationListener

 *

 * @param text the address text box to update

 */

 public AdvancedLocationListener(Text text) {

 // Store the address box for updates

 location = text;

 }

 /**

 * Called before the location changes

 *

 * @param event the event

 */

 public void changing(LocationEvent event) {

 // Show the location that's loading

 location.setText("Loading " + event.location + "...");

 }

 /**

 * Called after the location changes

 *

 * @param event the event

 */

 public void changed(LocationEvent event) {

 // Show the loaded location

 location.setText(event.location);

 }

}

/**

 * This class implements a ProgressListener for AdvancedBrowser

 */

class AdvancedProgressListener implements ProgressListener {

 // The label on which to report progress

 private Label progress;

 /**

 * Constructs an AdvancedProgressListener

 *

 * @param label the label on which to report progress

 */

 public AdvancedProgressListener(Label label) {

 // Store the label on which to report updates

 progress = label;

 }

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 /**

 * Called when progress is made

 *

 * @param event the event

 */

 public void changed(ProgressEvent event) {

 // Avoid divide-by-zero

 if (event.total != 0) {

 // Calculate a percentage and display it

 int percent = (int) (event.current / event.total);

 progress.setText(percent + "%");

 } else {

 // Since we can't calculate a percent, show confusion :-)

 progress.setText("???");

 }

 }

 /**

 * Called when load is complete

 *

 * @param event the event

 */

 public void completed(ProgressEvent event) {

 // Reset to the "at rest" message

 progress.setText(AT_REST);

 }

}

/**

 * This class implements a StatusTextListener for AdvancedBrowser

 */

class AdvancedStatusTextListener implements StatusTextListener {

 // The label on which to report status

 private Label status;

 /**

 * Constructs an AdvancedStatusTextListener

 *

 * @param label the label on which to report status

 */

 public AdvancedStatusTextListener(Label label) {

 // Store the label on which to report status

 status = label;

 }

 /**

 * Called when the status changes

 *

 * @param event the event

 */

 public void changed(StatusTextEvent event) {

 // Report the status

 status.setText(event.text);

 }

 }

 /**

 * The application entry point

 *

 * @param args the command line arguments

 */

 public static void main(String[] args) {

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 new AdvancedBrowser().run(args.length == 0 ? null : args[0]);

 }

}

Figure 12-6 shows the AdvancedBrowser program displaying eBay's home page.

Figure 12-6: The AdvancedBrowser program showing the eBay home page

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig557%5F01%5F0%2Ejpg

Digging into Programs

You can launch other programs from within your applications using java.lang.Runtime's exec() family of methods. You

don't need any help from SWT to accomplish this. For example, the following snippet launches Notepad:

Runtime.getRuntime().exec("notepad.exe");

Suppose, however, that you have the name of a data file, and you want to run the appropriate program for that data

file, loading the data file into the program. exec() won't help you in that situation. SWT comes to the rescue in the form

of the Program class, which represents programs and their associated extensions. That it works with extensions tips off

its Windows centricity, but it also works, albeit with varying results, on other platforms. For example, problems with the

K Desktop Environment (KDE) render Program virtually useless when run under that desktop environment, while

running Program under Gnome works fine.

In addition to launching files, Program can list the known programs on your system, the known file extensions, and the

program associated with a specific file extension. Table 12-11 lists Program's methods.

Table 12-11: Program Methods

Method Description

boolean equals(Object obj) Returns true if this Program represents the same program that obj represents.

boolean execute(String

fileName)
Executes the program represented by this Program, passing fileName as an

argument. Returns true if the program successfully launches. Otherwise,

returns false.

static Program findProgram

(String extension)
Returns the program that handles the specified extension.

static String[]

getExtensions()
Returns all the registered extensions on the system.

ImageData getImageData() Returns the image data associated with this Program.

String getName() Gets a name for the program. This isn't the executable name, but rather the

name by which the program is known by the system. On Windows, it's the

name in the Registry.

static Program[]

getPrograms()
Returns all the registered programs on the system.

static boolean launch(String

filename)
Launches the file specified by filename using the default program for that file

extension.

String toString() Returns a user-friendly string representing this Program.

For example, to launch an HTML file in the default browser, use code such as this:

Program.launch("index.html");

This code automatically looks up which program to use. You can do the lookup yourself using the findProgram() method

to get the Program object that represents the default browser. Then, you call execute(), like this:

Program program = Program.findProgram(".html");

program.execute("index.html");

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

The ShowPrograms program in Listing 12-7 exercises Program's capabilities. It displays, in a combo, all the extensions

on your system. Selecting an extension from the combo displays the program associated with that extension. In

addition, ShowProgams displays all the programs known to your system in a list box. Double-click a program in the list

to launch the program. You can specify the data file for the program to open by typing the full path to the file in the

Data File text box. This uses the execute() method to launch the program. Alternatively, you can click the button labeled

"Use Program.launch() instead of Program.execute()" to launch the program and data file using the launch() method.

Listing 12-7: ShowPrograms.java

package examples.ch12;

import org.eclipse.swt.SWT;

import org.eclipse.swt.events.*;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.program.Program;

import org.eclipse.swt.widgets.*;

/**

 * This class shows the extensions on the system and their associated programs.

 */

public class ShowPrograms {

 /**

 * Runs the application

 */

 public void run() {

 Display display = new Display();

 Shell shell = new Shell(display);

 shell.setText("Show Programs");

 createContents(shell);

 shell.open();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

 display.dispose();

 }

 /**

 * Creates the main window's contents

 *

 * @param shell the main window

 */

 private void createContents(Shell shell) {

 shell.setLayout(new GridLayout(2, false));

 // Create the label and combo for the extensions

 new Label(shell, SWT.NONE).setText("Extension:");

 Combo extensionsCombo = new Combo(shell, SWT.BORDER | SWT.READ_ONLY);

 extensionsCombo.setLayoutData(new GridData(GridData.FILL_HORIZONTAL));

 // Create the labels

 new Label(shell, SWT.NONE).setText("Program:");

 final Label programName = new Label(shell, SWT.NONE);

 programName.setLayoutData(new GridData(GridData.FILL_HORIZONTAL));

 // Fill the combo with the extensions on the system

 String[] extensions = Program.getExtensions();

 for (int i = 0, n = extensions.length; i < n; i++) {

 extensionsCombo.add(extensions[i]);

 }

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 // Add a handler to get the selected extension, look up the associated

 // program, and display the program's name

 extensionsCombo.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 Combo combo = (Combo) event.widget;

 // Get the program for the extension

 Program program = Program.findProgram(combo.getText());

 // Display the program's name

 programName.setText(program == null ? "(None)" : program.getName());

 }

 });

 // Create a list box to show all the programs on the system

 List allPrograms = new List(shell, SWT.SINGLE | SWT.BORDER | SWT.H_SCROLL

 | SWT.V_SCROLL);

 GridData data = new GridData(GridData.FILL_BOTH);

 data.horizontalSpan = 2;

 allPrograms.setLayoutData(data);

 // Put all the known programs into the list box

 Program[] programs = Program.getPrograms();

 for (int i = 0, n = programs.length; i < n; i++) {

 String name = programs[i].getName();

 allPrograms.add(name);

 allPrograms.setData(name, programs[i]);

 }

 // Add a field for a data file

 new Label(shell, SWT.NONE).setText("Data File:");

 final Text dataFile = new Text(shell, SWT.BORDER);

 dataFile.setLayoutData(new GridData(GridData.FILL_HORIZONTAL));

 // Double-clicking a program in the list launches the program

 allPrograms.addMouseListener(new MouseAdapter() {

 public void mouseDoubleClick(MouseEvent event) {

 List list = (List) event.widget;

 if (list.getSelectionCount() > 0) {

 String programName = list.getSelection()[0];

 Program program = (Program) list.getData(programName);

 program.execute(dataFile.getText());

 }

 }

 });

 // Let them use launch instead of execute

 Button launch = new Button(shell, SWT.PUSH);

 data = new GridData(GridData.FILL_HORIZONTAL);

 data.horizontalSpan = 2;

 launch.setLayoutData(data);

 launch.setText("Use Program.launch() instead of Program.execute()");

 launch.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 // Use launch

 Program.launch(dataFile.getText());

 }

 });

 }

 /**

 * The application entry point

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 *

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 new ShowPrograms().run();

 }

}

Figure 12-7 shows the program running on a Windows XP box with several applications installed. You can see that

we're WinCustomize and Paint Shop Pro fans.

Figure 12-7: The ShowPrograms program

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig562%5F01%5F0%2Ejpg

Summary

You might not include all the topics covered in this chapter in all your applications. You might not include any of them

in any of your programs. However, skipping this chapter's solutions where users expect them shortchanges your

applications and decimates the audience willing to use them. The advanced topics covered in this chapter can make

the difference between the latest rage and the latest shelfware.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Part III: Using JFace

Chapter List

Chapter 13: Your First JFace Application

Chapter 14: Creating Viewers

Chapter 15: JFace Dialogs

Chapter 16: User Interaction

Chapter 17: Using Preferences

Chapter 18: Editing Text

Chapter 19: Miscellaneous Helper Classes

Chapter 20: Creating Wizards

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Chapter 13: Your First JFace Application

Overview

Picasso, in his abstract art, painted only the essential elements of his subject matter. Business proposals and other

writings often carry abstracts, or summarizations, of their contents. In this vein, object-oriented programming preaches

abstraction: the elimination of the extraneous and the retention of only the necessary. For example, if you're

developing management software for veterinarians, you'll create a Dog class (derived from a Pet class) that contains

pertinent data about dogs. This Dog class represents an abstraction of real-life dogs, in that it doesn't model a dog

exactly; it only models the aspects of dogs necessary for the software. For example, you wouldn't include a chew(Shoe

shoe) method or a lickEmbarrassingly() method because your software has no need to model these dog actions.

Distilling an object to the minimum representation required reduces complexity, accelerates development, and slashes

defects.

JFace layers an abstraction on top of SWT. In SWT, you typically create widgets, add data to them, and call methods

on them. JFace steps back from the nitty-gritty of working directly with widgets, wrapping them in layers to make the

widgets simpler to use. It hides many implementation details and reduces the number of lines of code you must write

to accomplish your objectives.

Unlike SWT, JFace has no ready-made distribution apart from Eclipse, which means that you must install Eclipse to

obtain JFace. JFace doesn't require that you retain Eclipse on your hard drive, so feel free to copy the JFace JAR files

to another directory and remove Eclipse if you'd like. The JFace JAR files all reside beneath the eclipse/plugins

directory, spread across various JAR files:

jface.jar in org.eclipse.jface_3.0.0

runtime.jar in org.eclipse.core.runtime_3.0.0

osgi.jar in org.eclipse.osgi_3.0.0

jfacetext.jar in org.eclipse.jface.text_3.0.0

text.jar in org.eclipse.text_3.0.0

You can copy these files wherever you'd like, and you must distribute them (or at least the ones you use) with your

JFace applications. You won't necessarily use all of these in each of your applications, so you can distribute only the

ones your application relies on.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Greeting the World with JFace

The HelloWorld program greets the world anew, but this time using JFace. Because JFace adds some Java libraries

(but no native libraries—remember that it builds on SWT), you'll need a new Ant file (see Listing 13-1) to build and run

the program.

Listing 13-1: build.xml

<project name="GenericJFaceApplication" default="run" basedir=".">

 <description>

 Generic JFace Application build and execution file

 </description>

 <property name="main.class" value=""/>

 <property name="src" location="."/>

 <property name="build" location="."/>

 <!-Update location to match your eclipse home directory -->

 <property name="ecl.home" location="c:\eclipse"/>

 <!-Update value to match your windowing system (win32, gtk, motif, etc.) -->

 <property name="win.sys" value="win32"/>

 <!-Update value to match your os (win32, linux, etc.) -->

 <property name="os.sys" value="win32"/>

 <!-Update value to match your architecture -->

 <property name="arch" value="x86"/>

 <!-- Update value to match your SWT version -->

 <property name="swt.ver" value="3.0.0"/>

 <!-- Do not edit below this line -->

 <property name="swt.subdir"

location="${ecl.home}/plugins/org.eclipse.swt.${win.sys}_${swt.ver}"/>

 <property name="swt.jar.lib" location="${swt.subdir}/ws/${win.sys}"/>

 <property name="swt.jni.lib"

 location="${swt.subdir}/os/${os.sys}/${arch}"/>

 <property name="runtime.jar.lib"

 location="${ecl.home}/plugins/org.eclipse.core.runtime_${swt.ver}"/>

 <property name="jface.jar.lib"

 location="${ecl.home}/plugins/org.eclipse.jface_${swt.ver}"/>

 <property name="osgi.jar.lib"

 location="${ecl.home}/plugins/org.eclipse.osgi_${swt.ver}"/>

 <property name="jfacetext.jar.lib"

 location="${ecl.home}/plugins/org.eclipse.jface.text_${swt.ver}"/>

 <property name="text.jar.lib"

 location="${ecl.home}/plugins/org.eclipse.text_${swt.ver}"/>

 <path id="project.class.path">

 <pathelement path="${build}"/>

 <fileset dir="${swt.jar.lib}">

 <include name="**/*.jar"/>

 </fileset>

 <fileset dir="${runtime.jar.lib}">

 <include name="**/*.jar"/>

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 </fileset>

 <fileset dir="${jface.jar.lib}">

 <include name="**/*.jar"/>

 </fileset>

 <fileset dir="${osgi.jar.lib}">

 <include name="**/*.jar"/>

 </fileset>

 <fileset dir="${jfacetext.jar.lib}">

 <include name="**/*.jar"/>

 </fileset>

 <fileset dir="${text.jar.lib}">

 <include name="**/*.jar"/>

 </fileset>

 </path>

 <target name="compile">

 <javac srcdir="${src}" destdir="${build}">

 <classpath refid="project.class.path"/>

 </javac>

 </target>

 <target name="run" depends="compile">

 <java classname="${main.class}" fork="true" failonerror="true">

 <jvmarg value="-Djava.library.path=${swt.jni.lib}"/>

 <classpath refid="project.class.path"/>

 </java>

 </target>

</project>

As you can see, this build.xml file adds some JFace JAR files to the classpath. Make sure to update this file with your

operating system, windowing system, and so on, following the comments in the file. If you're using Eclipse, you can

add these JAR files to the Java Build Path section of the project's properties page.

Listing 13-2 contains the source code for HelloWorld.

Listing 13-2: HelloWorld.java

package examples.ch13;

import org.eclipse.jface.window.ApplicationWindow;

import org.eclipse.swt.SWT;

import org.eclipse.swt.widgets.*;

/**

 * Your first JFace application

 */

public class HelloWorld extends ApplicationWindow {

 /**

 * HelloWorld constructor

 */

 public HelloWorld() {

 super(null);

 }

 /**

 * Runs the application

 */

 public void run() {

 // Don't return from open() until window closes

 setBlockOnOpen(true);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 // Open the main window

 open();

 // Dispose the display

 Display.getCurrent().dispose();

 }

 /**

 * Creates the main window's contents

 *

 * @param parent the main window

 * @return Control

 */

 protected Control createContents(Composite parent) {

 // Create a Hello, World label

 Label label = new Label(parent, SWT.CENTER);

 label.setText("Hello, World");

 return label;

 }

 /**

 * The application entry point

 *

 * @param args the command line arguments

 */

 public static void main(String[] args) {

new HelloWorld().run();

 }

}

You compile and run HelloWorld just as you did with the SWT programs:

ant -Dmain.class=examples.ch13.HelloWorld

Issue this command from a prompt to see the window shown in Figure 13-1.

Figure 13-1: Hello, World from JFace

One of the first things to notice is that the HelloWorld class subclasses something called ApplicationWindow, which is

JFace's abstraction of Shell. SWT makes you feel guilty any time you type extends into your code editor, because so

many of its classes (including Shell) carry warnings that they're not designed to be subclassed. Don't

worry—subclassing ApplicationWindow is not only legit, it's encouraged.

Next, you can't find the typical SWT event loop:

Display display = new Display();

Shell shell = new Shell();

// Create shell's contents

shell.open();

while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 display.sleep();

 }

}

display.dispose();

In its place, you find the much briefer code:

setBlockOnOpen(true);

open();

Display.getCurrent().dispose();

The first method call, setBlockOnOpen(), sets a flag that, if true, tells the next method call, open(), to enter an event loop

remarkably similar to the familiar SWT event loop. Passing true to setBlockOnOpen() causes open() not to return until

the window is closed. The euphoria of the elegance of JFace fades slightly, however, as you stare at the third method

call: Display.getCurrent().dispose(). You still must dispose your creations. However, it's a small price to pay for the

simplicity of using JFace.

The HelloWorld program doesn't specifically set a layout either, defaulting to an internal class called

ApplicationWindowLayout that should suffice for all your needs. It also never explicitly calls its createContents() method,

relying on the JFace framework to do that. The code is sleeker, exposing far fewer details than the SWT examples in

this book.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Understanding the Relationship between SWT and JFace

Lest you begin to feel that you've wasted your time learning SWT, that once you embrace JFace you'll never see SWT

again, rest assured that SWT does more than simply peek its head through the JFace layer from time to time. Not only

do abstractions leak, but also they never cover everything. You'll get plenty of mileage from your SWT knowledge,

even as you immerse yourself in JFace.

Because JFace uses SWT, and because it builds on top of SWT, it requires both the SWT JAR files and the SWT

native libraries. In other words, your JFace applications require everything your SWT applications do, plus the JFace

JAR files that they use.

Your JFace applications will sometimes be sprinkled, and sometimes smothered, with calls directly to SWT. Use the

JFace abstractions when both available and applicable, and rely on SWT as a fallback position to meet your programs'

requirements.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Understanding the ApplicationWindow Class

The HelloWorld program in this chapter subclasses JFace's ApplicationWindow class. The ApplicationWindow class

represents, as its name suggests, a window in an application. It has a parent Shell, which is passed to the constructor:

ApplicationWindow(Shell parentShell)

If parentShell is null, the ApplicationWindow represents a top-level window. Otherwise, it's a child of parentShell. It

contains support for a menu bar, a toolbar, a coolbar, and a status line.

When you construct an ApplicationWindow, little beyond its construction occurs. The work begins when you call its

open() method, and most of the interesting stuff happens only when the parent Shell is null. In these cases, the parent

Shell is created. Then, configureShell() is called. The ApplicationWindow implementation of configureShell() does the

following:

Sets the default image

Sets a GridLayout

If a menu bar has been set, creates the menu bar

Changes the layout to an ApplicationWindowLayout

If a toolbar has been set, creates the toolbar

If a coolbar has been set, creates the coolbar

If a status line has been set, creates the status line

You can override configureShell() to change the default behavior.

Next, the ApplicationWindow is resized, if necessary, so it's not larger than the display. It's then opened and, if set to

block—that is, setBlockOnOpen(true) has been called—enters the event loop, where it stays until it's closed.

To use ApplicationWindow in your programs, you'll usually create a subclass of ApplicationWindow that contains your

application-specific code. Many of ApplicationWindow's methods, as well as those of its parent class, Window, are

protected. Some you'll call from your derived class, and some you'll override. For example, to add a menu bar to your

ApplicationWindow-derived class, you call the protected method addMenuBar() before the parent Shell has been

created—usually in your constructor. This method calls the protected method createMenuManager(), which you'll override

to create the proper menu for your window. Chapter 16 contains more information on creating menu bars, toolbars,

coolbars, and status lines.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

A Word on WindowManagers

JFace includes a class called WindowManager, which isn't a drop-in for IceWM, sawfish, or Enlightenment. It doesn't

control the appearance of windows. It doesn't manage user interaction with windows. Instead, it simply groups

windows, so you can iterate through them or close them as a group. Instances of WindowManager own both windows

and, optionally, other instances of WindowManager. WindowManager offers two constructors, listed in Table 13-1.

Table 13-1: WindowManager constructors

Constructor Description

WindowManager() Creates a root window manager (that is, one without a parent)

WindowManager(WindowManager parent) Creates a window manager that's a child of parent

Most of WindowManager's methods act only on itself, but the close() method cascades to all child WindowManagers.

Table 13-2 lists WindowManager's methods.

Table 13-2: WindowManager methods

Method Description

void add(Window

window)
Adds the window specified by window to this WindowManager.

boolean close() Closes all windows belonging to this WindowManager, as well as windows

belonging to any child WindowManagers. If any window fails to close, stops trying to

close windows and returns false. Otherwise, returns true.

int getWindowCount() Returns the number of windows belonging to this WindowManager.

Window[]

getWindows()
Returns an array containing all child windows of this WindowManager.

void remove(Window

window)
Removes the window specified by window from this WindowManager.

To use a WindowManager, construct one, add your windows to it, and call methods on it as appropriate. The following

code creates a WindowManager, adds three windows to it, and then closes them all, printing a diagnostic message if

the windows fail to close:

WindowManager wm = new WindowManager();

wm.add(windowOne);

wm.add(windowTwo);

if (!wm.close())

 System.err.println("Windows failed to close");

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Summary

Though you've barely peeled back the cover on JFace, you've already seen some of its benefits. By abstracting some

of the details of SWT, JFace allows you to shift your focus from how your application works to what you want your

application to do. The power of the abstraction eases application development, and represents a mainstay of

object-oriented programming.

Using JFace requires distributing more libraries with your applications. Don't chafe at that, however, as you'll reap the

benefits of using tested code. This should speed your development cycles and reduce your bug counts.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Chapter 14: Creating Viewers

Overview

Presenting hierarchical, ordered, or tabular data in SWT-based applications, using SWT's Tree, List, or Table classes,

is simple. Create the Tree, List, or Table, add the data, and voila: you have a polished view of your data.

However, stuffing data into widgets harbors a dark side: the view owns the data, in defiance of the proven MVC

architecture. No matter how you retrieve the data, you meekly hand it over to the widget, where it lies tightly coupled to

its presentation. You might opt to maintain the data outside the widget as well, taking care to synchronize changes

between the two sets of data, but you'll eventually surrender and allow the widgets to hold your data hostage.

JFace addresses the tight coupling between Tables, Trees, and data, introducing an abstraction layer that acts as a

liaison between the widgets and the data. Instead of shoveling data into the Table or Tree you've created, you provide

the widget interfaces to call that determine how to display the data. You maintain your data outside the widgets, and

achieve the proper decoupling between model and view.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Tree Viewers

Chapter 8 describes SWT's Tree widget, which displays hierarchical data. The Tree widget allows users to expand and

collapse its nodes to display or hide child nodes. As a programmer, you create the Tree widget, add nodes to it,

manage nodes to ascertain that you add children to the correct parents, and in essence duplicate your data structure

in the Tree widget's display.

JFace wraps SWT's Tree widget with a class called TreeViewer . To use a TreeViewer, you construct one. You tell it how

to determine its content (using a class that implements the ITreeContentProvider interface). You tell it how to determine

how to display the content (using a class that implements the ILabelProvider interface). Finally, you pass it the root

node (or nodes) of your data. Using the content and label providers you've specified, TreeViewer assumes the

remaining tasks of displaying your hierarchical data.

Creating a TreeViewer

Create a TreeViewer by calling one of its three constructors, listed in Table 14-1. For example, the following code

creates a TreeViewer as a child of shell:

TreeViewer treeViewer = new TreeViewer(shell);

Table 14-1: TreeViewer Constructors

Constructor Description

TreeViewer(Composite parent) Creates a TreeViewer as a child of parent

TreeViewer(Composite parent, int style) Creates a TreeViewer with the specified style as a child of parent

TreeViewer(Tree tree) Creates a TreeViewer that wraps the tree control specified by tree

The constructors that don't take an existing Tree control create one for you. You can also create a TreeViewer to wrap

an existing Tree control, like this:

Tree tree = new Tree(shell, SWT.SINGLE);

TreeViewer treeViewer = new TreeViewer(tree);

Creating a TreeViewer from an existing Tree control ostensibly has the advantage of giving you a reference to the Tree

control underlying the TreeViewer, but as you'll see, any TreeViewer readily coughs up a reference to the Tree control it

wraps.

Using a TreeViewer

Although your requirements can dictate a more complicated usage of TreeViewer, the general way to use a

TreeViewer—a way that fits most situations—involves the following steps:

Creating a TreeViewer1.

Creating a content provider class and setting it on the TreeViewer using setContentProvider()2.

Creating a label provider class and setting it on the TreeViewer using setLabelProvider()3.

Setting the root input for the tree using setInput()4.

The content provider class, which must implement the ITreeContentProvider interface, returns the content for the tree.

The TreeViewer passes it a parent node, and the content provider returns its child nodes. The label provider class,

which must implement the ILabelProvider interface, returns the labels for the nodes in the tree. The TreeViewer passes it

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

a node, and the label provider returns the label to display. Both the content provider and the label provider can do a

little more than that, as this chapter describes, but at their essence, this is what they do.

To launch the tree, you pass it the root node (or nodes) of your hierarchical data. Using your content and label provider

classes, the TreeViewer takes over to provide a fully navigable tree.

Creating a Content Provider

The content provider provides the content, or data, for the tree. The tree viewer can request the children for a parent

node. It can request the parent for a child node. It can also ask what to do if the underlying data changes. Your content

provider responds to all these requests, and must define the methods from ITreeContentProvider and its superclasses

listed in Table 14-2.

Table 14-2: ITreeContentProvider (and Inherited) Methods

Method Description

void dispose() Called when the TreeViewer is being disposed. In this method,

dispose anything you've created that needs to be disposed.

Object[] getChildren(Object

parentElement)
Called when the TreeViewer wants the children for a parent element.

In this method, return the child elements of the specified parent

element.

Object[] getElements(Object

inputElement)
Called when the TreeViewer wants the root element or elements of

the tree. In this method, return the root element or elements of the

tree.

Object getParent(Object element) Called when the TreeViewer wants the parent for a child element. In

this method, return the parent element of the specified child element.

boolean hasChildren(Object element) Called when the TreeViewer wants to know whether the specified

element has children. In this method, return true if the specified

element has at least one child. Otherwise, return false.

void inputChanged(Viewer viewer,

Object oldInput, Object newInput)
Called when the root underlying data is switched to other root data.

In this method, perform any action appropriate for a data change.

For example, suppose you have a class called Node that represents a node in a hierarchical data structure. It has a

method called getChildren() that returns a List of its child nodes. It has a method called getParent() that returns its parent

node. To use Node with a TreeViewer, you set the root node as the TreeViewer's input. The code might look like this:

TreeViewer treeViewer = new TreeViewer(shell);

treeViewer.setContentProvider(new MyTreeContentProvider());

treeViewer.setLabelProvider(new MyLabelContentProvider());

Node rootNode = new Node();

treeViewer.setInput(rootNode);

The content provider class you create might look like this:

public class MyTreeContentProvider implements ITreeContentProvider {

 public void dispose() {

 // Nothing to dispose

 }

 public Object[] getChildren(Object parentElement) {

 return ((Node) parentElement()).getChildren().toArray();

 }

 public Object[] getElements(Object inputElement) {

 // inputElement is already the root node, so return it in the expected format

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 return new Object[] { inputElement };

 }

 public Object getParent(Object element) {

 return ((Node) element).getParent();

 }

 public boolean hasChildren(Object element) {

 // If the size of the list of children is > 0, return true.

 // Otherwise, return false.

 return ((Node) element).getChildren().size() > 0;

 }

 public void inputChanged(Viewer viewer, Object oldInput, Object newInput) {

 // The root node has changed; load the new data

 newInput.loadData();

 }

}

The names of the methods you define from ITreeContentProvider make clear their usage and what you should do in

them. For example, the purpose of the hasChildren() method is obviously to return whether or not the specified element

has children. The one exception is the inputChanged() method; it's obviously called when the root input changes, but

what should you do there? The preceding example uses this method to load a root node's data. However, a more

common usage is when the viewer listens for changes on the data model, so that it can automatically update when the

underlying data changes. In these cases, you use this method to unregister the viewer as a listener on the old model,

and register it as a listener on the new model. That code might look like this:

public void inputChanged(Viewer viewer, Object oldInput, Object newInput) {

 // Unregister the viewer as a listener of the old model

 if (oldInput != null) {

 ((MyHierarchicalModel) oldInput).removeChangeListener(viewer);

 }

 ((MyHierarchicalModel) newInput).addChangeListener(viewer);

}

However, no matter how much content you add to your TreeViewer, until you tell the TreeViewer what to display, all you

see is an empty box. You must have a label provider to be able to see your tree's content.

Creating a Label Provider

The label provider provides both the text and images, if desired, for the nodes in the tree. Your label provider must

implement the ILabelProvider interface, whose methods are listed in Table 14-3.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Table 14-3: ILabelProvider (and Inherited) Methods

Method Description

void addListener(ILabelProvider

Listener listener)
Called when a listener is added to this label provider. In this method,

add the listener to a list that you maintain.

void dispose() Called when the TreeViewer is being disposed. In this method, dispose

anything you've created that needs to be disposed.

Image getImage(Object element) Called when the TreeViewer wants the image to display for a specific

element. In this method, return the proper image for the specified

element, or null for no image.

String getText(Object element) Called when the TreeViewer wants the label to display for a specific

element. In this method, return the proper text for the specified element.

boolean isLabelProperty(Object

element, String property)
Called when the TreeViewer wants to determine if a change to the

specified property on the specified element would affect the label. In this

method, return true if changing the specified property would affect the

label for the specified element, or false if it wouldn't.

void removeListener(ILabel

ProviderListener listener)
Called when a listener is removed from this label provider. In this

method, remove the listener from a list that you maintain.

To complete the preceding Node example, you create a class that implements ILabelProvider. You decide to call Node's

getName() method to get the text to display for a node. You also decide to show a filled circle for nodes with children,

and an empty circle for nodes without children. The class might look like this:

public class MyLabelProvider implements ILabelProvider {

 // The list to hold the listeners

 private java.util.List listeners;

 // The images

 private Image filledCircle;

 private Image emptyCircle;

 public MyLabelProvider() {

 // Create the listener list

 listeners = new java.util.ArrayList();

 // Create the images

 try {

 filledCircle = new Image(null, new FileInputStream("filledCircle.png"));

 emptyCircle = new Image(null, new FileInputStream("emptyCircle.png"));

 }

 catch (FileNotFoundException e) { // Swallow it }

 }

 public void addListener(ILabelProviderListener listener) {

 // Add the listener

 listeners.add(listener);

 }

 public void dispose() {

 // Dispose the images

 if (filledCircle != null)

 filledCircle.dispose();

 if (emptyCircle != null)

 emptyCircle.dispose();

 }

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 public Image getImage(Object element) {

 // Return filled circle if it has children, or empty circle if it doesn't

 return ((Node) element).getChildren().size() > 0 ? filledCircle :

 emptyCircle;

 }

 public String getText(Object element) {

 // Return the node's name

 return ((Node) element).getName();

 }

 public boolean isLabelProperty(Object element, String property) {

 // Only if the property is the name is the label affected

 return "name".equals(property);

 }

 public void removeListener(ILabelProviderListener listener) {

 // Remove the listener

 listeners.remove(listener);

 }

}

Notice that this class maintains a list of listeners, adding and removing as instructed, but never does anything with

them. If this class had some state that could be changed, and if changing that state would affect how the labels were

computed, you'd notify the listeners of the state change. That code might look something like this:

public void changeSomeState(Object someState) {

 this.someState = someState;

 LabelProviderChangedEvent = new LabelProviderChangedEvent(this);

 for (int i = 0, n = listeners.size(); i < n; i++) {

 ILabelProviderListener listener = (ILabelProviderListener) listeners.get(i);

 listener.labelProviderChanged(event);

 }

}

The TreeViewer adds itself to the label provider as a listener, so when you notify it of the change, it calls back to the

label provider for the labels.

Seeing a TreeViewer in Action

The ever-present hierarchical data example for computer users is the file system, which consists of directories that

contain both files and other directories. The FileTree example program uses a TreeViewer to allow users to navigate

through the file system on their computers. It displays directories, subdirectories, and files. It displays a folder icon next

to directories, and a piece-of-paper icon next to files. It also allows users to change how the files are displayed by

toggling the checkbox next to "Preserve case." When the box is checked, the display mirrors the case of the files on

the file system. When unchecked, it displays everything in uppercase.

The FileTree class contains the main() method and creates the TreeViewer (see Listing 14-1). In its createContents()

method, it creates the TreeViewer and sets both its content provider and its label provider. Listing 14-2 contains the

content provider class, FileTreeContentProvider, and Listing 14-3 contains the label provider class, FileTreeLabelProvider.

Listing 14-1: FileTree.java

package examples.ch14;

import org.eclipse.jface.viewers.TreeViewer;

import org.eclipse.jface.window.ApplicationWindow;

import org.eclipse.swt.SWT;

import org.eclipse.swt.events.*;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.widgets.*;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

/**

 * This class demonstrates TreeViewer. It shows the drives, directories, and files

 * on the system.

 */

public class FileTree extends ApplicationWindow {

 /**

 * FileTree constructor

 */

 public FileTree() {

 super(null);

 }

 /**

 * Runs the application

 */

 public void run() {

 // Don't return from open() until window closes

 setBlockOnOpen(true);

 // Open the main window

 open();

 // Dispose the display

 Display.getCurrent().dispose();

 }

 /**

 * Configures the shell

 *

 * @param shell the shell

 */

 protected void configureShell(Shell shell) {

 super.configureShell(shell);

 // Set the title bar text and the size

 shell.setText("File Tree");

 shell.setSize(400, 400);

 }

 /**

 * Creates the main window's contents

 *

 * @param parent the main window

 * @return Control

 */

 protected Control createContents(Composite parent) {

 Composite composite = new Composite(parent, SWT.NONE);

 composite.setLayout(new GridLayout(1, false));

 // Add a checkbox to toggle whether the labels preserve case

 Button preserveCase = new Button(composite, SWT.CHECK);

 preserveCase.setText("&Preserve case");

 // Create the tree viewer to display the file tree

 final TreeViewer tv = new TreeViewer(composite);

 tv.getTree().setLayoutData(new GridData(GridData.FILL_BOTH));

 tv.setContentProvider(new FileTreeContentProvider());

 tv.setLabelProvider(new FileTreeLabelProvider());

 tv.setInput("root"); // pass a non-null that will be ignored

 // When user checks the checkbox, toggle the preserve case attribute

 // of the label provider

 preserveCase.addSelectionListener(new SelectionAdapter() {

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 public void widgetSelected(SelectionEvent event) {

 boolean preserveCase = ((Button) event.widget).getSelection();

 FileTreeLabelProvider ftlp = (FileTreeLabelProvider) tv

 .getLabelProvider();

 ftlp.setPreserveCase(preserveCase);

 }

 });

 return composite;

 }

 /**

 * The application entry point

 *

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 new FileTree().run();

 }

}

Listing 14-2: FileTreeContentProvider.java

package examples.ch14;

import java.io.*;

import org.eclipse.jface.viewers.ITreeContentProvider;

import org.eclipse.jface.viewers.Viewer;

/**

 * This class provides the content for the tree in FileTree

 */

public class FileTreeContentProvider implements ITreeContentProvider {

 /**

 * Gets the children of the specified object

 *

 * @param arg0 the parent object

 * @return Object[]

 */

 public Object[] getChildren(Object arg0) {

 // Return the files and subdirectories in this directory

 return ((File) arg0).listFiles();

 }

 /**

 * Gets the parent of the specified object

 *

 * @param arg0 the object

 * @return Object

 */

 public Object getParent(Object arg0) {

 // Return this file's parent file

 return ((File) arg0).getParentFile();

 }

 /**

 * Returns whether the passed object has children

 *

 * @param arg0 the parent object

 * @return boolean

 */

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 public boolean hasChildren(Object arg0) {

 // Get the children

 Object[] obj = getChildren(arg0);

 // Return whether the parent has children

 return obj == null ? false : obj.length > 0;

 }

 /**

 * Gets the root element(s) of the tree

 *

 * @param arg0 the input data

 * @return Object[]

 */

 public Object[] getElements(Object arg0) {

 // These are the root elements of the tree

 // We don't care what arg0 is, because we just want all

 // the root nodes in the file system

 return File.listRoots();

 }

 /**

 * Disposes any created resources

 */

 public void dispose() {

 // Nothing to dispose

 }

 /**

 * Called when the input changes

 *

 * @param arg0 the viewer

 * @param arg1 the old input

 * @param arg2 the new input

 */

 public void inputChanged(Viewer arg0, Object arg1, Object arg2) {

 // Nothing to change

 }

}

Listing 14-3: FileTreeLabelProvider.java

package examples.ch14;

import java.io.*;

import java.util.*;

import org.eclipse.jface.viewers.ILabelProvider;

import org.eclipse.jface.viewers.ILabelProviderListener;

import org.eclipse.jface.viewers.LabelProviderChangedEvent;

import org.eclipse.swt.graphics.Image;

/**

 * This class provides the labels for the file tree

 */

public class FileTreeLabelProvider implements ILabelProvider {

 // The listeners

 private List listeners;

 // Images for tree nodes

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 private Image file;

 private Image dir;

 // Label provider state: preserve case of file names/directories

 boolean preserveCase;

 /**

 * Constructs a FileTreeLabelProvider

 */

 public FileTreeLabelProvider() {

 // Create the list to hold the listeners

 listeners = new ArrayList();

 // Create the images

 try {

 file = new Image(null, new FileInputStream("images/file.gif"));

 dir = new Image(null, new FileInputStream("images/directory.gif"));

 } catch (FileNotFoundException e) {

 // Swallow it; we'll do without images

 }

 }

 /**

 * Sets the preserve case attribute

 *

 * @param preserveCase the preserve case attribute

 */

 public void setPreserveCase(boolean preserveCase) {

 this.preserveCase = preserveCase;

 // Since this attribute affects how the labels are computed,

 // notify all the listeners of the change.

 LabelProviderChangedEvent event = new LabelProviderChangedEvent(this);

 for (int i = 0, n = listeners.size(); i < n; i++) {

 ILabelProviderListener ilpl = (ILabelProviderListener) listeners.get(i);

 ilpl.labelProviderChanged(event);

 }

 }

 /**

 * Gets the image to display for a node in the tree

 *

 * @param arg0 the node

 * @return Image

 */

 public Image getImage(Object arg0) {

 // If the node represents a directory, return the directory image.

 // Otherwise, return the file image.

 return ((File) arg0).isDirectory() ? dir : file;

 }

 /**

 * Gets the text to display for a node in the tree

 *

 * @param arg0 the node

 * @return String

 */

 public String getText(Object arg0) {

 // Get the name of the file

 String text = ((File) arg0).getName();

 // If name is blank, get the path

 if (text.length() == 0) {

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 text = ((File) arg0).getPath();

 }

 // Check the case settings before returning the text

 return preserveCase ? text : text.toUpperCase();

 }

 /**

 * Adds a listener to this label provider

 *

 * @param arg0 the listener

 */

 public void addListener(ILabelProviderListener arg0) {

 listeners.add(arg0);

 }

 /**

 * Called when this LabelProvider is being disposed

 */

 public void dispose() {

 // Dispose the images

 if (dir != null) dir.dispose();

 if (file != null) file.dispose();

 }

 /**

 * Returns whether changes to the specified property on the specified element

 * would affect the label for the element

 *

 * @param arg0 the element

 * @param arg1 the property

 * @return boolean

 */

 public boolean isLabelProperty(Object arg0, String arg1) {

 return false;

 }

 /**

 * Removes the listener

 *

 * @param arg0 the listener to remove

 */

 public void removeListener(ILabelProviderListener arg0) {

 listeners.remove(arg0);

 }

}

If you want icons displayed next to your folders and directories, you must create or download them. The graphics

should be in the images directory, and should be called file.gif and directory.gif. Run the application using Ant:

ant -Dmain.class=examples.ch14.FileTree

Figure 14-1 shows the program with "Preserve case" unchecked. Check "Preserve case" to see Figure 14-2.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Figure 14-1: The FileTree program

Figure 14-2: The FileTree program with "Preserve case" checked

Climbing Higher into TreeViewers

Much of the work associated with using a TreeViewer doesn't involve methods you call on TreeViewer, but instead relies

on the provider classes you create. However, TreeViewer offers an extensive API, spread through both itself and its

superclasses. Analyzing TreeViewer's public methods quickly plunges you into a morass of super-classes brimming

with inherited methods. Climb high enough into TreeViewer's inheritance tree, however, and you reach viewer classes

common to ListViewer and TableViewer as well. Therefore, you can leverage your understanding across viewers. Table

14-4 lists TreeViewer's public methods.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig586%5F01%5F0%2Ejpg
file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig586%5F02%5F0%2Ejpg

Table 14-4: TreeViewer Methods

Method Description

Control getControl() Returns a reference to this TreeViewer's underlying Tree

control.

IBaseLabelProvider getLabelProvider() Returns the label provider for this TreeViewer.

Tree getTree() Returns a reference to this TreeViewer's underlying Tree control.

void setLabelProvider (IBaseLabelProvider

labelProvider)
Sets the label provider for this TreeViewer. labelProvider must

be an ILabelProvider instance.

TreeViewer derives from AbstractTreeViewer, which piles on a host of methods. Table 14-5 lists AbstractTreeViewer's

methods.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Table 14-5: AbstractTreeViewer Methods

Method Description

void add(Object parentElement, Object childElement) Adds the element specified by childElement to the tree

as a child of the element specified by parentElement.

void add(Object parentElement, Object[]

childElements)
Adds the elements specified by childElements to the

tree as children of the element specified by

parentElement.

void addTreeListener(ITreeViewListener listener) Adds a listener that's notified when the tree is

expanded or collapsed.

void collapseAll() Collapses all the nodes in the tree.

void collapseToLevel(Object element, int level) Collapses the tree from the root specified by element to

the level specified by level.

void expandAll() Expands all the nodes in the tree.

void expandToLevel(int level) Expands the nodes in the tree from the root to the level

specified by level.

void expandToLevel(Object element, int level) Expands the nodes in the tree from the root specified

by element to the level specified by level.

int getAutoExpandLevel() Returns the level to which the nodes in the tree are

automatically expanded.

Object[] getExpandedElements() boolean

getExpandedState(Object element)
Returns the nodes that are expanded. Returns true if

the node specified by element is expanded. Otherwise,

returns false.

Object[] getVisibleExpandedElements() Returns the visible nodes that are expanded.

boolean isExpandable(Object element) Returns true if the node specified by element can be

expanded. Otherwise, returns false.

void remove(Object element) Removes the element specified by element from the

tree.

void remove(Object[] elements) Removes the elements specified by elements from the

tree.

void removeTreeListener(ITreeViewListener listener) Removes the specified listener from the notification list.

void reveal(Object element) Makes the element specified by element visible,

scrolling if necessary.

Item scrollDown(int x, int y) Scrolls the tree down one item from the point specified

by (x, y).

Item scrollUp(int x, int y) Scrolls the tree up one item from the point specified by

(x, y).

void setAutoExpandLevel(int level) Sets the level to which the nodes in the tree are

automatically expanded.

void setContentProvider(IContentProvider provider) Sets the content provider for this TreeViewer. provider

must be an ITreeContentProvider instance.

void setExpandedElements(Object[] elements) Sets the expanded elements in the tree to the

elements specified by elements.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Method Description

void setExpandedState(Object element, boolean

expanded)
If expanded is true, expands the element specified by

element. Otherwise, collapses it.

AbstractTreeViewer derives from StructuredViewer, which is the common ancestor for TreeViewer, ListViewer, and

TableViewer. Its methods, then, apply to all types of viewers. Table 14-6 lists StructuredViewer's methods.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Table 14-6: StructuredViewer Methods

Method Description

void addDoubleClickListener

(IDoubleClickListener listener)
Adds a listener that's notified when the user double-clicks

the mouse.

void addDragSupport(int operations, Transfer[]

transferTypes, DragSourceListener listener)
Adds support for dragging an item or items out of this

TreeViewer.

void addDropSupport(int operations, Transfer[]

transferTypes, DropTargetListener listener)
Adds support for dropping an item or items into this

TreeViewer.

void addFilter(ViewerFilter filter) Adds the filter specified by filter to this TreeViewer and

refilters the items.

void addOpenListener(IOpenListener listener) Adds a listener that's notified when the user opens a

selection.

void addPostSelectionChangedListener

(ISelectionChangedListener listener)
Adds a listener that's notified when a selection changes via

the mouse.

IElementComparer getComparer() Returns the comparer used for comparing elements in this

TreeViewer.

ViewerFilter[] getFilters() Returns all the filters associated with this TreeViewer.

ISelection getSelection() Returns this TreeViewer's selection.

ViewerSorter getSorter() Returns this TreeViewer's sorter.

void refresh() Refreshes this TreeViewer from the underlying data.

void refresh(boolean updateLabels) Refreshes this TreeViewer from the underlying data. If

updateLabels is true, updates the labels for all elements. If

updateLabels is false, updates labels only for new elements.

void refresh(Object element) Refreshes this TreeViewer from the underlying data,

starting with the specified element.

void refresh(Object element, boolean

updateLabels)
Refreshes this TreeViewer from the underlying data,

starting with the specified element. If updateLabels is true,

updates the labels for all elements. If updateLabels is false,

updates labels only for new elements.

void removeDoubleClickListener

(IDoubleClickListener listener)
Removes the specified listener from the notification list.

void removeFilter(ViewerFilter filter) Removes the specified filter.

void removeOpenListener(IOpenListener

listener)
Removes the specified listener from the notification list.

void removePostSelectionChangedListener

(ISelectionChangedListener listener)
Removes the specified listener from the notification list.

void resetFilters() Removes all filters.

void setComparer(IElementComparer comparer) Sets the comparer used to compare elements.

void setContentProvider(IContentProvider

provider)
Sets the content provider, which must be an

IStructuredContentProvider instance.

void setInput(Object input) Sets the input data.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Method Description

void setSelection(ISelection selection, boolean

reveal)
Sets the selection to the specified selection. If reveal is

true, scrolls the viewer as necessary to display the selection.

void setSorter(ViewerSorter sorter) Sets the sorter used to sort the elements.

void setHashlookup(boolean enable) If enable is true, sets this viewer to use an internal hash

table to map elements with widget items. You must call this

before setInput().

void update(Object[] elements, String[]

properties)
Updates the display of the specified elements, using the

specified properties.

void update(Object element, String[] properties) Updates the display of the specified element, using the

specified properties.

StructuredViewer inherits ContentViewer. Table 14-7 lists ContentViewer's methods.

Table 14-7: ContentViewer Methods

Method Description

IContentProvider getContentProvider() Returns the content provider for this viewer

Object getInput() Returns the input data for this viewer

IBaseLabelProvider getLabelProvider() Returns the label provider for this viewer

void setContentProvider (IContentProvider contentProvider) Sets the content provider for this viewer

void setInput(Object input) void setLabelProvider Sets the input data for this viewer

(IBaseLabelProvider labelProvider) Sets the label provider for this viewer

Finally, StructuredViewer derives from Viewer. Table 14-8 lists Viewer's methods.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Table 14-8: Viewer Methods

Method Description

void addHelpListener(HelpListener listener) Adds a listener to the notification list that's notified when

help is requested.

void addSelectionChangedListener

(ISelectionChangedListener listener)
Adds a listener to the notification list that's notified when

the selection changes.

Object getData(String key) Returns the data for the specified key that's associated

with this viewer.

void removeHelpListener(HelpListener listener) Removes the specified listener from the notification list.

void removeSelectionChangedListener

(ISelectionChangedListener listener)
Removes the specified listener from the notification list.

Item scrollDown(int x, int y) Scrolls down by one item from the item at the point

specified by (x, y). Returns the new Item, or null if no new

item was scrolled to.

Item scrollUp(int x, int y) Scrolls up by one item from the item at the point

specified by (x, y). Returns the new Item, or null if no new

item was scrolled to.

void setData(String key, Object data) Sets the data for the specified key into the viewer.

void setSelection(ISelection selection) Sets the selection in this viewer.

If you're using an editor or IDE that automatically displays method completions, you might become overwhelmed by

the panoply of methods offered by TreeViewer and the other viewer classes.

Using a CheckboxTreeViewer

JFace offers an extension to TreeViewer that adds a checkbox to each node in the tree. Aptly named

CheckboxTreeViewer, it adds methods for managing the checkboxes. You create a CheckboxTreeViewer in the same

way you create a TreeViewer, calling one of the three constructors that take the same parameters and behave the

same as the TreeViewer constructors. Table 14-9 lists CheckboxTreeViewer's methods.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Table 14-9: CheckboxTreeViewer Methods

Method Description

void addCheckStateListener

(ICheckStateListener listener)
Adds a listener to the notification list that's notified when the

checked state of any checkbox changes.

boolean getChecked(Object element) Returns true if the specified element is checked. Otherwise, returns

false.

Object[] getCheckedElements() Returns all the checked elements in the tree.

boolean getGrayed(Object element) Returns true if the specified element is grayed (indeterminate).

Otherwise, returns false.

Object[] getGrayedElements() Returns all the grayed (indeterminate) elements in the tree.

void removeCheckStateListener

(ICheckStateListener listener)
Removes the listener from the notification list.

boolean setChecked(Object element,

boolean state)
If state is true, sets the specified element to checked. Otherwise, sets

the specified element to unchecked. Returns true if setting the

checked state was successful. Otherwise, returns false.

void setCheckedElements(Object[]

elements)
Sets the specified elements in the tree to checked, and sets any

other elements in the tree to unchecked.

boolean setGrayChecked(Object

element, boolean state)
If state is true, sets the specified element to grayed and checked.

Otherwise, sets the specified element to ungrayed and unchecked.

Returns true if setting the grayed and checked state was successful.

Otherwise, returns false.

boolean setGrayed(Object element,

boolean state)
If state is true, sets the specified element to grayed. Otherwise, sets

the specified element to ungrayed. Returns true if setting the grayed

state was successful. Otherwise, returns false.

void setGrayedElements(Object[]

elements)
Sets the specified elements in the tree to grayed, and sets any other

elements in the tree to ungrayed.

boolean setParentsGrayed(Object

element, boolean state)
If state is true, sets the specified element and all its ancestors to

grayed. Otherwise, sets the specified element and all its ancestors

to ungrayed. Returns true if setting the grayed state was successful.

Otherwise, returns false.

boolean setSubtreeChecked(Object

element, boolean state)
If state is true, sets the specified element and all its children to

checked. Otherwise, sets the specified element and all its children to

unchecked. Returns true if setting the checked state was successful.

Otherwise, returns false.

The CheckFileTree program revisits the FileTree program, adding checkboxes to each node in the tree. Checking a

file or directory causes all its child files and directories to be checked as well. Unchecking has no such effect. Any file

whose checkbox is checked displays the length of the file beside the filename.

The CheckFileTree program leverages the FileTree program, subclassing FileTree and reusing its content and label

provider classes (see Listing 14-4).

Listing 14-4: CheckFileTree.java

package examples.ch14;

import org.eclipse.jface.viewers.*;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

import org.eclipse.swt.SWT;

import org.eclipse.swt.events.*;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.widgets.*;

/**

 * This class demonstrates the CheckboxTreeViewer

 */

public class CheckFileTree extends FileTree {

 /**

 * Configures the shell

 *

 * @param shell the shell

 */

 protected void configureShell(Shell shell) {

 super.configureShell(shell);

 shell.setText("Check File Tree");

 }

 /**

 * Creates the main window's contents

 *

 * @param parent the main window

 * @return Control

 */

 protected Control createContents(Composite parent) {

 Composite composite = new Composite(parent, SWT.NONE);

 composite.setLayout(new GridLayout(1, false));

 // Add a checkbox to toggle whether the labels preserve case

 Button preserveCase = new Button(composite, SWT.CHECK);

 preserveCase.setText("&Preserve case");

 // Create the tree viewer to display the file tree

 final CheckboxTreeViewer tv = new CheckboxTreeViewer(composite);

 tv.getTree().setLayoutData(new GridData(GridData.FILL_BOTH));

 tv.setContentProvider(new FileTreeContentProvider());

 tv.setLabelProvider(new FileTreeLabelProvider());

 tv.setInput("root"); // pass a non-null that will be ignored

 // When user checks the checkbox, toggle the preserve case attribute

 // of the label provider

 preserveCase.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 boolean preserveCase = ((Button) event.widget).getSelection();

 FileTreeLabelProvider ftlp = (FileTreeLabelProvider) tv

 .getLabelProvider();

 ftlp.setPreserveCase(preserveCase);

 }

 });

 // When user checks a checkbox in the tree, check all its children

 tv.addCheckStateListener(new ICheckStateListener() {

 public void checkStateChanged(CheckStateChangedEvent event) {

 // If the item is checked . . .

 if (event.getChecked()) {

 // . . . check all its children

 tv.setSubtreeChecked(event.getElement(), true);

 }

 }

 });

 return composite;

 }

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 /**

 * The application entry point

 *

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 new CheckFileTree().run();

 }

}

Besides creating a CheckboxTreeViewer instead of a TreeViewer, the biggest difference in this class is the addition of a

listener for when checkboxes are checked or unchecked. Review the preceding checkStateChanged() implementation.

Compiling and running the program shows the big difference: checkboxes by each node, as Figure 14-3 demonstrates.

Check a checkbox to see that all its child checkboxes are checked as well. Take care, however—if you check the root

checkbox, you might have to wait awhile for all the children to become checked.

Figure 14-3: The CheckFileTree program

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig594%5F01%5F0%2Ejpg

List Viewers

The List widget in SWT wraps a list box. You can add and remove items from a list. You can allow users to select only

one item at a time, or to select many items simultaneously. Working directly with the widget, however, requires more

detailed data management than you'll probably care for. JFace provides the ListViewer class to allow you to use an

MVC approach to using lists.

Creating a ListViewer

ListViewer's constructors, listed in Table 14-10, will look familiar, as they mimic those for TreeViewer. The two

constructors that don't take a List control as a parameter create one, as a ListViewer always wraps a List control.

Table 14-10: ListViewer Constructors

Constructor Description

ListViewer(Composite parent) Creates a ListViewer as a child of parent

ListViewer(Composite parent, int style) Creates a ListViewer with the specified style as a child of parent

ListViewer(List list) Creates a ListViewer that wraps the list control specified by list

To create a ListViewer, call one of its constructors. For example, the following code creates a composite and fills it with

a ListViewer:

Composite composite = new Composite(shell, SWT.NONE);

composite.setLayout(new FillLayout());

ListViewer listViewer = new ListViewer(composite);

Using a ListViewer

You use a ListViewer the same way you use the other viewer classes:

Create a ListViewer.1.

Add a content provider.2.

Add a label provider.3.

Set the input.4.

For example, the following code demonstrates the pattern for creating and using a ListViewer:

ListViewer listViewer = new ListViewer(parent);

listViewer.setContentProvider(new MyContentProvider());

listViewer.setLabelProvider(new MyLabelProvider());

listViewer.setInput(myData);

The content provider must implement the IStructuredContentProvider interface, requiring definitions for a subset of the

methods required in the ITreeContentProvider interface. Table 14-11 lists the three required methods for

IStructuredContentProvider. The label provider must implement the same ILabelProvider interface that a TreeViewer's

label provider requires.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Table 14-11: IStructuredContentProvider (and Inherited) Methods

Method Description

void dispose() Called when the ListViewer is being disposed. In this method,

dispose anything you've created that needs to be disposed.

Object[] getElements(Object inputElement) Called when the ListViewer wants the rows for the list. In this

method, return the rows of data for the list.

void inputChanged(Viewer viewer, Object

oldInput, Object newInput)
Called when the underlying data is switched to other data. In

this method, perform any action appropriate for a data change.

Sometimes you'll want to access the List control that underpins the ListViewer. For example, you might want to retrieve

the number of items in the ListViewer. Because ListViewer has no direct means of reporting its count of items, you must

call the getItemCount() method on the List. ListViewer offers two methods for returning the List control that it wraps:

getControl() (which returns the List as a Control) and getList() (which returns it as a List). This code prints to the console

the number of items in a ListViewer:

System.out.println(listViewer.getList().getItemCount());

Table 14-12 details ListViewer's API. Because ListViewer derives from StructuredViewer, refer to Table 14-6 to follow its

inherited methods.

Table 14-12: ListViewer Methods

Method Description

void add(Object element) Adds the specified element to the list.

void add(Object[] elements) Adds the specified elements to the list.

Control getControl() Returns a reference to this ListViewer's List control.

Object getElementAt(int index) Returns the element at the specified zero-based index in the

list.

IBaseLabelProvider getLabelProvider() Returns this ListViewer's label provider.

List getList() Returns a reference to this ListViewer's List control.

void remove(Object element) Removes the specified element from the list.

void remove(Object[] elements) Removes the specified elements from the list.

void reveal(Object element) Shows the specified element, scrolling the list as necessary.

void setLabelProvider(IBaseLabel Provider

labelProvider)
Sets the label provider for this ListViewer. labelProvider must

be an ILabelProvider instance.

Filtering Data

All viewers (at least, all viewers derived from StructuredViewer, which includes the viewers in this chapter) can

selectively display data using filters. To apply a filter to the viewer, you first create a subclass of ViewerFilter and

implement its select() method, which is abstract. Its signature looks like this:

boolean select(Viewer viewer, Object parentElement, Object element)

The viewer parameter contains a reference to the viewer this filter acts on. The parentElement parameter refers to the

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

parent of the element in question, while the element parameter refers to the element that might or might not be filtered

out of the viewer. Filtering an element doesn't remove it from the underlying data, but only suppresses it from the view.

Your implementation of the select() method should return true if the viewer should display the element, or false if it

shouldn't. For example, the following MyFilter class hides any element whose toString() method returns a string that

exceeds 15 characters:

public class MyFilter extends ViewerFilter {

 public boolean select(Viewer viewer, Object parentElement, Object element) {

 // Hide anything longer than 15 characters.

 // Note that this will throw a NullPointerException

 // if toString() returns null.

 return element.toString().length() <= 15;

 }

}

Your filters can also use the viewer and parentElement parameters to determine what value to return from select().

You can apply multiple filters to a viewer. Call the addFilter() method, defined in StructuredViewer, to apply a filter, like

this:

listViewer.addFilter(new MyFilter());

The viewer reacts immediately to the newly added filter, filtering all its data anew using it and any other applied filters.

You can use the removeFilter() method to remove a filter, which also triggers the viewer to filter and redisplay its data.

To use it, pass the filter you want to remove, like this:

listViewer.removeFilter(myFilter);

You must have a reference to the filter object you want to remove. You can also remove all filters with a single call to

resetFilters():

listViewer.resetFilters();

Seeing ListViewer in Action

The FoodList application uses a ListViewer to display a list of food. It contains both healthy and junk food. (To

determine healthy vs. junk, we relied on years of our mothers' training; we apologize for any offense our arbitrary

choices might give.) The application displays a checkbox, marked "Show only healthy," for filtering the data. Checking

the checkbox applies a filter to the data, hiding all the junk food.

You can find the code for the FoodList program in the Downloads section of the Apress Web site at

http://www.apress.com. The Food class represents each food item, and stores the food's name and whether or not it's

healthy. The GroceryList class represents the data model for the program. It creates ten food items—half healthy, half

junk. The ListViewer uses an instance of this class as its input data. FoodContentProvider institutes the content provider

for the program, and returns the list of Food objects associated with the viewer's GroceryList instance. FoodLabelProvider

provides the labels for the list, using Food.getName().

The HealthyFilter class provides the filter that's applied when the user checks the "Show only healthy" checkbox (see

Listing 14-5). Its select() method returns the value of Food.getHealthy() to determine whether a food should display.

Listing 14-5: HealthyFilter.java

package examples.ch14;

import org.eclipse.jface.viewers.Viewer;

import org.eclipse.jface.viewers.ViewerFilter;

/**

 * This class filters only healthy items from the grocery list

 */

public class HealthyFilter extends ViewerFilter {

 /**

 * Returns whether the specified element passes this filter

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://www.apress.com

 *

 * @param arg0 the viewer

 * @param arg1 the parent element

 * @param arg2 the element

 * @return boolean

 */

 public boolean select(Viewer arg0, Object arg1, Object arg2) {

 return ((Food) arg2).isHealthy();

 }

}

Finally, the FoodList class launches the program, creates the window and controls (including the ListViewer), and

responds to user input. It applies or removes the "healthy filter" as appropriate. To accomplish this, it creates a

member instance of HealthyFilter:

private HealthyFilter filter = new HealthyFilter();

Then, it creates a checkbox to let users toggle the filter, and responds to user input by either adding or removing the

filter, like this:

// Add a checkbox to toggle filter

Button filterHealthy = new Button(composite, SWT.CHECK);

filterHealthy.setText("&Show only healthy");

// When user checks the checkbox, toggle the filter

filterHealthy.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 if (((Button) event.widget).getSelection())

 lv.addFilter(filter);

 else

 lv.removeFilter(filter);

 }

});

Figure 14-4 shows FoodList's main window, and Figure 14-5 shows the window with the healthy filter applied.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Figure 14-4: The food list

Figure 14-5: The food list with the healthy filter applied

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Table Viewers

SWT's Table widget, discussed in Chapter 8, displays data in columns and rows. You create a Table, then create

TableItem objects to place data into the table. You manage the rows, manage the columns, sort the data as necessary,

and find yourself steeped in data management.

JFace's TableViewer takes the pain out of tables. As with the other viewers, you create the TableViewer, set the content

provider, set the label provider, and set the input. Table 14-13 lists TableViewer's three constructors. The two that don't

take a Table as a parameter create a Table for the TableViewer to wrap.

Table 14-13: TableViewer Constructors

Constructor Description

TableViewer(Composite parent) Creates a TableViewer as a child of parent

TableViewer(Composite parent, int style) Creates a TableViewer with the specified style as a child of parent

TableViewer(Table table) Creates a TableViewer that wraps the table control specified by table

Using a TableViewer

As with the other viewers, you create a content provider class to add content to the table, and a label provider class to

tell the table viewer how to display that content. You also must set the input data. The code might look like this:

TableViewer tableViewer = new TableViewer(parent);

tableViewer.setContentProvider(new MyContentProvider());

tableViewer.setLabelProvider(new MyLabelProvider());

tableViewer.setInput(myData);

As with ListViewer, the content provider must implement the IStructuredContentProvider interface, which requires

definitions for the three methods listed in Table 14-14.

Table 14-14: IStructuredContentProvider (and Inherited) Methods

Method Description

void dispose() Called when the TableViewer is being disposed. In this method,

dispose anything you've created that needs to be disposed.

Object[] getElements(Object inputElement) Called when the TableViewer wants the rows for the table. In this

method, return the rows of data for the table.

void inputChanged(Viewer viewer, Object

oldInput, Object newInput)
Called when the underlying data is switched to other data. In

this method, perform any action appropriate for a data change.

For example, suppose an ArrayList called myList contains your data. Each item in myList contains an object called

Widget, which possesses a name, a color, and a price. Each Widget also contains an image of itself. Your content

provider might look like this:

public class MyContentProvider implements IStructuredContentProvider {

 public void dispose() {

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 // Nothing to dispose

 }

 public Object[] getElements(Object inputElement) {

 // inputElement, the input data, is myList

 return ((List) myList).toArray();

 }

 public void inputChanged(Viewer viewer, Object oldInput, Object newInput) {

 // Nothing to do

 }

}

The getElements() method returns all the Widgets in an array. Each item in the array becomes a row in the table.

However, without the label provider, nothing displays in the table. To achieve visibility, you must create the label

provider.

The label provider must implement the ITableLabelProvider interface, requiring definitions for the six methods listed in

Table 14-15.

Table 14-15: ITableLabelProvider (and Inherited) Methods

Method Description

void addListener(ILabelProvider

Listener listener)
Called when a listener is added to this label provider. In this method,

add the listener to a list that you maintain.

void dispose() Called when the TableViewer is being disposed. In this method,

dispose anything you've created that needs to be disposed.

Image getColumnImage(Object

element, int columnIndex)
Called when the TableViewer wants the image to display for a specific

element, for the specified column. In this method, return the proper

image for the specified element and column, or null for no image.

String getColumnText(Object

element, int columnIndex)
Called when the TableViewer wants the label to display for a specific

element, for the specified column. In this method, return the proper

text for the specified element and column.

boolean isLabelProperty(Object

element, String property)
Called when the TableViewer wants to determine if a change to the

specified property on the specified element would affect the label. In

this method, return true if changing the specified property would

affect the label for the specified element, or false if it wouldn't.

void removeListener(ILabelProvider

Listener listener)
Called when a listener is removed from this label provider. In this

method, remove the listener from a list that you maintain.

For the Widget example, your label provider might look like this:

public class MyLabelProvider implements ITableLabelProvider {

 // Holds the listeners

 List listeners = new ArrayList();

 public void addListener(ILabelProviderListener listener) {

 // Add the listener

 listeners.add(listener);

 }

 public void dispose() {

 // Nothing to dispose--the widgets own their own images,

 // so THEY must dispose them

 }

 public Image getColumnImage(Object element, int columnIndex) {

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 // Show the image by the name

 if (columnIndex == NAME_COLUMN)

 return ((Widget) element).getImage();

 return null;

 }

 public String getColumnText(Object element, int columnIndex) {

 Widget w = (Widget) element;

 switch(columnIndex) {

 case NAME_COLUMN:

 return w.getName();

 case COLOR_COLUMN:

 return w.getColor();

 case PRICE_COLUMN:

 return w.getPrice();

 }

 // Should never get here

 return "";

 }

 public boolean isLabelProperty(Object element, String property) {

 return false;

 }

 public void removeListener(ILabelProviderListener listener) {

 listeners.remove(listener);

 }

}

You must define the column constants (NAME_COLUMN, COLOR_COLUMN, and PRICE_COLUMN) somewhere. They

correspond to the columns in the table. Note that you must create the table column on the table that the TableViewer

wraps. That code might look like this:

// Get the underlying table

Table table = tableViewer.getTable();

new TableColumn(table, SWT.LEFT).setText("Name");

new TableColumn(table, SWT.LEFT).setText("Color");

new TableColumn(table, SWT.LEFT).setText("Price");

You might never need to call more of TableViewer's API, but that API lurks patiently, awaiting your needs. Many of the

methods deal with editing table data, which this chapter covers. Table 14-16 lists TableViewer's methods.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Table 14-16: TableViewer Methods

Method Description

void add(Object element) Adds the specified element to the table.

void add(Object[] elements) Adds the specified elements to the table.

void cancelEditing() Cancels the current editing session.

void editElement(Object element, int

column)
Starts an editing session on the cell specified by element and

column.

CellEditor[] getCellEditors() Returns this TableViewer's cell editors.

ICellModifier getCellModifier() Returns this TableViewer's cell modifier.

Object[] getColumnProperties() Returns the column properties for this TableViewer.

Control getControl() Returns the Table control that this TableViewer wraps.

Object getElementAt(int index) Returns the element at the specified zero-based row in the table.

IBaseLabelProvider getLabelProvider() Returns the label provider for this TableViewer.

Table getTable() Returns the Table control that this TableViewer wraps.

void insert(Object element, int position) Inserts the specified element into the table, at the zero-based

row specified by position.

boolean isCellEditorActive() Returns true if a cell editor is active. Otherwise, returns false.

void remove(Object element) Removes the specified element from the table.

void remove(Object[] elements) Removes the specified elements from the table.

void reveal(Object element) Scrolls the specified element into view.

void setCellEditors(CellEditor[] cellEditors) Sets the cell editors for this TableViewer.

void setCellModifier(ICellModifier

cellModifier)
Sets the cell modifier for this TableViewer.

void setColumnProperties(String[]

columnProperties)
Sets the column properties for this TableViewer.

void setLabelProvider(IBaseLabel Provider

labelProvider)
Sets the label provider for this TableViewer, which must be either

an instance of ITableLabelProvider or ILabelProvider.

TableViewer derives from StructuredViewer, so refer to Table 14-6 to follow the rest of its API.

Seeing a TableViewer in Action

The PlayerTable program uses a TableViewer to display the names and statistics of the players from three of the

greatest teams in NBA history: the 1985–86 Boston Celtics, the 1987–88 Los Angeles Lakers, and the 1995–96

Chicago Bulls. You can find the code in the downloaded files.

The Player class represents each player, storing his name, points per game, rebounds per game, and assists per

game. It also stores a reference to the team the player belongs to, and adds a method to determine whether the player

led his team in a specified category. The Team class contains the collection of players that belong to it, as well as the

team name and the year. It also contains a method for determining whether a player led his team in the given

category; Player's ledTeam() method calls this method. The PlayerConst class contains constants for the application.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Specifically, it contains constants for the column indices in the table. The PlayerTableModel class creates and manages

the teams and players. The application uses this class to retrieve the specified team as the current data for the table.

The PlayerContentProvider class provides the content for the table. When passed a team, it returns all the players for

that team. The PlayerLabelProvider class provides both the labels and the images for the table. If a player led his team

in a category, the table displays an image next to that category. For example, because Michael Jordan led his team in

scoring average, the table displays a graphic next to his points value. No image displays when the player didn't lead

his team. You'll need to create the image to display, or copy it from the downloaded files.

The PlayerViewerSorter class, shown in Listing 14-6, provides sorting for the table. Click a column header to sort the

data ascending; click the header again to sort descending. It extends the ViewerSorter class, and uses

StructuredViewer's setSorter() method to set the sorter into the table. The TableViewer calls the sorter's compare() method

to determine sort order. PlayerViewerSorter retains the index of the sorted column and the direction of the sort, so that it

can determine which direction to sort the data. If the sort column is different from the last sorted column, it sorts the

data in ascending order. If the sort column is the same column, it toggles the sort direction between ascending and

descending order.

Listing 14-6: PlayerViewerSorter.java

package examples.ch14;

import org.eclipse.jface.viewers.*;

/**

 * This class implements the sorting for the Player Table

 */

public class PlayerViewerSorter extends ViewerSorter {

 private static final int ASCENDING = 0;

 private static final int DESCENDING = 1;

 private int column;

 private int direction;

 /**

 * Does the sort. If it's a different column from the previous sort, do an

 * ascending sort. If it's the same column as the last sort, toggle the sort

 * direction.

 *

 * @param column

 */

 public void doSort(int column) {

 if (column == this.column) {

 // Same column as last sort; toggle the direction

 direction = 1 - direction;

 } else {

 // New column; do an ascending sort

 this.column = column;

 direction = ASCENDING;

 }

 }

 /**

 * Compares the object for sorting

 */

 public int compare(Viewer viewer, Object e1, Object e2) {

 int rc = 0;

 Player p1 = (Player) e1;

 Player p2 = (Player) e2;

 // Determine which column and do the appropriate sort

 switch (column) {

 case PlayerConst.COLUMN_FIRST_NAME:

 rc = collator.compare(p1.getFirstName(), p2.getFirstName());

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 break;

 case PlayerConst.COLUMN_LAST_NAME:

 rc = collator.compare(p1.getLastName(), p2.getLastName());

 break;

 case PlayerConst.COLUMN_POINTS:

 rc = p1.getPoints() > p2.getPoints() ? 1 : -1;

 break;

 case PlayerConst.COLUMN_REBOUNDS:

 rc = p1.getRebounds() > p2.getRebounds() ? 1 : -1;

 break;

 case PlayerConst.COLUMN_ASSISTS:

 rc = p1.getAssists() > p2.getAssists() ? 1 : -1;

 break;

 }

 // If descending order, flip the direction

 if (direction == DESCENDING) rc = -rc;

 return rc;

 }

}

Finally, the PlayerTable class runs the program. It creates the main window, including the TableViewer, and provides the

controller. It creates a dropdown to allow users to select which of the three teams to display. It responds to clicks on

the column headers to change the sorting. To implement the sorting, it creates a PlayerViewerSorter instance and

passes it to the TableViewer's setSorter() method. Then, as it adds each column, it adds a handler to respond to clicks

on that column's header. In the handler, it retrieves the sorter from the TableViewer and calls its doSort() method,

passing the column that was clicked. That part of the code looks like this:

tv.setSorter(new PlayerViewerSorter());

// Add the first name column

TableColumn tc = new TableColumn(table, SWT.LEFT);

tc.setText("First Name");

tc.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 ((PlayerViewerSorter) tv.getSorter())

 .doSort(PlayerConst.COLUMN_FIRST_NAME);

 tv.refresh();

 }

});

// Add the last name column

tc = new TableColumn(table, SWT.LEFT);

tc.setText("Last Name");

tc.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 ((PlayerViewerSorter) tv.getSorter())

 .doSort(PlayerConst.COLUMN_LAST_NAME);

 tv.refresh();

 }

});

// Add the points column

tc = new TableColumn(table, SWT.RIGHT);

tc.setText("Points");

tc.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 ((PlayerViewerSorter) tv.getSorter())

 .doSort(PlayerConst.COLUMN_POINTS);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 tv.refresh();

 }

});

// Add the rebounds column

tc = new TableColumn(table, SWT.RIGHT);

tc.setText("Rebounds");

tc.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 ((PlayerViewerSorter) tv.getSorter())

 .doSort(PlayerConst.COLUMN_REBOUNDS);

 tv.refresh();

 }

});

// Add the assists column

tc = new TableColumn(table, SWT.RIGHT);

tc.setText("Assists");

tc.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 ((PlayerViewerSorter) tv.getSorter())

 .doSort(PlayerConst.COLUMN_ASSISTS);

 tv.refresh();

 }

});

Compile and run the application to see the window shown in Figure 14-6; notice that Larry Bird led his team in all three

categories. Figure 14-7 shows the Chicago Bulls, sorted by points per game. No surprise on whose name stands at

the top of the list.

Figure 14-6: The 1985–86 Boston Celtics

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig607%5F01%5F0%2Ejpg

Figure 14-7: The 1995–96 Chicago Bulls

CheckboxTableViewer

Not to be outdone by TreeViewer and CheckboxTreeViewer, TableViewer also offers a version with checkboxes. This

class, CheckboxTableViewer, subclasses TableViewer, and follows the same pattern as the other viewers in this

chapter—almost. Although it does offer the same three constructors as the other viewers, the two that don't take the

control to wrap are deprecated. It also offers a static method for creating a CheckboxTableViewer with one column and

no header, called newCheckList(). Table 14-17 lists CheckboxTableViewer's methods.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig608%5F01%5F0%2Ejpg

Table 14-17: CheckboxTableViewer Methods

Method Description

void addCheckStateListener

(ICheckStateListener listener)
Adds a listener that's notified when any items in the table are

checked or unchecked.

boolean getChecked(Object element) Returns true if the specified element is checked. Otherwise, returns

false.

Object[] getCheckedElements() Returns all the checked elements from the table.

boolean getGrayed(Object element) Returns true if the specified element is grayed. Otherwise, returns

false.

Object[] getGrayedElements() Returns all the grayed elements from the table.

void removeCheckStateListener

(ICheckStateListener listener)
Removes the specified listener from the notification list.

void setAllChecked(boolean state) If state is true, sets all the elements in the table to checked.

Otherwise, sets all the elements in the table to unchecked.

void setAllGrayed(boolean state) If state is true, sets all the elements in the table to grayed.

Otherwise, sets all the elements in the table to ungrayed.

boolean setChecked(Object element,

boolean state)
If state is true, sets the specified element to checked. Otherwise,

sets the specified element to unchecked. Returns true if setting the

checked state was successful. Otherwise, returns false.

void setCheckedElements(Object[]

elements)
Sets the specified elements in the table to checked, and sets any

other elements in the table to unchecked.

boolean setGrayed(Object element,

boolean state)
If state is true, sets the specified element to grayed. Otherwise,

sets the specified element to ungrayed. Returns true if setting the

grayed state was successful. Otherwise, returns false.

void setGrayedElements(Object[]

elements)
Sets the specified elements in the table to grayed, and sets any

other elements in the table to ungrayed.

The BackupFiles program shows a typical usage of CheckboxTableViewer: it uses CheckboxTableViewer.newCheckList()

to create a single column table, with no header, that lists all the files in a directory. It allows you to enter the directory

for which to list files, and it allows you to enter a destination directory. Check the files you want to copy to the

destination directory, and then click the copy button to copy the files. Though only a neophyte sysadmin would use

BackupFiles as a backup solution, it ably demonstrates CheckboxTableViewer.

The program, which you can find in the downloaded files, comprises three files: the content provider, the label

provider, and the main program. The content provider, BackupFilesContentProvider, implements

IStructuredContentProvider, and returns all the files (but not directories or subdirectories) for the input directory. The

label provider, BackupFilesLabelProvider, implements ILabelProvider. It could, instead, implement ITableLabelProvider.

However, the BackupFiles program displays only one column in the table, so ILabelProvider adequately fills the need. It

returns the file name, sans path, for each file. The BackupFiles class launches the program, creates the user interface

(including the CheckboxTableViewer and its content and label providers), and responds to user input. Here's the code it

uses to create the CheckboxTableViewer and set its providers:

// Create the CheckboxTableViewer to display the files in the source dir

final CheckboxTableViewer ctv =

 CheckboxTableViewer.newCheckList(composite, SWT.BORDER);

ctv.getTable().setLayoutData(new GridData(GridData.FILL_BOTH));

ctv.setContentProvider(new BackupFilesContentProvider());

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

ctv.setLabelProvider(new BackupFilesLabelProvider());

Compile and run the program. Figure 14-8 shows the program with a source and a destination directory set.

Figure 14-8: The BackupFiles program

TableTreeViewer

Another viewer that looks like a table, TableTreeViewer, combines a table and a tree. Based on SWT's TableTree control

described in Chapter 9, it follows the same viewer pattern as the other viewers in this chapter:

Create the TableTreeViewer.1.

Set the content provider.2.

Set the label provider.3.

Set the input data.4.

It offers the standard three viewer constructors, listed in Table 14-18, and the methods listed in Table 14-19. It derives,

not from TreeViewer, but from AbstractTreeViewer, which is the parent of TreeViewer. It's technically a TreeViewer, but

has columns like a table. It's included here after the discussion of both TreeViewer and TableViewer to leverage their

explanations.

Table 14-18: TableTreeViewer Constructors

Constructor Description

TableTreeViewer(Composite parent) Creates a TableTreeViewer as a child of parent

TableTreeViewer(Composite parent, int

style)
Creates a TableTreeViewer with the specified style as a child of
parent

TableTreeViewer(TableTree tableTree) Creates a TableTreeViewer that wraps the TableTree control

specified by tableTree

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig610%5F01%5F0%2Ejpg

Table 14-19: TableTreeViewer Methods

Method Description

void cancelEditing() Cancels the current editing session.

void editElement(Object element, int

column)
Starts an editing session with the cell specified by element and

column.

CellEditor[] getCellEditors() Returns all the cell editors for this TableTreeViewer.

ICellModifier getCellModifier() Returns the cell modifier for this TableTreeViewer.

Object[] getColumnProperties() Returns the column properties for this TableTreeViewer.

Control getControl() Returns the TableTree that this TableTreeViewer wraps.

Object getElementAt(int index) Returns the element at the specified zero-based index.

IBaseLabelProvider getLabelProvider() Returns the label provider for this TableTreeViewer.

TableTree getTableTree() Returns the TableTree that this TableTreeViewer wraps.

boolean isCellEditorActive() Returns true if an editing session is active. Otherwise, returns false.

void setCellEditors(CellEditor[]

cellEditors)
Sets the cell editors for this TableTreeViewer.

void setCellModifier (ICellModifier

cellModifier)
Sets the cell modifier for this TableTreeViewer.

void setColumnProperties(String[]

columnProperties)
Sets the column properties for this TableTreeViewer.

void setLabelProvider(IBase

LabelProvider labelProvider)
Sets the label provider for this TableTreeViewer. labelProvider must

be an instance of either ITableLabelProvider or ILabelProvider.

The PlayerTableTree program, which you can find in the downloaded files, displays the same data as the PlayerTable

program, but in a TableTreeViewer instead of a TableViewer. Instead of listing the three teams in a combo box, requiring

users to select one team at a time, it displays the teams as root nodes in the tree. Expand the nodes to see the

players in that team.

The content provider for a TableTreeViewer must implement the ITreeContentProvider interface. The

PlayerTreeContentProvider class must handle both Team and Player objects as nodes. It returns the teams from the

model as the root elements.

You can almost use the same label provider that you used with the PlayerTable program, except that it can't handle

Team objects, spewing out strange and misleading messages saying that the application hasn't yet been initialized. To

correct this, create a new label provider class that extends the PlayerLabelProvider class. Call it PlayerTreeLabelProvider.

When it receives requests, it passes any requests for Player objects to PlayerLabelProvider, and handles requests for

Team objects. Its getColumnImage() and getColumnText() implementations look like this:

/**

 * Gets the image for the specified column

 * @param arg0 the player or team

 * @param arg1 the column

 * @return Image

 */

public Image getColumnImage(Object arg0, int arg1) {

 // Teams have no image

 if (arg0 instanceof Player)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 return super.getColumnImage(arg0, arg1);

 return null;

}

/**

 * Gets the text for the specified column

 * @param arg0 the player or team

 * @param arg1 the column

 * @return String

 */

public String getColumnText(Object arg0, int arg1) {

 if (arg0 instanceof Player)

 return super.getColumnText(arg0, arg1);

 Team team = (Team) arg0;

 return arg1 == 0 ? team.getYear() + " " + team.getName() : "";

}

The PlayerTableTree class creates the user interface, including the TableTreeViewer. It creates an instance of

PlayerTableModel and uses it as the input for the TableTreeViewer. It creates the content and label providers and

launches the application. The part of the code that creates and sets up the TableTreeViewer looks like this:

// Create the table viewer to display the players

ttv = new TableTreeViewer(parent);

ttv.getTableTree().setLayoutData(new GridData(GridData.FILL_BOTH));

// Set the content and label providers

ttv.setContentProvider(new PlayerTreeContentProvider());

ttv.setLabelProvider(new PlayerTreeLabelProvider());

ttv.setInput(new PlayerTableModel());

// Set up the table

Table table = ttv.getTableTree().getTable();

new TableColumn(table, SWT.LEFT).setText("First Name");

new TableColumn(table, SWT.LEFT).setText("Last Name");

new TableColumn(table, SWT.RIGHT).setText("Points");

new TableColumn(table, SWT.RIGHT).setText("Rebounds");

new TableColumn(table, SWT.RIGHT).setText("Assists");

// Expand everything

ttv.expandAll();

// Pack the columns

for (int i = 0, n = table.getColumnCount(); i < n; i++) {

 table.getColumn(i).pack();

}

// Turn on the header and the lines

table.setHeaderVisible(true);

table.setLinesVisible(true);

Compiling and running the application produces the window seen in Figure 14-9.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Figure 14-9: A TableTreeViewer

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig613%5F01%5F0%2Ejpg

Cell Editors

Users expect to be able to edit data in a table. To this point in the chapter, all the tables have presented read-only

data. Editing data in place does add complexity, but JFace eases that burden significantly by using cell editors.

The CellEditor class stands as the base for all the cell editor classes. It's an abstract class, so you can't create a

CellEditor instance. Instead, you create one of its concrete subclasses:

TextCellEditor

CheckboxCellEditor

ComboBoxCellEditor

ColorCellEditor

ColorCellEditor derives from a subclass of CellEditor called DialogCellEditor. You can create your own cell editors that

rely on dialogs by subclassing DialogCellEditor.

CellEditor exposes a number of methods, listed in Table 14-20. Fortunately, the other cell editors expose no new

methods, except for ComboBoxCellEditor. It exposes a method to set the items for the combo and a method to get the

items from the combo:

void setItems(String[] items) to set the items

String[] getItems() to get the items

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Table 14-20: CellEditor Methods

Method Description

void activate() Activates this cell editor.

void addListener(ICellEditor Listener listener) Adds a listener that's notified when the user changes the

cell editor's value, attempts to apply a change to the cell,

or cancels editing.

void addPropertyChangeListener

(IPropertyChangeListener listener)
Adds a listener that's notified when a property changes.

void create(Composite parent) Creates the underlying control for this cell editor.

void deactivate() Deactivates this cell editor.

void dispose() Disposes this cell editor.

Control getControl() Returns the underlying control for this cell editor.

String getErrorMessage() Returns the current error message for this cell editor.

CellEditor.layoutData getLayoutData() Returns the layout data for this cell editor.

int getStyle() Returns the style values for this cell editor.

ICellEditorValidator getValidator() Returns the validator for this cell editor.

Object getValue() Returns the value of this cell editor.

boolean isActivated() Returns true if this cell editor is activated. Otherwise,

returns false.

boolean isCopyEnabled() Returns true if this cell editor can copy to the clipboard.

Otherwise, returns false.

boolean isCutEnabled() Returns true if this cell editor can cut to the clipboard.

Otherwise, returns false.

boolean isDeleteEnabled() Returns true if this cell editor can perform a delete.

Otherwise, returns false.

boolean isDirty() Returns true if the value in this cell editor has changed and

not been saved. Otherwise, returns false.

boolean isFindEnabled() Returns true if this cell editor can perform a find.

Otherwise, returns false.

boolean isPasteEnabled() Returns true if this cell editor can paste from the clipboard.

Otherwise, returns false.

boolean isRedoEnabled() Returns true if this cell editor can redo the last action.

Otherwise, returns false.

boolean isSelectAllEnabled() Returns true if this cell editor can select all its contents.

Otherwise, returns false.

boolean isUndoEnabled() Returns true if this cell editor can undo the last action.

Otherwise, returns false.

boolean isValueValid() Returns true if this cell editor has a valid value. Otherwise,

returns false.

void performCopy() Copies this cell editor's value to the clipboard.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Method Description

void performDelete() Performs a delete.

void performFind() Performs a find.

void performPaste() Pastes the value from the clipboard into this cell editor.

void performRedo() Redoes the last action on this cell editor.

void performSelectAll() Selects all the contents of this cell editor.

void performUndo() Undoes the last action on this cell editor.

void removeListener(ICellEditor Listener listener) Removes the specified listener from the notification list.

void removePropertyChange

Listener(IPropertyChangeListener listener)
Removes the specified listener from the notification list.

void setFocus() Sets the focus to this cell editor's control.

void setStyle(int style) Sets the style values for this cell editor.

void setValidator(ICellEditor Validator validator) Sets the validator for this cell editor.

void setValue(Object value) Sets this cell editor's value.

Using Cell Editors

Cell editors use column properties in conjunction with an ICellModifier class to transfer data between the editor controls

and the data model. The editing process uses the column property name, instead of a column index, to denote the

column being modified. The ICellModifier interface declares the methods listed in Table 14-21.

Table 14-21: ICellModifier Methods

Method Description

boolean canModify(Object

element, String property)
Called to determine whether to allow modifications to the specified property

on the specified element. Return true to allow modification, or false to

disallow it.

Object getValue(Object

element, String property)
Called to get the value of the specified property from the specified element,

to put into the cell editor. Return the element's value for the specified

property.

void modify(Object element,

String property, Object value)
Called to transfer the value, specified by value, for the property specified by

property, from the cell editor to the element. Copy the value to the

appropriate location in the element. Note that this doesn't automatically

refresh the view.

Suppose, for example, that you have a TableViewer that displays your entire vehicle inventory—both make and

model—using instances of the Car class shown here:

public class Car {

 public String make;

 public String model;

}

You'll set up column properties on your TableViewer that look like this:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

tableViewer.setColumnProperties(new String[] { "make", "model" });

These properties are passed to your ICellModifier implementation, which might look like this:

public class MyCellModifier implements ICellModifier {

 public boolean canModify(Object element, String property) {

 // Allow editing of everything

 return true;

 }

 public Object getValue(Object element, String property) {

 Car car = (Car) element;

 if ("make".equals(property))

 return element.make;

 if ("model".equals(property))

 return element.model;

 // Shouldn't get here

 return null;

 }

 public void modify(Object element, String property, Object value) {

 // element can be passed as an Item

 if (element instanceof Item)

 element = ((Item) element).getData();

 Car car = (Car) element;

 if ("make".equals(property))

 car.make = (String) value;

 else if ("model".equals(property))

 car.model = (String) value;

 }

}

You set your ICellModifier class as the cell modifier for your TableViewer like this:

tableViewer.setCellModifier(new MyCellModifier());

Finally, you set your cell editors using TableViewer.setCellEditors(), which takes an array of CellEditor objects. The array

indices correspond to the column indices, so leave slots in your array blank for any columns for which you don't want

editing. For your car inventory program, your editor setup might look like this:

CellEditor[] editors = new CellEditor[2];

editors[0] = new TextCellEditor(tableViewer.getTable());

editors[1] = new TextCellEditor(tableViewer.getTable());

tableViewer.setCellEditors(editors);

Now you can edit your vehicles by typing directly into the TableViewer.

Seeing Cell Editors in Action

The PersonEditor program lists people in a TableViewer. It shows their names, whether or not they're male, their age

range, and also allows you to change their shirt color. It uses a TextCellEditor to edit their names, a CheckboxCellEditor

to edit whether they're male, a ComboBoxCellEditor to edit their age ranges, and a ColorCellEditor to edit their shirt

colors. Listing 14-7 shows the code to hold a Person.

Listing 14-7: Person.java

package examples.ch14;

import org.eclipse.swt.graphics.RGB;

/**

 * This class represents a person

 */

public class Person {

 private String name;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 private boolean male;

 private Integer ageRange;

 private RGB shirtColor;

 /**

 * @return Returns the ageRange.

 */

 public Integer getAgeRange() {

 return ageRange;

 }

 /**

 * @param ageRange The ageRange to set.

 */

 public void setAgeRange(Integer ageRange) {

 this.ageRange = ageRange;

 }

 /**

 * @return Returns the male.

 */

 public boolean isMale() {

 return male;

 }

 /**

 * @param male The male to set.

 */

 public void setMale(boolean male) {

 this.male = male;

 }

 /**

 * @return Returns the name.

 */

 public String getName() {

 return name;

}

 /**

 * @param name The name to set.

 */

 public void setName(String name) {

 this.name = name;

 }

 /**

 * @return Returns the shirtColor.

 */

 public RGB getShirtColor() {

 return shirtColor;

 }

 /**

 * @param shirtColor The shirtColor to set.

 */

 public void setShirtColor(RGB shirtColor) {

 this.shirtColor = shirtColor;

 }

}

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Notice that Person stores its age range as an Integer. The value of a ComboBoxCellEditor is a zero-based index into its

available options, stored as an Integer. Person uses the Integer to avoid having to map the index back to the value; you

might find that in your applications you'll want to store the value instead. If so, you must perform the mapping, because

ComboBoxCellEditor refuses anything but an Integer.

Because the PersonEditor program uses a TableViewer to display the people, you must create both a content provider

and a label provider, shown in Listing 14-8 and Listing 14-9, respectively.

Listing 14-8: PersonContentProvider.java

package examples.ch14;

import java.util.List;

import org.eclipse.jface.viewers.IStructuredContentProvider;

import org.eclipse.jface.viewers.Viewer;

/**

 * This class provides the content for the person table

 */

public class PersonContentProvider implements IStructuredContentProvider {

 /**

 * Returns the Person objects

 */

 public Object[] getElements(Object inputElement) {

 return ((List) inputElement).toArray();

 }

 /**

 * Disposes any created resources

 */

 public void dispose() {

 // Do nothing

 }

 /**

 * Called when the input changes

 */

 public void inputChanged(Viewer viewer, Object oldInput, Object newInput) {

 // Ignore

 }

}

Listing 14-9: PersonLabelProvider.java

package examples.ch14;

import org.eclipse.jface.viewers.ILabelProviderListener;

import org.eclipse.jface.viewers.ITableLabelProvider;

import org.eclipse.swt.graphics.Image;

/**

 * This class provides the labels for the person table

 */

public class PersonLabelProvider implements ITableLabelProvider {

 /**

 * Returns the image

 *

 * @param element the element

 * @param columnIndex the column index

 * @return Image

 */

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 public Image getColumnImage(Object element, int columnIndex) {

 return null;

 }

 /**

 * Returns the column text

 *

 * @param element the element

 * @param columnIndex the column index

 * @return String

 */

 public String getColumnText(Object element, int columnIndex) {

 Person person = (Person) element;

 switch (columnIndex) {

 case 0:

 return person.getName();

 case 1:

 return Boolean.toString(person.isMale());

 case 2:

 return AgeRange.INSTANCES[person.getAgeRange().intValue()];

 case 3:

 return person.getShirtColor().toString();

 }

 return null;

 }

 /**

 * Adds a listener

 *

 * @param listener the listener

 */

 public void addListener(ILabelProviderListener listener) {

 // Ignore it

 }

 /**

 * Disposes any created resources

 */

 public void dispose() {

 // Nothing to dispose

 }

 /**

 * Returns whether altering this property on this element will affect the label

 *

 * @param element the element

 * @param property the property

 * @return boolean

 */

 public boolean isLabelProperty(Object element, String property) {

 return false;

 }

 /**

 * Removes a listener

 *

 * @param listener the listener

 */

 public void removeListener(ILabelProviderListener listener) {

 // Ignore

 }

}

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

The PersonCellModifier class, shown in Listing 14-10, implements the ICellModifier interface. It requires a reference to

the parent viewer, so that it can force the viewer to refresh after any modifications.

Listing 14-10: PersonCellModifier.java

package examples.ch14;

import org.eclipse.jface.viewers.*;

import org.eclipse.swt.graphics.RGB;

import org.eclipse.swt.widgets.Item;

/**

 * This class represents the cell modifier for the PersonEditor program

 */

public class PersonCellModifier implements ICellModifier {

 private Viewer viewer;

 public PersonCellModifier(Viewer viewer) {

 this.viewer = viewer;

 }

 /**

 * Returns whether the property can be modified

 *

 * @param element the element

 * @param property the property

 * @return boolean

 */

 public boolean canModify(Object element, String property) {

 // Allow editing of all values

 return true;

 }

 /**

 * Returns the value for the property

 *

 * @param element the element

 * @param property the property

 * @return Object

 */

 public Object getValue(Object element, String property) {

 Person p = (Person) element;

 if (PersonEditor.NAME.equals(property))

 return p.getName();

 else if (PersonEditor.MALE.equals(property))

 return Boolean.valueOf(p.isMale());

 else if (PersonEditor.AGE.equals(property))

 return p.getAgeRange();

 else if (PersonEditor.SHIRT_COLOR.equals(property))

 return p.getShirtColor();

 else

 return null;

 }

 /**

 * Modifies the element

 *

 * @param element the element

 * @param property the property

 * @param value the value

 */

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 public void modify(Object element, String property, Object value) {

 if (element instanceof Item) element = ((Item) element).getData();

 Person p = (Person) element;

 if (PersonEditor.NAME.equals(property))

 p.setName((String) value);

 else if (PersonEditor.MALE.equals(property))

 p.setMale(((Boolean) value).booleanValue());

 else if (PersonEditor.AGE.equals(property))

 p.setAgeRange((Integer) value);

 else if (PersonEditor.SHIRT_COLOR.equals(property))

 p.setShirtColor((RGB) value);

 // Force the viewer to refresh

 viewer.refresh();

 }

}

The PersonEditor class launches the program, creates the interface, and sets up the column properties, the cell

modifier, and the cell editors (see Listing 14-11).

Listing 14-11: PersonEditor.java

package examples.ch14;

import java.util.*;

import org.eclipse.jface.window.ApplicationWindow;

import org.eclipse.jface.viewers.*;

import org.eclipse.swt.SWT;

import org.eclipse.swt.events.*;

import org.eclipse.swt.graphics.*;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.widgets.*;

/**

 * This class demonstrates CellEditors. It allows you to create and edit Person

 * objects.

 */

public class PersonEditor extends ApplicationWindow {

 // Table column names/properties

 public static final String NAME = "Name";

 public static final String MALE = "Male?";

 public static final String AGE = "Age Range";

 public static final String SHIRT_COLOR = "Shirt Color";

 public static final String[] PROPS = { NAME, MALE, AGE, SHIRT_COLOR};

 // The data model

 private java.util.List people;

 /**

 * Constructs a PersonEditor

 */

 public PersonEditor() {

 super(null);

 people = new ArrayList();

 }

 /**

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 * Runs the application

 */

 public void run() {

 // Don't return from open() until window closes

 setBlockOnOpen(true);

 // Open the main window

 open();

 // Dispose the display

 Display.getCurrent().dispose();

 }

 /**

 * Configures the shell

 *

 * @param shell the shell

 */

 protected void configureShell(Shell shell) {

 super.configureShell(shell);

 shell.setText("Person Editor");

 shell.setSize(400, 400);

 }

 /**

 * Creates the main window's contents

 *

 * @param parent the main window

 * @return Control

 */

 protected Control createContents(Composite parent) {

 Composite composite = new Composite(parent, SWT.NONE);

 composite.setLayout(new GridLayout(1, false));

 // Add a button to create the new person

 Button newPerson = new Button(composite, SWT.PUSH);

 newPerson.setText("Create New Person");

 // Add the TableViewer

 final TableViewer tv = new TableViewer(composite, SWT.FULL_SELECTION);

 tv.setContentProvider(new PersonContentProvider());

 tv.setLabelProvider(new PersonLabelProvider());

 tv.setInput(people);

 // Set up the table

 Table table = tv.getTable();

 table.setLayoutData(new GridData(GridData.FILL_BOTH));

 new TableColumn(table, SWT.CENTER).setText(NAME);

 new TableColumn(table, SWT.CENTER).setText(MALE);

 new TableColumn(table, SWT.CENTER).setText(AGE);

 new TableColumn(table, SWT.CENTER).setText(SHIRT_COLOR);

 for (int i = 0, n = table.getColumnCount(); i < n; i++) {

 table.getColumn(i).pack();

 }

 table.setHeaderVisible(true);

 table.setLinesVisible(true);

 // Add a new person when the user clicks button

 newPerson.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 Person p = new Person();

 p.setName("Name");

 p.setMale(true);

 p.setAgeRange(Integer.valueOf("0"));

 p.setShirtColor(new RGB(255, 0, 0));

 people.add(p);

 tv.refresh();

 }

 });

 // Create the cell editors

 CellEditor[] editors = new CellEditor[4];

 editors[0] = new TextCellEditor(table);

 editors[1] = new CheckboxCellEditor(table);

 editors[2] = new ComboBoxCellEditor(table, AgeRange.INSTANCES,

 SWT.READ_ONLY);

 editors[3] = new ColorCellEditor(table);

 // Set the editors, cell modifier, and column properties

 tv.setColumnProperties(PROPS);

 tv.setCellModifier(new PersonCellModifier(tv));

 tv.setCellEditors(editors);

 return composite;

 }

 /**

 * The application entry point

 *

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 new PersonEditor().run();

 }

}

Compile and run the program to see an empty table, as Figure 14-10 shows. Click the Create New Person button to

create a new person in the table, as seen in Figure 14-11. You can then edit the person by clicking the appropriate cell

and performing the appropriate edits. Figure 14-12 shows the program with some edits occurring.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Figure 14-10: The PersonEditor program

Figure 14-11: The PersonEditor program with one unedited person

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig626%5F01%5F0%2Ejpg
file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig627%5F01%5F0%2Ejpg

Figure 14-12: The PersonEditor program with an edited person

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig627%5F02%5F0%2Ejpg

Summary

Complex data, such as hierarchical or tabular data, can be difficult to manage— especially if widgets force you to

manage it twice (once in your data storage, once in the widget). Even lists of data can be painful to work with when

view and data inextricably merge, as they do when you work directly with widgets. Turn to JFace to remove this data

management pain, using its MVC layer atop SWT's Tree, List, and Table widgets. JFace's viewers make dealing with

views of complex data simple.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Chapter 15: JFace Dialogs

Overview

SWT offers a slew of dialogs, as Chapter 7 details. These dialogs cover color selection, font selection, directory

selection, file selection, printer selection, and message display. They're a cinch to use: instantiate, call open(), and

check the return value. No abstraction layer could make them easier to use than they already are. Yet JFace offers

dialog classes. Why?

Closer inspection reveals that JFace's dialogs overlap SWT's only slightly. JFace doesn't contain the array of selection

dialogs that SWT does. Instead, JFace offers dialogs to display error messages, accept input, and other helpful utility

functions. Sure, you could build all JFace's dialogs yourself using SWT's dialog classes, but JFace's versions not only

are already built, but have undergone extensive testing. However, they're designed to fill specific Eclipse needs, so

you might find them inappropriate for your requirements. Use as appropriate, but don't shrink from falling back on

SWT's dialog classes when they're better suited for what you're trying to accomplish.

This chapter covers the following JFace dialogs:

ErrorDialog, for displaying errors

InputDialog, for receiving input

MessageDialog, for displaying messages

ProgressMonitorDialog, for displaying progress during lengthy operations

TitleAreaDialog, for building your own dialogs with a title, image, and message

IconAndMessageDialog, for building your own dialogs with an icon and message

The org.eclipse.jface.dialogs package contains these classes.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Showing Errors

Up to this point, the examples in this book have cobbled together various error dialogs to give feedback to users.

JFace offers a dialog for displaying errors. However, it betrays its Eclipse roots with its reliance on a non-null instance

of IStatus, which is relatively unwieldy to set up. This error mechanism, though handy for use in Eclipse plug-ins, might

prove more trouble than it's worth in desktop applications.

Creating a Status

The IStatus interface declares the methods listed in Table 15-1. JFace includes two classes that implement IStatus:

Status and MultiStatus. As their names suggest, Status represents a single status (or error), while MultiStatus represents

multiple statuses (or errors). Although IStatus, Status, and MultiStatus all refer to plug-in specifics (such as a

plug-in-specific code or a plug-in identifier), you can shame-lessly fake these values without repercussions.

Table 15-1: IStatus Methods

Method Description

IStatus[] getChildren() Returns the children of this IStatus for MultiStatuses, or an empty array for

Statuses.

int getCode() Returns the plug-in-specific code.

Throwable getException() Returns the exception.

String getMessage() Returns the message.

String getPlugin() Returns the plug-in identifier.

int getSeverity() Returns the severity code (see Table 15-2).

boolean isMultiStatus() Returns true if this is a MultiStatus. Otherwise, returns false.

boolean isOK() Returns true if this IStatus represents an OK state.

boolean matches(int

severityMask)
Returns true if the severity code of this IStatus matches the specified

severity mask.

Table 15-2: IStatus Severity Codes

Code Description

int IStatus.CANCEL Indicates that this status represents a cancellation

int IStatus.ERROR Indicates that this status represents an error

int IStatus.INFO Indicates that this status represents information

int IStatus.OK Indicates that this status represents an OK state

int IStatus.WARNING Indicates that this status represents a warning

Each IStatus instance requires a severity code. IStatus declares a set of constants for these severity codes, listed in

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Table 15-2.

To create a Status, call its only constructor:

Status(int severity, String pluginId, int code, String message,

 Throwable exception);

You can pass null for exception, but you're on the hook for the other values. severity should be one of the IStatus

severity codes. You can pass whatever values you wish for the other parameters. The following code creates an error

status:

Status status = new Status(IStatus.ERROR, "My Plug-in", 100, "An error happened",

 null);

Displaying the Error

With the IStatus instance created, you're ready to display an error. ErrorDialog offers a static method to do all the work

for you: openError(). To display the error dialog, you call the following:

ErrorDialog.openError(shell, dialogTitle, message, status);

This code creates the dialog, displays it, and blocks until the user dismisses it. You'll notice that you pass two

messages: one directly, and one in the Status object. The one you pass directly displays first; the one in the Status

object displays below the text "Reason," as Figure 15-1 shows.

Figure 15-1: An ErrorDialog

You can, instead, construct an ErrorDialog and call its open() method. The constructor takes the same parameters as

the openError() method, with the addition of an int representing a display mask. This display mask should contain one or

more severity codes drawn from the IStatus constants, using the bitwise OR operator to chain multiples together. If the

severity code in the passed Status object matches the display mask, the dialog displays. Otherwise, it doesn't. For

example, the following code displays an error dialog:

Status status = new Status(IStatus.ERROR, "Will display", 0, "Error", null);

ErrorDialog dlg = new ErrorDialog(shell, "Title", "Message", status,

 IStatus.ERROR);

dlg.open();

However, the following code displays no dialog.

Status status = new Status(IStatus.ERROR, "Won't display", 0, "Error", null);

ErrorDialog dlg = new ErrorDialog(shell, "Title", "Message", status,

 IStatus.INFO);

dlg.open();

Table 15-3 lists ErrorDialog's methods.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig631%5F01%5F0%2Ejpg

Table 15-3: ErrorDialog Methods

Method Description

boolean close() Closes this dialog and returns true

int open() Opens the dialog, blocks until it's dismissed, and returns 0

static int openError(Shell parent, String dialogTitle,

String message, IStatus status)
Creates a dialog, opens it, blocks until it's dismissed, and

returns 0

static int openError(Shell parent, String dialogTitle,

String message, IStatus status, int displayMask)
Creates a dialog, opens it if the display mask matches

the severity code in status, blocks until it's dismissed, and

returns 0

To facilitate automated testing, ErrorDialog contains a boolean static member— AUTOMATED_MODE—that you can set

to false to prevent error dialogs from popping up. Otherwise, your automated tests might stop in the middle, waiting for

you to click OK on an error message.

The ShowError program demonstrates the ErrorDialog class (see Listing 15-1). It displays a multiline text box and a

button. Clicking the button opens an ErrorDialog, using the text in the text box for the message.

Listing 15-1: ShowError.java

package examples.ch15;

import org.eclipse.core.runtime.*;

import org.eclipse.jface.dialogs.ErrorDialog;

import org.eclipse.jface.window.ApplicationWindow;

import org.eclipse.swt.SWT;

import org.eclipse.swt.events.*;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.widgets.*;

/**

 * This class demonstrates JFace's ErrorDialog class

 */

public class ShowError extends ApplicationWindow {

 /**

 * ShowError constructor

 */

 public ShowError() {

 super(null);

 }

 /**

 * Runs the application

 */

 public void run() {

 // Don't return from open() until window closes

 setBlockOnOpen(true);

 // Open the main window

 open();

 // Dispose the display

 Display.getCurrent().dispose();

 }

 /**

 * Configures the shell

 *

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 * @param shell the shell

 */

 protected void configureShell(Shell shell) {

 super.configureShell(shell);

 // Set the title bar text and the size

 shell.setText("Show Error");

 shell.setSize(400, 400);

 }

 /**

 * Creates the main window's contents

 *

 * @param parent the main window

 * @return Control

 */

 protected Control createContents(Composite parent) {

 Composite composite = new Composite(parent, SWT.NONE);

 composite.setLayout(new GridLayout(1, false));

 // Create a big text box to accept error text

 final Text text = new Text(composite, SWT.MULTI | SWT.BORDER | SWT.V_SCROLL);

 text.setLayoutData(new GridData(GridData.FILL_BOTH));

 // Create the button to launch the error dialog

 Button show = new Button(composite, SWT.PUSH);

 show.setText("Show Error");

 show.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 // Create the required Status object

 Status status = new Status(IStatus.ERROR, "My Plug-in ID", 0,

 "Status Error Message", null);

 // Display the dialog

 ErrorDialog.openError(Display.getCurrent().getActiveShell(),

 "JFace Error", text.getText(), status);

 }

 });

 return composite;

 }

 /**

 * The application entry point

 *

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 new ShowError().run();

 }

}

Figure 15-2 shows the program with some error text swiped from the Project Gutenberg site (http://www.gutenberg.net/).

Figure 15-3 shows the ErrorDialog resulting from that error text.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://www.gutenberg.net/

Figure 15-2: The ShowError program

Figure 15-3: An ErrorDialog

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig634%5F01%5F0%2Ejpg
file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig635%5F01%5F0%2Ejpg

Receiving Input

In contrast to ErrorDialog, InputDialog breaks free from any Eclipse underpinnings. You'll find it generally useful any time

you want a line of text from the user. The dialog displays text in the title bar, a message, a Text field for input, and OK

and Cancel buttons. You control the text in the title bar, the message, and the initial value for the input. Figure 15-4

displays a sample InputDialog.

Figure 15-4: An InputDialog

Optionally, you can validate the text the user types. You can also subclass InputDialog to customize it to fit your needs.

Displaying an InputDialog

Displaying an InputDialog follows the typical pattern for dialogs, except that the open() method doesn't return the

entered text. Instead, it returns either Window.OK or Window.CANCEL, depending upon which button was used to

dismiss the dialog. You construct an InputDialog by passing all the necessary information to the constructor:

The parent Shell

The title bar text

The message text

The initial value for the Text field

The validator to use, or null for no validator

For example, the code that follows creates the InputDialog shown in Figure 15-5. It uses the active Shell as the parent,

"Title Text" for the title bar text, "This is a message" for the message text, blank for the initial value of the Text field, and

no validator.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig635%5F02%5F0%2Ejpg
file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig636%5F01%5F0%2Ejpg

Figure 15-5: Another InputDialog

InputDialog dlg = new InputDialog(Display.getCurrent().getActiveShell(),

 "Title Text", "This is a message", "", null);

Once you've constructed an InputDialog, you call its open() method to display it. open() returns Window.OK if the user

clicked the OK button or pressed Enter on the keyboard, or Window.CANCEL if the user clicked Cancel, pressed Esc on

the keyboard, or clicked the window's close button. You can capture this return value to determine how the user

dismissed the dialog.

Pranksters might consider crossing up users by reversing their reactions to OK and Cancel. However, JFace foils

miscreant behavior: it preserves the typed value only when users click OK (or hit Enter). In other words, unless you

subclass InputDialog and capture the typed value even if users cancel the dialog, you have no access to what the users

typed unless they click OK.

To extract the text that a user typed in the InputDialog, call InputDialog.getValue(). It returns a String containing the text if

the user clicked OK, or null if the user cancelled the dialog. The following code displays the dialog constructed earlier. It

prints the typed text when the user clicks OK, or "User cancelled" when the user clicks Cancel.

int rc = dlg.open();

if (rc == Window.OK)

 System.out.println(dlg.getValue());

else

 System.out.println("User cancelled");

Validating Input

Once users click OK and you retrieve the input, you can validate that input however you'd like, accepting or rejecting it

based on some relevant criteria. Perhaps you were expecting a ZIP code, and users typed the first seven words of the

Gettysburg Address. You'd probably want to reject the input, display an error message, and display the InputDialog

again. Though you're free to go the rounds with your users in this fashion, JFace offers a better alternative: in-place

validating. Using a validator, you can validate the input as it's typed. In fact, until you approve the input, the user can't

even click OK. The user can't give you bad input.

To use a validator, create a validator class that implements the IInputValidator interface. It declares one method:

String isValid(String newText)

InputDialog calls your implementation of the isValid() method every time the text in the input field changes, passing the

complete text from the input field in the newText parameter. You return null if the text is copacetic, or an error message

describing the problem if not. InputDialog unobtrusively displays any error message below the input field. Figure 15-6

shows an example; the error message in this case is "No way."

Figure 15-6: An InputDialog with an error message

To use your validator class, pass it as the ultimate parameter to the InputDialog constructor.

The GetInput program displays a Label and a Button. Click the button to display an InputDialog. Type text into the input

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig637%5F01%5F0%2Ejpg

field and click OK, and the text you typed displays in the Label in the main window.

The InputDialog uses a validator that enforces input that's between five and eight characters. The message in the

dialog describes these parameters, and the error message gives appropriate feedback: if the input text is too short, it

displays an error message that says, "Too short." If the input text is too long, the dialog displays an error message that

says, "Too long." Listing 15-2 shows the validator class that affects this behavior, LengthValidator.

Listing 15-2: LengthValidator.java

package examples.ch15;

import org.eclipse.jface.dialogs.IInputValidator;

/**

 * This class validates a String. It makes sure that the String is between 5 and

 * 8 characters

 */

public class LengthValidator implements IInputValidator {

 /**

 * Validates the String. Returns null for no error, or an error message

 *

 * @param newText the String to validate

 * @return String

 */

 public String isValid(String newText) {

 int len = newText.length();

 // Determine if input is too short or too long

 if (len < 5) return "Too short";

 if (len > 8) return "Too long";

 // Input must be OK

 return null;

 }

}

The GetInput class launches the program and creates the main window (see Listing 15-3). When the user clicks the

Get Input button, it creates and displays an InputDialog that uses an instance of LengthValidator.

Listing 15-3: GetInput.java

package examples.ch15;

import org.eclipse.jface.dialogs.InputDialog;

import org.eclipse.jface.window.*;

import org.eclipse.swt.SWT;

import org.eclipse.swt.events.*;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.widgets.*;

/**

 * This class demonstrates JFace's InputDialog class

 */

public class GetInput extends ApplicationWindow {

 /**

 * GetInput constructor

 */

 public GetInput() {

 super(null);

 }

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 /**

 * Runs the application

 */

 public void run() {

 // Don't return from open() until window closes

 setBlockOnOpen(true);

 // Open the main window

 open();

 // Dispose the display

 Display.getCurrent().dispose();

 }

 /**

 * Configures the shell

 *

 * @param shell the shell

 */

 protected void configureShell(Shell shell) {

 super.configureShell(shell);

 // Set the title bar text

 shell.setText("Get Input");

 }

 /**

 * Creates the main window's contents

 *

 * @param parent the main window

 * @return Control

 */

 protected Control createContents(Composite parent) {

 Composite composite = new Composite(parent, SWT.NONE);

 composite.setLayout(new GridLayout(1, false));

 // Create a label to display what the user typed in

 final Label label = new Label(composite, SWT.NONE);

 label.setText("This will display the user input from InputDialog");

 // Create the button to launch the error dialog

 Button show = new Button(composite, SWT.PUSH);

 show.setText("Get Input");

 show.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 InputDialog dlg = new InputDialog(Display.getCurrent().getActiveShell(),

 "", "Enter 5-8 characters", label.getText(), new LengthValidator());

 if (dlg.open() == Window.OK) {

 // User clicked OK; update the label with the input

 label.setText(dlg.getValue());

 }

 }

 });

 parent.pack();

 return composite;

 }

 /**

 * The application entry point

 *

 * @param args the command line arguments

 */

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 public static void main(String[] args) {

 new GetInput().run();

 }

}

Figure 15-7 shows this program's main window. Figure 15-8 shows the InputDialog when too few characters have been

entered.

Figure 15-7: The GetInput program

Figure 15-8: The InputDialog with an error message

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig641%5F01%5F0%2Ejpg

Sending Messages

SWT's MessageBox class presents a message dialog to the user. Easy and compact to use, it's difficult to improve on.

You just construct a MessageBox , passing the style values you want; call open(); and check the return value to detect

the user's response. For example, you can display an error message such as this:

MessageBox mb = new MessageBox(shell, SWT.ICON_ERROR | SWT.OK);

mb.setText("Error");

mb.setMessage("An error occurred");

mb.open();

Simple. Concise. How do you improve on four lines of code?

JFace's MessageDialog manages to improve on SWT's MessageBox by shrinking the four lines to one:

MessageDialog.openError(shell, "Error", "An error occurred");

Not only is it more concise, it leaves no dialog reference in scope once the user dismisses the dialog. However, the

resulting dialog looks a little different. Figure 15-9 shows the SWT version, and Figure 15-10 shows the JFace version.

Figure 15-9: An SWT MessageBox

Figure 15-10: A JFace MessageDialog

You can construct a MessageDialog using its only constructor, and then call open(). However, once you see the

constructor's signature, you likely won't consider using MessageDialog this way. The constructor is as follows:

MessageDialog(Shell parentShell, String dialogTitle, Image dialogTitleImage,

 String dialogMessage, int dialogImageType, String[] dialogButtonLabels,

 int defaultIndex)

The construct/open approach entails too much work. Instead, MessageDialog exposes five static methods, each for a

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig642%5F01%5F0%2Ejpg

different type of dialog, that you can succinctly call to create and display the dialog. Table 15-4 lists the methods.

Table 15-4: MessageDialog Static Methods

Method Description

static boolean openConfirm(Shell parent,

String title, String message)
Displays a confirmation dialog with an OK and a Cancel

button. Returns true if OK is clicked, or false if Cancel is clicked.

static void openError(Shell parent, String

title, String message)
Displays an error dialog with an OK button.

static void openInformation(Shell parent,

String title, String message)
Displays an information dialog with an OK button.

static boolean openQuestion(Shell parent,

String title, String message)
Displays a question dialog with a Yes and a No button.

Returns true if Yes is clicked, or false if No is clicked.

static void openWarning(Shell parent, String

title, String message)
Displays a warning dialog with an OK button.

The SendMessage program allows you to explore how these five methods work (see Listing 15-4). It displays a

multiline text box and five buttons: one for each type of dialog. The application uses whatever text you type in the text

box as the message parameter. Type some text and click a button to see the corresponding dialog. Below the buttons,

a Label displays the return value of the last displayed dialog.

Listing 15-4: SendMessage.java

package examples.ch15;

import org.eclipse.jface.dialogs.MessageDialog;

import org.eclipse.jface.window.ApplicationWindow;

import org.eclipse.swt.SWT;

import org.eclipse.swt.events.*;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.widgets.*;

/**

 * This class demonstrates JFace's MessageDialog class

 */

public class SendMessage extends ApplicationWindow {

 /**

 * SendMessage constructor

 */

 public SendMessage() {

 super(null);

 }

 /**

 * Runs the application

 */

 public void run() {

 // Don't return from open() until window closes

 setBlockOnOpen(true);

 // Open the main window

 open();

 // Dispose the display

 Display.getCurrent().dispose();

 }

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 /**

 * Configures the shell

 *

 * @param shell the shell

 */

 protected void configureShell(Shell shell) {

 super.configureShell(shell);

 // Set the title bar text and the size

 shell.setText("Send Message");

 shell.setSize(500, 400);

 }

 /**

 * Creates the main window's contents

 *

 * @param parent the main window

 * @return Control

 */

 protected Control createContents(Composite parent) {

 Composite composite = new Composite(parent, SWT.NONE);

 composite.setLayout(new GridLayout(5, true));

 // Create a big text box for the message text

 final Text text = new Text(composite, SWT.MULTI | SWT.BORDER | SWT.V_SCROLL);

 GridData data = new GridData(GridData.FILL_BOTH);

 data.horizontalSpan = 5;

 text.setLayoutData(data);

 // Create the Confirm button

 Button confirm = new Button(composite, SWT.PUSH);

 confirm.setText("Confirm");

 confirm.setLayoutData(new GridData(GridData.FILL_HORIZONTAL));

 // Create the Error button

 Button error = new Button(composite, SWT.PUSH);

 error.setText("Error");

 error.setLayoutData(new GridData(GridData.FILL_HORIZONTAL));

 // Create the Information button

 Button information = new Button(composite, SWT.PUSH);

 information.setText("Information");

 information.setLayoutData(new GridData(GridData.FILL_HORIZONTAL));

 // Create the Question button

 Button question = new Button(composite, SWT.PUSH);

 question.setText("Question");

 question.setLayoutData(new GridData(GridData.FILL_HORIZONTAL));

 // Create the Warning button

 Button warning = new Button(composite, SWT.PUSH);

 warning.setText("Warning");

 warning.setLayoutData(new GridData(GridData.FILL_HORIZONTAL));

 // Create the label to display the return value

 final Label label = new Label(composite, SWT.NONE);

 data = new GridData(GridData.FILL_HORIZONTAL);

 data.horizontalSpan = 5;

 label.setLayoutData(data);

 // Save ourselves some typing

 final Shell shell = parent.getShell();

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 // Display a Confirmation dialog

 confirm.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 boolean b = MessageDialog.openConfirm(shell, "Confirm", text.getText());

 label.setText("Returned " + Boolean.toString(b));

 }

 });

 // Display an Error dialog

 error.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 MessageDialog.openError(shell, "Error", text.getText());

 label.setText("Returned void");

 }

 });

 // Display an Information dialog

 information.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 MessageDialog.openInformation(shell, "Information", text.getText());

 label.setText("Returned void");

 }

 });

 // Display a Question dialog

 question.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 boolean b = MessageDialog.openQuestion(shell, "Question",

 text.getText());

 label.setText("Returned " + Boolean.toString(b));

 }

 });

 // Display a Warning dialog

 warning.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 MessageDialog.openWarning(shell, "Warning", text.getText());

 label.setText("Returned void");

 }

 });

 return composite;

 }

 /**

 * The application entry point

 *

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 new SendMessage().run();

 }

}

Figure 15-11 shows the application's main window. Figure 15-12 shows a confirmation dialog, Figure 15-13 shows an

error dialog, Figure 15-14 shows an information dialog, Figure 15-15 shows a question dialog, and Figure 15-16 shows

a warning dialog.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Figure 15-11: The SendMessage program

Figure 15-12: A confirmation dialog

Figure 15-13: An error dialog

Figure 15-14: An information dialog

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig646%5F01%5F0%2Ejpg
file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig646%5F02%5F0%2Ejpg
file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig646%5F03%5F0%2Ejpg
file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig647%5F01%5F0%2Ejpg

Figure 15-15: A question dialog

Figure 15-16: A warning dialog

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig647%5F02%5F0%2Ejpg
file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig647%5F03%5F0%2Ejpg

Showing Progress

Moore's Law ensures that computers continually get faster, meaning that fewer and fewer operations take long enough

that users notice the slightest hiccup in application responsiveness. However, the demands we throw at computers

seem to at least keep pace with, if not outgain, the speed increases. Add the latency inherent to the increased levels of

network reliance in the latest applications, and you create many situations in which applications must perform lengthy

operations.

Although users, it seems, become more and more impatient with programs that make them wait, they're usually

mollified by visual feedback that keeps them abreast of the progress of any lengthy operations. Incorporating such

feedback in your applications using JFace's ProgressMonitorDialog places little burden on you, and in business parlance

represents a terrific return on investment (ROI).

Understanding ProgressMonitorDialog

The ProgressMonitorDialog class implements the progress dialog. As Figure 15-17 shows, it displays customizable text

in the title bar, a customizable message, the information icon, a progress bar, and a Cancel button. Its lone constructor

takes the parent Shell as its only parameter:

ProgressMonitorDialog(Shell parent)

Figure 15-17: A ProgressMonitorDialog

Table 15-5 lists ProgressMonitorDialog's public methods. Although you can construct a dialog and call its open() method,

the long-running operation doesn't begin until you call run(). Because run() defaults to open the dialog automatically,

you'll typically bypass an explicit call to open() and use code such as this:

new ProgressMonitorDialog(shell).run(true, true, runnable);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig648%5F01%5F0%2Ejpg

Table 15-5: ProgressMonitorDialog Methods

Method Description

boolean close() Closes the dialog, only if no runnables are running.

boolean getOpenOnRun() Returns true if the dialog will open before running the long-running

operation. Otherwise, returns false.

IProgressMonitor

getProgressMonitor()
Returns the progress monitor for this ProgressMonitorDialog.

int open() Opens this ProgressMonitorDialog.

void run(boolean fork, boolean

cancelable,

IRunnableWithProgress runnable)

Runs the long-running operation. If the dialog is set to open on run,

displays the dialog. If fork is true, runs the long-running operation in a

separate thread. Otherwise, runs it in the same thread. If cancelable is

true, enables the Cancel button on the dialog. Otherwise, disables the

Cancel button.

void setCancelable(boolean

cancelable)
If cancelable is true, enables the Cancel button on the dialog. Otherwise,

disables the Cancel button.

void setOpenOnRun(boolean

openOnRun)
If openOnRun is true, sets the dialog to open automatically when run() is

called. Otherwise, sets the dialog not to open when run() is called.

Creating the Slow Operation

ProgressMonitorDialog's run() method takes a reference to an IRunnableWithProgress instance. The IRunnableWithProgress

interface defines one method:

void run(IProgressMonitor monitor)

You should perform your long-running operation in this method. This method throws two exceptions:

InvocationTargetException and InterruptedException. If you need to throw another type of exception from your

implementation's run() method, you should wrap it in an InvocationTargetException.

Your IRunnableWithProgress.run() implementation should call methods on the passed IProgressMonitor instance to

update the dialog. Table 15-6 lists the methods that IProgressMonitor declares.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Table 15-6: IProgressMonitor Methods

Method Description

void beginTask(String

name, int totalWork)
Indicates that the work of the long-running operation is beginning. The dialog

displays the text specified by name as the message. The progress bar uses

totalWork as its 100% value. If you pass IProgressMonitor.UNKNOWN for totalWork,

the progress will animate repeatedly.

void done() Indicates that the long-running operation is done.

boolean isCanceled() Returns true if the user clicked the Cancel button. Otherwise, returns false.

void setCanceled(boolean

canceled)
If canceled is true, sets the dialog to cancelled. Otherwise, sets it to not cancelled.

void setTaskName(String

name)
Sets the name of the task (the message).

void subTask(String

name)
Displays the text specified by name below the progress bar.

void worked(int worked) Increments the progress bar by the number of units specified by worked, as a

percentage of the totalWork passed to beginTask().

A typical run() implementation calls beginTask(), starts the long-running operations, updates the progress bar

periodically by calling worked(), checks periodically whether the user has clicked Cancel, and throws an

InterruptedException if so. It looks something like this:

public void run(IProgressMonitor monitor)

throws InvocationTargetException, InterruptedException {

 // Begin the task

 monitor.beginTask("Running", 100);

 // Enter loop, check for either task completion or Cancel pressed

 for (int i = 0; i < 100 && !monitor.isCanceled(); i += 5) {

 // Perform some of the work

 . . .

 // Increment the progress bar

 monitor.worked(5);

 }

 // Set task to done

 monitor.done();

 // If user clicked cancel, throw an exception

 if (monitor.isCanceled())

 throw new InterruptedException("User canceled");

}

Seeing it Work

The ShowProgress program displays a window with a checkbox marked Indeterminate and a button, as Figure 15-18

shows. Click the button to launch a ProgressMonitorDialog, which simulates a long-running operation and updates the

progress bar accordingly. If you check the Indeterminate checkbox before launching the dialog, the progress bar

animates repeatedly. When the long-running operation reaches the halfway point, it begins a subtask called "Doing

second half." If the user clicks Cancel, the long-running operation stops and an information dialog displays.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Figure 15-18: The ShowProgress program

The LongRunningOperation class represents the long-running operation, implementing the IRunnableWithProgress

interface (see Listing 15-5).

Listing 15-5: LongRunningOperation.java

package examples.ch15;

import java.lang.reflect.InvocationTargetException;

import org.eclipse.core.runtime.IProgressMonitor;

import org.eclipse.jface.operation.IRunnableWithProgress;

/**

 * This class represents a long-running operation

 */

public class LongRunningOperation implements IRunnableWithProgress {

 // The total sleep time

 private static final int TOTAL_TIME = 10000;

 // The increment sleep time

 private static final int INCREMENT = 500;

 private boolean indeterminate;

 /**

 * LongRunningOperation constructor

 *

 * @param indeterminate whether the animation is unknown

 */

 public LongRunningOperation(boolean indeterminate) {

 this.indeterminate = indeterminate;

 }

 /**

 * Runs the long running operation

 *

 * @param monitor the progress monitor

 */

 public void run(IProgressMonitor monitor) throws InvocationTargetException,

 InterruptedException {

 monitor.beginTask("Running long running operation",

 indeterminate ? IProgressMonitor.UNKNOWN : TOTAL_TIME);

 for (int total = 0; total < TOTAL_TIME && !monitor.isCanceled();

 total += INCREMENT) {

 Thread.sleep(INCREMENT);

 monitor.worked(INCREMENT);

 if (total == TOTAL_TIME / 2) monitor.subTask("Doing second half");

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 }

 monitor.done();

 if (monitor.isCanceled())

 throw new InterruptedException("The long running operation was cancelled");

 }

}

The ShowProgress class launches the program, creates the main window, and responds to clicks of its Show Progress

button by showing the progress dialog (see Listing 15-6).

Listing 15-6: ShowProgress.java

package examples.ch15;

import java.lang.reflect.InvocationTargetException;

import org.eclipse.jface.dialogs.*;

import org.eclipse.jface.window.ApplicationWindow;

import org.eclipse.swt.SWT;

import org.eclipse.swt.events.*;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.widgets.*;

/**

 * This class demonstrates JFace's ProgressMonitorDialog class

 */

public class ShowProgress extends ApplicationWindow {

 /**

 * ShowProgress constructor

 */

 public ShowProgress() {

 super(null);

 }

 /**

 * Runs the application

 */

 public void run() {

 // Don't return from open() until window closes

 setBlockOnOpen(true);

 // Open the main window

 open();

 // Dispose the display

 Display.getCurrent().dispose();

 }

 /**

 * Configures the shell

 *

 * @param shell the shell

 */

 protected void configureShell(Shell shell) {

 super.configureShell(shell);

 // Set the title bar text

 shell.setText("Show Progress");

 }

 /**

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 * Creates the main window's contents

 *

 * @param parent the main window

 * @return Control

 */

 protected Control createContents(Composite parent) {

 Composite composite = new Composite(parent, SWT.NONE);

 composite.setLayout(new GridLayout(1, true));

 // Create the indeterminate checkbox

 final Button indeterminate = new Button(composite, SWT.CHECK);

 indeterminate.setText("Indeterminate");

 // Create the ShowProgress button

 Button showProgress = new Button(composite, SWT.NONE);

 showProgress.setText("Show Progress");

 final Shell shell = parent.getShell();

 // Display the ProgressMonitorDialog

 showProgress.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 try {

 new ProgressMonitorDialog(shell).run(true, true,

 new LongRunningOperation(indeterminate.getSelection()));

 } catch (InvocationTargetException e) {

 MessageDialog.openError(shell, "Error", e.getMessage());

 } catch (InterruptedException e) {

 MessageDialog.openInformation(shell, "Cancelled", e.getMessage());

 }

 }

 });

 parent.pack();

 return composite;

 }

 /**

 * The application entry point

 *

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 new ShowProgress().run();

 }

}

Figure 15-19 shows the progress dialog during its second half.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Figure 15-19: A progress dialog with a subtask

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig654%5F01%5F0%2Ejpg

Building Your Own Dialogs

The gamut of dialogs offered by both SWT and JFace, however extensive, can never anticipate or meet every dialog

need developers might have. When faced with dialog requirements that no existing dialog can answer, you must

create your own. You may begin from scratch, or you can take advantage of JFace's extensible dialog classes to give

yourself a head start. This section describes how to customize TitleAreaDialog and IconAndMessageDialog.

Building on TitleAreaDialog

The TitleAreaDialog class displays a dialog with a title, an image, a message with an optional icon, an OK button, and a

Cancel button. Figure 15-20 shows a vanilla TitleAreaDialog without anything (title, message, and so on) set.

Figure 15-20: A plain TitleAreaDialog

The TitleAreaDialog class exposes an attractive API, as Table 15-7 displays. The methods seem so inviting that they

might tempt you to write code such as this:

TitleAreaDialog dlg = new TitleAreaDialog(shell);

dlg.setMessage("This is the message for my Title Area Dialog"); // WRONG!

dlg.open();

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig654%5F02%5F0%2Ejpg

Table 15-7: TitleAreaDialog Methods

Method Description

void setErrorMessage(String

newErrorMessage)
Sets the error message.

void setMessage(String newMessage) Sets the message.

void setMessage(String newMessage, int

type)
Sets the message and the message type. Table 15-8 lists the

message types.

void setTitle(String newTitle) Sets the title.

void setTitleAreaColor(RGB color) Sets the color of the title area.

void setTitleImage(Image newTitleImage) Sets the image to display.

Table 15-8: Message Types

Constant Description

IMessageProvider.NONE Displays no icon by the message

IMessageProvider.ERROR Displays an error icon by the message

IMessageProvider.INFORMATION Displays an information icon by the message

IMessageProvider.WARNING Displays a warning icon by the message

This code, strangely, throws a NullPointerException, even though you haven't passed any null parameters. Investigation

reveals that what you might expect—that TitleAreaDialog would store the String you pass for the message until it's

ready to display it—doesn't match what actually happens. Instead, TitleAreaDialog attempts to set the message directly

into the control that displays it. However, the control isn't created until after the dialog is opened, which happens when

you call dlg.open(). Before creation, it points to null, and stands guilty as the culprit for the NullPointerException.

To solve this puzzler, subclass TitleAreaDialog and override its createContents() method. Its signature looks like this:

protected Control createContents(Composite parent)

After calling the superclass's createContents() (which creates the necessary controls), call setMessage(), setTitleImage(),

or any of the other methods. Your createContents() implementation might look like this:

protected Control createContents(Composite parent) {

 Control contents = super.createContents(parent);

 setMessage("This is a TitleAreaDialog-derived dialog");

 setTitle("My Dialog");

 return contents;

}

That code produces the dialog shown in Figure 15-21.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Figure 15-21: A TitleAreaDialog-derived dialog

Customizing TitleAreaDialog Further

You'll notice that the layout for TitleAreaDialog breaks cleanly into three sections:

The white area that contains the title, message, and image

An empty gray area, directly below the white "title" area

The strip along the bottom that contains the OK and Cancel buttons

The createContents() method calls three separate methods to create these three sections: createTitleArea(),

createDialogArea(), and createButtonBar(), respectively. createTitleArea() is private, so you're stuck with that

implementation. However, createDialogArea() and createButtonBar() are both protected, so you're free to override their

implementations.

Changing the Gray Area

To add content to the expansive gray area above the buttons, override the createDialogArea() method in your

TitleAreaDialog-derived class. Typically, you'll call the superclass's implementation, storing the returned Control as a

Composite and passing it to the additional controls you create. Your implementation might look like this:

protected Control createDialogArea(Composite parent) {

 Composite composite = (Composite) super.createDialogArea(parent);

 new Label(composite, SWT.NONE).setText("Here's a label to blot the canvas");

 new Label(composite, SWT.NONE).setText("Do you like it?");

 new Button(composite, SWT.RADIO).setText("Yes");

 new Button(composite, SWT.RADIO).setText("No");

 return composite;

}

Figure 15-22 shows the derived dialog after adding the createDialogArea() override.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig656%5F01%5F0%2Ejpg

Figure 15-22: Adding to the dialog area

Changing the Buttons

Before you plunge headlong into overriding createButtonBar(), pause a moment. You're probably content with the

button bar as it stands; you probably just want to change which buttons it displays. If so, forget about overriding

createButtonBar(), and turn instead to createButtonsForButtonBar(), which createButtonBar() calls to create the actual

buttons. In your implementation, call createButton() for each button you want created. Its signature looks like this:

protected Button createButton(Composite parent, int id, String label,

 boolean defaultButton)

Keep track of the value you pass in id—the dialog's open() method returns the id value for the button the user clicks to

dismiss the dialog. label supplies the text for the button. Pass true for defaultButton to indicate which button should be

triggered if the user presses Enter on the keyboard.

You can create your own IDs and labels, but you can also use some standard values from IDialogConstants. Table 15-9

lists the relevant values.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig657%5F01%5F0%2Ejpg

Table 15-9: IDialogConstants Values for Button IDs and Labels

Constant Description

static int ABORT_ID ID for an Abort button.

static String ABORT_LABEL Label for an Abort button.

static int BACK_ID ID for a Back button.

static String BACK_LABEL Label for a Back button.

static int CANCEL_ID ID for a Cancel button.

static String

CANCEL_LABEL
Label for a Cancel button.

static int CLIENT_ID Constant that marks the beginning of ID constants you should use when

extending the dialogs and adding new buttons. The IDs for your new buttons

should be CLIENT_ID, CLIENT_ID + 1, CLIENT_ID + 2, and so on.

static int CLOSE_ID ID for a Close button.

static String CLOSE_LABEL Label for a Close button.

static int DESELECT_ALL_ID ID for a Deselect All button (no corresponding label constant exists).

static int DETAILS_ID ID for a Details button (corresponds to SHOW_DETAILS_LABEL and

HIDE_DETAILS_LABEL).

static int FINISH_ID ID for a Finish button.

static String FINISH_LABEL Label for a Finish button.

static int HELP_ID ID for a Help button.

static String HELP_LABEL Label for a Help button.

static String

HIDE_DETAILS_LABEL
Label for a Hide Details button (corresponds to DETAILS_ID).

static int IGNORE_ID ID for an Ignore button.

static String IGNORE_LABEL Label for an Ignore button.

static int NEXT_ID ID for a Next button.

static String NEXT_LABEL Label for a Next button.

static int NO_ID ID for a No button.

static String NO_LABEL Label for a No button.

static int NO_TO_ALL_ID ID for a No to All button.

static String

NO_TO_ALL_LABEL
Label for a No to All button.

static int OK_ID ID for an OK button.

static String OK_LABEL Label for an OK button.

static int OPEN_ID ID for an Open button.

static String OPEN_LABEL Label for an Open button.

static int PROCEED_ID ID for a Proceed button.

static String Label for a Proceed button.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Constant Description

static int RETRY_ID ID for a Retry button.

static String RETRY_LABEL Label for a Retry button.

static int ABORT_ID ID for an Abort button.

static int SELECT_ALL_ID ID for a Select All button (no corresponding label constant exists).

static int SELECT_TYPES_ID ID for a Select Types button (no corresponding label constant exists).

static String

SHOW_DETAILS_LABEL
Label for a Show Details button (corresponds to DETAILS_ID).

static int SKIP_ID ID for a Skip button.

static String SKIP_LABEL Label for a Skip button.

static int STOP_ID ID for a Stop button.

static String STOP_LABEL Label for a Stop button.

static int YES_ID ID for a Yes button.

static String YES_LABEL Label for a Yes button.

static int YES_TO_ALL_ID ID for a Yes to All button.

static String

YES_TO_ALL_LABEL
Label for a Yes to All button.

For example, suppose you want three buttons to appear in the button area of your dialog: Yes, No, and Cancel. Your

createButtonsForButtonBar() implementation looks something like this:

protected void createButtonsForButtonBar(Composite parent) {

 createButton(parent, IDialogConstants.YES_ID, IDialogConstants.YES_LABEL,

 true);

 createButton(parent, IDialogConstants.NO_ID, IDialogConstants.NO_LABEL, false);

 createButton(parent, IDialogConstants.CANCEL_ID, IDialogConstants.CANCEL_LABEL,

 false);

}

Adding this code to the TitleAreaDialog-derived class from earlier produces the dialog shown in Figure 15-23.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig659%5F01%5F0%2Ejpg

Figure 15-23: Changing the buttons

Handling Buttons

Clicking Yes or No in the dialog shown in Figure 15-23 doesn't dismiss the dialog; only clicking Cancel does. In fact, of

all the buttons available, only the OK and Cancel buttons do anything. The rest dutifully depress and spring back, but

nothing else happens. To detect and handle button clicks, you must override the buttonPressed() method, which has

the following signature:

protected void buttonPressed(int buttonId)

When you call createButton() to create your button, it wires an event handler to call buttonPressed(), passing the ID you

pass to createButton(), whenever the button is clicked. Your implementation should probably detect the range of

buttons you offer, set the appropriate return code, and close the dialog. For example, to handle the three buttons from

earlier, your buttonPressed() implementation might look like this:

protected void buttonPressed(int buttonId) {

 // Do the same for all the buttons--use the ID as the return code

 // and close the dialog

 setReturnCode(buttonId);

 close();

}

You can detect which button the user clicked by examining buttonId, and then take different actions based on the ID.

However, if your dialog has any buttons other than OK and Cancel, you should always override buttonPressed().

Otherwise, users won't understand why you're ignoring their responses to your dialog.

Seeing TitleAreaDialog in Action

The ShowMyTitleAreaDialog program displays a dialog that's designed to function as an About box for some great

JFace application. It uses a TitleAreaDialog-derived class, MyTitleAreaDialog (see Listing 15-7), which changes the

image, displays a title and an informational message, creates a table in the gray area, and changes the buttons to a

single OK button.

Listing 15-7: MyTitleAreaDialog.java

package examples.ch15;

import java.io.*;

import org.eclipse.jface.dialogs.*;

import org.eclipse.swt.SWT;

import org.eclipse.swt.graphics.*;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.widgets.*;

/**

 * This class shows an about box, based on TitleAreaDialog

 */

public class MyTitleAreaDialog extends TitleAreaDialog {

 // The image to display

 private Image image;

 /**

 * MyTitleAreaDialog constructor

 *

 * @param shell the parent shell

 */

 public MyTitleAreaDialog(Shell shell) {

 super(shell);

 // Create the image

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 try {

 image = new Image(null, new FileInputStream("images/jface.gif"));

 } catch (FileNotFoundException e) {

 // Ignore

 }

 }

 /**

 * Closes the dialog box Override so we can dispose the image we created

 */

 public boolean close() {

 if (image != null) image.dispose();

 return super.close();

 }

 /**

 * Creates the dialog's contents

 *

 * @param parent the parent composite

 * @return Control

 */

 protected Control createContents(Composite parent) {

 Control contents = super.createContents(parent);

 // Set the title

 setTitle("About This Application");

 // Set the message

 setMessage("This is a JFace dialog", IMessageProvider.INFORMATION);

 // Set the image

 if (image != null) setTitleImage(image);

 return contents;

 }

 /**

 * Creates the gray area

 *

 * @param parent the parent composite

 * @return Control

 */

 protected Control createDialogArea(Composite parent) {

 Composite composite = (Composite) super.createDialogArea(parent);

 // Create a table

 Table table = new Table(composite, SWT.FULL_SELECTION | SWT.BORDER);

 table.setLayoutData(new GridData(GridData.FILL_BOTH));

 // Create two columns and show headers

 TableColumn one = new TableColumn(table, SWT.LEFT);

 one.setText("Real Name");

 TableColumn two = new TableColumn(table, SWT.LEFT);

 two.setText("Preferred Name");

 table.setHeaderVisible(true);

 // Add some data

 TableItem item = new TableItem(table, SWT.NONE);

 item.setText(0, "Robert Harris");

 item.setText(1, "Bobby");

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 item = new TableItem(table, SWT.NONE);

 item.setText(0, "Robert Warner");

 item.setText(1, "Rob");

 item = new TableItem(table, SWT.NONE);

 item.setText(0, "Gabor Liptak");

 item.setText(1, "Gabor");

 one.pack();

 two.pack();

 return composite;

 }

 /**

 * Creates the buttons for the button bar

 *

 * @param parent the parent composite

 */

 protected void createButtonsForButtonBar(Composite parent) {

 createButton(parent, IDialogConstants.OK_ID, IDialogConstants.OK_LABEL, true);

 }

}

The ShowMyTitleAreaDialog class launches the program and displays a button labeled Show (see Listing 15-8). Click

the button to display the dialog.

Listing 15-8: ShowMyTitleAreaDialog.java

package examples.ch15;

import org.eclipse.jface.window.ApplicationWindow;

import org.eclipse.swt.SWT;

import org.eclipse.swt.events.*;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.widgets.*;

/**

 * This class demonstrates JFace's TitleAreaDialog class

 */

public class ShowMyTitleAreaDialog extends ApplicationWindow {

 /**

 * ShowCustomDialog constructor

 */

 public ShowMyTitleAreaDialog() {

 super(null);

 }

 /**

 * Runs the application

 */

 public void run() {

 // Don't return from open() until window closes

 setBlockOnOpen(true);

 // Open the main window

 open();

 // Dispose the display

 Display.getCurrent().dispose();

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 }

 /**

 * Creates the main window's contents

 *

 * @param parent the main window

 * @return Control

 */

 protected Control createContents(Composite parent) {

 Composite composite = new Composite(parent, SWT.NONE);

 composite.setLayout(new GridLayout(1, true));

 // Create the button

 Button show = new Button(composite, SWT.NONE);

 show.setText("Show");

 final Shell shell = parent.getShell();

 // Display the TitleAreaDialog

 show.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 // Create and show the dialog

 MyTitleAreaDialog dlg = new MyTitleAreaDialog(shell);

 dlg.open();

 }

 });

 parent.pack();

 return composite;

 }

 /**

 * The application entry point

 *

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 new ShowMyTitleAreaDialog().run();

 }

}

Figure 15-24 shows the application's main window. Figure 15-25 shows the new dialog box.

Figure 15-24: The program to show the dialog box

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Figure 15-25: The dialog box

Building on IconAndMessageDialog

Because IconAndMessageDialog derives from the same superclass, Dialog, that TitleAreaDialog does, much of the same

information applies. However, IconAndMessageDialog offers no new public methods. Also, although you can override

createContents(), you're probably better off overriding createDialogArea(). Its signature looks like this:

protected Control createDialogArea(Composite parent)

In that method, you should first call createMessageArea() to set up the icon and the message. Then, create whatever

controls you wish. To set up the icon to display, define the getImage() method, which looks like this:

protected Image getImage()

To set up the message to display, set the message data member, which is a String.

To set up which buttons to display, override createButtonsForButtonBar(), as before. Again, if you display buttons other

than OK and Cancel, override buttonPressed() to respond to button clicks.

To illustrate IconAndMessageDialog, create the dialog you've always wanted to create, but never had the courage to:

the DumbMessageDialog class for all the dumb users you tolerate (see Listing 15-9). It displays a stylized "loser" icon

and a patronizing, customizable message. It displays three buttons: Yes, No, and I Dunno. Only the last button

dismisses the dialog; the first two insult the user without closing the dialog.

Listing 15-9: DumbMessageDialog.java

package examples.ch15;

import java.io.*;

import org.eclipse.jface.dialogs.*;

import org.eclipse.swt.SWT;

import org.eclipse.swt.graphics.Image;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.widgets.*;

/**

 * This class demonstrates the IconAndMessageDialog class

 */

public class DumbMessageDialog extends IconAndMessageDialog {

 public static final int I_DUNNO_ID = IDialogConstants.CLIENT_ID;

 public static final String I_DUNNO_LABEL = "I Dunno";

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig664%5F02%5F0%2Ejpg

 // The image

 private Image image;

 // The label for the "hidden" message

 private Label label;

 /**

 * DumbMessageDialog constructor

 *

 * @param parent the parent shell

 */

 public DumbMessageDialog(Shell parent) {

 super(parent);

 // Create the image

 try {

 image = new Image(parent.getDisplay(), new FileInputStream(

 "images/loser.gif"));

 } catch (FileNotFoundException e) {}

 // Set the default message

 message = "Are you sure you want to do something that dumb?";

 }

 /**

 * Sets the message

 *

 * @param message the message

 */

 public void setMessage(String message) {

 this.message = message;

 }

 /**

 * Closes the dialog

 *

 * @return boolean

 */

 public boolean close() {

 if (image != null) image.dispose();

 return super.close();

 }

 /**

 * Creates the dialog area

 *

 * @param parent the parent composite

 * @return Control

 */

 protected Control createDialogArea(Composite parent) {

 createMessageArea(parent);

 // Create a composite to hold the label

 Composite composite = new Composite(parent, SWT.NONE);

 GridData data = new GridData(GridData.FILL_BOTH);

 data.horizontalSpan = 2;

 composite.setLayoutData(data);

 composite.setLayout(new FillLayout());

 // Create the label for the "hidden" message

 label = new Label(composite, SWT.LEFT);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 return composite;

 }

 /**

 * Creates the buttons

 *

 * @param parent the parent composite

 */

 protected void createButtonsForButtonBar(Composite parent) {

 createButton(parent, IDialogConstants.YES_ID, IDialogConstants.YES_LABEL,

 true);

 createButton(parent, IDialogConstants.NO_ID, IDialogConstants.NO_LABEL,

 false);

 createButton(parent, I_DUNNO_ID, I_DUNNO_LABEL, false);

 }

 /**

 * Handles a button press

 *

 * @param buttonId the ID of the pressed button

 */

 protected void buttonPressed(int buttonId) {

 // If they press I Dunno, close the dialog

 if (buttonId == I_DUNNO_ID) {

 setReturnCode(buttonId);

 close();

 } else {

 // Otherwise, have some fun

 label.setText("Yeah, right. You know nothing.");

 }

 }

 /**

 * Gets the image to use

 */

 protected Image getImage() {

 return image;

 }

}

The DumbUser class launches the program and displays the one-button applicationfrom before (see Listing 15-10).

When you click the button, it displays a DumbUserDialog.

Listing 15-10: DumbUser.java

package examples.ch15;

import org.eclipse.jface.window.ApplicationWindow;

import org.eclipse.swt.SWT;

import org.eclipse.swt.events.*;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.widgets.*;

/**

 * This class demonstrates JFace's IconAndMessageDialog class

 */

public class DumbUser extends ApplicationWindow {

 /**

 * DumbUser constructor

 */

 public DumbUser() {

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 super(null);

 }

 /**

 * Runs the application

 */

 public void run() {

 // Don't return from open() until window closes

 setBlockOnOpen(true);

 // Open the main window

 open();

 // Dispose the display

 Display.getCurrent().dispose();

 }

 /**

 * Creates the main window's contents

 *

 * @param parent the main window

 * @return Control

 */

 protected Control createContents(Composite parent) {

 Composite composite = new Composite(parent, SWT.NONE);

 composite.setLayout(new GridLayout(1, true));

 // Create the button

 Button show = new Button(composite, SWT.NONE);

 show.setText("Show");

 final Shell shell = parent.getShell();

 // Display the dialog

 show.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 // Create and show the dialog

 DumbMessageDialog dlg = new DumbMessageDialog(shell);

 dlg.open();

 }

 });

 parent.pack();

 return composite;

 }

 /**

 * The application entry point

 *

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 new DumbUser().run();

 }

}

Figure 15-26 displays the DumbUserDialog.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Figure 15-26: Getting revenge on dumb users

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig669%5F01%5F0%2Ejpg

Summary

In your applications, you'll probably continue to use many of SWT's dialogs. For example, JFace has no replacement

file or font selection dialog. However, the dialogs that JFace does offer are quick and simple to use, and you might find

yourself turning to them again and again in your applications.

When creating your own dialogs, remember to consider one of JFace's dialogs as a launching point. When you

subclass TitleAreaDialog or IconAndMessageDialog, you get useful framework code such as button handling for free.

Using a JFace dialog as the superclass for your dialog speeds development and debugging time.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Chapter 16: User Interaction

No man is an island, and no application lives long without interacting with users. The previous chapter explained how

applications communicate to users through dialogs. The other half of the communication equation involves users

communicating to applications. Users communicate to applications when they select commands on the applications'

menus or click buttons in the applications' toolbars or coolbars. This chapter describes how to encourage and receive

such communications from users within your JFace applications.

Understanding Actions

Applications usually give users several means to accomplish the same thing. For example, to print the current

document in Microsoft Word, you can select File ? Print from the main menu, click the printer button in the toolbar, or

press Ctrl-P on the keyboard. Each action triggers different sections of code within the program, but each should

ultimately converge on the same code to perform the task.

To achieve code reuse pertaining to user actions, JFace introduces the concept of actions. A JFace action responds to

a user action, whether the user has selected an item in a menu, clicked a button in a toolbar, or pressed a key or keys

on the keyboard. In response to the user action, the JFace action does something, whether it's printing a document,

opening a file, displaying a dialog, or whatever you can dream up. Different user actions that should all accomplish the

same thing should all call the same JFace action, ensuring that the application responds appropriately and

consistently.

Creating an Action

To create an action for your application, subclass the Action class found in the org.eclipse.jface.action package. This

abstract class provides all the plumbing necessary for performing an action. In fact, you could create and use an

empty action class, like this:

public class EmptyAction extends Action {

}

However, this action class flouts the convention that action classes do something. Besides, not only doesn't this action

class do anything, it doesn't even report its name. For example, if used in a menu, it would appear completely blank,

as Figure 16-1 shows.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Figure 16-1: An empty action

To make a useful action, you should at least give your action the ability to describe itself to its users, so that if used in

a menu, for example, it would display something. To accomplish this, provide a constructor in your class that calls one

of Action's constructors (which are all protected), listed in Table 16-1.

Table 16-1: Action Constructors

Constructor Description

Action() Creates an empty action

Action(String text) Creates an action with the specified text

Action(String text, ImageDescriptor image) Creates an action with the specified text and image

Action(String text, int style) Creates an action with the specified text and style

The empty constructor doesn't improve things, but the constructor that takes a String looks promising:

public class DescriptiveAction extends Action {

 super("I have a name!");

}

Now when you add this action to a menu, it identifies itself, as Figure 16-2 shows. Don't worry about how to add an

action to a menu right now; the next section covers how to do that.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig672%5F01%5F0%2Ejpg

Figure 16-2: An action with a name

The constructor that accepts an ImageDescriptor allows action classes more self-expression: they can carry an

associated image. Chapter 19 covers the ImageDescriptor class, found in the org.eclipse.jface.resource package. For

now, all you need to know is that an ImageDescriptor knows how to create an image, and you can create one by calling

ImageDescriptor.createFromFile(Class location, String filename). Dress up the preceding DescriptiveAction class by adding

an image, like this:

public class DescriptiveAction extends Action {

 super("I have a name!",

 ImageDescriptor.createFromFile(DescriptiveAction.class, "image.gif");

}

Figure 16-3 shows this version of DescriptiveAction in a menu. Notice the arrow to the left of the text.

Figure 16-3: An action with a name and an image

The final constructor takes a String and a style. The style constants, listed in Table 16-2, are mutually exclusive, and

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig673%5F01%5F0%2Ejpg
file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig674%5F01%5F0%2Ejpg

shape how the action both displays and functions. For example, if you pass IAction.AS_CHECK_BOX for the style, you

get an action that toggles on and off. When displayed in a menu, it shows a check mark to the left of the text when on,

and nothing when off. Change the preceding action to this:

public class DescriptiveAction extends Action {

 super("I have a name!", IAction.AS_CHECK_BOX);

}

Table 16-2: Action Style Constants

Style Description

IAction.AS_PUSH_BUTTON Creates a push button action

IAction.AS_CHECK_BOX Creates a checkbox or toggle button action

IAction.AS_DROP_DOWN_MENU Creates a dropdown menu action

IAction.AS_RADIO_BUTTON Creates a radio button action

IAction.AS_UNSPECIFIED Creates an unspecified action

This produces the menu item shown in Figure 16-4. Notice the check mark to the left of the text, indicating that the

action is on.

Figure 16-4: A checkbox action

Acting on Actions

The DescriptiveAction class dutifully identifies itself, but it still doesn't do anything. You can't justify creating or using a

no-op action. When someone clicks the action in a menu or a toolbar, it should respond appropriately. To detect

when a user triggers an action, override the run() method, which IAction declares. Its signature looks like this:

public void run()

For example, to display a message dialog when users trigger the DescriptiveAction class, use code such as this:

public void run() {

 MessageDialog.openInformation(Display.getCurrent().getActiveShell(),

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig675%5F01%5F0%2Ejpg

 "Click!", "You clicked me!");

}

Now when users click the "I have a name!" menu item, they see the dialog shown in Figure 16-5.

Figure 16-5: A dialog in response to a triggered action

Configuring Actions

As you'd expect, the Action class provides methods to get and set its attributes. Some of the attributes are specific to

setting up Eclipse plug-ins, and aren't covered in this book. It also provides some utility methods for translating key

codes to their String representations, and vice versa. JFace uses these methods internally for determining

accelerators. Table 16-3 lists Action's API, along with IAction's methods, and identifies the plug-in-specific attributes.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig676%5F01%5F0%2Ejpg

Table 16-3: Action Methods

Method Description

void addPropertyChangeListener

(IPropertyChangeListener listener)
Adds a listener that's notified when a property changes.

static String convertAccelerator (int

keyCode)
Returns the string representation of the key accelerator

specified by keyCode.

static int convertAccelerator (String

acceleratorText)
Returns the key code for the key accelerator specified by

acceleratorText.

static int findKeyCode(String token) Returns the key code for the key specified by token.

static String findKeyString(int keyCode) Returns the string representation of a key for the specified key

code.

static int findModifier(String token) Returns the code for the modifier key specified by token.

static String findModifierString Returns the string representation of the modifier

(int keyCode) int getAccelerator() key specified by keyCode. Returns the key code for this action's

accelerator.

String getActionDefinitionId() Returns the action definition ID, which is specific to Eclipse

plug-ins.

String getDescription() Returns the description, which is specific to Eclipse plug-ins.

ImageDescriptor getDisabledImage

Descriptor()
Returns the ImageDescriptor for the image to display for this

action when it's disabled.

HelpListener getHelpListener() Returns the help listener.

ImageDescriptor getHoverImage

Descriptor()
Returns the ImageDescriptor for the image to display for this

action when the mouse pointer hovers over it.

String getId() Returns this action's unique ID, which is specific to Eclipse

plug-ins.

ImageDescriptor getImageDescriptor() Returns the ImageDescriptor for the image to display for this

action.

IMenuCreator getMenuCreator() Returns the menu creator for creating any popup menus for this

action.

int getStyle() Returns the style.

String getText() Returns the text.

String getToolTipText() Returns the tool tip text.

boolean isChecked() Returns true if this action is checked. Otherwise, returns false.

boolean isEnabled() Returns true if this action is enabled. Otherwise, returns false.

static String removeAccelerator Text(String

text)
Returns just the text contained in text, parsing out and removing

the accelerator definition.

void removePropertyChangeListener

(IPropertyChangeListener listener)
Removes the specified listener from the notification list.

void run() Called when the user triggers this action. Override to perform

an action.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Method Description

void runWithEvent(Event event) Called when the user triggers this action. Override to perform

an action when you want the event object. However, the

documentation says this method is experimental and is subject

to change.

void setAccelerator(int keyCode) Sets the accelerator key code.

void setActionDefinitionId (String id) Sets the action definition ID, which is specific to Eclipse plug-ins.

void setChecked(boolean checked) Sets the checked status.

void setDescription(String text) Sets the description, which is specific to Eclipse plug-ins.

void setDisabledImageDescriptor

(ImageDescriptor descriptor)
Sets the ImageDescriptor for the image to display for this action

when it's disabled.

void setEnabled(boolean enabled) If enabled is true, enables this action. Otherwise, disables it.

void setHelpListener(HelpListener listener) Sets the help listener.

void setHoverImageDescriptor

(ImageDescriptor descriptor)
Sets the ImageDescriptor for the image to display for this action

when the mouse pointer hovers over it.

void setId(String id) Sets the ID, which is specific to Eclipse plug-ins.

void setImageDescriptor (ImageDescriptor

descriptor)
Sets the ImageDescriptor for the image to display for this action.

void setMenuCreator(IMenuCreator

creator)
Sets the menu creator for creating any popup menu for this

action.

void setText(String text) Sets the text.

void setToolTipText(String toolTipText) Sets the tool tip text.

The preceding constructors allow you to set the Action's text, its text and ImageDescriptor, or its text and style. Except

for the style, you can set all these attributes, plus several others, after construction. For example, the following code

creates an action class with some text, an image, and a tool tip:

public class AnotherAction extends Action {

 public AnotherAction() {

 super();

 setText("Another Action");

 setImageDescriptor(ImageDescriptor.createFromFile(AnotherAction.class,

 "AnotherAction.gif"));

 setToolTipText("Runs another action");

 }

}

You specify a mnemonic for an action by including an ampersand in the text, like this:

setText("&Another Action");

The mnemonic (in this case, "A") displays with an underline, and users can press the Alt key in conjunction with the

mnemonic to activate the action.

You can also specify an accelerator to trigger an action. For example, you can allow the user to trigger the action from

anywhere in the application by pressing Ctrl-A (which isn't case-sensitive). To set the accelerator, pass the key code to

the setAccelerator() method:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

setAccelerator(SWT.CTRL + 'A');

To be more platform-agnostic, use the Mod key constant instead of the Control key constant:

setAccelerator(SWT.MOD1 + 'A');

To communicate accelerators to users, so they can take advantage of them, items in menus that have accelerators

traditionally display them in the menu. Adding an accelerator to an action takes care of this for you, automatically

displaying the accelerator in the menu item (see Figure 16-6).

Figure 16-6: An action with an accelerator

The convention of displaying the accelerator key by the menu label has become so ingrained in application

development that JFace offers a quick way to set both the text and the accelerator in one call. You pass the text in the

following format to either the constructor or the setText() method:

<Text>@<Accelerator>

For example, you could set up the "Another Action" action like this:

setText("&Another Action@Ctrl+A");

Figure 16-7 shows this action and accelerator in a menu.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig679%5F01%5F0%2Ejpg

Figure 16-7: Setting the text and accelerator in one call

Call the setToolTipText() method to set the tool tip text for an action. The tool tip displays when the mouse hovers over

the action. This works for actions added to toolbars or coolbars. For example, the following code adds tool tip text for

the action:

setToolTipText("Runs another action");

Figure 16-8 displays a window with a toolbar that contains the "Another Action" action; note the button displaying an

arrow. As the mouse pointer hovers over the button, the tool tip displays.

Figure 16-8: An action with a tool tip

Receiving Notice of Changes

One of Action's methods, addPropertyChangeListener(), notifies you when a property changes via the action. For

example, suppose that you've created a checkbox action class, like this:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig680%5F01%5F0%2Ejpg
file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig681%5F01%5F0%2Ejpg

public class MyCheckboxAction extends Action {

 public MyCheckboxAction() {

 super("My Checkbox", IAction.AS_CHECK_BOX);

 }

}

When you create an instance of this action, you can also add a property change listener to it that detects when you've

changed the action to checked or unchecked. The IPropertyChangeListener interface declares one method:

public void PropertyChange(PropertyChangeEvent event)

The PropertyChangeEvent that this method receives contains the property that changes, the old value for the property,

and the new value for the property. You retrieve those values using the methods listed in Table 16-4.

Table 16-4: PropertyChangeEvent Methods

Method Description

Object getNewValue() Returns the new value for the property

Object getOldValue() Returns the old value for the property

String getProperty() Returns the name of the property

The properties and values depend on the type of action they listen on. For example, a checkbox action passes

"checked" for the property name and java.lang.Boolean instances for the values. So does a radio button action.

Seeing Some Actions in Action

You've waded through the theory. The next sections show you how to use actions. The rest of this chapter builds an

application that stores the titles of the books in your personal library, and manages who has them. In true geek

tradition, you probably have shelves of computer books that you generously loan out. Too often, you forget who

borrowed them, and they disappear forever. This application, dubbed Librarian, lists the books by title, and shows who

has them checked out. Listings 16-1 through 16-9 contain the action classes that Librarian uses.

Listing 16-1: AboutAction.java

package examples.ch16;

import org.eclipse.jface.action.Action;

import org.eclipse.jface.dialogs.MessageDialog;

import org.eclipse.jface.resource.ImageDescriptor;

/**

 * This action class shows an About box

 */

public class AboutAction extends Action {

 /**

 * AboutAction constructor

 */

 public AboutAction() {

 super("&About@Ctrl+A", ImageDescriptor.createFromFile(AboutAction.class,

 "/images/about.gif"));

 setDisabledImageDescriptor(ImageDescriptor.createFromFile(AboutAction.class,

 "/images/disabledAbout.gif"));

 setToolTipText("About");

 }

 /**

 * Shows an about box

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 */

 public void run() {

 MessageDialog.openInformation(Librarian.getApp().getShell(), "About",

 "Librarian--to manage your books");

 }

}

The AboutAction class in Listing 16-1 displays a standard About box, describing the application.

The AddBookAction class in Listing 16-2 adds a book to the current library. It uses a static method on the Librarian class

called getApp() that returns a reference to the currently running Librarian program. You'll notice calls to

Librarian.getApp() sprinkled throughout these action classes. The ExitAction class in Listing 16-3 exits the application.

The NewAction class creates a new library file (see Listing 16-4). Listing 16-5, the OpenAction class, opens a file to

display and edit. The RemoveBookAction class in Listing 16-6 removes the currently selected book from both the view

and the library. The SaveAction class saves the current file (see Listing 16-7). The SaveAsAction class in Listing 16-8

saves the current file, but first prompts for where to save it. It uses the SafeSaveDialog class from earlier chapters.

Finally, the ShowBookCountAction class in Listing 16-9 toggles whether or not to show the number of books currently in

the library. It's a checkbox action, and will have a property listener added to it to detect when it's triggered.

Listing 16-2: AddBookAction.java

package examples.ch16;

import org.eclipse.jface.action.Action;

import org.eclipse.jface.resource.ImageDescriptor;

/**

 * This action class adds a book

 */

public class AddBookAction extends Action {

 /**

 * AddBookAction constructor

 */

 public AddBookAction() {

 super("&Add Book@Ctrl+B", ImageDescriptor.createFromFile(AddBookAction.class,

 "/images/addBook.gif"));

 setDisabledImageDescriptor(ImageDescriptor.createFromFile(

 AddBookAction.class, "/images/disabledAddBook.gif"));

 setToolTipText("Add");

 }

 /**

 * Adds a book to the current library

 */

 public void run() {

 Librarian.getApp().addBook();

 }

}

Listing 16-3: ExitAction.java

package examples.ch16;

import org.eclipse.jface.action.Action;

/**

 * This action class exits the application

 */

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

public class ExitAction extends Action {

 /**

 * ExitAction constructor

 */

 public ExitAction() {

 super("E&xit@Alt+F4");

 setToolTipText("Exit");

 }

 /**

 * Exits the application

 */

 public void run() {

 Librarian.getApp().close();

 }

}

Listing 16-4: NewAction.java

package examples.ch16;

import org.eclipse.jface.action.Action;

import org.eclipse.jface.resource.ImageDescriptor;

/**

 * This action class responds to requests for a new file

 */

public class NewAction extends Action {

 /**

 * NewAction constructor

 */

 public NewAction() {

 super("&New@Ctrl+N", ImageDescriptor.createFromFile(NewAction.class,

 "/images/new.gif"));

 setDisabledImageDescriptor(ImageDescriptor.createFromFile(NewAction.class,

 "/images/disabledNew.gif"));

 setToolTipText("New");

 }

 /**

 * Creates a new file

 */

 public void run() {

 Librarian.getApp().newFile();

 }

}

Listing 16-5: OpenAction.java

package examples.ch16;

import org.eclipse.jface.action.*;

import org.eclipse.jface.resource.ImageDescriptor;

import org.eclipse.swt.SWT;

import org.eclipse.swt.widgets.FileDialog;

/**

 * This action class responds to requests to open a file

 */

public class OpenAction extends Action {

 /**

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 * OpenAction constructor

 */

 public OpenAction() {

 super("&Open...@Ctrl+O", ImageDescriptor.createFromFile(OpenAction.class,

 "/images/open.gif"));

 setDisabledImageDescriptor(ImageDescriptor.createFromFile(OpenAction.class,

 "/images/disabledOpen.gif"));

 setToolTipText("Open");

 }

 /**

 * Opens an existing file

 */

 public void run() {

 // Use the file dialog

 FileDialog dlg = new FileDialog(Librarian.getApp().getShell(), SWT.OPEN);

 String fileName = dlg.open();

 if (fileName != null) {

 Librarian.getApp().openFile(fileName);

 }

 }

}

Listing 16-6: RemoveBookAction.java

package examples.ch16;

import org.eclipse.jface.action.Action;

import org.eclipse.jface.dialogs.*;

import org.eclipse.jface.resource.ImageDescriptor;

/**

 * This action class deletes a book

 */

public class RemoveBookAction extends Action {

 /**

 * RemoveBookAction constructor

 */

 public RemoveBookAction() {

 super("&Remove Book@Ctrl+X", ImageDescriptor.createFromFile(

 RemoveBookAction.class, "/images/removeBook.gif"));

 setDisabledImageDescriptor(ImageDescriptor.createFromFile(

 RemoveBookAction.class, "/images/disabledRemoveBook.gif"));

 setToolTipText("Remove");

 }

 /**

 * Removes the selected book after confirming

 */

 public void run() {

 if (MessageDialog.openConfirm(Librarian.getApp().getShell(), "Are you sure?",

 "Are you sure you want to remove the selected book?")) {

 Librarian.getApp().removeSelectedBook();

 }

 }

}

Listing 16-7: SaveAction.java

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

package examples.ch16;

import org.eclipse.jface.action.Action;

import org.eclipse.jface.resource.ImageDescriptor;

/**

 * This action class responds to requests to save a file

 */

public class SaveAction extends Action {

 /**

 * SaveAction constructor

 */

 public SaveAction() {

 super("&Save@Ctrl+S", ImageDescriptor.createFromFile(SaveAction.class,

 "/images/save.gif"));

 setDisabledImageDescriptor(ImageDescriptor.createFromFile(SaveAction.class,

 "/images/disabledSave.gif"));

 setToolTipText("Save");

 }

 /**

 * Saves the file

 */

 public void run() {

 Librarian.getApp().saveFile();

 }

}

Listing 16-8: SaveAsAction.java

package examples.ch16;

import org.eclipse.jface.action.Action;

import org.eclipse.jface.resource.ImageDescriptor;

/**

 * This action class responds to requests to save a file as . . .

 */

public class SaveAsAction extends Action {

 /**

 * SaveAsAction constructor

 */

 public SaveAsAction() {

 super("Save As...", ImageDescriptor.createFromFile(SaveAsAction.class,

 "/images/saveAs.gif"));

 setDisabledImageDescriptor(ImageDescriptor.createFromFile(SaveAsAction.class,

 "/images/disabledSaveAs.gif"));

 setToolTipText("Save As");

 }

 /**

 * Saves the file

 */

 public void run() {

 SafeSaveDialog dlg = new SafeSaveDialog(Librarian.getApp().getShell());

 String fileName = dlg.open();

 if (fileName != null) {

 Librarian.getApp().saveFileAs(fileName);

 }

 }

}

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Listing 16-9: ShowBookCount.java

package examples.ch16;

import org.eclipse.jface.action.*;

import org.eclipse.jface.resource.ImageDescriptor;

/**

 * This action class determines whether to show the book count

 */

public class ShowBookCountAction extends Action {

 public ShowBookCountAction() {

 super("&Show Book Count@Ctrl+C", IAction.AS_CHECK_BOX);

 setChecked(true);

 setImageDescriptor(ImageDescriptor.createFromFile(ShowBookCountAction.class,

 "/images/count.gif"));

 setDisabledImageDescriptor(ImageDescriptor.createFromFile(

 ShowBookCountAction.class, "/images/disabledCount.gif"));

 }

}

The next sections illustrate creating menus, toolbars, coolbars, and a status line for an application window. Each

section uses the action classes listed.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Creating Menus

Open virtually any GUI application, and you'll find a set of dropdown menus across the top of the window, right below

the title bar. Menus have become de rigueur in graphical interfaces, providing commands that drive the application.

Users, accustomed to these menus, orient themselves quickly in an unfamiliar application by exploring the menus.

Conventions have sprung up, and most applications have a few standard menus: File, Edit, View, Window, and Help.

As creatures of habit, users point and click to expected locations in the menu for certain commands. For example,

when users want to open a file, they head to File ? Open. To see the application's About box, they look for Help ?
About. Programs that deviate too far from these application mores can expect little usage, and likely quick deletion.

Adding a Menu Bar

The strip of menus across the top of the main window, commonly referred to as the menu bar, enjoys direct support

from JFace's ApplicationWindow. To add a menu bar to your application, call ApplicationWindow.addMenuBar() before the

actual window (Shell) is created. You'll usually do this in your derived class's constructor, like this:

public class MyApplicationWindow extends ApplicationWindow {

 public MyApplicationWindow() {

 super(null);

 // Add a menu bar

 addMenuBar();

 }

}

This method calls createMenuManager(), which you should override to create the MenuManager object that describes the

specific set of menus for your application. The signature for createMenuManager() is as follows:

protected MenuManager createMenuManager()

For example, the following code creates a menu with two commands: File ? Open and Help ? About:

protected MenuManager createMenuManager() {

 // Create the main menu manager

 MenuManager menuManager = new MenuManager();

 // Create the File menu and add it to the main menu

 MenuManager fileMenuManager = new MenuManager("File");

 menuManager.add(fileMenuManager);

 // Add the Open action

 fileMenuManager.add(openAction);

 // Create the Help menu and add it to the main menu

 MenuManager helpMenuManager = new MenuManager("Help");

 menuManager.add(helpMenuManager);

 // Add the About action

 helpMenuManager.add(helpAction);

 // Return the main menu

 return menuManager;

}

As this code demonstrates, you can construct a MenuManager with or without text. To use a menu manager, you

usually construct a parent MenuManager, passing no parameters. Then, for each top-level menu (for example, File),

you create another MenuManager instance, passing the text to display in the constructor. You add the top-level

MenuManagers to the parent MenuManager by passing them, one by one, to calls to the parent's add() method, like this:

MenuManager parent = new MenuManager();

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

MenuManager topLevel = new MenuManager("Top Level");

parent.add(topLevel);

For each action that you wish to add to a menu, call that menu manager's add() method, passing the action. For

example, the following code adds an instance of MyAction to the top level menu:

topLevel.add(new MyAction());

To create cascading menus, add a MenuManager to another MenuManager. You can then add actions to the cascading

menu. In fact, you can also add other MenuManagers to it, cascading menus ad nauseum. This code creates the

cascading menu displayed in Figure 16-9:

// Create the parent menu

MenuManager mm = new MenuManager();

// Create the File menu

MenuManager fileMenu = new MenuManager("File");

mm.add(fileMenu);

// Add the actions to the File menu

fileMenu.add(newAction);

fileMenu.add(openAction);

fileMenu.add(saveAction);

fileMenu.add(saveAsAction);

// Create the cascading menu

MenuManager cascadingMenu = new MenuManager("Cascading");

cascadingMenu.add(newAction);

cascadingMenu.add(openAction);

cascadingMenu.add(saveAction);

cascadingMenu.add(saveAsAction);

fileMenu.add(cascadingMenu);

// Create the More Cascading menu

MenuManager moreCascading = new MenuManager("More Cascading");

moreCascading.add(aboutAction);

cascadingMenu.add(moreCascading);

// Create the rest of File's actions

fileMenu.add(new Separator());

fileMenu.add(exitAction);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Figure 16-9: Cascading menus

Notice the penultimate line in that snippet:

fileMenu.add(new Separator());

Adding a separator to a menu creates a horizontal bar that separates menu items. You can add these to group like

actions, separating them from dissimilar groups. For example, the preceding code separates actions taken on files

(New, Open, Save, and so on) from the command to close the application.

Using a Menu in an Application

The Librarian application begins with just a menu for triggering the actions. The main class, Librarian, extends

ApplicationWindow (see Listing 16-10). It creates instances of the preceding actions as member variables. In its

constructor, it calls addMenuBar(), and overrides createMenuManager() to create the application-specific menus, adding

the actions to the appropriate MenuManager instances.

Listing 16-10: Librarian.java

package examples.ch16;

import java.io.IOException;

import java.lang.reflect.InvocationTargetException;

import org.eclipse.core.runtime.IProgressMonitor;

import org.eclipse.jface.action.*;

import org.eclipse.jface.dialogs.MessageDialog;

import org.eclipse.jface.operation.IRunnableWithProgress;

import org.eclipse.jface.operation.ModalContext;

import org.eclipse.jface.util.IPropertyChangeListener;

import org.eclipse.jface.util.PropertyChangeEvent;

import org.eclipse.jface.viewers.*;

import org.eclipse.jface.window.ApplicationWindow;

import org.eclipse.swt.SWT;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.widgets.*;

/**

 * This class keeps track of your library, and who you've loaned books to

 */

public class Librarian extends ApplicationWindow {

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig691%5F01%5F0%2Ejpg

 // A static instance to the running application

 private static Librarian APP;

 // Table column names/properties

 public static final String TITLE = "Title";

 public static final String CHECKED_OUT = "?";

 public static final String WHO = "By Whom";

 public static final String[] PROPS = { TITLE, CHECKED_OUT, WHO};

 // The viewer

 private TableViewer viewer;

 // The current library

 private Library library;

 // The actions

 private NewAction newAction;

 private OpenAction openAction;

 private SaveAction saveAction;

 private SaveAsAction saveAsAction;

 private ExitAction exitAction;

 private AddBookAction addBookAction;

 private RemoveBookAction removeBookAction;

 private AboutAction aboutAction;

 private ShowBookCountAction showBookCountAction;

 /**

 * Gets the running application

 */

 public static final Librarian getApp() {

 return APP;

 }

 /**

 * Librarian constructor

 */

 public Librarian() {

 super(null);

 APP = this;

 // Create the data model

 library = new Library();

 // Create the actions

 newAction = new NewAction();

 openAction = new OpenAction();

 saveAction = new SaveAction();

 saveAsAction = new SaveAsAction();

 exitAction = new ExitAction();

 addBookAction = new AddBookAction();

 removeBookAction = new RemoveBookAction();

 aboutAction = new AboutAction();

 showBookCountAction = new ShowBookCountAction();

 addMenuBar();

 addCoolBar(SWT.NONE);

 addStatusLine();

 }

 /**

 * Runs the application

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 */

 public void run() {

 // Don't return from open() until window closes

 setBlockOnOpen(true);

 // Open the main window

 open();

 // Dispose the display

 Display.getCurrent().dispose();

 }

 /**

 * Configures the shell

 *

 * @param shell the shell

 */

 protected void configureShell(Shell shell) {

 super.configureShell(shell);

 // Set the title bar text

 shell.setText("Librarian");

 }

 /**

 * Creates the main window's contents

 *

 * @param parent the main window

 * @return Control

 */

 protected Control createContents(Composite parent) {

 Composite composite = new Composite(parent, SWT.NONE);

 composite.setLayout(new GridLayout(1, false));

 viewer = new TableViewer(composite, SWT.FULL_SELECTION | SWT.BORDER);

 Table table = viewer.getTable();

 table.setLayoutData(new GridData(GridData.FILL_BOTH));

 // Set up the viewer

 viewer.setContentProvider(new LibraryContentProvider());

 viewer.setLabelProvider(new LibraryLabelProvider());

 viewer.setInput(library);

 viewer.setColumnProperties(PROPS);

 viewer.setCellEditors(new CellEditor[] { new TextCellEditor(table),

 new CheckboxCellEditor(table), new TextCellEditor(table)});

 viewer.setCellModifier(new LibraryCellModifier());

 // Set up the table

 for (int i = 0, n = PROPS.length; i < n; i++)

 new TableColumn(table, SWT.LEFT).setText(PROPS[i]);

 table.setHeaderVisible(true);

 table.setLinesVisible(true);

 // Add code to hide or display the book count based on the action

 showBookCountAction.addPropertyChangeListener(new IPropertyChangeListener() {

 public void propertyChange(PropertyChangeEvent event) {

 // The value has changed; refresh the view

 refreshView();

 }

 });

 // Refresh the view to get the columns right-sized

 refreshView();

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 return composite;

 }

 /**

 * Creates the menu for the application

 *

 * @return MenuManager

 */

 protected MenuManager createMenuManager() {

 // Create the main menu

 MenuManager mm = new MenuManager();

 // Create the File menu

 MenuManager fileMenu = new MenuManager("File");

 mm.add(fileMenu);

 // Add the actions to the File menu

 fileMenu.add(newAction);

 fileMenu.add(openAction);

 fileMenu.add(saveAction);

 fileMenu.add(saveAsAction);

 fileMenu.add(new Separator());

 fileMenu.add(exitAction);

 // Create the Book menu

 MenuManager bookMenu = new MenuManager("Book");

 mm.add(bookMenu);

 // Add the actions to the Book menu

 bookMenu.add(addBookAction);

 bookMenu.add(removeBookAction);

 // Create the View menu

 MenuManager viewMenu = new MenuManager("View");

 mm.add(viewMenu);

 // Add the actions to the View menu

 viewMenu.add(showBookCountAction);

 // Create the Help menu

 MenuManager helpMenu = new MenuManager("Help");

 mm.add(helpMenu);

 // Add the actions to the Help menu

 helpMenu.add(aboutAction);

 return mm;

 }

 /**

 * Creates the toolbar for the application

 */

 protected ToolBarManager createToolBarManager(int style) {

 // Create the toolbar manager

 ToolBarManager tbm = new ToolBarManager(style);

 // Add the file actions

 tbm.add(newAction);

 tbm.add(openAction);

 tbm.add(saveAction);

 tbm.add(saveAsAction);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 // Add a separator

 tbm.add(new Separator());

 // Add the book actions

 tbm.add(addBookAction);

 tbm.add(removeBookAction);

 // Add a separator

 tbm.add(new Separator());

 // Add the show book count, which will appear as a toggle button

 tbm.add(showBookCountAction);

 // Add a separator

 tbm.add(new Separator());

 // Add the about action

 tbm.add(aboutAction);

 return tbm;

 }

 /**

 * Creates the coolbar for the application

 */

 protected CoolBarManager createCoolBarManager(int style) {

 // Create the coolbar manager

 CoolBarManager cbm = new CoolBarManager(style);

 // Add the toolbar

 cbm.add(createToolBarManager(SWT.FLAT));

 return cbm;

 }

 /**

 * Creates the status line manager

 */

 protected StatusLineManager createStatusLineManager() {

 return new StatusLineManager();

 }

 /**

 * Adds a book

 */

 public void addBook() {

 library.add(new Book("[Enter Title]"));

 refreshView();

 }

 /**

 * Removes the selected book

 */

 public void removeSelectedBook() {

 Book book = (Book) ((IStructuredSelection) viewer.getSelection())

 .getFirstElement();

 if (book != null) library.remove(book);

 refreshView();

 }

 /**

 * Opens a file

 *

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 * @param fileName the file name

 */

 public void openFile(final String fileName) {

 if (checkOverwrite()) {

 // Disable the actions, so user can't change library while loading

 enableActions(false);

 library = new Library();

 try {

 // Launch the Open runnable

 ModalContext.run(new IRunnableWithProgress() {

 public void run(IProgressMonitor progressMonitor) {

 try {

 progressMonitor.beginTask("Loading", IProgressMonitor.UNKNOWN);

 library.load(fileName);

 progressMonitor.done();

 viewer.setInput(library);

 refreshView();

 } catch (IOException e) {

 showError("Can't load file " + fileName + "\r" + e.getMessage());

 }

 }

 }, true, getStatusLineManager().getProgressMonitor(), getShell()

 .getDisplay());

 } catch (InterruptedException e) {} catch (InvocationTargetException e) {}

 finally {

 // Enable actions

 enableActions(true);

 }

 }

 }

 /**

 * Creates a new file

 */

 public void newFile() {

 if (checkOverwrite()) {

 library = new Library();

 viewer.setInput(library);

 }

 }

 /**

 * Saves the current file

 */

 public void saveFile() {

 String fileName = library.getFileName();

 if (fileName == null) {

 fileName = new SafeSaveDialog(getShell()).open();

 }

 saveFileAs(fileName);

 }

 /**

 * Saves the current file using the specified file name

 *

 * @param fileName the file name

 */

 public void saveFileAs(final String fileName) {

 // Disable the actions, so user can't change file while it's saving

 enableActions(false);

 try {

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 // Launch the Save runnable

 ModalContext.run(new IRunnableWithProgress() {

 public void run(IProgressMonitor progressMonitor) {

 try {

 progressMonitor.beginTask("Saving", IProgressMonitor.UNKNOWN);

 library.save(fileName);

 progressMonitor.done();

 } catch (IOException e) {

 showError("Can't save file " + library.getFileName() + "\r"

 + e.getMessage());

 }

 }

 }, true, getStatusLineManager().getProgressMonitor(), getShell()

 .getDisplay());

 } catch (InterruptedException e) {} catch (InvocationTargetException e) {}

 finally {

 // Enable the actions

 enableActions(true);

 }

 }

 /**

 * Shows an error

 *

 * @param msg the error

 */

 public void showError(String msg) {

 MessageDialog.openError(getShell(), "Error", msg);

 }

 /**

 * Refreshes the view

 */

 public void refreshView() {

 // Refresh the view

 viewer.refresh();

 // Repack the columns

 for (int i = 0, n = viewer.getTable().getColumnCount(); i < n; i++) {

 viewer.getTable().getColumn(i).pack();

 }

 getStatusLineManager().setMessage(

 showBookCountAction.isChecked() ? "Book Count: "

 + library.getBooks().size() : "");

 }

 /**

 * Checks the current file for unsaved changes. If it has unsaved changes,

 * confirms that user wants to overwrite

 *

 * @return boolean

 */

 public boolean checkOverwrite() {

 boolean proceed = true;

 if (library.isDirty()) {

 proceed = MessageDialog.openConfirm(getShell(), "Are you sure?",

 "You have unsaved changes--are you sure you want to lose them?");

 }

 return proceed;

 }

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 /**

 * Sets the current library as dirty

 */

 public void setLibraryDirty() {

 library.setDirty();

 }

 /**

 * Closes the application

 */

 public boolean close() {

 if (checkOverwrite()) return super.close();

 return false;

 }

 /**

 * Enables or disables the actions

 *

 * @param enable true to enable, false to disable

 */

 private void enableActions(boolean enable) {

 newAction.setEnabled(enable);

 openAction.setEnabled(enable);

 saveAction.setEnabled(enable);

 saveAsAction.setEnabled(enable);

 exitAction.setEnabled(enable);

 addBookAction.setEnabled(enable);

 removeBookAction.setEnabled(enable);

 aboutAction.setEnabled(enable);

 showBookCountAction.setEnabled(enable);

 }

 /**

 * The application entry point

 *

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 new Librarian().run();

 }

}

The Librarian program uses the Book class, shown in Listing 16-11, to store each book. Each book maintains both its

title and who has it checked out.

Listing 16-11: Book.java

package examples.ch16;

/**

 * This class represents a book

 */

public class Book {

 private String title;

 private String checkedOutTo;

 /**

 * Book constructor

 * @param title the title

 */

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 public Book(String title) {

 setTitle(title);

 }

 /**

 * Sets the title

 * @param title the title

 */

 public void setTitle(String title) {

 this.title = title;

 }

 /**

 * Gets the title

 * @return String

 */

 public String getTitle() {

 return title;

 }

 /**

 * Check out

 * @param who the person checking this book out

 */

 public void checkOut(String who) {

 checkedOutTo = who;

 if (checkedOutTo.length() == 0) checkedOutTo = null;

 }

 public boolean isCheckedOut() {

 return checkedOutTo != null && checkedOutTo.length() > 0;

 }

 public void checkIn() {

 checkedOutTo = null;

 }

 /**

 * Gets who this book is checked out to

 * @return String

 */

 public String getCheckedOutTo() {

 return checkedOutTo;

 }

}

An instance of the Library class stores the Book instances, and provides the data model for the application (see Listing

16-12). A Library can both load itself from, and save itself to, a file.

Listing 16-12: Library.java

package examples.ch16;

import java.io.*;

import java.util.*;

/**

 * This class holds all the books in a library. It also handles loading from and

 * saving to disk

 */

public class Library {

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 private static final String SEP = "|";

 // The filename

 private String filename;

 // The books

 private Collection books;

 // The dirty flag

 private boolean dirty;

 /**

 * Library constructor. Note the signature. :-)

 */

 public Library() {

 books = new LinkedList();

 }

 /**

 * Loads the library from a file

 *

 * @param filename the filename

 * @throws IOException

 */

 public void load(String filename) throws IOException {

 BufferedReader in = new BufferedReader(new LineNumberReader(new FileReader(

 filename)));

 String line;

 while ((line = in.readLine()) != null) {

 StringTokenizer st = new StringTokenizer(line, SEP);

 Book book = null;

 if (st.hasMoreTokens()) book = new Book(st.nextToken());

 if (st.hasMoreTokens()) book.checkOut(st.nextToken());

 if (book != null) add(book);

 }

 in.close();

 this.filename = filename;

 dirty = false;

 }

 /**

 * Saves the library to a file

 *

 * @param filename the filename

 * @throws IOException

 */

 public void save(String filename) throws IOException {

 BufferedWriter out = new BufferedWriter(new FileWriter(filename));

 for (Iterator itr = books.iterator(); itr.hasNext();) {

 Book book = (Book) itr.next();

 out.write(book.getTitle());

 out.write('|');

 out.write(book.getCheckedOutTo() == null ? "" : book.getCheckedOutTo());

 out.write('\r');

 }

 out.close();

 this.filename = filename;

 dirty = false;

 }

 /**

 * Adds a book

 *

 * @param book the book to add

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 * @return boolean

 */

 public boolean add(Book book) {

 boolean added = books.add(book);

 if (added) setDirty();

 return added;

 }

 /**

 * Removes a book

 *

 * @param book the book to remove

 */

 public void remove(Book book) {

 books.remove(book);

 setDirty();

 }

 /**

 * Gets the books

 *

 * @return Collection

 */

 public Collection getBooks() {

 return Collections.unmodifiableCollection(books);

 }

 /**

 * Gets the file name

 *

 * @return String

 */

 public String getFileName() {

 return filename;

 }

 /**

 * Gets whether this file is dirty

 *

 * @return boolean

 */

 public boolean isDirty() {

 return dirty;

 }

 /**

 * Sets this file as dirty

 */

 public void setDirty() {

 dirty = true;

 }

}

The Librarian program displays the books in a TableViewer, which needs a content provider and a label provider.

Listing 16-13 contains the content provider, and Listing 16-14 contains the label provider. Notice that the label provider

uses images instead of text for the checked-out state. This allows the table to show a checked checkbox for a book

that's checked out, and an unchecked checkbox for one that isn't.

Listing 16-13: LibraryContentProvider.java

package examples.ch16;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

import org.eclipse.jface.viewers.IStructuredContentProvider;

import org.eclipse.jface.viewers.Viewer;

/**

 * This class provides the content for the library table

 */

public class LibraryContentProvider implements IStructuredContentProvider {

 /**

 * Gets the books

 *

 * @param inputElement the library

 * @return Object[]

 */

 public Object[] getElements(Object inputElement) {

 return ((Library) inputElement).getBooks().toArray();

 }

 /**

 * Disposes any resources

 */

 public void dispose() {

 // Do nothing

 }

 /**

 * Called when the input changes

 *

 * @param viewer the viewer

 * @param oldInput the old library

 * @param newInput the new library

 */

 public void inputChanged(Viewer viewer, Object oldInput, Object newInput) {

 // Ignore

 }

}

Listing 16-14: LibraryLabelProvider.java

package examples.ch16;

import org.eclipse.jface.viewers.ILabelProviderListener;

import org.eclipse.jface.viewers.ITableLabelProvider;

import org.eclipse.swt.graphics.Image;

/**

 * This class provides the labels for the library table

 */

public class LibraryLabelProvider implements ITableLabelProvider {

 private Image checked;

 private Image unchecked;

 /**

 * LibraryLabelProvider constructor

 */

 public LibraryLabelProvider() {

 // Create the check mark images

 checked = new Image(null, LibraryLabelProvider.class

 .getResourceAsStream("/images/checked.gif"));

 unchecked = new Image(null, LibraryLabelProvider.class

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 .getResourceAsStream("/images/unchecked.gif"));

 }

 /**

 * Gets the column image

 *

 * @param element the book

 * @param columnIndex the column index

 * @return Image

 */

 public Image getColumnImage(Object element, int columnIndex) {

 // For the "Checked Out" column, return the check mark

 // if the book is checked out

 if (columnIndex == 1)

 return ((Book) element).isCheckedOut() ? checked : unchecked;

 return null;

 }

 /**

 * Gets the column text

 *

 * @param element the book

 * @param columnIndex the column index

 * @return String

 */

 public String getColumnText(Object element, int columnIndex) {

 Book book = (Book) element;

 String text = null;

 switch (columnIndex) {

 case 0:

 text = book.getTitle();

 break;

 case 2:

 text = book.getCheckedOutTo();

 break;

 }

 return text == null ? "" : text;

 }

 /**

 * Adds a listener

 */

 public void addListener(ILabelProviderListener listener) {

 // Ignore

 }

 /**

 * Disposes any resources

 */

 public void dispose() {

 if (checked != null) checked.dispose();

 if (unchecked != null) unchecked.dispose();

 }

 /**

 * Gets whether this is a label property

 *

 * @param element the book

 * @param property the property

 * @return boolean

 */

 public boolean isLabelProperty(Object element, String property) {

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 return false;

 }

 /**

 * Removes a listener

 *

 * @param listener the listener

 */

 public void removeListener(ILabelProviderListener listener) {

 // Ignore

 }

}

To allow editing the books within the table, Librarian uses a cell modifier class called LibraryCellModifier, shown in

Listing 16-15.

Listing 16-15: LibraryCellModifier.java

package examples.ch16;

import org.eclipse.jface.viewers.ICellModifier;

import org.eclipse.swt.widgets.Item;

/**

 * This class is the cell modifier for the Librarian program

 */

public class LibraryCellModifier implements ICellModifier {

 /**

 * Gets whether the specified property can be modified

 *

 * @param element the book

 * @param property the property

 * @return boolean

 */

 public boolean canModify(Object element, String property) {

 return true;

 }

 /**

 * Gets the value for the property

 *

 * @param element the book

 * @param property the property

 * @return Object

 */

 public Object getValue(Object element, String property) {

 Book book = (Book) element;

 if (Librarian.TITLE.equals(property))

 return book.getTitle();

 else if (Librarian.CHECKED_OUT.equals(property))

 return Boolean.valueOf(book.isCheckedOut());

 else if (Librarian.WHO.equals(property))

 return book.getCheckedOutTo() == null ? "" : book.getCheckedOutTo();

 else

 return null;

 }

 /**

 * Modifies the element

 *

 * @param element the book

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 * @param property the property

 * @param value the new value

 */

 public void modify(Object element, String property, Object value) {

 if (element instanceof Item) element = ((Item) element).getData();

 Book book = (Book) element;

 if (Librarian.TITLE.equals(property))

 book.setTitle((String) value);

 else if (Librarian.CHECKED_OUT.equals(property)) {

 boolean b = ((Boolean) value).booleanValue();

 if (b)

 book.checkOut("[Enter Name]");

 else

 book.checkIn();

 } else if (Librarian.WHO.equals(property)) book.checkOut((String) value);

 // Refresh the view

 Librarian.getApp().refreshView();

 // Set the library as dirty

 Librarian.getApp().setLibraryDirty();

 }

}

Run the program and choose Book ? Add Book, as shown in Figure 16-10, to add a book to your library. Figure 16-11

shows the added book. Click the Title to change it. Then click the checkbox to check the book out to someone. Figure

16-12 shows the book titled Leveraging Lisp in Web Services checked out to a strangely named individual.

Figure 16-10: Adding a book to the Librarian application

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig708%5F01%5F0%2Ejpg

Figure 16-11: Book added to Library

Figure 16-12: Book checked out

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig709%5F01%5F0%2Ejpg
file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig709%5F02%5F0%2Ejpg

Creating ToolBars

Toolbars, almost as plentiful as dropdown menus, display a row of buttons across the top of the main application

window, just below the menus. They can display either images or text, though they predominantly display images. You

click the button in the toolbar to perform its associated action. For example, to open a file, users usually click the

button that displays an open file folder.

Adding a ToolBar

To create a toolbar in JFace, call addToolBar() in your ApplicationWindow-derived class. As with addMenuBar(), you must

call addToolBar() before the underlying Shell is created, so you'll usually call it in your constructor. addToolBar() takes a

style as its only parameter, which is eventually passed to the underlying ToolBar constructor. Refer to Chapter 8 for

more information on ToolBar styles.

You must also override createToolBarManager() in your ApplicationWindow-derived class. It has the following signature:

protected ToolBarManager createToolBarManager(int style)

The style parameter contains the same style you passed to addToolBar(). In your createToolBarManager()

implementation, create a ToolBarManager, passing the style. Then, add your actions to the ToolBarManager. Your

implementation might look like this:

protected ToolBarManager createToolBarManager(int style) {

 // Create the manager

 ToolBarManager manager = new ToolBarManager(style);

 // Add an action

 manager.add(myAction);

 // Return the manager

 return manager;

}

If your actions have images, the images will display on the toolbar buttons. Otherwise, their text will display.

Updating Librarian with a ToolBar

To add a toolbar to the Librarian application, add a call to addToolBar(SWT.FLAT) to Librarian's constructor, so that the

constructor's code now looks like this:

/**

 * Librarian constructor

 */

public Librarian() {

 super(null);

 APP = this;

 // Create the data model

 library = new Library();

 // Create the actions

 newAction = new NewAction();

 openAction = new OpenAction();

 saveAction = new SaveAction();

 saveAsAction = new SaveAsAction();

 exitAction = new ExitAction();

 addBookAction = new AddBookAction();

 removeBookAction = new RemoveBookAction();

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 aboutAction = new AboutAction();

 showBookCountAction = new ShowBookCountAction();

 addMenuBar();

 addToolBar(SWT.FLAT);

}

Then, add a createToolBarManager() implementation in the Librarian class that creates a ToolBarManager and adds the

appropriate actions to it. It should look like this:

/**

 * Creates the toolbar for the application

 */

protected ToolBarManager createToolBarManager(int style) {

 // Create the toolbar manager

 ToolBarManager tbm = new ToolBarManager(style);

 // Add the file actions

 tbm.add(newAction);

 tbm.add(openAction);

 tbm.add(saveAction);

 tbm.add(saveAsAction);

 // Add a separator

 tbm.add(new Separator());

 // Add the book actions

 tbm.add(addBookAction);

 tbm.add(removeBookAction);

 // Add a separator

 tbm.add(new Separator());

 // Add the show book count, which will appear as a toggle button

 tbm.add(showBookCountAction);

 // Add a separator

 tbm.add(new Separator());

 // Add the about action

 tbm.add(aboutAction);

 return tbm;

}

Now when you run the Librarian application, you see a toolbar, as shown in Figure 16-13. Clicking any of the toolbar

buttons performs the appropriate action. Because they run the exact same action classes that the menu runs, they

perform just as the menu does.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Figure 16-13: Librarian with a toolbar

Notice that the checkbox action—whether or not to show the count of books—that appears with or without a check in

the menu appears in the toolbar as a toggle button.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig712%5F01%5F0%2Ejpg

Creating CoolBars

Your ApplicationWindow-derived JFace application can sport either a toolbar or a coolbar. See Chapter 8 for more

information on coolbars. As of this writing, the ApplicationWindow code has a bug that allows you to have both a toolbar

and a coolbar if you create the toolbar first. This hole, if not already plugged, soon will be.

Adding a CoolBar

To add a coolbar to an ApplicationWindow-derived class, call addCoolBar() before the Shell is created—usually in the

constructor. addCoolBar() takes a style constant; refer to Chapter 8 for coolbar style constants. You also override

createCoolBarManager(), which has the following signature:

protected CoolBarManager createCoolBarManager(int style)

The style parameter contains the style constant you passed to addCoolBar(). In your implementation of this method, you

should create a CoolBarManager(). However, instead of adding actions directly to it, you should add a ToolBarManager

to it that contains the actions. Review Chapter 8 on coolbars to understand the relationship between toolbars and

coolbars.

The following code leverages an existing createToolBarManager() implementation to show a coolbar instead of a

toolbar:

protected CoolBarManager createCoolBarManager(int style) {

 // Create the CoolBarManager

 CoolBarManager cbm = new CoolBarManager(style);

 // Add the toolbar that contains the actions

 cbm.add(createToolBarManager(SWT.NONE));

 // Return the manager

 return cbm;

}

Updating Librarian with a CoolBar

To swap Librarian's toolbar for a coolbar, change the call in the constructor from addToolBar(SWT.FLAT) to

addCoolBar(SWT.NONE). Then, override createCoolBarManager() with this implementation:

/**

 * Creates the coolbar for the application

 */

protected CoolBarManager createCoolBarManager(int style) {

 // Create the coolbar manager

 CoolBarManager cbm = new CoolBarManager(style);

 // Add the toolbar

 cbm.add(createToolBarManager(SWT.FLAT));

 return cbm;

}

Be sure to leave in your createToolBarManager() implementation, as this createCoolBarManager() implementation relies

on it.

The main window now looks like Figure 16-14. The buttons still work as before, as they still call the same action

classes.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Figure 16-14: Librarian with a coolbar

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig714%5F01%5F0%2Ejpg

Creating a Status Line

The status line, or status bar, represents another application window convention. Running across the bottom of the

window, it provides an unobtrusive communication mechanism between the application and the user. The status line

can display noncritical messages about the state of the application. It can display critical messages too, of course, but

because status line messages do nothing to arrest the attention of the user, using them for critical communications

would be ineffective.

Adding a Status Line

Call addStatusLine() in the constructor of your ApplicationWindow-derived class to create a status line. You must also

override createStatusLineManager(), which has the following signature:

protected StatusLineManager createStatusLineManager()

In your implementation, you should create a StatusLineManager and return it. You can add actions to it, which create

corresponding buttons to trigger the actions in the status line. See Figure 16-15; look at the lower right. This seems a

little over the top, scattering buttons all over the interface. The application already has the actions in the menu and in

the toolbar or coolbar, and having them in the status line might prove confusing. Although developers tend to believe

that having more than one way to do things improves usability, studies show the opposite is true. Like Frank Gilbreth's

(of Cheaper by the Dozen fame) "one best way," typical users want one best way to perform a task. They tolerate

menus and buttons, but adding duplicate buttons confuses them and reduces usability. Nevertheless, feel free to defy

this advice and add actions to your status lines.

Figure 16-15: A status line littered with buttons

The following code creates a status line, but doesn't add anything to it.

protected StatusLineManager createStatusLineManager() {

 // Create the status line manager

 StatusLineManager slm = new StatusLineManager();

 // Return it

 return slm;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig715%5F01%5F0%2Ejpg

}

If you shouldn't add actions to the status line, what should you add? You can add messages to it by calling its

setMessage() method, passing the method to add. Pass an empty string to setMessage() to clear the message. You can

also add a progress bar to it to keep the user updated on lengthy operations. The next section incorporates status line

messages and a progress bar into Librarian.

Updating Librarian with a Status Line

Until now, a Label has optionally displayed the book count. This seems just the sort of information to display in the

status line. To add the status line and display the book count in it, first call addStatusLine() in Librarian's constructor. The

last three lines of code in the constructor now look like this:

addMenuBar();

addCoolBar(SWT.NONE);

addStatusLine();

Next, override createStatusLineManager() to return an empty status line manager. The implementation looks like this:

protected StatusLineManager createStatusLineManager() {

 return new StatusLineManager();

}

Delete any reference to the bookCount label (still in Librarian.java). Then, change the refreshView() method to display the

book count in the status line, like this:

public void refreshView() {

 // Refresh the view

 viewer.refresh();

 // Repack the columns

 for (int i = 0, n = viewer.getTable().getColumnCount(); i < n; i++) {

 viewer.getTable().getColumn(i).pack();

 }

 getStatusLineManager().setMessage(showBookCountAction.isChecked() ?

 "Book Count: " + library.getBooks().size() : "");

}

Now the window looks like Figure 16-16. Notice the book count displayed in the status line across the bottom of the

window.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Figure 16-16: The book count displayed in the status line

Adding a progress monitor to the status line requires only a little more work. Call the status line's getProgressMonitor()

method to get a reference to its progress monitor, like this:

IProgressMonitor pm = getStatusLineManager().getProgressMonitor();

You can then call the same progress monitor methods discussed in Chapter 15: beginTask(), work(), done(), and so on.

Opening and saving a file can potentially take a long time, and these make excellent candidates for progress monitors.

This section adds a progress monitor to the status line for both opening and saving a file. The threading model

presents a few hurdles. For the progress monitor to display and update during the open or save, the UI must remain

responsive. However, if the UI remains responsive during the open or save, users can change the library file while it's

being read from or written to disk. Somehow you must prevent the users from changing the library during open or

save, yet keep the UI responsive.

Keeping the UI responsive entails spinning the save or open into its own thread. You can use ModalContext.run() for

that. Its signature is as follows:

ModalContext.run(IRunnableWithProgress operation, boolean fork,

 IProgressMonitor monitor, Display display)

Enclose the save or open in operation, pass true for fork, pass the status line's progress monitor for monitor, and pass

the current display for display.

Keeping the user from changing the library file while the thread runs involves disabling the actions before spawning

the thread, and enabling them in the finally block, as this pseudo code demonstrates:

// Disable actions

// Spawn thread

try {

 ModalContext.run(...);

}

catch (...) {}

finally {

 // Enable actions

}

To disable the actions, you could try a shortcut by disabling the menu and the coolbar, like this:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig717%5F01%5F0%2Ejpg

getMenuBarManager().getMenu().setEnabled(false);

getCoolBarControl().setEnabled(false);

Although the preceding code disables both the menu and coolbar, as expected, it provides no visual clue of that. The

buttons in the coolbar appear as bright and vibrant, ready to be clicked, as ever. Instead, you must disable the actions

themselves. Write a convenience method that takes a boolean parameter and calls setEnabled() on each action, passing

the boolean, like this:

private void enableActions(boolean enable) {

 newAction.setEnabled(enable);

 openAction.setEnabled(enable);

 saveAction.setEnabled(enable);

 saveAsAction.setEnabled(enable);

 exitAction.setEnabled(enable);

 addBookAction.setEnabled(enable);

 removeBookAction.setEnabled(enable);

 aboutAction.setEnabled(enable);

 showBookCountAction.setEnabled(enable);

}

Retrofit openFile() and saveFileAs() to disable the actions, spawn the thread, and enable the actions. openFile() should

now look like this:

public void openFile(final String fileName) {

 if (checkOverwrite()) {

 // Disable the actions, so user can't change library while loading

 enableActions(false);

 library = new Library();

 try {

 // Launch the Open runnable

 ModalContext.run(new IRunnableWithProgress() {

 public void run(IProgressMonitor progressMonitor) {

 try {

 progressMonitor.beginTask("Loading", IProgressMonitor.UNKNOWN);

 library.load(fileName);

 progressMonitor.done();

 viewer.setInput(library);

 refreshView();

 } catch (IOException e) {

 showError("Can't load file " + fileName + "\r" + e.getMessage());

 }

 }

 }, true, getStatusLineManager().getProgressMonitor(),

 getShell().getDisplay());

 }

 catch (InterruptedException e) {}

 catch (InvocationTargetException e) {}

 finally {

 // Enable actions

 enableActions(true);

 }

 }

}

saveFileAs() should look like this:

public void saveFileAs(final String fileName) {

 // Disable the actions, so user can't change file while it's saving

 enableActions(false);

 try {

 // Launch the Save runnable

 ModalContext.run(new IRunnableWithProgress() {

 public void run(IProgressMonitor progressMonitor) {

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 try {

 progressMonitor.beginTask("Saving", IProgressMonitor.UNKNOWN);

 library.save(fileName);

 progressMonitor.done();

 } catch (IOException e) {

 showError("Can't save file " + library.getFileName() + "\r"

 + e.getMessage());

 }

 }

 }, true, getStatusLineManager().getProgressMonitor(),

 getShell().getDisplay());

 }

 catch (InterruptedException e) {}

 catch (InvocationTargetException e) {}

 finally {

 // Enable the actions

 enableActions(true);

 }

}

You must add the following imports to the top of Librarian.java:

import java.lang.reflect.InvocationTargetException;

import org.eclipse.core.runtime.IProgressMonitor;

import org.eclipse.jface.operation.IRunnableWithProgress;

import org.eclipse.jface.operation.ModalContext;

Now when you open or save a file, you see a progress monitor in the status line. Unless you're opening or saving a

large file, or are using a slow computer, you won't see the progress monitor, as the open or save happens too fast.

You can toss a call to Thread.sleep() into the IRunnableWithProgress.run() implementation to see the progress bar. Figure

16-17 shows the application saving a file. Note the progress monitor in the lower-right corner.

Figure 16-17: A progress monitor in the status bar

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig720%5F01%5F0%2Ejpg

Summary

The JFace "action" concept encourages reuse and drives powerful interaction with users. By creating actions and

adding them to various action containers, you achieve continuity and flexibility in your applications with little work.

Menus, toolbars, coolbars, and status lines provide avenues for your actions, and allow users to get things

done—which is why they use your applications.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Chapter 17: Using Preferences

Overview

As Marilyn Monroe and Jack Lemmon showed on the big screen, some like it hot. It follows, then, that some like it cold,

some like it lukewarm, and some don't care what temperature it is. People prefer different things, and want to work

with your applications in different ways. Your applications should not only accommodate different preferences, but also

must plan for them by making preference specification integral to their interfaces.

When small programs that ran from the command line ruled the computing landscape, preferences were specified on

the command line at each program invocation. Although syntax and semantics differed slightly across operating

systems, the basics remained the same through all platforms: type the name of the program, specify terse flags that

you'd memorized (or looked up on a reference sheet), and hit Enter. For example, to display the contents of the

current directory in Unix, with everything sorted newest first, you'd type the following:

ls -alt

Under DOS or Windows, you'd type the following:

dir /o-d

However, as programs grew in complexity, and the number of preferences to configure grew exponentially, specifying

all preferences at each invocation became too cumbersome. Then, as GUIs entered the mainstream, the practice of

entering preferences on the command line became unworkable: programs were invoked not by typing in a command

line, but by clicking an icon. Invoking a program in a GUI involves no typing at all, and hence no provision for

specifying preferences.

To fill this void, complex programs offer interfaces from within the programs to specify preferences. Once you enter

preferences, the programs store the preferences for use each time the program runs. They remember your

customization preferences, so you can set up a program to run how you like it (within the bounds offered by the

program), and you don't have to worry about customizing it again. Or, if you desire, you can go back into the familiar

interface to alter the preferences anew. This chapter discusses the JFace preferences framework, found in package

org.eclipse.jface.preference.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Persisting Preferences

One of the most divisive issues between Windows users and Unix users concerns the way programs store

preferences. With the introduction of Windows 95, Windows migrated in full force from its text-based INI files to its

binary Registry. The binary format enables quicker search and retrieval, but requires specialized tools such as

regedit.exe to view and edit the preference data. Further, not only can a corrupted Registry keep your computer from

booting, but it can become so corrupted that no tool can read it or allow you to edit it. Unix, on the other hand, stores

preference data almost exclusively in text files, sacrificing some search-and-retrieval speed for transparency and ease

of use. You can use any editor to view or edit Unix preference files, and their human-readable nature makes correcting

corruption more likely.

Java reveals its Unix heritage with its properties files, which are text-based files listing name-value pairs. A sample

properties file might look like this:

database.name=MyDB

sort=true

sort.order=ascending

Java uses the java.util.Properties class to load, retrieve, set, and store properties files.

JFace piggybacks atop properties files, using a preferences API to read and write the underlying properties file. The

PreferenceStore class, which implements both IPreferenceStore and IPersistPreferenceStore, handles the properties file

interaction. You can create a PreferenceStore instance either with or without an associated properties file using one of

its two constructors:

PreferenceStore()

PreferenceStore(String filename)

For example, to create a PreferenceStore and associate it with the file foo.properties, use this code:

PreferenceStore preferenceStore = new PreferenceStore("foo.properties");

PreferenceStore supports two tiers of default values: a default value for a specified name, and a default value for a

specified data type. If you attempt to retrieve a value for a configured name in your application, but the user hasn't yet

set a value for it, the default value for the specified name is returned. However, if you attempt to retrieve a value for a

name that hasn't been configured in your application, the default value for the specified data type comes back instead.

Only user-specified preferences are stored.

For example, your application might have a property whose name is UserName. You've configured the default value

for UserName to be "[Your Name Goes Here]." If the user has specified his or her name for this property, the

properties file might look like this:

UserName=Jane Doe

Retrieving the value for UserName returns "Jane Doe."

If the user hasn't specified his or her name for the UserName property, retrieving the value for this property returns the

default value for UserName, which is "[Your Name Goes Here]." However, trying to retrieve the value for an

unspecified name such as UserAstrologySign returns the default value for the type, which in this case is an empty

string.

Table 17-1 lists PreferenceStore's methods.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Table 17-1: PreferenceStore Methods

Method Description

void addPropertyChangeListener

(IPropertyChangeListener listener)
Adds a listener to the notification list that's notified when a

property changes.

boolean contains(String name) Returns true if this preference store contains a value for the

specified name, whether a user-specified value or a default

value. Otherwise, returns false.

void firePropertyChangeEvent(String name,

Object oldValue, Object newValue)
Fires a property change event when the value for the

specified name changes. PreferenceStore calls this method

automatically when a value changes.

boolean getBoolean(String name) Returns the user-specified boolean value for the specified

name.

boolean getDefaultBoolean(String name) Returns the default boolean value for the specified name.

double getDefaultDouble(String name) Returns the default double value for the specified name.

float getDefaultFloat(String name) Returns the default float value for the specified name.

int getDefaultInt(String name) Returns the default int value for the specified name.

long getDefaultLong(String name) Returns the default long value for the specified name.

String getDefaultString(String name) Returns the default String value for the specified name.

double getDouble(String name) Returns the user-specified double value for the specified

name.

float getFloat(String name) Returns the user-specified float value for the specified name.

int getInt(String name) Returns the user-specified int value for the specified name.

long getLong(String name) Returns the user-specified long value for the specified name.

String getString(String name) Returns the user-specified String value for the specified

name.

boolean isDefault(String name) Returns true if the user doesn't have a user-specified value

for the specified name, but a default value does exist.

void list(PrintStream out) Prints the contents of this preference store to the specified

print stream.

void list(PrintWriter out) Prints the contents of this preference store to the specified

print writer.

void load() Loads the associated properties file into this preference

store. Throws an IOException if no file name has been

specified, or if the file can't be loaded.

void load(InputStream in) Loads the data from the specified input stream into this

preference store.

boolean needsSaving() Returns true if any values in this preference store have

changed and not been saved.

String[] preferenceNames() Returns the names of the preferences for which

user-specified values have been set.

void putValue(String name, String value) Sets the user-specified value for the specified name.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Method Description

void removePropertyChangeListener

(IPropertyChangeListener listener)
Removes the specified listener from the notification list.

void save() Saves the user-specified preferences to the associated

properties file. Throws an IOException if no file name has

been specified, or if the file can't be saved.

void save(OutputStream out, String header) Saves the user-specified preferences to the specified output

stream, using the specified header.

void setDefault(String name, boolean value) Sets the default value for the specified name.

void setDefault(String name, double value) Sets the default value for the specified name.

void setDefault(String name, float value) Sets the default value for the specified name.

void setDefault(String name, int value) Sets the default value for the specified name.

void setDefault(String name, long value) Sets the default value for the specified name.

void setDefault(String name, String value) Sets the default value for the specified name.

void setFilename(String name) Sets the name of the file to associate with this preference

store.

void setToDefault(String name) Sets the value for the specified name to the default value.

void setValue(String name, boolean value) Sets the user-specified value for the specified name.

void setValue(String name, double value) Sets the user-specified value for the specified name.

void setValue(String name, float value) Sets the user-specified value for the specified name.

void setValue(String name, int value) Sets the user-specified value for the specified name.

void setValue(String name, long value) Sets the user-specified value for the specified name.

void setValue(String name, String value) Sets the user-specified value for the specified name.

The PreferenceStoreTest application in Listing 17-1 creates a preference store, loads the file foo.properties, sets some

defaults, and then prints the preferences.

Listing 17-1: PreferenceStoreTest.java

package examples.ch17;

import java.io.IOException;

import org.eclipse.jface.preference.PreferenceStore;

/**

 * This class demonstrates PreferenceStore

 */

public class PreferenceStoreTest {

 public static void main(String[] args) throws IOException {

 // Create the preference store

 PreferenceStore preferenceStore = new PreferenceStore("foo.properties");

 // Load it

 preferenceStore.load();

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 // Set some defaults

 preferenceStore.setDefault("name1", true);

 preferenceStore.setDefault("name2", 42);

 preferenceStore.setDefault("name3", "Stack");

 // List the preferences

 preferenceStore.list(System.out);

 }

}

Say the contents of foo.properties are as follows:

name1=false

name3=House

Then the output from PreferenceStoreTest is as follows:

-- listing properties --

name3=House

name2=42

name1=false

Notice that the preference store uses one of the default values, 42 (for name2), but uses the two values specified in

foo.properties for name1 and name3.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Receiving Notification of Preference Changes

When users change their preferences, you should respond to their desires immediately by updating your program's

view and whatever else is appropriate. To respond to changed preferences, you obviously must know about them. The

preference store takes care of notifying all interested parties each time any of the properties it manages changes.

To register your interest in property changes, create an IPropertyChangeListener implementation, which declares a

single method:

void propertyChange(PropertyChangeEvent event)

The org.eclipse.jface.util package contains both IPropertyChangeListener and PropertyChangeEvent.

After creating an IPropertyChangeListener, register it with the preference store by passing it to

IPreferenceStore.addPropertyChangeListener(). The preference store calls your propertyChange() method once for each

property that changes, each time that it changes. The PropertyChangeEvent that it receives exposes three methods,

getters for the three pieces of data it carries: the name of the changed property, the old value of the property, and the

new value of the property. Table 17-2 lists PropertyChangeEvent's methods.

Table 17-2: PropertyChangeEvent Methods

Method Description

Object getNewValue() Returns the changed property's new value

Object getOldValue() Returns the changed property's old value

String getProperty() Returns the name of the property that changed

For example, suppose you have an ApplicationWindow-derived class that allows users to set the text in the title bar via

preferences. The class might look something like this:

public class MyWindow extends ApplicationWindow

 implements IPropertyChangeListener {

 // The preference store

 private IPreferenceStore ps;

 /**

 * MyWindow constructor

 */

 public MyWindow() {

 super(null);

 // Create the preference store and register this window as a listener

 ps = new PreferenceStore("my.properties");

 ps.addPropertyChangeListener(this);

 }

 /**

 * Called when a property changes

 * @param event the PropertyEvent

 */

 public void propertyChange(PropertyChangeEvent event) {

 if ("title".equals(event.getProperty())) {

 getShell().setText((String) event.getNewValue());

 }

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 }

 // The rest of the code goes here

}

Any time the user changes the preference for the "title" property, this window updates its title text to the new preferred

text. Note that this code offers the user no means for changing the preferences. The balance of this chapter describes

how to allow users to change preferences.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Displaying a Preference Dialog

Storing preferences in editable text-based files and offering no interface beyond a text editor might placate die-hard

Unix users, who are probably wondering why your application isn't just part of Emacs anyway. Some people do prefer

to use a text editor to view and edit preferences. However, those accustomed to GUIs—including Windows users, Mac

OS X users, and even the latest crop of Linux users who boot directly into KDE or GNOME—demand graphical

interfaces, launched from within your application, to view and set their preferences. JFace provides all the classes

necessary to whip up a pretty face on a preference store.

The JFace preference interface displays a tree on the left. Each node in the tree, represented by an IPreferenceNode

implementation, corresponds to a preference page, represented by an IPreferencePage implementation. Each

preference page can display multiple controls to view and display preferences. Clicking the node in the tree displays

the corresponding preference page on the right. Figure 17-1 shows the Eclipse preference interface. The Workbench

node is highlighted on the left, and the Work-bench property page is displayed on the right.

Figure 17-1: The Eclipse preference interface

To display a preference dialog, use the PreferenceDialog class as you would any other dialog class: construct one, then

call its open() method. However, the PreferenceDialog constructor gets a little tricky, as it requires an instance of

PreferenceManager. The constructor's signature looks like this:

PreferenceDialog(Shell parentShell, PreferenceManager manager)

You can display a preference dialog, then, with this code:

PreferenceDialog dlg = new PreferenceDialog(shell, manager);

dlg.open();

However, because passing null for the preference manager throws a NullPointerException, you must create a

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig730%5F01%5F0%2Ejpg

PreferenceManager. The next sections explain how to do that, beginning with the entities a preference manager

ultimately manages: preference pages.

Creating a Page

A preference page displays the labels and entry fields that both display and afford editing of the user preferences. In

the Eclipse preference dialog shown in Figure 17-1, the right side of the dialog displays a preference page with

checkboxes, labels, a text box, and radio buttons.

A JFace preference page must implement the IPreferencePage interface, whose methods are listed in Table 17-3.

However, instead of building a preference page from scratch and enduring the drudgery of implementing all the

IPreferencePage methods, you'll probably rely on JFace's implementation, PreferencePage. To create a page, subclass

PreferencePage and implement its one abstract method, createContents(), whose signature looks like this:

abstract Control createContents(Composite parent)

Table 17-3: IPreferencePage Methods

Method Description

Point computeSize() In this method, compute and return the size of this preference

page.

boolean isValid() In this method, return true if this preference page is in a valid

state. Otherwise, return false.

okToLeave() In this method, return true if it's OK to leave this preference

page. Otherwise, return false.

boolean performCancel() Called when the user clicks Cancel. In this method, perform

any code in response to Cancel. Return true to allow the

cancel, or false to abort the cancel.

boolean performOk() Called when the user clicks OK. In this method, perform any

code in response to OK. Return true to allow the OK, or false to

abort the OK.

void setContainer

(IPreferencePageContainer

preferencePageContainer)

In this method, set the container (dialog) for this preference

page to the specified container.

void setSize(Point size) In this method, set the size for this preference page to the

specified size.

In your implementation of this method, you create the controls for the preference page, and return the containing

Control, like this:

protected Control createContents(Composite parent) {

 Composite composite = new Composite(parent, SWT.NONE);

 composite.setLayout(new GridLayout(2, false));

 // Create a field for the workspace save interval

 new Label(composite, SWT.LEFT).setText("Workspace save interval:");

 Text interval = new Text(composite, SWT.BORDER);

 interval.setLayoutData(new GridData(GridData.FILL_HORIZONTAL));

 // Return the containing control

 return composite;

}

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Although you can create a fully functional preference page that blends perfectly with the preference framework by

implementing only the createContents() method in your subclass, you can customize your preference page further by

using different constructors or overriding additional methods. Table 17-4 lists PreferencePage's constructors, and Table

17-5 lists PreferencePage's methods.

Table 17-4: PreferencePage Constructors

Constructor Description

protected PreferencePage() Creates a preference page.

protected

PreferencePage(String title)
Creates a preference page with the specified title. In the default behavior,

the title displays in the preference dialog's tree, and at the top of the

preference page.

protected

PreferencePage(String title,

ImageDescriptor image)

Creates a preference page with the specified title, and with the image

created from the specified image descriptor. In the default behavior, the

title displays in the preference dialog's tree and at the top of the preference

page. The image doesn't display, although you can retrieve it by calling

getImage().

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Table 17-5: PreferencePage Methods

Method Description

protected void applyDialogFont

(Composite composite)
Applies the dialog font to the specified composite. Called from this

preference page's createControl() method. Override to set a different

font.

Point computeSize() Computes the size of this preference page's control.

protected void contributeButtons

(Composite parent)
Adds buttons to the row of buttons that defaults to Restore Defaults

and Apply. Override to add any buttons. For each button you add,

you must increment the number of columns in parent's grid layout,

like this: ((GridLayout) parent.getLayout()) .numColumns++. Otherwise,

the buttons will wrap.

protected abstract Control

createContents(Composite parent)
Override this method to create your page's contents.

void createControl(Composite parent) Creates the label at the top of the preference page and the Restore

Defaults and Apply buttons at the bottom. It calls createContents() to

create the contents. Override to alter the preference page's layout.

protected Label createDescription

Label(Composite parent)
Creates a label at the top of the preference page that displays the

description set by setDescription(). By default, the description is

blank, so the default implementation does nothing. Override to

change the label.

protected Composite createNote

Composite(Font font, Composite

composite, String title, String

message)

Creates a composite using the specified font, with the specified

composite as parent. The default implementation displays the

specified title in bold, followed by the specified message. Override to

change what displays. Note, however, that by default this method is

never called.

protected Point doComputeSize() Called by computeSize(). Override to change how the size is computed.

protected IPreferenceStore

doGetPreferenceStore()
Called by getPreferenceStore(). The default implementation returns

null. Override to return a page-specific preference store, instead of

using the container's preference store.

protected Button getApplyButton() Returns the Apply button.

IPreferencePageContainer

getContainer()
Returns the container for this preference page.

protected Button getDefaultsButton() Returns the Restore Defaults button.

IPreferenceStore

getPreferenceStore()
Returns this preference page's preference store.

boolean isValid() Returns true if this page is valid. Otherwise, returns false.

protected void noDefaultAnd

ApplyButton()
Suppresses the creation of the Restore Defaults and Apply buttons.

To use, call this method from within your preference page's code

before its controls are created. This usually means that you'll call it

from within your constructor.

boolean okToLeave() Returns true if it's OK to leave this page. Otherwise, returns false. The

default implementation returns isValid().

protected void performApply() Called when the user clicks Apply. Override to perform any desired

processing. The default implementation calls performOk().

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Method Description

boolean performCancel() Called when the user clicks Cancel. Returns true to close the

preference dialog, or false to leave the preference dialog open.

Override to change Cancel behavior.

protected void performDefaults() Called when the user clicks Restore Defaults. Override to perform

any desired processing.

void performHelp() Called when the user requests help.

boolean performOk() Called when the user clicks OK. Returns true to close the preference

dialog, or false to leave the preference dialog open. Override to

change OK behavior.

void setContainer(IPreference

PageContainer container)
Sets the container for this preference page.

void setErrorMessage(String

newMessage)
Sets the error message for this preference page.

void setMessage(String newMessage,

int newType)
Sets the message for the type specified by newType to the text

specified by newMessage. newType should be one of

IMessageProvider.NONE, IMessageProvider.INFORMATION,

IMessageProvider.WARNING, or IMessageProvider.ERROR.

void setPreferenceStore

(IPreferenceStore preferenceStore)
Sets the preference store for this preference page.

void setSize(Point uiSize) Sets the size of this preference page.

void setTitle(String title) Sets the title for this preference page.

void setValid(boolean valid) If valid is true, sets this preference page valid. Otherwise, sets it

invalid.

protected void updateApplyButton() Updates the Apply button, enabling or disabling it based on whether

this preference page is valid.

If the default preference page implementation satisfies your requirements, all you must do in your derived class is

define createContents() to create the fields for your page. You probably should override performOk() as well, so you can

retrieve any values from the fields in the page and save them into the preference store. Finally, you should probably

override performDefaults() to reset the fields to default values from the preference store. The PrefPageOne class in

Listing 17-2 follows that pattern.

Listing 17-2: PrefPageOne.java

package examples.ch17;

import org.eclipse.jface.preference.*;

import org.eclipse.swt.SWT;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.widgets.*;

/**

 * This class creates a preference page

 */

public class PrefPageOne extends PreferencePage {

 // Names for preferences

 private static final String ONE = "one.one";

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 private static final String TWO = "one.two";

 private static final String THREE = "one.three";

 // Text fields for user to enter preferences

 private Text fieldOne;

 private Text fieldTwo;

 private Text fieldThree;

 /**

 * Creates the controls for this page

 */

 protected Control createContents(Composite parent) {

 Composite composite = new Composite(parent, SWT.NONE);

 composite.setLayout(new GridLayout(2, false));

 // Get the preference store

 IPreferenceStore preferenceStore = getPreferenceStore();

 // Create three text fields.

 // Set the text in each from the preference store

 new Label(composite, SWT.LEFT).setText("Field One:");

 fieldOne = new Text(composite, SWT.BORDER);

 fieldOne.setLayoutData(new GridData(GridData.FILL_HORIZONTAL));

 fieldOne.setText(preferenceStore.getString(ONE));

 new Label(composite, SWT.LEFT).setText("Field Two:");

 fieldTwo = new Text(composite, SWT.BORDER);

 fieldTwo.setLayoutData(new GridData(GridData.FILL_HORIZONTAL));

 fieldTwo.setText(preferenceStore.getString(TWO));

 new Label(composite, SWT.LEFT).setText("Field Three:");

 fieldThree = new Text(composite, SWT.BORDER);

 fieldThree.setLayoutData(new GridData(GridData.FILL_HORIZONTAL));

 fieldThree.setText(preferenceStore.getString(THREE));

 return composite;

 }

 /**

 * Called when user clicks Restore Defaults

 */

 protected void performDefaults() {

 // Get the preference store

 IPreferenceStore preferenceStore = getPreferenceStore();

 // Reset the fields to the defaults

 fieldOne.setText(preferenceStore.getDefaultString(ONE));

 fieldTwo.setText(preferenceStore.getDefaultString(TWO));

 fieldThree.setText(preferenceStore.getDefaultString(THREE));

 }

 /**

 * Called when user clicks Apply or OK

 *

 * @return boolean

 */

 public boolean performOk() {

 // Get the preference store

 IPreferenceStore preferenceStore = getPreferenceStore();

 // Set the values from the fields

 if (fieldOne != null) preferenceStore.setValue(ONE, fieldOne.getText());

 if (fieldTwo != null) preferenceStore.setValue(TWO, fieldTwo.getText());

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 if (fieldThree != null)

 preferenceStore.setValue(THREE, fieldThree.getText());

 // Return true to allow dialog to close

 return true;

 }

}

Figure 17-2 shows the preference page created by the PrefPageOne class.

Figure 17-2: The PrefPageOne preference page

When requirements dictate that you deviate from the default look or behavior, override other PreferencePage methods

as necessary. For example, the PrefPageTwo class implements the default constructor to set the title and the

description (see Listing 17-3). It overrides the contributeButtons() method to add two buttons, Select All and Clear All,

that select all and clear all the checkboxes on the page, respectively. It overrides createDescriptionLabel() to create a

label that's right-aligned, and displays the description in all upper case. As with PrefPageOne, it overrides both

performDefaults() and performOk() to reset the default values and to save the preferences to the preference store,

respectively.

Listing 17-3: PrefPageTwo.java

package examples.ch17;

import org.eclipse.jface.preference.*;

import org.eclipse.swt.SWT;

import org.eclipse.swt.events.*;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.widgets.*;

/**

 * This class creates a preference page

 */

public class PrefPageTwo extends PreferencePage {

// Names for preferences

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig736%5F01%5F0%2Ejpg

private static final String ONE = "two.one";

private static final String TWO = "two.two";

private static final String THREE = "two.three";

// The checkboxes

private Button checkOne;

private Button checkTwo;

private Button checkThree;

/**

 * PrefPageTwo constructor

 */

public PrefPageTwo() {

 super("Two");

 setDescription("Check the checks");

}

/**

 * Creates the controls for this page

 */

protected Control createContents(Composite parent) {

 Composite composite = new Composite(parent, SWT.NONE);

 composite.setLayout(new RowLayout(SWT.VERTICAL));

 // Get the preference store

 IPreferenceStore preferenceStore = getPreferenceStore();

 // Create three checkboxes

 checkOne = new Button(composite, SWT.CHECK);

 checkOne.setText("Check One");

 checkOne.setSelection(preferenceStore.getBoolean(ONE));

 checkTwo = new Button(composite, SWT.CHECK);

 checkTwo.setText("Check Two");

 checkTwo.setSelection(preferenceStore.getBoolean(TWO));

 checkThree = new Button(composite, SWT.CHECK);

 checkThree.setText("Check Three");

 checkThree.setSelection(preferenceStore.getBoolean(THREE));

 return composite;

}

/**

 * Add buttons

 *

 * @param parent the parent composite

 */

protected void contributeButtons(Composite parent) {

 // Add a select all button

 Button selectAll = new Button(parent, SWT.PUSH);

 selectAll.setText("Select All");

 selectAll.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 checkOne.setSelection(true);

 checkTwo.setSelection(true);

 checkThree.setSelection(true);

 }

 });

 // Add a clear all button

 Button clearAll = new Button(parent, SWT.PUSH);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 clearAll.setText("Clear All");

 clearAll.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 checkOne.setSelection(false);

 checkTwo.setSelection(false);

 checkThree.setSelection(false);

 }

 });

 // Add two columns to the parent's layout

 ((GridLayout) parent.getLayout()).numColumns += 2;

}

/**

 * Change the description label

 */

protected Label createDescriptionLabel(Composite parent) {

 Label label = null;

 String description = getDescription();

 if (description != null) {

 // Upper case the description

 description = description.toUpperCase();

 // Right-align the label

 label = new Label(parent, SWT.RIGHT);

 label.setText(description);

 }

 return label;

}

/**

 * Called when user clicks Restore Defaults

 */

protected void performDefaults() {

 // Get the preference store

 IPreferenceStore preferenceStore = getPreferenceStore();

 // Reset the fields to the defaults

 checkOne.setSelection(preferenceStore.getDefaultBoolean(ONE));

 checkTwo.setSelection(preferenceStore.getDefaultBoolean(TWO));

 checkThree.setSelection(preferenceStore.getDefaultBoolean(THREE));

 }

 /**

 * Called when user clicks Apply or OK

 *

 * @return boolean

 */

 public boolean performOk() {

 // Get the preference store

 IPreferenceStore preferenceStore = getPreferenceStore();

 // Set the values from the fields

 if (checkOne != null) preferenceStore.setValue(ONE, checkOne.getSelection());

 if (checkTwo != null) preferenceStore.setValue(TWO, checkTwo.getSelection());

 if (checkThree != null)

 preferenceStore.setValue(THREE, checkThree.getSelection());

 // Return true to allow dialog to close

 return true;

 }

}

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Figure 17-3 shows the preference page that the PrefPageTwo class creates.

Figure 17-3: The PrefPageTwo preference page

Tying the Page to a Node

A preference manager doesn't manage preference pages directly. Instead, it manages preference nodes. Each

preference page belongs to a preference node, and each preference node has a corresponding preference page.

Preference nodes represent nodes in the tree on the left side of the preference dialog. As nodes in a tree, preference

nodes can have child nodes, and the tree can be expanded or collapsed to show or hide child nodes.

Each preference node can display both an image and some text, in addition to the clickable plus or minus sign if the

node has children. For management purposes, each node has an ID, which can't be null. You should make the IDs

unique, although no check is performed to enforce this.

The IPreferenceNode interface represents a preference node. Table 17-6 lists IPreferenceNode's methods.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig739%5F01%5F0%2Ejpg

Table 17-6: IPreferenceNode Methods

Method Description

void add(IPreferenceNode node) Adds the specified node as a child of this node.

void createPage() Creates the preference page associated with this preference node.

void disposeResources() Disposes any resources associated with this preference node.

IPreferenceNode findSubNode

(String id)
Returns the child node with the specified ID, or null if no child node has

the specified ID.

String getId() Returns this preference node's ID.

Image getLabelImage() Returns the image associated with this preference node.

String getLabelText() Returns the text associated with this preference node.

IPreferencePage getPage() Returns the preference page associated with this preference node.

IPreferenceNode[]

getSubNodes()
Returns the child nodes of this preference node.

boolean

remove(IPreferenceNode node)
Removes the specified child node from this preference node. Returns

true if the node was found. Otherwise, returns false.

IPreferenceNode remove(String

id)
Removes the child node with the specified ID from this preference node.

Returns the removed child node, or null if the node wasn't found.

The JFace preferences package contains a concrete implementation of IPreferenceNode called PreferenceNode.

PreferenceNode offers three constructors, listed in Table 17-7.

Table 17-7: PreferenceNode Constructors

Constructor Description

PreferenceNode(String id) Creates a preference node with the specified ID.

PreferenceNode(String id, IPreferencePage

page)
Creates a preference node with the specified ID and

associates it with the specified preference page.

PreferenceNode(String id, String label,

ImageDescriptor image, String className)
Creates a preference node with the specified ID, label, and

image. When activated, loads the class specified by className

and uses it as its preference page.

If you use the first constructor, you call setPage() to associate this node with a page, like this:

MyPreferencePage page = new MyPreferencePage();

PreferenceNode node = new PreferenceNode("node1");

node.setPage(page);

The second constructor creates the node and sets its associated preference page in one step, like this:

MyPreferencePage page = new MyPreferencePage();

PreferenceNode node = new PreferenceNode("node1", page);

Both of these constructors use the page's title for this node's label within the tree. However, the third constructor

reverses control and not only uses the specified label for the label in the tree, but also uses it for the page. It also

displays the specified image beside the label in the tree (and takes care of disposing it when appropriate), though you

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

can pass null for no image. To use the third constructor, use code such as this:

PreferenceNode node = new PreferenceNode("node1", "My Node",

 ImageDescriptor.createFromFile(MyPreferencePage.class, "myImage.png",

 MyPreferencePage.class.getName());

To add a node to another node, making it a child, use the add() method like this:

PreferenceNode node1 = new PreferenceNode("node1", new PreferencePage1());

PreferenceNode node2 = new PreferenceNode("node2", new PreferencePage2());

node1.add(node2);

You can also use the preference manager to set node hierarchies, as the next section shows.

Managing the Nodes

The PreferenceManager class manages the preference nodes.

To create a preference manager, call one of its two constructors:

PreferenceManager()

PreferenceManager(char separatorChar)

The first constructor creates a preference manager with the default separator character, a period. If you use the

second constructor, you can specify a different separator character. The separator character is used to separate the

node IDs when specifying the full path to a node.

After you create a preference manager, you add nodes to it using the addToRoot() or addTo() methods, like this:

PreferenceManager mgr = new PreferenceManager();

mgr.addToRoot(node1);

mgr.addTo(node1.getId(), node2);

mgr.addTo("node1.node2", node3);

Table 17-8 lists PreferenceManager's methods.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Table 17-8: PreferenceManager Methods

Method Description

boolean addTo(String path,

IPreferenceNode node)
Adds the specified node as a child of the node specified by the path. The

path is composed of the IDs of the preference nodes, starting at the root

node, separated by the separator character. Returns true if the path was

found. Otherwise, returns false.

void

addToRoot(IPreferenceNode

node)

Adds the specified node to the root of the tree.

IPreferenceNode find(String path) Finds the node that corresponds to the specified path. The path consists

of the IDs of the ancestor nodes, beginning with the root node, separated

by the separator character.

List getElements(int order) Returns all preference nodes in this preference manager, sorted in the

specified order. The valid values for order are

PreferenceManager.POST_ORDER, which sorts children first, or

PreferenceManager.PRE_ ORDER, which sorts roots first.

boolean

remove(IPreferenceNode node)
Removes the specified preference node. Returns true if the node was

found and removed. Otherwise, returns false.

IPreferenceNode remove(String

path)
Removes the preference node at the specified ID path. Returns the

removed preference node, or null if the node specified by the path wasn't

found.

void removeAll() Removes all the preference nodes in this preference manager.

Displaying the Dialog

With a preference manager full of preference nodes, each with a preference page, you're ready to display a preference

dialog. Construct a PreferenceDialog object, passing the parent shell and the preference manager. Set the preference

store on the dialog using the setPreferenceStore() method. Then, call open(). Your code might look like this:

PreferenceDialog dlg = new PreferenceDialog(shell, preferenceManager);

dlg.setPreferenceStore(preferenceStore);

dlg.open();

The ShowPrefs program in Listing 17-4 displays a preference dialog that shows two pages: PrefPageOne and

PrefPageTwo. It creates PrefPageTwo as a child of PrefPageOne. PrefPageOne displays an image in the tree, while

PrefPageTwo doesn't. To keep the code focused, ShowPrefs doesn't create a main window; it just displays the

preference dialog. Most applications will have a main window, and will display the preference dialog in response to a

user action (for example, a menu selection).

Listing 17-4: ShowPrefs.java

package examples.ch17;

import java.io.IOException;

import org.eclipse.jface.preference.*;

import org.eclipse.jface.resource.ImageDescriptor;

import org.eclipse.swt.widgets.*;

/**

 * This class demonstrates JFace preferences

 */

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

public class ShowPrefs {

 /**

 * Runs the application

 */

 public void run() {

 Display display = new Display();

 // Create the preference manager

 PreferenceManager mgr = new PreferenceManager();

 // Create the nodes

 PreferenceNode one = new PreferenceNode("one", "One", ImageDescriptor

 .createFromFile(ShowPrefs.class, "/images/about.gif"), PrefPageOne.class

 .getName());

 PreferenceNode two = new PreferenceNode("two", new PrefPageTwo());

 // Add the nodes

 mgr.addToRoot(one);

 mgr.addTo(one.getId(), two);

 // Create the preference dialog

 PreferenceDialog dlg = new PreferenceDialog(null, mgr);

 // Set the preference store

 PreferenceStore ps = new PreferenceStore("showprefs.properties");

 try {

 ps.load();

 } catch (IOException e) {

 // Ignore

 }

 dlg.setPreferenceStore(ps);

 // Open the dialog

 dlg.open();

 try {

 // Save the preferences

 ps.save();

 } catch (IOException e) {

 e.printStackTrace();

 }

 display.dispose();

 }

 /**

 * The application entry point

 *

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 new ShowPrefs().run();

 }

}

Figure 17-4 shows the preference dialog displaying the PrefsPageOne preference page. Figure 17-5 shows the same

dialog, but with the tree expanded and PrefsPageTwo displaying.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Figure 17-4: A preference dialog

Figure 17-5: A preference dialog with the tree expanded

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig745%5F01%5F0%2Ejpg
file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig745%5F02%5F0%2Ejpg

Using Field Editors

Most preference pages display a set of input fields, whether text fields, checkboxes, or some other type of input. Each

input field has a corresponding label to identify it. The input fields are filled from the preference store, and saved back

to the preference store when the user clicks Apply or OK. When the user clicks Restore Defaults, the fields reset to the

default values from the preference store. In other words, each preference page is essentially the same, yet you're

forced to write all that boilerplate code each time. Surely there must be a better way.

Luckily, there is. JFace offers field editors, which together with a PreferencePage-derived class called

FieldEditorPreferencePage perform all the menial chores discussed earlier for you. All you must do is create a new class

that subclasses FieldEditorPreferencePage, create a public constructor, and provide a createFieldEditors() method that

creates all the field editors.

The FieldEditorPreferencePage constructors, all protected, allow you to specify a style, title, and image descriptor. Table

17-9 lists the constructors. Depending on how you create the associated preference node, the title and image

descriptors are either used or ignored (see the section "Tying the Page to a Node" in this chapter). However, the style,

which must be either FieldEditorPreferencePage.FLAT or FieldEditorPreferencePage.GRID, determines how to lay out the

controls on the page. If you specify FieldEditorPreferencePage.FLAT, the division between a field editor's label and the

rest of its controls varies. Specifying FieldEditorPreferencePage.GRID aligns that division, so that the left edge of the first

control in each field editor on the page lines up.

Table 17-9: FieldEditorPreferencePage Constructors

Constructor Description

protected FieldEditorPreferencePage (int style) Creates a preference page with the specified style,

which must be either GRID or FLAT

protected FieldEditorPreferencePage (String title,

ImageDescriptor image, int style)
Creates a preference page with the specified title,

image, and style

protected FieldEditorPreferencePage (String title, int

style)
Creates a preference page with the specified title

and style

In your createFieldEditors() implementation, you create each of the field editors on the page. Though the FieldEditor

class itself is abstract, JFace offers numerous concrete field editors to choose from, as this chapter enumerates. Each

field editor you create and add to the page is automatically linked to the underlying preference store, so automatically

loads and stores its value as appropriate.

For example, a bare-bones FieldEditorPreferencePage implementation might look like this:

public class MyFieldEditorPreferencePage extends FieldEditorPreferencePage

{

 public MyFieldEditorPreferencePage()

 {

 super(GRID);

 }

 protected void createFieldEditors()

 {

 // Create and add the field editors here

 }

}

FieldEditor

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

The FieldEditor class anchors the field editor classes. As the superclass of all the field editors, it defines how to set up

field editors: with a preference name, text for the label, and a parent composite. The preference name is used when

storing the selected value in the preference store. The label displays on the preference page, adjacent to the entry

field. The general form of the constructor is as follows:

FieldEditor(String name, String labelText, Composite parent)

You should always pass the composite returned by getFieldEditorParent() for parent. After you create the field editor, you

add it to the preference page and underlying preference store by passing it to addField(). The structure for creating a

field editor on your field editor preference page is as follows:

protected void createFieldEditors()

{

 // Note that this won't compile, as FieldEditor is abstract

 FieldEditor fieldEditor = new FieldEditor("myField", "Field:",

 getFieldEditorParent());

 addField(fieldEditor);

}

Some field editors have more configuration options, so require more constructor parameters. The following sections

discuss each type of field editor, and highlight those that deviate from the preceding pattern.

BooleanFieldEditor

A BooleanFieldEditor displays a checkbox and a label, and stores a boolean value. You create a BooleanFieldEditor like

this:

BooleanFieldEditor booleanFieldEditor = new BooleanFieldEditor("myBoolean",

 "Boolean Value", getFieldEditorParent());

This creates a field editor with the checkbox on the left and the label on the right. You can reverse the order of the two

controls and display the label on the left and the checkbox on the right by using the constructor that also takes a style

constant:

BooleanFieldEditor(String name, String label, int style, Composite parent)

Table 17-10 lists the possible style constants. For example, to create a boolean field editor with the controls reversed,

use this code:

BooleanFieldEditor booleanFieldEditor = new BooleanFieldEditor("myBoolean",

 "Boolean Value", BooleanFieldEditor.SEPARATE_LABEL, getFieldEditorParent());

Table 17-10: BooleanFieldEditor Style Constants

Constant Description

static int DEFAULT Creates a BooleanFieldEditor with the checkbox on the left and the label on the

right

static int

SEPARATE_LABEL
Creates a BooleanFieldEditor with the label on the left and the checkbox on the

right

ColorFieldEditor

A ColorFieldEditor displays a button and a label, and stores an RGB value. The color that corresponds to the stored RGB

value paints the face of the button. Clicking the button displays the standard color selection dialog, from which you

select a new color. You create a ColorFieldEditor like this:

ColorFieldEditor colorFieldEditor = new ColorFieldEditor("myColor",

 "Color:", getFieldEditorParent());

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

DirectoryFieldEditor

A DirectoryFieldEditor displays a label, a text box, and a Browse button. It stores a string that represents an existing

directory. You can type a directory path into the text box, or you can click Browse to display the standard

directory-selection dialog and navigate to the desired directory. The specified directory is validated, and you can't

accept (via OK or Apply) a directory that doesn't exist. You create a DirectoryFieldEditor like this:

DirectoryFieldEditor directoryFieldEditor = new DirectoryFieldEditor("myDir",

 "Directory:", getFieldEditorParent());

If you don't want directory validation—if you want users to be able to enter a directory that doesn't exist—subclass

DirectoryFieldEditor and override the doCheckState() method, which has the following signature:

protected boolean doCheckState()

Return true to accept the entered contents and allow the user to click Apply or OK, or false to reject the contents and

disable the Apply and OK buttons. For example, to allow users to enter anything in the text box, use the following

doCheckState() implementation:

protected boolean doCheckState()

{

 return true;

}

FileFieldEditor

Like DirectoryFieldEditor, FileFieldEditor validates that the file name you enter represents an existing file. It stores the full

path of the file as a string. It also displays a label, a text box, and a Browse button. Clicking Browse opens the

standard file selection dialog. You create a FileFieldEditor like this:

FileFieldEditor fileFieldEditor = new FileFieldEditor("myFile", "File:",

 getFieldEditorParent());

The file selection dialog, by default, uses no file extensions to filter which files to display. You can add filter extensions

to the file selection dialog by calling FileFieldEditor's setFileExtensions() method, which takes an array of Strings. For

example, to filter on the extensions *.java and *.txt, use code such as this:

FileFieldEditor fileFieldEditor = new FileFieldEditor("myFile", "File:",

 getFieldEditorParent());

fileFieldEditor.setFileExtensions(new String[] { "*.java", "*.txt" });

This sets the filter extensions on the file dialog. FileFieldEditor offers no way to set the filter names. See Chapter 7 for

more information on filter extensions and filter names with the file selection dialog.

By default, the selected file can have a relative path. You can enforce an absolute path using FileFieldEditor 's other

constructor:

FileFieldEditor(String name, String labelText, boolean enforceAbsolute,

 Composite parent)

Passing true for enforceAbsolute requires that users enter an absolute path to the file, while false allows relative paths.

If you don't want FileFieldEditor to insist on an existing file, subclass it and override the checkState() method, which has

the following signature:

protected boolean checkState()

Return true to accept what the user has entered, or false to reject it.

FontFieldEditor

A FontFieldEditor displays a label; the name, style, and height of the selected font; and a Change button. It stores the

string representation of a FontData object that corresponds to the selected font. Clicking the Change button displays

the standard font selection dialog. You create a FontFieldEditor like this:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

FontFieldEditor fontFieldEditor = new FontFieldEditor("myFont", "Font:",

 getFieldEditorParent());

Although the name, style, and height of the font convey all the pertinent information about the selected font, it lacks the

oomph that displaying the actual font packs. You can add a preview area to your FontFieldEditor just by using its other

constructor and specifying some preview text. The other constructor looks like this:

FontFieldEditor(String name, String labelText, String previewAreaText,

 Composite parent)

For example, the following code creates a font field editor and displays the word "Preview" in the selected font:

FontFieldEditor fontFieldEditor = new FontFieldEditor("myFont", "Font:",

 "Preview", getFieldEditorParent());

FontFieldEditor offers one other customization opportunity: you can change the text of the button that launches the font

selection dialog by calling the setChangeButtonText() method. For example, to make the button display "Change the

Font," add the following code:

fontFieldEditor.setChangeButtonText("Change the Font");

IntegerFieldEditor

An IntegerFieldEditor displays a label and a text box. Although you can type any characters into the text box, an error

message displays if you've entered invalid characters, and you can't click Apply or OK to accept the changes. Also,

you can't enter just any digits; the value you enter must fall within the range 0 to 2,147,483,647, inclusive. You create

an IntegerFieldEditor like this:

IntegerFieldEditor integerFieldEditor = new IntegerFieldEditor("myInteger",

 "Integer:", getFieldEditorParent());

You can change the field editor's acceptable range using its setValidRange() method, which takes a minimum value and

a maximum value. Both values must be integers, and are inclusive to the range. For example, to change the range to

allow integers between -100 and 100, use the following code:

integerFieldEditor.setValidRange(-100, 100);

IntegerFieldEditor limits the number of characters you can type in the text box, defaulting to ten characters. You can

change this limit by using the other constructor:

IntegerFieldEditor(String name, String labelText, Composite parent,

 int textLimit)

The textLimit parameter defines the maximum number of characters the text box accepts.

To override or eliminate IntegerFieldEditor's validation, subclass it and override the checkState() method:

protected boolean checkState()

Return true to accept the input, and false to reject it.

PathEditor

PathEditor is visually the most complex of all the field editors, displaying a label, a list box, and four buttons: New,

Remove, Up, and Down. Use this field editor to allow users to specify multiple directories and control their order. The

preference store saves all the directory names in a single string, in the specified order.

Despite its visual complexity, PathEditor is no harder to create than any of the other field editors. To create one, use the

following constructor:

PathEditor(String name, String labelText, String dirChooserLabelText,

 Composite parent)

The new parameter, dirChooserLabelText, specifies the label to use in the directory-selection dialog that displays when

the user clicks the New button. For example, the following code creates a PathEditor:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

PathEditor pathEditor = new PathEditor("myPath", "Paths:", "Select a directory",

 getFieldEditorParent());

Each entry in the list box is a directory. To add a directory, click the New button, which displays the standard

directory-selection dialog. To remove a directory, highlight it and click the Remove button. To move a directory in the

list, select it and click the Up button to move it up, or Down to move it down.

RadioGroupFieldEditor

A RadioGroupFieldEditor displays a group of radio buttons. Each radio button has both a label and an associated value;

the radio button displays the label, but saves the value in the preference store. The radio button is mutually exclusive:

you can select only one radio button from the group. However, RadioGroupFieldEditor has a bug: if you specify multiple

buttons with the same value, all buttons with that value will be selected when the preference page displays, as Figure

17-6 shows.

Figure 17-6: Specifying radio buttons with the same value

You control the number of columns RadioGroupFieldEditor uses to display its radio buttons, and also whether it

surrounds the buttons with a group box. You specify this information in the constructor. In addition to the default

constructor, RadioGroupFieldEditor offers two constructors:

RadioGroupFieldEditor(String name, String labelText, int numColumns,

 String[][] labelAndValues, Composite parent)

RadioGroupFieldEditor(String name, String labelText, int numColumns,

 String[][] labelAndValues, Composite parent, boolean useGroup)

The numColumns parameter specifies the number of columns to use for the radio buttons, and must be greater than

zero. The useGroup parameter specifies whether to surround the radio buttons with a group box; the default is false.

The labelAndValues parameter carries a little more complexity (but not much). It's an array of string arrays. The size of

the enclosing array determines how many radio buttons are created. Each string array within the enclosing array must

contain exactly two strings: one for the label and one for the value, in that order.

To create a RadioGroupFieldEditor that displays six radio buttons in three columns, surrounded by a group box, use this

code:

RadioGroupFieldEditor radioGroupFieldEditor = new RadioGroupFieldEditor(

 "myRadioGroup", "Radio Group", 3, new String[][] { { "Option 1", "1" },

 { "Option 2", "2" }, { "Option 3", "3" }, { "Option 4", "4" },

 { "Option 5", "5" }, { "Option 6", "6" } }, getFieldEditorParent(), true);

The radio button labels start with "Option," followed by the option number. Only the option number is stored in the

preference store.

ScaleFieldEditor

Whereas IntegerFieldEditor allows users to enter an integer by typing it in a text box, ScaleFieldEditor allows users to

enter an integer using a scale. Users can drag the thumb of the scale left or right to select the desired integer.

ScaleFieldEditor only supports horizontal scales, not vertical scales. Its default range is zero to ten, in increments of

one. You create a ScaleFieldEditor like this:

ScaleFieldEditor scaleFieldEditor = new ScaleFieldEditor("myScale", "Scale:",

 getFieldEditorParent());

You can change the range, the increment, and also the page increment (the amount of change in the value when the

user presses Page Up or Page Down) by calling the appropriate ScaleFieldEditor methods listed in Table 17-11.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig751%5F01%5F0%2Ejpg

Alternatively, you can pass these values in ScaleFieldEditor's other constructor:

ScaleFieldEditor(String name, String labelText, Composite parent, int min,

 int max, int increment, int pageIncrement)

Table 17-11: Methods to Set ScaleFieldEditor Values

Method Description

void setIncrement(int increment) Sets the increment

void setMaximum(int max) Sets the maximum value in the range

void setMinimum(int min) Sets the minimum value in the range

void setPageIncrement(int pageIncrement) Sets the Page Up/Page Down increment

The following code creates a ScaleFieldEditor with a range of 0 to 100 in increments of 5. Pressing Page Up or Page

Down changes the value by 20.

ScaleFieldEditor scaleFieldEditor = new ScaleFieldEditor("myScale", "Scale:",

 getFieldEditorParent(), 0, 100, 5, 20);

StringFieldEditor

A StringFieldEditor accepts a string of text. It displays a label and a text box. You create one like this:

StringFieldEditor stringFieldEditor = new StringFieldEditor("myString",

 "String:", getFieldEditorParent());

It allows no text, unlimited text, and everything in between. You can change the following:

The width of the text box

The maximum number of characters the text box allows (the text limit)

Whether the text box allows an empty string

The validation strategy to use (whether to validate each time the user presses a key, or to wait until

the user leaves the text box)

How to determine whether the entered text is valid

The error message to display if the entered text isn't valid

StringFieldEditor directly supports most of these customizations, but changing what constitutes a valid string requires

subclassing.

Table 17-12 lists methods for customizing StringFieldEditor. You can also change the width of the text box by using the

following constructor:

StringFieldEditor(String name, String labelText, int width, Composite parent)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Table 17-12: StringFieldEditor Customization Methods

Method Description

void

setEmptyStringAllowed(boolean

allow)

If allow is true, allows an empty string. Otherwise, disallows an empty

string. The default allows an empty string.

void setErrorMessage(String

message)
Sets the error message to display if the entered string isn't valid.

void setStringValue(String value) Sets the text in the text box.

void setTextLimit(int limit) Sets the text limit (the maximum number of characters to allow in the text

box).

void setValidateStrategy(int

strategy)
Sets the validation strategy, which must be either

StringFieldEditor.VALIDATE_ON_KEY_STROKE or

StringEditor.VALIDATE_ON_FOCUS_LOST, for validating on each

keystroke or validating when the text box loses focus, respectively.

void showErrorMessage() Shows the configured error message. You'll probably only call this from a

subclass's checkState() or doCheckState(), when the entered text isn't valid.

The width parameter specifies the width of the text box, which has no effect on the text limit. You can specify both the

text box width and the validation strategy by using the following constructor:

StringFieldEditor(String name, String labelText, int width, int strategy,

 Composite parent)

The strategy parameter specifies the validation strategy, which must be either

StringFieldEditor.VALIDATE_ON_KEY_STROKE, which validates each time a key is pressed, or

StringFieldEditor.VALIDATE_ON_FOCUS_LOST, which validates when focus leaves the text box. The default setting

validates on each keystroke.

Changing the validation, which rejects empty strings if you've disallowed them, requires that you create a subclass of

StringFieldEditor. To augment the validation, allowing it to validate your empty string setting in addition to your custom

validation, override the doCheckState() method in your subclass. It has the following signature:

protected boolean doCheckState()

Return true for valid, false for invalid. To replace the validation, override checkState(), which has the following signature:

protected boolean checkState()

Again, return true for valid and false for invalid.

Seeing the FieldEditors

The ShowFieldPrefs application in Listing 17-5 creates two preference pages, each of which uses the

FieldEditorPreferencePage class. The two preference pages show each of the types of field editors, some on the first

page and some on the second. The first page uses the FLAT layout, while the second page uses the GRID layout.

Listing 17-6 contains the code for the first page, and Listing 17-7 contains the code for the second page.

Listing 17-5: ShowFieldPrefs.java

package examples.ch17;

import java.io.IOException;

import org.eclipse.jface.preference.*;

import org.eclipse.swt.widgets.*;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

/**

 * This class demonstrates JFace preferences and field editors

 */

public class ShowFieldPrefs {

 /**

 * Runs the application

 */

 public void run() {

 Display display = new Display();

 // Create the preference manager

 PreferenceManager mgr = new PreferenceManager();

 // Create the nodes

 PreferenceNode one = new PreferenceNode("one", "One", null,

 FieldEditorPageOne.class.getName());

 PreferenceNode two = new PreferenceNode("two", "Two", null,

 FieldEditorPageTwo.class.getName());

 // Add the nodes

 mgr.addToRoot(one);

 mgr.addToRoot(two);

 // Create the preference dialog

 PreferenceDialog dlg = new PreferenceDialog(null, mgr);

 // Set the preference store

 PreferenceStore ps = new PreferenceStore("showfieldprefs.properties");

 try {

 ps.load();

 } catch (IOException e) {

 // Ignore

 }

 dlg.setPreferenceStore(ps);

 // Open the dialog

 dlg.open();

 try {

 // Save the preferences

 ps.save();

 } catch (IOException e) {

 e.printStackTrace();

 }

 display.dispose();

 }

 /**

 * The application entry point

 *

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 new ShowFieldPrefs().run();

 }

}

Listing 17-6: FieldEditorPageOne.java

package examples.ch17;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

import org.eclipse.jface.preference.*;

/**

 * This class demonstrates field editors

 */

public class FieldEditorPageOne extends FieldEditorPreferencePage {

 public FieldEditorPageOne() {

 // Use the "flat" layout

 super(FLAT);

 }

 /**

 * Creates the field editors

 */

 protected void createFieldEditors() {

 // Add a boolean field

 BooleanFieldEditor bfe = new BooleanFieldEditor("myBoolean", "Boolean",

 getFieldEditorParent());

 addField(bfe);

 // Add a color field

 ColorFieldEditor cfe = new ColorFieldEditor("myColor", "Color:",

 getFieldEditorParent());

 addField(cfe);

 // Add a directory field

 DirectoryFieldEditor dfe = new DirectoryFieldEditor("myDirectory",

 "Directory:", getFieldEditorParent());

 addField(dfe);

 // Add a file field

 FileFieldEditor ffe = new FileFieldEditor("myFile", "File:",

 getFieldEditorParent());

 addField(ffe);

 // Add a font field

 FontFieldEditor fontFe = new FontFieldEditor("myFont", "Font:",

 getFieldEditorParent());

 addField(fontFe);

 // Add a radio group field

 RadioGroupFieldEditor rfe = new RadioGroupFieldEditor("myRadioGroup",

 "Radio Group", 2, new String[][] { { "First Value", "first"},

 { "Second Value", "second"}, { "Third Value", "third"},

 { "Fourth Value", "fourth"}}, getFieldEditorParent(), true);

 addField(rfe);

 // Add a path field

 PathEditor pe = new PathEditor("myPath", "Path:", "Choose a Path",

 getFieldEditorParent());

 addField(pe);

 }

}

Listing 17-7: FieldEditorPageTwo.java

package examples.ch17;

import org.eclipse.jface.preference.*;

/**

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 * This class demonstrates field editors

 */

public class FieldEditorPageTwo extends FieldEditorPreferencePage {

 public FieldEditorPageTwo() {

 // Use the "grid" layout

 super(GRID);

 }

 /**

 * Creates the field editors

 */

 protected void createFieldEditors() {

 // Add an integer field

 IntegerFieldEditor ife = new IntegerFieldEditor("myInt", "Int:",

 getFieldEditorParent());

 addField(ife);

 // Add a scale field

 ScaleFieldEditor sfe = new ScaleFieldEditor("myScale", "Scale:",

 getFieldEditorParent(), 0, 100, 1, 10);

 addField(sfe);

 // Add a string field

 StringFieldEditor stringFe = new StringFieldEditor("myString", "String:",

 getFieldEditorParent());

 addField(stringFe);

 }

}

Figure 17-7 shows the program displaying the first preference page, and Figure 17-8 shows the program displaying the

second preference page.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Figure 17-7: A field editor page

Figure 17-8: Another field editor page

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig758%5F01%5F0%2Ejpg
file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig759%5F01%5F0%2Ejpg

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Summary

Specifying configuration options often represents the drudgery in building applications, as it requires writing code,

ancillary to the main focus of the application, that doesn't do anything "cool." Too many applications reflect a

resentment to building the interface to display and edit program preferences. They display a crude, bolted-on

interface, or even worse, they make users edit text files outside the application. JFace removes the toil from building

an interface to user preferences, and makes building professional-looking and functioning interfaces quick and easy.

Use PreferencePage to exert more control over your page layout, or FieldEditorPreferencePage for quicker development

and standard layouts.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Chapter 18: Editing Text

As Chapter 11 explains, the StyledText widget receives a disproportionate amount of attention from SWT's developers,

because it forms the core of Eclipse. As the raison d'être of Eclipse, it enjoys the preferential treatment usually

reserved for star athletes, rock stars, or supermodels. Such a VIP could never be left to languish with only the raw

widget interface that StyledText provides. Instead, JFace wraps StyledText with such an extensive MVC implementation

that all the other widgets chafe with resentment. Sprawling across eight distinct packages, all of whose names begin

with org.eclipse.jface.text, and all of which teem with both classes and interfaces, the text-editing framework in JFace

would require tomes for complete coverage. To explore it fully would mean describing how to build an award-winning

programmer's editor, which stretches far beyond the scope of this book. Instead, this book settles for a single chapter

that covers the high points, but hits enough to prepare you to use JFace's text editing capabilities in your applications.

It focuses on creating a single application—a simple Perl editor— but explains the various technologies it uses to

create the program.

Getting into the Text Framework

The ITextViewer interface represents the view component for JFace's MVC text-editing framework. You can create your

own ITextViewer implementation, but be forewarned that the size of the interface means that developing an

implementation requires extensive time and effort. You'll probably use either TextViewer, which will likely meet all your

text viewer needs, or its subclass, SourceTextViewer, which adds a vertical ruler along the left edge of the viewer,

suitable for displaying annotations (for example, break-point markers, syntax error indicators, and so on). The

documentation for both classes warns against subclassing either one, so if neither meets your needs, you should build

from scratch.

Like ListViewer, TableViewer, and TreeViewer, TextViewer exposes a setInput() method to allow you to set the model for

the viewer. However, you'll probably eschew setInput(), which takes an Object, as it merely passes through to the more

specialized setDocument() method, which takes an IDocument instance. Instead, you'll call setDocument(), passing your

IDocument. The IDocument interface represents the model, or data, for the text editing framework. You can create your

own document class, implementing the IDocument interface, or you can use the robust Document class from the

org.eclipse.jface.text package.

Table 18-1 lists ITextViewer's methods, while Table 18-2 lists IDocument's methods.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Table 18-1: ITextViewer Methods

Method Description

void activatePlugins() Activates the plug-ins that control undo operations,

double-click behavior, automatic indentation, and

hovering over text.

void addTextInputListener (ITextInputListener

listener)
Adds a listener that's notified when the document

associated with this viewer is replaced by a different

document.

void addTextListener (ITextListener listener) Adds a listener that's notified when the text in this viewer

changes.

void addViewportListener (IViewportListener

listener)
Adds a listener that's notified when the viewport (the

visible portion of the underlying document) changes.

void changeTextPresentation (TextPresentation

presentation, boolean controlRedraw)
Applies the color information from the specified

TextPresentation to the text in this viewer. If controlRedraw

is true, manages the redraw for the control.

int getBottomIndex() Returns the zero-based line number of the line at the

bottom of the viewport.

int getBottomIndexEndOffset() Returns the zero-based character offset of the character

at the bottom right corner of the viewport.

IDocument getDocument() Returns the underlying document associated with this

viewer.

IFindReplaceTarget getFindReplaceTarget() Returns this viewer's find/replace target.

Point getSelectedRange() Returns the current selection range.

ISelectionProvider getSelectionProvider() Returns this viewer's selection provider.

ITextOperationTarget getTextOperationTarget() Returns the target for any text operations.

StyledText getTextWidget() Returns this viewer's underlying StyledText widget.

int getTopIndex() Returns the zero-based line number of the line at the top

of the viewport.

int getTopIndexStartOffset() Returns the zero-based character offset of the character

at the top left corner of the viewport.

int getTopInset() Returns the number of pixels the first line of text displays

below the top of this viewer.

IRegion getVisibleRegion() void

invalidateTextPresentation()
Returns the visible region of the current document.

Marks the current view as invalid.

boolean isEditable() Returns true if the current document is editable.

Otherwise, returns false.

boolean overlapsWithVisibleRegion (int offset, int

length)
Returns true if the specified text range is visible, either

wholly or in part. Otherwise, returns false.

void removeTextInputListener (ITextInputListener

listener)
Removes the specified listener from the notification list.

void removeTextListener (ITextListener listener) Removes the specified listener from the notification list.

void removeViewportListener (IViewportListener Removes the specified listener from the notification list.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Method Description

void resetPlugins() Resets the installed plug-ins.

void resetVisibleRegion() Resets the visible region of this viewer's document to the

original region.

void revealRange(int offset, int length) Scrolls the viewer as necessary to ensure that the

specified range is visible.

void setAutoIndentStrategy (IAutoIndentStrategy

strategy, String contentType)
Sets the strategy used for automatically indenting text.

void setDefaultPrefixes(String[] defaultPrefixes,

String contentType)
Sets the default prefixes for lines of the specified content

type.

void setDocument(IDocument document) Sets the document for this viewer.

void setDocument(IDocument document, int

visibleRegionOffset, int visibleRegionLength)
Sets the document for this viewer, scrolling as

necessary to ensure that the specified range is visible.

void setEditable(boolean editable) If editable is true, makes the current document editable.

Otherwise, makes it read only.

void setEventConsumer (IEventConsumer

consumer)
Sets the event consumer for this viewer, which can

consume events before they reach this viewer.

void setIndentPrefixes(String[] indentPrefixes,

String contentType)
Sets the prefixes to use for lines of the specified content

type when they're indented (that is, the user performs a

shift operation on them).

void setSelectedRange(int offset, int length) Selects the text in the specified range.

void setTextColor(Color color) Sets the selected text to the specified color.

void setTextColor(Color color, int offset, int length,

boolean controlRedraw)
Sets the text in the specified range to the specified color.

If controlRedraw is true, turns off redrawing during this

operation.

void setTextDoubleClickStrategy

(ITextDoubleClickStrategy strategy, String

contentType)

Sets the double-click strategy for the specified content

type.

void setTextHover(ITextHover textViewerHover,

String contentType)
Sets the text hover for the specified content type.

void setTopIndex(int index) Scrolls the viewer so that the zero-based line number

specified by index is at the top of the viewport.

void setUndoManager(IUndoManager

undoManager)
Sets the undo manager for this viewer.

void setVisibleRegion(int offset, int length) Sets the specified region visible.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Table 18-2: IDocument Methods

Method Description

void addDocumentListener(IDocument

Listener listener)
Adds a listener that's notified when this document is about to

change, and again after it changes.

void addDocumentPartitioningListener

(IDocumentPartitioningListener listener)
Adds a listener that's notified when this document's

partitioning changes.

void addPosition(Position position) Adds a position to this document.

void addPosition(String category, Position

position)
Adds a position for the specified category to this document.

void addPositionCategory(String category) Adds a position category to this document.

void addPositionUpdater(IPosition Updater

updater)
Adds a position updater to this document.

void addPrenotifiedDocumentListener

(IDocumentListener listener)
Adds a listener that's notified when this document is about to

change, and again after it changes. Listeners added using

this method are notified before listeners added using

addDocumentListener().

int computeIndexInCategory(String category,

int offset)
Computes the zero-based index at which the position

containing the specified offset would be inserted into the

specified category.

int computeNumberOfLines(String text) Returns the number of lines the specified text occupies.

ITypedRegion[] computePartitioning (int

offset, int length)
Computes the partitioning of the document range starting at

the specified offset and continuing for the specified length.

boolean containsPosition(String category, int

offset, int length)
Returns true if this document contains the position in the

specified category, at the specified offset, and with the specified

length. Otherwise, returns false.

boolean containsPositionCategory (String

category)
Returns true if this document contains the specified category.

String get() Returns this document's text.

String get(int offset, int length) Returns this document's text, beginning at the specified offset

and continuing the specified length.

char getChar(int offset) Returns the character at the specified offset.

String getContentType(int offset) Returns the content type of the partition at the specified offset.

IDocumentPartitioner getDocument

Partitioner()
Returns this document's partitioner.

String[] getLegalContentTypes() Returns the legal content types of all the partitions in this

document.

String[] getLegalLineDelimiters() Returns the legal line delimiters.

int getLength() Returns the number of characters in this document.

String getLineDelimiter(int line) Returns the line delimiter at the line specified by the

zero-based index.

IRegion getLineInformation(int line) Returns information about the line specified by the

zero-based index.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Method Description

IRegion getLineInformationOfOffset (int

offset)
Returns information about the line containing the character at

the specified offset.

int getLineLength(int line) Returns the length of the line at the specified zero-based index.

int getLineOffset(int line) Returns the offset of the first character in the specified line.

int getLineOfOffset(int offset) Returns the line containing the character at the specified offset.

int getNumberOfLines() Returns the number of lines in this document.

int getNumberOfLines(int offset, int length) Returns the number of lines used by the text starting at the

specified offset and continuing the specified length.

ITypedRegion getPartition(int offset) Returns the partition containing the character at the specified

offset.

String[] getPositionCategories() Returns the position categories for this document.

Position[] getPositions(String category) Returns the positions for the specified category.

IPositionUpdater[] getPositionUpdaters() Returns the position updaters for this document.

void insertPositionUpdater (IPositionUpdater

updater, int index)
Inserts the specified position updater at the specified index.

void removeDocumentListener

(IDocumentListener listener)
Removes the specified listener from the notification list.

void removeDocumentPartitioning

Listener(IDocumentPartitioning Listener

listener)

Removes the specified listener from the notification list.

void removePosition(Position position) Removes the specified position from this document.

void removePosition(String category, Position

position)
Removes the specified position from the specified category.

void removePositionCategory(String

category)
Removes the specified category from this document.

void removePositionUpdater

(IPositionUpdater updater)
Removes the specified position updater from this document.

void removePrenotifiedDocument

Listener(IDocumentListener listener)
Removes the specified listener from the notification list.

void replace(int offset, int length, String text) Replaces the text beginning at the specified offset and

continuing the specified length with the specified text.

void set(String text) Sets the text for this document.

void setDocumentPartitioner

(IDocumentPartitioner partitioner)
Sets the document partitioner for this document.

To create a minimal text editor, create a TextViewer and add a Document object to it, like this:

TextViewer viewer = new TextViewer(parent, SWT.NONE);

viewer.setDocument(new Document());

Those two lines of code create a text editor that competes with Windows Notepad, albeit without persistence or print

support. The TextEditor program uses these two lines of code at its core, wrapping the two lines of code with just

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

enough additional code to provide a window to house the editor (see Listing 18-1).

Listing 18-1: TextEditor.java

package examples.ch18;

import org.eclipse.jface.text.*;

import org.eclipse.jface.window.ApplicationWindow;

import org.eclipse.swt.SWT;

import org.eclipse.swt.widgets.*;

/**

 * This class demonstrates TextViewer and Document

 */

public class TextEditor extends ApplicationWindow {

 /**

 * TextEditor constructor

 */

 public TextEditor() {

 super(null);

 }

 /**

 * Runs the application

 */

 public void run() {

 setBlockOnOpen(true);

 open();

 Display.getCurrent().dispose();

 }

 /**

 * Configures the shell

 *

 * @param shell the shell

 */

 protected void configureShell(Shell shell) {

 super.configureShell(shell);

 shell.setText("Text Editor");

 shell.setSize(600, 400);

 }

 /**

 * Creates the main window's contents

 *

 * @param parent the main window

 * @return Control

 */

 protected Control createContents(Composite parent) {

 // Create the viewer

 TextViewer viewer = new TextViewer(parent, SWT.NONE);

 // Create the associated document

 viewer.setDocument(new Document());

 // Return the StyledText

 return viewer.getTextWidget();

 }

 /**

 * The application entry point

 *

 * @param args the command line arguments

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 */

 public static void main(String[] args) {

 new TextEditor().run();

 }

}

You can type text, delete text, and even cut, copy, or paste text using the keyboard. Figure 18-1 shows the TextEditor

program with its own code pasted in.

Figure 18-1: TextViewer and document

Because a StyledText widget—which you can retrieve by calling getTextWidget()— lies beneath the TextViewer, you can

make some simple improvements to TextEditor, such as adding a vertical scrollbar and turning on word wrap, like this:

TextViewer viewer = new TextViewer(parent, SWT.V_SCROLL);

viewer.getTextWidget().setWordWrap(true);

The TextEditor2 program adds a vertical scrollbar and word wrap, and also adds printing (see Listing 18-2). To print

the current document in TextEditor2 to the default printer, press Ctrl-P. The program uses the StyledText.print() method

to do the printing.

Listing 18-2: TextEditor2.java

package examples.ch18;

import org.eclipse.jface.text.*;

import org.eclipse.jface.window.ApplicationWindow;

import org.eclipse.swt.SWT;

import org.eclipse.swt.custom.StyledText;

import org.eclipse.swt.events.KeyAdapter;

import org.eclipse.swt.events.KeyEvent;

import org.eclipse.swt.widgets.*;

/**

 * This class demonstrates TextViewer and Document. It adds a vertical scrollbar,

 * word wrap, and printing

 */

public class TextEditor2 extends ApplicationWindow {

 /**

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig767%5F01%5F0%2Ejpg

 * TextEditor2 constructor

 */

 public TextEditor2() {

 super(null);

 }

 /**

 * Runs the application

 */

 public void run() {

 setBlockOnOpen(true);

 open();

 Display.getCurrent().dispose();

 }

 /**

 * Configures the shell

 *

 * @param shell the shell

 */

 protected void configureShell(Shell shell) {

 super.configureShell(shell);

 shell.setText("Text Editor 2");

 shell.setSize(600, 400);

 }

 /**

 * Creates the main window's contents

 *

 * @param parent the main window

 * @return Control

 */

 protected Control createContents(Composite parent) {

 // Create the viewer

 TextViewer viewer = new TextViewer(parent, SWT.V_SCROLL);

 // Get the StyledText

 final StyledText styledText = viewer.getTextWidget();

 // Turn on word wrap

 styledText.setWordWrap(true);

 // Add a listener to detect Ctrl+P

 styledText.addKeyListener(new KeyAdapter() {

 public void keyReleased(KeyEvent event) {

 if (event.keyCode == 'p' && (event.stateMask & SWT.CTRL) != 0) {

 // Ctrl+P pressed; print the document

 styledText.print();

 }

 }

 });

 // Create the associated document

 viewer.setDocument(new Document());

 // Return the StyledText

 return styledText;

 }

 /**

 * The application entry point

 *

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 new TextEditor2().run();

 }

}

Figure 18-2 shows the TextEditor2 program with its source code pasted in. Notice the vertical scrollbar along the right

edge of the window. Also notice that the first line of the source code has been modified to make it wider than the

window, demonstrating that word wrap is on.

Figure 18-2: A TextViewer with enhancements

IDocument doesn't provide any built-in persistence methods, so you must build your own mechanism for writing your

text to or reading it from files. Because you can get the IDocument's contents by calling its get() method, and set its

contents by calling its set() method, you can persist to files using methods such as these:

public void save(IDocument document, String filename) {

 FileWriter out = null;

 try {

 out = new FileWriter(filename);

 String text = document.get();

 out.write(text, 0, text.length());

 } catch (IOException e) {

 // Report the error

 } finally {

 if (out != null) { try { out.close(); } catch (IOException e) { } }

 }

}

public IDocument load(String filename) {

 IDocument document = null;

 FileReader in = null;

 try {

 in = new FileReader(filename);

 StringBuffer buf = new StringBuffer();

 int n;

 while ((n = in.read()) != -1) {

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig770%5F01%5F0%2Ejpg

 buf.append((char) n);

 }

 document = new Document();

 document.set(buf.toString());

 } catch (IOException e) {

 // Report the error

 } finally {

 if (in != null) { try { in.close(); } catch (IOException e) { } }

 }

}

Add these methods, a menu, and just a little more plumbing to the TextEditor program, and you have a replacement

for Windows Notepad, GNOME gnotepad+, or iNotePad. Using TextViewer and Document, you can create a powerful

text editor with little original code.

Although a small effort produces big results, you won't confuse those results with professional-grade source code

editors such as Vim, Emacs, or the editor that comes with Eclipse. Your small-effort editor doesn't have context

coloring, code completion, line numbering, or any of a host of features that top-grade text editors offer. Adding those

features to your editor requires using more of the JFace text editing framework. The balance of this chapter explores

how to add more text editing features.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Undoing and Redoing

Computer software used to destroy data irrevocably on command. For example, if you deleted a file, you couldn't

invoke some sort of "oops" clause to bring that file back. Text editing software would respond to everything you

typed—even if you hit the Backspace key more times than you meant and you sent your latest novel into the ether.

Today's software, however, trusts you less than the software from days of yore used to. It still responds to commands

to delete files or text, but also allows you to repent from any hasty actions and undo the damage you've wreaked. In

fact, any modern software without the capability to undo what it does retains little chance of success.

ITextViewer allows you to plug in an undo manager to manage undo and redo capabilities. The IUndoManager interface

declares the methods that an undo manager must define to use with ITextViewer. Table 18-3 lists IUndoManager's

methods.

Table 18-3: IUndoManager Methods

Method Description

void beginCompoundChange() Begins an undoable "transaction": all changes between this call and a call

to endCompoundChange() are treated as a single change for undoing and

redoing.

void connect(ITextViewer

viewer)
Connects this undo manager to the specified text viewer.

void disconnect() Disconnects this undo manager from its text viewer.

void endCompoundChange() Ends the undoable "transaction." See beginCompoundChange().

void redo() Redoes the most recently undone change.

boolean redoable() Returns true if a change can be redone. Otherwise, returns false.

void reset() Clears the undo history.

void setMaximalUndoLevel(int

undoLevel)
Sets the maximum number of changes this undo manager stores in its

history.

void undo() Undoes the most recent change.

boolean undoable() Returns true if a change can be undone. Otherwise, returns false.

You can write your own IUndoManager class, or you can use the DefaultUndoManager provided. The DefaultUndoManager

class has a single constructor that takes the maximum desired undo level as a parameter. For example, to create a

text viewer with undo support, use code such as this:

ITextViewer textViewer = new TextViewer(parent, SWT.NONE);

IUndoManager undoManager = new DefaultUndoManager(500);

undoManager.connect(textViewer);

You also must provide mechanisms for users to invoke the undo manager's undo and redo methods. For example,

you could have action classes that you add to a menu or toolbar to call the manager's undo() and redo() methods. Here

are some example action classes to do that:

public class UndoAction extends Action {

 // Store the undo manager

 private IUndoManager undoManager;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 public UndoAction(IUndoManager undoManager) {

 super("&Undo@Ctrl+Z");

 this.undoManager = undoManager;

 }

 public void run() {

 // Undo the last action

 undoManager.undo();

 }

}

public class RedoAction extends Action {

 // Store the undo manager

 private IUndoManager undoManager;

 public RedoAction(IUndoManager undoManager) {

 super("&Redo@Ctrl+Y");

 this.undoManager = undoManager;

 }

 public void run() {

 // Redo the last action

 undoManager.redo();

 }

}

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Finding and Replacing

Humans' searching abilities suffer sufficiently for us to have developed a vocabulary around failed searches:

"It's as plain as the nose on your face."

"If it were a snake, it would've bit you."

"It's like trying to find a needle in a haystack."

Fortunately, computers don't suffer from the same myopia we humans do. When computers search for something,

they never overlook their quarry. As long as what they seek is present, computers will find it.

The JFace text framework has searching and replacing built in, using a class called FindReplaceDocumentAdapter. You

must construct this class with the IDocument instance that it searches, like this:

FindReplaceDocumentAdapter frda = new FindReplaceDocumentAdapter(document);

FindReplaceDocumentAdapter's findReplace() method constitutes the heart of the find/replace engine. It takes several

parameters to define the search, including where to begin searching, the search text, the replacement text, whether to

search forward or backward, whether to ignore case while searching, whether to search only for whole words that

match the search text, and whether the search text represents a regular expression. Most importantly, however, you

must tell findReplace() which operation to perform: find the first match, find the next match, replace the current match,

or replace the current match and find the next match. The FindReplaceOperationCode class contains constants

representing those operations, as listed in Table 18-4.

Table 18-4: FindReplaceOperationCode Constants

Code Description

FIND_FIRST Finds the first match

FIND_NEXT Finds subsequent matches

REPLACE Replaces the current match

REPLACE_FIND_NEXT Replaces the current match and finds the next match

The signature for findReplace() is as follows:

public IRegion findReplace(FindReplaceOperationCode operationCode,

 int startOffset,

 String findString,

 String replaceText,

 boolean forwardSearch,

 boolean caseSensitive,

 boolean wholeWord,

 boolean regExSearch)

 throws BadLocationException

Calling this method returns null if no match occurs, or an IRegion object that contains the offset and length of the

matched text. Call getOffset() and getLength() to retrieve the offset and length, respectively. This method throws a

BadLocationException if you specify a startOffset that's outside the range of this FindReplaceDocumentAdapter's

document.

FindReplaceDocumentAdapter preserves the last operation used and the location of the last match. Passing FIND_FIRST

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

for the operation resets the state. The other operations ignore the state parameters passed (such as startOffset) and

use the internal state. The operations have temporal dependencies: you must perform a FIND_FIRST before you

perform a FIND_NEXT. You must perform a FIND_FIRST or FIND_NEXT before performing a REPLACE or a

REPLACE_FIND_NEXT. Calling operations out of order throws an IllegalStateException.

Another caveat to bear in mind: you can't search both on whole words and on regular expressions, or the code will

trigger an assertion.

Table 18-5 lists FindReplaceDocumentAdapter's methods.

Table 18-5: FindReplaceDocumentAdapter Methods

Method Description

char charAt(int index) Returns the character in the

associated document at the specified

zero-based index.

IRegion findReplace(FindReplace OperationCode operationCode, int

startOffset, String findString, String replaceText, boolean

forwardSearch, boolean caseSensitive, boolean wholeWord, boolean

regExSearch)

Performs a find/replace operation

using the specified criteria.

int length() Returns the length of the associated

document.

IRegion replace(String text, boolean regExReplace) Replaces the previous match with the

specified text. If regExReplace is true,

text represents a regular expression.

IRegion search(int startOffset, String findString, boolean

forwardSearch, boolean caseSensitive, boolean wholeWord, boolean

regExSearch)

Performs a "find first" using the

specified criteria.

CharSequence subSequence(int start, int end) Returns the text from the associated

document between the offsets

specified by start and end.

String toString() Returns the associated document's

contents.

For example, to perform a search for the text "foo," you could call this:

IRegion region = findReplaceDocumentAdapter.findReplace(

 FindReplaceOperationCode.FIND_FIRST, 0, "foo", null, true, true, false, false);

Or you could call this:

IRegion region = findReplaceDocumentAdapter.search(0, "foo", true, true, false,

 false);

To replace the matched text with "bar," you could call this:

IRegion region = findReplaceDocumentAdapter.findReplace(

 FindReplaceOperationCode.REPLACE, 0, null, "bar", true, true, false, false);

Or you could call this:

IRegion region = findReplaceDocumentAdapter.replace("bar", false);

The FindReplaceDialog class seen in Listing 18-3 provides a graphical interface to FindReplaceDocumentAdapter. It

allows users to specify the search text, the replacement text, whether to do a case-sensitive search, whether to search

on whole words, whether to search using regular expressions, and which direction to search. It manages the state

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

transitions for performing legal operations by enabling and disabling the Replace buttons, as appropriate.

Listing 18-3: FindReplaceDialog.java

package examples.ch18.perledit.ui;

import java.util.regex.PatternSyntaxException;

import org.eclipse.jface.dialogs.MessageDialog;

import org.eclipse.jface.text.*;

import org.eclipse.swt.SWT;

import org.eclipse.swt.events.*;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.widgets.*;

/**

 * This class displays a find/replace dialog

 */

public class FindReplaceDialog extends Dialog {

 // The adapter that does the finding/replacing

 private FindReplaceDocumentAdapter frda;

 // The associated viewer

 private ITextViewer viewer;

 // The find and replace buttons

 private Button doFind;

 private Button doReplace;

 private Button doReplaceFind;

 /**

 * FindReplaceDialog constructor

 *

 * @param shell the parent shell

 * @param document the associated document

 * @param viewer the associated viewer

 */

 public FindReplaceDialog(Shell shell, IDocument document, ITextViewer viewer) {

 super(shell, SWT.DIALOG_TRIM | SWT.MODELESS);

 frda = new FindReplaceDocumentAdapter(document);

 this.viewer = viewer;

 }

 /**

 * Opens the dialog box

 */

 public void open() {

 Shell shell = new Shell(getParent(), getStyle());

 shell.setText("Find/Replace");

 createContents(shell);

 shell.pack();

 shell.open();

 Display display = getParent().getDisplay();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

 }

 /**

 * Performs a find/replace

 *

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 * @param code the code

 * @param find the find string

 * @param replace the replace text

 * @param forward whether to search forward

 * @param matchCase whether to match case

 * @param wholeWord whether to search on whole word

 * @param regexp whether find string is a regular expression

 */

 protected void doFind(FindReplaceOperationCode code, String find,

 String replace, boolean forward, boolean matchCase, boolean wholeWord,

 boolean regexp) {

 // You can't mix whole word and regexp

 if (wholeWord && regexp) {

 showError("You can't search on both Whole Words and Regular Expressions");

 } else {

 IRegion region = null;

 try {

 // Get the current offset (only used on FIND_FIRST)

 int offset = viewer.getTextWidget().getCaretOffset();

 // Make sure we're in the document

 if (offset >= frda.length()) offset = frda.length() - 1;

 // Perform the find/replace

 region = frda.findReplace(code, viewer.getTextWidget().getCaretOffset(),

 find, replace, forward, matchCase, wholeWord, regexp);

 // Update the viewer with found selection

 if (region != null) {

 viewer.setSelectedRange(region.getOffset(), region.getLength());

 }

 // If find succeeded, flip to FIND_NEXT and enable Replace buttons

 // Otherwise, reset to FIND_FIRST and disable Replace buttons

 // We know find succeeded if region is not null AND the operation

 // wasn't REPLACE (REPLACE finds nothing new, but still returns

 // a region).

 boolean succeeded = region != null

 && code != FindReplaceOperationCode.REPLACE;

 doFind.setData(succeeded ? FindReplaceOperationCode.FIND_NEXT

 : FindReplaceOperationCode.FIND_FIRST);

 enableReplaceButtons(succeeded);

 } catch (BadLocationException e) {

 // Ignore

 } catch (PatternSyntaxException e) {

 // Show the error to the user

 showError(e.getMessage());

 }

 }

 }

 /**

 * Creates the dialog's contents

 *

 * @param shell

 */

 protected void createContents(final Shell shell) {

 shell.setLayout(new GridLayout(2, false));

 // Add the text input fields

 Composite text = new Composite(shell, SWT.NONE);

 text.setLayoutData(new GridData(GridData.FILL_HORIZONTAL));

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 text.setLayout(new GridLayout(3, true));

 new Label(text, SWT.LEFT).setText("&Find:");

 final Text findText = new Text(text, SWT.BORDER);

 GridData data = new GridData(GridData.FILL_HORIZONTAL);

 data.horizontalSpan = 2;

 findText.setLayoutData(data);

 new Label(text, SWT.LEFT).setText("R&eplace With:");

 final Text replaceText = new Text(text, SWT.BORDER);

 data = new GridData(GridData.FILL_HORIZONTAL);

 data.horizontalSpan = 2;

 replaceText.setLayoutData(data);

 // Add the match case checkbox

 final Button match = new Button(text, SWT.CHECK);

 match.setText("&Match Case");

 // Add the whole word checkbox

 final Button wholeWord = new Button(text, SWT.CHECK);

 wholeWord.setText("&Whole Word");

 // Add the regular expression checkbox

 final Button regexp = new Button(text, SWT.CHECK);

 regexp.setText("RegE&xp");

 // Add the direction radio buttons

 final Button down = new Button(text, SWT.RADIO);

 down.setText("D&own");

 final Button up = new Button(text, SWT.RADIO);

 up.setText("&Up");

 // Add the buttons

 Composite buttons = new Composite(shell, SWT.NONE);

 buttons.setLayout(new GridLayout(1, false));

 // Create the Find button

 doFind = new Button(buttons, SWT.PUSH);

 doFind.setText("Fi&nd");

 doFind.setLayoutData(new GridData(GridData.FILL_HORIZONTAL));

 // Set the initial find operation to FIND_FIRST

 doFind.setData(FindReplaceOperationCode.FIND_FIRST);

 // Create the Replace button

 doReplace = new Button(buttons, SWT.PUSH);

 doReplace.setText("&Replace");

 doReplace.setLayoutData(new GridData(GridData.FILL_HORIZONTAL));

 // Create the Replace/Find button

 doReplaceFind = new Button(buttons, SWT.PUSH);

 doReplaceFind.setText("Replace/Fin&d");

 doReplaceFind.setLayoutData(new GridData(GridData.FILL_HORIZONTAL));

 doReplaceFind.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 doFind(FindReplaceOperationCode.REPLACE_FIND_NEXT, findText.getText(),

 replaceText.getText(), down.getSelection(), match.getSelection(),

 wholeWord.getSelection(), regexp.getSelection());

 }

 });

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 // Create the Close button

 Button close = new Button(buttons, SWT.PUSH);

 close.setText("Close");

 close.setLayoutData(new GridData(GridData.FILL_HORIZONTAL));

 close.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 shell.close();

 }

 });

 // Reset the FIND_FIRST/FIND_NEXT when find text is modified

 findText.addModifyListener(new ModifyListener() {

 public void modifyText(ModifyEvent event) {

 doFind.setData(FindReplaceOperationCode.FIND_FIRST);

 enableReplaceButtons(false);

 }

 });

 // Change to FIND_NEXT and enable replace buttons on successful find

 doFind.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 // Do the find, pulling the operation code out of the button

 doFind((FindReplaceOperationCode) event.widget.getData(), findText

 .getText(), replaceText.getText(), down.getSelection(), match

 .getSelection(), wholeWord.getSelection(), regexp.getSelection());

 }

 });

 // Replace loses "find" state, so disable buttons

 doReplace.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 doFind(FindReplaceOperationCode.REPLACE, findText.getText(), replaceText

 .getText(), down.getSelection(), match.getSelection(), wholeWord

 .getSelection(), regexp.getSelection());

 }

 });

 // Set defaults

 down.setSelection(true);

 findText.setFocus();

 doReplace.setEnabled(false);

 doReplaceFind.setEnabled(false);

 shell.setDefaultButton(doFind);

 }

 /**

 * Enables/disables the Replace and Replace/Find buttons

 *

 * @param enable whether to enable or disable

 */

 protected void enableReplaceButtons(boolean enable) {

 doReplace.setEnabled(enable);

 doReplaceFind.setEnabled(enable);

 }

 /**

 * Shows an error

 *

 * @param message the error message

 */

 protected void showError(String message) {

 MessageDialog.openError(getParent(), "Error", message);

 }

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

}

FindReplaceDialog contains a FindReplaceDocumentAdapter instance, and calls findReplace() inside the doFind() method.

The button handlers determine the parameters to send to doFind(). To use this dialog, construct one, passing the shell,

the document, and the viewer, and then call open(). The dialog is modeless, so you can move back and forth between

your main window and the dialog. Figure 18-3 shows the dialog when it first displays, and Figure 18-4 shows the dialog

after a successful find. Note that the Replace buttons are enabled.

Figure 18-3: The FindReplaceDialog class

Figure 18-4: The FindReplaceDialog with replacements enabled

Use FindReplaceDialog in your code like this:

FindReplaceDialog dlg = new FindReplaceDialog(shell, document, viewer);

dlg.open();

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig780%5F01%5F0%2Ejpg
file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig780%5F02%5F0%2Ejpg

Dividing Partitions

JFace documents rely on partitions, which divide documents into chunks of text. Like Lego bricks that, when snapped

together, form a beautiful creation, partitions band together to form a document. Partitions have an offset and a length

(in other words, they span a specific range of characters in the document), and also a content type. They never

overlap. You can think of them as sections of a word-processing document that have specific styles. For example, in

OpenOffice.org or Microsoft Word, each span of text can have a style that defines key characteristics about the text:

What font it uses

Whether it's normal, bolded, italicized, underlined, struck out, or some combination

Whether it's bulleted, numbered, or not

How far it's indented from the left margin

How much space displays above and below it

Though by no means exhaustive, this list of style characteristics demonstrates ways that people use metadata about

text to augment what would otherwise result in a drab display of data.

JFace partitions also adopt another key feature of word processor styles: their dynamic updating. Changing a word

processor style updates all the ranges of text within the document with that style. Suppose, for example, that you're

working on a document that has several stretches of text with the style "Heading 3." You decide to change the font for

Heading 3 from Helvetica to Times Roman. Once you change it, any text with the Heading 3 style changes its font

immediately (or at least as fast as your hardware and word processor can muster). Changes you make to JFace

partitions share this universality—as you change the partition handling, all partitions of the changed type update.

Note Word processors typically support mixing fonts within a document. However, because SWT's StyledText widget

forms the basis of JFace's TextViewer, JFace partitions all use the same font.

However, unlike word processing documents, you don't directly define partitions in your JFace document. If you want

some text in your word processor to sport the Heading 3 style, you must select the text and explicitly apply the style.

The word processor has no way of deducing what style you want from the text. However, source code is different: it

implicitly carries rules about itself that can be used to determine partitions. For example, if you're editing a Java source

code file and insert a character sequence such as this, a Java-aware editor can deduce that this text constitutes a

Javadoc comment:

/**

 * Do something important

 */

In fact, you wouldn't dream of using a text editor that didn't recognize that. Can you imagine having to use a source

code editor that made you select your Javadoc comments and then explicitly apply a style from a dropdown? No,

source code (unlike your term paper on mollusks) carries enough information intrinsically for editors to determine its

styles or partitions.

In JFace, the responsibility for parsing source code and determining the partitions falls on a document partitioner,

represented by an IDocumentPartitioner implementation. Each document partitioner corresponds to, or "is connected to"

in JFace parlance, a JFace document (IDocument instance). IDocumentPartitioner declares the methods listed in Table

18-6. You can create your own IDocumentPartitioner class, but you'll usually use JFace's DefaultPartitioner class.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table 18-6: IDocumentPartitioner Methods

Method Description

ITypedRegion[] computePartitioning

(int offset, int length)
In this method, you should compute the partitioning for the specified

offset and length of the associated document.

void connect(IDocument document) In this method, you should establish the relationship between this

document partitioner and the specified document.

void disconnect() In this method, you should break the relationship between this

document partitioner and its associated document.

void documentAboutToBeChanged

(Document event)
In this method, you should perform any appropriate processing

before a change occurs to the associated document.

boolean documentChanged

(DocumentEvent event)
In this method, you should respond to the change in the associated

document, usually by recomputing the partitioning. You should

return true if the document's partitioning changed, or false if it didn't.

String getContentType(int offset) In this method, you should return the content type of the partition

that contains the specified offset into the associated document.

String[] getLegalContentTypes() In this method, you should return all the content types handled by

this partitioner.

ITypedRegion getPartition(int offset) In this method, you should return the partition that contains the

specified offset into the associated document.

The DefaultPartitioner class performs all this work for you in a reasonable way. Obviously, however, you must

customize DefaultPartitioner's behavior somehow, or all documents would be partitioned using the same rules. This

would mean that C++ source code files, for example, could contain Javadoc partitions, which is certainly not desirable.

Different languages require different rules to handle them. However, to customize DefaultPartitioner's behavior, you

don't make any direct changes to it. Instead, you create a partition scanner and pass it, along with the partition types

(content types) it handles, to your DefaultPartitioner's constructor, like this:

IDocumentPartitioner partitioner = new DefaultPartitioner(myPartitionScanner,

 myPartitionScannerTypes);

Note that partition scanners and partitions don't directly provide syntax code highlighting. For example, you shouldn't

use them to try to identify each keyword in your source code. Instead, partition scanners simply identify sections of

your documents, providing an infrastructure that you can add things to, such as syntax highlighting. For example, you

might have a partition with type "code" that you later add syntax highlighting to. This chapter covers syntax

highlighting, along with some other things you can do to partitions that your partition scanners identify.

Understanding partition scanners requires that you understand tokens and their relationship to partitions. The next

section describes tokens.

Collecting Tokens

A token in JFace contains data that applies to a span of text in a document. It isn't the text itself, nor does it contain the

text. It doesn't contain the offset of the text or its length. In fact, it has no intrinsic connection to the text it describes.

Instead, it contains information about the span of text that other classes use when working with the text. For example,

a partition scanner associates a token with each partition that contains the partition's type. Code scanners use tokens

that contain the colors to use when displaying the text. Tokens are reusable across the document.

Scanning for Partitions

The IPartitionTokenScanner interface represents a partition scanner. The DefaultPartitioner class uses its

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

IPartitionTokenScanner instance to scan through regions of the document and find its tokens, or partitions.

IPartitionTokenScanner declares a single method:

void setPartialRange(IDocument document, int offset, int length,

 String contentType, int partitionOffset);

DefaultPartitioner calls this method when its associated document changes, requesting the scanner to scan the

specified document region for partition information. However, because IPartitionTokenScanner extends ITokenScanner,

you must also implement ITokenScanner's methods, listed in Table 18-7.

Table 18-7: ITokenScanner Methods

Method Description

int getTokenLength() In this method, you should return the length in characters of the last

token (partition) that this scanner read

int getTokenOffset() In this method, you should return the zero-based offset of the last token

(partition) that this scanner read

IToken nextToken() In this method, you should return the next token (partition) in the

document

void setRange(IDocument

document, int offset, int length)
In this method, you should configure your scanner to scan the specified

document beginning at the specified zero-based offset and continuing

the specified length of characters

However, instead of writing code to create your own partition scanner from the ground up, you'll usually use one of

JFace's existing partition scanners as a basis for your partition scanner. For source code, or any text whose partitions

can be derived from the data itself, subclass RuleBasedPartitionScanner as the basis for your partition scanner. In your

subclass, define the rules governing your partitioning and add them to the scanner. Each recognized partition type

requires a rule to recognize it. For example, a partition scanner for partitioning Java code likely recognizes partitions

for Javadoc comments, partitions for multiline comments, and partitions for Java code. It therefore must have three

rules, one for each of these partition types. Because partition scanners recognize a default partition, you just need two

new partition types, with two rules to identify them.

JFace offers several rules, which you configure to identify a partition based on certain character sequences. When you

create a rule instance, you tell it the character sequences to look for, and you give it the token that corresponds to the

partition type that the rule identifies. When the rule detects a section of the document that it matches, it marks that

section by returning its associated token. Table 18-8 lists the existing rule classes, and you can also create your own

rules by implementing IRule or IPredicateRule.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table 18-8: JFace Rules

Rule Description

EndOfLineRule Rule that matches a starting sequence of characters and continues to the end of the

line. Example usage: single-line comments.

MultiLineRule Rule that matches a starting sequence and an ending sequence of characters that may

be separated by multiple lines. Example usage: multiline comments.

NumberRule Rule that matches a sequence of digits.

PatternRule Rule that matches a starting sequence and an ending sequence of characters, or may

continue to the end of the line.

SingleLineRule Rule that matches a starting sequence and an ending sequence of characters that may

not span more than one line.

WhitespaceRule Rule that matches whitespace. Requires that you develop an IWhitespaceDetector

implementation to determine what constitutes whitespace.

WordPatternRule Rule that matches a starting sequence and an ending sequence of characters that must

occur within a word. Requires that you develop an IWordDetector implementation to

determine what constitutes a word.

WordRule Rule that detects a word. Requires that you develop an IWordDetector implementation to

determine what constitutes a word. Example usage: keywords.

Armed with these rules, you can build a Java partition scanner to handle partitions for Javadoc comments, multiline

comments, and code. You might create tokens and rules for the Javadoc comments partitions and the multiline

comments partitions, and leave the rest—the code—as the default partition type. The code might look like this:

public class JavaPartitionScanner extends RuleBasedPartitionScanner {

 // Define the partitions

 public static final String JAVADOC = "Javadoc";

 public static final String MULTILINE_COMMENT = "Multi-line Comment";

 public static final String[] PARTITION_TYPES = { JAVADOC, MULTILINE_COMMENT };

 /**

 * JavaPartitionScanner constructor

 */

 public JavaPartitionScanner() {

 // Create the tokens to go with the partitions

 IToken javadoc = new Token(JAVADOC);

 IToken multilineComment = new Token(MULTILINE_COMMENT);

 // Add rules

 IPredicateRule[] rules = new IPredicateRule[2];

 // Javadoc rule: starts with /**, ends with */, has no escape character,

 // and breaks on EOF

 rules[0] = new MultiLineRule("/**", "*/", javadoc, (char) 0, true);

 // Multi-line comment rule: starts with /*, ends with */, has no escape

 // character, and breaks on EOF

 rules[1] = new MultiLineRule("/*", "*/", multilineComment, (char) 0, true);

 // Set the rules

 setPredicateRules(rules);

 }

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

}

The static PARTITION_TYPES member makes adding this scanner to a DefaultPartitioner simple, as this code

demonstrates:

JavaPartitionScanner scanner = new JavaPartitionScanner();

IDocumentPartitioner partitioner = new DefaultPartitioner(scanner,

 JavaPartitionScanner.PARTITION_TYPES);

The preceding code creates a JavaPartitionScanner, then creates an IDocumentPartitioner. It tells the partitioner to use

the created scanner for the partition types specified by JavaPartitionScanner.PARTITION_TYPES. However, until you

associate the partitioner with a document, it has nothing to do, and sits idle. To put the partitioner to work scanning

your document, pass the partitioner and its name to the document's setDocumentPartitioner(), like this:

document.setDocumentPartitioner("Java", partitioner);

The name you specify as the first parameter to setDocumentPartitioner() is also used in the SourceViewerConfiguration

subclass that's used to configure the document's viewer, explained later in this chapter.

To consummate the relationship between document and partitioner, connect the partitioner to the document using the

partitioner's connect() method, like this:

partitioner.connect(document);

We have a small confession: although source code generally contains enough self-describing information for

partitioners to partition them correctly, not all text documents have sufficient information. When it proves impossible to

create a partition scanner that can scan and partition the document it's connected to without external information, you

can't use a rule-based partitioner. Instead, you must create an IDocumentPartitioner implementation and provide a

means for it to gather the necessary information to perform its partitioning. This chapter doesn't cover non-rule-based

partitioners.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Configuring the Viewer

A properly partitioned document provides plenty of information to a viewer designed to display the document. As a

paragon of the separation between model and view, the partitions in the document contain no view-specific

information. Instead, the viewer reads the partitions and interprets how to display and treat them. You tell the viewer

how you want it to treat the partitions by configuring it using a subclass of SourceViewerConfiguration that you create.

The SourceViewerConfiguration class exposes an interface full of getter methods that associated classes call to get

specific configuration information. Table 18-9 lists SourceViewerConfiguration's methods. In your subclass, override the

methods for which you want to alter the default information, and leave the rest alone.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table 18-9: SourceViewerConfiguration Methods

Method Description

IAnnotationHover getAnnotationHover

(ISourceViewer sourceViewer)
Returns the annotation hover, which displays text in a

popup window when the mouse hovers.

IAutoIndentStrategy getAutoIndentStrategy

(ISourceViewer, String contentType)
Returns the auto-indent strategy for the specified content

type. The auto-indent strategy determines how to indent

text.

String[] getConfiguredContentTypes

(ISourceViewer sourceViewer)
Returns the content types that the viewer handles.

These content types are the names of the partitions that

the viewer corresponding to this configuration can act

on.

String getConfiguredDocumentPartitioning

(ISourceViewer sourceViewer)
Returns the partitioning name of the partitioner this

configuration uses. This should be the name of the

partitioner passed to the document's

setDocumentPartitioner() method.

int[] getConfiguredTextHoverStateMasks

(ISourceViewer sourceViewer, String contentType)
Returns the event state masks for which text hovering is

configured, for the specified content type.

IContentAssistant getContentAssistant

(ISourceViewer sourceViewer)
Returns the content assistant, which provides dynamic

content completion.

IContentFormatter getContentFormatter

(ISourceViewer sourceViewer)
Returns the content formatter, which formats the text in

the document.

String[] getDefaultPrefixes(ISourceViewer

sourceViewer, String contentType)
Returns the default prefixes for the specified content type.

ITextDoubleClickStrategy getDouble

ClickStrategy(ISourceViewer sourceViewer, String

contentType)

Returns the double-click strategy for the specified

content type.

String[] getIndentPrefixes(ISourceViewer

sourceViewer, String contentType)
Returns the indent prefixes for the specified content type.

IInformationControlCenter getInformation

ControlCenter(ISourceViewer sourceViewer)
Returns a factory for creating information controls, which

are controls that display textual information.

IInformationPresenter getInformation

Presenter(ISourceViewer sourceViewer)
Returns the information presenter, which presents

information about the current cursor position.

IAnnotationHover getOverviewRuler

AnnotationHover(ISourceViewer sourceViewer)
Returns the annotation hover for the overview ruler.

IPresentationReconciler getPresentation

Reconciler(ISourceViewer sourceViewer)
Returns the presentation reconciler, which is responsible

for performing context highlighting.

IReconciler getReconciler(ISourceViewer

sourceViewer)
Returns the reconciler, which reconciles differences

between the document and the model of the document's

content.

int getTabWidth(ISourceViewer sourceViewer) Returns the number of characters to display for a tab.

ITextHover getTextHover(ISourceViewer

sourceViewer, String contentType)
Returns the text hover for the specified content type. The

text hover provides the text to display in a popup window

when the mouse hovers.

ITextHover getTextHover(ISourceViewer

sourceViewer, String contentType, int stateMask)
Returns the text hover for the specified content type,

using the specified event state mask. The text hover

provides the text to display in a popup window when the

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Method Description

IUndoManager getUndoManager(ISourceViewer

sourceViewer)
Returns the undo manager.

For example, the MinimalSourceViewerConfiguration class creates a source viewer configuration that shows two spaces

for a tab, and relies on the defaults for everything else:

public class MinimalSourceViewerConfiguration extends SourceViewerConfiguration {

 public int getTabWidth(ISourceViewer sourceViewer) {

 return 2;

 }

}

To associate the configuration with the viewer, pass it to the viewer's configure() method. Make sure to call configure()

before you call setDocument(), as the document uses the configuration for some initialization. For example, the

following code creates a viewer, configures it, and associates it with a document:

SourceViewer viewer = new SourceViewer(parent, new VerticalRuler(10),

 SWT.V_SCROLL | SWT.H_SCROLL);

viewer.configure(new MinimalSourceViewerConfiguration());

viewer.setDocument(document);

The source viewer configuration provides some viewer functionality. This chapter examines one: syntax coloring.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Living in Color

Any programmers that pooh-pooh syntax coloring, also known as context highlighting, want attention. They

desperately need you to feel intimidated by their mental prowess, and achieve validation by shunning anything that

could be deemed a crutch. They eschew GUIs, too, and never let their hands touch a mouse. We can think of no good

reason for anyone to ignore this powerful tool, and indeed can find few remaining in this withering camp. Syntax

highlighting dramatically improves both code reading and code writing, and no serious code editor can flourish without

it.

To incorporate syntax coloring in your text editor, you must create the following:

A presentation reconciler

Damager/repairer pairs for each partition type you want to color

A rule-based scanner (not a partition scanner) for each partition type you want to color

To color text, JFace uses damagers and repairers, which aren't as drastic or fore-boding as they sound. Damagers,

represented by IPresentationDamager instances, "damage" a document only in the sense that they respond to user

input (such as key-strokes) by changing the document. Repairers, represented by IPresentationRepairer instances,

respond to this "damage" by readjusting the view as appropriate for the changed document. Damagers and repairers

come in pairs, attached to a presentation reconciler, represented by IPresentationReconciler. A presentation reconciler

can have several damager/repairer pairs, and each pair corresponds to a specific partition type. Damagers and

repairers react to changes only in partitions that have the type they're configured for.

A damager/repairer pair also contains a scanner that scans all corresponding partitions. The scanner, usually derived

from RuleBasedScanner, contains rules that the repairer applies to color the code appropriately. JFace offers a class,

DefaultDamagerRepairer, that implements both IPresentationDamager and IPresentationRepairer. To use it, pass the

scanner to its constructor, like this:

DefaultDamagerRepairer ddr = new DefaultDamagerRepairer(myRuleScanner);

After constructing the damager/repairer, pass it to your presentation reconciler twice: once to its setDamager() method

and once to its setRepairer() method. Both methods take the partition type you're setting the damager or repairer for, as

well. For example, to set the preceding damager/repairer into a presentation reconciler for the partition type "My

Partition Type," use this code:

PresentationReconciler reconciler = new PresentationReconciler();

reconciler.setDamager(ddr, "My Partition Type");

reconciler.setRepairer(ddr, "My Partition Type");

To make your presentation reconciler handle more partition types, create a DefaultDamagerRepairer for each type,

passing it the appropriate scanner for the partition type. Then call reconciler.setDamager() and reconciler.setRepairer(),

passing the DefaultDamagerRepairer and the partition type to each.

The scanner configures how to color code by creating tokens containing TextAttribute instances and passing the tokens

to rules. The TextAttribute class contains a foreground color, a background color, and a font style, all of which are

applied to code that passes the associated rule. For example, to color a Java singleline comment green, use code

such as this:

public class JavaCommentScanner extends RuleBasedScanner {

 public JavaCommentScanner() {

 // Create the token for green text

 IToken green = new Token(new TextAttribute(Display.getCurrent()

 .getSystemColor(SWT.COLOR_GREEN))); // Use defaults for background & style

 // Create the rule and set it

 setRules(new IRule[] { new EndOfLineRule("#", green) });

 }

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

}

To wire your presentation reconciler, with all its damager/repairer pairs, to your viewer, return it from the

getPresentationReconciler() in your viewer's SourceViewerConfiguration class. As you change the text in your document,

the viewer uses the presentation reconciler to color the text automatically according to the rules you've set.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Editing Perl

The PerlEditor program creates a full-blown text editor that can edit any text file. However, it shines when editing Perl

code, as it uses syntax highlighting with Perl. It displays comments in one color, Perl keywords in another, and strings

in yet another. However, it doesn't automatically obfuscate Perl code into the unreadable condition Perl programmers

strive for; you'll have to do that yourself. You can download the full source code from the Downloads section of the

Apress Web site (http://www.apress.com); some parts are highlighted here.

The program's document partitioner creates two partitions: one for comments, and the default partition for the rest of

the code (see Listing 18-4). It uses an instance of CommentScanner for the comment partition, which indiscriminately

makes all text green. For the default partition, it uses an instance of PerlCodeScanner, which makes Perl keywords

cyan and bold, and strings red.

Listing 18-4: PerlPartitionScanner.java

package examples.ch18.perledit.source;

import org.eclipse.jface.text.rules.*;

/**

 * This class scans a document and partitions it

 */

public class PerlPartitionScanner extends RuleBasedPartitionScanner {

 // Create a partition for comments, and leave the rest for code

 public static final String COMMENT = "comment";

 public static final String[] TYPES = { COMMENT};

 /**

 * PerlPartitionScanner constructor

 */

 public PerlPartitionScanner() {

 super();

 // Create the token for comment partitions

 IToken comment = new Token(COMMENT);

 // Set the rule--anything from # to the end of the line is a comment

 setPredicateRules(new IPredicateRule[] { new EndOfLineRule("#", comment)});

 }

}

The CommentScanner class turns all text in any "comment" partition green (see Listing 18-5). It doesn't need any rules

to do this; it just creates a token for green text, and returns it as the default.

Listing 18-5: CommentScanner.java

package examples.ch18.perledit.source;

import org.eclipse.jface.text.TextAttribute;

import org.eclipse.jface.text.rules.*;

import examples.ch18.perledit.PerlEditor;

/**

 * This class scans comment partitions

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://www.apress.com

 */

public class CommentScanner extends RuleBasedScanner {

 /**

 * CommentScanner constructor

 */

 public CommentScanner() {

 // Get the color manager

 ColorManager colorManager = PerlEditor.getApp().getColorManager();

 // Create the tokens

 IToken other = new Token(new TextAttribute(colorManager

 .getColor(ColorManager.COMMENT)));

 // Use "other" for default

 setDefaultReturnToken(other);

 // This scanner has an easy job--we need no rules. Anything in a comment

 // partition should be scanned as a comment.

 }

}

The PerlCodeScanner class works a little harder, though not much (see Listing 18-6). It adds rules for strings, for white

space, and for keywords. For the keywords, it creates a WordRule instance, and calls its addWord() method repeatedly,

passing each Perl keyword in turn.

Listing 18-6: PerlCodeScanner.java

package examples.ch18.perledit.source;

import java.util.*;

import org.eclipse.jface.text.TextAttribute;

import org.eclipse.jface.text.rules.*;

import org.eclipse.swt.SWT;

import examples.ch18.perledit.PerlEditor;

/**

 * This class scans through a code partition and colors it.

 */

public class PerlCodeScanner extends RuleBasedScanner {

 /**

 * PerlCodeScanner constructor

 */

 public PerlCodeScanner() {

 // Get the color manager

 ColorManager cm = PerlEditor.getApp().getColorManager();

 // Create the tokens for keywords, strings, and other (everything else)

 IToken keyword = new Token(

 new TextAttribute(cm.getColor(ColorManager.KEYWORD),

 cm.getColor(ColorManager.BACKGROUND), SWT.BOLD));

 IToken other = new Token(

 new TextAttribute(cm.getColor(ColorManager.DEFAULT)));

 IToken string = new Token(

 new TextAttribute(cm.getColor(ColorManager.STRING)));

 // Use "other" for default

 setDefaultReturnToken(other);

 // Create the rules

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 List rules = new ArrayList();

 // Add rules for strings

 rules.add(new SingleLineRule("\"", "\"", string, '\\'));

 rules.add(new SingleLineRule("'", "'", string, '\\'));

 // Add rule for whitespace

 rules.add(new WhitespaceRule(new IWhitespaceDetector() {

 public boolean isWhitespace(char c) {

 return Character.isWhitespace(c);

 }

 }));

 // Add rule for keywords, and add the words to the rule

 WordRule wordRule = new WordRule(new PerlWordDetector(), other);

 for (int i = 0, n = PerlSyntax.KEYWORDS.length; i < n; i++)

 wordRule.addWord(PerlSyntax.KEYWORDS[i], keyword);

 rules.add(wordRule);

 IRule[] result = new IRule[rules.size()];

 rules.toArray(result);

 setRules(result);

 }

}

The PerlEditorSourceViewerConfiguration class in Listing 18-7 sets up the syntax coloring.

Listing 18-7: PerlEditorSourceViewerConfiguration.java

package examples.ch18.perledit.source;

import org.eclipse.jface.text.IDocument;

import org.eclipse.jface.text.presentation.*;

import org.eclipse.jface.text.rules.*;

import org.eclipse.jface.text.source.ISourceViewer;

import org.eclipse.jface.text.source.SourceViewerConfiguration;

import examples.ch18.perledit.PerlEditor;

/**

 * This class provides the source viewer configuration

 */

public class PerlEditorSourceViewerConfiguration extends

 SourceViewerConfiguration {

 /**

 * Gets the presentation reconciler. This will color the code.

 */

 public IPresentationReconciler getPresentationReconciler(

 ISourceViewer sourceViewer) {

 // Create the presentation reconciler

 PresentationReconciler reconciler = new PresentationReconciler();

 reconciler.setDocumentPartitioning(

 getConfiguredDocumentPartitioning(sourceViewer));

 // Create the damager/repairer for comment partitions

 DefaultDamagerRepairer dr = new DefaultDamagerRepairer(new CommentScanner());

 reconciler.setDamager(dr, PerlPartitionScanner.COMMENT);

 reconciler.setRepairer(dr, PerlPartitionScanner.COMMENT);

 // Create the damager/repairer for default

 dr = new DefaultDamagerRepairer(PerlEditor.getApp().getCodeScanner());

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 reconciler.setDamager(dr, IDocument.DEFAULT_CONTENT_TYPE);

 reconciler.setRepairer(dr, IDocument.DEFAULT_CONTENT_TYPE);

 return reconciler;

 }

 /**

 * Gets the configured document partitioning

 *

 * @return String

 */

 public String getConfiguredDocumentPartitioning(ISourceViewer sourceViewer) {

 return PerlEditor.PERL_PARTITIONING;

 }

 /**

 * Gets the configured partition types

 *

 * @return String[]

 */

 public String[] getConfiguredContentTypes(ISourceViewer sourceViewer) {

 return new String[] { IDocument.DEFAULT_CONTENT_TYPE,

 PerlPartitionScanner.COMMENT};

 }

}

PerlEditor uses the find/replace dialog created in this chapter to do the finding and replacing, as well as the

SafeSaveDialog class to confirm overwriting existing files. Figure 18-5 shows the PerlEditor with some Perl source code.

Figure 18-5: The PerlEditor

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig794%5F01%5F0%2Ejpg

Summary

Though this chapter creates a fully featured text editor for creating and editing Perl files, it only scratches the surface

of JFace's text editing capabilities. Because text editing forms the core of Eclipse, JFace's text editing capabilities not

only outpace other parts of the library, both in breadth and depth, but also grow the fastest. With each new Eclipse

release, it seems, more text editing capabilities appear. Stay abreast of the Javadoc documentation for the latest

developments in JFace text editing.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Chapter 19: Miscellaneous Helper Classes

Any class library contains a motley assemblage of unheralded classes and interfaces that don't submit readily to

categorization. After careful consideration, class library designers gather up these recalcitrant classes and sweep

them into one or more "utility" packages. Just as a utility tool belt carries a menagerie of tools that fulfill disparate

purposes, a utility package holds an array of classes you can use to fill in the gaps left behind by the rest of the library.

This chapter examines the utility packages that JFace offers.

Using ModalContext for Modal Operations

The Librarian example program in Chapter 16 uses ModalContext when saving or loading files. When you have

long-running operations, you should run them in separate threads, as Librarian does with its disk access, so you don't

tie up the UI. Running long operations inside the UI thread starves your program's ability to paint itself, confusing and

even disgusting users.

You use ModalContext, found in the org.eclipse.jface.operation package, to run operations in separate threads. You can

instantiate a ModalContext, but all its usable interface is static. Table 19-1 lists ModalContext's methods.

Table 19-1: ModalContext Methods

Method Description

static boolean

canProgressMonitorBeUsed

(IProgressMonitor monitor1,

IProgressMonitor monitor2)

Returns true if monitor1 and monitor2 refer to the same monitor.

Also returns true if monitor1 wraps monitor2. Otherwise, returns

false.

static void checkCanceled

(IProgressMonitor monitor)
If the specified monitor has been cancelled, throws an

InterruptedException.

static int getModalLevel() Returns an int representing the nested modal level.

static boolean isModalContextThread

(Thread thread)
Returns true if the specified thread is a ModalContextThread

instance.

static void run(IRunnableWithProgress

operation, boolean fork, IProgressMonitor

Display display)

Runs the specified operation. If fork is true, runs the operation in a

new thread. Otherwise, runs the operation in the same thread.

Uses the specified monitor to display progress and accept

cancellation requests. Uses the specified display to read and

dispatch events.

static void setDebugMode(boolean

debugMode)
If debugMode is true, turns on debugging messages. Otherwise,

turns off debugging messages. When debugging is turned on,

exceptions thrown when running operations are logged to stderr.

For example, to launch a long-running operation with a progress monitor in a separate thread, use code such as this:

class MyRunnable implements IRunnableWithProgress {

 public void run(IProgressMonitor monitor) {

 progressMonitor.beginTask("Performing operation", 100);

 for (int i = 0; i < 100; i++) {

 doSomething(i);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 progressMonitor.worked(1);

 }

 progressMonitor.done();

 }

}

. . .

try {

 ModalContext.run(new MyRunnable(), true, myProgressMonitor, display);

} catch (InterruptedException e) {

 // Do something

} catch (InvocationTargetException e) {

 // Do something

}

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Creating Images using ImageDescriptor

Image descriptors, used in actions, wizard pages, and anywhere else you need an image, possess the ability to create

images. Think of them as image factories, churning out images on demand. They don't require a Display object to

create images, either, making them indispensable for those situations in which you have no Display.

ImageDescriptor is an abstract class, housed in org.eclipse.jface.resource, that hides three concrete implementations:

FileImageDescriptor, URLImageDescriptor, and MissingImageDescriptor. You can create your own ImageDescriptor

implementation by subclassing ImageDescriptor and defining a getImageData() method. Usually, though, you'll use two of

ImageDescriptor's static methods, createFromFile() and createFromURL(), to create ImageDescriptor instances that you

pass to methods requiring them.

Reading From a File

To read an image from a file into an ImageDescriptor, use createFromFile(), which has the following signature:

static ImageDescriptor createFromFile(Class location, String filename)

If location is non-null, filename must represent an absolute path to the desired file. Otherwise, the implementation uses

Class.getResourceAsStream() and its attendant rules to load the image. For example, if you have a class file called

foo.Bar.class, and your image file lives in a directory called graphics that's a peer to the foo directory, you'll use this

code:

ImageDescriptor id = ImageDescriptor.createFromFile(foo.Bar.class,

 "/graphics/myimage.png");

createFromFile() returns a FileImageDescriptor instance, which you treat as an ImageDescriptor instance because

FileImageDescriptor isn't visible.

Loading From a URL

To load an image from a URL into an ImageDescriptor, use createFromURL(), which has this signature:

static ImageDescriptor createFromURL(URL url)

For example, to load an image from the Web, use code such as this:

ImageDescriptor id = null;

try {

 URL url = new URL("http://www.mydomain.com/myimage.png");

 id = ImageDescriptor.createFromURL(url);

} catch (MalformedURLException e) {

 // Do something

}

createFromURL() returns a URLImageDescriptor instance, which you treat as an ImageDescriptor because

URLImageDescriptor isn't visible.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Using Resource Utilities

A GUI program often uses several graphical items, including fonts, images, and colors. The org.eclipse.jface.resource

package contains classes that help you work with those items. Based on the concept of "registries," these classes

store the graphical items by name, allowing you to retrieve them by name and use them in your applications.

Retrieving From JFaceResources

The JFaceResources class allows you to retrieve JFace-specific resources by name. Many of these resources are

Eclipse specific; for example, the font Eclipse uses for banners. JFaceResources also stores the following registries:

The color registry

The font registry

The image registry

A resource bundle

You don't instantiate JFaceResources. Instead, you use its static methods, listed in Table 19-2.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Table 19-2: JFaceResources Methods

Method Description

static String format(String key, Object[]

args)
Returns the formatted string for the specified key from the resource

bundle. Uses java.text.MessageFormat to do the formatting.

static Font getBannerFont() Returns the font used for banners in Eclipse.

static ResourceBundle getBundle() Returns the resource bundle.

static ColorRegistry getColorRegistry() Returns the color registry.

static Font getDefaultFont() Returns the default font.

static Font getDialogFont() Returns the font used in dialogs.

static Font getFont(String

symbolicName)
Returns the font that corresponds to the symbolic name. See Table

19-3 for the supported symbolic names.

static FontRegistry getFontRegistry() Returns the font registry.

static Font getHeaderFont() Returns the font used for headers in Eclipse.

static Image getImage(String key) Returns the image from the image registry for the specified key.

static ImageRegistry

getImageRegistry()
Returns the image registry.

static String getString(String key) Returns the string from the resource bundle for the specified key.

static String[] getStrings(String[] keys) Convenience method that returns the strings from the resource

bundle for the specified keys.

static Font getTextFont() Returns the text font.

static void

setFontRegistry(FontRegistry registry)
Sets the font registry to the specified registry.

Table 19-3: JFaceResources Fields

Field Description

static String BANNER_FONT Symbolic name for the banner font

static String DEFAULT_FONT Symbolic name for the default font

static String DIALOG_FONT Symbolic name for the dialog font

static String HEADER_FONT Symbolic name for the header font

static String TEXT_FONT Symbolic name for the text font

JFaceResources contains several static fields that correspond to symbolic names for fonts. You use these fields with

the getFont() method to specify which font you want. Table 19-3 lists the fields.

Painting with ColorRegistry

The ColorRegistry class maps names to colors. You fill the map with RGB values corresponding to names, and the color

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

registry creates colors from the RGB values as requested. Because the color registry creates the colors, it, not you,

carries the responsibility to dispose them. You put colors in and take them out with impunity.

To retrieve JFace's ColorRegistry from within your application, call JFaceResource.getColorRegistry(). You can also

construct your own color registry using one of the following constructors:

ColorRegistry()

ColorRegistry(Display display)

The first constructor listed uses the current display. Table 19-4 lists ColorRegistry's methods.

Table 19-4: ColorRegistry Methods

Method Description

void addListener(IPropertyChange Listener

listener)
Adds a listener that's notified if any colors are added or

changed.

Color get(String symbolicName) Returns the color for the specified symbolic name.

RGB getRGB(String symbolicName) Returns the RGB data for the specified symbolic name.

boolean hasValueFor(String colorKey) Returns true if the color registry has a value for the specified

key. Otherwise, returns false.

void put(String symbolicName, RGB colorData) Stores the color data under the specified symbolic name for

later retrieval.

void removeListener(IPropertyChange Listener

listener)
Removes the specified listener from the notification list.

The following example code stores a color for the symbolic name "foo." Later, it attempts to retrieve that color to set on

a control:

ColorRegistry colorRegistry = JFaceResources.getColorRegistry();

colorRegistry.put("foo", new RGB(255, 0, 0));

// Do some other stuff

Label label = new Label(composite, SWT.CENTER);

if (colorRegistry.hasValueFor("foo")) {

 label.setBackground(colorRegistry.get("foo"));

}

Writing with FontRegistry

The FontRegistry class performs for fonts what ColorRegistry performs for colors: it maps fonts to names, creates fonts,

manages fonts, and disposes fonts. You can use JFace's font registry by calling JFaceResources.getFontRegistry(), or

you can create one yourself. Table 19-5 lists FontRegistry's constructors.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Table 19-5: FontRegistry Constructors

Constructor Description

FontRegistry() Creates a font registry using the current display.

FontRegistry(Display display) Creates a font registry using the specified display.

FontRegistry(String location) Creates a font registry from the resource bundle specified by location.

FontRegistry(String location,

ClassLoader loader)
Creates a font registry from the resource bundle specified by location.

Currently, the specified class loader is ignored.

FontRegistry's methods mirror those offered by ColorRegistry, as Table 19-6 shows.

Table 19-6: FontRegistry Methods

Method Description

void addListener(IPropertyChange Listener

listener)
Adds a listener that's notified if any fonts are added or

changed.

FontData[] bestDataArray(FontData[] fonts,

Display)
Returns the first valid FontData in the array specified by fonts.

Font get(String symbolicName) Returns the font for the specified symbolic name.

FontData[] getFontData(String symbolicName) Returns the font data for the specified symbolic name.

boolean hasValueFor(String fontKey) Returns true if the font registry has a value for the specified

key. Otherwise, returns false.

void put(String symbolicName, FontData[]

fontData)
Stores the font data under the specified symbolic name for

later retrieval.

void removeListener(IPropertyChange Listener

listener)
Removes the specified listener from the notification list.

The RegistryTest program demonstrates both ColorRegistry and FontRegistry. It displays a greeting and a button.

Clicking the button puts random values for the background and foreground colors into the color registry, and a font with

a random height in the font registry. Changing the values in those registries fires a property change notification.

Because the RegistryTest class listens for those notifications, it sets the new values from the registry into the greeting

(see Listing 19-1).

Listing 19-1: RegistryTest.java

package examples.ch19;

import org.eclipse.jface.resource.*;

import org.eclipse.jface.util.*;

import org.eclipse.jface.window.ApplicationWindow;

import org.eclipse.swt.SWT;

import org.eclipse.swt.events.*;

import org.eclipse.swt.graphics.*;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.widgets.*;

/**

 * This class tests the various JFace registries

 */

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

public class RegistryTest extends ApplicationWindow implements

 IPropertyChangeListener {

 // Keys for the registries

 private static final String FOREGROUND = "foreground";

 private static final String BACKGROUND = "background";

 private static final String FONT = "font";

 // The label to display the colors and fonts

 private Label label;

 // The color registry

 private static ColorRegistry CR;

 // The font registry

 private static FontRegistry FR;

 /**

 * RegistryTest constructor

 */

 public RegistryTest() {

 super(null);

 }

 /**

 * Runs the application

 */

 public void run() {

 setBlockOnOpen(true);

 open();

 Display.getCurrent().dispose();

 }

 /**

 * Creates the window's contents

 *

 * @param parent the parent composite

 * @return Control

 */

 protected Control createContents(Composite parent) {

 Composite composite = new Composite(parent, SWT.NONE);

 composite.setLayout(new FillLayout(SWT.VERTICAL));

 // Set up the registries

 CR = new ColorRegistry();

 CR.addListener(this);

 FR = new FontRegistry();

 FR.addListener(this);

 // Create the label

 label = new Label(composite, SWT.CENTER);

 label.setText("Hello from JFace");

 // Create the randomize button

 Button button = new Button(composite, SWT.PUSH);

 button.setText("Randomize");

 button.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 CR.put(FOREGROUND, new RGB((int) (Math.random() * 255), (int) (Math

 .random() * 255), (int) (Math.random() * 255)));

 CR.put(BACKGROUND, new RGB((int) (Math.random() * 255), (int) (Math

 .random() * 255), (int) (Math.random() * 255)));

 FontData fontData = new FontData("Times New Roman",

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 (int) (Math.random() * 72), SWT.BOLD);

 FR.put(FONT, new FontData[] { fontData});

 }

 });

 return composite;

 }

 /**

 * Called when any property changes

 *

 * @param event the event

 */

 public void propertyChange(PropertyChangeEvent event) {

 // Properties have changed; set into label

 if (CR.hasValueFor(FOREGROUND)) label.setForeground(CR.get(FOREGROUND));

 if (CR.hasValueFor(BACKGROUND)) label.setBackground(CR.get(BACKGROUND));

 if (FR.hasValueFor(FONT)) label.setFont(FR.get(FONT));

 getShell().pack();

 }

 /**

 * The application entry point

 *

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 new RegistryTest().run();

 }

}

Figure 19-1 shows the main window with some random color and font combinations.

Figure 19-1: Using color and font registries

Drawing with ImageRegistry

What ImageRegistry does for images approximates what ColorRegistry and FontRegistry do for colors and fonts,

respectively. ImageRegistry manages images, associating them with names, creating them on demand, and disposing

them when the associated display is disposed. However, it deviates slightly but significantly in how it reacts to

duplicate keys. Both ColorRegistry and FontRegistry happily accept duplicate keys, replacing the previous color or font

associated with that key. ImageRegistry accepts duplicate keys for entries for which the image descriptor has been

specified, but the associated image hasn't yet been created. However, once ImageRegistry has created the image, it

throws an IllegalArgumentException if you try to add a duplicate key.

You can use JFace's ImageRegistry by calling JFaceResources.getImageRegistry(), or you can create your own

ImageRegistry using one of its constructors:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig803%5F01%5F0%2Ejpg

ImageRegistry()

ImageRegistry(Display display)

The empty constructor ties the image registry to the current display, while the second constructor ties it to the specified

display. You can add either Image objects or ImageDescriptor objects to an image registry. However, whatever you add

to the registry becomes the registry's property. The registry disposes the image, even if you created it. You must not

dispose it. Table 19-7 lists ImageRegistry's methods.

Table 19-7: ImageRegistry Methods

Method Description

Image get(String key) Returns the image for the specified key

ImageDescriptor getDescriptor(String

key)
Returns the image descriptor for the specified key

void put(String key, Image image) Stores the specified image under the specified key for later retrieval

void put(String key, ImageDescriptor) Stores the specified image descriptor under the specified key for

later retrieval

The ImageRegistryTest program creates an image registry and adds three images to it (see Listing 19-2). Its main

window displays the three images, extracting them from the image registry.

Listing 19-2: ImageRegistryTest.java

package examples.ch19;

import org.eclipse.jface.resource.*;

import org.eclipse.jface.window.ApplicationWindow;

import org.eclipse.swt.SWT;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.widgets.*;

/**

 * This class tests ImageRegistry

 */

public class ImageRegistryTest extends ApplicationWindow {

 // Keys for the registry

 private static final String ONE = "one";

 private static final String TWO = "two";

 private static final String THREE = "three";

 /**

 * ImageRegistryTest constructor

 */

 public ImageRegistryTest() {

 super(null);

 }

 /**

 * Runs the application

 */

 public void run() {

 setBlockOnOpen(true);

 open();

 Display.getCurrent().dispose();

 }

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 /**

 * Creates the window's contents

 *

 * @param parent the parent composite

 * @return Control

 */

 protected Control createContents(Composite parent) {

 Composite composite = new Composite(parent, SWT.NONE);

 composite.setLayout(new FillLayout());

 // Put the images in the registry

 ImageRegistry ir = new ImageRegistry();

 ir.put(ONE, ImageDescriptor.createFromFile(ImageRegistryTest.class,

 "/images/one.gif"));

 ir.put(TWO, ImageDescriptor.createFromFile(ImageRegistryTest.class,

 "/images/two.gif"));

 ir.put(THREE, ImageDescriptor.createFromFile(ImageRegistryTest.class,

 "/images/three.gif"));

 // Create the labels and add the images

 Label label = new Label(composite, SWT.NONE);

 label.setImage(ir.get(ONE));

 label = new Label(composite, SWT.NONE);

 label.setImage(ir.get(TWO));

 label = new Label(composite, SWT.NONE);

 label.setImage(ir.get(THREE));

 getShell().pack();

 return composite;

 }

 /**

 * The application entry point

 *

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 new ImageRegistryTest().run();

 }

}

Figure 19-2 shows the program's main window. You can download the images or create your own.

Figure 19-2: Displaying images from an image registry

Accessing the Palette of JFaceColors

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig806%5F01%5F0%2Ejpg

JFace uses certain colors to display various elements in the Eclipse interface, and the JFaceColors class stores the

colors for easy access. JFaceColors exposes a number of static methods to retrieve the colors, listed in Table 19-8.

Table 19-8: JFaceColors Methods

Method Description

static void clearColor(String colorName) Removes the color for the specified color name from the

cache.

static void disposeColors() Disposes all the cached colors.

static Color getActiveHyperlinkText (Display

display)
Returns the color used for active hyperlinks.

static Color getBannerBackground(Display

display)
Returns the color used for banner backgrounds.

static Color getBannerForeground(Display

display)
Returns the color used for banner foregrounds.

static Color getErrorBackground(Display

display)
Returns the color used for error backgrounds.

static Color getErrorBorder(Display display) Returns the color used for error borders.

static Color getErrorText(Display display) Returns the color used for error text.

static Color getHyperlinkText(Display display) Returns the color used for hyperlinks.

static void setColors(Control control, Color

foreground, Color background)
Convenience method that sets the foreground and

background colors for the specified control. Doesn't cache

the specified colors.

Converting Values using StringConverter

GUIs often require that you display primitive or other data types in human-readable form. The StringConverter class can

help you with that. It offers static methods to convert values to strings, and vice versa. It contains support for the

following value types:

boolean

double

float

int

long

FontData

Point

Rectangle

RGB

Most of the methods have a counterpart that takes a default value that's returned if StringConverter has any problems

converting the specified value. Table 19-9 lists StringConverter's methods.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Table 19-9: StringConverter Methods

Method Description

static String[] asArray(String value) Returns the words in the specified string, one word per array member.

Uses a space delimiter to identify words.

static String[] asArray(String value,

String[] dflt)
Returns the words in the specified string, one word per array member.

Uses a space delimiter to identify words. If any data format problems

occur, returns the default string array specified by dflt.

static boolean asBoolean(String

value)
Returns true if the specified value is "t" or "true" (case insensitive).

Returns false if the specified value is "f" or "false" (case insensitive).

Otherwise, throws a DataFormatException.

static boolean asBoolean(String

value, boolean dflt)
Returns true if the specified value is "t" or "true" (case insensitive).

Returns false if the specified value is "f" or "false" (case insensitive).

Otherwise, returns the value specified by dflt.

static double asDouble(String value) Returns the double represented by the specified value. Throws a

DataFormatException if the specified value doesn't represent a double.

static double asDouble(String value,

double dflt)
Returns the double represented by the specified value. If the specified

value doesn't represent a double, returns the value specified by dflt.

static float asFloat(String value) Returns the float represented by the specified value. Throws a

DataFormatException if the specified value doesn't represent a float.

static float asFloat(String value, float

dflt)
Returns the float represented by the specified value. If the specified

value doesn't represent a float, returns the value specified by dflt.

static FontData asFontData(String

value)
Returns the FontData represented by the specified value. Throws a

DataFormatException if the specified value doesn't represent a FontData.

static FontData asFontData(String

value, FontData dflt)
Returns the FontData represented by the specified value. If the

specified value doesn't represent a FontData, returns the value

specified by dflt.

static int asInt(String value) Returns the int represented by the specified value. Throws a

DataFormatException if the specified value doesn't represent an int.

static int asInt(String value, int dflt) Returns the int represented by the specified value. If the specified

value doesn't represent an int, returns the value specified by dflt.

static long asLong(String value) Returns the long represented by the specified value. Throws a

DataFormatException if the specified value doesn't represent a long.

static long asLong(String value, long

dflt)
Returns the long represented by the specified value. If the specified

value doesn't represent a long, returns the value specified by dflt.

static Point asPoint(String value) Returns the Point represented by the specified value. Throws a

DataFormatException if the specified value doesn't represent a Point.

static Point asPoint(String value,

Point dflt)
Returns the Point represented by the specified value. If the specified

value doesn't represent a Point, returns the value specified by dflt.

static Rectangle asRectangle(String

value)
Returns the Rectangle represented by the specified value. Throws a

DataFormatException if the specified value doesn't represent a

Rectangle.

static Rectangle asRectangle(String

value, Rectangle dflt)
Returns the Rectangle represented by the specified value. If the

specified value doesn't represent a Rectangle, returns the value

specified by dflt.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Method Description

static RGB asRGB(String value) Returns the RGB represented by the specified value. Throws a

DataFormatException if the specified value doesn't represent an RGB.

static RGB asRGB(String value,

RGB dflt)
Returns the RGB represented by the specified value. If the specified

value doesn't represent an RGB, returns the value specified by dflt.

static String asString(boolean value) Returns the string representation of the specified value.

static String asString(Boolean value) Returns the string representation of the specified value.

static String asString(double value) Returns the string representation of the specified value.

static String asString(Double value) Returns the string representation of the specified value.

static String asString(float value) Returns the string representation of the specified value.

static String asString(Float value) Returns the string representation of the specified value.

static String asString(FontData

value)
Returns the string representation of the specified value.

static String asString(int value) Returns the string representation of the specified value.

static String asString(Integer value) Returns the string representation of the specified value.

static String asString(long value) Returns the string representation of the specified value.

static String asString(Long value) Returns the string representation of the specified value.

static String asString(Point value) Returns the string representation of the specified value.

static String asString(Rectangle

value)
Returns the string representation of the specified value.

static String asString(RGB value) Returns the string representation of the specified value.

static String

removeWhiteSpaces(String value)
Returns the string specified by value with all its white space removed.

Any characters whose codes are less than or equal to the code for a

space character (\u0020) are considered white space.

Converting strings to objects requires agreed-upon formats for the strings. Table 19-10 lists the expected formats for

the different objects that StringConverter can create from strings.

Table 19-10: String Formats for Objects

Object String Format

FontData "fontname-style-height" where fontname is the name of a font, style is the style (regular, bold,

italic, or bold italic), and height is an int

Point "x,y" where x and y are ints

Rectangle "x,y,width,height" where x, y, width, and height are ints

RGB "red,green,blue" where red, green, and blue are ints

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Using Other Utilities

The org.eclipse.jface.util package represents the final amalgam of utility classes. Searching for a common thread

among these classes yields nothing. This package ranks as perhaps the ultimate hodgepodge of classes you'll find in

JFace.

Asserting with Assert

When the Eclipse team began their quest to develop the ultimate IDE, Java had no assert mechanism. Since that time,

however, Java added the assert keyword, rendering JFace's Assert class obsolete. You should use Java's assert and

ignore this class.

Getting the Goods From Geometry

The Geometry class collects a bunch of static methods for working with SWT's geometric figures. Table 19-11 lists

Geometry's methods.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table 19-11: Geometry Methods

Method Description

static Point add(Point point1, Point

point2)
Returns the sum of the two specified points, added as

two-dimensional vectors.

static Point centerPoint(Rectangle rect) Returns the point at the center of the specified rectangle.

static Point copy(Point toCopy) Returns a copy of the specified point.

static Rectangle copy(Rectangle toCopy) Returns a copy of the specified rectangle.

static Rectangle createRectangle(Point

position, Point size)
Returns a rectangle with the specified position and size.

static int distanceSquared(Point p1, Point

p2)
Returns the square of the distance, in pixels, between the two

specified points.

static int dotProduct(Point p1, Point p2) Returns the dot product of the specified vectors (passed as Point

objects).

static int getClosestSide(Rectangle

boundary, Point toTest)
Returns the side of the specified rectangle that's closest to the

specified point. The return value is one of SWT.LEFT, SWT.RIGHT,

SWT.TOP, or SWT.BOTTOM, for left, right, top, or bottom,

respectively.

static int getDimension(Rectangle rect,

boolean width)
If width is true, returns the width in pixels of the specified

rectangle. Otherwise, returns its height in pixels.

static Point getDirectionVector(int

distance, int direction)
Returns a vector, represented as a point, with the specified

distance in pixels and in the specified direction. direction should be

one of SWT.TOP, SWT.BOTTOM, SWT.LEFT, or SWT.RIGHT.

static int

getDistanceFromEdge(Rectangle

rectangle, Point point, int edge)

Returns the distance in pixels of the specified point from the

specified edge of the specified rectangle. edge should be one of

SWT.TOP, SWT.BOTTOM, SWT.LEFT, or SWT.RIGHT.

static Rectangle getExtrudedEdge

(Rectangle rectangle, int size, int

orientation)

Returns a rectangular slice of the specified rectangle. This slice is

taken from the side specified by orientation, which should be one of

SWT.TOP, SWT.BOTTOM, SWT.LEFT, or SWT.RIGHT. The returned

rectangle has the height or width, depending on the specified

orientation, specified by size.

static Point getLocation(Rectangle

toQuery) static int getOppositeSide(int

swtDirectionConstant)

Returns the position of the specified rectangle. Returns the

opposite side constant from the side constant specified by

swtDirectionConstant. swtDirectionConstant should be one of

SWT.TOP, SWT.BOTTOM, SWT.LEFT, or SWT.RIGHT. If SWT.TOP is

specified, returns SWT.BOTTOM, and vice versa. If SWT.LEFT is

specified, returns SWT.RIGHT, and vice versa.

static int getRelativePosition(Rectangle

boundary, Point toTest)
Returns the relative position of the specified point to the specified

rectangle. Imagine that the specified rectangle represents the

center square in a standard tic-tac-toe board that extends infinitely

in all directions. If the point lies in the upper-left square, this

method returns SWT.LEFT | SWT.TOP. If in the top center square,

it returns SWT.TOP, and so forth. If the point lies within the

rectangle, this method returns zero.

static Point getSize(Rectangle rectangle) Returns the size of the specified rectangle as a point.

static int getSwtHorizontalOrVertical If horizontal is true, returns SWT.HORIZONTAL. Otherwise, returns

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Method Description

static boolean isHorizontal(int

swtSideConstant)
Returns true if swtSideConstant is SWT.TOP or SWT.BOTTOM.

Otherwise, returns false.

static double magnitude(Point point) Returns the magnitude of the specified vector (passed as a Point).

static int magnitudeSquared(Point point) Returns the square of the magnitude of the specified vector

(passed as a Point).

static Point max(Point p1, Point p2) Returns a point whose x coordinate is the maximum x coordinate

of the two specified points, and whose y coordinate is the

maximum y coordinate of the two specified points.

static Point min(Point p1, Point p2) Returns a point whose x coordinate is the minimum x coordinate of

the two specified points, and whose y coordinate is the minimum y

coordinate of the two specified points.

static void moveRectangle(Rectangle

rectangle, Point point)
Moves the specified rectangle the distance along the x and y axes

specified by point.

static void normalize(Rectangle

rectangle)
Normalizes the specified rectangle by converting any negative

dimensions to positive dimensions, retaining the existing

upper-left corner of the rectangle.

static void setLocation(Rectangle

rectangle, Point newSize)
Moves the specified rectangle to the specified point. (Note: as of

version 3.0 M8, this method has a bug—it sets the width, not the

location.)

static void setSize(Rectangle rectangle,

Point newSize)
Sets the size of the specified rectangle to the specified size.

static Point subtract(Point point1, Point

point2)
Returns the difference between the specified points, subtracted as

vectors.

static Rectangle toControl(Control

coordinateSystem, Rectangle toConvert)
Converts the specified rectangle from display coordinates to

coordinates relative to the specified control.

static Rectangle toDisplay(Control

coordinateSystem, Rectangle rectangle)
Returns a rectangle that results from converting the specified

rectangle from the coordinate system of the specified control to

the display coordinate system.

Listing a ListenerList

A ListenerList, as its name implies, holds a list of listeners. It grows as necessary, and doesn't store duplicate listeners.

JFace uses this class to store and notify registered listeners. Table 19-12 lists its constructors, and Table 19-13 lists its

methods. You can use this class in your implementations any time you need to store listeners.

Table 19-12: ListenerList Constructors

Constructor Description

ListenerList() Creates a ListenerList with an initial capacity of one

ListenerList(int capacity) Creates a ListenerList with the specified initial capacity

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table 19-13: ListenerList Methods

Method Description

void add(Object listener) Adds the specified listener to the notification list.

void clear() Removes all listeners from the list.

Object[] getListeners() Returns all the listeners in the list.

boolean isEmpty() Returns true if the list is empty. Otherwise, returns false.

void remove(Object listener) Removes the specified listener from the list.

int size() Returns the number of listeners in the list.

Detecting Changes using PropertyChangeEvent

The JFace framework notifies interested parties when internal properties change, so that the external parties can

update their displays using the new values. It uses instances of PropertyChangeEvent to send these notifications. The

registry programs in this chapter use PropertyChangeEvent in conjunction with IPropertyChangeListener to detect when

properties change.

IPropertyChangeListener declares one method:

void propertyChange(PropertyChangeEvent event)

In your propertyChange implementations, you can examine the values in Property-ChangeEvent using the methods listed

in Table 19-14.

Table 19-14: PropertyChangeEvent Methods

Method Description

bObject getNewValue() Returns the new value for the property

Object getOldValue() Returns the old value for the property

String getProperty() Returns the name of the changed property

A possible IPropertyChangeListener implementation might look like this:

public class MyPropertyChangeListener implements IPropertyChangeListener {

 public void propertyChange(PropertyChangeEvent event) {

 // If the value for "myProperty" changes, we must update our view

 if ("myProperty".equals(event.getProperty()) {

 // update the view

 updateView();

 }

 }

}

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Summary

The classes and interfaces described in this chapter carry a load that you'd have to carry yourself if these classes

didn't exist. Learn to incorporate the utilities offered by the classes listed in this chapter, and you'll create leaner

programs with fewer bugs. The registry classes, in particular, save you from the biggest gripe people have about SWT:

the need to dispose what you create. By allowing the registry classes to manage your resources, you return to the

garbage-collecting world of vanilla Java.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Chapter 20: Creating Wizards

Overview

During the mid-1980s, a friend worked at a submarine sandwich shop. This restaurant offered a bewildering array of

choices to construct a sandwich: different breads, cheeses, meats, vegetables, amounts, and temperatures. To assist

customers in navigating the complex options, its menu consisted of a series of questions that began something like

this:

Would you like white or wheat bread?

What kind of meats would you like?

Would you like American, Swiss, or provolone cheese?

Would you like your sandwich hot or cold?

What vegetables would you like?

The questions continued until the customer had given enough information for the restaurant to build the sandwich.

Why was this ordering system adopted? Instead of feeling swallowed by the entirety of the menu at once, customers

could attack the menu one bite at a time, to arrive at their desired sandwich.

Wizards, the corollary to the sandwich menu in the software world, guide users through a series of questions to

perform some action. Appearing inside a popup window, wizards display a sequence of "pages" that pose questions

and receive input. Users can navigate forward and backward through the pages, and, in some cases, can finish the

wizard before viewing or responding to some of the pages. Pages have an optional title, graphic, and description,

reserving a large area for controls that you, as a programmer, define. Buttons marked Back, Next, Finish, and Cancel

line the bottom of the window to provide navigation through the pages. Although not appropriate for all situations, the

hand-holding help that wizards provide can enable operations that would stump users if presented in a more traditional

format.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Launching Wizards

The wizard classes and interfaces, found in org.eclipse.jface.wizard, provide a solid foundation for building and

launching wizards. The WizardDialog class found in this package supplies the core of wizardry. Derived from

TitleAreaDialog, it creates the wizard window that contains the title, description, graphic, control area, and button bar.

Figure 20-1 shows a vanilla WizardDialog that labels the various parts of the wizard: the title, description, control area,

and image. If you don't specify an image, the wizard displays the three horizontal bars of different length shown in

Figure 20-1.

Figure 20-1: A WizardDialog

If you desire a different look or feel for your wizard, you can subclass WizardDialog to create your own implementation.

Usually, though, you'll use the stock dialog. You construct a WizardDialog, passing the parent shell and the wizard

(covered in the next section), then call open(). The open() method returns IDialogConstants.OK_ID if the user clicks

Finish on the wizard. Otherwise, it returns IDialogConstants.CANCEL_ID. The code to create and open a wizard looks

like this:

WizardDialog dlg = new WizardDialog(shell, myWizard);

int rc = dlg.open();

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig816%5F01%5F0%2Ejpg

Conjuring Wizards

A JFace wizard relies on a nonvisual interface, IWizard, to manage the wizard pages and act as a liaison between the

dialog and the pages. You can write your own IWizard implementation from scratch, writing definitions for all the

IWizard methods listed in Table 20-1.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Table 20-1: IWizard Methods

Method Description

void addPages() Called immediately before the wizard displays. In this method, you

should add any pages to your wizard.

boolean canFinish() In this method, you should return true if the Finish button should be

enabled. Otherwise, return false.

void createPageControls(Composite

pageContainer)
In this method, you should create the controls for the control areas

of all the pages.

void dispose() In this method, you should dispose any resources you create.

IWizardContainer getContainer() In this method, you should return this wizard's container.

Image getDefaultPageImage() In this method, you should return the default image for the pages.

IDialogSettings getDialogSettings() In this method, you should return the settings for this wizard's dialog.

IWizardPage

getNextPage(IWizardPage page)
In this method, you should return the page that succeeds the

specified page.

IWizardPage getPage(String

pageName)
In this method, you should return the page that corresponds to the

specified name.

int getPageCount() In this method, you should return the number of pages in this wizard.

IWizardPage[] getPages() In this method, you should return all the pages in this wizard.

IWizardPage

getPreviousPage(IWizardPage page)
In this method, you should return the page that precedes the

specified page.

IWizardPage getStartingPage() In this method, you should return the first page in this wizard.

RGB getTitleBarColor() In this method, you should return an RGB instance that represents

the color used for the title bar of this wizard's dialog.

String getWindowTitle() In this method, you should return the window title for this wizard.

boolean isHelpAvailable() In this method, you should return true if help is available for this

wizard. Otherwise, return false.

boolean

needsPreviousAndNextButtons()
In this method, you should return true if this wizard should display

Previous and Next buttons in the button bar (that is, if this wizard

has more than one page). Otherwise, return false.

boolean needsProgressMonitor() In this method, you should return true if this wizard should display a

progress monitor. Otherwise, return false.

boolean performCancel() Called when the user clicks Cancel. In this method, you should

return true if the dialog should be dismissed. Otherwise, return false.

boolean performFinish() Called when the user clicks Finish. In this method, you should

return true if the dialog should be dismissed. Otherwise, return false.

void setContainer(IWizardContainer

container)
In this method, you should store the specified container to use as

this wizard's container.

If you think that implementing IWizard looks like a lot of work, you're right. Fortunately, the Eclipse team concurs, and

provides an abstract IWizard implementation for you called Wizard that provides usable implementations for every

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

IWizard method but one: performFinish(). To take advantage of the Eclipse team's work, subclass Wizard and provide an

implementation for the abstract method performFinish(). Your class might look like this:

public class MyWizard extends Wizard {

 public boolean performFinish() {

 // Perform the work this wizard was designed to do

 // Return true to close the wizard

 return true;

 }

}

Wizard adds a few new methods not found in the IWizard interface, listed in Table 20-2. Use these methods to add

pages, change the parent dialog's window title, or otherwise customize or interact with your wizard.

Table 20-2: Wizard Methods Not in IWizard

Method Description

void addPage(IWizardPage page) Adds the specified page to this wizard.

Shell getShell() Returns this wizard's shell.

void setDefaultPageImageDescriptor

(ImageDescriptor imageDescriptor)
Sets the default image for each page by using an image

descriptor.

void setDialogSettings(IDialogSettings

settings)
Sets the dialog settings for this wizard.

void setForcePreviousAndNextButtons

(boolean force)
If force is true, forces the Previous and Next buttons to display,

even if they normally wouldn't have been displayed. Otherwise,

doesn't force the display of Previous and Next.

void setHelpAvailable(boolean

helpAvailable)
If helpAvailable is true, sets help available. Otherwise, sets help

unavailable.

void setNeedsProgressMonitor(boolean

needs)
If needs is true, makes this wizard display a progress monitor

while completing the action. Otherwise, doesn't display a

progress monitor. Use this with WizardDialog.run() and

IRunnableWithProgress. See Chapter 15 for more information.

void setTitleBarColor(RGB color) Sets the RGB value to use for the title bar color. Although calling

this method might seem to change the title bar color, in practice

this does nothing. However, perhaps the implementation has not

yet been completed.

void setWindowTitle(String newTitle) Sets the title for the window.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Adding Wizard Pages

A wizard presents a series of pages that users work through sequentially to provide the necessary information for the

wizard to perform its task. Each page displays a set of controls to elicit and receive input. The IWizardPage interface

represents a page, and contains the methods listed in Table 20-3.

Table 20-3: IWizardPage Methods

Method Description

boolean

canFlipToNextPage()
In this method, you should return true if the user can click Next to go to the

next page. Otherwise, return false.

String getName() In this method, you should return a name for the page that's unique across

the wizard. The wizard uses the page name as the page's key.

IWizardPage getNextPage() In this method, you should return the page that the wizard should display

when the user clicks Next.

IWizardPage

getPreviousPage()
In this method, you should return the page that the wizard should display

when the user clicks Back.

IWizard getWizard() In this method, you should return the wizard that contains this page.

boolean isPageComplete() In this method, you should return true if the information on this page is

complete. Otherwise, return false. The wizard uses the completion status of

all its pages to determine whether to enable the Finish button.

void setPreviousPage

(IWizardPage page)
In this method, you should set the previous page (the one that displays when

the user clicks Back) to the specified page.

void setWizard(IWizard

wizard)
In this method, you should set the containing wizard to the specified wizard.

The list of methods seems reasonable enough to entice you to break out your editor and start coding an

implementation. However, IWizardPage inherits from IDialogPage, so you must also implement IDialogPage's methods,

listed in Table 20-4.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table 20-4: IDialogPage Methods

Method Description

void createControl(Composite

parent)
In this method, you should create the controls for this page as children of

a single control whose parent is the specified parent.

void dispose() In this method, you should dispose any resources you create.

Control getControl() In this method, you should return the parent control for the controls in this

page.

String getDescription() In this method, you should return the description for this page.

String getErrorMessage() In this method, you should return the error message for this page.

Image getImage() In this method, you should return the image for this page.

String getMessage() In this method, you should return the message for this page.

String getTitle() In this method, you should return the title for this page.

void performHelp() Called when the user requests help, usually by pressing F1 on the

keyboard. In this method, you should display the help for this page. No

help infrastructure is provided, so you're on your own for how to display

help, whether you launch an HTML page, show a dialog box, or use some

other method.

void setDescription(String

description)
In this method, you should set the description for this page to the specified

description.

void setImageDescriptor(Image

Descriptor descriptor)
In this method, you should set the image descriptor for this page to the

specified image descriptor.

void setTitle(String title) In this method, you should set the title for this page to the specified title.

void setVisible(boolean visible) In this method, you should set this page to visible if visible is true.

Otherwise, set this page to hidden.

This much work tempts us to seek help. Again, the Eclipse team comes to the rescue, offering the WizardPage class

that implements almost all the necessary methods for a page. You subclass WizardPage and provide, at a minimum,

both a public constructor and a createControl() implementation. Your constructor should call one of the two WizardPage

constructors, both of which are protected, listed in Table 20-5.

Table 20-5: WizardPage Constructors

Constructor Description

WizardPage(String pageName) Constructs a wizard page with the specified name

WizardPage(String pageName, String title,

ImageDescriptor titleImage)
Constructs a wizard page with the specified name,

title, and image

Your createControl() implementation should create the page's controls as children of a parent control. You must then

pass that parent control to the page's setControl() method, or your wizard will throw an AssertionFailedException when

launched.

Caution You must call setControl() in your createControl() implementation, passing the parent control, or your wizard

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

won't display.

For example, your WizardPage class might look like this:

public class MyWizardPage extends WizardPage {

 public MyWizardPage() {

 super("My Wizard");

 }

 public void createControl(Composite parent) {

 // Create the parent control

 Composite composite = new Composite(parent, SWT.NONE);

 composite.setLayout(new GridLayout(2, false));

 // Create some controls

 new Label(composite, SWT.LEFT).setText("Field #1:");

 Text field1 = new Text(composite, SWT.BORDER | SWT.SINGLE);

 field1.setLayoutData(new GridData(GridData.FILL_BOTH));

 new Label(composite, SWT.LEFT).setText("Field #2:");

 Text field2 = new Text(composite, SWT.BORDER | SWT.SINGLE);

 field2.setLayoutData(new GridData(GridData.FILL_BOTH));

 // Important!

 setControl(composite);

 }

}

You can set an error message, a message, and a description in each page. However, unless you subclass

WizardDialog and lay the dialog out differently, only one of the three displays. If an error message has been set for the

page, WizardDialog shows it. If not, but a message has been set, the message displays. Finally, if no message has

been set, but a description has, the description displays.

A typical page displays a title, description, and image. It also shows an error message if users input bad data. For

example, the page in Listing 20-1 displays a page with a title, description, and image. It asks the user to type a string

of consonants. If the user types a vowel, an error message displays. Finally, if the user requests help, a help message

displays.

Listing 20-1: ConsonantPage.java

package examples.ch20;

package examples.ch20;

import org.eclipse.jface.dialogs.MessageDialog;

import org.eclipse.jface.resource.ImageDescriptor;

import org.eclipse.jface.wizard.WizardPage;

import org.eclipse.swt.SWT;

import org.eclipse.swt.events.*;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.widgets.*;

/**

 * This page requests a string of consonants

 */

public class ConsonantPage extends WizardPage {

 /**

 * ConsonantPage constructor

 */

 public ConsonantPage() {

 // Set the name, title, and image

 super("Consonant", "Consonant", ImageDescriptor.createFromFile(

 ConsonantPage.class, "/images/consonant.gif"));

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 // Set the description

 setDescription("Enter a string of consonants");

 }

 /**

 * Creates the controls

 *

 * @param parent the parent composite

 */

 public void createControl(Composite parent) {

 Composite composite = new Composite(parent, SWT.NONE);

 composite.setLayout(new GridLayout(2, false));

 // Add the label and entry field

 new Label(composite, SWT.LEFT).setText("Consonants:");

 Text text = new Text(composite, SWT.BORDER);

 text.setLayoutData(new GridData(GridData.FILL_HORIZONTAL));

 // Add a listener to detect when text changes, so we can check for vowels

 text.addModifyListener(new ModifyListener() {

 public void modifyText(ModifyEvent event) {

 String s = ((Text) event.widget).getText().toUpperCase();

 if (s.length() > 0

 && (s.indexOf('A') != -1 || s.indexOf('E') != -1

 || s.indexOf('I') != -1 || s.indexOf('O') != -1 ||

 s.indexOf('U') != -1)) {

 setErrorMessage("You must enter only consonants");

 } else {

 setErrorMessage(null);

 }

 }

 });

 setControl(composite);

 }

 /**

 * Displays the help

 */

 public void performHelp() {

 MessageDialog.openInformation(getWizard().getContainer().getShell(),

 "Consonant Help", "Enter consonants in the text box");

 }

}

Figure 20-2 shows the consonant page. Figure 20-3 shows the same page, but with some vowels entered. Notice the

error message that displays.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Figure 20-2: The consonant page

Figure 20-3: The consonant page with an error message

To add the pages to your wizard, call Wizard.addPage() in your wizard's constructor. The wizard maintains the pages in

the same order you add them. For example, to add two pages to your wizard, use a constructor like this:

public MyWizard() {

 super("My Page");

 addPage(new FirstPage());

 addPage(new SecondPage());

}

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig823%5F01%5F0%2Ejpg
file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig824%5F01%5F0%2Ejpg

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Customizing Navigation

You might require users to traverse through your pages sequentially, from beginning to end, before they can click

Finish. In that case, you set the pages incomplete by calling setComplete(false) until they've entered all the necessary

information on them. The wizard enables its Finish button only when all pages report a complete status. However, if

you can swallow a user's clicking Finish before entering data on all pages, you'll have to do no extra work.

In some cases, choices that users make on a page affect which page follows. For example, you might be running a

survey concerning job satisfaction. The first page might ask if users have any complaints about their present job. If

they select No, the wizard might bypass any other page and go directly to the final page of the wizard, one that thanks

the user for participating in the survey. To change the page that displays next, override the getNextPage() method from

IWizardPage. Your implementation might look like this:

public IWizardPage getNextPage() {

 if (hasComplaints) {

 // Go to the normal next page

 return super.getNextPage();

 }

 // No complaints? Get out!

 return getWizard.getPage("Thanks");

}

The Survey program uses this technique to skip the survey if the user has no complaints. Its first page asks if the user

has any complaints. If so, it shows the second page, which gathers more information. Typical to many surveys,

however, it jettisons any information the user types. If the user has no complaints, it skips to the final page.

The Survey program also demonstrates how to use a wizard as the main window of your program (see Listing 20-2). It

creates a Shell instance to parent the wizard dialog, but never opens the shell.

Listing 20-2: Survey.java

package examples.ch20;

import org.eclipse.jface.wizard.WizardDialog;

import org.eclipse.swt.widgets.*;

/**

 * This class displays a survey using a wizard

 */

public class Survey {

 /**

 * Runs the application

 */

 public void run() {

 Display display = new Display();

 // Create the parent shell for the dialog, but don't show it

 Shell shell = new Shell(display);

 // Create the dialog

 WizardDialog dlg = new WizardDialog(shell, new SurveyWizard());

 dlg.open();

 // Dispose the display

 display.dispose();

 }

 /**

 * The application entry point

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 *

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 new Survey().run();

 }

}

The SurveyWizard class in Listing 20-3 creates and adds the three pages. It does nothing when the user clicks Finish

except close the wizard.

Listing 20-3: SurveyWizard.java

package examples.ch20;

import org.eclipse.jface.wizard.Wizard;

/**

 * This class shows a satisfaction survey

 */

public class SurveyWizard extends Wizard {

 public SurveyWizard() {

 // Add the pages

 addPage(new ComplaintsPage());

 addPage(new MoreInformationPage());

 addPage(new ThanksPage());

 }

 /**

 * Called when user clicks Finish

 *

 * @return boolean

 */

 public boolean performFinish() {

 // Dismiss the wizard

 return true;

 }

}

The first page in the wizard, ComplaintsPage, asks users if they have any complaints. It provides Yes and No radio

buttons to gather the response. If the user selects Yes, the wizard proceeds normally. However, if the user selects No,

the wizard bypasses the rest of the survey and jumps to the final page. You find the logic to accomplish this navigation

trick in getNextPage(). Listing 20-4 contains the code.

Listing 20-4: ComplaintsPage.java

package examples.ch20;

import org.eclipse.jface.wizard.IWizardPage;

import org.eclipse.jface.wizard.WizardPage;

import org.eclipse.swt.SWT;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.widgets.*;

/**

 * This class determines if the user has complaints. If not, it jumps to the last

 * page of the wizard

 */

public class ComplaintsPage extends WizardPage {

 private Button yes;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 private Button no;

 /**

 * ComplaintsPage constructor

 */

 public ComplaintsPage() {

 super("Complaints");

 }

 /**

 * Creates the page controls

 */

 public void createControl(Composite parent) {

 Composite composite = new Composite(parent, SWT.NONE);

 composite.setLayout(new GridLayout(2, true));

 new Label(composite, SWT.LEFT).setText("Do you have complaints?");

 Composite yesNo = new Composite(composite, SWT.NONE);

 yesNo.setLayout(new FillLayout(SWT.VERTICAL));

 yes = new Button(yesNo, SWT.RADIO);

 yes.setText("Yes");

 no = new Button(yesNo, SWT.RADIO);

 no.setText("No");

 setControl(composite);

 }

 public IWizardPage getNextPage() {

 // If they have complaints, go to the normal next page

 if (yes.getSelection()) { return super.getNextPage(); }

 // No complaints? Short-circuit the rest of the pages

 return getWizard().getPage("Thanks");

 }

}

The second page, which constitutes the survey, asks the user to enter more information about any complaints. It does

nothing with the information, but we've come to expect that. Listing 20-5 contains the code.

Listing 20-5: MoreInformation.java

package examples.ch20;

import org.eclipse.jface.wizard.WizardPage;

import org.eclipse.swt.SWT;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.widgets.*;

/**

 * This page gathers more information about the complaint

 */

public class MoreInformationPage extends WizardPage {

 /**

 * MoreInformationPage constructor

 */

 public MoreInformationPage() {

 super("More Info");

 }

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 /**

 * Creates the controls for this page

 */

 public void createControl(Composite parent) {

 Composite composite = new Composite(parent, SWT.NONE);

 composite.setLayout(new GridLayout(1, false));

 new Label(composite, SWT.LEFT).setText("Please enter your complaints");

 Text text = new Text(composite, SWT.MULTI | SWT.BORDER | SWT.V_SCROLL);

 text.setLayoutData(new GridData(GridData.FILL_BOTH));

 setControl(composite);

 }

}

Finally, the ThanksPage class in Listing 20-6 displays the final page in the wizard. It thanks the user.

Listing 20-6: ThanksPage.java

package examples.ch20;

import org.eclipse.jface.wizard.WizardPage;

import org.eclipse.swt.SWT;

import org.eclipse.swt.widgets.Composite;

import org.eclipse.swt.widgets.Label;

/**

 * This page thanks the user for taking the survey

 */

public class ThanksPage extends WizardPage {

 /**

 * ThanksPage constructor

 */

 public ThanksPage() {

 super("Thanks");

 }

 /**

 * Creates the controls for this page

 */

 public void createControl(Composite parent) {

 Label label = new Label(parent, SWT.CENTER);

 label.setText("Thanks!");

 setControl(label);

 }

}

Figure 20-4 shows the first page of the wizard. Figure 20-5 shows the second page—the page that's skipped when the

user has no complaints. Figure 20-6 shows the wizard's final page, thanking the user for taking the survey.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Figure 20-4: The Complaints page

Figure 20-5: The More Information page.You won't see this page if you have no complaints.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig829%5F01%5F0%2Ejpg
file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig830%5F01%5F0%2Ejpg

Figure 20-6: Thanking the user

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig830%5F02%5F0%2Ejpg

Performing the Work

When the user clicks the Finish button, you should perform the work the wizard intends. Because WizardDialog.open()

returns IDialogConstants.OK_ID only if the user clicks Finish, you can put the code to perform the wizard work in the

code that launches the wizard, like this:

WizardDialog dlg = new WizardDialog(shell, myWizard);

int rc = dlg.open();

if (rc == IDialogConstants.OK_ID) {

 // User clicked Finish--perform the work

} else {

 // User clicked Cancel--do nothing

}

However, the wizard framework offers a better solution, one that encapsulates the wizard work within the wizard:

IWizard's performFinish() method. The wizard framework calls this method, which returns true to dismiss the wizard or

false to keep the wizard alive, when the user clicks Finish. Performing the work inside your IWizard implementation

preserves the wizard work code with the rest of the wizard code. Besides, because you must implement performFinish()

anyway, you might as well perform the work there.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Witnessing a Wizard

The AddressBook application displays a list of people and e-mail addresses. It uses a wizard to allow users to add

address-book entries. To maintain focus on wizards, AddressBook omits functionality necessary for a usable

application. For example, it incorporates no persistence, so any address-book entries you add drop into the bit bucket

when the application closes. It has no menu, and provides no way to edit or delete an existing entry. In fact, it offers

only one command: add an entry by launching the Add Entry wizard. To execute the command, click the plus sign in

the toolbar.

The wizard class, AddEntryWizard, adds three pages in its constructor: a welcome page, a name entry page, and an

e-mail address entry page. It also sets the dialog window's title. Its implementation of performFinish() creates an

address-book entry, sets the input data into it, and adds it to the application. Listing 20-7 contains AddEntryWizard's

code.

Listing 20-7: AddEntryWizard.java

package examples.ch20;

import org.eclipse.jface.wizard.Wizard;

/**

 * This class represents the wizard for adding entries to the address book

 */

public class AddEntryWizard extends Wizard {

 // The pages in the wizard

 private WelcomePage welcomePage;

 private NamePage namePage;

 private EmailPage emailPage;

 /**

 * AddEntryWizard constructor

 */

 public AddEntryWizard() {

 // Create the pages

 welcomePage = new WelcomePage();

 namePage = new NamePage();

 emailPage = new EmailPage();

 // Add the pages to the wizard

 addPage(welcomePage);

 addPage(namePage);

 addPage(emailPage);

 // Set the dialog window title

 setWindowTitle("Address Book Entry Wizard");

 }

 /**

 * Called when the user clicks Finish. Creates the entry in the address book

 */

 public boolean performFinish() {

 // Create the entry based on the inputs

 AddressEntry entry = new AddressEntry();

 entry.setFirstName(namePage.getFirstName());

 entry.setLastName(namePage.getLastName());

 entry.setEmail(emailPage.getEmail());

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 AddressBook.getApp().add(entry);

 // Return true to exit wizard

 return true;

 }

}

The first page in the wizard, WelcomePage, displays a welcome page that requests no information from the user (see

Listing 20-8). It displays some descriptive text.

Listing 20-8: WelcomePage.java

package examples.ch20;

import org.eclipse.jface.resource.ImageDescriptor;

import org.eclipse.jface.wizard.WizardPage;

import org.eclipse.swt.SWT;

import org.eclipse.swt.layout.FillLayout;

import org.eclipse.swt.widgets.*;

/**

 * This page displays a welcome message

 */

public class WelcomePage extends WizardPage {

 /**

 * WelcomePage constructor

 */

 protected WelcomePage() {

 super("Welcome", "Welcome", ImageDescriptor.createFromFile(WelcomePage.class,

 "/images/welcome.gif"));

 setDescription("Welcome to the Address Book Entry Wizard");

 }

 /**

 * Creates the page contents

 *

 * @param parent the parent composite

 */

 public void createControl(Composite parent) {

 Composite composite = new Composite(parent, SWT.NONE);

 composite.setLayout(new FillLayout(SWT.VERTICAL));

 new Label(composite, SWT.CENTER)

 .setText("Welcome to the Address Book Entry Wizard!");

 new Label(composite, SWT.LEFT)

 .setText("This wizard guides you through creating an Address Book entry.");

 new Label(composite, SWT.LEFT).setText("Click Next to continue.");

 setControl(composite);

 }

}

The second page in the wizard, NamePage, displays two text-entry fields: one for first name and one for last name. It

doesn't allow users to advance to the next page until they enter first and last names. Listing 20-9 shows the code.

Listing 20-9: NamePage.java

package examples.ch20;

import org.eclipse.jface.resource.ImageDescriptor;

import org.eclipse.jface.wizard.WizardPage;

import org.eclipse.swt.SWT;

import org.eclipse.swt.events.*;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

import org.eclipse.swt.layout.*;

import org.eclipse.swt.widgets.*;

/**

 * This page collects the first and last names

 */

public class NamePage extends WizardPage {

 // The first and last names

 private String firstName = "";

 private String lastName = "";

 /**

 * NamePage constructor

 */

 public NamePage() {

 super("Name", "Name", ImageDescriptor.createFromFile(NamePage.class,

 "/images/name.gif"));

 setDescription("Enter the first and last names");

 setPageComplete(false);

 }

 /**

 * Creates the page contents

 *

 * @param parent the parent composite

 */

 public void createControl(Composite parent) {

 Composite composite = new Composite(parent, SWT.NONE);

 composite.setLayout(new GridLayout(2, false));

 // Create the label and text field for first name

 new Label(composite, SWT.LEFT).setText("First Name:");

 final Text first = new Text(composite, SWT.BORDER);

 first.setLayoutData(new GridData(GridData.FILL_HORIZONTAL));

 // Create the label and text field for last name

 new Label(composite, SWT.LEFT).setText("Last Name:");

 final Text last = new Text(composite, SWT.BORDER);

 last.setLayoutData(new GridData(GridData.FILL_HORIZONTAL));

 // Add the handler to update the first name based on input

 first.addModifyListener(new ModifyListener() {

 public void modifyText(ModifyEvent event) {

 firstName = first.getText();

 setPageComplete(firstName.length() > 0 && lastName.length() > 0);

 }

 });

 // Add the handler to update the last name based on input

 last.addModifyListener(new ModifyListener() {

 public void modifyText(ModifyEvent event) {

 lastName = last.getText();

 setPageComplete(firstName.length() > 0 && lastName.length() > 0);

 }

 });

 setControl(composite);

 }

 /**

 * Gets the first name

 *

 * @return String

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 */

 public String getFirstName() {

 return firstName;

 }

 /**

 * Gets the last name

 *

 * @return String

 */

 public String getLastName() {

 return lastName;

 }

}

The final page in the wizard, EmailPage, shows a single text field for entering the e-mail address for the entry (see

Listing 20-10). It prevents users from finishing the wizard until they've entered an e-mail address.

Listing 20-10: EmailPage.java

package examples.ch20;

import org.eclipse.jface.resource.ImageDescriptor;

import org.eclipse.jface.wizard.WizardPage;

import org.eclipse.swt.SWT;

import org.eclipse.swt.events.*;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.widgets.*;

/**

 * This page collects the e-mail address

 */

public class EmailPage extends WizardPage {

 // The e-mail address

 private String email = "";

 /**

 * EmailPage constructor

 */

 public EmailPage() {

 super("E-mail", "E-mail Address", ImageDescriptor.createFromFile(

 EmailPage.class, "/images/email.gif"));

 setDescription("Enter the e-mail address");

 // Page isn't complete until an e-mail address has been added

 setPageComplete(false);

 }

 /**

 * Creates the contents of the page

 *

 * @param parent the parent composite

 */

 public void createControl(Composite parent) {

 Composite composite = new Composite(parent, SWT.NONE);

 composite.setLayout(new GridLayout(2, false));

 // Create the label and text box to hold e-mail address

 new Label(composite, SWT.LEFT).setText("E-mail Address:");

 final Text ea = new Text(composite, SWT.BORDER);

 ea.setLayoutData(new GridData(GridData.FILL_HORIZONTAL));

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 // Add handler to update e-mail based on input

 ea.addModifyListener(new ModifyListener() {

 public void modifyText(ModifyEvent event) {

 email = ea.getText();

 setPageComplete(email.length() > 0);

 }

 });

 setControl(composite);

 }

 /**

 * Gets the e-mail

 *

 * @return String

 */

 public String getEmail() {

 return email;

 }

}

The AddressEntry class in Listing 20-11 contains the data for a single address-book entry: a first name, last name, and

e-mail address. It provides corresponding accessors and mutators.

Listing 20-11: AddressEntry.java

package examples.ch20;

/**

 * This class contains an entry in the Address Book

 */

public class AddressEntry {

 private String lastName;

 private String firstName;

 private String email;

 /**

 * Gets the e-mail

 *

 * @return String

 */

 public String getEmail() {

 return email;

 }

 /**

 * Sets the e-mail

 *

 * @param email The email to set.

 */

 public void setEmail(String email) {

 this.email = email;

 }

 /**

 * Gets the first name

 *

 * @return String

 */

 public String getFirstName() {

 return firstName;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 }

 /**

 * Sets the first name

 *

 * @param firstName The firstName to set.

 */

 public void setFirstName(String firstName) {

 this.firstName = firstName;

 }

 /**

 * Gets the last name

 *

 * @return String

 */

 public String getLastName() {

 return lastName;

 }

 /**

 * Sets the last name

 *

 * @param lastName The lastName to set.

 */

 public void setLastName(String lastName) {

 this.lastName = lastName;

 }

}

The application uses the AddEntryAction class from Listing 20-12 to launch the wizard. This action class creates a new

AddEntryWizard instance, wraps it in a WizardDialog, and quickly gets out of the way so the wizard can do its work.

Listing 20-12: AddEntryAction.java

package examples.ch20;

import org.eclipse.jface.action.Action;

import org.eclipse.jface.resource.ImageDescriptor;

import org.eclipse.jface.wizard.WizardDialog;

/**

 * This class launches the add entry wizard

 */

public class AddEntryAction extends Action {

 /**

 * AddEntryAction constructor

 */

 public AddEntryAction() {

 super("Add Entry", ImageDescriptor.createFromFile(AddEntryAction.class,

 "/images/addEntry.gif"));

 setToolTipText("Add Entry");

 }

 /**

 * Runs the action

 */

 public void run() {

 WizardDialog dlg = new WizardDialog(AddressBook.getApp().getShell(),

 new AddEntryWizard());

 dlg.open();

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 }

}

AddressBook displays the address book in a TableViewer. Listing 20-13 shows the TableViewer's content provider,

AddressBookContentProvider, and Listing 20-14 shows the label provider, AddressBookLabelProvider.

Listing 20-13: AddressBookContentProvider.java

package examples.ch20;

import java.util.*;

import org.eclipse.jface.viewers.IStructuredContentProvider;

import org.eclipse.jface.viewers.Viewer;

/**

 * This class provides the content for the AddressBook application

 */

public class AddressBookContentProvider implements IStructuredContentProvider {

 /**

 * Gets the elements

 *

 * @param inputElement the List of elements

 * @return Object[]

 */

 public Object[] getElements(Object inputElement) {

 return ((List) inputElement).toArray();

 }

 /**

 * Disposes any resources

 */

 public void dispose() {

 // Do nothing

 }

 /**

 * Called when the input changes

 *

 * @param viewer the viewer

 * @param oldInput the old input

 * @param newInput the new input

 */

 public void inputChanged(Viewer viewer, Object oldInput, Object newInput) {

 // Do nothing

 }

}

Listing 20-14: AddressBookLabelProvider.java

package examples.ch20;

import org.eclipse.jface.viewers.ILabelProviderListener;

import org.eclipse.jface.viewers.ITableLabelProvider;

import org.eclipse.swt.graphics.Image;

/**

 * This class provides the labels for the Address Book application

 */

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

public class AddressBookLabelProvider implements ITableLabelProvider {

 /**

 * Gets the image for the column

 *

 * @param element the element

 * @param columnIndex the column index

 */

 public Image getColumnImage(Object element, int columnIndex) {

 return null;

 }

 /**

 * Gets the text for the column

 *

 * @param element the element

 * @param columnIndex the column index

 */

 public String getColumnText(Object element, int columnIndex) {

 AddressEntry ae = (AddressEntry) element;

 switch (columnIndex) {

 case 0:

 return ae.getFirstName();

 case 1:

 return ae.getLastName();

 case 2:

 return ae.getEmail();

 }

 return "";

 }

 /**

 * Adds a listener

 *

 * @param listener the listener

 */

 public void addListener(ILabelProviderListener listener) {

 // Do nothing

 }

 /**

 * Disposes any resources

 */

 public void dispose() {

 // Do nothing

 }

 /**

 * Returns true if changing the property for the element would change the label

 *

 * @param element the element

 * @param property the property

 */

 public boolean isLabelProperty(Object element, String property) {

 return false;

 }

 /**

 * Removes a listener

 *

 * @param listener the listener

 */

 public void removeListener(ILabelProviderListener listener) {

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 // Do nothing

 }

}

Lastly, the AddressBook application provides the entry point and launches the main window (see Listing 20-15).

Listing 20-15: AddressBook.java

package examples.ch20;

import java.util.*;

import org.eclipse.jface.action.*;

import org.eclipse.jface.viewers.*;

import org.eclipse.jface.window.ApplicationWindow;

import org.eclipse.swt.SWT;

import org.eclipse.swt.widgets.*;

/**

 * This class displays an address book, using a wizard to add a new entry

 */

public class AddressBook extends ApplicationWindow {

 // The running instance of the application

 private static AddressBook APP;

 // The action that launches the wizard

 AddEntryAction addEntryAction;

 // The entries in the address book

 java.util.List entries;

 // The view

 private TableViewer viewer;

 /**

 * AddressBook constructor

 */

 public AddressBook() {

 super(null);

 // Store a reference to the running app

 APP = this;

 // Create the action and the entries collection

 addEntryAction = new AddEntryAction();

 entries = new LinkedList();

 // Create the toolbar

 addToolBar(SWT.NONE);

 }

 /**

 * Gets a reference to the running application

 *

 * @return AddressBook

 */

 public static AddressBook getApp() {

 return APP;

 }

 /**

 * Runs the application

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 */

 public void run() {

 // Don't return from open() until window closes

 setBlockOnOpen(true);

 // Open the main window

 open();

 // Dispose the display

 Display.getCurrent().dispose();

 }

 /**

 * Adds an entry

 *

 * @param entry the entry

 */

 public void add(AddressEntry entry) {

 entries.add(entry);

 refresh();

 }

 /**

 * Configures the shell

 *

 * @param shell the shell

 */

 protected void configureShell(Shell shell) {

 super.configureShell(shell);

 // Set the title bar text

 shell.setText("Address Book");

 shell.setSize(600, 400);

 }

 /**

 * Creates the main window's contents

 *

 * @param parent the main window

 * @return Control

 */

 protected Control createContents(Composite parent) {

 // Create the table viewer

 viewer = new TableViewer(parent);

 viewer.setContentProvider(new AddressBookContentProvider());

 viewer.setLabelProvider(new AddressBookLabelProvider());

 viewer.setInput(entries);

 // Set up the table

 Table table = viewer.getTable();

 new TableColumn(table, SWT.LEFT).setText("First Name");

 new TableColumn(table, SWT.LEFT).setText("Last Name");

 new TableColumn(table, SWT.LEFT).setText("E-mail Address");

 table.setHeaderVisible(true);

 table.setLinesVisible(true);

 // Update the column widths

 refresh();

 return table;

 }

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 /**

 * Creates the toolbar

 *

 * @param style the toolbar style

 * @return ToolBarManager

 */

 protected ToolBarManager createToolBarManager(int style) {

 ToolBarManager tbm = new ToolBarManager(style);

 // Add the action to launch the wizard

 tbm.add(addEntryAction);

 return tbm;

 }

 /**

 * Updates the column widths

 */

 private void refresh() {

 viewer.refresh();

 // Pack the columns

 Table table = viewer.getTable();

 for (int i = 0, n = table.getColumnCount(); i < n; i++) {

 table.getColumn(i).pack();

 }

 }

 /**

 * The application entry point

 *

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 new AddressBook().run();

 }

}

Figure 20-7 shows the Welcome page in the wizard. Notice that the Finish button is disabled; you can't finish the

wizard prematurely. You must enter first name, last name, and e-mail address. Figure 20-8 shows the Name page,

which appears after the Welcome page. Until you enter something for both first and last name, you can't click Next.

The E-mail page, shown in Figure 20-9, never enables the Next button, as it's the last page in the wizard. After you

enter an e-mail address, click Finish to add the entry to the address book. Figure 20-10 shows the Address Book with

the authors' names and e-mail addresses.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Figure 20-7: The Welcome page

Figure 20-8: The Name page

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig844%5F01%5F0%2Ejpg
file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig844%5F02%5F0%2Ejpg

Figure 20-9: The E-mail page

Figure 20-10: The Address Book

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig845%5F01%5F0%2Ejpg
file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/images/fig845%5F02%5F0%2Ejpg

Summary

Computer jocks—those that read Slashdot and use nonwords such as 1337—scorn wizards. When developing

applications for that crowd, remember to make any operations difficult, to preserve the jocks' sense of power and

exclusivity. For normal people, however, judiciously applied wizards can provide the necessary assistance for certain

operations. Users who need the help will thank you.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Index

A
Abstract Windowing Toolkit (AWT), 1?2, 3, 5, 49

actions. See user interaction

Add External JARs button, 19?20

add() method, 233, 340

AddEntryAction class, 815

AddEntryWizard class, 809, 815

addExtendedModifyListener() method, 449

addLineStyleListener() method, 460

addListener() method, 152

addMenuBar() method, 549

addModifyListener() method, 449

AddressBook application, 809?823

addVerifyKeyListener() method, 446

addWord() method, 769

advanced controls, 213?278

combining, 275?277

coolbars, 242?250

coolitems, 243?250

creating, 242?243

decorations, 213?219

creating, 214?216

displaying, 216?219

overview, 213

sashes, 250?255

creating, 250?254

sash stick, 254?255

tables, 255?268

adding columns, 259?260

adding rows, 260?266

creating, 255?258

putting widgets in cells, 268

sorting, 266?268

tabs, 219?27

adding content to, 220?227

creating, 220

toolbars, 227?241

creating feature-rich toolbars, 234?241

creating radio groups, 232

creating toolbars, 227?228

dropdowns, 232?234

plugging in tool items, 228?232

trees, 269?275

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

adding nodes, 270?275

creating trees, 269?270

Advanced-Browser program, 530

AIX platform, 8

alignment constant, 286

Ami word processor, 227

Animator program, 428?431

AnimatorDoubleBuffer, 428?431

Ant file, 30, 544

Apache Jakarta project, 31, 95

applets, 1, 2

ApplicationWindow class, 547, 548?549

ApplicationWindowLayout class, 547, 548

Apress Web site, 196, 768

ArcExample program, 384?387

arcHeight parameter, 378

arcs, drawing, 384?387

arcWidth parameter, 378

ArrayIndexOutOfBoundsException, 219

ASCII characters, 259, 262

AsciiTable application, 262?266

Assert class, 787

AssertionFailedException, 798

attachments, circular, 75

AWT (Abstract Windowing Toolkit), 1?2, 3, 5, 49

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Index

B
BadLocationException, 752

bar menus, 134, 137?138, 144, 148

bat.properties file, 473

BlankWindow program, 20, 25, 29

boolean cancel field, 527

BooleanFieldEditor, 725?726

BorderData object, 82, 83, 84, 90

BorderLayout class, 82, 83, 87, 90, 91

Brief key bindings, 443

Browser browser field, 526

Browser class, 518, 529

Browser method, 521?522

browsing. See Web browsing

browsing directories, 184?189

customizing Directory Selection dialog, 186?189

displaying Directory Selection dialog, 185?186

build.xml file, 30, 31, 32, 51, 545

busy cursor, 280

BusyIndicator class, 280?283

BusyIndicatorTest program, 280?283

Button class, 105?108, 173

ButtonExample program, 106?108

ButtonMethods, 106

Button API, 106

buttons, handling, 638

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Index

C
C++ object, 34

Canvas class, 370, 371?372

cascading dropdown menu, 144

CCombo, 283?286, 323

CellEditor, 592?606

example of, 595?605

using, 594?595

changed() method, 527, 529

changing() method, 527

check menu item, 143, 144

CheckboxTableViewer, 586?588

CheckboxTreeViewer, 569?572

ChooseColor program, 181?184

ChooseFont program, 201?204

circular attachments, 75

CLabel. See also custom controls

CLabel class, 286?295

configuring, 289?292

creating, 286?288

vs. Label, 288?289

in limited space, 293?295

methods of, 289?290

CLabelGradient program, 290?292

CLabelShort program, 293?295

CLabelTest program, 287?288

ClassCastException, 84

classes. See also helper classes

Class.getResourceAsStream() method, 419, 774

clipboard, 440?441

close() method, 43, 526, 527, 549

CloseWindowListener, 526?527

Collections.sort(list, comparator) method, 267

Color class, 180

Color objects, 180, 198, 290

ColorDialog, 180, 181

ColorfieldEditor, 726

ColorFont program, 404?406

ColorRegistry, 777, 778, 781

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

colors, 179?84

customizing Color Selection dialog, 181?184

displaying Color Selection dialog, 180?181

of text, 404?406, 766?767

ColumnLayout class, 58

columns, adding to tables, 259?260

Combo class, 117?121, 232?233

Combo object, 245

Combo widget, 283

ComboExample program, 119?121

Command-line arguments, 10

CommentScanner instance, 768

common dialog classes, 170

Common User Access (CUA) key bindings, 443

compare(Object obj1, Object obj2) method, 267

compile command, 30

completed() method, 529

Composite class, 33, 306, 352, 358

Composite object, 36, 50, 81, 82, 339

composite parameter, 81

Composite widget, 124

computeSize() method, 81, 82, 83, 84, 85, 91

configure() method, 766

configureShell() method, 548

connect() method, 764

Control class, 98?102

control editors, 312?333

controleditor, 313?319

TableEditor, 319?328

cleaning up, 322

exchanging data, 320?321

placing the editor, 321?322

putting it together, 323?328

using a button, 323

TableTreeEditor, 328?329

TreeEditor, 329?333

Control object, 72, 73

ControlEditor class, 313, 314, 319, 328, 329, 334, 400

ControlEditorTest program, 314?316

ControlEditorTestTwo program, 316?319

ControlListener, 157?160

ControlListenerExample program, 157?160

controls. See advanced controls; custom controls

cool items, 249, 250

CoolBar class, 242?243

coolbars, 242?250

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

coolitems, 243?250

creating, 242?243, 690?692

adding coolbars, 690?691

updating Librarian with coolbar, 691?692

CoolBarTest program, 245?250

CoolItem class, 242, 243?244

copy() method, 440?41

createContents() method, 252, 254, 332, 501, 547

createControl() method, 798, 799

createFromFile() method, 774, 775

createFromURL() method, 774, 775

createMenuManager() method, 549

createRotatedImage() method, 413

createRotatedText() method, 413, 416

createToolItem() method, 239

CTabFolder, 295?305

adding CTabItems, 299

configuring, 296?298

configuring CTabItem, 299?305

creating, 296

CTabFolderListener, 300

CTabFolder.redraw() method, 298

CTabItems, 295, 299

adding, 299

configuring, 299?305

CUA (Common User Access) key bindings, 443

cursor, busy, 280

custom controls, 279?368. See also control editors

BusyIndicator class, 280?283

CCombo class, 283?286

CLabel class, 286?295

configuring, 289?292

creating, 286?288

Label vs. CLabel, 288?289

in limited space, 293?295

creating usable example, 366?368

CTabFolder, 295?305

adding CTabItems, 299

configuring, 296?298

configuring CTabItem, 299?305

creating, 296

overview, 279?280

PopupList, 339?342

creating, 339?340

using, 340?342

SashForm, 343?351

configuring, 346?351

creating, 343?346

ScrolledComposite, 352?358

configuring, 357?358

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

creating, 352

sizing, 353?357

TableCursor, 334?339

creating, 334

using, 335?339

TableTree, 305?312

adding columns to, 309

adding items to, 307?309

creating, 305?307

using, 309?312

ViewForm, 358?366

configuring, 360?366

creating, 360

cut() method, 440?441

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Index

D
-data <directory> argument, 10

data editor, 312

Debug, 12

-debug argument, 10

decorations, 213?219

creating, 214?216

displaying, 216?219

DecorationsExample program, 216?219

DefaultDamagerRepairer class, 767

DefaultPartitioner class, 761, 764

DefaultUndoManager class, 750

desktop GUIs, 219

desktop icon, 9

Device class, 370, 419, 431?434, 506

Device object, 396

DeviceData object, 38

Dialog class, 204

dialogs, 169?212. See also JFace dialogs

browsing directories, 184?89

customizing Directory Selection dialog, 186?189

displaying Directory Selection dialog, 185?186

choosing colors, 179?184

customizing Color Selection dialog, 181?184

displaying Color Selection dialog, 180?181

choosing fonts, 198?204

customizing Font Selection dialog, 201?204

displaying Font Selection dialog, 199?201

creating own dialogs, 204?210

creating Dialog class, 204?228

using Dialog class, 209?210

displaying messages, 171?179

customizing message box, 175?179

displaying message box, 172?175

overview, 169

selecting files for open or save, 189?198

displaying open or save file dialog, 189?190

getting selected files, 192?193

overwriting existing files, 196?198

specifying file types and extensions, 190?192

specifying starting directory and file name, 192

using file dialogs, 193?196

using, 169?171

directories, browsing, 184?189

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

customizing Directory Selection dialog, 186?189

displaying Directory Selection dialog, 185?186

Directory Selection dialog, 184

customizing, 186?189

displaying, 185?186

DirectoryDialog methods, 185

DirectoryFieldEditor, 726

Display class, 38, 39?42, 431

Display object, 33, 38?42, 396, 774

display parameter, 280

Display.getCurrent().dispose() method, 547

Display.getSystemFont() method, 394

displaying text. See text

disposalMethod field, 420

dispose() method, 180, 398, 415

DisposeListener, 155?157

disposing widgets, 35?38

Djava.library.path argument, 20

dlg member variable, 197

DND. See dragging and dropping

DND library, 500

Document class, 739, 749

Document object, 744

Document Object Model (DOM), 276

doFind() method, 758

doit member, 448

DOM (Document Object Model), 276

double buffering, 428?431

dragging and dropping, 497?505

drag source, 497?499

dragging data, 503?505

drop target, 499?500

example of, 500?501

DragSource method, 498

DragSourceAdapter, 498

DragSourceListener, 498, 499

drawFocus() method class, 381

DrawHelveticaText program, 394?395, 396

drawImage() method, 425?426

DrawImages program, 426

drawing

images, 418?431

creating image from another image, 423?425

creating image from file, 419

creating image from ImageData, 419?423

double buffering, 428?431

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

empty images, 419

shapes, 370?390

arcs, 384?387

focus rectangle, 381

ovals, 381?384

points and lines, 373?377

polygons, 388?390

round rectangle, 378?380

text, 390?417

changing colors, 404?406

changing fonts, 394?395

creating fonts, 396?398

displaying text, 390?393

drawing vertical text, 406?417

getting font characteristics, 398?404

drawLine() method, 373

drawOval() method, 381

drawPoint() method, 375

drawPolygon() method, 388

drawPolyline() method, 374, 388

drawRectangle() method, 371

drawRoundRectangle() method, 378

drawString() method, 390, 393

drawText() method, 390, 391, 393, 395, 406, 413

DrawText program, 392?393

drawVerticalImage() method, 406?407

drawVerticalText() method, 406, 413, 428

drop target, 497, 500?501

dropdowns, 117, 134, 144, 148, 232?234

dropping. See dragging and dropping

DropTarget, 499

DropTargetAdapter, 500, 501

DropTargetListener, 499, 500, 501

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Index

E
Eclipse, 5, 7?26

alternatives to, 23?26

creating first program, 10?18

getting help, 22?23

installing, 8?10

overview, 7?8

SWT libraries, 18?21

Update Manager, 93

Web site, 8, 22

Eclipse Project Tool Builders Forum, 23

eclipse.swt.widgets.Label object, 29

editing text. See text

editors. See control editors; field editors

empty images, 419

ending offset, 465

errors. See JFace dialogs, showing errors

event handlers, 38, 335

Event object, 151, 321

EventListeners, 38

EventMembers, 151?152

events, 151?168

ControlListener, 157?160

DisposeListener, 155?157

FocusListener, 160?161

handling, 445?450

MouseListener, 162?164

MouseMoveListener, 162?164

MouseTrackListener, 162?164

overview, 151

SelectionListener, 155?157

typed listeners, 154?155

untyped listeners, 151?154

using several listeners, 164?168

eventType, 152

execute() method, 537

ExtendedModifyEvent fields, 450

ExtendedModifyListener, 445, 449, 450, 456, 465

Extensible Markup Language (XML) viewer application, 299

extensions, specifying, 190?192

Extents program, 400?404

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Index

F

field editors, 724?737

BooleanFieldEditor, 725?726

ColorfieldEditor, 726

DirectoryFieldEditor, 726

examples of, 732?737

FieldEditor, 725

FileFieldEditor, 727

FontFieldEditor, 727?728

IntegerFieldEditor, 728

PathEditor, 729

RadioGroupFieldEditor, 729?730

ScaleFieldEditor, 730?731

StringFieldEditor, 731?732

FieldEditor, 725

File dialog box, 196

File menu item, 144, 148

FileDialog, 189, 190, 196, 197

FileFieldEditor, 727

FileImageDescriptor, 774, 775

files

creating image from, 419

selecting for open or save, 189?198

displaying open or save file dialog, 189?190

getting selected files, 192?193

overwriting existing files, 196?198

specifying file types and extensions, 190?192

specifying starting directory and file name, 192

using file dialogs, 193?196

FillLayout class, 50?53, 94, 251?252

FillLayoutHorizontal.java file, 51

fillOval() method, 381

fillPolygon() method, 388

fillRectangle() method, 372?373

fillTable() helper method, 267

filters, 190?191

FIND_FIRST operation, 752

FIND_NEXT operation, 752

finding and replacing text, 751?759

findProgram() method, 537

findReplace() method, 751?752, 758

FindReplaceDialog, 753, 758?759

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

FindReplaceDocumentAdapter, 751, 752, 753

FindReplaceOperationCode, 751

flags parameter, 391

flickering, 428

flushCache parameter, 82

focus rectangle, 381

FocusListener, 160?161

Font class, 198, 201, 398

Font constructor, 200, 396

font foundries, 396, 397

Font object, 36, 198, 396

font registry, 775

Font Selection dialog, 198

FontData, 198, 199, 200, 201, 397, 398

FontDataAndRGB, 200

FontDialog class, 198, 199, 200, 201

FontDialog.getRGB() method, 200

FontFieldEditor, 727?728

FontList() method, 201

FontMetrics, 399, 400

FontRegistry, 778?781

fonts

changing, 394?395

choosing, 198?204

customizing Font Selection dialog, 201?204

displaying Font Selection dialog, 199?201

creating, 396?398

getting font characteristics, 398?404

FormAttachment, 67, 68, 70, 252, 253, 254

FormAttachmentMember, 67

FormData, 67, 68, 70, 71, 72, 252, 343

FormDataMember, 68

FormLayout, 66?78, 94, 252

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Index

G
GC class, 371, 373, 390, 394, 399, 400, 406, 419, 426, 428

GC.drawString() method, 510

GC.drawText() method, 510

GC.getFontMetrics() method, 400

GC.getStringExtent() method, 400

Geometry method, 788?789

get() method, 748

getCaretOffset() method, 441

getClientArea() method, 509, 510

getColorRegistry() method, 777

getControls() method, 84, 86

getDPI() method, 510

getFilterPath() method, 192?193

getFont() method, 776

getFontData() method, 200, 201

getFontList() method, 200?201

getFontMetrics() method, 399

getForeground() method, 370

getHorizontalBar() method, 127

getImage Data() method, 422

getImageData() method, 774

getInstance() method, 498

getKeyBinding() method, 444, 445

getLength() method, 752

getLineBackground() method, 471

getNextPage() method, 803, 804

getOffset() method, 752

getPresentationReconciler() method, 767

getSize() method, 86

getStyle() method, 98

getStyleRangeAtOffset(int offset) method, 470

getSystemColor() method, 432

getTable() method, 306, 309

getTabs() method, 445

getTextWidget() method, 746

getVerticalBar(), 127

getWordWrap() method, 441

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

GIF (Graphics Interchange Format), 418

GNOME gnotepad+, 749

GNU Emacs key bindings, 443

graphical user interfaces (GUIs), 1. See also Java GUIs, evolution of

graphics, 369?434

Device class, 431?434

drawing images, 418?431

creating image from another image, 423?425

creating image from file, 419

creating image from ImageData, 419?423

double buffering, 428?431

empty images, 419

drawing shapes, 370?390

arcs, 384?387

focus rectangle, 381

ovals, 381?384

points and lines, 373?377

polygons, 388?390

round rectangle, 378?380

drawing text, 390?417

changing colors, 404?406

changing fonts, 394?395

creating fonts, 396?398

displaying text, 390?393

drawing vertical text, 406?417

getting font characteristics, 398?404

overview, 369?370

printing, 515?517

Graphics Interchange Format (GIF), 418

GraphicsUtils class, 406

GraphicsUtils.java file, 413

GridData, 59, 60?61, 62, 63

GridDataMembers, 60

GridLayout, 58?66, 94, 548

grids. See tables

grippers, 242

Group class, 124?127

Group Styles, 125

GroupExample program, 125?127

GTK versions, 8, 20

GUIs (graphical user interfaces), 1. See also Java GUIs, evolution of

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Index

H
handleEvent() method, 38, 154

handling events, 445?450

height property, 70

HelloWorld program, 29?34, 544?547

compiling and running, 30?32

understanding, 32?34

helper classes, 773?792

ImageDescriptor, 774?775

ModalContext, 773?774

overview, 773

using other utilities, 787?791

Assert class, 787

ListenerList, 789?790

PropertyChangeEvent, 790?791

using resource utilities, 775?787

ColorRegistry, 777

FontRegistry, 778?781

ImageRegistry, 781?784

JFaceColors, 784

JFaceResources, 775?776

StringConverter, 784?787

HelpListener, 164?165

hourglass cursor, 282

HP-UX platform, 8

HTML (HyperText Markup Language), 4, 526

HTTP (Hypertext Transfer Protocol), 517

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Index

I
IBM platform, 7

IconAndMessageDialog, 643?647

IDialogConstants.CANCEL_ID dialog, 794

IDialogConstants.OK_ID dialog, 794, 809

IDialogPage, 797?798

IDocument, 739, 742?744, 748, 751, 760

IDocumentPartitioner, 760, 764

IllegalArgumentException, 260, 781

IllegalStateException, 752

Image class, 413, 418

Image object, 418, 419, 428, 431, 781

ImageData, 419?423

ImageDescriptor, 774?775, 782

ImagePrinterExample program, 515?517

ImageRegistry, 781?784

ImageRegistry() method, 781, 782

ImageRegistryTest program, 782?784

images

adding to menus, 143

drawing, 418?431

creating image from another image, 423?425

creating image from file, 419

creating image from ImageData, 419?423

double buffering, 428?431

empty images, 419

iNotePad, 749

InputDialog, 209, 614?615

InputStream, 419

installing Eclipse, 8?10

Instantiations, 94

int parameters, 180

int SASH_WIDTH member, 347

int total field, 529

IntegerFieldEditor, 728

interaction, user. See user interaction

Internet Explorer, 242, 517

IPartitionTokenScanner interface, 761

IPredicateRule class, 762

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

IPresentationDamager, 766, 767

IPresentationReconciler, 766

IPresentationRepairer, 767

IPropertyChangeListener, 790, 791

IRegion object, 752

IRule class, 762

itemClosed() method, 300

ITextViewer, 739, 740?741, 749

ITokenScanner, 761, 762

IUndoManager, 749, 750

IWizard, 794?796, 809

IWizardPage, 797, 803

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Index

J

Java Color object, 4

Java Development Tools User Forum, 23

Java Foundation Classes (JFC), 2

Java GUIs, evolution of, 1?6

AWT, 1?2

JFace, 5?6

overview, 1

Swing, 2?5

SWT, 5

Java Native Interface (JNI), 20

Java Runtime Environment (JRE), 9

Java Virtual Machine (JVM), 2, 10, 296

java.awt.Button object, 2

java.lang.Object, 45, 82, 280

JavaPartitionScanner, 764

java.properties file, 473

java.util.List, 267

javaw.exe file, 38

JDOM toolkit, 275?276

JellySWT, 95

JFace applications, 543?550

ApplicationWindow class, 548?549

HelloWorld program, 544?547

overview, 543

relationship between SWT and JFace, 547?548

WindowManagers, 549

JFace dialogs, 607?648

overview, 607

receiving input, 613?619

displaying InputDialog, 614?615

validating input, 615?619

sending messages, 619?625

showing errors, 607?613

creating status, 608?609

displaying error, 609?613

showing progress, 625?632

creating slow operation, 627?628

example of, 628?632

ProgressMonitorDialog, 626?627

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

TitleAreaDialog, 632?642

building on IconAndMessageDialog, 643?647

customizing TitleAreaDialog, 634?637

example of, 638?642

handling buttons, 638

JFace, evolution of, 5?6

JFace libraries, 24

JFace Rule class, 762?763

JFaceColors, 784

JFaceResource, 775?776, 777

JFaceResources.getFontRegistry() method, 778

JFaceResources.getImageRegistry() method, 781

JFC (Java Foundation Classes), 2

JIT (just-in-time) compilers, 3

JNI (Java Native Interface), 20

Joint Photographic Experts Group (JPEG), 418

JRE (Java Runtime Environment), 9

just-in-time (JIT) compilers, 3

JVM (Java Virtual Machine), 2, 10, 296

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Index

K
key bindings, 443?445

key listener, 332, 333

KeyEvent, 446

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Index

L
Label class, 102?105

Label object, 33

LabelExample program, 104?105

launch() method, 537

layout() method, 82, 86, 91

layouts, 49?96

alternatives to, 91?93

creating, 81?91

FillLayout, 50?53

FormLayout, 66?78

GridLayout, 58?66

GUI builders for SWT, 93?95

overview, 49?50

RowLayout, 54?58

StackLayout, 78?81

LD_LIBRARY_PATH path, 518

length field, 450, 451

Librarian, updating

with coolbar, 691?692

with status line, 694?698

with toolbar, 688?690

LineBackgroundEvent, 471

LineBackgroundListener, 470?473

LineBackgroundListenerTest program, 472?473

lineGetBackground() method, 471

lineGetStyle() method, 465

lineOffset, 460

lines, drawing, 373?377

LineStyleEvent, 460

LineStyleListener, 460?470

creating, 460?464

crossing lines, 464?470

understanding repercussions, 470

lineText field, 460

Linux platform, 8, 19, 517, 518

List class, 113?117, 283

List widget, 117

Listener class, 151, 152

listener parameter, 152

ListenerList, 789?790

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

ListExample program, 115?117

ListMethods, 114?115

ListViewer, 572?577

creating, 572?573

filtering data, 574?575

seeing ListViewer in action, 575?577

using, 573?574

LocationAdapter, 527

LocationListener, 526

LocationlListener, 527?528

Look program, 362?366

Lotus Ami Pro word processor, 227

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Index

M
Mac platform, 3, 8, 19, 21

main() method, 14

main.class property, 30

makeColumnsEqualWidth data member, 61

marginHeight, 68, 69

marginWidth, 68, 69

master password, 367

MDI (Multiple Document Interface) applications, 213?214

Menu constructors, 135, 140

menu handler, 441

Menu objects, 135

MenuItem, 136, 142

MenuItem.setMenu(dropdownMenu) method, 137

MenuItem.setText() method, 137

MenuMethods, 141

menus, 134?149

adding images to, 143

adding items to, 136

bar menus, 134, 137?138, 144, 148

creating, 134?136, 666?687

adding menu bar, 666?669

with dropdowns, 137?138

popup menu, 138?139

using menu in applications, 669?687

creating no radio group, 139?140

examples of coding for, 144?149

manipulating menus and menu items, 141?143

popups, 134, 138?139, 144, 148

selecting menu items, 143

Menus application, 144?148

MessageBox, 171, 172, 174

messages

displaying, 171?179

customizing message box, 175?179

displaying message box, 172?175

sending, 619?625

MFC (Microsoft Foundation Classes), 34

MinimalSourceViewerConfiguration, 766

MissingImageDescriptor, 774

ModalContext, 773?774

Mode constants, 170

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

model-view-controller (MVC), 3, 5, 268

ModifyEvent handler, 449

ModifyListener, 164?165

ModifyListeners handler, 445, 449

modifyText() method, 449

MouseEvent object, 321

MouseEventExample program, 162?164

MouseListener, 162?164

MouseMoveListener, 162?164

MouseTrackListener, 162?164

Mozilla browser, 517, 518

multilevel undo, 473

multiline comments, 465

MultiLineComment program, 465?467

MultiLineCommentListener class, 465

Multiple Document Interface (MDI) applications, 213?214

MultipleListenersExample program, 164?168

MVC (model-view-controller), 5, 268

myStyleRange range, 452

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Index

N
native libraries, 20, 23, 25

Netscape browser, 1, 242

New Project window, 11

newsgroups, 7

no radio groups, 139?140, 144, 148

nodes, 718?719, 720

non-null value, 209

-nosplash argument, 10

numColumns data member, 59

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Index

O
Observer design pattern, 151

offsets[0] element, 465

offsets[1] element, 465

openFile() method, 501, 502

opening, selecting files for, 189?198

displaying open or save file dialog, 189?190

getting selected files, 192?193

overwriting existing files, 196?198

specifying file types and extensions, 190?192

specifying starting directory and file name, 192

using file dialogs, 193?196

open-source license, 5

OpenWindowListener, 526, 528

OvalExample program, 381?384

ovals, drawing, 381?384

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Index

P
Package Explorer window, 12, 18

package-visible constructor, 43

paint handler, 369, 431

paintControl() method, 369

PaintEvent, 369

PaintListener, 371, 374

PaletteData objects, 420

palettes, 420

parent-child relationship, 269, 309

parenting widgets, 34?35

parentShell class, 548

parent/style pattern, 440

Password application, 366?368

password-based encryption, 367

paste() method, 440?441

PathEditor, 729

peer system, 149

performFinish() method, 796, 809

PerlCodeScanner, 768, 769

PerlEditor program, 768?772

PerlEditorSourceViewerConfiguration class, 770

Photon platform, 517

Player class, 267

PlayerComparator class, 267

PlayerTable, 266, 267

Plug-in Central site, 95

PmpEditor (Poor Man's Programming Editor), 473, 474?482, 500, 502

PmpEditor.java file, 500

PmpEditorMenu class, 482?485

PmpeIoManager class, 485?486

PmpeLineStyleListener class, 491?495

PmpeLineStyleListener.java file, 495

PNG (Portable Network Graphics), 418

Point location field, 526

Point object, 82

Point size field, 526

PointExample program, 375?377

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

points and lines, drawing, 373?377

polygons, drawing, 388?390

Poor Man's Programming Editor (PmpEditor), 473, 474?482, 500, 502

popup menus, 134, 138?139, 144, 148

PopupList, 339?342

creating, 339?340

using, 340?342

PopupListTest program, 340?342

Portable Network Graphics (PNG), 418

preferences, 701?738

displaying preference dialog, 707?723

creating pages, 709?717

managing nodes, 720

tying page to a node, 718?719

field editors, 724?737

BooleanFieldEditor, 725?726

ColorfieldEditor, 726

DirectoryFieldEditor, 726

examples of, 732?737

FieldEditor, 725

FileFieldEditor, 727

FontFieldEditor, 727?728

IntegerFieldEditor, 728

PathEditor, 729

RadioGroupFieldEditor, 729?730

ScaleFieldEditor, 730?731

StringFieldEditor, 731?732

overview, 701

persisting preferences, 702?705

receiving notification of preference changes, 706?707

PrintDialog, 506, 508, 509

Printer class, 431, 506, 510

Printer() method, 442, 506

Printer object, 396, 442, 506, 507

Printer.computeTrim() method, 510

PrinterData, 506, 507, 508

PrinterData.SELECTION scope, 509

printing, 441?442, 506?517

determining where to print, 509?510

graphics, 515?517

text, 510?515

Profiling perspective, 13

Program method, 536

Program object, 537

program.exec() method, 536

ProgressAdapter class, 528

ProgressBar, 130?133

ProgressEvent, 528

ProgressListener, 526, 528?529

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

properties file, 473, 490

Properties pages, 219

Properties window, 19

PropertyChangeEvent, 790?791

public static void main(String[] args) option, 14

push menu item, 144

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Index

Q
QNX platform, 8

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Index

R
radio buttons, 232

radio groups, 144, 232

radio menu items, 143

RadioGroupFieldEditor, 729?730

Rational platform, 7

read-only Styled Text, 445

rebar, 242

reconciler.setDamager() method, 767

reconciler.setRepairer() method, 767

rectangles, 93, 371, 378?381, 419, 509

RedEListener program, 462?464

RedHat Linux, 518

redo() method, 750?751

redoing commands, 749?751

redraw() method, 464

RegistryTest, 778?781

REPLACE operation, 752

REPLACE_FIND_NEXT operation, 752

replaceStyleRanges() method, 454, 457

Restore Weights button, 347

Retired Eclipse Project Tool Builders Forum, 23

RGB class, 179, 198, 201

RGB object, 181, 200

root nodes, 270

round rectangle, 378?380

RowData, 54

RowLayout, 54?58, 94

rows, adding to tables, 260?266

RuleBasedPartitionScanner, 762

RuleBasedScanner, 767

Run dialog, 16?17, 21

runnable parameter, 280

runtime.jar in org.eclipse.core.runtime_3.0.0 file, 543

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Index

S
SafeSaveDialog class, 196?197, 198, 772

Samna, 227

Sash object, 343

sashes, 250?255, 343

creating, 250?254

sash stick, 254?255

SashExampleOne application, 251?252

SashForm, 343?351

configuring, 346?351

creating, 343?346

SashFormAdvanced program, 347?351

SashFormTest program, 344?346

Save dialogs, 196

saving, selecting files for, 189?198

displaying open or save file dialog, 189?190

getting selected files, 192?193

overwriting existing files, 196?198

specifying file types and extensions, 190?192

specifying starting directory and file name, 192

using file dialogs, 193?196

ScaleFieldEditor, 730?731

scanline pads, 420

scrollable styles, 127

ScrollableComposite class, 352

Scrollablederived widget, 127

ScrollBar class, 127?130

ScrollBarExample program, 129?130

ScrolledComposite, 352?358

configuring, 357?358

creating, 352

methods of, 357?358

sizing, 353?357

selection listener, 321, 335

SelectionAdapter, 233

SelectionEvent, 321

SelectionListener, 155?157

separators, 103, 139

set() method, 748

setAlignment() method, 259

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

setBackground() method, 289, 290

setBlockOnOpen() method, 547

setBlockOnOpen(true) method, 548

setBounds() implementations, 93

setBounds() method, 82, 86, 92, 93

setComplete(false) command, 802

setControl() method, 222, 245, 299, 798, 799

setDamager() method, 767

setData() method, 54

setDocument() method, 739, 766

setDocumentPartitioner() method, 764

setEditable(false) method, 445

setEditable(true) method, 445

setEditor() method, 320

setEnabled() method, 142

setExpanded(true) method, 309

setExpandHorizontal(true) method, 355

setFileName() method, 192

setFilterPath() method, 186, 192

setFont() method, 370, 394, 399

setFontData() methods, 200

setFontList() method, 200

setForeground() method, 370, 404?406

setHeadersVisible() method, 259

setImage() method, 103, 143

setInput() method, 739

setInsertMark() method, 298

setInsertMark() methods, 300

setItems() method, 340

setKeyBinding() method, 445

setLayout() method, 50, 360

setLayoutData() method, 54, 82, 90

setLineBackground() method, 471

setMenu()method, 142

setMenuBar(menu), 137

setMessage() method, 186

setMinHeight() method, 355

setMinSize() method, 355

setMinWidth() method, 355

setRepairer() method, 767

setRGB() method, 181, 201

setSelection() method, 143

setSelectionBackground() method, 301

setStyleRange() method, 453

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

setStyleRanges() method, 453

setTabs() method, 445

setText() method, 49, 103, 125

set-Text() method, 142

setText() method, 172, 181, 186, 201

setTextLimit() method, 445

setTransfer() method, 498, 500

setUrl() method, 519

setVisible() method, 142

setWordWrap() method, 441

several menu, 137

shadow constant, 286

shapes, drawing, 370?390

arcs, 384?387

focus rectangle, 381

ovals, 381?384

points and lines, 373?377

polygons, 388?390

round rectangle, 378?380

SHBrowseForFolder() method, 185

Shell object, 42?45

Show Message button, 175

ShowCTabFolder program, 301?305

ShowDevice program, 432?434

ShowDirectoryDialog program, 186?189

ShowFileDialog program, 193?196

ShowImageFlags program, 423?425

ShowInputDialog program, 209?210

ShowMessageBox program, 175?179

ShowPrograms program, 537?540

ShowSlashdot program, 519?521

similarTo() method, 451

SimpleBrowser program, 522?525

single-argument constructor, 180

SlickEdit's Visual SlickEdit, 7

Slider class, 121?124

SliderExample program, 122?124

SnippetBoard program, 503?506

Solaris platform, 8

sorting tables, 266?268

SourceTextViewer class, 739

SourceViewerConfiguration, 764, 765, 767

splash screens, 10

splitters. See sashes

spreadsheet programs, 312

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

ST class, 443

StackLayout, 78?81, 94

start field, 450, 451

starting offset, 448, 465

statistics, 441

status line, 692?698

adding, 692?694

updating Librarian with, 694?698

StatusTextEvent, 529

StatusTextListener, 526, 529

String location field, 527

StringConverter, 784?787

StringFieldEditor, 731?732

Strings directory, 190, 192

style parameter, 305, 497

StyledText API, 435?460

changing miscellaneous settings, 445

creating StyledText widget, 440

getting and setting key bindings, 443?445

getting statistics, 441

handling events, 445?450

printing, 441?442

using clipboard, 440?441

using styleranges, 450?460

using word wrap, 441

StyledText.print() method, 746

StyledTextPrintOptions, 442

StyledText.setLineBackground() method, 470

styleranges, 450?460

styles field, 460

Survey program, 803?808

Swing, 2?5, 95, 268

Switch Orientation button, 347

switch statement, 168

SWT application creation, 29?48

design behind, 34?38

disposing widgets, 35?38

parenting widgets, 34?35

display object, 38?42

"hello, world," 29?34

compiling and running program, 30?32

understanding program, 32?34

overview, 29

Shell object, 42?45

SWT class, 45?47

SWT class, 35, 45?47, 152

SWT Designer, 94

SWT, evolution of, 5

SWT Layouts plug-in, 94

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

SWT libraries, 23, 24, 548

SWT object, 33, 45

SWT User Forum, 23

SWT.ARROW style, 106

SWT.BAR style, 134

SWT.BORDER style, 334, 360, 518

SWT.BOTTOM style, 296

SWT.CASCADE style, 137

SWT.CENTER style, 106, 259

SWT.CHECK style, 106, 140, 256, 271

SWT.DOWN style, 106, 406

SWT.DROP_DOWN style, 134, 243, 245, 250

SWTException, 37

SWT.FLAT style, 296, 360

SWT.FULL_SELECTION style, 256

SWT.H_SCROLL style, 352

SWT.HORIZONTAL style, 51, 54, 121, 250, 343?344

SWT.IMAGE_COPY style, 423

SWT.IMAGE_DISABLE style, 423

SWT.IMAGE_GRAY style, 423

SWT.INDETERMINATE style, 131

swt.jar file, 24

SWT.LEFT style, 73, 106, 259

SWT.LEFT_TO_RIGHT style, 370

SWT.MULTI style, 256, 269

SWT.NO_RADIO_GROUP style, 134, 140

SWT.NONE style, 136, 242, 243, 260, 299, 307, 334, 518

SWT.NULL style, 445

SWT.ON_TOP style, 214

SWT.OPEN style, 189

swt-pi.jar file, 20

SWT.POP_UP style, 134

SWT.PUSH style, 106

SWT.RADIO style, 106, 139

SWT.READ_ONLY style, 445

SWT.RIGHT style, 259

SWT.RIGHT_TO_LEFT style, 370

SWT.SAVE style, 189

SWT.SINGLE style, 256, 269

SWT.TOP style, 296

SWT.UP style, 106, 406

SWT.V_SCROLL style, 352

SWT.VERTICAL style, 51, 53, 54, 58, 121, 250, 343?344, 406

swt.widgets package, 33

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

SWT.WRAP style bit, 441

SyntaxData, 487?490

SyntaxManager, 490?491

SyntaxTest program, 456, 457?459

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Index

T
tab section, 239

tab width, 445

tabbed browsing, 219

tabbed interfaces, 214

TabComplex program, 222?227

TabFolder, 220, 227, 295

TabItem, 220, 221, 227, 295

Table class, 255, 306, 309, 334

Table widget, 320, 334

TableColumn, 255, 259?260

TableCursor, 334?339

creating, 334

using, 335?339

TableCursorTest program, 336?339

TableEditor, 319?328

cleaning up, 322

exchanging data, 320?321

placing the editor, 321?322

putting it together, 323?328

using a button, 323

TableItem, 255, 260, 261, 320

tables, 255?268

adding columns, 259?260

adding rows, 260?266

creating, 255?258

putting widgets in cells, 268

sorting, 266?268

TableTree, 305?312, 366

adding columns to, 309

adding items to, 307?309

creating, 305?307

using, 309?312

TableTreeColumn, 309

TableTreeEditor, 313, 328?329

TableTreeItem, 151, 307, 308, 329

TableTreeTest program, 309?312

TableViewer, 577?592, 816

CheckboxTableViewer, 586?588

example of, 582?586

TableTreeViewer, 588?591

using, 578?581

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

tabs, 219?227

adding content to, 220?227

creating, 220

Tagged Image File Format (TIFF), 418

Tasks window, 14?15, 19, 20

tearing, 428

test.java file, 14

text, 390?417, 435?496, 739?772

adding complexity, 473?495

colors, 404?406, 766?767

configuring viewer, 764?766

displaying, 390?393

dividing partitions, 759?764

drawing vertical text, 406?417

editing Perl, 768?772

finding and replacing, 751?759

fonts

changing, 394?395

creating, 396?398

getting characteristics, 398?404

LineBackgroundListener, 470?473

LineStyleListener, 460?470

creating, 460?464

crossing lines, 464?470

understanding repercussions, 470

overview, 435, 739

printing, 510?515

StyledText API, 435?460

changing miscellaneous settings, 445

creating StyledText widget, 440

getting and setting key bindings, 443?445

getting statistics, 441

handling events, 445?450

printing, 441?442

using clipboard, 440?441

using styleranges, 450?460

using word wrap, 441

text framework, 739?749

undoing and redoing, 749?751

Text class, 108?113

Text control, 36, 316, 319, 320, 330

Text Drawing Methods class, 391

text editors, 362, 473

text field, 529

Text object, 36, 314

Text widget, 108, 111?113, 117

TextAttribute, 767

TextChange class, 486?487

text.dispose() method, 333

TextEditor program, 744?746

TextEditor2 program, 746?749

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

TextExample program, 111?113

text.jar in org.eclipse.text_3.0.0 file, 543

TextPrinterExample program, 510?515

TextTableEditor program, 323?328

TextTreeEditor program, 330?333

TextViewer class, 739, 744, 746, 749, 759

TIFF (Tagged Image File Format), 418

TitleAreaDialog, 632?642, 794

building on IconAndMessageDialog, 643?647

customizing, 634?637

example of, 638?642

handling buttons, 638

toolbar handler, 441

ToolBarComplex application, 234?241

toolbars, 227?241

creating, 227?228, 688?690

adding toolbars, 688

updating Librarian with toolbar, 688?690

creating feature-rich toolbars, 234?241

creating radio groups, 232

dropdowns, 232?234

plugging in tool items, 228?232

top-center control, 360, 362

top-left control, 360

top-right control, 360, 362

Transfer object, 498, 500

Tree class, 269

Tree object, 269

TreeEditor, 313, 329, 329?333

TreeExample application, 272?275

TreeItem, 269, 270, 271?272, 329

trees, 269?275

adding nodes, 270?275

creating trees, 269?270

TreeViewer, 551?572

CheckboxTreeViewer, 569?572

creating, 551?552

example of, 557?564

methods of, 565?568

using, 552?557

Type Constants, 421

type field, 420

type property, 50

typed listeners, 154?155

TypedEvent, 154, 446, 526, 527, 528

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Index

U
UML modeling tools, 7

undo() method, 450, 750?751

undoing commands, 749?751

Unicode, 262

untyped listeners, 151?154

URLImageDescriptor, 774, 775

Usenet newsgroups, 7

user interaction, 649?700

actions, 649?666

acting on, 653?654

configuring, 654?659

creating, 649?653

examples of, 660?666

receiving notice of changes, 659?660

creating coolbars, 690?692

adding a coolbar, 690?691

updating Librarian with a coolbar, 691?692

creating menus, 666?687

adding menu bar, 666?669

using menu in applications, 669?687

creating status line, 692?698

adding a status line, 692?694

updating Librarian with a status line, 694?698

creating toolbars, 688?690

adding toolbars, 688

updating Librarian with a toolbar, 688?690

overview, 649

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Index

V
VerifyEvent, 446, 447, 448

VerifyKeyListeners, 445, 446, 447

VerifyListener, 164?165, 445, 446, 447

vertical text, 406?417

VerticalText program, 411?413, 416

VerticalTextSpanish program, 416?417

viewers, 551?606

CellEditor, 592?606

example of, 595?605

using, 594?595

ListViewer, 572?577

creating, 572?573

example of, 575?577

filtering data, 574?575

using, 573?574

overview, 551

TableViewer, 577?592

CheckboxTableViewer, 586?588

example of, 582?586

TableTreeViewer, 588?591

using, 578?581

TreeViewer, 551?572

CheckboxTreeViewer, 569?572

creating, 551?552

example of, 557?564

methods of, 565?568

using, 552?557

ViewForm, 358?366

configuring, 360?366

creating, 360

ViewFormMember Variables, 361

viPlugin, 25

VisibilityWindowListener, 526, 529?530

Visual Editor Project, 95

Visual SlickEdit, 7, 25

VisualAge SmallTalk, 5

-vm <javaVM> argument, 10

VM arguments, 25

-vmargs <arguments>, 10

void changed(LocationEvent event) method, 527

void changed(ProgressEvent event) method, 528

void changing(LocationEvent event) method, 527

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

void completed(ProgressEvent event) method, 528

void hide(WindowEvent event) method, 529

void method, 464

void redraw(int x, int y, int width, int height, boolean all) method, 464

void redrawRange(int start, int length, boolean clearBackground) method, 464

void replaceStyleRanges(int start, int length, StyleRange[] ranges) method, 470

void setStyleRanges(StyleRange[] ranges) method, 470

void setStyleRange(StyleRange range) method, 470

void show(WindowEvent event) method, 529

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Index

W

Web browsing, 517?535

controlling browser, 521?525

responding to events, 526?536

advancing the browser, 530?535

handling CloseWindowListener, 526?527

using LocationListener, 527?528

using OpenWindowListener, 528

using ProgressListener, 528?529

using StatusTextListener, 529

using VisibilityWindowListener, 529?530

WebSphere Studio Application Developer, 7

What You See Is What You Get (WYSIWYG), 198

wHint, 81, 85

Widget class, 54, 97?98

widgets, 97?150

Button class, 105?108

Combo class, 117?121

Control class, 98?102

disposing, 35?38

Group class, 124?127

Label class, 102?105

List class, 113?117

menus, 134?149

adding images to, 143

adding items to, 136

creating, 134?136

creating bar menu with dropdowns, 137?138

creating no radio group, 139?140

creating popup menu, 138?139

examples of coding for, 144?149

manipulating menus and menu items, 141?143

selecting menu items, 143

overview, 97

parenting, 34?35

ProgressBar class, 130?133

putting in table cells, 268

ScrollBar class, 127?130

Slider class, 121?124

StyledText widget, 440

Text class, 108?113

Widget class, 97?98

widgetSelected() method, 233, 321

width property, 70, 71

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

WindowEvent, 526, 528

WindowManager, 549

Windows Icon (ICO), 418

Windows platform, 517

Windows-Icons-Menus-Pointers (WIMP) interface, 134

Wizard.addPage() method, 802

WizardDialog class, 793, 794, 799, 815

WizardDialog.open() method, 809

WizardPage class, 798, 799

wizards, 793?824

adding wizard pages, 797?802

customizing navigation, 802?808

example of, 809?823

IWizard methods, 794?796

launching, 793?794

overview, 793

Word Pro, 227

word wrap, 441, 473

WordPerfect program, 134, 227

WordRule, 769

workspace directory, 10

wrapper classes, 169

wrapper methods, 197

WYSIWYG (What You See Is What You Get), 198

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Index

X
XML (Extensible Markup Language) viewer application, 299

XmlView application, 276?277, 305

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Index

Z
zero-based offset, 441

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

List of Figures

Chapter 2: Getting Started with Eclipse

Figure 2-1: Eclipse desktop shortcut properties

Figure 2-2: The Eclipse main window

Figure 2-3: The New Project window

Figure 2-4: Select a project name.

Figure 2-5: The New Java Class window

Figure 2-6: The Eclipse main window with your new source code file

Figure 2-7: A syntax error in the Tasks window

Figure 2-8: The Run dialog

Figure 2-9: The Run dialog with your test class ready to run

Figure 2-10: Hello from Eclipse

Figure 2-11: The Java Build Path

Figure 2-12: The Run dialog with the SWT library added

Figure 2-13: The Eclipse help window

Chapter 3: Your First SWT Application

Figure 3-1: "Hello,World" in SWT

Chapter 4: Layouts

Figure 4-1: A horizontal FillLayout

Figure 4-2: A vertical FillLayout

Figure 4-3: A default RowLayout

Figure 4-4: A default RowLayout after resizing

Figure 4-5: A RowLayout with some changed properties

Figure 4-6: A 2×2 GridLayout

Figure 4-7: A 2×2 GridLayout with equal column widths

Figure 4-8: Trying to reuse GridData objects

Figure 4-9: A GridLayout with all buttons set to fill horizontally and vertically

Figure 4-10: A complex GridLayout

Figure 4-11: A resized complex grid layout

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Figure 4-12: A simple FormLayout

Figure 4-13: A simple FormLayout with margins set

Figure 4-14: A FormLayout with a FormData set for the button

Figure 4-15: A button attached to the right edge of the window, offset by 50 pixels

Figure 4-16: Resizing the window

Figure 4-17: Left and right sides of the button attached to the left and right sides of the window, respectively

Figure 4-18: Top edge of the button anchored to a point 25% down from the top of the window

Figure 4-19: Left edge of Button 2 erroneously attached to right edge of Button

Figure 4-20: Two buttons attached

Figure 4-21: A complex FormLayout

Figure 4-22: A StackLayout

Figure 4-23: The StackLayout after clicking the button once

Figure 4-24: Your BorderLayout in action

Figure 4-25: A window with no layout

Figure 4-26: The SWT Layouts plug-in

Chapter 5: Widgets

Figure 5-1: The LabelExample program

Figure 5-2: The ButtonExample program

Figure 5-3: The TextExample program

Figure 5-4: The ListExample program

Figure 5-5: The ComboExample program

Figure 5-6: The SliderExample program

Figure 5-7: The GroupExample program

Figure 5-8: The ScrollBarExample program

Figure 5-9: The ProgressBarExample program

Figure 5-10: Two menus (a bar and a dropdown)

Figure 5-11: A bar menu

Figure 5-12: A popup menu

Figure 5-13: A menu with two radio groups

Figure 5-14: A no radio group menu

Figure 5-15: A menu with images

Figure 5-16: The Menus application

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Chapter 6: Events

Figure 6-1: The window showing the image

Figure 6-2: The window when too small

Figure 6-3: The FocusListenerExample program

Figure 6-4: The MouseEventExample program

Figure 6-5: Converting temperatures

Chapter 7: Dialogs

Figure 7-1: A default message box

Figure 7-2: An informational message box

Figure 7-3: An error message box

Figure 7-4: A yes/no question message box

Figure 7-5: A yes/no/cancel question message box

Figure 7-6: A warning message box

Figure 7-7: An abort/retry/ignore message box

Figure 7-8: The ShowMessageBox application

Figure 7-9: The ChooseColor application's main window

Figure 7-10: The standard color selection dialog on Windows

Figure 7-11: The standard DirectoryDialog

Figure 7-12: The ShowDirectoryDialog main window

Figure 7-13: A customized DirectoryDialog

Figure 7-14: The File Open dialog

Figure 7-15: The File Save dialog

Figure 7-16: The ShowFileDialog application

Figure 7-17: The common Font dialog

Figure 7-18: The ChooseFont application

Figure 7-19: The InputDialog

Figure 7-20: The ShowInputDialog program

Chapter 8: Advanced Controls

Figure 8-1: Decorations in their applicable styles

Figure 8-2: Moving, resizing, and minimizing Decorations

Figure 8-3: A lone, anonymous tab

Figure 8-4: A window with multiple tabs

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Figure 8-5: A window with the first tab selected

Figure 8-6: A simple toolbar

Figure 8-7: A simple toolbar with some buttons pressed

Figure 8-8: Two radio groups

Figure 8-9: A Combo and a dropdown

Figure 8-10: The feature-rich toolbar

Figure 8-11: The feature-rich toolbar in action

Figure 8-12: A coolbar with its gripper

Figure 8-13: A coolbar containing one button

Figure 8-14: Three cool items

Figure 8-15: Three cool items rearranged

Figure 8-16: A cool item with the SWT.DROP_DOWN style

Figure 8-17: A sash between two text fields

Figure 8-18: The sash revisited

Figure 8-19: Dragging the sash

Figure 8-20: A sash that sticks

Figure 8-21: A single-selection, checkbox table

Figure 8-22: A multi- and full-selection table

Figure 8-23: An attempt to show two lines of text in a column header

Figure 8-24: The AsciiTable application

Figure 8-25: The players

Figure 8-26: The players sorted by batting average

Figure 8-27: A single-selection tree, a multiselection tree, and a checkbox tree

Figure 8-28: The trees after expanding and selecting

Figure 8-29: The XmlView application

Figure 8-30: The XmlView application with three open files

Chapter 9: The Custom Controls

Figure 9-1: The BusyIndicatorTest application

Figure 9-2: The BusyIndicatorTest application while busy

Figure 9-3: A Combo and a CCombo in a table

Figure 9-4: Some CCombo styles

Figure 9-5: CLabel styles

Figure 9-6: A gradient that stops short of 100%

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Figure 9-7: CLabel gradients

Figure 9-8: The full-sized CLabel

Figure 9-9: The CLabel after the image disappears

Figure 9-10: The CLabel with an ellipsis

Figure 9-11: Top, flat tabs

Figure 9-12: Bottom, three-dimensional tabs

Figure 9-13: Tab 1 has the close button displayed.

Figure 9-14: The ShowCTabFolder program

Figure 9-15: The ShowCTabFolder program with some tabs added

Figure 9-16: A TableTree control

Figure 9-17: Editing within a cell of Microsoft Excel

Figure 9-18: A Text control associated with an editor

Figure 9-19: The changed color

Figure 9-20: A button associated with an editor

Figure 9-21: The changed color

Figure 9-22: The TextTableEditor program

Figure 9-23: The TextTableEditor program with some cells edited

Figure 9-24: The TextTreeEditor program

Figure 9-25: The TextTreeEditor program with the first node being edited

Figure 9-26: A TableCursor with the middle cell selected

Figure 9-27: A TableCursor with the border style

Figure 9-28: The TableCursorTest program

Figure 9-29: The TableCursorTest program with some cells edited

Figure 9-30: A PopupList below the main window

Figure 9-31: A PopupList above the main window

Figure 9-32: A SashForm with the SWT.HORIZONTAL style

Figure 9-33: A SashForm with the SWT.VERTICAL style

Figure 9-34: The SashFormAdvanced program

Figure 9-35: The SashFormAdvanced program with the orientation switched

Figure 9-36: The SashFormAdvanced program with a maximized button

Figure 9-37: A ScrolledComposite

Figure 9-38: A ScrolledComposite with a sized child control

Figure 9-39: The resized ScrolledComposite

Figure 9-40: A ScrolledComposite with an expanding child control

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Figure 9-41: The ScrolledComposite after resizing

Figure 9-42: The ScrolledComposite after resizing smaller than the minimum size

Figure 9-43: An example ViewForm

Figure 9-44: An example ViewForm, with the second control wrapped

Figure 9-45: A plain ViewForm

Figure 9-46: The Look program

Figure 9-47: The Look program with three ViewForms

Figure 9-48: The Password application

Figure 9-49: The Password Entry dialog box

Figure 9-50: The Password application with some passwords entered

Chapter 10: Graphics

Figure 10-1: Putting a widget, some text, and some graphics on a Canvas

Figure 10-2: A "filled" rectangle

Figure 10-3: Drawing lines

Figure 10-4: Drawing multiple lines

Figure 10-5: Plotting the sine function

Figure 10-6: Demonstrating a rounded rectangle

Figure 10-7: A focus rectangle

Figure 10-8: An oval

Figure 10-9: Drawing filled arcs

Figure 10-10: Arbitrary polygons

Figure 10-11: Drawing text using drawString() and drawText()

Figure 10-12: Drawing with a different font

Figure 10-13: Leading area, ascent, descent, and height demonstrated

Figure 10-14: Using extents to determine where to draw strings

Figure 10-15: Using extents with a larger font

Figure 10-16: Drawing fonts in colors

Figure 10-17: Vertical text

Figure 10-18: Vertical text in Spanish

Figure 10-19: Images created using different flags

Figure 10-20: An image and a zoomed image

Figure 10-21: The display's attributes

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Chapter 11: Displaying and Editing Text

Figure 11-1: Two StyleRanges

Figure 11-2: Two StyleRanges with text inserted

Figure 11-3: Dynamic syntax coloring and styling

Figure 11-4: Using a LineStyleListener to turn all the "e" characters red

Figure 11-5: The MultiLineComment program

Figure 11-6: The MultiLineComment program with a comment added

Figure 11-7: A LineBackgroundListener

Figure 11-8: The Poor Man's Programming Editor

Chapter 12: Advanced Topics

Figure 12-1: Dragging a file onto PmpEditor

Figure 12-2: SnippetBoard

Figure 12-3: The PrintDialog class

Figure 12-4: A Web browser displaying Slashdot's home page

Figure 12-5: The SimpleBrowser program

Figure 12-6: The AdvancedBrowser program showing the eBay home page

Figure 12-7: The ShowPrograms program

Chapter 13: Your First JFace Application

Figure 13-1: Hello, World from JFace

Chapter 14: Creating Viewers

Figure 14-1: The FileTree program

Figure 14-2: The FileTree program with "Preserve case" checked

Figure 14-3: The CheckFileTree program

Figure 14-4: The food list

Figure 14-5: The food list with the healthy filter applied

Figure 14-6: The 1985–86 Boston Celtics

Figure 14-7: The 1995–96 Chicago Bulls

Figure 14-8: The BackupFiles program

Figure 14-9: A TableTreeViewer

Figure 14-10: The PersonEditor program

Figure 14-11: The PersonEditor program with one unedited person

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Figure 14-12: The PersonEditor program with an edited person

Chapter 15: JFace Dialogs

Figure 15-1: An ErrorDialog

Figure 15-2: The ShowError program

Figure 15-3: An ErrorDialog

Figure 15-4: An InputDialog

Figure 15-5: Another InputDialog

Figure 15-6: An InputDialog with an error message

Figure 15-7: The GetInput program

Figure 15-8: The InputDialog with an error message

Figure 15-9: An SWT MessageBox

Figure 15-10: A JFace MessageDialog

Figure 15-11: The SendMessage program

Figure 15-12: A confirmation dialog

Figure 15-13: An error dialog

Figure 15-14: An information dialog

Figure 15-15: A question dialog

Figure 15-16: A warning dialog

Figure 15-17: A ProgressMonitorDialog

Figure 15-18: The ShowProgress program

Figure 15-19: A progress dialog with a subtask

Figure 15-20: A plain TitleAreaDialog

Figure 15-21: A TitleAreaDialog-derived dialog

Figure 15-22: Adding to the dialog area

Figure 15-23: Changing the buttons

Figure 15-24: The program to show the dialog box

Figure 15-25: The dialog box

Figure 15-26: Getting revenge on dumb users

Chapter 16: User Interaction

Figure 16-1: An empty action

Figure 16-2: An action with a name

Figure 16-3: An action with a name and an image

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Figure 16-4: A checkbox action

Figure 16-5: A dialog in response to a triggered action

Figure 16-6: An action with an accelerator

Figure 16-7: Setting the text and accelerator in one call

Figure 16-8: An action with a tool tip

Figure 16-9: Cascading menus

Figure 16-10: Adding a book to the Librarian application

Figure 16-11: Book added to Library

Figure 16-12: Book checked out

Figure 16-13: Librarian with a toolbar

Figure 16-14: Librarian with a coolbar

Figure 16-15: A status line littered with buttons

Figure 16-16: The book count displayed in the status line

Figure 16-17: A progress monitor in the status bar

Chapter 17: Using Preferences

Figure 17-1: The Eclipse preference interface

Figure 17-2: The PrefPageOne preference page

Figure 17-3: The PrefPageTwo preference page

Figure 17-4: A preference dialog

Figure 17-5: A preference dialog with the tree expanded

Figure 17-6: Specifying radio buttons with the same value

Figure 17-7: A field editor page

Figure 17-8: Another field editor page

Chapter 18: Editing Text

Figure 18-1: TextViewer and document

Figure 18-2: A TextViewer with enhancements

Figure 18-3: The FindReplaceDialog class

Figure 18-4: The FindReplaceDialog with replacements enabled

Figure 18-5: The PerlEditor

Chapter 19: Miscellaneous Helper Classes

Figure 19-1: Using color and font registries

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Figure 19-2: Displaying images from an image registry

Chapter 20: Creating Wizards

Figure 20-1: A WizardDialog

Figure 20-2: The consonant page

Figure 20-3: The consonant page with an error message

Figure 20-4: The Complaints page

Figure 20-5: The More Information page.You won't see this page if you have no complaints.

Figure 20-6: Thanking the user

Figure 20-7: The Welcome page

Figure 20-8: The Name page

Figure 20-9: The E-mail page

Figure 20-10: The Address Book

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

List of Tables

Chapter 2: Getting Started with Eclipse

Table 2-1: Eclipse Command-Line Arguments

Chapter 3: Your First SWT Application

Table 3-1: Display Constructors

Table 3-2: Display Methods

Table 3-3: Shell Constructors

Table 3-4: Shell Styles

Table 3-5: Shell Methods

Table 3-6: SWT Methods

Table 3-7: SWT Message Keys and Values

Chapter 4: Layouts

Table 4-1: FillLayout Constructors

Table 4-2: RowLayout Attributes

Table 4-3: GridLayout Constructors

Table 4-4: GridLayout Data Members

Table 4-5: GridData Constructors

Table 4-6: GridData Members

Table 4-7: GridData Constants

Table 4-8: FormAttachment Member Data

Table 4-9: FormAttachment Constructors

Table 4-10: FormData Member Data

Table 4-11: StackLayout Data Members

Table 4-12: Control.setBounds() Implementations

Chapter 5: Widgets

Table 5-1: Widget Methods

Table 5-2: Control Styles

Table 5-3: Control Methods

Table 5-4: Label Styles

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Table 5-5: Label Methods

Table 5-6: Button Styles

Table 5-7: Button Methods

Table 5-8: Text Styles

Table 5-9: Text Methods

Table 5-10: List Styles

Table 5-11: List Methods

Table 5-12: Combo Styles

Table 5-13: Combo Methods

Table 5-14: Slider Methods

Table 5-15: Group Styles

Table 5-16: Group Methods

Table 5-17: Scrollable Styles

Table 5-18: ScrollBar Methods

Table 5-19: ProgressBar Styles

Table 5-20: ProgressBar Methods

Table 5-21: Menu Constructors

Table 5-22: Menu Styles

Table 5-23: MenuItem Styles

Table 5-24: Menu Methods

Table 5-25: MenuItem Methods

Chapter 6: Events

Table 6-1: Event Members

Table 6-2: Event Types

Table 6-3: TypedEvent Members

Table 6-4: Typed Listeners

Chapter 7: Dialogs

Table 7-1: Mode Constants

Table 7-2: The Icon Styles for MessageBox

Table 7-3: The Button Styles for MessageBox

Table 7-4: MessageBox Methods

Table 7-5: ColorDialog Methods

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Table 7-6: DirectoryDialog Methods

Table 7-7: FileDialog Constants

Table 7-8: FileDialog Methods

Table 7-9: FontDialog Methods

Chapter 8: Advanced Controls

Table 8-1: Decorations Styles

Table 8-2: Decorations Methods

Table 8-3: TabFolder Methods

Table 8-4: TabItem Methods

Table 8-5: ToolBar Constants

Table 8-6: ToolBar Methods

Table 8-7: Constants for Creating Tool Items

Table 8-8: ToolItem Methods

Table 8-9: CoolBar Methods

Table 8-10: CoolItem Constructors

Table 8-11: CoolItem Methods

Table 8-12: Sash Methods

Table 8-13: Table Styles

Table 8-14: Table Methods

Table 8-15: TableColumn Methods

Table 8-16: TableItem Methods

Table 8-17: Tree Styles

Table 8-18: Tree Methods

Table 8-19: TreeItem Constructors

Table 8-20: TreeItem Methods

Chapter 9: The Custom Controls

Table 9-1: Combo vs. CCombo

Table 9-2: CCombo Styles

Table 9-3: CCombo Methods

Table 9-4: CLabel Styles

Table 9-5: Label vs. CLabel

Table 9-6: CLabel Methods

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Table 9-7: TabFolder/TabItem vs. CTabFolder/CTabItem

Table 9-8: CTabFolder Style Constants

Table 9-9: CTabFolder Fields

Table 9-10: CTabFolder Methods

Table 9-11: CTabItem Methods

Table 9-12: TableTree Style Constants

Table 9-13: TableTree Methods

Table 9-14: TableTreeItem Constructors

Table 9-15: TableTreeItem Methods

Table 9-16: ControlEditor Fields

Table 9-17: ControlEditor Methods

Table 9-18: TableEditor Methods

Table 9-19: TableTreeEditor Methods

Table 9-20: TreeEditor Methods

Table 9-21: TableCursor Methods

Table 9-22: PopupList Methods

Table 9-23: SashForm Methods

Table 9-24: ScrolledComposite Methods

Table 9-25: ViewForm Member Variables

Table 9-26: ViewForm Methods

Chapter 10: Graphics

Table 10-1: GC's Text Drawing Methods

Table 10-2: drawText() Flags

Table 10-3: Font Constructors

Table 10-4: Font Styles

Table 10-5: FontData Constructors

Table 10-6: FontData Methods

Table 10-7: Font Methods

Table 10-8: FontMetrics Methods

Table 10-9: Font Terminology

Table 10-10: GC Methods to Determine Width of a String

Table 10-11: Image Constructors

Table 10-12: ImageData Constructors

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Table 10-13: ImageData Fields

Table 10-14: Disposal Method Constants

Table 10-15: Type Constants

Table 10-16: ImageData Methods

Table 10-17: flag Constants

Table 10-18: GC's drawImage() Methods

Table 10-19: Device Methods

Chapter 11: Displaying and Editing Text

Table 11-1: The StyledText API

Table 11-2: StyledText Styles

Table 11-3: StyledTextPrintOptions Members

Table 11-4: Key Binding Actions from the ST Class

Table 11-5: KeyEvent Fields

Table 11-6: VerifyEvent Fields

Table 11-7: ExtendedModifyEvent Fields

Table 11-8: StyleRange Fields

Table 11-9: StyleRange Constructors

Table 11-10: StyleRange Methods

Table 11-11: LineStyleEvent Fields

Table 11-12: LineBackgroundEvent Fields

Chapter 12: Advanced Topics

Table 12-1: DragSource Styles

Table 12-2: DragSource Methods

Table 12-3: DragSourceListener Methods

Table 12-4: DropTarget Methods

Table 12-5: DropTargetListener Methods

Table 12-6: Printer Methods

Table 12-7: PrinterData Members

Table 12-8: PrinterData Scope Constants

Table 12-9: PrintDialog Methods

Table 12-10: Browser Methods

Table 12-11: Program Methods

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Chapter 13: Your First JFace Application

Table 13-1: WindowManager constructors

Table 13-2: WindowManager methods

Chapter 14: Creating Viewers

Table 14-1: TreeViewer Constructors

Table 14-2: ITreeContentProvider (and Inherited) Methods

Table 14-3: ILabelProvider (and Inherited) Methods

Table 14-4: TreeViewer Methods

Table 14-5: AbstractTreeViewer Methods

Table 14-6: StructuredViewer Methods

Table 14-7: ContentViewer Methods

Table 14-8: Viewer Methods

Table 14-9: CheckboxTreeViewer Methods

Table 14-10: ListViewer Constructors

Table 14-11: IStructuredContentProvider (and Inherited) Methods

Table 14-12: ListViewer Methods

Table 14-13: TableViewer Constructors

Table 14-14: IStructuredContentProvider (and Inherited) Methods

Table 14-15: ITableLabelProvider (and Inherited) Methods

Table 14-16: TableViewer Methods

Table 14-17: CheckboxTableViewer Methods

Table 14-18: TableTreeViewer Constructors

Table 14-19: TableTreeViewer Methods

Table 14-20: CellEditor Methods

Table 14-21: ICellModifier Methods

Chapter 15: JFace Dialogs

Table 15-1: IStatus Methods

Table 15-2: IStatus Severity Codes

Table 15-3: ErrorDialog Methods

Table 15-4: MessageDialog Static Methods

Table 15-5: ProgressMonitorDialog Methods

Table 15-6: IProgressMonitor Methods

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Table 15-7: TitleAreaDialog Methods

Table 15-8: Message Types

Table 15-9: IDialogConstants Values for Button IDs and Labels

Chapter 16: User Interaction

Table 16-1: Action Constructors

Table 16-2: Action Style Constants

Table 16-3: Action Methods

Table 16-4: PropertyChangeEvent Methods

Chapter 17: Using Preferences

Table 17-1: PreferenceStore Methods

Table 17-2: PropertyChangeEvent Methods

Table 17-3: IPreferencePage Methods

Table 17-4: PreferencePage Constructors

Table 17-5: PreferencePage Methods

Table 17-6: IPreferenceNode Methods

Table 17-7: PreferenceNode Constructors

Table 17-8: PreferenceManager Methods

Table 17-9: FieldEditorPreferencePage Constructors

Table 17-10: BooleanFieldEditor Style Constants

Table 17-11: Methods to Set ScaleFieldEditor Values

Table 17-12: StringFieldEditor Customization Methods

Chapter 18: Editing Text

Table 18-1: ITextViewer Methods

Table 18-2: IDocument Methods

Table 18-3: IUndoManager Methods

Table 18-4: FindReplaceOperationCode Constants

Table 18-5: FindReplaceDocumentAdapter Methods

Table 18-6: IDocumentPartitioner Methods

Table 18-7: ITokenScanner Methods

Table 18-8: JFace Rules

Table 18-9: SourceViewerConfiguration Methods

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Chapter 19: Miscellaneous Helper Classes

Table 19-1: ModalContext Methods

Table 19-2: JFaceResources Methods

Table 19-3: JFaceResources Fields

Table 19-4: ColorRegistry Methods

Table 19-5: FontRegistry Constructors

Table 19-6: FontRegistry Methods

Table 19-7: ImageRegistry Methods

Table 19-8: JFaceColors Methods

Table 19-9: StringConverter Methods

Table 19-10: String Formats for Objects

Table 19-11: Geometry Methods

Table 19-12: ListenerList Constructors

Table 19-13: ListenerList Methods

Table 19-14: PropertyChangeEvent Methods

Chapter 20: Creating Wizards

Table 20-1: IWizard Methods

Table 20-2: Wizard Methods Not in IWizard

Table 20-3: IWizardPage Methods

Table 20-4: IDialogPage Methods

Table 20-5: WizardPage Constructors

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

List of Listings

Chapter 2: Getting Started with Eclipse

Listing 2-1: BlankWindow.java

Chapter 3: Your First SWT Application

Listing 3-1: build.xml

Listing 3-2: Broken.java

Chapter 4: Layouts

Listing 4-1: FillLayoutHorizontal.java

Listing 4-2: RowLayoutTest.java

Listing 4-3: GridLayoutComplex.java

Listing 4-4: FormLayoutSimple.java

Listing 4-5: FormDataFormAttachment.java

Listing 4-6: FormLayoutComplex.java

Listing 4-7: StackLayoutTest.java

Listing 4-8: BorderData.java

Listing 4-9: BorderLayout.java

Listing 4-10: BorderLayoutTest.java

Chapter 5: Widgets

Listing 5-1: LabelExample.java

Listing 5-2: ButtonExample.java

Listing 5-3: TextExample.java

Listing 5-4: ListExample.java

Listing 5-5: ComboExample.java

Listing 5-6: SliderExample.java

Listing 5-7: GroupExample.java

Listing 5-8: ScrollBarExample.java

Listing 5-9: ProgressBarExample.java

Listing 5-10: Creating a Bar Menu with Dropdowns

Listing 5-11: Creating a Popup Menu

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Listing 5-12: Creating a No Radio Group

Listing 5-13: Menus.java

Chapter 6: Events

Listing 6-1: DisposeListenerExample.java

Listing 6-2: ControlListenerExample.java

Listing 6-3: FocusListenerExample.java

Listing 6-4: MouseEventExample.java

Listing 6-5: MultipleListenersExample.java

Chapter 7: Dialogs

Listing 7-1: ShowMessageBox.java

Listing 7-2: ChooseColor.java

Listing 7-3: ShowDirectoryDialog.java

Listing 7-4: ShowFileDialog.java

Listing 7-5: ChooseFont.java

Listing 7-6: InputDialog.java

Listing 7-7: ShowInputDialog.java

Chapter 8: Advanced Controls

Listing 8-1: DecorationsExample.java

Listing 8-2: TabComplex.java

Listing 8-3: ToolBarComplex.java

Listing 8-4: DropdownSelectionListener.java

Listing 8-5: CoolBarTest.java

Listing 8-6: SashExampleOne.java

Listing 8-7: AsciiTable.java

Listing 8-8: TreeExample.java

Chapter 9: The Custom Controls

Listing 9-1: BusyIndicatorTest.java

Listing 9-2: CLabelTest.java

Listing 9-3: CLabelGradient.java

Listing 9-4: CLabelShort.java

Listing 9-5: ShowCTabFolder.java

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Listing 9-6: TableTreeTest.java

Listing 9-7: ControlEditorTest.java

Listing 9-8: ControlEditorTestTwo.java

Listing 9-9: TextTableEditor.java

Listing 9-10: TextTreeEditor.java

Listing 9-11: A Selection Listener

Listing 9-12: TableCursorTest.java

Listing 9-13: PopupListTest.java

Listing 9-14: SashFormTest.java

Listing 9-15: SashFormAdvanced.java

Listing 9-16: Setting Minimum Size for a Child Control

Listing 9-17: Look.java

Chapter 10: Graphics

Listing 10-1: CanvasExample.java

Listing 10-2: Painting a line

Listing 10-3: Polyline

Listing 10-4: PointExample.java

Listing 10-5: RoundRectangleExample.java

Listing 10-6: OvalExample.java

Listing 10-7: ArcExample.java

Listing 10-8: PolygonExample.java

Listing 10-9: DrawText.java

Listing 10-10: DrawHelveticaText.java

Listing 10-11: Extents.java

Listing 10-12: ColorFont.java

Listing 10-13: GraphicsUtils.java

Listing 10-14: VerticalText.java

Listing 10-15: Additional methods for GraphicsUtils.java

Listing 10-16: VerticalTextSpanish.java

Listing 10-17: ShowImageFlags.java

Listing 10-18: DrawImages.java

Listing 10-19: Animator.java

Listing 10-20: ShowDevice.java

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Chapter 11: Displaying and Editing Text

Listing 11-1: StyleRangeTest.java

Listing 11-2: SyntaxTest.java

Listing 11-3: RedEListener.java

Listing 11-4: MultiLineComment.java

Listing 11-5: MultiLineCommentListener.java

Listing 11-6: LineBackgroundListenerTest.java

Listing 11-7: PmpEditor.java

Listing 11-8: PmpEditorMenu.java

Listing 11-9: PmpeIoManager.java

Listing 11-10: TextChange.java

Listing 11-11: SyntaxData.java

Listing 11-12: SyntaxManager.java

Listing 11-13: PmpeLineStyleListener.java

Chapter 12: Advanced Topics

Listing 12-1: SnippetBoard.java

Listing 12-2: TextPrinterExample.java

Listing 12-3: ImagePrinterExample.java

Listing 12-4: ShowSlashdot.java

Listing 12-5: SimpleBrowser.java

Listing 12-6: AdvancedBrowser.java

Listing 12-7: ShowPrograms.java

Chapter 13: Your First JFace Application

Listing 13-1: build.xml

Listing 13-2: HelloWorld.java

Chapter 14: Creating Viewers

Listing 14-1: FileTree.java

Listing 14-2: FileTreeContentProvider.java

Listing 14-3: FileTreeLabelProvider.java

Listing 14-4: CheckFileTree.java

Listing 14-5: HealthyFilter.java

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Listing 14-6: PlayerViewerSorter.java

Listing 14-7: Person.java

Listing 14-8: PersonContentProvider.java

Listing 14-9: PersonLabelProvider.java

Listing 14-10: PersonCellModifier.java

Listing 14-11: PersonEditor.java

Chapter 15: JFace Dialogs

Listing 15-1: ShowError.java

Listing 15-2: LengthValidator.java

Listing 15-3: GetInput.java

Listing 15-4: SendMessage.java

Listing 15-5: LongRunningOperation.java

Listing 15-6: ShowProgress.java

Listing 15-7: MyTitleAreaDialog.java

Listing 15-8: ShowMyTitleAreaDialog.java

Listing 15-9: DumbMessageDialog.java

Listing 15-10: DumbUser.java

Chapter 16: User Interaction

Listing 16-1: AboutAction.java

Listing 16-2: AddBookAction.java

Listing 16-3: ExitAction.java

Listing 16-4: NewAction.java

Listing 16-5: OpenAction.java

Listing 16-6: RemoveBookAction.java

Listing 16-7: SaveAction.java

Listing 16-8: SaveAsAction.java

Listing 16-9: ShowBookCount.java

Listing 16-10: Librarian.java

Listing 16-11: Book.java

Listing 16-12: Library.java

Listing 16-13: LibraryContentProvider.java

Listing 16-14: LibraryLabelProvider.java

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Listing 16-15: LibraryCellModifier.java

Chapter 17: Using Preferences

Listing 17-1: PreferenceStoreTest.java

Listing 17-2: PrefPageOne.java

Listing 17-3: PrefPageTwo.java

Listing 17-4: ShowPrefs.java

Listing 17-5: ShowFieldPrefs.java

Listing 17-6: FieldEditorPageOne.java

Listing 17-7: FieldEditorPageTwo.java

Chapter 18: Editing Text

Listing 18-1: TextEditor.java

Listing 18-2: TextEditor2.java

Listing 18-3: FindReplaceDialog.java

Listing 18-4: PerlPartitionScanner.java

Listing 18-5: CommentScanner.java

Listing 18-6: PerlCodeScanner.java

Listing 18-7: PerlEditorSourceViewerConfiguration.java

Chapter 19: Miscellaneous Helper Classes

Listing 19-1: RegistryTest.java

Listing 19-2: ImageRegistryTest.java

Chapter 20: Creating Wizards

Listing 20-1: ConsonantPage.java

Listing 20-2: Survey.java

Listing 20-3: SurveyWizard.java

Listing 20-4: ComplaintsPage.java

Listing 20-5: MoreInformation.java

Listing 20-6: ThanksPage.java

Listing 20-7: AddEntryWizard.java

Listing 20-8: WelcomePage.java

Listing 20-9: NamePage.java

Listing 20-10: EmailPage.java

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Listing 20-11: AddressEntry.java

Listing 20-12: AddEntryAction.java

Listing 20-13: AddressBookContentProvider.java

Listing 20-14: AddressBookLabelProvider.java

Listing 20-15: AddressBook.java

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

List of Sidebars

Chapter 1: Evolution of Java GUIs

Model-View-Controller

Chapter 2: Getting Started with Eclipse

Perspectives in Eclipse

Chapter 3: Your First SWT Application

What is Ant?

Chapter 8: Advanced Controls

What Is JDOM?

Chapter 10: Graphics

Font Foundries

Chapter 12: Advanced Topics

Using the SWT Browser Under Linux

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/luca/IMPOST~1/Temp/Apress,.The.Definitive.Guide.to.SWT.and.JFace.(2004).LiB.chm/8886final/viewer.asp?bookid=8886&chunkid=668340670

	Table of Contents
	BackCover
	The Definitive Guide to SWT and JFace
	Introduction
	Who Should Read this Book
	How this Book is Organized
	What You Need
	Source Code
	How to Contact Us

	Part I: Getting Ready
	Chapter 1: Evolution of Java GUIs
	AWT
	Swing
	SWT
	JFace
	Summary

	Chapter 2: Getting Started with Eclipse
	Installing Eclipse
	Creating Your First Program
	Including the SWT Libraries
	Getting Help
	Alternatives to Eclipse
	Summary

	Part II: Using SWT
	Chapter 3: Your First SWT Application
	Understanding the Program
	Understanding the Design Behind SWT
	Understanding the Display Object
	Understanding the Shell Object
	The SWT Class - Constants and Methods
	Summary

	Chapter 4: Layouts
	Understanding Layouts
	Using FillLayout
	Using RowLayout
	Using GridLayout
	Using FormLayout
	Using StackLayout
	Creating Your Own Layout
	Not using a Layout
	GUI Builders for SWT
	Summary

	Chapter 5: Widgets
	Introducing Control
	Introducing Label
	Introducing Button
	Introducing Text
	Introducing List
	Introducing Combo
	Introducing Slider
	Introducing Group
	Introducing ScrollBar
	Introducing ProgressBar
	Introducing Menus
	Summary

	Chapter 6: Events
	Using SelectionListener and DisposeListener
	Using ControlListener
	Using FocusListener
	Using MouseListener, MouseMoveListener, and MouseTrackListener
	Using Several Listeners
	Summary

	Chapter 7: Dialogs
	Using the Dialogs
	Displaying Messages
	Choosing a Color
	Browsing Directories
	Selecting Files for Open or Save
	Choosing a Font
	Creating Your Own Dialogs
	Summary

	Chapter 8: Advanced Controls
	Tabs
	Toolbars
	Coolbars
	Sashes
	Tables
	Trees
	Combining Advanced Controls
	Summary

	Chapter 9: The Custom Controls
	Introducing BusyIndicator
	Introducing CCombo
	Introducing CLabel
	Introducing CTabFolder
	Introducing TableTree
	Introducing Control Editors
	Introducing TableCursor
	Introducing PopupList
	Introducing SashForm
	Introducing ScrolledComposite
	Introducing ViewForm
	Creating a Usable Example
	Summary

	Chapter 10: Graphics
	Drawing Shapes
	Drawing Text
	Drawing Images
	Understanding Device
	Summary

	Chapter 11: Displaying and Editing Text
	Using a LineStyleListener
	Using a LineBackgroundListener
	Adding Complexity
	Summary

	Chapter 12: Advanced Topics
	Printing
	Web Browsing
	Digging into Programs
	Summary

	Part III: Using JFace
	Chapter 13: Your First JFace Application
	Greeting the World with JFace
	Understanding the Relationship between SWT and JFace
	Understanding the ApplicationWindow Class
	A Word on WindowManagers
	Summary

	Chapter 14: Creating Viewers
	Tree Viewers
	List Viewers
	Table Viewers
	Cell Editors
	Summary

	Chapter 15: JFace Dialogs
	Showing Errors
	Receiving Input
	Sending Messages
	Showing Progress
	Building Your Own Dialogs
	Summary

	Chapter 16: User Interaction
	Creating Menus
	Creating ToolBars
	Creating CoolBars
	Creating a Status Line
	Summary

	Chapter 17: Using Preferences
	Persisting Preferences
	Receiving Notification of Preference Changes
	Displaying a Preference Dialog
	Using Field Editors
	Summary

	Chapter 18: Editing Text
	Undoing and Redoing
	Finding and Replacing
	Dividing Partitions
	Configuring the Viewer
	Living in Color
	Editing Perl
	Summary

	Chapter 19: Miscellaneous Helper Classes
	Creating Images using ImageDescriptor
	Using Resource Utilities
	Using Other Utilities
	Summary

	Chapter 20: Creating Wizards
	Launching Wizards
	Conjuring Wizards
	Adding Wizard Pages
	Customizing Navigation
	Performing the Work
	Witnessing a Wizard
	Summary

	Index
	Index_B
	Index_C
	Index_D
	Index_E
	Index_F
	Index_G
	Index_H
	Index_I
	Index_J
	Index_K
	Index_L
	Index_M
	Index_N
	Index_O
	Index_P
	Index_Q
	Index_R
	Index_S
	Index_T
	Index_U
	Index_V
	Index_W
	Index_X
	Index_Z

	List of Figures
	List of Tables
	List of Listings
	List of Sidebars

